
Web	pages	for	MPI	and	MPE
MPI	Commands

MPI mpicxx mpif77
mpicc mpiexec mpif90

MPI	Routines

MPIX_Group_comm_create MPI_File_open MPI_Pcontrol
MPI_Abort MPI_File_preallocate MPI_Probe
MPI_Accumulate MPI_File_read MPI_Publish_name
MPI_Add_error_class MPI_File_read_all MPI_Put
MPI_Add_error_code MPI_File_read_all_begin MPI_Query_thread
MPI_Add_error_string MPI_File_read_all_end MPI_Recv
MPI_Address MPI_File_read_at MPI_Recv_init
MPI_Allgather MPI_File_read_at_all MPI_Reduce
MPI_Allgatherv MPI_File_read_at_all_begin MPI_Reduce_local
MPI_Alloc_mem MPI_File_read_at_all_end MPI_Reduce_scatter
MPI_Allreduce MPI_File_read_ordered MPI_Reduce_scatter_block
MPI_Alltoall MPI_File_read_ordered_begin MPI_Register_datarep
MPI_Alltoallv MPI_File_read_ordered_end MPI_Request_free
MPI_Alltoallw MPI_File_read_shared MPI_Request_get_status
MPI_Attr_delete MPI_File_seek MPI_Rsend
MPI_Attr_get MPI_File_seek_shared MPI_Rsend_init
MPI_Attr_put MPI_File_set_atomicity MPI_Scan
MPI_Barrier MPI_File_set_errhandler MPI_Scatter
MPI_Bcast MPI_File_set_info MPI_Scatterv
MPI_Bsend MPI_File_set_size MPI_Send
MPI_Bsend_init MPI_File_set_view MPI_Send_init
MPI_Buffer_attach MPI_File_sync MPI_Sendrecv
MPI_Buffer_detach MPI_File_write MPI_Sendrecv_replace
MPI_Cancel MPI_File_write_all MPI_Ssend
MPI_Cart_coords MPI_File_write_all_begin MPI_Ssend_init
MPI_Cart_create MPI_File_write_all_end MPI_Start
MPI_Cart_get MPI_File_write_at MPI_Startall
MPI_Cart_map MPI_File_write_at_all MPI_Status_set_cancelled
MPI_Cart_rank MPI_File_write_at_all_begin MPI_Status_set_elements
MPI_Cart_shift MPI_File_write_at_all_end MPI_Test

MPI_Cart_sub MPI_File_write_ordered MPI_Test_cancelled
MPI_Cartdim_get MPI_File_write_ordered_begin MPI_Testall
MPI_Close_port MPI_File_write_ordered_end MPI_Testany
MPI_Comm_accept MPI_File_write_shared MPI_Testsome
MPI_Comm_call_errhandler MPI_Finalize MPI_Topo_test
MPI_Comm_compare MPI_Finalized MPI_Type_commit
MPI_Comm_connect MPI_Free_mem MPI_Type_contiguous
MPI_Comm_create MPI_Gather MPI_Type_create_darray
MPI_Comm_create_errhandler MPI_Gatherv MPI_Type_create_hindexed
MPI_Comm_create_keyval MPI_Get MPI_Type_create_hvector
MPI_Comm_delete_attr MPI_Get_address MPI_Type_create_indexed_block
MPI_Comm_disconnect MPI_Get_count MPI_Type_create_keyval
MPI_Comm_dup MPI_Get_elements MPI_Type_create_resized
MPI_Comm_free MPI_Get_processor_name MPI_Type_create_struct
MPI_Comm_free_keyval MPI_Get_version MPI_Type_create_subarray
MPI_Comm_get_attr MPI_Graph_create MPI_Type_delete_attr
MPI_Comm_get_errhandler MPI_Graph_get MPI_Type_dup
MPI_Comm_get_name MPI_Graph_map MPI_Type_extent
MPI_Comm_get_parent MPI_Graph_neighbors MPI_Type_free
MPI_Comm_group MPI_Graph_neighbors_count MPI_Type_free_keyval
MPI_Comm_join MPI_Graphdims_get MPI_Type_get_attr
MPI_Comm_rank MPI_Grequest_complete MPI_Type_get_contents
MPI_Comm_remote_group MPI_Grequest_start MPI_Type_get_envelope
MPI_Comm_remote_size MPI_Group_compare MPI_Type_get_extent
MPI_Comm_set_attr MPI_Group_difference MPI_Type_get_name
MPI_Comm_set_errhandler MPI_Group_excl MPI_Type_get_true_extent
MPI_Comm_set_name MPI_Group_free MPI_Type_hindexed
MPI_Comm_size MPI_Group_incl MPI_Type_hvector
MPI_Comm_spawn MPI_Group_intersection MPI_Type_indexed
MPI_Comm_spawn_multiple MPI_Group_range_excl MPI_Type_lb
MPI_Comm_split MPI_Group_range_incl MPI_Type_match_size
MPI_Comm_test_inter MPI_Group_rank MPI_Type_set_attr
MPI_Dims_create MPI_Group_size MPI_Type_set_name

MPI_Dist_graph_create MPI_Group_translate_ranks MPI_Type_size
MPI_Dist_graph_create_adjacent MPI_Group_union MPI_Type_struct
MPI_Dist_graph_neighbors MPI_Ibsend MPI_Type_ub
MPI_Dist_graph_neighbors_count MPI_Info_create MPI_Type_vector
MPI_Errhandler_create MPI_Info_delete MPI_Unpack
MPI_Errhandler_free MPI_Info_dup MPI_Unpack_external
MPI_Errhandler_get MPI_Info_free MPI_Unpublish_name
MPI_Errhandler_set MPI_Info_get MPI_Wait
MPI_Error_class MPI_Info_get_nkeys MPI_Waitall
MPI_Error_string MPI_Info_get_nthkey MPI_Waitany
MPI_Exscan MPI_Info_get_valuelen MPI_Waitsome
MPI_File_c2f MPI_Info_set MPI_Win_call_errhandler
MPI_File_call_errhandler MPI_Init MPI_Win_complete
MPI_File_close MPI_Init_thread MPI_Win_create
MPI_File_create_errhandler MPI_Initialized MPI_Win_create_errhandler
MPI_File_delete MPI_Intercomm_create MPI_Win_create_keyval
MPI_File_f2c MPI_Intercomm_merge MPI_Win_delete_attr
MPI_File_get_amode MPI_Iprobe MPI_Win_fence
MPI_File_get_atomicity MPI_Irecv MPI_Win_free
MPI_File_get_byte_offset MPI_Irsend MPI_Win_free_keyval
MPI_File_get_errhandler MPI_Is_thread_main MPI_Win_get_attr
MPI_File_get_group MPI_Isend MPI_Win_get_errhandler
MPI_File_get_info MPI_Issend MPI_Win_get_group
MPI_File_get_position MPI_Keyval_create MPI_Win_get_name
MPI_File_get_position_shared MPI_Keyval_free MPI_Win_lock
MPI_File_get_size MPI_Lookup_name MPI_Win_post
MPI_File_get_type_extent MPI_Op_commute MPI_Win_set_attr
MPI_File_get_view MPI_Op_create MPI_Win_set_errhandler
MPI_File_iread MPI_Op_free MPI_Win_set_name
MPI_File_iread_at MPI_Open_port MPI_Win_start
MPI_File_iread_shared MPI_Pack MPI_Win_test
MPI_File_iwrite MPI_Pack_external MPI_Win_unlock
MPI_File_iwrite_at MPI_Pack_external_size MPI_Win_wait

MPI_File_iwrite_shared MPI_Pack_size MPI_Wtick

MPI
Introduction	to	the	Message-Passing	Interface

Description

MPI	stands	for	Message	Passing	Interface.	MPI	is	a	specification	(like	C	or
Fortran)	and	there	are	a	number	of	implementations.	The	rest	of	this	man	page
describes	the	use	of	the	MPICH	implementation	of	MPI.

Getting	started

Add	MPI	to	your	path

								%	set	path	=	($path	/usr/local/mpi/bin)

for	the	csh	and	tcsh	shells,	or

								%	export	path=$path:/usr/local/mpi/bin

for	sh,	ksh,	and	bash	shells.

Compute	pi	to	a	given	resolution	on	8	processes

								%	mpiexec	-n	8	/usr/local/mpi/examples/cpi

You	can	compile	and	link	your	own	MPI	programs	with	the	commands	mpicc,
mpif77,	mpicxx,	and	mpif90:

								%	mpicc	-o	cpi	cpi.c

								%	mpif77	-o	fpi	fpi.f

								%	mpicxx	-o	cxxpi	cxxpi.cxx

								%	mpif790	-o	pi3f90	pi3f90.f90

using	the	source	code	from	/usr/local/mpi/examples.

Documentation

PDF	documentation	can	be	found	in	directory	/usr/local/mpi/doc/.	These
include	an	installation	manual	(install.pdf)	and	a	user's	manual
(usermanual.pdf).

Man	pages	exist	for	every	MPI	subroutine	and	function.	The	man	pages	are	also
available	on	the	Web	at	http://www.mcs.anl.gov/mpi/www.	Additional	on-line
information	is	available	at	http://www.mcs.anl.gov/mpi,	including	a	hypertext
version	of	the	standard,	information	on	other	libraries	that	use	MPI,	and	pointers
to	other	MPI	resources.

Version

MPICH2	version	1.0

License

Copyright	2002	University	of	Chicago.	See	the	file	COPYRIGHT	for	details.	The
source	code	is	freely	available	by	anonymous	ftp	from	ftp.mcs.anl.gov	in
pub/mpi/mpich2-beta.tar.gz	.

Files
/usr/local/mpi/																	MPI	software	directory

/usr/local/mpi/COPYRIGHT								Copyright	notice

/usr/local/mpi/README											various	notes	and	instructions

/usr/local/mpi/bin/													binaries,	including	mpiexec	and	mpicc

/usr/local/mpi/examples									elementary	MPI	programs

/usr/local/mpi/doc/													documentation

/usr/local/mpi/include/									include	files

/usr/local/mpi/lib/													library	files

Contact

MPI-specific	suggestions	and	bug	reports	should	be	sent	to	mpich-
discuss@mcs.anl.gov.

Location:manpage.txt

MPI_Abort
Terminates	MPI	execution	environment

Synopsis
int	MPI_Abort(MPI_Comm	comm,	int	errorcode)

Input	Parameters

comm
communicator	of	tasks	to	abort

errorcode
error	code	to	return	to	invoking	environment

Notes

Terminates	all	MPI	processes	associated	with	the	communicator	comm;	in	most
systems	(all	to	date),	terminates	all	processes.

Thread	and	Interrupt	Safety

The	user	is	responsible	for	ensuring	that	multiple	threads	do	not	try	to	update	the
same	MPI	object	from	different	threads.	This	routine	should	not	be	used	from
within	a	signal	handler.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.	Because
the	MPI_Abort	routine	is	intended	to	ensure	that	an	MPI	process	(and	possibly	an
entire	job),	it	cannot	wait	for	a	thread	to	release	a	lock	or	other	mechanism	for
atomic	access.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:abort.c

MPI_Accumulate
Accumulate	data	into	the	target	process	using	remote	memory	access

Synopsis
int	MPI_Accumulate(void	*origin_addr,	int	origin_count,	MPI_Datatype

																			origin_datatype,	int	target_rank,	MPI_Aint

																			target_disp,	int	target_count,	MPI_Datatype

																			target_datatype,	MPI_Op	op,	MPI_Win	win)	

Input	Parameters

origin_addr
initial	address	of	buffer	(choice)

origin_count
number	of	entries	in	buffer	(nonnegative	integer)

origin_datatype
datatype	of	each	buffer	entry	(handle)

target_rank
rank	of	target	(nonnegative	integer)

target_disp
displacement	from	start	of	window	to	beginning	of	target	buffer
(nonnegative	integer)

target_count
number	of	entries	in	target	buffer	(nonnegative	integer)

target_datatype
datatype	of	each	entry	in	target	buffer	(handle)

op
predefined	reduce	operation	(handle)

win
window	object	(handle)

Notes

The	basic	components	of	both	the	origin	and	target	datatype	must	be	the	same
predefined	datatype	(e.g.,	all	MPI_INT	or	all	MPI_DOUBLE_PRECISION).

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_WIN
Invalid	MPI	window	object

Location:accumulate.c

MPI_Add_error_class
Add	an	MPI	error	class	to	the	known	classes

Synopsis
int	MPI_Add_error_class(int	*errorclass)

Output	Parameter

errorclass
New	error	class

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:add_error_class.c

MPI_Add_error_code
Add	and	MPI	error	code	to	an	MPI	error	class

Synopsis
int	MPI_Add_error_code(int	errorclass,	int	*errorcode)

Input	Parameter

errorclass
Error	class	to	add	an	error	code.

Output	Parameter

errorcode
New	error	code	for	this	error	class.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:add_error_code.c

MPI_Add_error_string
Associates	an	error	string	with	an	MPI	error	code	or	class

Synopsis
int	MPI_Add_error_string(int	errorcode,	char	*string)

Input	Parameters

errorcode
error	code	or	class	(integer)

string
text	corresponding	to	errorcode	(string)

Notes

The	string	must	be	no	more	than	MPI_MAX_ERROR_STRING	characters	long.	The
length	of	the	string	is	as	defined	in	the	calling	language.	The	length	of	the	string
does	not	include	the	null	terminator	in	C	or	C++.	Note	that	the	string	is	const
even	though	the	MPI	standard	does	not	specify	it	that	way.

According	to	the	MPI-2	standard,	it	is	erroneous	to	call	MPI_Add_error_string
for	an	error	code	or	class	with	a	value	less	than	or	equal	to	MPI_ERR_LASTCODE.
Thus,	you	cannot	replace	the	predefined	error	messages	with	this	routine.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:add_error_string.c

MPI_Address
Gets	the	address	of	a	location	in	memory

Synopsis
int	MPI_Address(void	*location,	MPI_Aint	*address)

Input	Parameter

location
location	in	caller	memory	(choice)

Output	Parameter

address
address	of	location	(address	integer)

Note

This	routine	is	provided	for	both	the	Fortran	and	C	programmers.	On	many
systems,	the	address	returned	by	this	routine	will	be	the	same	as	produced	by	the
C	&	operator,	but	this	is	not	required	in	C	and	may	not	be	true	of	systems	with
word-	rather	than	byte-oriented	instructions	or	systems	with	segmented	address
spaces.

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Get_address.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:address.c

MPI_Allgather
Gathers	data	from	all	tasks	and	distribute	the	combined	data	to	all	tasks

Synopsis
int	MPI_Allgather(void	*sendbuf,	int	sendcount,	MPI_Datatype	sendtype,	

																		void	*recvbuf,	int	recvcount,	MPI_Datatype	recvtype,	

																		MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

sendcount
number	of	elements	in	send	buffer	(integer)

sendtype
data	type	of	send	buffer	elements	(handle)

recvcount
number	of	elements	received	from	any	process	(integer)

recvtype
data	type	of	receive	buffer	elements	(handle)

comm
communicator	(handle)

Output	Parameter

recvbuf
address	of	receive	buffer	(choice)

Notes

The	MPI	standard	(1.0	and	1.1)	says	that	

The	jth	block	of	data	sent	from	each	process	is	received	by	every	process	and
placed	in	the	jth	block	of	the	buffer	recvbuf.	

This	is	misleading;	a	better	description	is	

The	block	of	data	sent	from	the	jth	process	is	received	by	every	process	and
placed	in	the	jth	block	of	the	buffer	recvbuf.	

This	text	was	suggested	by	Rajeev	Thakur	and	has	been	adopted	as	a
clarification	by	the	MPI	Forum.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

Location:allgather.c

MPI_Allgatherv
Gathers	data	from	all	tasks	and	deliver	the	combined	data	to	all	tasks

Synopsis
int	MPI_Allgatherv(void	*sendbuf,	int	sendcount,	MPI_Datatype	sendtype,	

																			void	*recvbuf,	int	*recvcounts,	int	*displs,	

																			MPI_Datatype	recvtype,	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

sendcount
number	of	elements	in	send	buffer	(integer)

sendtype
data	type	of	send	buffer	elements	(handle)

recvcounts
integer	array	(of	length	group	size)	containing	the	number	of	elements	that
are	to	be	received	from	each	process

displs
integer	array	(of	length	group	size).	Entry	i	specifies	the	displacement
(relative	to	recvbuf)	at	which	to	place	the	incoming	data	from	process	i

recvtype
data	type	of	receive	buffer	elements	(handle)

comm
communicator	(handle)

Output	Parameter

recvbuf
address	of	receive	buffer	(choice)

Notes

The	MPI	standard	(1.0	and	1.1)	says	that	

The	jth	block	of	data	sent	from	each	process	is	received	by	every	process	and
placed	in	the	jth	block	of	the	buffer	recvbuf.	

This	is	misleading;	a	better	description	is	

The	block	of	data	sent	from	the	jth	process	is	received	by	every	process	and
placed	in	the	jth	block	of	the	buffer	recvbuf.	

This	text	was	suggested	by	Rajeev	Thakur,	and	has	been	adopted	as	a
clarification	to	the	MPI	standard	by	the	MPI-Forum.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

Location:allgatherv.c

MPI_Alloc_mem
Allocate	memory	for	message	passing	and	RMA

Synopsis
int	MPI_Alloc_mem(MPI_Aint	size,	MPI_Info	info,	void	*baseptr)

Input	Parameters

size
size	of	memory	segment	in	bytes	(nonnegative	integer)

info
info	argument	(handle)

Output	Parameter

baseptr
pointer	to	beginning	of	memory	segment	allocated

Notes

Using	this	routine	from	Fortran	requires	that	the	Fortran	compiler	accept	a
common	pointer	extension.	See	Section	4.11	(Memory	Allocation)	in	the	MPI-2
standard	for	more	information	and	examples.

Also	note	that	while	baseptr	is	a	void	*	type,	this	is	simply	to	allow	easy	use	of
any	pointer	object	for	this	parameter.	In	fact,	this	argument	is	really	a	void	**
type,	that	is,	a	pointer	to	a	pointer.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_INFO
Invalid	Info

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_NO_MEM
Insufficient	memory	available	for	allocation	by	MPI_Alloc_mem

Location:alloc_mem.c

MPI_Allreduce
Combines	values	from	all	processes	and	distributes	the	result	back	to	all
processes

Synopsis
int	MPI_Allreduce	(void	*sendbuf,	void	*recvbuf,	int	count,	

																			MPI_Datatype	datatype,	MPI_Op	op,	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

count
number	of	elements	in	send	buffer	(integer)

datatype
data	type	of	elements	of	send	buffer	(handle)

op
operation	(handle)

comm
communicator	(handle)

Output	Parameter

recvbuf
starting	address	of	receive	buffer	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Notes	on	collective	operations

The	reduction	functions	(MPI_Op)	do	not	return	an	error	value.	As	a	result,	if	the
functions	detect	an	error,	all	they	can	do	is	either	call	MPI_Abort	or	silently	skip
the	problem.	Thus,	if	you	change	the	error	handler	from	MPI_ERRORS_ARE_FATAL
to	something	else,	for	example,	MPI_ERRORS_RETURN,	then	no	error	may	be
indicated.

The	reason	for	this	is	the	performance	problems	in	ensuring	that	all	collective
routines	return	the	same	error	value.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_OP
Invalid	operation.	MPI	operations	(objects	of	type	MPI_Op)	must	either	be
one	of	the	predefined	operations	(e.g.,	MPI_SUM)	or	created	with
MPI_Op_create.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

Location:allreduce.c

MPI_Alltoall
Sends	data	from	all	to	all	processes

Synopsis
int	MPI_Alltoall(void	*sendbuf,	int	sendcount,	MPI_Datatype	sendtype,	

																	void	*recvbuf,	int	recvcount,	MPI_Datatype	recvtype,	

																	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

sendcount
number	of	elements	to	send	to	each	process	(integer)

sendtype
data	type	of	send	buffer	elements	(handle)

recvcount
number	of	elements	received	from	any	process	(integer)

recvtype
data	type	of	receive	buffer	elements	(handle)

comm
communicator	(handle)

Output	Parameter

recvbuf
address	of	receive	buffer	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

Location:alltoall.c

MPI_Alltoallv
Sends	data	from	all	to	all	processes;	each	process	may	send	a	different	amount	of
data	and	provide	displacements	for	the	input	and	output	data.

Synopsis
int	MPI_Alltoallv(void	*sendbuf,	int	*sendcnts,	int	*sdispls,	

																		MPI_Datatype	sendtype,	void	*recvbuf,	int	*recvcnts,	

																		int	*rdispls,	MPI_Datatype	recvtype,	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

sendcounts
integer	array	equal	to	the	group	size	specifying	the	number	of	elements	to
send	to	each	processor

sdispls
integer	array	(of	length	group	size).	Entry	j	specifies	the	displacement
(relative	to	sendbuf	from	which	to	take	the	outgoing	data	destined	for
process	j

sendtype
data	type	of	send	buffer	elements	(handle)

recvcounts
integer	array	equal	to	the	group	size	specifying	the	maximum	number	of
elements	that	can	be	received	from	each	processor

rdispls
integer	array	(of	length	group	size).	Entry	i	specifies	the	displacement
(relative	to	recvbuf	at	which	to	place	the	incoming	data	from	process	i

recvtype
data	type	of	receive	buffer	elements	(handle)

comm
communicator	(handle)

Output	Parameter

recvbuf
address	of	receive	buffer	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

Location:alltoallv.c

MPI_Alltoallw
Generalized	all-to-all	communication	allowing	different	datatypes,	counts,	and
displacements	for	each	partner

Synopsis
int	MPI_Alltoallw(void	*sendbuf,	int	*sendcnts,	int	*sdispls,	

																		MPI_Datatype	*sendtypes,	void	*recvbuf,	int	*recvcnts,	

																		int	*rdispls,	MPI_Datatype	*recvtypes,	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

sendcounts
integer	array	equal	to	the	group	size	specifying	the	number	of	elements	to
send	to	each	processor	(integer)

sdispls
integer	array	(of	length	group	size).	Entry	j	specifies	the	displacement	in
bytes	(relative	to	sendbuf)	from	which	to	take	the	outgoing	data	destined	for
process	j

sendtypes
array	of	datatypes	(of	length	group	size).	Entry	j	specifies	the	type	of	data
to	send	to	process	j	(handle)

recvcounts
integer	array	equal	to	the	group	size	specifying	the	number	of	elements	that
can	be	received	from	each	processor	(integer)

rdispls
integer	array	(of	length	group	size).	Entry	i	specifies	the	displacement	in
bytes	(relative	to	recvbuf)	at	which	to	place	the	incoming	data	from	process
i

recvtypes
array	of	datatypes	(of	length	group	size).	Entry	i	specifies	the	type	of	data
received	from	process	i	(handle)

comm
communicator	(handle)

Output	Parameter

recvbuf
address	of	receive	buffer	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

Location:alltoallw.c

MPI_Attr_delete
Deletes	an	attribute	value	associated	with	a	key	on	a	communicator

Synopsis
int	MPI_Attr_delete(MPI_Comm	comm,	int	keyval)

Input	Parameters

comm
communicator	to	which	attribute	is	attached	(handle)

keyval
The	key	value	of	the	deleted	attribute	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Comm_delete_attr.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
This	error	class	is	associated	with	an	error	code	that	indicates	that	an
attempt	was	made	to	free	one	of	the	permanent	keys.

Location:attr_delete.c

MPI_Attr_get
Retrieves	attribute	value	by	key

Synopsis
int	MPI_Attr_get(MPI_Comm	comm,	int	keyval,	void	*attr_value,	int	*flag)

Input	Parameters

comm
communicator	to	which	attribute	is	attached	(handle)

keyval
key	value	(integer)

Output	Parameters

attr_value
attribute	value,	unless	flag	=	false

flag
true	if	an	attribute	value	was	extracted;	false	if	no	attribute	is	associated
with	the	key

Notes

Attributes	must	be	extracted	from	the	same	language	as	they	were	inserted	in
with	MPI_ATTR_PUT.	The	notes	for	C	and	Fortran	below	explain	why.

Notes	for	C

Even	though	the	attr_value	arguement	is	declared	as	void	*,	it	is	really	the
address	of	a	void	pointer	(i.e.,	a	void	**).	Using	a	void	*,	however,	is	more	in
keeping	with	C	idiom	and	allows	the	pointer	to	be	passed	without	additional
casts.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Comm_get_attr.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

The	attr_value	in	Fortran	is	a	pointer	to	a	Fortran	integer,	not	a	pointer	to	a
void	*.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_KEYVAL
Invalid	keyval

See	Also

MPI_Attr_put,	MPI_Keyval_create,	MPI_Attr_delete,	MPI_Comm_get_attr	

Location:attr_get.c

MPI_Attr_put
Stores	attribute	value	associated	with	a	key

Synopsis
int	MPI_Attr_put(MPI_Comm	comm,	int	keyval,	void	*attr_value)

Input	Parameters

comm
communicator	to	which	attribute	will	be	attached	(handle)

keyval
key	value,	as	returned	by	MPI_KEYVAL_CREATE	(integer)

attribute_val
attribute	value

Notes

Values	of	the	permanent	attributes	MPI_TAG_UB,	MPI_HOST,	MPI_IO,
MPI_WTIME_IS_GLOBAL,	MPI_UNIVERSE_SIZE,	MPI_LASTUSEDCODE,	and
MPI_APPNUM	may	not	be	changed.

The	type	of	the	attribute	value	depends	on	whether	C,	C++,	or	Fortran	is	being
used.	In	C	and	C++,	an	attribute	value	is	a	pointer	(void	*);	in	Fortran,	it	is	a
single	integer	(not	a	pointer,	since	Fortran	has	no	pointers	and	there	are	systems
for	which	a	pointer	does	not	fit	in	an	integer	(e.g.,	any	>	32	bit	address	system
that	uses	64	bits	for	Fortran	DOUBLE	PRECISION).

If	an	attribute	is	already	present,	the	delete	function	(specified	when	the
corresponding	keyval	was	created)	will	be	called.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Comm_set_attr.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_KEYVAL
Invalid	keyval

MPI_ERR_ARG
This	error	class	is	associated	with	an	error	code	that	indicates	that	an
attempt	was	made	to	free	one	of	the	permanent	keys.

See	Also

MPI_Attr_get,	MPI_Keyval_create,	MPI_Attr_delete,	MPI_Comm_set_attr	

Location:attr_put.c

MPI_Barrier
Blocks	until	all	processes	in	the	communicator	have	reached	this	routine.

Synopsis
int	MPI_Barrier(MPI_Comm	comm)

Input	Parameter

comm
communicator	(handle)

Notes

Blocks	the	caller	until	all	processes	in	the	communicator	have	called	it;	that	is,
the	call	returns	at	any	process	only	after	all	members	of	the	communicator	have
entered	the	call.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

Location:barrier.c

MPI_Bcast
Broadcasts	a	message	from	the	process	with	rank	"root"	to	all	other	processes	of
the	communicator

Synopsis
int	MPI_Bcast(void	*buffer,	int	count,	MPI_Datatype	datatype,	int	root,	

															MPI_Comm	comm)

Input/Output	Parameter

buffer
starting	address	of	buffer	(choice)

Input	Parameters

count
number	of	entries	in	buffer	(integer)

datatype
data	type	of	buffer	(handle)

root
rank	of	broadcast	root	(integer)

comm
communicator	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

MPI_ERR_ROOT
Invalid	root.	The	root	must	be	specified	as	a	rank	in	the	communicator.
Ranks	must	be	between	zero	and	the	size	of	the	communicator	minus	one.

Location:bcast.c

MPI_Bsend
Basic	send	with	user-provided	buffering

Synopsis
int	MPI_Bsend(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,	int	tag,	

														MPI_Comm	comm)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	in	send	buffer	(nonnegative	integer)

datatype
datatype	of	each	send	buffer	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Notes

This	send	is	provided	as	a	convenience	function;	it	allows	the	user	to	send
messages	without	worring	about	where	they	are	buffered	(because	the	user	must
have	provided	buffer	space	with	MPI_Buffer_attach).

In	deciding	how	much	buffer	space	to	allocate,	remember	that	the	buffer	space	is
not	available	for	reuse	by	subsequent	MPI_Bsends	unless	you	are	certain	that	the
message	has	been	received	(not	just	that	it	should	have	been	received).	For
example,	this	code	does	not	allocate	enough	buffer	space

				MPI_Buffer_attach(b,	n*sizeof(double)	+	MPI_BSEND_OVERHEAD);

				for	(i=0;	i<m;	i++)	{

								MPI_Bsend(buf,	n,	MPI_DOUBLE,	...);

				}

because	only	enough	buffer	space	is	provided	for	a	single	send,	and	the	loop	may
start	a	second	MPI_Bsend	before	the	first	is	done	making	use	of	the	buffer.

In	C,	you	can	force	the	messages	to	be	delivered	by

				MPI_Buffer_detach(&b,	&n);

				MPI_Buffer_attach(b,	n);

(The	MPI_Buffer_detach	will	not	complete	until	all	buffered	messages	are
delivered.)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

See	Also

MPI_Buffer_attach,	MPI_Ibsend,	MPI_Bsend_init	

Location:bsend.c

MPI_Bsend_init
Builds	a	handle	for	a	buffered	send

Synopsis
int	MPI_Bsend_init(void	*buf,	int	count,	MPI_Datatype	datatype,	

																			int	dest,	int	tag,	MPI_Comm	comm,	MPI_Request	*request)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	sent	(integer)

datatype
type	of	each	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Output	Parameter

request
communication	request	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

See	Also

MPI_Buffer_attach	

Location:bsend_init.c

MPI_Buffer_attach
Attaches	a	user-provided	buffer	for	sending

Synopsis
int	MPI_Buffer_attach(void	*buffer,	int	size)

Input	Parameters

buffer
initial	buffer	address	(choice)

size
buffer	size,	in	bytes	(integer)

Notes

The	size	given	should	be	the	sum	of	the	sizes	of	all	outstanding	Bsends	that	you
intend	to	have,	plus	MPI_BSEND_OVERHEAD	for	each	Bsend	that	you	do.	For	the
purposes	of	calculating	size,	you	should	use	MPI_Pack_size.	In	other	words,	in
the	code

					MPI_Buffer_attach(buffer,	size);

					MPI_Bsend(...,	count=20,	datatype=type1,		...);

					...

					MPI_Bsend(...,	count=40,	datatype=type2,	...);

the	value	of	size	in	the	MPI_Buffer_attach	call	should	be	greater	than	the	value
computed	by

					MPI_Pack_size(20,	type1,	comm,	&s1);

					MPI_Pack_size(40,	type2,	comm,	&s2);

					size	=	s1	+	s2	+	2	*	MPI_BSEND_OVERHEAD;

The	MPI_BSEND_OVERHEAD	gives	the	maximum	amount	of	space	that	may	be	used
in	the	buffer	for	use	by	the	BSEND	routines	in	using	the	buffer.	This	value	is	in
mpi.h	(for	C)	and	mpif.h	(for	Fortran).

Thread	and	Interrupt	Safety

The	user	is	responsible	for	ensuring	that	multiple	threads	do	not	try	to	update	the
same	MPI	object	from	different	threads.	This	routine	should	not	be	used	from
within	a	signal	handler.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.	Because
the	buffer	for	buffered	sends	(e.g.,	MPI_Bsend)	is	shared	by	all	threads	in	a
process,	the	user	is	responsible	for	ensuring	that	only	one	thread	at	a	time	calls
this	routine	or	MPI_Buffer_detach.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

MPI_ERR_INTERN
An	internal	error	has	been	detected.	This	is	fatal.	Please	send	a	bug	report	to
mpi-bugs@mcs.anl.gov.

See	Also

MPI_Buffer_detach,	MPI_Bsend	

Location:bufattach.c

MPI_Buffer_detach
Removes	an	existing	buffer	(for	use	in	MPI_Bsend	etc)

Synopsis
int	MPI_Buffer_detach(void	*buffer,	int	*size)

Output	Parameters

buffer
initial	buffer	address	(choice)

size
buffer	size,	in	bytes	(integer)

Notes

The	reason	that	MPI_Buffer_detach	returns	the	address	and	size	of	the	buffer
being	detached	is	to	allow	nested	libraries	to	replace	and	restore	the	buffer.	For
example,	consider

				int	size,	mysize,	idummy;

				void	*ptr,	*myptr,	*dummy;					

				MPI_Buffer_detach(&ptr,	&size);

				MPI_Buffer_attach(myptr,	mysize);

				...

				...	library	code	...

				...

				MPI_Buffer_detach(&dummy,	&idummy);

				MPI_Buffer_attach(ptr,	size);

This	is	much	like	the	action	of	the	Unix	signal	routine	and	has	the	same
strengths	(it	is	simple)	and	weaknesses	(it	only	works	for	nested	usages).

Note	that	for	this	approach	to	work,	MPI_Buffer_detach	must	return
MPI_SUCCESS	even	when	there	is	no	buffer	to	detach.	In	that	case,	it	returns	a
size	of	zero.	The	MPI	1.1	standard	for	MPI_BUFFER_DETACH	contains	the	text

			The	statements	made	in	this	section	describe	the	behavior	of	MPI	for

			buffered-mode	sends.	When	no	buffer	is	currently	associated,	MPI	behaves	

			as	if	a	zero-sized	buffer	is	associated	with	the	process.

This	could	be	read	as	applying	only	to	the	various	Bsend	routines.	This
implementation	takes	the	position	that	this	applies	to	MPI_BUFFER_DETACH	as
well.

Thread	and	Interrupt	Safety

The	user	is	responsible	for	ensuring	that	multiple	threads	do	not	try	to	update	the
same	MPI	object	from	different	threads.	This	routine	should	not	be	used	from
within	a	signal	handler.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.	Because
the	buffer	for	buffered	sends	(e.g.,	MPI_Bsend)	is	shared	by	all	threads	in	a
process,	the	user	is	responsible	for	ensuring	that	only	one	thread	at	a	time	calls
this	routine	or	MPI_Buffer_attach.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

The	Fortran	binding	for	this	routine	is	different.	Because	Fortran	does	not	have
pointers,	it	is	impossible	to	provide	a	way	to	use	the	output	of	this	routine	to
exchange	buffers.	In	this	case,	only	the	size	field	is	set.

Notes	for	C

Even	though	the	bufferptr	argument	is	declared	as	void	*,	it	is	really	the
address	of	a	void	pointer.	See	the	rationale	in	the	standard	for	more	details.

See	Also

MPI_Buffer_attach	

Location:buffree.c

MPI_Cancel
Cancels	a	communication	request

Synopsis
int	MPI_Cancel(MPI_Request	*request)

Input	Parameter

request
communication	request	(handle)

Notes

The	primary	expected	use	of	MPI_Cancel	is	in	multi-buffering	schemes,	where
speculative	MPI_Irecvs	are	made.	When	the	computation	completes,	some	of
these	receive	requests	may	remain;	using	MPI_Cancel	allows	the	user	to	cancel
these	unsatisfied	requests.

Cancelling	a	send	operation	is	much	more	difficult,	in	large	part	because	the
send	will	usually	be	at	least	partially	complete	(the	information	on	the	tag,	size,
and	source	are	usually	sent	immediately	to	the	destination).	Users	are	advised
that	cancelling	a	send,	while	a	local	operation	(as	defined	by	the	MPI	standard),
is	likely	to	be	expensive	(usually	generating	one	or	more	internal	messages).

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Null	Handles

The	MPI	1.1	specification,	in	the	section	on	opaque	objects,	explicitly	disallows
freeing	a	null	communicator.	The	text	from	the	standard	is:

	A	null	handle	argument	is	an	erroneous	IN	argument	in	MPI	calls,	unless	an

	exception	is	explicitly	stated	in	the	text	that	defines	the	function.	Such

	exception	is	allowed	for	handles	to	request	objects	in	Wait	and	Test	calls

	(sections	Communication	Completion	and	Multiple	Completions).	Otherwise,	a

	null	handle	can	only	be	passed	to	a	function	that	allocates	a	new	object	and

	returns	a	reference	to	it	in	the	handle.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_REQUEST
Invalid	MPI_Request.	Either	null	or,	in	the	case	of	a	MPI_Start	or
MPI_Startall,	not	a	persistent	request.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:cancel.c

MPI_Cart_coords
Determines	process	coords	in	cartesian	topology	given	rank	in	group

Synopsis
int	MPI_Cart_coords(MPI_Comm	comm,	int	rank,	int	maxdims,	int	*coords)

Input	Parameters

comm
communicator	with	cartesian	structure	(handle)

rank
rank	of	a	process	within	group	of	comm	(integer)

maxdims
length	of	vector	coords	in	the	calling	program	(integer)

Output	Parameter

coords
integer	array	(of	size	ndims)	containing	the	Cartesian	coordinates	of
specified	process	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_DIMS
Invalid	dimension	argument.	A	dimension	argument	is	null	or	its	length	is
less	than	or	equal	to	zero.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:cart_coords.c

MPI_Cart_create
Makes	a	new	communicator	to	which	topology	information	has	been	attached

Synopsis
int	MPI_Cart_create(MPI_Comm	comm_old,	int	ndims,	int	*dims,	int	*periods,	

																			int	reorder,	MPI_Comm	*comm_cart)

Input	Parameters

comm_old
input	communicator	(handle)

ndims
number	of	dimensions	of	cartesian	grid	(integer)

dims
integer	array	of	size	ndims	specifying	the	number	of	processes	in	each
dimension

periods
logical	array	of	size	ndims	specifying	whether	the	grid	is	periodic	(true)	or
not	(false)	in	each	dimension

reorder
ranking	may	be	reordered	(true)	or	not	(false)	(logical)

Output	Parameter

comm_cart
communicator	with	new	cartesian	topology	(handle)

Algorithm

We	ignore	reorder	info	currently.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_DIMS
Invalid	dimension	argument.	A	dimension	argument	is	null	or	its	length	is
less	than	or	equal	to	zero.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:cart_create.c

MPI_Cart_get
Retrieves	Cartesian	topology	information	associated	with	a	communicator

Synopsis
int	MPI_Cart_get(MPI_Comm	comm,	int	maxdims,	int	*dims,	int	*periods,	

																	int	*coords)

Input	Parameters

comm
communicator	with	cartesian	structure	(handle)

maxdims
length	of	vectors	dims,	periods,	and	coords	in	the	calling	program
(integer)

Output	Parameters

dims
number	of	processes	for	each	cartesian	dimension	(array	of	integer)

periods
periodicity	(true/false)	for	each	cartesian	dimension	(array	of	logical)

coords
coordinates	of	calling	process	in	cartesian	structure	(array	of	integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:cart_get.c

MPI_Cart_map
Maps	process	to	Cartesian	topology	information

Synopsis
int	MPI_Cart_map(MPI_Comm	comm_old,	int	ndims,	int	*dims,	int	*periods,	

																int	*newrank)

Input	Parameters

comm
input	communicator	(handle)

ndims
number	of	dimensions	of	Cartesian	structure	(integer)

dims
integer	array	of	size	ndims	specifying	the	number	of	processes	in	each
coordinate	direction

periods
logical	array	of	size	ndims	specifying	the	periodicity	specification	in	each
coordinate	direction

Output	Parameter

newrank
reordered	rank	of	the	calling	process;	MPI_UNDEFINED	if	calling	process
does	not	belong	to	grid	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_DIMS
Invalid	dimension	argument.	A	dimension	argument	is	null	or	its	length	is
less	than	or	equal	to	zero.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:cart_map.c

MPI_Cart_rank
Determines	process	rank	in	communicator	given	Cartesian	location

Synopsis
int	MPI_Cart_rank(MPI_Comm	comm,	int	*coords,	int	*rank)

Input	Parameters

comm
communicator	with	cartesian	structure	(handle)

coords
integer	array	(of	size	ndims,	the	number	of	dimensions	of	the	Cartesian
topology	associated	with	comm)	specifying	the	cartesian	coordinates	of	a
process

Output	Parameter

rank
rank	of	specified	process	(integer)

Notes

Out-of-range	coordinates	are	erroneous	for	non-periodic	dimensions.	Versions	of
MPICH	before	1.2.2	returned	MPI_PROC_NULL	for	the	rank	in	this	case.

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:cart_rank.c

MPI_Cart_shift
Returns	the	shifted	source	and	destination	ranks,	given	a	shift	direction	and
amount

Synopsis
int	MPI_Cart_shift(MPI_Comm	comm,	int	direction,	int	displ,	int	*source,	

																		int	*dest)

Input	Parameters

comm
communicator	with	cartesian	structure	(handle)

direction
coordinate	dimension	of	shift	(integer)

displ
displacement	(>	0:	upwards	shift,	<	0:	downwards	shift)	(integer)

Output	Parameters

source
rank	of	source	process	(integer)

dest
rank	of	destination	process	(integer)

Notes

The	direction	argument	is	in	the	range	[0,n-1]	for	an	n-dimensional	Cartesian
mesh.

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:cart_shift.c

MPI_Cart_sub
Partitions	a	communicator	into	subgroups	which	form	lower-dimensional
cartesian	subgrids

Synopsis
int	MPI_Cart_sub(MPI_Comm	comm,	int	*remain_dims,	MPI_Comm	*comm_new)

Input	Parameters

comm
communicator	with	cartesian	structure	(handle)

remain_dims
the	ith	entry	of	remain_dims	specifies	whether	the	ith	dimension	is	kept	in
the	subgrid	(true)	or	is	dropped	(false)	(logical	vector)

Output	Parameter

newcomm
communicator	containing	the	subgrid	that	includes	the	calling	process
(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:cart_sub.c

MPI_Cartdim_get
Retrieves	Cartesian	topology	information	associated	with	a	communicator

Synopsis
int	MPI_Cartdim_get(MPI_Comm	comm,	int	*ndims)

Input	Parameter

comm
communicator	with	cartesian	structure	(handle)

Output	Parameter

ndims
number	of	dimensions	of	the	cartesian	structure	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:cartdim_get.c

MPI_Close_port
close	port

Synopsis
int	MPI_Close_port(char	*port_name)

Input	Parameter

port_name
a	port	name	(string)

Thread	and	Interrupt	Safety

The	user	is	responsible	for	ensuring	that	multiple	threads	do	not	try	to	update	the
same	MPI	object	from	different	threads.	This	routine	should	not	be	used	from
within	a	signal	handler.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:close_port.c

MPI_Comm_accept
Accept	a	request	to	form	a	new	intercommunicator

Synopsis
int	MPI_Comm_accept(char	*port_name,	MPI_Info	info,	int	root,	MPI_Comm	comm,	

																				MPI_Comm	*newcomm)

Input	Parameters

port_name
port	name	(string,	used	only	on	root)

info
implementation-dependent	information	(handle,	used	only	on	root)

root
rank	in	comm	of	root	node	(integer)

IN
comm	intracommunicator	over	which	call	is	collective	(handle)

Output	Parameter

newcomm
intercommunicator	with	client	as	remote	group	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_INFO
Invalid	Info

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

Location:comm_accept.c

MPI_Comm_call_errhandler
Call	the	error	handler	installed	on	a	communicator

Synopsis
int	MPI_Comm_call_errhandler(MPI_Comm	comm,	int	errorcode)

Input	Parameters

comm
communicator	with	error	handler	(handle)

errorcode
error	code	(integer)

Note

Assuming	the	input	parameters	are	valid,	when	the	error	handler	is	set	to
MPI_ERRORS_RETURN,	this	routine	will	always	return	MPI_SUCCESS.

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

Location:comm_call_errhandler.c

MPI_Comm_compare
Compares	two	communicators

Synopsis
int	MPI_Comm_compare(MPI_Comm	comm1,	MPI_Comm	comm2,	int	*result)

Input	Parameters

comm1
comm1	(handle)

comm2
comm2	(handle)

Output	Parameter

result
integer	which	is	MPI_IDENT	if	the	contexts	and	groups	are	the	same,
MPI_CONGRUENT	if	different	contexts	but	identical	groups,	MPI_SIMILAR	if
different	contexts	but	similar	groups,	and	MPI_UNEQUAL	otherwise

Using	'MPI_COMM_NULL'	with
'MPI_Comm_compare'

It	is	an	error	to	use	MPI_COMM_NULL	as	one	of	the	arguments	to
MPI_Comm_compare.	The	relevant	sections	of	the	MPI	standard	are

.(2.4.1	Opaque	Objects)	A	null	handle	argument	is	an	erroneous	IN	argument	in
MPI	calls,	unless	an	exception	is	explicitly	stated	in	the	text	that	defines	the
function.

.(5.4.1.	Communicator	Accessors)	where	there	is	no	text	in	MPI_COMM_COMPARE
allowing	a	null	handle.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.	(To	perform	the	communicator	comparisions,
this	routine	may	need	to	allocate	some	memory.	Memory	allocation	is	not
interrupt-safe,	and	hence	this	routine	is	only	thread-safe.)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:comm_compare.c

MPI_Comm_connect
Make	a	request	to	form	a	new	intercommunicator

Synopsis
int	MPI_Comm_connect(char	*port_name,	MPI_Info	info,	int	root,	MPI_Comm	comm,	

																					MPI_Comm	*newcomm)

Input	Parameters

port_name
network	address	(string,	used	only	on	root)

info
implementation-dependent	information	(handle,	used	only	on	root)

root
rank	in	comm	of	root	node	(integer)

comm
intracommunicator	over	which	call	is	collective	(handle)

Output	Parameter

newcomm
intercommunicator	with	server	as	remote	group	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_INFO
Invalid	Info

MPI_ERR_PORT

Location:comm_connect.c

MPI_Comm_create
Creates	a	new	communicator

Synopsis
int	MPI_Comm_create(MPI_Comm	comm,	MPI_Group	group,	MPI_Comm	*newcomm)

Input	Parameters

comm
communicator	(handle)

group
group,	which	is	a	subset	of	the	group	of	comm	(handle)

Output	Parameter

comm_out
new	communicator	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

See	Also

MPI_Comm_free	

Location:comm_create.c

MPI_Comm_create_errhandler
Create	a	communicator	error	handler

Synopsis
int	MPI_Comm_create_errhandler(MPI_Comm_errhandler_function	*function,	

																															MPI_Errhandler	*errhandler)

Input	Parameter

function
user	defined	error	handling	procedure	(function)

Output	Parameter

errhandler
MPI	error	handler	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:comm_create_errhandler.c

MPI_Comm_create_keyval
Create	a	new	attribute	key

Synopsis
int	MPI_Comm_create_keyval(MPI_Comm_copy_attr_function	*comm_copy_attr_fn,	

																									MPI_Comm_delete_attr_function	*comm_delete_attr_fn,	

																									int	*comm_keyval,	void	*extra_state)

Input	Parameters

copy_fn
Copy	callback	function	for	keyval

delete_fn
Delete	callback	function	for	keyval

extra_state
Extra	state	for	callback	functions

Output	Parameter

comm_keyval
key	value	for	future	access	(integer)

Notes

Key	values	are	global	(available	for	any	and	all	communicators).

Default	copy	and	delete	functions	are	available.	These	are

MPI_COMM_NULL_COPY_FN
empty	copy	function

MPI_COMM_NULL_DELETE_FN
empty	delete	function

MPI_COMM_DUP_FN
simple	dup	function

There	are	subtle	differences	between	C	and	Fortran	that	require	that	the	copy_fn
be	written	in	the	same	language	from	which	MPI_Comm_create_keyval	is	called.
This	should	not	be	a	problem	for	most	users;	only	programers	using	both	Fortran
and	C	in	the	same	program	need	to	be	sure	that	they	follow	this	rule.

Return	value	from	attribute	callbacks

The	MPI-2	versions	of	the	attribute	callbacks	should	return	either	MPI_SUCCESS
on	success	or	a	valid	MPI	error	code	or	class	on	failure.	The	MPI	standard	is
ambiguous	on	this	point,	but	as	MPI-2	provides	the	routines
MPI_Add_error_class	and	MPI_Add_error_code	that	allow	the	user	to	define
and	use	MPI	error	codes	and	classes.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

See	Also

MPI_Comm_free_keyval	

Location:comm_create_keyval.c

MPI_Comm_delete_attr
Deletes	an	attribute	value	associated	with	a	key	on	a	communicator

Synopsis
int	MPI_Comm_delete_attr(MPI_Comm	comm,	int	comm_keyval)

Input	Parameters

comm
communicator	to	which	attribute	is	attached	(handle)

comm_keyval
The	key	value	of	the	deleted	attribute	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
This	error	class	is	associated	with	an	error	code	that	indicates	that	an
attempt	was	made	to	free	one	of	the	permanent	keys.

See	Also

MPI_Comm_set_attr,	MPI_Comm_create_keyval	

Location:comm_delete_attr.c

MPI_Comm_disconnect
Disconnect	from	a	communicator

Synopsis
int	MPI_Comm_disconnect(MPI_Comm	*	comm)

Input	Parameter

comm
communicator	(handle)

Notes

This	routine	waits	for	all	pending	communication	to	complete,	then	frees	the
communicator	and	sets	comm	to	MPI_COMM_NULL.	It	may	not	be	called	with
MPI_COMM_WORLD	or	MPI_COMM_SELF.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

See	Also

MPI_Comm_connect,	MPI_Comm_join	

Location:comm_disconnect.c

MPI_Comm_dup
Duplicates	an	existing	communicator	with	all	its	cached	information

Synopsis
int	MPI_Comm_dup(MPI_Comm	comm,	MPI_Comm	*newcomm)

Input	Parameter

comm
Communicator	to	be	duplicated	(handle)

Output	Parameter

newcomm
A	new	communicator	over	the	same	group	as	comm	but	with	a	new	context.
See	notes.	(handle)

Notes

This	routine	is	used	to	create	a	new	communicator	that	has	a	new
communication	context	but	contains	the	same	group	of	processes	as	the	input
communicator.	Since	all	MPI	communication	is	performed	within	a
communicator	(specifies	as	the	group	of	processes	plus	the	context),	this	routine
provides	an	effective	way	to	create	a	private	communicator	for	use	by	a	software
module	or	library.	In	particular,	no	library	routine	should	use	MPI_COMM_WORLD	as
the	communicator;	instead,	a	duplicate	of	a	user-specified	communicator	should
always	be	used.	For	more	information,	see	Using	MPI,	2nd	edition.

Because	this	routine	essentially	produces	a	copy	of	a	communicator,	it	also
copies	any	attributes	that	have	been	defined	on	the	input	communicator,	using
the	attribute	copy	function	specified	by	the	copy_function	argument	to
MPI_Keyval_create.	This	is	particularly	useful	for	(a)	attributes	that	describe
some	property	of	the	group	associated	with	the	communicator,	such	as	its
interconnection	topology	and	(b)	communicators	that	are	given	back	to	the	user;
the	attibutes	in	this	case	can	track	subsequent	MPI_Comm_dup	operations	on	this
communicator.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

See	Also

MPI_Comm_free,	MPI_Keyval_create,	MPI_Attr_put,	MPI_Attr_delete,	
MPI_Comm_create_keyval,	MPI_Comm_set_attr,	MPI_Comm_delete_attr

Location:comm_dup.c

MPI_Comm_free
Marks	the	communicator	object	for	deallocation

Synopsis
int	MPI_Comm_free(MPI_Comm	*comm)

Input	Parameter

comm
Communicator	to	be	destroyed	(handle)

Notes

This	routine	frees	a	communicator.	Because	the	communicator	may	still	be	in
use	by	other	MPI	routines,	the	actual	communicator	storage	will	not	be	freed
until	all	references	to	this	communicator	are	removed.	For	most	users,	the	effect
of	this	routine	is	the	same	as	if	it	was	in	fact	freed	at	this	time	of	this	call.

Null	Handles

The	MPI	1.1	specification,	in	the	section	on	opaque	objects,	explicitly

disallows	freeing	a	null	communicator.	The	text	from
the	standard	is
	A	null	handle	argument	is	an	erroneous	IN	argument	in	MPI	calls,	unless	an

	exception	is	explicitly	stated	in	the	text	that	defines	the	function.	Such

	exception	is	allowed	for	handles	to	request	objects	in	Wait	and	Test	calls

	(sections	Communication	Completion	and	Multiple	Completions).	Otherwise,	a

	null	handle	can	only	be	passed	to	a	function	that	allocates	a	new	object	and

	returns	a	reference	to	it	in	the	handle.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:comm_free.c

MPI_Comm_free_keyval
Frees	an	attribute	key	for	communicators

Synopsis
int	MPI_Comm_free_keyval(int	*comm_keyval)

Input	Parameter

comm_keyval
Frees	the	integer	key	value	(integer)

Notes

Key	values	are	global	(they	can	be	used	with	any	and	all	communicators)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_ARG
This	error	class	is	associated	with	an	error	code	that	indicates	that	an
attempt	was	made	to	free	one	of	the	permanent	keys.

Location:comm_free_keyval.c

MPI_Comm_get_attr
Retrieves	attribute	value	by	key

Synopsis
int	MPI_Comm_get_attr(MPI_Comm	comm,	int	comm_keyval,	void	*attribute_val,	

																					int	*flag)

Input	Parameters

comm
communicator	to	which	attribute	is	attached	(handle)

keyval
key	value	(integer)

Output	Parameters

attr_value
attribute	value,	unless	flag	=	false

flag
true	if	an	attribute	value	was	extracted;	false	if	no	attribute	is	associated
with	the	key

Notes

Attributes	must	be	extracted	from	the	same	language	as	they	were	inserted	in
with	MPI_Comm_set_attr.	The	notes	for	C	and	Fortran	below	explain	why.

Notes	for	C

Even	though	the	attr_value	arguement	is	declared	as	void	*,	it	is	really	the
address	of	a	void	pointer.	See	the	rationale	in	the	standard	for	more	details.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_KEYVAL
Invalid	keyval

Location:comm_get_attr.c

MPI_Comm_get_errhandler
Get	the	error	handler	attached	to	a	communicator

Synopsis
int	MPI_Comm_get_errhandler(MPI_Comm	comm,	MPI_Errhandler	*errhandler)

Input	Parameter

comm
communicator	(handle)

Output	Parameter

errhandler
handler	currently	associated	with	communicator	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

Location:comm_get_errhandler.c

MPI_Comm_get_name
Return	the	print	name	from	the	communicator

Synopsis
int	MPI_Comm_get_name(MPI_Comm	comm,	char	*comm_name,	int	*resultlen)

Input	Parameter

comm
Communicator	to	get	name	of	(handle)

Output	Parameters

comm_name
On	output,	contains	the	name	of	the	communicator.	It	must	be	an	array	of
size	at	least	MPI_MAX_OBJECT_NAME.

resultlen
Number	of	characters	in	name

Notes

Because	MPI	specifies	that	null	objects	(e.g.,	MPI_COMM_NULL)	are	invalid	as
input	to	MPI	routines	unless	otherwise	specified,	using	MPI_COMM_NULL	as	input
to	this	routine	is	an	error.

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

Location:comm_get_name.c

MPI_Comm_get_parent
Return	the	parent	communicator	for	this	process

Synopsis
int	MPI_Comm_get_parent(MPI_Comm	*parent)

Output	Parameter

parent
the	parent	communicator	(handle)

Notes

If	a	process	was	started	with	MPI_Comm_spawn	or	MPI_Comm_spawn_multiple,
MPI_Comm_get_parent	returns	the	parent	intercommunicator	of	the	current
process.	This	parent	intercommunicator	is	created	implicitly	inside	of	MPI_Init
and	is	the	same	intercommunicator	returned	by	MPI_Comm_spawn	in	the	parents.

If	the	process	was	not	spawned,	MPI_Comm_get_parent	returns	MPI_COMM_NULL.

After	the	parent	communicator	is	freed	or	disconnected,	MPI_Comm_get_parent
returns	MPI_COMM_NULL.

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:comm_get_parent.c

MPI_Comm_group
Accesses	the	group	associated	with	given	communicator

Synopsis
int	MPI_Comm_group(MPI_Comm	comm,	MPI_Group	*group)

Input	Parameter

comm
Communicator	(handle)

Output	Parameter

group
Group	in	communicator	(handle)

Notes

Because	MPI	specifies	that	null	objects	(e.g.,	MPI_COMM_NULL)	are	invalid	as
input	to	MPI	routines	unless	otherwise	specified,	using	MPI_COMM_NULL	as	input
to	this	routine	is	an	error.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

Location:comm_group.c

MPI_Comm_join
Create	a	communicator	by	joining	two	processes	connected	by	a	socket.

Synopsis
int	MPI_Comm_join(int	fd,	MPI_Comm	*intercomm)

Input	Parameter

fd
socket	file	descriptor

Output	Parameter

intercomm
new	intercommunicator	(handle)

Notes

The	socket	must	be	quiescent	before	MPI_COMM_JOIN	is	called	and	after
MPI_COMM_JOIN	returns.	More	specifically,	on	entry	to	MPI_COMM_JOIN,	a	read	on
the	socket	will	not	read	any	data	that	was	written	to	the	socket	before	the	remote
process	called	MPI_COMM_JOIN.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:comm_join.c

MPI_Comm_rank
Determines	the	rank	of	the	calling	process	in	the	communicator

Synopsis
int	MPI_Comm_rank(MPI_Comm	comm,	int	*rank)	

Input	Argument

comm
communicator	(handle)

Output	Argument

rank
rank	of	the	calling	process	in	the	group	of	comm	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

Location:comm_rank.c

MPI_Comm_remote_group
Accesses	the	remote	group	associated	with	the	given	inter-communicator

Synopsis
int	MPI_Comm_remote_group(MPI_Comm	comm,	MPI_Group	*group)

Input	Parameter

comm
Communicator	(must	be	an	intercommunicator)	(handle)

Output	Parameter

group
remote	group	of	communicator	(handle)

Notes

The	user	is	responsible	for	freeing	the	group	when	it	is	no	longer	needed.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

See	Also

MPI_Group_free	

Location:comm_remote_group.c

MPI_Comm_remote_size
Determines	the	size	of	the	remote	group	associated	with	an	inter-communictor

Synopsis
int	MPI_Comm_remote_size(MPI_Comm	comm,	int	*size)

Input	Parameter

comm
communicator	(handle)

Output	Parameter

size
number	of	processes	in	the	remote	group	of	comm	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:comm_remote_size.c

MPI_Comm_set_attr
Stores	attribute	value	associated	with	a	key

Synopsis
int	MPI_Comm_set_attr(MPI_Comm	comm,	int	comm_keyval,	void	*attribute_val)

Input	Parameters

comm
communicator	to	which	attribute	will	be	attached	(handle)

keyval
key	value,	as	returned	by	MPI_Comm_create_keyval	(integer)

attribute_val
attribute	value

Notes

Values	of	the	permanent	attributes	MPI_TAG_UB,	MPI_HOST,	MPI_IO,
MPI_WTIME_IS_GLOBAL,	MPI_UNIVERSE_SIZE,	MPI_LASTUSEDCODE,	and
MPI_APPNUM	may	not	be	changed.

The	type	of	the	attribute	value	depends	on	whether	C,	C++,	or	Fortran	is	being
used.	In	C	and	C++,	an	attribute	value	is	a	pointer	(void	*);	in	Fortran,	it	is	an
address-sized	integer.

If	an	attribute	is	already	present,	the	delete	function	(specified	when	the
corresponding	keyval	was	created)	will	be	called.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_KEYVAL
Invalid	keyval

MPI_ERR_ARG
This	error	class	is	associated	with	an	error	code	that	indicates	that	an
attempt	was	made	to	free	one	of	the	permanent	keys.

See	Also

MPI_Comm_create_keyval,	MPI_Comm_delete_attr	

Location:comm_set_attr.c

MPI_Comm_set_errhandler
Set	the	error	handler	for	a	communicator

Synopsis
int	MPI_Comm_set_errhandler(MPI_Comm	comm,	MPI_Errhandler	errhandler)

Input	Parameters

comm
communicator	(handle)

errhandler
new	error	handler	for	communicator	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

See	Also

MPI_Comm_get_errhandler,	MPI_Comm_call_errhandler	

Location:comm_set_errhandler.c

MPI_Comm_set_name
Sets	the	print	name	for	a	communicator

Synopsis
int	MPI_Comm_set_name(MPI_Comm	comm,	char	*comm_name)

Input	Parameters

MPI_Comm	comm
communicator	to	name	(handle)

char	*comm_name
Name	for	communicator

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

Location:comm_set_name.c

MPI_Comm_size
Determines	the	size	of	the	group	associated	with	a	communicator

Synopsis
int	MPI_Comm_size(MPI_Comm	comm,	int	*size)	

Input	Parameter

comm
communicator	(handle)

Output	Parameter

size
number	of	processes	in	the	group	of	comm	(integer)

Notes

Null	Handles

The	MPI	1.1	specification,	in	the	section	on	opaque	objects,	explicitly	disallows
freeing	a	null	communicator.	The	text	from	the	standard	is:

	A	null	handle	argument	is	an	erroneous	IN	argument	in	MPI	calls,	unless	an

	exception	is	explicitly	stated	in	the	text	that	defines	the	function.	Such

	exception	is	allowed	for	handles	to	request	objects	in	Wait	and	Test	calls

	(sections	Communication	Completion	and	Multiple	Completions).	Otherwise,	a

	null	handle	can	only	be	passed	to	a	function	that	allocates	a	new	object	and

	returns	a	reference	to	it	in	the	handle.

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:comm_size.c

MPI_Comm_spawn
Spawn	up	to	maxprocs	instances	of	a	single	MPI	application

Synopsis
int	MPI_Comm_spawn(char	*command,	char	*argv[],	int	maxprocs,	MPI_Info	info,	

																		int	root,	MPI_Comm	comm,	MPI_Comm	*intercomm,

																		int	array_of_errcodes[])

Input	Parameters

command
name	of	program	to	be	spawned	(string,	significant	only	at	root)

argv
arguments	to	command	(array	of	strings,	significant	only	at	root)

maxprocs
maximum	number	of	processes	to	start	(integer,	significant	only	at	root)

info
a	set	of	key-value	pairs	telling	the	runtime	system	where	and	how	to	start
the	processes	(handle,	significant	only	at	root)

root
rank	of	process	in	which	previous	arguments	are	examined	(integer)

comm
intracommunicator	containing	group	of	spawning	processes	(handle)

Output	Parameters

intercomm
intercommunicator	between	original	group	and	the	newly	spawned	group
(handle)

array_of_errcodes
one	code	per	process	(array	of	integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_INFO
Invalid	Info

MPI_ERR_SPAWN

Location:comm_spawn.c

MPI_Comm_spawn_multiple
short	description

Synopsis
int	MPI_Comm_spawn_multiple(int	count,	char	*array_of_commands[],	

																										char*	*array_of_argv[],	int	array_of_maxprocs[],	

																										MPI_Info	array_of_info[],	int	root,	MPI_Comm	comm,	

																										MPI_Comm	*intercomm,	int	array_of_errcodes[])	

Input	Parameters

count
number	of	commands	(positive	integer,	significant	to	MPI	only	at	root

array_of_commands
programs	to	be	executed	(array	of	strings,	significant	only	at	root)

array_of_argv
arguments	for	commands	(array	of	array	of	strings,	significant	only	at	root)

array_of_maxprocs
maximum	number	of	processes	to	start	for	each	command	(array	of	integer,
significant	only	at	root)

array_of_info
info	objects	telling	the	runtime	system	where	and	how	to	start	processes
(array	of	handles,	significant	only	at	root)

root
rank	of	process	in	which	previous	arguments	are	examined	(integer)

comm
intracommunicator	containing	group	of	spawning	processes	(handle)

Output	Parameters

intercomm
intercommunicator	between	original	group	and	newly	spawned	group
(handle)

array_of_errcodes
one	error	code	per	process	(array	of	integer)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_INFO
Invalid	Info

MPI_ERR_SPAWN

Location:comm_spawn_multiple.c

MPI_Comm_split
Creates	new	communicators	based	on	colors	and	keys

Synopsis
int	MPI_Comm_split(MPI_Comm	comm,	int	color,	int	key,	MPI_Comm	*newcomm)

Input	Parameters

comm
communicator	(handle)

color
control	of	subset	assignment	(nonnegative	integer).	Processes	with	the	same
color	are	in	the	same	new	communicator

key
control	of	rank	assigment	(integer)

Output	Parameter

newcomm
new	communicator	(handle)

Notes

The	color	must	be	non-negative	or	MPI_UNDEFINED.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Algorithm
		1.	Use	MPI_Allgather	to	get	the	color	and	key	from	each	process

		2.	Count	the	number	of	processes	with	the	same	color;	create	a	

					communicator	with	that	many	processes.		If	this	process	has

					MPI_UNDEFINED	as	the	color,	create	a	process	with	a	single	member.

		3.	Use	key	to	order	the	ranks

		4.	Set	the	VCRs	using	the	ordered	key	values

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

See	Also

MPI_Comm_free	

Location:comm_split.c

MPI_Comm_test_inter
Tests	to	see	if	a	comm	is	an	inter-communicator

Synopsis
int	MPI_Comm_test_inter(MPI_Comm	comm,	int	*flag)

Input	Parameter

comm
communicator	to	test	(handle)

Output	Parameter

flag
true	if	this	is	an	inter-communicator(logical)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:comm_test_inter.c

MPI_Dims_create
Creates	a	division	of	processors	in	a	cartesian	grid

Synopsis
int	MPI_Dims_create(int	nnodes,	int	ndims,	int	*dims)

Input	Parameters

nnodes
number	of	nodes	in	a	grid	(integer)

ndims
number	of	cartesian	dimensions	(integer)

In/Out	Parameter

dims
integer	array	of	size	ndims	specifying	the	number	of	nodes	in	each
dimension.	A	value	of	0	indicates	that	MPI_Dims_create	should	fill	in	a
suitable	value.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:dims_create.c

MPI_Dist_graph_create
MPI_DIST_GRAPH_CREATE	returns	a	handle	to	a	new	communicator	to
which	the	distributed	graph	topology	information	is	attached.

Synopsis
int	MPI_Dist_graph_create(MPI_Comm	comm_old,	int	n,	int	sources[],

																										int	degrees[],	int	destinations[],	int	weights[],

																										MPI_Info	info,	int	reorder,	MPI_Comm	*comm_dist_graph)

Input	Parameters

comm_old
input	communicator	(handle)

n
number	of	source	nodes	for	which	this	process	specifies	edges	(non-
negative	integer)

sources
array	containing	the	n	source	nodes	for	which	this	process	specifies	edges
(array	of	non-negative	integers)

degrees
array	specifying	the	number	of	destinations	for	each	source	node	in	the
source	node	array	(array	of	non-negative	integers)

destinations
destination	nodes	for	the	source	nodes	in	the	source	node	array	(array	of
non-negative	integers)

weights
weights	for	source	to	destination	edges	(array	of	non-negative	integers	or
MPI_UNWEIGHTED)

info
hints	on	optimization	and	interpretation	of	weights	(handle)

reorder
the	process	may	be	reordered	(true)	or	not	(false)	(logical)

Output	Parameter

comm_dist_graph
communicator	with	distributed	graph	topology	added	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:dist_gr_create.c

MPI_Dist_graph_create_adjacent
returns	a	handle	to	a	new	communicator	to	which	the	distributed	graph	topology
information	is	attached.

Synopsis
int	MPI_Dist_graph_create_adjacent(MPI_Comm	comm_old,

																																			int	indegree,	int	sources[],	int	sourceweights[],

																																			int	outdegree,	int	destinations[],	int	destweights[],

																																			MPI_Info	info,	int	reorder,	MPI_Comm	*comm_dist_graph)

Input	Parameters

comm_old
input	communicator	(handle)

indegree
size	of	sources	and	sourceweights	arrays	(non-negative	integer)

sources
ranks	of	processes	for	which	the	calling	process	is	a	destination	(array	of
non-negative	integers)

sourceweights
weights	of	the	edges	into	the	calling	process	(array	of	non-negative	integers
or	MPI_UNWEIGHTED)

outdegree
size	of	destinations	and	destweights	arrays	(non-negative	integer)

destinations
ranks	of	processes	for	which	the	calling	process	is	a	source	(array	of	non-
negative	integers)

destweights
weights	of	the	edges	out	of	the	calling	process	(array	of	non-negative
integers	or	MPI_UNWEIGHTED)

info
hints	on	optimization	and	interpretation	of	weights	(handle)

reorder
the	ranks	may	be	reordered	(true)	or	not	(false)	(logical)

Output	Parameter

comm_dist_graph
communicator	with	distributed	graph	topology	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:dist_gr_create_adj.c

MPI_Dist_graph_neighbors
Provides	adjacency	information	for	a	distributed	graph	topology.

Synopsis
int	MPI_Dist_graph_neighbors(MPI_Comm	comm,

																													int	maxindegree,	int	sources[],	int	sourceweights[],

																													int	maxoutdegree,	int	destinations[],	int	destweights[])

Input	Parameters

comm
communicator	with	distributed	graph	topology	(handle)

maxindegree
size	of	sources	and	sourceweights	arrays	(non-negative	integer)

maxoutdegree
size	of	destinations	and	destweights	arrays	(non-negative	integer)

Output	Parameter

sources
processes	for	which	the	calling	process	is	a	destination	(array	of	non-
negative	integers)

sourceweights
weights	of	the	edges	into	the	calling	process	(array	of	non-negative
integers)

destinations
processes	for	which	the	calling	process	is	a	source	(array	of	non-negative
integers)

destweights
weights	of	the	edges	out	of	the	calling	process	(array	of	non-negative
integers)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:dist_gr_neighb.c

MPI_Dist_graph_neighbors_count
Provides	adjacency	information	for	a	distributed	graph	topology.

Synopsis
int	MPI_Dist_graph_neighbors_count(MPI_Comm	comm,	int	*indegree,	int	*outdegree,	int	*weighted)

Input	Parameters

comm
communicator	with	distributed	graph	topology	(handle)

Output	Parameter

indegree
number	of	edges	into	this	process	(non-negative	integer)

outdegree
number	of	edges	out	of	this	process	(non-negative	integer)

weighted
false	if	MPI_UNWEIGHTED	was	supplied	during	creation,	true	otherwise
(logical)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:dist_gr_neighb_count.c

MPI_Errhandler_create
Creates	an	MPI-style	errorhandler

Synopsis
int	MPI_Errhandler_create(MPI_Handler_function	*function,	

																										MPI_Errhandler	*errhandler)

Input	Parameter

function
user	defined	error	handling	procedure

Output	Parameter

errhandler
MPI	error	handler	(handle)

Notes

The	MPI	Standard	states	that	an	implementation	may	make	the	output	value
(errhandler)	simply	the	address	of	the	function.	However,	the	action	of
MPI_Errhandler_free	makes	this	impossible,	since	it	is	required	to	set	the	value
of	the	argument	to	MPI_ERRHANDLER_NULL.	In	addition,	the	actual	error	handler
must	remain	until	all	communicators	that	use	it	are	freed.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	routine	for	this	function	is	MPI_Comm_create_errhandler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

See	Also

MPI_Comm_create_errhandler,	MPI_Errhandler_free	

Location:errhandler_create.c

MPI_Errhandler_free
Frees	an	MPI-style	errorhandler

Synopsis
int	MPI_Errhandler_free(MPI_Errhandler	*errhandler)

Input	Parameter

errhandler
MPI	error	handler	(handle).	Set	to	MPI_ERRHANDLER_NULL	on	exit.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:errhandler_free.c

MPI_Errhandler_get
Gets	the	error	handler	for	a	communicator

Synopsis
int	MPI_Errhandler_get(MPI_Comm	comm,	MPI_Errhandler	*errhandler)

Input	Parameter

comm
communicator	to	get	the	error	handler	from	(handle)

Output	Parameter

errhandler
MPI	error	handler	currently	associated	with	communicator	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Note	on	Implementation

The	MPI	Standard	was	unclear	on	whether	this	routine	required	the	user	to	call
MPI_Errhandler_free	once	for	each	call	made	to	this	routine	in	order	to	free	the
error	handler.	After	some	debate,	the	MPI	Forum	added	an	explicit	statement
that	users	are	required	to	call	MPI_Errhandler_free	when	the	return	value	from
this	routine	is	no	longer	needed.	This	behavior	is	similar	to	the	other	MPI
routines	for	getting	objects;	for	example,	MPI_Comm_group	requires	that	the	user
call	MPI_Group_free	when	the	group	returned	by	MPI_Comm_group	is	no	longer
needed.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:errhandler_get.c

MPI_Errhandler_set
Sets	the	error	handler	for	a	communicator

Synopsis
int	MPI_Errhandler_set(MPI_Comm	comm,	MPI_Errhandler	errhandler)

Input	Parameters

comm
communicator	to	set	the	error	handler	for	(handle)

errhandler
new	MPI	error	handler	for	communicator	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Comm_set_errhandler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

See	Also

MPI_Comm_set_errhandler,	MPI_Errhandler_create,
MPI_Comm_create_errhandler	

Location:errhandler_set.c

MPI_Error_class
Converts	an	error	code	into	an	error	class

Synopsis
int	MPI_Error_class(int	errorcode,	int	*errorclass)

Input	Parameter

errorcode
Error	code	returned	by	an	MPI	routine

Output	Parameter

errorclass
Error	class	associated	with	errorcode

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:error_class.c

MPI_Error_string
Return	a	string	for	a	given	error	code

Synopsis
int	MPI_Error_string(int	errorcode,	char	*string,	int	*resultlen)

Input	Parameters

errorcode
Error	code	returned	by	an	MPI	routine	or	an	MPI	error	class

Output	Parameter

string
Text	that	corresponds	to	the	errorcode

resultlen
Length	of	string

Notes:	Error	codes	are	the	values	return	by	MPI	routines	(in	C)	or	in	the	ierr
argument	(in	Fortran).	These	can	be	converted	into	error	classes	with	the	routine
MPI_Error_class.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:error_string.c

MPI_Exscan
Computes	the	exclusive	scan	(partial	reductions)	of	data	on	a	collection	of
processes

Synopsis
int	MPI_Exscan(void	*sendbuf,	void	*recvbuf,	int	count,	MPI_Datatype	datatype,	

															MPI_Op	op,	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

count
number	of	elements	in	input	buffer	(integer)

datatype
data	type	of	elements	of	input	buffer	(handle)

op
operation	(handle)

comm
communicator	(handle)

Output	Parameter

recvbuf
starting	address	of	receive	buffer	(choice)

Notes

MPI_Exscan	is	like	MPI_Scan,	except	that	the	contribution	from	the	calling
process	is	not	included	in	the	result	at	the	calling	process	(it	is	contributed	to	the
subsequent	processes,	of	course).

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Notes	on	collective	operations

The	reduction	functions	(MPI_Op)	do	not	return	an	error	value.	As	a	result,	if	the
functions	detect	an	error,	all	they	can	do	is	either	call	MPI_Abort	or	silently	skip
the	problem.	Thus,	if	you	change	the	error	handler	from	MPI_ERRORS_ARE_FATAL
to	something	else,	for	example,	MPI_ERRORS_RETURN,	then	no	error	may	be
indicated.

The	reason	for	this	is	the	performance	problems	in	ensuring	that	all	collective
routines	return	the	same	error	value.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

MPI_ERR_BUFFER
This	error	class	is	associcated	with	an	error	code	that	indicates	that	two
buffer	arguments	are	aliased;	that	is,	the	describe	overlapping	storage	(often
the	exact	same	storage).	This	is	prohibited	in	MPI	(because	it	is	prohibited
by	the	Fortran	standard,	and	rather	than	have	a	separate	case	for	C	and
Fortran,	the	MPI	Forum	adopted	the	more	restrictive	requirements	of

Fortran).

Location:exscan.c

MPI_File_c2f
Translates	a	C	file	handle	to	a	Fortran	file	handle

Synopsis
MPI_Fint	MPI_File_c2f(MPI_File	mpi_fh)

Input	Parameters

fh
C	file	handle	(handle)

Return	Value

Fortran	file	handle	(integer)

Location:file_c2f.c

MPI_File_call_errhandler
Call	the	error	handler	installed	on	a	file

Synopsis
int	MPI_File_call_errhandler(MPI_File	fh,	int	errorcode)

Input	Parameters

fh
MPI	file	with	error	handler	(handle)

errorcode
error	code	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_FILE
Invalid	MPI	File	handle

Location:file_call_errhandler.c

MPI_File_close
Closes	a	file

Synopsis
int	MPI_File_close(MPI_File	*mpi_fh)

Input	Parameters

fh
file	handle	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:close.c

MPI_File_create_errhandler
Create	a	file	error	handler

Synopsis
int	MPI_File_create_errhandler(MPI_File_errhandler_fn	*function,	

																															MPI_Errhandler	*errhandler)

Input	Parameter

function
user	defined	error	handling	procedure	(function)

Output	Parameter

errhandler
MPI	error	handler	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:file_create_errhandler.c

MPI_File_delete
Deletes	a	file

Synopsis
int	MPI_File_delete(char	*filename,	MPI_Info	info)

Input	Parameters

filename
name	of	file	to	delete	(string)

info
info	object	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:delete.c

MPI_File_f2c
Translates	a	Fortran	file	handle	to	a	C	file	handle

Synopsis
MPI_File	MPI_File_f2c(MPI_Fint	fh)

Input	Parameters

fh
Fortran	file	handle	(integer)

Return	Value

C	file	handle	(handle)

Location:file_f2c.c

MPI_File_get_amode
Returns	the	file	access	mode

Synopsis
int	MPI_File_get_amode(MPI_File	mpi_fh,	int	*amode)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

amode
access	mode	(integer)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:get_amode.c

MPI_File_get_atomicity
Returns	the	atomicity	mode

Synopsis
int	MPI_File_get_atomicity(MPI_File	mpi_fh,	int	*flag)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

flag
true	if	atomic	mode,	false	if	nonatomic	mode	(logical)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:get_atom.c

MPI_File_get_byte_offset
Returns	the	absolute	byte	position	in	the	file	corresponding	to	"offset"	etypes
relative	to	the	current	view

Synopsis
int	MPI_File_get_byte_offset(MPI_File	mpi_fh,

																											MPI_Offset	offset,

																											MPI_Offset	*disp)

Input	Parameters

fh
file	handle	(handle)

offset
offset	(nonnegative	integer)

Output	Parameters

disp
absolute	byte	position	of	offset	(nonnegative	integer)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:get_bytoff.c

MPI_File_get_errhandler
Get	the	error	handler	attached	to	a	file

Synopsis
int	MPI_File_get_errhandler(MPI_File	file,	MPI_Errhandler	*errhandler)

Input	Parameter

file
MPI	file	(handle)

Output	Parameter

errhandler
handler	currently	associated	with	file	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:file_get_errhandler.c

MPI_File_get_group
Returns	the	group	of	processes	that	opened	the	file

Synopsis
int	MPI_File_get_group(MPI_File	mpi_fh,	MPI_Group	*group)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

group
group	that	opened	the	file	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:get_group.c

MPI_File_get_info
Returns	the	hints	for	a	file	that	are	actually	being	used	by	MPI

Synopsis
int	MPI_File_get_info(MPI_File	mpi_fh,	MPI_Info	*info_used)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

info_used
info	object	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:get_info.c

MPI_File_get_position
Returns	the	current	position	of	the	individual	file	pointer	in	etype	units	relative
to	the	current	view

Synopsis
int	MPI_File_get_position(MPI_File	mpi_fh,	MPI_Offset	*offset)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

offset
offset	of	individual	file	pointer	(nonnegative	integer)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:get_posn.c

MPI_File_get_position_shared
Returns	the	current	position	of	the	shared	file	pointer	in	etype	units	relative	to
the	current	view

Synopsis
int	MPI_File_get_position_shared(MPI_File	mpi_fh,	MPI_Offset	*offset)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

offset
offset	of	shared	file	pointer	(nonnegative	integer)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:get_posn_sh.c

MPI_File_get_size
Returns	the	file	size

Synopsis
int	MPI_File_get_size(MPI_File	mpi_fh,	MPI_Offset	*size)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

size
size	of	the	file	in	bytes	(nonnegative	integer)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:get_size.c

MPI_File_get_type_extent
Returns	the	extent	of	datatype	in	the	file

Synopsis
int	MPI_File_get_type_extent(MPI_File	mpi_fh,	MPI_Datatype	datatype,	

																													MPI_Aint	*extent)

Input	Parameters

fh
file	handle	(handle)

datatype
datatype	(handle)

Output	Parameters

extent
extent	of	the	datatype	(nonnegative	integer)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:get_extent.c

MPI_File_get_view
Returns	the	file	view

Synopsis
int	MPI_File_get_view(MPI_File	mpi_fh,

																					MPI_Offset	*disp,

																					MPI_Datatype	*etype,

																					MPI_Datatype	*filetype,

																					char	*datarep)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

disp
displacement	(nonnegative	integer)

etype
elementary	datatype	(handle)

filetype
filetype	(handle)

datarep
data	representation	(string)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:get_view.c

MPI_File_iread
Nonblocking	read	using	individual	file	pointer

Synopsis
#ifdef	HAVE_MPI_GREQUEST

#include	"mpiu_greq.h"

#endif

int	MPI_File_iread(MPI_File	mpi_fh,	void	*buf,	int	count,	

																		MPI_Datatype	datatype,	MPI_Request	*request)

Input	Parameters

fh
file	handle	(handle)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

request
request	object	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:iread.c

MPI_File_iread_at
Nonblocking	read	using	explict	offset

Synopsis
#ifdef	HAVE_MPI_GREQUEST

#include	"mpiu_greq.h"

#endif

int	MPI_File_iread_at(MPI_File	mpi_fh,	MPI_Offset	offset,	void	*buf,

																						int	count,	MPI_Datatype	datatype,	

																						MPIO_Request	*request)

Input	Parameters

fh
file	handle	(handle)

offset
file	offset	(nonnegative	integer)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

request
request	object	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:iread_at.c

MPI_File_iread_shared
Nonblocking	read	using	shared	file	pointer

Synopsis
#ifdef	HAVE_MPI_GREQUEST

#include	"mpiu_greq.h"

int	MPI_File_iread_shared(MPI_File	mpi_fh,	void	*buf,	int	count,	

																								MPI_Datatype	datatype,	MPI_Request	*request)

Input	Parameters

fh
file	handle	(handle)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

request
request	object	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:iread_sh.c

MPI_File_iwrite
Nonblocking	write	using	individual	file	pointer

Synopsis
#ifdef	HAVE_MPI_GREQUEST

#include	"mpiu_greq.h"

#endif

int	MPI_File_iwrite(MPI_File	mpi_fh,	void	*buf,	int	count,	

																			MPI_Datatype	datatype,	MPI_Request	*request)

Input	Parameters

fh
file	handle	(handle)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

request
request	object	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:iwrite.c

MPI_File_iwrite_at
Nonblocking	write	using	explict	offset

Synopsis
#ifdef	HAVE_MPI_GREQUEST

#include	"mpiu_greq.h"

#endif

int	MPI_File_iwrite_at(MPI_File	mpi_fh,	MPI_Offset	offset,	void	*buf,

																							int	count,	MPI_Datatype	datatype,	

																							MPIO_Request	*request)

Input	Parameters

fh
file	handle	(handle)

offset
file	offset	(nonnegative	integer)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

request
request	object	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:iwrite_at.c

MPI_File_iwrite_shared
Nonblocking	write	using	shared	file	pointer

Synopsis
#ifdef	HAVE_MPI_GREQUEST

#include	"mpiu_greq.h"

#endif

int	MPI_File_iwrite_shared(MPI_File	mpi_fh,	void	*buf,	int	count,	

																									MPI_Datatype	datatype,	MPIO_Request	*request)

Input	Parameters

fh
file	handle	(handle)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

request
request	object	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:iwrite_sh.c

MPI_File_open
Opens	a	file

Synopsis
int	MPI_File_open(MPI_Comm	comm,	char	*filename,	int	amode,	

																		MPI_Info	info,	MPI_File	*fh)

Input	Parameters

comm
communicator	(handle)

filename
name	of	file	to	open	(string)

amode
file	access	mode	(integer)

info
info	object	(handle)

Output	Parameters

fh
file	handle	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:open.c

MPI_File_preallocate
Preallocates	storage	space	for	a	file

Synopsis
int	MPI_File_preallocate(MPI_File	mpi_fh,	MPI_Offset	size)

Input	Parameters

fh
file	handle	(handle)

size
size	to	preallocate	(nonnegative	integer)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:prealloc.c

MPI_File_read
Read	using	individual	file	pointer

Synopsis
int	MPI_File_read(MPI_File	mpi_fh,	void	*buf,	int	count,	

																		MPI_Datatype	datatype,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:read.c

MPI_File_read_all
Collective	read	using	individual	file	pointer

Synopsis
int	MPI_File_read_all(MPI_File	mpi_fh,	void	*buf,	int	count,	

																						MPI_Datatype	datatype,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:read_all.c

MPI_File_read_all_begin
Begin	a	split	collective	read	using	individual	file	pointer

Synopsis
int	MPI_File_read_all_begin(MPI_File	mpi_fh,	void	*buf,	int	count,	

																												MPI_Datatype	datatype)

Input	Parameters

fh
file	handle	(handle)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:read_allb.c

MPI_File_read_all_end
Complete	a	split	collective	read	using	individual	file	pointer

Synopsis
int	MPI_File_read_all_end(MPI_File	mpi_fh,	void	*buf,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:read_alle.c

MPI_File_read_at
Read	using	explict	offset

Synopsis
int	MPI_File_read_at(MPI_File	mpi_fh,	MPI_Offset	offset,	void	*buf,

																				int	count,	MPI_Datatype	datatype,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

offset
file	offset	(nonnegative	integer)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:read_at.c

MPI_File_read_at_all
Collective	read	using	explict	offset

Synopsis
int	MPI_File_read_at_all(MPI_File	mpi_fh,	MPI_Offset	offset,	void	*buf,

																									int	count,	MPI_Datatype	datatype,	

																									MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

offset
file	offset	(nonnegative	integer)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:read_atall.c

MPI_File_read_at_all_begin
Begin	a	split	collective	read	using	explict	offset

Synopsis
int	MPI_File_read_at_all_begin(MPI_File	mpi_fh,	MPI_Offset	offset,	void	*buf,

																													int	count,	MPI_Datatype	datatype)

Input	Parameters

fh
file	handle	(handle)

offset
file	offset	(nonnegative	integer)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:rd_atallb.c

MPI_File_read_at_all_end
Complete	a	split	collective	read	using	explict	offset

Synopsis
int	MPI_File_read_at_all_end(MPI_File	mpi_fh,	void	*buf,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:rd_atalle.c

MPI_File_read_ordered
Collective	read	using	shared	file	pointer

Synopsis
int	MPI_File_read_ordered(MPI_File	mpi_fh,	void	*buf,	int	count,	

																										MPI_Datatype	datatype,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:read_ord.c

MPI_File_read_ordered_begin
Begin	a	split	collective	read	using	shared	file	pointer

Synopsis
int	MPI_File_read_ordered_begin(MPI_File	mpi_fh,	void	*buf,	int	count,	

																													MPI_Datatype	datatype)

Input	Parameters

fh
file	handle	(handle)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:read_ordb.c

MPI_File_read_ordered_end
Complete	a	split	collective	read	using	shared	file	pointer

Synopsis
int	MPI_File_read_ordered_end(MPI_File	mpi_fh,	void	*buf,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:read_orde.c

MPI_File_read_shared
Read	using	shared	file	pointer

Synopsis
int	MPI_File_read_shared(MPI_File	mpi_fh,	void	*buf,	int	count,	

																							MPI_Datatype	datatype,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:read_sh.c

MPI_File_seek
Updates	the	individual	file	pointer

Synopsis
int	MPI_File_seek(MPI_File	mpi_fh,	MPI_Offset	offset,	int	whence)

Input	Parameters

fh
file	handle	(handle)

offset
file	offset	(integer)

whence
update	mode	(state)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:seek.c

MPI_File_seek_shared
Updates	the	shared	file	pointer

Synopsis
int	MPI_File_seek_shared(MPI_File	mpi_fh,	MPI_Offset	offset,	int	whence)

Input	Parameters

fh
file	handle	(handle)

offset
file	offset	(integer)

whence
update	mode	(state)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:seek_sh.c

MPI_File_set_atomicity
Sets	the	atomicity	mode

Synopsis
int	MPI_File_set_atomicity(MPI_File	mpi_fh,	int	flag)

Input	Parameters

fh
file	handle	(handle)

flag
true	to	set	atomic	mode,	false	to	set	nonatomic	mode	(logical)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:set_atom.c

MPI_File_set_errhandler
Set	the	error	handler	for	an	MPI	file

Synopsis
int	MPI_File_set_errhandler(MPI_File	file,	MPI_Errhandler	errhandler)

Input	Parameters

file
MPI	file	(handle)

errhandler
new	error	handler	for	file	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:file_set_errhandler.c

MPI_File_set_info
Sets	new	values	for	the	hints	associated	with	a	file

Synopsis
int	MPI_File_set_info(MPI_File	mpi_fh,	MPI_Info	info)

Input	Parameters

fh
file	handle	(handle)

info
info	object	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:set_info.c

MPI_File_set_size
Sets	the	file	size

Synopsis
int	MPI_File_set_size(MPI_File	mpi_fh,	MPI_Offset	size)

Input	Parameters

fh
file	handle	(handle)

size
size	to	truncate	or	expand	file	(nonnegative	integer)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:set_size.c

MPI_File_set_view
Sets	the	file	view

Synopsis
int	MPI_File_set_view(MPI_File	mpi_fh,	MPI_Offset	disp,	MPI_Datatype	etype,

																					MPI_Datatype	filetype,	char	*datarep,	MPI_Info	info)

Input	Parameters

fh
file	handle	(handle)

disp
displacement	(nonnegative	integer)

etype
elementary	datatype	(handle)

filetype
filetype	(handle)

datarep
data	representation	(string)

info
info	object	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:set_view.c

MPI_File_sync
Causes	all	previous	writes	to	be	transferred	to	the	storage	device

Synopsis
int	MPI_File_sync(MPI_File	mpi_fh)

Input	Parameters

fh
file	handle	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:fsync.c

MPI_File_write
Write	using	individual	file	pointer

Synopsis
int	MPI_File_write(MPI_File	mpi_fh,	void	*buf,	int	count,	

																			MPI_Datatype	datatype,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:write.c

MPI_File_write_all
Collective	write	using	individual	file	pointer

Synopsis
int	MPI_File_write_all(MPI_File	mpi_fh,	void	*buf,	int	count,	

																							MPI_Datatype	datatype,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:write_all.c

MPI_File_write_all_begin
Begin	a	split	collective	write	using	individual	file	pointer

Synopsis
int	MPI_File_write_all_begin(MPI_File	mpi_fh,	void	*buf,	int	count,	

																											MPI_Datatype	datatype)

Input	Parameters

fh
file	handle	(handle)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:write_allb.c

MPI_File_write_all_end
Complete	a	split	collective	write	using	individual	file	pointer

Synopsis
int	MPI_File_write_all_end(MPI_File	mpi_fh,	void	*buf,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:write_alle.c

MPI_File_write_at
Write	using	explict	offset

Synopsis
int	MPI_File_write_at(MPI_File	mpi_fh,	MPI_Offset	offset,	void	*buf,

																						int	count,	MPI_Datatype	datatype,	

																						MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

offset
file	offset	(nonnegative	integer)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:write_at.c

MPI_File_write_at_all
Collective	write	using	explict	offset

Synopsis
int	MPI_File_write_at_all(MPI_File	mpi_fh,	MPI_Offset	offset,	void	*buf,

																										int	count,	MPI_Datatype	datatype,	

																										MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

offset
file	offset	(nonnegative	integer)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:write_atall.c

MPI_File_write_at_all_begin
Begin	a	split	collective	write	using	explict	offset

Synopsis
int	MPI_File_write_at_all_begin(MPI_File	mpi_fh,	MPI_Offset	offset,	void	*buf,

																													int	count,	MPI_Datatype	datatype)

Input	Parameters

fh
file	handle	(handle)

offset
file	offset	(nonnegative	integer)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:wr_atallb.c

MPI_File_write_at_all_end
Complete	a	split	collective	write	using	explict	offset

Synopsis
int	MPI_File_write_at_all_end(MPI_File	mpi_fh,	void	*buf,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

buf
initial	address	of	buffer	(choice)

Output	Parameters

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:wr_atalle.c

MPI_File_write_ordered
Collective	write	using	shared	file	pointer

Synopsis
int	MPI_File_write_ordered(MPI_File	mpi_fh,	void	*buf,	int	count,	

																									MPI_Datatype	datatype,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:write_ord.c

MPI_File_write_ordered_begin
Begin	a	split	collective	write	using	shared	file	pointer

Synopsis
int	MPI_File_write_ordered_begin(MPI_File	mpi_fh,	void	*buf,	int	count,	

																														MPI_Datatype	datatype)

Input	Parameters

fh
file	handle	(handle)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:write_ordb.c

MPI_File_write_ordered_end
Complete	a	split	collective	write	using	shared	file	pointer

Synopsis
int	MPI_File_write_ordered_end(MPI_File	mpi_fh,	void	*buf,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

Output	Parameters

buf
initial	address	of	buffer	(choice)

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:write_orde.c

MPI_File_write_shared
Write	using	shared	file	pointer

Synopsis
int	MPI_File_write_shared(MPI_File	mpi_fh,	void	*buf,	int	count,	

																										MPI_Datatype	datatype,	MPI_Status	*status)

Input	Parameters

fh
file	handle	(handle)

buf
initial	address	of	buffer	(choice)

count
number	of	elements	in	buffer	(nonnegative	integer)

datatype
datatype	of	each	buffer	element	(handle)

Output	Parameters

status
status	object	(Status)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:write_sh.c

MPI_Finalize
Terminates	MPI	execution	environment

Synopsis
int	MPI_Finalize(void)

Notes

All	processes	must	call	this	routine	before	exiting.	The	number	of	processes
running	after	this	routine	is	called	is	undefined;	it	is	best	not	to	perform	much
more	than	a	return	rc	after	calling	MPI_Finalize.

Thread	and	Signal	Safety

The	MPI	standard	requires	that	MPI_Finalize	be	called	only	by	the	same	thread
that	initialized	MPI	with	either	MPI_Init	or	MPI_Init_thread.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:finalize.c

MPI_Finalized
Indicates	whether	MPI_Finalize	has	been	called.

Synopsis
int	MPI_Finalized(int	*flag)

Output	Parameter

flag
Flag	is	true	if	MPI_Finalize	has	been	called	and	false	otherwise.	(logical)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:finalized.c

MPI_Free_mem
Free	memory	allocated	with	MPI_Alloc_mem

Synopsis
int	MPI_Free_mem(void	*base)

Input	Parameter

base
initial	address	of	memory	segment	allocated	by	MPI_ALLOC_MEM	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:free_mem.c

MPI_Gather
Gathers	together	values	from	a	group	of	processes

Synopsis
int	MPI_Gather(void	*sendbuf,	int	sendcnt,	MPI_Datatype	sendtype,	

															void	*recvbuf,	int	recvcnt,	MPI_Datatype	recvtype,	

															int	root,	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

sendcount
number	of	elements	in	send	buffer	(integer)

sendtype
data	type	of	send	buffer	elements	(handle)

recvcount
number	of	elements	for	any	single	receive	(integer,	significant	only	at	root)

recvtype
data	type	of	recv	buffer	elements	(significant	only	at	root)	(handle)

root
rank	of	receiving	process	(integer)

comm
communicator	(handle)

Output	Parameter

recvbuf
address	of	receive	buffer	(choice,	significant	only	at	root)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

Location:gather.c

MPI_Gatherv
Gathers	into	specified	locations	from	all	processes	in	a	group

Synopsis
int	MPI_Gatherv(void	*sendbuf,	int	sendcnt,	MPI_Datatype	sendtype,	

																void	*recvbuf,	int	*recvcnts,	int	*displs,	

																MPI_Datatype	recvtype,	int	root,	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

sendcount
number	of	elements	in	send	buffer	(integer)

sendtype
data	type	of	send	buffer	elements	(handle)

recvcounts
integer	array	(of	length	group	size)	containing	the	number	of	elements	that
are	received	from	each	process	(significant	only	at	root)

displs
integer	array	(of	length	group	size).	Entry	i	specifies	the	displacement
relative	to	recvbuf	at	which	to	place	the	incoming	data	from	process	i
(significant	only	at	root)

recvtype
data	type	of	recv	buffer	elements	(significant	only	at	root)	(handle)

root
rank	of	receiving	process	(integer)

comm
communicator	(handle)

Output	Parameter

recvbuf
address	of	receive	buffer	(choice,	significant	only	at	root)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

Location:gatherv.c

MPI_Get
Get	data	from	a	memory	window	on	a	remote	process

Synopsis
int	MPI_Get(void	*origin_addr,	int	origin_count,	MPI_Datatype

												origin_datatype,	int	target_rank,	MPI_Aint	target_disp,

												int	target_count,	MPI_Datatype	target_datatype,	MPI_Win

												win)

Input	Parameters

origin_addr
Address	of	the	buffer	in	which	to	receive	the	data

origin_count
number	of	entries	in	origin	buffer	(nonnegative	integer)

origin_datatype
datatype	of	each	entry	in	origin	buffer	(handle)

target_rank
rank	of	target	(nonnegative	integer)

target_disp
displacement	from	window	start	to	the	beginning	of	the	target	buffer
(nonnegative	integer)

target_count
number	of	entries	in	target	buffer	(nonnegative	integer)

target_datatype
datatype	of	each	entry	in	target	buffer	(handle)

win
window	object	used	for	communication	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_WIN
Invalid	MPI	window	object

Location:get.c

MPI_Get_address
Get	the	address	of	a	location	in	memory

Synopsis
int	MPI_Get_address(void	*location,	MPI_Aint	*address)

Input	Parameter

location
location	in	caller	memory	(choice)

Output	Parameter

address
address	of	location	(address	integer)

Notes

This	routine	is	provided	for	both	the	Fortran	and	C	programmers.	On	many
systems,	the	address	returned	by	this	routine	will	be	the	same	as	produced	by	the
C	&	operator,	but	this	is	not	required	in	C	and	may	not	be	true	of	systems	with
word-	rather	than	byte-oriented	instructions	or	systems	with	segmented	address
spaces.

This	routine	should	be	used	instead	of	MPI_Address.

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

In	Fortran,	the	integer	type	is	always	signed.	This	can	cause	problems	on
systems	where	the	address	fits	into	a	four	byte	unsigned	integer	but	the	value	is
larger	than	the	largest	signed	integer.	For	example,	a	system	with	more	than	2
GBytes	of	memory	may	have	addresses	that	do	not	fit	within	a	four	byte	signed
integer.	Unfortunately,	there	is	no	easy	solution	to	this	problem,	as	there	is	no
Fortran	datatype	that	can	be	used	here	(using	a	longer	integer	type	will	cause
other	problems,	as	well	as	surprising	users	when	the	size	of	the	integer	type	is
larger	that	the	size	of	a	pointer	in	C).	In	this	case,	it	is	recommended	that	you	use
C	to	manipulate	addresses.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:get_address.c

MPI_Get_count
Gets	the	number	of	"top	level"	elements

Synopsis
int	MPI_Get_count(MPI_Status	*status,		MPI_Datatype	datatype,	int	*count)

Input	Parameters

status
return	status	of	receive	operation	(Status)

datatype
datatype	of	each	receive	buffer	element	(handle)

Output	Parameter

count
number	of	received	elements	(integer)	Notes:	If	the	size	of	the	datatype	is
zero,	this	routine	will	return	a	count	of	zero.	If	the	amount	of	data	in	status
is	not	an	exact	multiple	of	the	size	of	datatype	(so	that	count	would	not	be
integral),	a	count	of	MPI_UNDEFINED	is	returned	instead.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

Location:get_count.c

MPI_Get_elements
Returns	the	number	of	basic	elements	in	a	datatype

Synopsis
int	MPI_Get_elements(MPI_Status	*status,	MPI_Datatype	datatype,	int	*elements)

Input	Parameters

status
return	status	of	receive	operation	(Status)

datatype
datatype	used	by	receive	operation	(handle)

Output	Parameter

count
number	of	received	basic	elements	(integer)

Notes

If	the	size	of	the	datatype	is	zero	and	the	amount	of	data	returned	as	determined
by	status	is	also	zero,	this	routine	will	return	a	count	of	zero.	This	is	consistent
with	a	clarification	made	by	the	MPI	Forum.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:get_elements.c

MPI_Get_processor_name
Gets	the	name	of	the	processor

Synopsis
int	MPI_Get_processor_name(char	*name,	int	*resultlen)

Output	Parameters

name
A	unique	specifier	for	the	actual	(as	opposed	to	virtual)	node.	This	must	be
an	array	of	size	at	least	MPI_MAX_PROCESSOR_NAME.

resultlen
Length	(in	characters)	of	the	name

Notes

The	name	returned	should	identify	a	particular	piece	of	hardware;	the	exact
format	is	implementation	defined.	This	name	may	or	may	not	be	the	same	as
might	be	returned	by	gethostname,	uname,	or	sysinfo.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

In	Fortran,	the	character	argument	should	be	declared	as	a	character	string	of
MPI_MAX_PROCESSOR_NAME	rather	than	an	array	of	dimension
MPI_MAX_PROCESSOR_NAME.	That	is,

			character*(MPI_MAX_PROCESSOR_NAME)	name

rather	than

			character	name(MPI_MAX_PROCESSOR_NAME)

The	two

The	sizes	of	MPI	strings	in	Fortran	are	one	less	than	the	sizes	of	that	string	in
C/C++	because	the	C/C++	versions	provide	room	for	the	trailing	null	character
required	by	C/C++.	For	example,	MPI_MAX_ERROR_STRING	is	mpif.h	is	one
smaller	than	the	same	value	in	mpi.h.	See	the	MPI-2	standard,	sections	2.6.2	and
4.12.9.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:getpname.c

MPI_Get_version
Return	the	version	number	of	MPI

Synopsis
int	MPI_Get_version(int	*version,	int	*subversion)

Output	Parameters

version
Version	of	MPI

subversion
Subversion	of	MPI

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:version.c

MPI_Graph_create
Makes	a	new	communicator	to	which	topology	information	has	been	attached

Synopsis
int	MPI_Graph_create(MPI_Comm	comm_old,	int	nnodes,	int	*indx,	int	*edges,	

																				int	reorder,	MPI_Comm	*comm_graph)

Input	Parameters

comm_old
input	communicator	without	topology	(handle)

nnodes
number	of	nodes	in	graph	(integer)

indx
array	of	integers	describing	node	degrees	(see	below)

edges
array	of	integers	describing	graph	edges	(see	below)

reorder
ranking	may	be	reordered	(true)	or	not	(false)	(logical)

Output	Parameter

comm_graph
communicator	with	graph	topology	added	(handle)

Notes

Each	process	must	provide	a	description	of	the	entire	graph,	not	just	the	neigbors
of	the	calling	process.

Algorithm

We	ignore	the	reorder	info	currently.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:graphcreate.c

MPI_Graph_get
Retrieves	graph	topology	information	associated	with	a	communicator

Synopsis
int	MPI_Graph_get(MPI_Comm	comm,	int	maxindex,	int	maxedges,	

																		int	*indx,	int	*edges)

Input	Parameters

comm
communicator	with	graph	structure	(handle)

maxindex
length	of	vector	indx	in	the	calling	program	(integer)

maxedges
length	of	vector	edges	in	the	calling	program	(integer)

Output	Parameters

indx
array	of	integers	containing	the	graph	structure	(for	details	see	the
definition	of	MPI_GRAPH_CREATE)

edges
array	of	integers	containing	the	graph	structure

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:graph_get.c

MPI_Graph_map
Maps	process	to	graph	topology	information

Synopsis
int	MPI_Graph_map(MPI_Comm	comm_old,	int	nnodes,	int	*indx,	int	*edges,

																		int	*newrank)

Input	Parameters

comm
input	communicator	(handle)

nnodes
number	of	graph	nodes	(integer)

indx
integer	array	specifying	the	graph	structure,	see	MPI_GRAPH_CREATE

edges
integer	array	specifying	the	graph	structure

Output	Parameter

newrank
reordered	rank	of	the	calling	process;	MPI_UNDEFINED	if	the	calling	process
does	not	belong	to	graph	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:graph_map.c

MPI_Graph_neighbors
Returns	the	neighbors	of	a	node	associated	with	a	graph	topology

Synopsis
int	MPI_Graph_neighbors(MPI_Comm	comm,	int	rank,	int	maxneighbors,	

																						int	*neighbors)

Input	Parameters

comm
communicator	with	graph	topology	(handle)

rank
rank	of	process	in	group	of	comm	(integer)

maxneighbors
size	of	array	neighbors	(integer)

Output	Parameters

neighbors
ranks	of	processes	that	are	neighbors	to	specified	process	(array	of	integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

Location:graph_nbr.c

MPI_Graph_neighbors_count
Returns	the	number	of	neighbors	of	a	node	associated	with	a	graph	topology

Synopsis
int	MPI_Graph_neighbors_count(MPI_Comm	comm,	int	rank,	int	*nneighbors)

Input	Parameters

comm
communicator	with	graph	topology	(handle)

rank
rank	of	process	in	group	of	comm	(integer)

Output	Parameter

nneighbors
number	of	neighbors	of	specified	process	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

Location:graphnbrcnt.c

MPI_Graphdims_get
Retrieves	graph	topology	information	associated	with	a	communicator

Synopsis
int	MPI_Graphdims_get(MPI_Comm	comm,	int	*nnodes,	int	*nedges)

Input	Parameter

comm
communicator	for	group	with	graph	structure	(handle)

Output	Parameters

nnodes
number	of	nodes	in	graph	(integer)

nedges
number	of	edges	in	graph	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TOPOLOGY
Invalid	topology.	Either	there	is	no	topology	associated	with	this
communicator,	or	it	is	not	the	correct	type	(e.g.,	MPI_CART	when	expecting
MPI_GRAPH).

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:graphdimsget.c

MPI_Grequest_complete
Notify	MPI	that	a	user-defined	request	is	complete

Synopsis
int	MPI_Grequest_complete(MPI_Request	request)

Input	Parameter

request
Generalized	request	to	mark	as	complete

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

See	Also

MPI_Grequest_start	

Location:greq_complete.c

MPI_Grequest_start
Create	and	return	a	user-defined	request

Synopsis
int	MPI_Grequest_start(MPI_Grequest_query_function	*query_fn,	

																						MPI_Grequest_free_function	*free_fn,	

																						MPI_Grequest_cancel_function	*cancel_fn,	

																						void	*extra_state,	MPI_Request	*request)

Input	Parameters

query_fn
callback	function	invoked	when	request	status	is	queried	(function)

free_fn
callback	function	invoked	when	request	is	freed	(function)

cancel_fn
callback	function	invoked	when	request	is	cancelled	(function)

extra_state
Extra	state	passed	to	the	above	functions.

Output	Parameter

request
Generalized	request	(handle)

Notes	on	the	callback	functions

The	return	values	from	the	callback	functions	must	be	a	valid	MPI	error	code	or
class.	This	value	may	either	be	the	return	value	from	any	MPI	routine	(with	one
exception	noted	below)	or	any	of	the	MPI	error	classes.	For	portable	programs,
MPI_ERR_OTHER	may	be	used;	to	provide	more	specific	information,	create	a	new
MPI	error	class	or	code	with	MPI_Add_error_class	or	MPI_Add_error_code	and
return	that	value.

The	MPI	standard	is	not	clear	on	the	return	values	from	the	callback	routines.
However,	there	are	notes	in	the	standard	that	imply	that	these	are	MPI	error
codes.	For	example,	pages	169	line	46	through	page	170,	line	1	require	that	the
free_fn	return	an	MPI	error	code	that	may	be	used	in	the	MPI	completion
functions	when	they	return	MPI_ERR_IN_STATUS.

The	one	special	case	is	the	error	value	returned	by	MPI_Comm_dup	when	the
attribute	callback	routine	returns	a	failure.	The	MPI	standard	is	not	clear	on	what
values	may	be	used	to	indicate	an	error	return.	Further,	the	Intel	MPI	test	suite
made	use	of	non-zero	values	to	indicate	failure,	and	expected	these	values	to	be
returned	by	the	MPI_Comm_dup	when	the	attribute	routines	encountered	an	error.
Such	error	values	may	not	be	valid	MPI	error	codes	or	classes.	Because	of	this,	it
is	the	user's	responsibility	to	either	use	valid	MPI	error	codes	in	return	from	the
attribute	callbacks,	if	those	error	codes	are	to	be	returned	by	a	generalized
request	callback,	or	to	detect	and	convert	those	error	codes	to	valid	MPI	error
codes	(recall	that	MPI	error	classes	are	valid	error	codes).

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:greq_start.c

MPI_Group_compare
Compares	two	groups

Synopsis
int	MPI_Group_compare(MPI_Group	group1,	MPI_Group	group2,	int	*result)

Input	Parameters

group1
group1	(handle)

group2
group2	(handle)

Output	Parameter

result
integer	which	is	MPI_IDENT	if	the	order	and	members	of	the	two	groups	are
the	same,	MPI_SIMILAR	if	only	the	members	are	the	same,	and	MPI_UNEQUAL
otherwise

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:group_compare.c

MPI_Group_difference
Makes	a	group	from	the	difference	of	two	groups

Synopsis
int	MPI_Group_difference(MPI_Group	group1,	MPI_Group	group2,	MPI_Group	*newgroup)

Input	Parameters

group1
first	group	(handle)

group2
second	group	(handle)

Output	Parameter

newgroup
difference	group	(handle)

Notes

The	generated	group	containc	the	members	of	group1	that	are	not	in	group2.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

See	Also

MPI_Group_free	

Location:group_difference.c

MPI_Group_excl
Produces	a	group	by	reordering	an	existing	group	and	taking	only	unlisted
members

Synopsis
int	MPI_Group_excl(MPI_Group	group,	int	n,	int	*ranks,	MPI_Group	*newgroup)

Input	Parameters

group
group	(handle)

n
number	of	elements	in	array	ranks	(integer)

ranks
array	of	integer	ranks	in	group	not	to	appear	in	newgroup

Output	Parameter

newgroup
new	group	derived	from	above,	preserving	the	order	defined	by	group
(handle)

Note

The	MPI	standard	requires	that	each	of	the	ranks	to	excluded	must	be	a	valid
rank	in	the	group	and	all	elements	must	be	distinct	or	the	function	is	erroneous.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

See	Also

MPI_Group_free	

Location:group_excl.c

MPI_Group_free
Frees	a	group

Synopsis
int	MPI_Group_free(MPI_Group	*group)

Input	Parameter

group
group	to	free	(handle)

Notes

On	output,	group	is	set	to	MPI_GROUP_NULL.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_ARG
This	error	class	is	associated	with	an	error	code	that	indicates	that	an
attempt	was	made	to	free	one	of	the	permanent	groups.

Location:group_free.c

MPI_Group_incl
Produces	a	group	by	reordering	an	existing	group	and	taking	only	listed
members

Synopsis
int	MPI_Group_incl(MPI_Group	group,	int	n,	int	*ranks,	MPI_Group	*newgroup)

Input	Parameters

group
group	(handle)

n
number	of	elements	in	array	ranks	(and	size	of	newgroup)	(integer)

ranks
ranks	of	processes	in	group	to	appear	in	newgroup	(array	of	integers)

Output	Parameter

newgroup
new	group	derived	from	above,	in	the	order	defined	by	ranks	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

See	Also

MPI_Group_free	

Location:group_incl.c

MPI_Group_intersection
Produces	a	group	as	the	intersection	of	two	existing	groups

Synopsis
int	MPI_Group_intersection(MPI_Group	group1,	MPI_Group	group2,	MPI_Group	*newgroup)

Input	Parameters

group1
first	group	(handle)

group2
second	group	(handle)

Output	Parameter

newgroup
intersection	group	(handle)

Notes

The	output	group	contains	those	processes	that	are	in	both	group1	and	group2.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

See	Also

MPI_Group_free	

Location:group_intersection.c

MPI_Group_range_excl
Produces	a	group	by	excluding	ranges	of	processes	from	an	existing	group

Synopsis
int	MPI_Group_range_excl(MPI_Group	group,	int	n,	int	ranges[][3],	

																									MPI_Group	*newgroup)

Input	Parameters

group
group	(handle)

n
number	of	elements	in	array	ranks	(integer)

ranges
a	one-dimensional	array	of	integer	triplets	of	the	form	(first	rank,	last	rank,
stride),	indicating	the	ranks	in	group	of	processes	to	be	excluded	from	the
output	group	newgroup	.

Output	Parameter

newgroup
new	group	derived	from	above,	preserving	the	order	in	group	(handle)

Note

The	MPI	standard	requires	that	each	of	the	ranks	to	be	excluded	must	be	a	valid
rank	in	the	group	and	all	elements	must	be	distinct	or	the	function	is	erroneous.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

See	Also

MPI_Group_free	

Location:group_range_excl.c

MPI_Group_range_incl
Creates	a	new	group	from	ranges	of	ranks	in	an	existing	group

Synopsis
int	MPI_Group_range_incl(MPI_Group	group,	int	n,	int	ranges[][3],	

																									MPI_Group	*newgroup)

Input	Parameters

group
group	(handle)

n
number	of	triplets	in	array	ranges	(integer)

ranges
a	one-dimensional	array	of	integer	triplets,	of	the	form	(first	rank,	last	rank,
stride)	indicating	ranks	in	group	or	processes	to	be	included	in	newgroup.

Output	Parameter

newgroup
new	group	derived	from	above,	in	the	order	defined	by	ranges	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

See	Also

MPI_Group_free	

Location:group_range_incl.c

MPI_Group_rank
Returns	the	rank	of	this	process	in	the	given	group

Synopsis
int	MPI_Group_rank(MPI_Group	group,	int	*rank)

Input	Parameters

group
group	(handle)

Output	Parameter

rank
rank	of	the	calling	process	in	group,	or	MPI_UNDEFINED	if	the	process	is	not
a	member	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:group_rank.c

MPI_Group_size
Returns	the	size	of	a	group

Synopsis
int	MPI_Group_size(MPI_Group	group,	int	*size)

Input	Parameters

group
group	(handle)	Output	Parameter:

size
number	of	processes	in	the	group	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:group_size.c

MPI_Group_translate_ranks
Translates	the	ranks	of	processes	in	one	group	to	those	in	another	group

Synopsis
int	MPI_Group_translate_ranks(MPI_Group	group1,	int	n,	int	*ranks1,	

																												MPI_Group	group2,	int	*ranks2)

Input	Parameters

group1
group1	(handle)

n
number	of	ranks	in	ranks1	and	ranks2	arrays	(integer)

ranks1
array	of	zero	or	more	valid	ranks	in	group1

group2
group2	(handle)

Output	Parameter

ranks2
array	of	corresponding	ranks	in	group2,	MPI_UNDEFINED	when	no
correspondence	exists.

As	a	special	case	(see	the	MPI-2	errata),	if	the	input	rank	is	MPI_PROC_NULL,
MPI_PROC_NULL	is	given	as	the	output	rank.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:group_translate_ranks.c

MPI_Group_union
Produces	a	group	by	combining	two	groups

Synopsis
int	MPI_Group_union(MPI_Group	group1,	MPI_Group	group2,	MPI_Group	*newgroup)

Input	Parameters

group1
first	group	(handle)

group2
second	group	(handle)

Output	Parameter

newgroup
union	group	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

See	Also

MPI_Group_free	

Location:group_union.c

MPI_Ibsend
Starts	a	nonblocking	buffered	send

Synopsis
int	MPI_Ibsend(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,	int	tag,	

															MPI_Comm	comm,	MPI_Request	*request)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	in	send	buffer	(integer)

datatype
datatype	of	each	send	buffer	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Output	Parameter

request
communication	request	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

Location:ibsend.c

MPI_Info_create
Creates	a	new	info	object

Synopsis
int	MPI_Info_create(MPI_Info	*info)

Output	Parameter

info
info	object	created	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:info_create.c

MPI_Info_delete
Deletes	a	(key,value)	pair	from	info

Synopsis
int	MPI_Info_delete(MPI_Info	info,	char	*key)

Input	Parameters

info
info	object	(handle)

key
key	(string)

Thread	and	Interrupt	Safety

The	user	is	responsible	for	ensuring	that	multiple	threads	do	not	try	to	update	the
same	MPI	object	from	different	threads.	This	routine	should	not	be	used	from
within	a	signal	handler.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:info_delete.c

MPI_Info_dup
Returns	a	duplicate	of	the	info	object

Synopsis
int	MPI_Info_dup(MPI_Info	info,	MPI_Info	*newinfo)

Input	Parameters

info
info	object	(handle)

Output	Parameters

newinfo
duplicate	of	info	object	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI_Info	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:info_dup.c

MPI_Info_free
Frees	an	info	object

Synopsis
int	MPI_Info_free(MPI_Info	*info)

Input	Parameter

info
info	object	to	be	freed	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_INFO
Invalid	Info

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:info_free.c

MPI_Info_get
Retrieves	the	value	associated	with	a	key

Synopsis
#undef	FUNCNAME

#define	FUNCNAME	MPI_Info_get

#undef	FCNAME

#define	FCNAME	MPIU_QUOTE(FUNCNAME)

int	MPI_Info_get(MPI_Info	info,	char	*key,	int	valuelen,	char	*value,	

																int	*flag)

Input	Parameters

info
info	object	(handle)

key
key	(string)

valuelen
length	of	value	argument	(integer)

Output	Parameters

value
value	(string)

flag
true	if	key	defined,	false	if	not	(boolean)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI_Info	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_INFO_KEY
Invalid	or	null	key	string	for	info.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_INFO_VALUE
Invalid	or	null	value	string	for	info

Location:info_get.c

MPI_Info_get_nkeys
Returns	the	number	of	currently	defined	keys	in	info

Synopsis
#undef	FUNCNAME

#define	FUNCNAME	MPI_Info_get_nkeys

#undef	FCNAME

#define	FCNAME	MPIU_QUOTE(FUNCNAME)

int	MPI_Info_get_nkeys(MPI_Info	info,	int	*nkeys)

Input	Parameters

info
info	object	(handle)

Output	Parameters

nkeys
number	of	defined	keys	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI_Info	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:info_getn.c

MPI_Info_get_nthkey
Returns	the	nth	defined	key	in	info

Synopsis
#undef	FUNCNAME

#define	FUNCNAME	MPI_Info_get_nthkey

#undef	FCNAME

#define	FCNAME	MPIU_QUOTE(FUNCNAME)

int	MPI_Info_get_nthkey(MPI_Info	info,	int	n,	char	*key)

Input	Parameters

info
info	object	(handle)

n
key	number	(integer)

Output	Parameters

keys
key	(string).	The	maximum	number	of	characters	is	MPI_MAX_INFO_KEY.

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI_Info	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:info_getnth.c

MPI_Info_get_valuelen
Retrieves	the	length	of	the	value	associated	with	a	key

Synopsis
#undef	FUNCNAME

#define	FUNCNAME	MPIRInfo_get_valuelen

#undef	FCNAME

#define	FCNAME	MPIU_QUOTE(FUNCNAME)

int	MPI_Info_get_valuelen(MPI_Info	info,	char	*key,	int	*valuelen,	int	*flag)

Input	Parameters

info
info	object	(handle)

key
key	(string)

Output	Parameters

valuelen
length	of	value	argument	(integer)

flag
true	if	key	defined,	false	if	not	(boolean)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI_Info	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_INFO_KEY
Invalid	or	null	key	string	for	info.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:info_getvallen.c

MPI_Info_set
Adds	a	(key,value)	pair	to	info

Synopsis
int	MPI_Info_set(MPI_Info	info,	char	*key,	char	*value)

Input	Parameters

info
info	object	(handle)

key
key	(string)

value
value	(string)

Thread	and	Interrupt	Safety

The	user	is	responsible	for	ensuring	that	multiple	threads	do	not	try	to	update	the
same	MPI	object	from	different	threads.	This	routine	should	not	be	used	from
within	a	signal	handler.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_INFO_KEY
Invalid	or	null	key	string	for	info.

MPI_ERR_INFO_VALUE
Invalid	or	null	value	string	for	info

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

Location:info_set.c

MPI_Init
Initialize	the	MPI	execution	environment

Synopsis
int	MPI_Init(int	*argc,	char	***argv)

Input	Parameters

argc
Pointer	to	the	number	of	arguments

argv
Pointer	to	the	argument	vector

Thread	and	Signal	Safety

This	routine	must	be	called	by	one	thread	only.	That	thread	is	called	the	main
thread	and	must	be	the	thread	that	calls	MPI_Finalize.

Notes

The	MPI	standard	does	not	say	what	a	program	can	do	before	an	MPI_INIT	or
after	an	MPI_FINALIZE.	In	the	MPICH	implementation,	you	should	do	as	little	as
possible.	In	particular,	avoid	anything	that	changes	the	external	state	of	the
program,	such	as	opening	files,	reading	standard	input	or	writing	to	standard
output.

Notes	for	Fortran

The	Fortran	binding	for	MPI_Init	has	only	the	error	return

				subroutine	MPI_INIT(ierr)

				integer	ierr

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
This	error	class	is	associated	with	an	error	code	that	indicates	that	an
attempt	was	made	to	call	MPI_INIT	a	second	time.	MPI_INIT	may	only	be
called	once	in	a	program.

See	Also

MPI_Init_thread,	MPI_Finalize	

Location:init.c

MPI_Init_thread
Initialize	the	MPI	execution	environment

Synopsis
int	MPI_Init_thread(int	*argc,	char	***argv,	int	required,	int	*provided)

Input	Parameters

argc
Pointer	to	the	number	of	arguments

argv
Pointer	to	the	argument	vector

required
Level	of	desired	thread	support

Output	Parameter

provided
Level	of	provided	thread	support

Command	line	arguments

MPI	specifies	no	command-line	arguments	but	does	allow	an	MPI
implementation	to	make	use	of	them.	See	MPI_INIT	for	a	description	of	the
command	line	arguments	supported	by	MPI_INIT	and	MPI_INIT_THREAD.

Notes

The	valid	values	for	the	level	of	thread	support	are:

MPI_THREAD_SINGLE
Only	one	thread	will	execute.

MPI_THREAD_FUNNELED
The	process	may	be	multi-threaded,	but	only	the	main	thread	will	make
MPI	calls	(all	MPI	calls	are	funneled	to	the	main	thread).

MPI_THREAD_SERIALIZED
The	process	may	be	multi-threaded,	and	multiple	threads	may	make	MPI
calls,	but	only	one	at	a	time:	MPI	calls	are	not	made	concurrently	from	two
distinct	threads	(all	MPI	calls	are	serialized).

MPI_THREAD_MULTIPLE
Multiple	threads	may	call	MPI,	with	no	restrictions.

Notes	for	Fortran

Note	that	the	Fortran	binding	for	this	routine	does	not	have	the	argc	and	argv
arguments.	(MPI_INIT_THREAD(required,	provided,	ierror))

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

See	Also

MPI_Init,	MPI_Finalize	

Location:initthread.c

MPI_Initialized
Indicates	whether	MPI_Init	has	been	called.

Synopsis
int	MPI_Initialized(int	*flag)

Output	Argument

flag
Flag	is	true	if	MPI_Init	or	MPI_Init_thread	has	been	called	and	false
otherwise.

Notes

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:initialized.c

MPI_Intercomm_create
Creates	an	intercommuncator	from	two	intracommunicators

Synopsis
int	MPI_Intercomm_create(MPI_Comm	local_comm,	int	local_leader,	

																							MPI_Comm	peer_comm,	int	remote_leader,	int	tag,	

																							MPI_Comm	*newintercomm)

Input	Parameters

local_comm
Local	(intra)communicator

local_leader
Rank	in	local_comm	of	leader	(often	0)

peer_comm
Communicator	used	to	communicate	between	a	designated	process	in	the
other	communicator.	Significant	only	at	the	process	in	local_comm	with
rank	local_leader.

remote_leader
Rank	in	peer_comm	of	remote	leader	(often	0)

tag
Message	tag	to	use	in	constructing	intercommunicator;	if	multiple
MPI_Intercomm_creates	are	being	made,	they	should	use	different	tags
(more	precisely,	ensure	that	the	local	and	remote	leaders	are	using	different
tags	for	each	MPI_intercomm_create).

Output	Parameter

comm_out
Created	intercommunicator

Notes

peer_comm	is	significant	only	for	the	process	designated	the	local_leader	in	the
local_comm.

The	MPI	1.1	Standard	contains	two	mutually	exclusive	comments	on	the	input
intercommunicators.	One	says	that	their	repective	groups	must	be	disjoint;	the
other	that	the	leaders	can	be	the	same	process.	After	some	discussion	by	the	MPI
Forum,	it	has	been	decided	that	the	groups	must	be	disjoint.	Note	that	the	reason
given	for	this	in	the	standard	is	not	the	reason	for	this	choice;	rather,	the	other
operations	on	intercommunicators	(like	MPI_Intercomm_merge)	do	not	make
sense	if	the	groups	are	not	disjoint.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

See	Also

MPI_Intercomm_merge,	MPI_Comm_free,	MPI_Comm_remote_group,	
MPI_Comm_remote_size

Location:intercomm_create.c

MPI_Intercomm_merge
Creates	an	intracommuncator	from	an	intercommunicator

Synopsis
int	MPI_Intercomm_merge(MPI_Comm	intercomm,	int	high,	MPI_Comm	*newintracomm)

Input	Parameters

comm
Intercommunicator	(handle)

high
Used	to	order	the	groups	within	comm	(logical)	when	creating	the	new
communicator.	This	is	a	boolean	value;	the	group	that	sets	high	true	has	its
processes	ordered	after	the	group	that	sets	this	value	to	false.	If	all
processes	in	the	intercommunicator	provide	the	same	value,	the	choice	of
which	group	is	ordered	first	is	arbitrary.

Output	Parameter

comm_out
Created	intracommunicator	(handle)

Notes

While	all	processes	may	provide	the	same	value	for	the	high	parameter,	this
requires	the	MPI	implementation	to	determine	which	group	of	processes	should
be	ranked	first.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Algorithm

1.	 Allocate	contexts
2.	 Local	and	remote	group	leaders	swap	high	values
3.	 Determine	the	high	value.
4.	 Merge	the	two	groups	and	make	the	intra-communicator

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

See	Also

MPI_Intercomm_create,	MPI_Comm_free	

Location:intercomm_merge.c

MPI_Iprobe
Nonblocking	test	for	a	message

Synopsis
int	MPI_Iprobe(int	source,	int	tag,	MPI_Comm	comm,	int	*flag,	

															MPI_Status	*status)

Input	Parameters

source
source	rank,	or	MPI_ANY_SOURCE	(integer)

tag
tag	value	or	MPI_ANY_TAG	(integer)

comm
communicator	(handle)

Output	Parameters

flag
True	if	a	message	with	the	specified	source,	tag,	and	communicator	is
available	(logical)

status
status	object	(Status)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

Location:iprobe.c

MPI_Irecv
Begins	a	nonblocking	receive

Synopsis
int	MPI_Irecv(void	*buf,	int	count,	MPI_Datatype	datatype,	int	source,

														int	tag,	MPI_Comm	comm,	MPI_Request	*request)

Input	Parameters

buf
initial	address	of	receive	buffer	(choice)

count
number	of	elements	in	receive	buffer	(integer)

datatype
datatype	of	each	receive	buffer	element	(handle)

source
rank	of	source	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Output	Parameter

request
communication	request	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

Location:irecv.c

MPI_Irsend
Starts	a	nonblocking	ready	send

Synopsis
int	MPI_Irsend(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,	int	tag,

															MPI_Comm	comm,	MPI_Request	*request)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	in	send	buffer	(integer)

datatype
datatype	of	each	send	buffer	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Output	Parameter

request
communication	request	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

Location:irsend.c

MPI_Is_thread_main
Returns	a	flag	indicating	whether	this	thread	called	MPI_Init	or
MPI_Init_thread

Synopsis
int	MPI_Is_thread_main(int	*flag)

Output	Parameter

flag
Flag	is	true	if	MPI_Init	or	MPI_Init_thread	has	been	called	by	this	thread
and	false	otherwise.	(logical)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:ismain.c

MPI_Isend
Begins	a	nonblocking	send

Synopsis
int	MPI_Isend(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,	int	tag,

														MPI_Comm	comm,	MPI_Request	*request)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	in	send	buffer	(integer)

datatype
datatype	of	each	send	buffer	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Output	Parameter

request
communication	request	(handle)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

Location:isend.c

MPI_Issend
Starts	a	nonblocking	synchronous	send

Synopsis
int	MPI_Issend(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,	int	tag,

															MPI_Comm	comm,	MPI_Request	*request)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	in	send	buffer	(integer)

datatype
datatype	of	each	send	buffer	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Output	Parameter

request
communication	request	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

Location:issend.c

MPI_Keyval_create
Greates	a	new	attribute	key

Synopsis
int	MPI_Keyval_create(MPI_Copy_function	*copy_fn,	

																					MPI_Delete_function	*delete_fn,	

																					int	*keyval,	void	*extra_state)

Input	Parameters

copy_fn
Copy	callback	function	for	keyval

delete_fn
Delete	callback	function	for	keyval

extra_state
Extra	state	for	callback	functions

Output	Parameter

keyval
key	value	for	future	access	(integer)

Notes

Key	values	are	global	(available	for	any	and	all	communicators).

There	are	subtle	differences	between	C	and	Fortran	that	require	that	the	copy_fn
be	written	in	the	same	language	that	MPI_Keyval_create	is	called	from.	This
should	not	be	a	problem	for	most	users;	only	programers	using	both	Fortran	and
C	in	the	same	program	need	to	be	sure	that	they	follow	this	rule.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Comm_create_keyval.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

See	Also

MPI_Keyval_free,	MPI_Comm_create_keyval	

Location:keyval_create.c

MPI_Keyval_free
Frees	an	attribute	key	for	communicators

Synopsis
int	MPI_Keyval_free(int	*keyval)

Input	Parameter

keyval
Frees	the	integer	key	value	(integer)

Note

Key	values	are	global	(they	can	be	used	with	any	and	all	communicators)

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Comm_free_keyval.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_ARG
This	error	class	is	associated	with	an	error	code	that	indicates	that	an
attempt	was	made	to	free	one	of	the	permanent	keys.

See	Also

MPI_Keyval_create,	MPI_Comm_free_keyval	

Location:keyval_free.c

MPI_Lookup_name
Lookup	a	port	given	a	service	name

Synopsis
int	MPI_Lookup_name(char	*service_name,	MPI_Info	info,	char	*port_name)

Input	Parameters

service_name
a	service	name	(string)

info
implementation-specific	information	(handle)

Output	Parameter

port_name
a	port	name	(string)

Notes

If	the	service_name	is	found,	MPI	copies	the	associated	value	into	port_name.
The	maximum	size	string	that	may	be	supplied	by	the	system	is
MPI_MAX_PORT_NAME.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_INFO
Invalid	Info

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:lookup_name.c

MPI_Op_commute
Queries	an	MPI	reduction	operation	for	its	commutativity.

Synopsis
int	MPI_Op_commutative(MPI_Op	op,	int	*commute)

Input	Parameter

op
operation	(handle)

Output	Parameter

commute
Flag	is	true	if	op	is	a	commutative	operation.	(logical)

Null	Handles

The	MPI	1.1	specification,	in	the	section	on	opaque	objects,	explicitly	disallows
freeing	a	null	communicator.	The	text	from	the	standard	is:

	A	null	handle	argument	is	an	erroneous	IN	argument	in	MPI	calls,	unless	an

	exception	is	explicitly	stated	in	the	text	that	defines	the	function.	Such

	exception	is	allowed	for	handles	to	request	objects	in	Wait	and	Test	calls

	(sections	Communication	Completion	and	Multiple	Completions).	Otherwise,	a

	null	handle	can	only	be	passed	to	a	function	that	allocates	a	new	object	and

	returns	a	reference	to	it	in	the	handle.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

See	Also

MPI_Op_create	

Location:op_commutative.c

MPI_Op_create
Creates	a	user-defined	combination	function	handle

Synopsis
int	MPI_Op_create(MPI_User_function	*function,	int	commute,	MPI_Op	*op)

Input	Parameters

function
user	defined	function	(function)

commute
true	if	commutative;	false	otherwise.	(logical)

Output	Parameter

op
operation	(handle)

Notes	on	the	user	function

The	calling	list	for	the	user	function	type	is

	typedef	void	(MPI_User_function)	(void	*	a,	

															void	*	b,	int	*	len,	MPI_Datatype	*);	

where	the	operation	is	b[i]	=	a[i]	op	b[i],	for	i=0,...,len-1.	A	pointer	to
the	datatype	given	to	the	MPI	collective	computation	routine	(i.e.,	MPI_Reduce,
MPI_Allreduce,	MPI_Scan,	or	MPI_Reduce_scatter)	is	also	passed	to	the	user-
specified	routine.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Notes	on	collective	operations

The	reduction	functions	(MPI_Op)	do	not	return	an	error	value.	As	a	result,	if	the
functions	detect	an	error,	all	they	can	do	is	either	call	MPI_Abort	or	silently	skip
the	problem.	Thus,	if	you	change	the	error	handler	from	MPI_ERRORS_ARE_FATAL
to	something	else,	for	example,	MPI_ERRORS_RETURN,	then	no	error	may	be
indicated.

The	reason	for	this	is	the	performance	problems	in	ensuring	that	all	collective
routines	return	the	same	error	value.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

See	Also

MPI_Op_free	

Location:op_create.c

MPI_Op_free
Frees	a	user-defined	combination	function	handle

Synopsis
int	MPI_Op_free(MPI_Op	*op)

Input	Parameter

op
operation	(handle)

Notes

op	is	set	to	MPI_OP_NULL	on	exit.

Null	Handles

The	MPI	1.1	specification,	in	the	section	on	opaque	objects,	explicitly	disallows
freeing	a	null	communicator.	The	text	from	the	standard	is:

	A	null	handle	argument	is	an	erroneous	IN	argument	in	MPI	calls,	unless	an

	exception	is	explicitly	stated	in	the	text	that	defines	the	function.	Such

	exception	is	allowed	for	handles	to	request	objects	in	Wait	and	Test	calls

	(sections	Communication	Completion	and	Multiple	Completions).	Otherwise,	a

	null	handle	can	only	be	passed	to	a	function	that	allocates	a	new	object	and

	returns	a	reference	to	it	in	the	handle.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_ARG
Invalid	argument;	the	error	code	associated	with	this	error	indicates	an
attempt	to	free	an	MPI	permanent	operation	(e.g.,	MPI_SUM).

See	Also

MPI_Op_create	

Location:op_free.c

MPI_Open_port
Establish	an	address	that	can	be	used	to	establish	connections	between	groups	of
MPI	processes

Synopsis
int	MPI_Open_port(MPI_Info	info,	char	*port_name)

Input	Parameter

info
implementation-specific	information	on	how	to	establish	a	port	for
MPI_Comm_accept	(handle)

Output	Parameter

port_name
newly	established	port	(string)

Notes

MPI	copies	a	system-supplied	port	name	into	port_name.	port_name	identifies
the	newly	opened	port	and	can	be	used	by	a	client	to	contact	the	server.	The
maximum	size	string	that	may	be	supplied	by	the	system	is	MPI_MAX_PORT_NAME.

Reserved	Info	Key	Values

ip_port
Value	contains	IP	port	number	at	which	to	establish	a	port.

ip_address
Value	contains	IP	address	at	which	to	establish	a	port.	If	the	address	is	not	a
valid	IP	address	of	the	host	on	which	the	MPI_OPEN_PORT	call	is	made,	the
results	are	undefined.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:open_port.c

MPI_Pack
Packs	a	datatype	into	contiguous	memory

Synopsis
int	MPI_Pack(void	*inbuf,

													int	incount,

													MPI_Datatype	datatype,

													void	*outbuf,

													int	outcount,

													int	*position,

													MPI_Comm	comm)

Input	Parameters

inbuf
input	buffer	start	(choice)

incount
number	of	input	data	items	(non-negative	integer)

datatype
datatype	of	each	input	data	item	(handle)

outcount
output	buffer	size,	in	bytes	(non-negative	integer)

comm
communicator	for	packed	message	(handle)

Output	Parameter

outbuf
output	buffer	start	(choice)

Input/Output	Parameter

position
current	position	in	buffer,	in	bytes	(integer)

Notes	(from	the	specifications)

The	input	value	of	position	is	the	first	location	in	the	output	buffer	to	be	used	for
packing.	position	is	incremented	by	the	size	of	the	packed	message,	and	the
output	value	of	position	is	the	first	location	in	the	output	buffer	following	the
locations	occupied	by	the	packed	message.	The	comm	argument	is	the
communicator	that	will	be	subsequently	used	for	sending	the	packed	message.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:pack.c

MPI_Pack_external
Packs	a	datatype	into	contiguous	memory,	using	the	external32	format

Synopsis
int	MPI_Pack_external(char	*datarep,

																					void	*inbuf,

																					int	incount,

																					MPI_Datatype	datatype,

																					void	*outbuf,

																					MPI_Aint	outcount,

																					MPI_Aint	*position)

Input	Parameters

datarep
data	representation	(string)

inbuf
input	buffer	start	(choice)

incount
number	of	input	data	items	(integer)

datatype
datatype	of	each	input	data	item	(handle)

outcount
output	buffer	size,	in	bytes	(address	integer)

Output	Parameter

outbuf
output	buffer	start	(choice)

Input/Output	Parameter

position
current	position	in	buffer,	in	bytes	(address	integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

Location:pack_external.c

MPI_Pack_external_size
Returns	the	upper	bound	on	the	amount	of	space	needed	to	pack	a	message	using
MPI_Pack_external.

Synopsis
int	MPI_Pack_external_size(char	*datarep,

																									int	incount,

																									MPI_Datatype	datatype,

																									MPI_Aint	*size)

Input	Parameters

datarep
data	representation	(string)

incount
number	of	input	data	items	(integer)

datatype
datatype	of	each	input	data	item	(handle)

Output	Parameters

size
output	buffer	size,	in	bytes	(address	integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:pack_external_size.c

MPI_Pack_size
Returns	the	upper	bound	on	the	amount	of	space	needed	to	pack	a	message

Synopsis
int	MPI_Pack_size(int	incount,

																	MPI_Datatype	datatype,

																	MPI_Comm	comm,

																	int	*size)

Input	Parameters

incount
count	argument	to	packing	call	(integer)

datatype
datatype	argument	to	packing	call	(handle)

comm
communicator	argument	to	packing	call	(handle)

Output	Parameter

size
upper	bound	on	size	of	packed	message,	in	bytes	(integer)

Notes

The	MPI	standard	document	describes	this	in	terms	of	MPI_Pack,	but	it	applies	to
both	MPI_Pack	and	MPI_Unpack.	That	is,	the	value	size	is	the	maximum	that	is
needed	by	either	MPI_Pack	or	MPI_Unpack.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:pack_size.c

MPI_Pcontrol
Controls	profiling

Synopsis
int	MPI_Pcontrol(const	int	level,	...)

Input	Parameters

level
Profiling	level

...
other	arguments	(see	notes)

Notes

This	routine	provides	a	common	interface	for	profiling	control.	The
interpretation	of	level	and	any	other	arguments	is	left	to	the	profiling	library.
The	intention	is	that	a	profiling	library	will	provide	a	replacement	for	this
routine	and	define	the	interpretation	of	the	parameters.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:pcontrol.c

MPI_Probe
Blocking	test	for	a	message

Synopsis
int	MPI_Probe(int	source,	int	tag,	MPI_Comm	comm,	MPI_Status	*status)

Input	Parameters

source
source	rank,	or	MPI_ANY_SOURCE	(integer)

tag
tag	value	or	MPI_ANY_TAG	(integer)

comm
communicator	(handle)

Output	Parameter

status
status	object	(Status)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

Location:probe.c

MPI_Publish_name
Publish	a	service	name	for	use	with	MPI_Comm_connect

Synopsis
int	MPI_Publish_name(char	*service_name,	MPI_Info	info,	char	*port_name)

Input	Parameters

service_name
a	service	name	to	associate	with	the	port	(string)

info
implementation-specific	information	(handle)

port_name
a	port	name	(string)

Notes

The	maximum	size	string	that	may	be	supplied	for	port_name	is
MPI_MAX_PORT_NAME.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_INFO
Invalid	Info

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:publish_name.c

MPI_Put
Put	data	into	a	memory	window	on	a	remote	process

Synopsis
int	MPI_Put(void	*origin_addr,	int	origin_count,	MPI_Datatype

												origin_datatype,	int	target_rank,	MPI_Aint	target_disp,

												int	target_count,	MPI_Datatype	target_datatype,	MPI_Win

												win)

Input	Parameters

origin_addr
initial	address	of	origin	buffer	(choice)

origin_count
number	of	entries	in	origin	buffer	(nonnegative	integer)

origin_datatype
datatype	of	each	entry	in	origin	buffer	(handle)

target_rank
rank	of	target	(nonnegative	integer)

target_disp
displacement	from	start	of	window	to	target	buffer	(nonnegative	integer)

target_count
number	of	entries	in	target	buffer	(nonnegative	integer)

target_datatype
datatype	of	each	entry	in	target	buffer	(handle)

win
window	object	used	for	communication	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_WIN
Invalid	MPI	window	object

Location:put.c

MPI_Query_thread
Return	the	level	of	thread	support	provided	by	the	MPI	library

Synopsis
int	MPI_Query_thread(int	*provided)

Output	Parameter

provided
Level	of	thread	support	provided.	This	is	the	same	value	that	was	returned
in	the	provided	argument	in	MPI_Init_thread.

Notes

The	valid	values	for	the	level	of	thread	support	are:

MPI_THREAD_SINGLE
Only	one	thread	will	execute.

MPI_THREAD_FUNNELED
The	process	may	be	multi-threaded,	but	only	the	main	thread	will	make
MPI	calls	(all	MPI	calls	are	funneled	to	the	main	thread).

MPI_THREAD_SERIALIZED
The	process	may	be	multi-threaded,	and	multiple	threads	may	make	MPI
calls,	but	only	one	at	a	time:	MPI	calls	are	not	made	concurrently	from	two
distinct	threads	(all	MPI	calls	are	serialized).

MPI_THREAD_MULTIPLE
Multiple	threads	may	call	MPI,	with	no	restrictions.

If	MPI_Init	was	called	instead	of	MPI_Init_thread,	the	level	of	thread	support
is	defined	by	the	implementation.	This	routine	allows	you	to	find	out	the
provided	level.	It	is	also	useful	for	library	routines	that	discover	that	MPI	has
already	been	initialized	and	wish	to	determine	what	level	of	thread	support	is
available.

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:querythread.c

MPI_Recv
Blocking	receive	for	a	message

Synopsis
int	MPI_Recv(void	*buf,	int	count,	MPI_Datatype	datatype,	int	source,	int	tag,

													MPI_Comm	comm,	MPI_Status	*status)

Output	Parameters

buf
initial	address	of	receive	buffer	(choice)

status
status	object	(Status)

Input	Parameters

count
maximum	number	of	elements	in	receive	buffer	(integer)

datatype
datatype	of	each	receive	buffer	element	(handle)

source
rank	of	source	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Notes

The	count	argument	indicates	the	maximum	length	of	a	message;	the	actual
length	of	the	message	can	be	determined	with	MPI_Get_count.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

The	status	argument	must	be	declared	as	an	array	of	size	MPI_STATUS_SIZE,	as
in	integer	status(MPI_STATUS_SIZE).

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

Location:recv.c

MPI_Recv_init
Create	a	persistent	request	for	a	receive

Synopsis
int	MPI_Recv_init(void	*buf,	int	count,	MPI_Datatype	datatype,	int	source,	

																	int	tag,	MPI_Comm	comm,	MPI_Request	*request)

Input	Parameters

buf
initial	address	of	receive	buffer	(choice)

count
number	of	elements	received	(integer)

datatype
type	of	each	element	(handle)

source
rank	of	source	or	MPI_ANY_SOURCE	(integer)

tag
message	tag	or	MPI_ANY_TAG	(integer)

comm
communicator	(handle)

Output	Parameter

request
communication	request	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

See	Also

MPI_Start,	MPI_Startall,	MPI_Request_free	

Location:recv_init.c

MPI_Reduce
Reduces	values	on	all	processes	to	a	single	value

Synopsis
int	MPI_Reduce(void	*sendbuf,	void	*recvbuf,	int	count,	MPI_Datatype	datatype,	

															MPI_Op	op,	int	root,	MPI_Comm	comm)

Input	Parameters

sendbuf
address	of	send	buffer	(choice)

count
number	of	elements	in	send	buffer	(integer)

datatype
data	type	of	elements	of	send	buffer	(handle)

op
reduce	operation	(handle)

root
rank	of	root	process	(integer)

comm
communicator	(handle)

Output	Parameter

recvbuf
address	of	receive	buffer	(choice,	significant	only	at	root)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Notes	on	collective	operations

The	reduction	functions	(MPI_Op)	do	not	return	an	error	value.	As	a	result,	if	the
functions	detect	an	error,	all	they	can	do	is	either	call	MPI_Abort	or	silently	skip
the	problem.	Thus,	if	you	change	the	error	handler	from	MPI_ERRORS_ARE_FATAL
to	something	else,	for	example,	MPI_ERRORS_RETURN,	then	no	error	may	be
indicated.

The	reason	for	this	is	the	performance	problems	in	ensuring	that	all	collective
routines	return	the	same	error	value.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

MPI_ERR_BUFFER
This	error	class	is	associcated	with	an	error	code	that	indicates	that	two
buffer	arguments	are	aliased;	that	is,	the	describe	overlapping	storage	(often
the	exact	same	storage).	This	is	prohibited	in	MPI	(because	it	is	prohibited
by	the	Fortran	standard,	and	rather	than	have	a	separate	case	for	C	and
Fortran,	the	MPI	Forum	adopted	the	more	restrictive	requirements	of

Fortran).

Location:reduce.c

MPI_Reduce_local
Applies	a	reduction	operator	to	local	arguments.

Synopsis
int	MPI_Reduce_local(void	*inbuf,	void	*inoutbuf,	int	count,	MPI_Datatype	datatype,	MPI_Op	op)

Input	Parameters

inbuf
address	of	the	input	buffer	(choice)

count
number	of	elements	in	each	buffer	(integer)

datatype
data	type	of	elements	in	the	buffers	(handle)

op
reduction	operation	(handle)

Output	Parameter

inoutbuf
address	of	input-output	buffer	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Notes	on	collective	operations

The	reduction	functions	(MPI_Op)	do	not	return	an	error	value.	As	a	result,	if	the
functions	detect	an	error,	all	they	can	do	is	either	call	MPI_Abort	or	silently	skip
the	problem.	Thus,	if	you	change	the	error	handler	from	MPI_ERRORS_ARE_FATAL
to	something	else,	for	example,	MPI_ERRORS_RETURN,	then	no	error	may	be
indicated.

The	reason	for	this	is	the	performance	problems	in	ensuring	that	all	collective
routines	return	the	same	error	value.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

MPI_ERR_BUFFER
This	error	class	is	associcated	with	an	error	code	that	indicates	that	two
buffer	arguments	are	aliased;	that	is,	the	describe	overlapping	storage	(often
the	exact	same	storage).	This	is	prohibited	in	MPI	(because	it	is	prohibited
by	the	Fortran	standard,	and	rather	than	have	a	separate	case	for	C	and
Fortran,	the	MPI	Forum	adopted	the	more	restrictive	requirements	of
Fortran).

Location:reduce_local.c

MPI_Reduce_scatter
Combines	values	and	scatters	the	results

Synopsis
int	MPI_Reduce_scatter(void	*sendbuf,	void	*recvbuf,	int	*recvcnts,	

																						MPI_Datatype	datatype,	MPI_Op	op,	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

recvcounts
integer	array	specifying	the	number	of	elements	in	result	distributed	to	each
process.	Array	must	be	identical	on	all	calling	processes.

datatype
data	type	of	elements	of	input	buffer	(handle)

op
operation	(handle)

comm
communicator	(handle)

Output	Parameter

recvbuf
starting	address	of	receive	buffer	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Notes	on	collective	operations

The	reduction	functions	(MPI_Op)	do	not	return	an	error	value.	As	a	result,	if	the
functions	detect	an	error,	all	they	can	do	is	either	call	MPI_Abort	or	silently	skip
the	problem.	Thus,	if	you	change	the	error	handler	from	MPI_ERRORS_ARE_FATAL
to	something	else,	for	example,	MPI_ERRORS_RETURN,	then	no	error	may	be
indicated.

The	reason	for	this	is	the	performance	problems	in	ensuring	that	all	collective
routines	return	the	same	error	value.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

MPI_ERR_OP
Invalid	operation.	MPI	operations	(objects	of	type	MPI_Op)	must	either	be
one	of	the	predefined	operations	(e.g.,	MPI_SUM)	or	created	with
MPI_Op_create.

MPI_ERR_BUFFER

This	error	class	is	associcated	with	an	error	code	that	indicates	that	two
buffer	arguments	are	aliased;	that	is,	the	describe	overlapping	storage	(often
the	exact	same	storage).	This	is	prohibited	in	MPI	(because	it	is	prohibited
by	the	Fortran	standard,	and	rather	than	have	a	separate	case	for	C	and
Fortran,	the	MPI	Forum	adopted	the	more	restrictive	requirements	of
Fortran).

Location:red_scat.c

MPI_Reduce_scatter_block
Combines	values	and	scatters	the	results

Synopsis
int	MPI_Reduce_scatter_block(void	*sendbuf,	void	*recvbuf,	int	recvcount,	

																						MPI_Datatype	datatype,	MPI_Op	op,	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

recvcount
element	count	per	block	(non-negative	integer)

datatype
data	type	of	elements	of	input	buffer	(handle)

op
operation	(handle)

comm
communicator	(handle)

Output	Parameter

recvbuf
starting	address	of	receive	buffer	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Notes	on	collective	operations

The	reduction	functions	(MPI_Op)	do	not	return	an	error	value.	As	a	result,	if	the
functions	detect	an	error,	all	they	can	do	is	either	call	MPI_Abort	or	silently	skip
the	problem.	Thus,	if	you	change	the	error	handler	from	MPI_ERRORS_ARE_FATAL
to	something	else,	for	example,	MPI_ERRORS_RETURN,	then	no	error	may	be
indicated.

The	reason	for	this	is	the	performance	problems	in	ensuring	that	all	collective
routines	return	the	same	error	value.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

MPI_ERR_OP
Invalid	operation.	MPI	operations	(objects	of	type	MPI_Op)	must	either	be
one	of	the	predefined	operations	(e.g.,	MPI_SUM)	or	created	with
MPI_Op_create.

MPI_ERR_BUFFER

This	error	class	is	associcated	with	an	error	code	that	indicates	that	two
buffer	arguments	are	aliased;	that	is,	the	describe	overlapping	storage	(often
the	exact	same	storage).	This	is	prohibited	in	MPI	(because	it	is	prohibited
by	the	Fortran	standard,	and	rather	than	have	a	separate	case	for	C	and
Fortran,	the	MPI	Forum	adopted	the	more	restrictive	requirements	of
Fortran).

Location:red_scat_block.c

MPI_Register_datarep
Register	functions	for	user-defined	data	representations

Synopsis
int	MPI_Register_datarep(char	*name,

																							MPI_Datarep_conversion_function	*read_conv_fn,

																							MPI_Datarep_conversion_function	*write_conv_fn,

																							MPI_Datarep_extent_function	*extent_fn,

																							void	*state)

Input	Parameters

name
data	representation	name	(string)

read_conv_fn
function	invoked	to	convert	from	file	representation	to	native	representation
(function)

write_conv_fn
function	invoked	to	convert	from	native	representation	to	file	representation
(function)

extent_fn
function	invoked	to	get	the	exted	of	a	datatype	as	represented	in	the	file
(function)

extra_state
pointer	to	extra	state	that	is	passed	to	each	of	the	three	functions

Notes

This	function	allows	the	user	to	provide	routines	to	convert	data	from	an	external
representation,	used	within	a	file,	and	the	native	representation,	used	within	the
CPU.	There	is	one	predefined	data	representation,	external32.	Please	consult
the	MPI-2	standard	for	details	on	this	function.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Location:register_datarep.c

MPI_Request_free
Frees	a	communication	request	object

Synopsis
int	MPI_Request_free(MPI_Request	*request)

Input	Parameter

request
communication	request	(handle)

Notes

This	routine	is	normally	used	to	free	inactive	persistent	requests	created	with
either	MPI_Recv_init	or	MPI_Send_init	and	friends.	It	is	also	permissible	to
free	an	active	request.	However,	once	freed,	the	request	can	no	longer	be	used	in
a	wait	or	test	routine	(e.g.,	MPI_Wait)	to	determine	completion.

This	routine	may	also	be	used	to	free	a	non-persistent	requests	such	as	those
created	with	MPI_Irecv	or	MPI_Isend	and	friends.	Like	active	persistent
requests,	once	freed,	the	request	can	no	longer	be	used	with	test/wait	routines	to
determine	completion.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_REQUEST
Invalid	MPI_Request.	Either	null	or,	in	the	case	of	a	MPI_Start	or
MPI_Startall,	not	a	persistent	request.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

See	Also

also:	MPI_Isend,	MPI_Irecv,	MPI_Issend,	MPI_Ibsend,	MPI_Irsend,	
MPI_Recv_init,	MPI_Send_init,	MPI_Ssend_init,	MPI_Rsend_init,	MPI_Wait,
MPI_Test,	MPI_Waitall,	MPI_Waitany,	MPI_Waitsome,	MPI_Testall,
MPI_Testany,	MPI_Testsome

Location:request_free.c

MPI_Request_get_status
Nondestructive	test	for	the	completion	of	a	Request

Synopsis
int	MPI_Request_get_status(MPI_Request	request,	int	*flag,	MPI_Status	*status)

Input	Parameter

request
request	(handle).	May	be	MPI_REQUEST_NULL.

Output	Parameters

flag
true	if	operation	has	completed	(logical)

status
status	object	(Status).	May	be	MPI_STATUS_IGNORE.

Notes

Unlike	MPI_Test,	MPI_Request_get_status	does	not	deallocate	or	deactivate
the	request.	A	call	to	one	of	the	test/wait	routines	or	MPI_Request_free	should
be	made	to	release	the	request	object.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:request_get_status.c

MPI_Rsend
Blocking	ready	send

Synopsis
int	MPI_Rsend(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,	int	tag,

														MPI_Comm	comm)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	in	send	buffer	(nonnegative	integer)

datatype
datatype	of	each	send	buffer	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

Location:rsend.c

MPI_Rsend_init
Creates	a	persistent	request	for	a	ready	send

Synopsis
int	MPI_Rsend_init(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,

																		int	tag,	MPI_Comm	comm,	MPI_Request	*request)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	sent	(integer)

datatype
type	of	each	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Output	Parameter

request
communication	request	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

See	Also

MPI_Start,	MPI_Request_free,	MPI_Send_init	

Location:rsend_init.c

MPI_Scan
Computes	the	scan	(partial	reductions)	of	data	on	a	collection	of	processes

Synopsis
int	MPI_Scan(void	*sendbuf,	void	*recvbuf,	int	count,	MPI_Datatype	datatype,	

													MPI_Op	op,	MPI_Comm	comm)

Input	Parameters

sendbuf
starting	address	of	send	buffer	(choice)

count
number	of	elements	in	input	buffer	(integer)

datatype
data	type	of	elements	of	input	buffer	(handle)

op
operation	(handle)

comm
communicator	(handle)

Output	Parameter

recvbuf
starting	address	of	receive	buffer	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Notes	on	collective	operations

The	reduction	functions	(MPI_Op)	do	not	return	an	error	value.	As	a	result,	if	the
functions	detect	an	error,	all	they	can	do	is	either	call	MPI_Abort	or	silently	skip
the	problem.	Thus,	if	you	change	the	error	handler	from	MPI_ERRORS_ARE_FATAL
to	something	else,	for	example,	MPI_ERRORS_RETURN,	then	no	error	may	be
indicated.

The	reason	for	this	is	the	performance	problems	in	ensuring	that	all	collective
routines	return	the	same	error	value.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

MPI_ERR_BUFFER
This	error	class	is	associcated	with	an	error	code	that	indicates	that	two
buffer	arguments	are	aliased;	that	is,	the	describe	overlapping	storage	(often
the	exact	same	storage).	This	is	prohibited	in	MPI	(because	it	is	prohibited
by	the	Fortran	standard,	and	rather	than	have	a	separate	case	for	C	and
Fortran,	the	MPI	Forum	adopted	the	more	restrictive	requirements	of

Fortran).

Location:scan.c

MPI_Scatter
Sends	data	from	one	process	to	all	other	processes	in	a	communicator

Synopsis
int	MPI_Scatter(void	*sendbuf,	int	sendcnt,	MPI_Datatype	sendtype,	

															void	*recvbuf,	int	recvcnt,	MPI_Datatype	recvtype,	int	root,	

															MPI_Comm	comm)

Input	Parameters

sendbuf
address	of	send	buffer	(choice,	significant	only	at	root)

sendcount
number	of	elements	sent	to	each	process	(integer,	significant	only	at	root)

sendtype
data	type	of	send	buffer	elements	(significant	only	at	root)	(handle)

recvcount
number	of	elements	in	receive	buffer	(integer)

recvtype
data	type	of	receive	buffer	elements	(handle)

root
rank	of	sending	process	(integer)

comm
communicator	(handle)

Output	Parameter

recvbuf
address	of	receive	buffer	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

Location:scatter.c

MPI_Scatterv
Scatters	a	buffer	in	parts	to	all	processes	in	a	communicator

Synopsis
int	MPI_Scatterv(void	*sendbuf,	int	*sendcnts,	int	*displs,	

																	MPI_Datatype	sendtype,	void	*recvbuf,	int	recvcnt,

																	MPI_Datatype	recvtype,

																	int	root,	MPI_Comm	comm)

Input	Parameters

sendbuf
address	of	send	buffer	(choice,	significant	only	at	root)

sendcounts
integer	array	(of	length	group	size)	specifying	the	number	of	elements	to
send	to	each	processor

displs
integer	array	(of	length	group	size).	Entry	i	specifies	the	displacement
(relative	to	sendbuf	from	which	to	take	the	outgoing	data	to	process	i

sendtype
data	type	of	send	buffer	elements	(handle)

recvcount
number	of	elements	in	receive	buffer	(integer)

recvtype
data	type	of	receive	buffer	elements	(handle)

root
rank	of	sending	process	(integer)

comm
communicator	(handle)

Output	Parameter

recvbuf
address	of	receive	buffer	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_BUFFER
Invalid	buffer	pointer.	Usually	a	null	buffer	where	one	is	not	valid.

Location:scatterv.c

MPI_Send
Performs	a	blocking	send

Synopsis
int	MPI_Send(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,	int	tag,

													MPI_Comm	comm)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	in	send	buffer	(nonnegative	integer)

datatype
datatype	of	each	send	buffer	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Notes

This	routine	may	block	until	the	message	is	received	by	the	destination	process.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

See	Also

MPI_Isend,	MPI_Bsend	

Location:send.c

MPI_Send_init
Create	a	persistent	request	for	a	standard	send

Synopsis
int	MPI_Send_init(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,

																	int	tag,	MPI_Comm	comm,	MPI_Request	*request)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	sent	(integer)

datatype
type	of	each	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Output	Parameter

request
communication	request	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

See	Also

MPI_Start,	MPI_Startall,	MPI_Request_free	

Location:send_init.c

MPI_Sendrecv
Sends	and	receives	a	message

Synopsis
int	MPI_Sendrecv(void	*sendbuf,	int	sendcount,	MPI_Datatype	sendtype,	

																int	dest,	int	sendtag,

																void	*recvbuf,	int	recvcount,	MPI_Datatype	recvtype,	

																int	source,	int	recvtag,

																MPI_Comm	comm,	MPI_Status	*status)

Input	Parameters

sendbuf
initial	address	of	send	buffer	(choice)

sendcount
number	of	elements	in	send	buffer	(integer)

sendtype
type	of	elements	in	send	buffer	(handle)

dest
rank	of	destination	(integer)

sendtag
send	tag	(integer)

recvcount
number	of	elements	in	receive	buffer	(integer)

recvtype
type	of	elements	in	receive	buffer	(handle)

source
rank	of	source	(integer)

recvtag
receive	tag	(integer)

comm
communicator	(handle)

Output	Parameters

recvbuf
initial	address	of	receive	buffer	(choice)

status
status	object	(Status).	This	refers	to	the	receive	operation.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

The	status	argument	must	be	declared	as	an	array	of	size	MPI_STATUS_SIZE,	as
in	integer	status(MPI_STATUS_SIZE).

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

Location:sendrecv.c

MPI_Sendrecv_replace
Sends	and	receives	using	a	single	buffer

Synopsis
int	MPI_Sendrecv_replace(void	*buf,	int	count,	MPI_Datatype	datatype,	

																							int	dest,	int	sendtag,	int	source,	int	recvtag,

																							MPI_Comm	comm,	MPI_Status	*status)

Input	Parameters

count
number	of	elements	in	send	and	receive	buffer	(integer)

datatype
type	of	elements	in	send	and	receive	buffer	(handle)

dest
rank	of	destination	(integer)

sendtag
send	message	tag	(integer)

source
rank	of	source	(integer)

recvtag
receive	message	tag	(integer)

comm
communicator	(handle)

Output	Parameters

buf
initial	address	of	send	and	receive	buffer	(choice)

status
status	object	(Status)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

The	status	argument	must	be	declared	as	an	array	of	size	MPI_STATUS_SIZE,	as
in	integer	status(MPI_STATUS_SIZE).

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_TRUNCATE
Message	truncated	on	receive.	The	buffer	size	specified	was	too	small	for
the	received	message.	This	is	a	recoverable	error	in	the	MPICH
implementation.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

Location:sendrecv_rep.c

MPI_Ssend
Blocking	synchronous	send

Synopsis
int	MPI_Ssend(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,	int	tag,

														MPI_Comm	comm)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	in	send	buffer	(nonnegative	integer)

datatype
datatype	of	each	send	buffer	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

Location:ssend.c

MPI_Ssend_init
Creates	a	persistent	request	for	a	synchronous	send

Synopsis
int	MPI_Ssend_init(void	*buf,	int	count,	MPI_Datatype	datatype,	int	dest,

																		int	tag,	MPI_Comm	comm,	MPI_Request	*request)

Input	Parameters

buf
initial	address	of	send	buffer	(choice)

count
number	of	elements	sent	(integer)

datatype
type	of	each	element	(handle)

dest
rank	of	destination	(integer)

tag
message	tag	(integer)

comm
communicator	(handle)

Output	Parameter

request
communication	request	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_TAG
Invalid	tag	argument.	Tags	must	be	non-negative;	tags	in	a	receive
(MPI_Recv,	MPI_Irecv,	MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_TAG.	The
largest	tag	value	is	available	through	the	the	attribute	MPI_TAG_UB.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

Location:ssend_init.c

MPI_Start
Initiates	a	communication	with	a	persistent	request	handle

Synopsis
int	MPI_Start(MPI_Request	*request)

Input	Parameter

request
communication	request	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_REQUEST
Invalid	MPI_Request.	Either	null	or,	in	the	case	of	a	MPI_Start	or
MPI_Startall,	not	a	persistent	request.

Location:start.c

MPI_Startall
Starts	a	collection	of	persistent	requests

Synopsis
int	MPI_Startall(int	count,	MPI_Request	array_of_requests[])

Input	Parameters

count
list	length	(integer)

array_of_requests
array	of	requests	(array	of	handle)

Notes

Unlike	MPI_Waitall,	MPI_Startall	does	not	provide	a	mechanism	for	returning
multiple	errors	nor	pinpointing	the	request(s)	involved.	Futhermore,	the	behavior
of	MPI_Startall	after	an	error	occurs	is	not	defined	by	the	MPI	standard.	If
well-defined	error	reporting	and	behavior	are	required,	multiple	calls	to
MPI_Start	should	be	used	instead.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_REQUEST
Invalid	MPI_Request.	Either	null	or,	in	the	case	of	a	MPI_Start	or
MPI_Startall,	not	a	persistent	request.

Location:startall.c

MPI_Status_set_cancelled
Sets	the	cancelled	state	associated	with	a	Status	object

Synopsis
int	MPI_Status_set_cancelled(MPI_Status	*status,	int	flag)

Input	Parameters

status
status	to	associate	cancel	flag	with	(Status)

flag
if	true	indicates	request	was	cancelled	(logical)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:status_set_cancelled.c

MPI_Status_set_elements
Set	the	number	of	elements	in	a	status

Synopsis
int	MPI_Status_set_elements(MPI_Status	*status,	MPI_Datatype	datatype,	

																										int	count)

Input	Parameters

status
status	to	associate	count	with	(Status)

datatype
datatype	associated	with	count	(handle)

count
number	of	elements	to	associate	with	status	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

Location:status_set_elements.c

MPI_Test
Tests	for	the	completion	of	a	request

Synopsis
int	MPI_Test(MPI_Request	*request,	int	*flag,	MPI_Status	*status)

Input	Parameter

request
MPI	request	(handle)

Output	Parameter

flag
true	if	operation	completed	(logical)

status
status	object	(Status).	May	be	MPI_STATUS_IGNORE.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	on	the	MPI_Status	argument

The	MPI_ERROR	field	of	the	status	return	is	only	set	if	the	return	from	the	MPI
routine	is	MPI_ERR_IN_STATUS.	That	error	class	is	only	returned	by	the	routines
that	take	an	array	of	status	arguments	(MPI_Testall,	MPI_Testsome,
MPI_Waitall,	and	MPI_Waitsome).	In	all	other	cases,	the	value	of	the	MPI_ERROR
field	in	the	status	is	unchanged.	See	section	3.2.5	in	the	MPI-1.1	specification
for	the	exact	text.

For	send	operations,	the	only	use	of	status	is	for	MPI_Test_cancelled	or	in	the
case	that	there	is	an	error	in	one	of	the	four	routines	that	may	return	the	error
class	MPI_ERR_IN_STATUS,	in	which	case	the	MPI_ERROR	field	of	status	will	be
set.	In	that	case,	the	value	will	be	set	to	MPI_SUCCESS	for	any	send	or	receive
operation	that	completed	successfully,	or	MPI_ERR_PENDING	for	any	operation
which	has	neither	failed	nor	completed.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

The	status	argument	must	be	declared	as	an	array	of	size	MPI_STATUS_SIZE,	as
in	integer	status(MPI_STATUS_SIZE).

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_REQUEST
Invalid	MPI_Request.	Either	null	or,	in	the	case	of	a	MPI_Start	or
MPI_Startall,	not	a	persistent	request.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:test.c

MPI_Test_cancelled
Tests	to	see	if	a	request	was	cancelled

Synopsis
int	MPI_Test_cancelled(MPI_Status	*status,	int	*flag)

Input	Parameter

status
status	object	(Status)

Output	Parameter

flag
true	if	the	request	was	cancelled,	false	otherwise	(logical)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:test_cancelled.c

MPI_Testall
Tests	for	the	completion	of	all	previously	initiated	requests

Synopsis
int	MPI_Testall(int	count,	MPI_Request	array_of_requests[],	int	*flag,	

															MPI_Status	array_of_statuses[])

Input	Parameters

count
lists	length	(integer)

array_of_requests
array	of	requests	(array	of	handles)

Output	Parameters

flag
True	if	all	requests	have	completed;	false	otherwise	(logical)

array_of_statuses
array	of	status	objects	(array	of	Status).	May	be	MPI_STATUSES_IGNORE.

Notes

flag	is	true	only	if	all	requests	have	completed.	Otherwise,	flag	is	false	and
neither	the	array_of_requests	nor	the	array_of_statuses	is	modified.

If	one	or	more	of	the	requests	completes	with	an	error,	MPI_ERR_IN_STATUS	is
returned.	An	error	value	will	be	present	is	elements	of	array_of_status
associated	with	the	requests.	Likewise,	the	MPI_ERROR	field	in	the	status	elements
associated	with	requests	that	have	successfully	completed	will	be	MPI_SUCCESS.
Finally,	those	requests	that	have	not	completed	will	have	a	value	of
MPI_ERR_PENDING.

While	it	is	possible	to	list	a	request	handle	more	than	once	in	the
array_of_requests,	such	an	action	is	considered	erroneous	and	may	cause	the
program	to	unexecpectedly	terminate	or	produce	incorrect	results.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	on	the	MPI_Status	argument

The	MPI_ERROR	field	of	the	status	return	is	only	set	if	the	return	from	the	MPI
routine	is	MPI_ERR_IN_STATUS.	That	error	class	is	only	returned	by	the	routines
that	take	an	array	of	status	arguments	(MPI_Testall,	MPI_Testsome,
MPI_Waitall,	and	MPI_Waitsome).	In	all	other	cases,	the	value	of	the	MPI_ERROR
field	in	the	status	is	unchanged.	See	section	3.2.5	in	the	MPI-1.1	specification
for	the	exact	text.

For	send	operations,	the	only	use	of	status	is	for	MPI_Test_cancelled	or	in	the
case	that	there	is	an	error	in	one	of	the	four	routines	that	may	return	the	error
class	MPI_ERR_IN_STATUS,	in	which	case	the	MPI_ERROR	field	of	status	will	be
set.	In	that	case,	the	value	will	be	set	to	MPI_SUCCESS	for	any	send	or	receive
operation	that	completed	successfully,	or	MPI_ERR_PENDING	for	any	operation
which	has	neither	failed	nor	completed.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_IN_STATUS
The	actual	error	value	is	in	the	MPI_Status	argument.	This	error	class	is
returned	only	from	the	multiple-completion	routines	(MPI_Testall,
MPI_Testany,	MPI_Testsome,	MPI_Waitall,	MPI_Waitany,	and
MPI_Waitsome).	The	field	MPI_ERROR	in	the	status	argument	contains	the
error	value	or	MPI_SUCCESS	(no	error	and	complete)	or	MPI_ERR_PENDING	to
indicate	that	the	request	has	not	completed.

The	MPI	Standard	does	not	specify	what	the	result	of	the	multiple	completion
routines	is	when	an	error	occurs.	For	example,	in	an	MPI_WAITALL,	does	the
routine	wait	for	all	requests	to	either	fail	or	complete,	or	does	it	return
immediately	(with	the	MPI	definition	of	immediately,	which	means	independent
of	actions	of	other	MPI	processes)?	MPICH	has	chosen	to	make	the	return
immediate	(alternately,	local	in	MPI	terms),	and	to	use	the	error	class
MPI_ERR_PENDING	(introduced	in	MPI	1.1)	to	indicate	which	requests	have	not
completed.	In	most	cases,	only	one	request	with	an	error	will	be	detected	in	each
call	to	an	MPI	routine	that	tests	multiple	requests.	The	requests	that	have	not
been	processed	(because	an	error	occured	in	one	of	the	requests)	will	have	their
MPI_ERROR	field	marked	with	MPI_ERR_PENDING.

MPI_ERR_REQUEST

Invalid	MPI_Request.	Either	null	or,	in	the	case	of	a	MPI_Start	or
MPI_Startall,	not	a	persistent	request.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:testall.c

MPI_Testany
Tests	for	completion	of	any	previdously	initiated	requests

Synopsis
int	MPI_Testany(int	count,	MPI_Request	array_of_requests[],	int	*index,	

															int	*flag,	MPI_Status	*status)

Input	Parameters

count
list	length	(integer)

array_of_requests
array	of	requests	(array	of	handles)

Output	Parameters

index
index	of	operation	that	completed,	or	MPI_UNDEFINED	if	none	completed
(integer)

flag
true	if	one	of	the	operations	is	complete	(logical)

status
status	object	(Status).	May	be	MPI_STATUS_IGNORE.

Notes

While	it	is	possible	to	list	a	request	handle	more	than	once	in	the
array_of_requests,	such	an	action	is	considered	erroneous	and	may	cause	the
program	to	unexecpectedly	terminate	or	produce	incorrect	results.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	on	the	MPI_Status	argument

The	MPI_ERROR	field	of	the	status	return	is	only	set	if	the	return	from	the	MPI
routine	is	MPI_ERR_IN_STATUS.	That	error	class	is	only	returned	by	the	routines
that	take	an	array	of	status	arguments	(MPI_Testall,	MPI_Testsome,
MPI_Waitall,	and	MPI_Waitsome).	In	all	other	cases,	the	value	of	the	MPI_ERROR
field	in	the	status	is	unchanged.	See	section	3.2.5	in	the	MPI-1.1	specification
for	the	exact	text.

For	send	operations,	the	only	use	of	status	is	for	MPI_Test_cancelled	or	in	the
case	that	there	is	an	error	in	one	of	the	four	routines	that	may	return	the	error
class	MPI_ERR_IN_STATUS,	in	which	case	the	MPI_ERROR	field	of	status	will	be
set.	In	that	case,	the	value	will	be	set	to	MPI_SUCCESS	for	any	send	or	receive
operation	that	completed	successfully,	or	MPI_ERR_PENDING	for	any	operation
which	has	neither	failed	nor	completed.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:testany.c

MPI_Testsome
Tests	for	some	given	requests	to	complete

Synopsis
int	MPI_Testsome(int	incount,	MPI_Request	array_of_requests[],	int	*outcount,	

																int	array_of_indices[],	MPI_Status	array_of_statuses[])

Input	Parameters

incount
length	of	array_of_requests	(integer)

array_of_requests
array	of	requests	(array	of	handles)

Output	Parameters

outcount
number	of	completed	requests	(integer)

array_of_indices
array	of	indices	of	operations	that	completed	(array	of	integers)

array_of_statuses
array	of	status	objects	for	operations	that	completed	(array	of	Status).	May
be	MPI_STATUSES_IGNORE.

Notes

While	it	is	possible	to	list	a	request	handle	more	than	once	in	the
array_of_requests,	such	an	action	is	considered	erroneous	and	may	cause	the
program	to	unexecpectedly	terminate	or	produce	incorrect	results.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	on	the	MPI_Status	argument

The	MPI_ERROR	field	of	the	status	return	is	only	set	if	the	return	from	the	MPI
routine	is	MPI_ERR_IN_STATUS.	That	error	class	is	only	returned	by	the	routines
that	take	an	array	of	status	arguments	(MPI_Testall,	MPI_Testsome,
MPI_Waitall,	and	MPI_Waitsome).	In	all	other	cases,	the	value	of	the	MPI_ERROR
field	in	the	status	is	unchanged.	See	section	3.2.5	in	the	MPI-1.1	specification
for	the	exact	text.

For	send	operations,	the	only	use	of	status	is	for	MPI_Test_cancelled	or	in	the
case	that	there	is	an	error	in	one	of	the	four	routines	that	may	return	the	error
class	MPI_ERR_IN_STATUS,	in	which	case	the	MPI_ERROR	field	of	status	will	be
set.	In	that	case,	the	value	will	be	set	to	MPI_SUCCESS	for	any	send	or	receive
operation	that	completed	successfully,	or	MPI_ERR_PENDING	for	any	operation
which	has	neither	failed	nor	completed.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_IN_STATUS
The	actual	error	value	is	in	the	MPI_Status	argument.	This	error	class	is
returned	only	from	the	multiple-completion	routines	(MPI_Testall,
MPI_Testany,	MPI_Testsome,	MPI_Waitall,	MPI_Waitany,	and
MPI_Waitsome).	The	field	MPI_ERROR	in	the	status	argument	contains	the
error	value	or	MPI_SUCCESS	(no	error	and	complete)	or	MPI_ERR_PENDING	to
indicate	that	the	request	has	not	completed.

The	MPI	Standard	does	not	specify	what	the	result	of	the	multiple	completion
routines	is	when	an	error	occurs.	For	example,	in	an	MPI_WAITALL,	does	the
routine	wait	for	all	requests	to	either	fail	or	complete,	or	does	it	return
immediately	(with	the	MPI	definition	of	immediately,	which	means	independent
of	actions	of	other	MPI	processes)?	MPICH	has	chosen	to	make	the	return
immediate	(alternately,	local	in	MPI	terms),	and	to	use	the	error	class
MPI_ERR_PENDING	(introduced	in	MPI	1.1)	to	indicate	which	requests	have	not
completed.	In	most	cases,	only	one	request	with	an	error	will	be	detected	in	each
call	to	an	MPI	routine	that	tests	multiple	requests.	The	requests	that	have	not
been	processed	(because	an	error	occured	in	one	of	the	requests)	will	have	their
MPI_ERROR	field	marked	with	MPI_ERR_PENDING.

Location:testsome.c

MPI_Topo_test
Determines	the	type	of	topology	(if	any)	associated	with	a	communicator

Synopsis
int	MPI_Topo_test(MPI_Comm	comm,	int	*topo_type)

Input	Parameter

comm
communicator	(handle)

Output	Parameter

top_type
topology	type	of	communicator	comm	(integer).	If	the	communicator	has	no
associated	topology,	returns	MPI_UNDEFINED.

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

See	Also

MPI_Graph_create,	MPI_Cart_create	

Location:topo_test.c

MPI_Type_commit
Commits	the	datatype

Synopsis
int	MPI_Type_commit(MPI_Datatype	*datatype)

Input	Parameter

datatype
datatype	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

Location:type_commit.c

MPI_Type_contiguous
Creates	a	contiguous	datatype

Synopsis
int	MPI_Type_contiguous(int	count,

																						MPI_Datatype	old_type,

																						MPI_Datatype	*new_type_p)

Input	Parameters

count
replication	count	(nonnegative	integer)

oldtype
old	datatype	(handle)

Output	Parameter

newtype
new	datatype	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

Location:type_contiguous.c

MPI_Type_create_darray
Create	a	datatype	representing	a	distributed	array

Synopsis
int	MPI_Type_create_darray(int	size,

																									int	rank,

																									int	ndims,

																									int	array_of_gsizes[],

																									int	array_of_distribs[],

																									int	array_of_dargs[],

																									int	array_of_psizes[],

																									int	order,

																									MPI_Datatype	oldtype,

																									MPI_Datatype	*newtype)

Input	Parameters

size
size	of	process	group	(positive	integer)

rank
rank	in	process	group	(nonnegative	integer)

ndims
number	of	array	dimensions	as	well	as	process	grid	dimensions	(positive
integer)

array_of_gsizes
number	of	elements	of	type	oldtype	in	each	dimension	of	global	array
(array	of	positive	integers)

array_of_distribs
distribution	of	array	in	each	dimension	(array	of	state)

array_of_dargs
distribution	argument	in	each	dimension	(array	of	positive	integers)

array_of_psizes
size	of	process	grid	in	each	dimension	(array	of	positive	integers)

order
array	storage	order	flag	(state)

oldtype
old	datatype	(handle)

Output	Parameter

newtype
new	datatype	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_create_darray.c

MPI_Type_create_hindexed
Create	a	datatype	for	an	indexed	datatype	with	displacements	in	bytes

Synopsis
int	MPI_Type_create_hindexed(int	count,

																											int	blocklengths[],

																											MPI_Aint	displacements[],

																											MPI_Datatype	oldtype,

																											MPI_Datatype	*newtype)

Input	Parameters

count
number	of	blocks	---	also	number	of	entries	in	displacements	and
blocklengths	(integer)

blocklengths
number	of	elements	in	each	block	(array	of	nonnegative	integers)

displacements
byte	displacement	of	each	block	(array	of	address	integers)

oldtype
old	datatype	(handle)

Output	Parameter

newtype
new	datatype	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_create_hindexed.c

MPI_Type_create_hvector
Create	a	datatype	with	a	constant	stride	given	in	bytes

Synopsis
int	MPI_Type_create_hvector(int	count,

																										int	blocklength,

																										MPI_Aint	stride,

																										MPI_Datatype	oldtype,

																										MPI_Datatype	*newtype)

Input	Parameters

count
number	of	blocks	(nonnegative	integer)

blocklength
number	of	elements	in	each	block	(nonnegative	integer)

stride
number	of	bytes	between	start	of	each	block	(address	integer)

oldtype
old	datatype	(handle)

Output	Parameter

newtype
new	datatype	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_create_hvector.c

MPI_Type_create_indexed_block
Create	an	indexed	datatype	with	constant-sized	blocks

Synopsis
int	MPI_Type_create_indexed_block(int	count,

																															int	blocklength,

																															int	array_of_displacements[],

																															MPI_Datatype	oldtype,

																															MPI_Datatype	*newtype)

Input	Parameters

count
length	of	array	of	displacements	(integer)

blocklength
size	of	block	(integer)

array_of_displacements
array	of	displacements	(array	of	integer)

oldtype
old	datatype	(handle)

Output	Parameter

newtype
new	datatype	(handle)

Notes

The	indices	are	displacements,	and	are	based	on	a	zero	origin.	A	common	error
is	to	do	something	like	the	following

				integer	a(100)

				integer	blens(10),	indices(10)

				do	i=1,10

10							indices(i)	=	1	+	(i-1)*10

				call	MPI_TYPE_CREATE_INDEXED_BLOCK(10,1,indices,MPI_INTEGER,newtype,ierr)

				call	MPI_TYPE_COMMIT(newtype,ierr)

				call	MPI_SEND(a,1,newtype,...)

expecting	this	to	send	a(1),a(11),...	because	the	indices	have	values
1,11,....	Because	these	are	displacements	from	the	beginning	of	a,	it	actually
sends	a(1+1),a(1+11),....

If	you	wish	to	consider	the	displacements	as	indices	into	a	Fortran	array,
consider	declaring	the	Fortran	array	with	a	zero	origin

				integer	a(0:99)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_create_indexed_block.c

MPI_Type_create_keyval
Create	an	attribute	keyval	for	MPI	datatypes

Synopsis
int	MPI_Type_create_keyval(MPI_Type_copy_attr_function	*type_copy_attr_fn,	

																									MPI_Type_delete_attr_function	*type_delete_attr_fn,

																									int	*type_keyval,	void	*extra_state)

Input	Parameters

type_copy_attr_fn
copy	callback	function	for	type_keyval	(function)

type_delete_attr_fn
delete	callback	function	for	type_keyval	(function)

extra_state
extra	state	for	callback	functions

Output	Parameter

type_keyval
key	value	for	future	access	(integer)

Notes

Default	copy	and	delete	functions	are	available.	These	are

MPI_TYPE_NULL_COPY_FN
empty	copy	function

MPI_TYPE_NULL_DELETE_FN
empty	delete	function

MPI_TYPE_DUP_FN
simple	dup	function

Return	value	from	attribute	callbacks

The	MPI-2	versions	of	the	attribute	callbacks	should	return	either	MPI_SUCCESS
on	success	or	a	valid	MPI	error	code	or	class	on	failure.	The	MPI	standard	is
ambiguous	on	this	point,	but	as	MPI-2	provides	the	routines
MPI_Add_error_class	and	MPI_Add_error_code	that	allow	the	user	to	define
and	use	MPI	error	codes	and	classes.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:type_create_keyval.c

MPI_Type_create_resized
Create	a	datatype	with	a	new	lower	bound	and	extent	from	an	existing	datatype

Synopsis
int	MPI_Type_create_resized(MPI_Datatype	oldtype,

																										MPI_Aint	lb,

																										MPI_Aint	extent,

																										MPI_Datatype	*newtype)

Input	Parameters

oldtype
input	datatype	(handle)

lb
new	lower	bound	of	datatype	(address	integer)

extent
new	extent	of	datatype	(address	integer)

Output	Parameter

newtype
output	datatype	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

Location:type_create_resized.c

MPI_Type_create_struct
Create	an	MPI	datatype	from	a	general	set	of	datatypes,	displacements,	and
block	sizes

Synopsis
int	MPI_Type_create_struct(int	count,

																									int	array_of_blocklengths[],

																									MPI_Aint	array_of_displacements[],

																									MPI_Datatype	array_of_types[],

																									MPI_Datatype	*newtype)

Input	Parameters

count
number	of	blocks	(integer)	---	also	number	of	entries	in	arrays
array_of_types,	array_of_displacements	and	array_of_blocklengths

array_of_blocklength
number	of	elements	in	each	block	(array	of	integer)

array_of_displacements
byte	displacement	of	each	block	(array	of	address	integer)

array_of_types
type	of	elements	in	each	block	(array	of	handles	to	datatype	objects)

Output	Parameter

newtype
new	datatype	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

Location:type_create_struct.c

MPI_Type_create_subarray
Create	a	datatype	for	a	subarray	of	a	regular,	multidimensional	array

Synopsis
int	MPI_Type_create_subarray(int	ndims,

																											int	array_of_sizes[],

																											int	array_of_subsizes[],

																											int	array_of_starts[],

																											int	order,

																											MPI_Datatype	oldtype,

																											MPI_Datatype	*newtype)

Input	Parameters

ndims
number	of	array	dimensions	(positive	integer)

array_of_sizes
number	of	elements	of	type	oldtype	in	each	dimension	of	the	full	array
(array	of	positive	integers)

array_of_subsizes
number	of	elements	of	type	oldtype	in	each	dimension	of	the	subarray
(array	of	positive	integers)

array_of_starts
starting	coordinates	of	the	subarray	in	each	dimension	(array	of	nonnegative
integers)

order
array	storage	order	flag	(state)

oldtype
array	element	datatype	(handle)

Output	Parameter

newtype
new	datatype	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_create_subarray.c

MPI_Type_delete_attr
Deletes	an	attribute	value	associated	with	a	key	on	a	datatype

Synopsis
int	MPI_Type_delete_attr(MPI_Datatype	type,	int	type_keyval)

Input	Parameters

type
MPI	datatype	to	which	attribute	is	attached	(handle)

type_keyval
The	key	value	of	the	deleted	attribute	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_KEYVAL
Invalid	keyval

Location:type_delete_attr.c

MPI_Type_dup
Duplicate	a	datatype

Synopsis
int	MPI_Type_dup(MPI_Datatype	datatype,	MPI_Datatype	*newtype)

Input	Parameter

type
datatype	(handle)

Output	Parameter

newtype
copy	of	type	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

Location:type_dup.c

MPI_Type_extent
Returns	the	extent	of	a	datatype

Synopsis
int	MPI_Type_extent(MPI_Datatype	datatype,	MPI_Aint	*extent)

Input	Parameters

datatype
datatype	(handle)

Output	Parameter

extent
datatype	extent	(address	integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Type_get_extent.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

Location:type_extent.c

MPI_Type_free
Frees	the	datatype

Synopsis
int	MPI_Type_free(MPI_Datatype	*datatype)

Input	Parameter

datatype
datatype	that	is	freed	(handle)

Predefined	types

The	MPI	standard	states	that	(in	Opaque	Objects)

MPI	provides	certain	predefined	opaque	objects	and	predefined,	static
handles	to	these	objects.	Such	objects	may	not	be	destroyed.

Thus,	it	is	an	error	to	free	a	predefined	datatype.	The	same	section	makes	it	clear
that	it	is	an	error	to	free	a	null	datatype.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_free.c

MPI_Type_free_keyval
Frees	an	attribute	key	for	datatypes

Synopsis
int	MPI_Type_free_keyval(int	*type_keyval)

Input	Parameter

keyval
Frees	the	integer	key	value	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_KEYVAL
Invalid	keyval

Location:type_free_keyval.c

MPI_Type_get_attr
Retrieves	attribute	value	by	key

Synopsis
int	MPI_Type_get_attr(MPI_Datatype	type,	int	type_keyval,	void	*attribute_val,	

																					int	*flag)

Input	Parameters

type
datatype	to	which	the	attribute	is	attached	(handle)

type_keyval
key	value	(integer)

Output	Parameters

attribute_val
attribute	value,	unless	flag	=	false

flag
false	if	no	attribute	is	associated	with	the	key	(logical)

Notes

Attributes	must	be	extracted	from	the	same	language	as	they	were	inserted	in
with	MPI_Type_set_attr.	The	notes	for	C	and	Fortran	below	explain	why.

Notes	for	C

Even	though	the	attr_value	arguement	is	declared	as	void	*,	it	is	really	the
address	of	a	void	pointer.	See	the	rationale	in	the	standard	for	more	details.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_KEYVAL
Invalid	keyval

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_get_attr.c

MPI_Type_get_contents
get	type	contents

Synopsis
int	MPI_Type_get_contents(MPI_Datatype	datatype,

																								int	max_integers,

																								int	max_addresses,

																								int	max_datatypes,

																								int	array_of_integers[],

																								MPI_Aint	array_of_addresses[],

																								MPI_Datatype	array_of_datatypes[])

Arguments

MPI_Datatype	datatype
datatype

int	max_integers
max	integers

int	max_addresses
max	addresses

int	max_datatypes
max	datatypes

int	array_of_integers[]
integers

MPI_Aint	array_of_addresses[]
addresses

MPI_Datatype	array_of_datatypes[]
datatypes

Notes

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:type_get_contents.c

MPI_Type_get_envelope
get	type	envelope

Synopsis
int	MPI_Type_get_envelope(MPI_Datatype	datatype,

																								int	*num_integers,

																								int	*num_addresses,

																								int	*num_datatypes,

																								int	*combiner)

Arguments

MPI_Datatype	datatype
datatype

int	*num_integers
num	integers

int	*num_addresses
num	addresses

int	*num_datatypes
num	datatypes

int	*combiner
combiner

Notes

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:type_get_envelope.c

MPI_Type_get_extent
Get	the	lower	bound	and	extent	for	a	Datatype

Synopsis
int	MPI_Type_get_extent(MPI_Datatype	datatype,	MPI_Aint	*lb,	MPI_Aint	*extent)

Input	Parameter

datatype
datatype	to	get	information	on	(handle)

Output	Parameters

lb
lower	bound	of	datatype	(address	integer)

extent
extent	of	datatype	(address	integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

Location:type_get_extent.c

MPI_Type_get_name
Get	the	print	name	for	a	datatype

Synopsis
int	MPI_Type_get_name(MPI_Datatype	datatype,	char	*type_name,	int	*resultlen)

Input	Parameter

type
datatype	whose	name	is	to	be	returned	(handle)

Output	Parameters

type_name
the	name	previously	stored	on	the	datatype,	or	a	empty	string	if	no	such
name	exists	(string)

resultlen
length	of	returned	name	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Null	Handles

The	MPI	1.1	specification,	in	the	section	on	opaque	objects,	explicitly	disallows
freeing	a	null	communicator.	The	text	from	the	standard	is:

	A	null	handle	argument	is	an	erroneous	IN	argument	in	MPI	calls,	unless	an

	exception	is	explicitly	stated	in	the	text	that	defines	the	function.	Such

	exception	is	allowed	for	handles	to	request	objects	in	Wait	and	Test	calls

	(sections	Communication	Completion	and	Multiple	Completions).	Otherwise,	a

	null	handle	can	only	be	passed	to	a	function	that	allocates	a	new	object	and

	returns	a	reference	to	it	in	the	handle.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_get_name.c

MPI_Type_get_true_extent
Get	the	true	lower	bound	and	extent	for	a	datatype

Synopsis
int	MPI_Type_get_true_extent(MPI_Datatype	datatype,	MPI_Aint	*true_lb,

																											MPI_Aint	*true_extent)

Input	Parameter

datatype
datatype	to	get	information	on	(handle)

Output	Parameters

true_lb
true	lower	bound	of	datatype	(address	integer)

true_extent
true	size	of	datatype	(address	integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_get_true_extent.c

MPI_Type_hindexed
Creates	an	indexed	datatype	with	offsets	in	bytes

Synopsis
int	MPI_Type_hindexed(int	count,

																					int	blocklens[],

																					MPI_Aint	indices[],

																					MPI_Datatype	old_type,

																					MPI_Datatype	*newtype)

Input	Parameters

count
number	of	blocks	--	also	number	of	entries	in	indices	and	blocklens

blocklens
number	of	elements	in	each	block	(array	of	nonnegative	integers)

indices
byte	displacement	of	each	block	(array	of	MPI_Aint)

old_type
old	datatype	(handle)

Output	Parameter

newtype
new	datatype	(handle)

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	This
routine	is	replaced	by	MPI_Type_create_hindexed.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

The	indices	are	displacements,	and	are	based	on	a	zero	origin.	A	common	error
is	to	do	something	like	to	following

				integer	a(100)

				integer	blens(10),	indices(10)

				do	i=1,10

									blens(i)			=	1

10							indices(i)	=	(1	+	(i-1)*10)	*	sizeofint

				call	MPI_TYPE_HINDEXED(10,blens,indices,MPI_INTEGER,newtype,ierr)

				call	MPI_TYPE_COMMIT(newtype,ierr)

				call	MPI_SEND(a,1,newtype,...)

expecting	this	to	send	a(1),a(11),...	because	the	indices	have	values
1,11,....	Because	these	are	displacements	from	the	beginning	of	a,	it	actually
sends	a(1+1),a(1+11),....

If	you	wish	to	consider	the	displacements	as	indices	into	a	Fortran	array,
consider	declaring	the	Fortran	array	with	a	zero	origin

				integer	a(0:99)

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_hindexed.c

MPI_Type_hvector
type_hvector

Synopsis
int	MPI_Type_hvector(int	count,

																				int	blocklen,

																				MPI_Aint	stride,

																				MPI_Datatype	old_type,

																				MPI_Datatype	*newtype_p)

Input	Parameters

count
number	of	blocks	(nonnegative	integer)

blocklength
number	of	elements	in	each	block	(nonnegative	integer)

stride
number	of	bytes	between	start	of	each	block	(integer)

oldtype
old	datatype	(handle)

Output	Parameter

newtype_p
new	datatype	(handle)

Notes

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:type_hvector.c

MPI_Type_indexed
Creates	an	indexed	datatype

Synopsis
int	MPI_Type_indexed(int	count,

																				int	blocklens[],

																				int	indices[],

																				MPI_Datatype	old_type,

																				MPI_Datatype	*newtype)

Input	Parameters

count
number	of	blocks	--	also	number	of	entries	in	indices	and	blocklens

blocklens
number	of	elements	in	each	block	(array	of	nonnegative	integers)

indices
displacement	of	each	block	in	multiples	of	old_type	(array	of	integers)

old_type
old	datatype	(handle)

Output	Parameter

newtype
new	datatype	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

The	indices	are	displacements,	and	are	based	on	a	zero	origin.	A	common	error
is	to	do	something	like	to	following

				integer	a(100)

				integer	blens(10),	indices(10)

				do	i=1,10

									blens(i)			=	1

10							indices(i)	=	1	+	(i-1)*10

				call	MPI_TYPE_INDEXED(10,blens,indices,MPI_INTEGER,newtype,ierr)

				call	MPI_TYPE_COMMIT(newtype,ierr)

				call	MPI_SEND(a,1,newtype,...)

expecting	this	to	send	a(1),a(11),...	because	the	indices	have	values
1,11,....	Because	these	are	displacements	from	the	beginning	of	a,	it	actually
sends	a(1+1),a(1+11),....

If	you	wish	to	consider	the	displacements	as	indices	into	a	Fortran	array,
consider	declaring	the	Fortran	array	with	a	zero	origin

				integer	a(0:99)

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

Location:type_indexed.c

MPI_Type_lb
Returns	the	lower-bound	of	a	datatype

Synopsis
int	MPI_Type_lb(MPI_Datatype	datatype,	MPI_Aint	*displacement)

Input	Parameters

datatype
datatype	(handle)

Output	Parameter

displacement
displacement	of	lower	bound	from	origin,	in	bytes	(address	integer)

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Type_Get_extent.

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_lb.c

MPI_Type_match_size
Find	an	MPI	datatype	matching	a	specified	size

Synopsis
int	MPI_Type_match_size(int	typeclass,	int	size,	MPI_Datatype	*datatype)

Input	Parameters

typeclass
generic	type	specifier	(integer)

size
size,	in	bytes,	of	representation	(integer)

Output	Parameter

type
datatype	with	correct	type,	size	(handle)

Notes

typeclass	is	one	of	MPI_TYPECLASS_REAL,	MPI_TYPECLASS_INTEGER	and
MPI_TYPECLASS_COMPLEX,	corresponding	to	the	desired	typeclass.	The	function
returns	an	MPI	datatype	matching	a	local	variable	of	type	(typeclass,	size
).

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_match_size.c

MPI_Type_set_attr
Stores	attribute	value	associated	with	a	key

Synopsis
int	MPI_Type_set_attr(MPI_Datatype	type,	int	type_keyval,	void	*attribute_val)

Input	Parameters

type
MPI	Datatype	to	which	attribute	will	be	attached	(handle)

keyval
key	value,	as	returned	by	MPI_Type_create_keyval	(integer)

attribute_val
attribute	value

Notes

The	type	of	the	attribute	value	depends	on	whether	C	or	Fortran	is	being	used.	In
C,	an	attribute	value	is	a	pointer	(void	*);	in	Fortran,	it	is	an	address-sized
integer.

If	an	attribute	is	already	present,	the	delete	function	(specified	when	the
corresponding	keyval	was	created)	will	be	called.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_KEYVAL
Invalid	keyval

Location:type_set_attr.c

MPI_Type_set_name
set	datatype	name

Synopsis
int	MPI_Type_set_name(MPI_Datatype	type,	char	*type_name)

Input	Parameters

type
datatype	whose	identifier	is	to	be	set	(handle)

type_name
the	character	string	which	is	remembered	as	the	name	(string)

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:type_set_name.c

MPI_Type_size
Return	the	number	of	bytes	occupied	by	entries	in	the	datatype

Synopsis
int	MPI_Type_size(MPI_Datatype	datatype,	int	*size)

Input	Parameters

datatype
datatype	(handle)

Output	Parameter

size
datatype	size	(integer)

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_size.c

MPI_Type_struct
Creates	a	struct	datatype

Synopsis
int	MPI_Type_struct(int	count,

																			int	blocklens[],

																			MPI_Aint	indices[],

																			MPI_Datatype	old_types[],

																			MPI_Datatype	*newtype)

Input	Parameters

count
number	of	blocks	(integer)	--	also	number	of	entries	in	arrays
array_of_types	,	array_of_displacements	and	array_of_blocklengths

blocklens
number	of	elements	in	each	block	(array)

indices
byte	displacement	of	each	block	(array)

old_types
type	of	elements	in	each	block	(array	of	handles	to	datatype	objects)

Output	Parameter

newtype
new	datatype	(handle)

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Type_create_struct

Notes

If	an	upperbound	is	set	explicitly	by	using	the	MPI	datatype	MPI_UB,	the
corresponding	index	must	be	positive.

The	MPI	standard	originally	made	vague	statements	about	padding	and
alignment;	this	was	intended	to	allow	the	simple	definition	of	structures	that
could	be	sent	with	a	count	greater	than	one.	For	example,

				struct	{	int	a;	char	b;	}	foo;

may	have	sizeof(foo)	>	sizeof(int)	+	sizeof(char);	for	example,
sizeof(foo)	==	2*sizeof(int).	The	initial	version	of	the	MPI	standard
defined	the	extent	of	a	datatype	as	including	an	epsilon	that	would	have	allowed
an	implementation	to	make	the	extent	an	MPI	datatype	for	this	structure	equal	to
2*sizeof(int).	However,	since	different	systems	might	define	different
paddings,	there	was	much	discussion	by	the	MPI	Forum	about	what	was	the
correct	value	of	epsilon,	and	one	suggestion	was	to	define	epsilon	as	zero.	This
would	have	been	the	best	thing	to	do	in	MPI	1.0,	particularly	since	the	MPI_UB
type	allows	the	user	to	easily	set	the	end	of	the	structure.	Unfortunately,	this
change	did	not	make	it	into	the	final	document.	Currently,	this	routine	does	not
add	any	padding,	since	the	amount	of	padding	needed	is	determined	by	the
compiler	that	the	user	is	using	to	build	their	code,	not	the	compiler	used	to
construct	the	MPI	library.	A	later	version	of	MPICH	may	provide	for	some
natural	choices	of	padding	(e.g.,	multiple	of	the	size	of	the	largest	basic
member),	but	users	are	advised	to	never	depend	on	this,	even	with	vendor	MPI
implementations.	Instead,	if	you	define	a	structure	datatype	and	wish	to	send	or
receive	multiple	items,	you	should	explicitly	include	an	MPI_UB	entry	as	the	last
member	of	the	structure.	For	example,	the	following	code	can	be	used	for	the
structure	foo

				blen[0]	=	1;	indices[0]	=	0;	oldtypes[0]	=	MPI_INT;

				blen[1]	=	1;	indices[1]	=	&foo.b	-	&foo;	oldtypes[1]	=	MPI_CHAR;

				blen[2]	=	1;	indices[2]	=	sizeof(foo);	oldtypes[2]	=	MPI_UB;

				MPI_Type_struct(3,	blen,	indices,	oldtypes,	&newtype);

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_INTERN
This	error	is	returned	when	some	part	of	the	MPICH	implementation	is
unable	to	acquire	memory.

Location:type_struct.c

MPI_Type_ub
Returns	the	upper	bound	of	a	datatype

Synopsis
int	MPI_Type_ub(MPI_Datatype	datatype,	MPI_Aint	*displacement)

Input	Parameters

datatype
datatype	(handle)

Output	Parameter

displacement
displacement	of	upper	bound	from	origin,	in	bytes	(address	integer)

Deprecated	Function

The	MPI-2	standard	deprecated	a	number	of	routines	because	MPI-2	provides
better	versions.	This	routine	is	one	of	those	that	was	deprecated.	The	routine
may	continue	to	be	used,	but	new	code	should	use	the	replacement	routine.	The
replacement	for	this	routine	is	MPI_Type_get_extent

Thread	and	Interrupt	Safety

This	routine	is	both	thread-	and	interrupt-safe.	This	means	that	this	routine	may
safely	be	used	by	multiple	threads	and	from	within	a	signal	handler.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:type_ub.c

MPI_Type_vector
Creates	a	vector	(strided)	datatype

Synopsis
int	MPI_Type_vector(int	count,

																			int	blocklength,

																			int	stride,	

																			MPI_Datatype	old_type,

																			MPI_Datatype	*newtype_p)

Input	Parameters

count
number	of	blocks	(nonnegative	integer)

blocklength
number	of	elements	in	each	block	(nonnegative	integer)

stride
number	of	elements	between	start	of	each	block	(integer)

oldtype
old	datatype	(handle)

Output	Parameter

newtype_p
new	datatype	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:type_vector.c

MPI_Unpack
Unpack	a	buffer	according	to	a	datatype	into	contiguous	memory

Synopsis
int	MPI_Unpack(void	*inbuf,	int	insize,	int	*position,

															void	*outbuf,	int	outcount,	MPI_Datatype	datatype,

															MPI_Comm	comm)

Input	Parameters

inbuf
input	buffer	start	(choice)

insize
size	of	input	buffer,	in	bytes	(integer)

outcount
number	of	items	to	be	unpacked	(integer)

datatype
datatype	of	each	output	data	item	(handle)

comm
communicator	for	packed	message	(handle)

Output	Parameter

outbuf
output	buffer	start	(choice)

Inout/Output	Parameter

position
current	position	in	bytes	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_COUNT
Invalid	count	argument.	Count	arguments	must	be	non-negative;	a	count	of
zero	is	often	valid.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

See	Also

MPI_Pack,	MPI_Pack_size	

Location:unpack.c

MPI_Unpack_external
Unpack	a	buffer	(packed	with	MPI_Pack_external)	according	to	a	datatype	into
contiguous	memory

Synopsis
int	MPI_Unpack_external(char	*datarep,

																						void	*inbuf,

																						MPI_Aint	insize,

																						MPI_Aint	*position,

																						void	*outbuf,

																						int	outcount,

																						MPI_Datatype	datatype)

Input	Parameters

datarep
data	representation	(string)

inbuf
input	buffer	start	(choice)

insize
input	buffer	size,	in	bytes	(address	integer)

outcount
number	of	output	data	items	(integer)

datatype
datatype	of	output	data	item	(handle)

Input/Output	Parameter

position
current	position	in	buffer,	in	bytes	(address	integer)

Output	Parameter

outbuf
output	buffer	start	(choice)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used
by	multiple	threads	without	the	need	for	any	user-provided	thread	locks.
However,	the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of
memory	allocation	routines	such	as	malloc	or	other	non-MPICH	runtime
routines	that	are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer
and	has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,
MPI	routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in
Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;
C	routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last
argument.	Before	the	value	is	returned,	the	current	MPI	error	handler	is
called.	By	default,	this	error	handler	aborts	the	MPI	job.	The	error	handler
may	be	changed	with	MPI_Comm_set_errhandler	(for	communicators),
MPI_File_set_errhandler	(for	files),	and	MPI_Win_set_errhandler	(for
RMA	windows).	The	MPI-1	routine	MPI_Errhandler_set	may	be	used	but
its	use	is	deprecated.	The	predefined	error	handler	MPI_ERRORS_RETURN	may
be	used	to	cause	error	values	to	be	returned.	Note	that	MPI	does	not
guarentee	that	an	MPI	program	can	continue	past	an	error;	however,	MPI
implementations	will	attempt	to	continue	whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_TYPE
Invalid	datatype	argument.	May	be	an	uncommitted	MPI_Datatype	(see
MPI_Type_commit).

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:unpack_external.c

MPI_Unpublish_name
Unpublish	a	service	name	published	with	MPI_Publish_name

Synopsis
int	MPI_Unpublish_name(char	*service_name,	MPI_Info	info,	char	*port_name)

Input	Parameters

service_name
a	service	name	(string)

info
implementation-specific	information	(handle)

port_name
a	port	name	(string)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_INFO
Invalid	Info

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:unpublish_name.c

MPI_Wait
Waits	for	an	MPI	request	to	complete

Synopsis
int	MPI_Wait(MPI_Request	*request,	MPI_Status	*status)

Input	Parameter

request
request	(handle)

Output	Parameter

status
status	object	(Status).	May	be	MPI_STATUS_IGNORE.

Notes	on	the	MPI_Status	argument

The	MPI_ERROR	field	of	the	status	return	is	only	set	if	the	return	from	the	MPI
routine	is	MPI_ERR_IN_STATUS.	That	error	class	is	only	returned	by	the	routines
that	take	an	array	of	status	arguments	(MPI_Testall,	MPI_Testsome,
MPI_Waitall,	and	MPI_Waitsome).	In	all	other	cases,	the	value	of	the	MPI_ERROR
field	in	the	status	is	unchanged.	See	section	3.2.5	in	the	MPI-1.1	specification
for	the	exact	text.

For	send	operations,	the	only	use	of	status	is	for	MPI_Test_cancelled	or	in	the
case	that	there	is	an	error	in	one	of	the	four	routines	that	may	return	the	error
class	MPI_ERR_IN_STATUS,	in	which	case	the	MPI_ERROR	field	of	status	will	be
set.	In	that	case,	the	value	will	be	set	to	MPI_SUCCESS	for	any	send	or	receive
operation	that	completed	successfully,	or	MPI_ERR_PENDING	for	any	operation
which	has	neither	failed	nor	completed.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

The	status	argument	must	be	declared	as	an	array	of	size	MPI_STATUS_SIZE,	as
in	integer	status(MPI_STATUS_SIZE).

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_REQUEST
Invalid	MPI_Request.	Either	null	or,	in	the	case	of	a	MPI_Start	or
MPI_Startall,	not	a	persistent	request.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:wait.c

MPI_Waitall
Waits	for	all	given	MPI	Requests	to	complete

Synopsis
int	MPI_Waitall(int	count,	MPI_Request	array_of_requests[],	

															MPI_Status	array_of_statuses[])

Input	Parameters

count
list	length	(integer)

array_of_requests
array	of	request	handles	(array	of	handles)

Output	Parameter

array_of_statuses
array	of	status	objects	(array	of	Statuses).	May	be	MPI_STATUSES_IGNORE.

Notes

If	one	or	more	of	the	requests	completes	with	an	error,	MPI_ERR_IN_STATUS	is
returned.	An	error	value	will	be	present	is	elements	of	array_of_status
associated	with	the	requests.	Likewise,	the	MPI_ERROR	field	in	the	status	elements
associated	with	requests	that	have	successfully	completed	will	be	MPI_SUCCESS.
Finally,	those	requests	that	have	not	completed	will	have	a	value	of
MPI_ERR_PENDING.

While	it	is	possible	to	list	a	request	handle	more	than	once	in	the
array_of_requests,	such	an	action	is	considered	erroneous	and	may	cause	the
program	to	unexecpectedly	terminate	or	produce	incorrect	results.

Notes	on	the	MPI_Status	argument

The	MPI_ERROR	field	of	the	status	return	is	only	set	if	the	return	from	the	MPI
routine	is	MPI_ERR_IN_STATUS.	That	error	class	is	only	returned	by	the	routines
that	take	an	array	of	status	arguments	(MPI_Testall,	MPI_Testsome,
MPI_Waitall,	and	MPI_Waitsome).	In	all	other	cases,	the	value	of	the	MPI_ERROR
field	in	the	status	is	unchanged.	See	section	3.2.5	in	the	MPI-1.1	specification
for	the	exact	text.

For	send	operations,	the	only	use	of	status	is	for	MPI_Test_cancelled	or	in	the
case	that	there	is	an	error	in	one	of	the	four	routines	that	may	return	the	error
class	MPI_ERR_IN_STATUS,	in	which	case	the	MPI_ERROR	field	of	status	will	be
set.	In	that	case,	the	value	will	be	set	to	MPI_SUCCESS	for	any	send	or	receive
operation	that	completed	successfully,	or	MPI_ERR_PENDING	for	any	operation
which	has	neither	failed	nor	completed.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_REQUEST
Invalid	MPI_Request.	Either	null	or,	in	the	case	of	a	MPI_Start	or
MPI_Startall,	not	a	persistent	request.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_IN_STATUS
The	actual	error	value	is	in	the	MPI_Status	argument.	This	error	class	is
returned	only	from	the	multiple-completion	routines	(MPI_Testall,
MPI_Testany,	MPI_Testsome,	MPI_Waitall,	MPI_Waitany,	and
MPI_Waitsome).	The	field	MPI_ERROR	in	the	status	argument	contains	the
error	value	or	MPI_SUCCESS	(no	error	and	complete)	or	MPI_ERR_PENDING	to
indicate	that	the	request	has	not	completed.

The	MPI	Standard	does	not	specify	what	the	result	of	the	multiple	completion
routines	is	when	an	error	occurs.	For	example,	in	an	MPI_WAITALL,	does	the
routine	wait	for	all	requests	to	either	fail	or	complete,	or	does	it	return
immediately	(with	the	MPI	definition	of	immediately,	which	means	independent
of	actions	of	other	MPI	processes)?	MPICH	has	chosen	to	make	the	return

immediate	(alternately,	local	in	MPI	terms),	and	to	use	the	error	class
MPI_ERR_PENDING	(introduced	in	MPI	1.1)	to	indicate	which	requests	have	not
completed.	In	most	cases,	only	one	request	with	an	error	will	be	detected	in	each
call	to	an	MPI	routine	that	tests	multiple	requests.	The	requests	that	have	not
been	processed	(because	an	error	occured	in	one	of	the	requests)	will	have	their
MPI_ERROR	field	marked	with	MPI_ERR_PENDING.

Location:waitall.c

MPI_Waitany
Waits	for	any	specified	MPI	Request	to	complete

Synopsis
int	MPI_Waitany(int	count,	MPI_Request	array_of_requests[],	int	*index,	

															MPI_Status	*status)

Input	Parameters

count
list	length	(integer)

array_of_requests
array	of	requests	(array	of	handles)

Output	Parameters

index
index	of	handle	for	operation	that	completed	(integer).	In	the	range	0	to
count-1.	In	Fortran,	the	range	is	1	to	count.

status
status	object	(Status).	May	be	MPI_STATUS_IGNORE.

Notes

If	all	of	the	requests	are	MPI_REQUEST_NULL,	then	index	is	returned	as
MPI_UNDEFINED,	and	status	is	returned	as	an	empty	status.

While	it	is	possible	to	list	a	request	handle	more	than	once	in	the
array_of_requests,	such	an	action	is	considered	erroneous	and	may	cause	the
program	to	unexecpectedly	terminate	or	produce	incorrect	results.

Notes	on	the	MPI_Status	argument

The	MPI_ERROR	field	of	the	status	return	is	only	set	if	the	return	from	the	MPI
routine	is	MPI_ERR_IN_STATUS.	That	error	class	is	only	returned	by	the	routines
that	take	an	array	of	status	arguments	(MPI_Testall,	MPI_Testsome,
MPI_Waitall,	and	MPI_Waitsome).	In	all	other	cases,	the	value	of	the	MPI_ERROR
field	in	the	status	is	unchanged.	See	section	3.2.5	in	the	MPI-1.1	specification
for	the	exact	text.

For	send	operations,	the	only	use	of	status	is	for	MPI_Test_cancelled	or	in	the
case	that	there	is	an	error	in	one	of	the	four	routines	that	may	return	the	error
class	MPI_ERR_IN_STATUS,	in	which	case	the	MPI_ERROR	field	of	status	will	be
set.	In	that	case,	the	value	will	be	set	to	MPI_SUCCESS	for	any	send	or	receive
operation	that	completed	successfully,	or	MPI_ERR_PENDING	for	any	operation
which	has	neither	failed	nor	completed.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_REQUEST
Invalid	MPI_Request.	Either	null	or,	in	the	case	of	a	MPI_Start	or
MPI_Startall,	not	a	persistent	request.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:waitany.c

MPI_Waitsome
Waits	for	some	given	MPI	Requests	to	complete

Synopsis
int	MPI_Waitsome(int	incount,	MPI_Request	array_of_requests[],	

																int	*outcount,	int	array_of_indices[],

																MPI_Status	array_of_statuses[])

Input	Parameters

incount
length	of	array_of_requests	(integer)

array_of_requests
array	of	requests	(array	of	handles)

Output	Parameters

outcount
number	of	completed	requests	(integer)

array_of_indices
array	of	indices	of	operations	that	completed	(array	of	integers)

array_of_statuses
array	of	status	objects	for	operations	that	completed	(array	of	Status).	May
be	MPI_STATUSES_IGNORE.

Notes

The	array	of	indicies	are	in	the	range	0	to	incount	-	1	for	C	and	in	the	range	1
to	incount	for	Fortran.

Null	requests	are	ignored;	if	all	requests	are	null,	then	the	routine	returns	with
outcount	set	to	MPI_UNDEFINED.

While	it	is	possible	to	list	a	request	handle	more	than	once	in	the
array_of_requests,	such	an	action	is	considered	erroneous	and	may	cause	the
program	to	unexecpectedly	terminate	or	produce	incorrect	results.

MPI_Waitsome	provides	an	interface	much	like	the	Unix	select	or	poll	calls
and,	in	a	high	qualilty	implementation,	indicates	all	of	the	requests	that	have
completed	when	MPI_Waitsome	is	called.	However,	MPI_Waitsome	only
guarantees	that	at	least	one	request	has	completed;	there	is	no	guarantee	that	all
completed	requests	will	be	returned,	or	that	the	entries	in	array_of_indices	will
be	in	increasing	order.	Also,	requests	that	are	completed	while	MPI_Waitsome	is
executing	may	or	may	not	be	returned,	depending	on	the	timing	of	the
completion	of	the	message.

Notes	on	the	MPI_Status	argument

The	MPI_ERROR	field	of	the	status	return	is	only	set	if	the	return	from	the	MPI
routine	is	MPI_ERR_IN_STATUS.	That	error	class	is	only	returned	by	the	routines
that	take	an	array	of	status	arguments	(MPI_Testall,	MPI_Testsome,
MPI_Waitall,	and	MPI_Waitsome).	In	all	other	cases,	the	value	of	the	MPI_ERROR
field	in	the	status	is	unchanged.	See	section	3.2.5	in	the	MPI-1.1	specification
for	the	exact	text.

For	send	operations,	the	only	use	of	status	is	for	MPI_Test_cancelled	or	in	the
case	that	there	is	an	error	in	one	of	the	four	routines	that	may	return	the	error
class	MPI_ERR_IN_STATUS,	in	which	case	the	MPI_ERROR	field	of	status	will	be
set.	In	that	case,	the	value	will	be	set	to	MPI_SUCCESS	for	any	send	or	receive
operation	that	completed	successfully,	or	MPI_ERR_PENDING	for	any	operation
which	has	neither	failed	nor	completed.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_REQUEST
Invalid	MPI_Request.	Either	null	or,	in	the	case	of	a	MPI_Start	or
MPI_Startall,	not	a	persistent	request.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_IN_STATUS
The	actual	error	value	is	in	the	MPI_Status	argument.	This	error	class	is
returned	only	from	the	multiple-completion	routines	(MPI_Testall,
MPI_Testany,	MPI_Testsome,	MPI_Waitall,	MPI_Waitany,	and
MPI_Waitsome).	The	field	MPI_ERROR	in	the	status	argument	contains	the
error	value	or	MPI_SUCCESS	(no	error	and	complete)	or	MPI_ERR_PENDING	to
indicate	that	the	request	has	not	completed.

The	MPI	Standard	does	not	specify	what	the	result	of	the	multiple	completion
routines	is	when	an	error	occurs.	For	example,	in	an	MPI_WAITALL,	does	the
routine	wait	for	all	requests	to	either	fail	or	complete,	or	does	it	return
immediately	(with	the	MPI	definition	of	immediately,	which	means	independent
of	actions	of	other	MPI	processes)?	MPICH	has	chosen	to	make	the	return

immediate	(alternately,	local	in	MPI	terms),	and	to	use	the	error	class
MPI_ERR_PENDING	(introduced	in	MPI	1.1)	to	indicate	which	requests	have	not
completed.	In	most	cases,	only	one	request	with	an	error	will	be	detected	in	each
call	to	an	MPI	routine	that	tests	multiple	requests.	The	requests	that	have	not
been	processed	(because	an	error	occured	in	one	of	the	requests)	will	have	their
MPI_ERROR	field	marked	with	MPI_ERR_PENDING.

Location:waitsome.c

MPI_Win_call_errhandler
Call	the	error	handler	installed	on	a	window	object

Synopsis
int	MPI_Win_call_errhandler(MPI_Win	win,	int	errorcode)

Input	Parameters

win
window	with	error	handler	(handle)

errorcode
error	code	(integer)

Note

Assuming	the	input	parameters	are	valid,	when	the	error	handler	is	set	to
MPI_ERRORS_RETURN,	this	routine	will	always	return	MPI_SUCCESS.

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

Location:win_call_errhandler.c

MPI_Win_complete
Completes	an	RMA	operations	begun	after	an	MPI_Win_start.

Synopsis
int	MPI_Win_complete(MPI_Win	win)

Input	Parameter

win
window	object	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_complete.c

MPI_Win_create
Create	an	MPI	Window	object	for	one-sided	communication

Synopsis
int	MPI_Win_create(void	*base,	MPI_Aint	size,	int	disp_unit,	MPI_Info	info,	

																		MPI_Comm	comm,	MPI_Win	*win)

Input	Parameters

base
initial	address	of	window	(choice)

size
size	of	window	in	bytes	(nonnegative	integer)

disp_unit
local	unit	size	for	displacements,	in	bytes	(positive	integer)

info
info	argument	(handle)

comm
communicator	(handle)

Output	Parameter

win
window	object	returned	by	the	call	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_INFO
Invalid	Info

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_SIZE

Location:win_create.c

MPI_Win_create_errhandler
Create	an	error	handler	for	use	with	MPI	window	objects

Synopsis
int	MPI_Win_create_errhandler(MPI_Win_errhandler_fn	*function,	

																												MPI_Errhandler	*errhandler)

Input	Parameter

function
user	defined	error	handling	procedure	(function)

Output	Parameter

errhandler
MPI	error	handler	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_create_errhandler.c

MPI_Win_create_keyval
Create	an	attribute	keyval	for	MPI	window	objects

Synopsis
int	MPI_Win_create_keyval(MPI_Win_copy_attr_function	*win_copy_attr_fn,	

																								MPI_Win_delete_attr_function	*win_delete_attr_fn,	

																								int	*win_keyval,	void	*extra_state)

Input	Parameters

win_copy_attr_fn
copy	callback	function	for	win_keyval	(function)

win_delete_attr_fn
delete	callback	function	for	win_keyval	(function)

extra_state
extra	state	for	callback	functions

Output	Parameter

win_keyval
key	value	for	future	access	(integer)

Notes

Default	copy	and	delete	functions	are	available.	These	are

MPI_WIN_NULL_COPY_FN
empty	copy	function

MPI_WIN_NULL_DELETE_FN
empty	delete	function

MPI_WIN_DUP_FN
simple	dup	function

Return	value	from	attribute	callbacks

The	MPI-2	versions	of	the	attribute	callbacks	should	return	either	MPI_SUCCESS
on	success	or	a	valid	MPI	error	code	or	class	on	failure.	The	MPI	standard	is
ambiguous	on	this	point,	but	as	MPI-2	provides	the	routines
MPI_Add_error_class	and	MPI_Add_error_code	that	allow	the	user	to	define
and	use	MPI	error	codes	and	classes.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_create_keyval.c

MPI_Win_delete_attr
Deletes	an	attribute	value	associated	with	a	key	on	a	datatype

Synopsis
int	MPI_Win_delete_attr(MPI_Win	win,	int	win_keyval)

Input	Parameters

win
window	from	which	the	attribute	is	deleted	(handle)

win_keyval
key	value	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_KEYVAL
Invalid	keyval

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_delete_attr.c

MPI_Win_fence
Perform	an	MPI	fence	synchronization	on	a	MPI	window

Synopsis
int	MPI_Win_fence(int	assert,	MPI_Win	win)

Input	Parameters

assert
program	assertion	(integer)

win
window	object	(handle)

Notes

The	assert	argument	is	used	to	indicate	special	conditions	for	the	fence	that	an
implementation	may	use	to	optimize	the	MPI_Win_fence	operation.	The	value
zero	is	always	correct.	Other	assertion	values	may	be	or'ed	together.	Assertions
that	are	valid	for	MPI_Win_fence	are:

MPI_MODE_NOSTORE
the	local	window	was	not	updated	by	local	stores	(or	local	get	or	receive
calls)	since	last	synchronization.

MPI_MODE_NOPUT
the	local	window	will	not	be	updated	by	put	or	accumulate	calls	after	the
fence	call,	until	the	ensuing	(fence)	synchronization.

MPI_MODE_NOPRECEDE
the	fence	does	not	complete	any	sequence	of	locally	issued	RMA	calls.	If
this	assertion	is	given	by	any	process	in	the	window	group,	then	it	must	be
given	by	all	processes	in	the	group.

MPI_MODE_NOSUCCEED
the	fence	does	not	start	any	sequence	of	locally	issued	RMA	calls.	If	the
assertion	is	given	by	any	process	in	the	window	group,	then	it	must	be
given	by	all	processes	in	the	group.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_WIN
Invalid	MPI	window	object

Location:win_fence.c

MPI_Win_free
Free	an	MPI	RMA	window

Synopsis
int	MPI_Win_free(MPI_Win	*win)

Input	Parameter

win
window	object	(handle)

Notes

If	successfully	freed,	win	is	set	to	MPI_WIN_NULL.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_free.c

MPI_Win_free_keyval
Frees	an	attribute	key	for	MPI	RMA	windows

Synopsis
int	MPI_Win_free_keyval(int	*win_keyval)

Input	Parameter

win_keyval
key	value	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_KEYVAL
Invalid	keyval

Location:win_free_keyval.c

MPI_Win_get_attr
Get	attribute	cached	on	an	MPI	window	object

Synopsis
int	MPI_Win_get_attr(MPI_Win	win,	int	win_keyval,	void	*attribute_val,	

																				int	*flag)

Input	Parameters

win
window	to	which	the	attribute	is	attached	(handle)

win_keyval
key	value	(integer)

Output	Parameters

attribute_val
attribute	value,	unless	flag	is	false

flag
false	if	no	attribute	is	associated	with	the	key	(logical)

Notes

The	following	attributes	are	predefined	for	all	MPI	Window	objects:

MPI_WIN_BASE
window	base	address.

MPI_WIN_SIZE
window	size,	in	bytes.

MPI_WIN_DISP_UNIT
displacement	unit	associated	with	the	window.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_KEYVAL
Invalid	keyval

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_get_attr.c

MPI_Win_get_errhandler
Get	the	error	handler	for	the	MPI	RMA	window

Synopsis
int	MPI_Win_get_errhandler(MPI_Win	win,	MPI_Errhandler	*errhandler)

Input	Parameter

win
window	(handle)

Output	Parameter

errhandler
error	handler	currently	associated	with	window	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_get_errhandler.c

MPI_Win_get_group
Get	the	MPI	Group	of	the	window	object

Synopsis
int	MPI_Win_get_group(MPI_Win	win,	MPI_Group	*group)

Input	Parameter

win
window	object	(handle)

Output	Parameter

group
group	of	processes	which	share	access	to	the	window	(handle)

Notes

The	group	is	a	duplicate	of	the	group	from	the	communicator	used	to	create	the
MPI	window,	and	should	be	freed	with	MPI_Group_free	when	it	is	no	longer
needed.	This	group	can	be	used	to	form	the	group	of	neighbors	for	the	routines
MPI_Win_post	and	MPI_Win_start.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_get_group.c

MPI_Win_get_name
Get	the	print	name	associated	with	the	MPI	RMA	window

Synopsis
int	MPI_Win_get_name(MPI_Win	win,	char	*win_name,	int	*resultlen)

Input	Parameter

win
window	whose	name	is	to	be	returned	(handle)

Output	Parameters

win_name
the	name	previously	stored	on	the	window,	or	a	empty	string	if	no	such
name	exists	(string)

resultlen
length	of	returned	name	(integer)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:win_get_name.c

MPI_Win_lock
Begin	an	RMA	access	epoch	at	the	target	process.

Synopsis
int	MPI_Win_lock(int	lock_type,	int	rank,	int	assert,	MPI_Win	win)

Input	Parameters

lock_type
Indicates	whether	other	processes	may	access	the	target	window	at	the	same
time	(if	MPI_LOCK_SHARED)	or	not	(MPI_LOCK_EXCLUSIVE)

rank
rank	of	locked	window	(nonnegative	integer)

assert
Used	to	optimize	this	call;	zero	may	be	used	as	a	default.	See	notes.
(integer)

win
window	object	(handle)

Notes

The	name	of	this	routine	is	misleading.	In	particular,	this	routine	need	not	block,
except	when	the	target	process	is	the	calling	process.

Implementations	may	restrict	the	use	of	RMA	communication	that	is
synchronized	by	lock	calls	to	windows	in	memory	allocated	by	MPI_Alloc_mem.
Locks	can	be	used	portably	only	in	such	memory.

The	assert	argument	is	used	to	indicate	special	conditions	for	the	fence	that	an
implementation	may	use	to	optimize	the	MPI_Win_lock	operation.	The	value
zero	is	always	correct.	Other	assertion	values	may	be	or'ed	together.	Assertions
that	are	valid	for	MPI_Win_lock	are:

MPI_MODE_NOCHECK
no	other	process	holds,	or	will	attempt	to	acquire	a	conflicting	lock,	while
the	caller	holds	the	window	lock.	This	is	useful	when	mutual	exclusion	is
achieved	by	other	means,	but	the	coherence	operations	that	may	be	attached
to	the	lock	and	unlock	calls	are	still	required.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_lock.c

MPI_Win_post
Start	an	RMA	exposure	epoch

Synopsis
int	MPI_Win_post(MPI_Group	group,	int	assert,	MPI_Win	win)

Input	parameters

group
group	of	origin	processes	(handle)

assert
Used	to	optimize	this	call;	zero	may	be	used	as	a	default.	See	notes.
(integer)

win
window	object	(handle)

Notes

The	assert	argument	is	used	to	indicate	special	conditions	for	the	fence	that	an
implementation	may	use	to	optimize	the	MPI_Win_post	operation.	The	value
zero	is	always	correct.	Other	assertion	values	may	be	or'ed	together.	Assertions
that	are	valid	for	MPI_Win_post	are:

MPI_MODE_NOCHECK
the	matching	calls	to	MPI_WIN_START	have	not	yet	occurred	on	any	origin
processes	when	the	call	to	MPI_WIN_POST	is	made.	The	nocheck	option	can
be	specified	by	a	post	call	if	and	only	if	it	is	specified	by	each	matching
start	call.

MPI_MODE_NOSTORE
the	local	window	was	not	updated	by	local	stores	(or	local	get	or	receive
calls)	since	last	synchronization.	This	may	avoid	the	need	for	cache
synchronization	at	the	post	call.

MPI_MODE_NOPUT
the	local	window	will	not	be	updated	by	put	or	accumulate	calls	after	the
post	call,	until	the	ensuing	(wait)	synchronization.	This	may	avoid	the	need
for	cache	synchronization	at	the	wait	call.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

Location:win_post.c

MPI_Win_set_attr
Stores	attribute	value	associated	with	a	key

Synopsis
int	MPI_Win_set_attr(MPI_Win	win,	int	win_keyval,	void	*attribute_val)

Input	Parameters

win
MPI	window	object	to	which	attribute	will	be	attached	(handle)

keyval
key	value,	as	returned	by	MPI_Win_create_keyval	(integer)

attribute_val
attribute	value

Notes

The	type	of	the	attribute	value	depends	on	whether	C	or	Fortran	is	being	used.	In
C,	an	attribute	value	is	a	pointer	(void	*);	in	Fortran,	it	is	an	address-sized
integer.

If	an	attribute	is	already	present,	the	delete	function	(specified	when	the
corresponding	keyval	was	created)	will	be	called.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_KEYVAL
Invalid	keyval

Location:win_set_attr.c

MPI_Win_set_errhandler
Set	window	error	handler

Synopsis
int	MPI_Win_set_errhandler(MPI_Win	win,	MPI_Errhandler	errhandler)

Input	Parameters

win
window	(handle)

errhandler
new	error	handler	for	window	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread	and	interrupt	safe	only	if	no	MPI	routine	that	updates	or
frees	the	same	MPI	object	may	be	called	concurrently	with	this	routine.

The	MPI	standard	defined	a	thread-safe	interface	but	this	does	not	mean	that	all
routines	may	be	called	without	any	thread	locks.	For	example,	two	threads	must
not	attempt	to	change	the	contents	of	the	same	MPI_Info	object	concurrently.
The	user	is	responsible	in	this	case	for	using	some	mechanism,	such	as	thread
locks,	to	ensure	that	only	one	thread	at	a	time	makes	use	of	this	routine.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

Location:win_set_errhandler.c

MPI_Win_set_name
Set	the	print	name	for	an	MPI	RMA	window

Synopsis
int	MPI_Win_set_name(MPI_Win	win,	char	*win_name)

Input	Parameters

win
window	whose	identifier	is	to	be	set	(handle)

win_name
the	character	string	which	is	remembered	as	the	name	(string)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

Location:win_set_name.c

MPI_Win_start
Start	an	RMA	access	epoch	for	MPI

Synopsis
int	MPI_Win_start(MPI_Group	group,	int	assert,	MPI_Win	win)

Input	Parameters

group
group	of	target	processes	(handle)

assert
Used	to	optimize	this	call;	zero	may	be	used	as	a	default.	See	notes.
(integer)

win
window	object	(handle)

Notes

The	assert	argument	is	used	to	indicate	special	conditions	for	the	fence	that	an
implementation	may	use	to	optimize	the	MPI_Win_start	operation.	The	value
zero	is	always	correct.	Other	assertion	values	may	be	or'ed	together.	Assertions
tha	are	valid	for	MPI_Win_start	are:

MPI_MODE_NOCHECK
the	matching	calls	to	MPI_WIN_POST	have	already	completed	on	all	target
processes	when	the	call	to	MPI_WIN_START	is	made.	The	nocheck	option	can
be	specified	in	a	start	call	if	and	only	if	it	is	specified	in	each	matching	post
call.	This	is	similar	to	the	optimization	of	ready-send	that	may	save	a
handshake	when	the	handshake	is	implicit	in	the	code.	(However,	ready-
send	is	matched	by	a	regular	receive,	whereas	both	start	and	post	must
specify	the	nocheck	option.)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_start.c

MPI_Win_test
Test	whether	an	RMA	exposure	epoch	has	completed

Synopsis
int	MPI_Win_test(MPI_Win	win,	int	*flag)

Input	Parameter

win
window	object	(handle)

Output	Parameter

flag
success	flag	(logical)

Notes

This	is	the	nonblocking	version	of	MPI_Win_wait.

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

MPI_ERR_ARG
Invalid	argument.	Some	argument	is	invalid	and	is	not	identified	by	a
specific	error	class	(e.g.,	MPI_ERR_RANK).

See	Also

MPI_Win_wait,	MPI_Win_post	

Location:win_test.c

MPI_Win_unlock
Completes	an	RMA	access	epoch	at	the	target	process

Synopsis
int	MPI_Win_unlock(int	rank,	MPI_Win	win)

Input	Parameters

rank
rank	of	window	(nonnegative	integer)

win
window	object	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_RANK
Invalid	source	or	destination	rank.	Ranks	must	be	between	zero	and	the	size
of	the	communicator	minus	one;	ranks	in	a	receive	(MPI_Recv,	MPI_Irecv,
MPI_Sendrecv,	etc.)	may	also	be	MPI_ANY_SOURCE.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

See	Also

MPI_Win_lock	

Location:win_unlock.c

MPI_Win_wait
Completes	an	RMA	exposure	epoch	begun	with	MPI_Win_post

Synopsis
int	MPI_Win_wait(MPI_Win	win)

Input	Parameter

win
window	object	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_WIN
Invalid	MPI	window	object

MPI_ERR_OTHER
Other	error;	use	MPI_Error_string	to	get	more	information	about	this	error
code.

Location:win_wait.c

MPI_Wtick
Returns	the	resolution	of	MPI_Wtime

Synopsis
double	MPI_Wtick(void)

Return	value

Time	in	seconds	of	resolution	of	MPI_Wtime

Notes	for	Fortran

This	is	a	function,	declared	as	DOUBLE	PRECISION	MPI_WTICK()	in	Fortran.

See	Also

also:	MPI_Wtime,	MPI_Comm_get_attr,	MPI_Attr_get	

Location:wtick.c

mpicc
Compiles	and	links	MPI	programs	written	in	C

Description

This	command	can	be	used	to	compile	and	link	MPI	programs	written	in	C.	It
provides	the	options	and	any	special	libraries	that	are	needed	to	compile	and	link
MPI	programs.

It	is	important	to	use	this	command,	particularly	when	linking	programs,	as	it
provides	the	necessary	libraries.

Command	line	arguments

-show
Show	the	commands	that	would	be	used	without	runnning	them

-help
Give	short	help

-cc=name
Use	compiler	name	instead	of	the	default	choice.	Use	this	only	if	the
compiler	is	compatible	with	the	MPICH	library	(see	below)

-config=name
Load	a	configuration	file	for	a	particular	compiler.	This	allows	a	single
mpicc	command	to	be	used	with	multiple	compilers.

-compile_info
Show	the	steps	for	compiling	a	program.	This	option	can	be	used	to	see
what	options	and	include	paths	are	used	by	mpicc.

-link_info
Show	the	steps	for	linking	a	program.	This	optoin	can	be	used	to	see	what
options	and	libraries	are	used	by	mpicc.

-profile=name
Use	the	MPI	profiling	given	by	name.	See	below	for	details

-mpe=name
Use	an	MPE	profiling	library.	The	behavior	is	similar	to	using	-
profile=mpe_name.conf.

-echo
Show	exactly	what	this	program	is	doing.	This	option	should	normally	not
be	used.

others
are	passed	to	the	compiler	or	linker.	For	example,	-c	causes	files	to	be
compiled,	-g	selects	compilation	with	debugging	on	most	systems,	and	-o
name	causes	linking	with	the	output	executable	given	the	name	name.

Environment	Variables

The	environment	variable	MPICH_CC	may	be	used	to	select	different	C	compiler
and	linker.	Note	that	since	MPICH	is	built	with	a	particular	C	and	Fortran
compiler,	changing	the	compilers	used	can	cause	problems.	Use	this	only	if	you
could	intermix	code	compiled	with	the	different	compilers.

The	environment	variable	MPICC_PROFILE	specifies	a	profile	library	and	has	the
same	effect	as	if	-profile=$MPICC_PROFILE	were	used	as	an	argument	to	mpicc.
See	the	discussion	of	-profile	below	for	more	details.

Compatible	Compilers

The	MPI	library	may	be	used	with	any	compiler	that	uses	the	same	lengths	for
basic	data	objects	(such	as	long	double)	and	that	uses	compatible	run-time
libraries.	On	many	systems,	the	various	compilers	are	compatible	and	may	be
used	interchangably.	There	are	exceptions;	if	you	use	the	MPICH_CC	environment
variable	or	the	-cc=name	command-line	argument	to	override	the	choice	of
compiler	and	encounter	problems,	try	reconfiguring	MPICH2	with	the	new
compiler	and	installing	MPICH2	in	a	separate	location.	See	the	installation
manual	for	more	details.

Examples

To	compile	a	single	file	foo.c,	use

			mpicc	-c	foo.c	

To	link	the	output	and	make	an	executable,	use

			mpicc	-o	foo	foo.o

Combining	compilation	and	linking	in	a	single	command

			mpicc	-o	foo	foo.c

is	a	convenient	way	to	build	simple	programs.

Selecting	a	Profiling	Library

The	-profile=name	argument	allows	you	to	specify	an	MPI	profiling	library	to
be	used.	name	can	have	two	forms:

A	library	in	the	same	directory	as	the	MPI	library	
The	name	of	a	profile	configuration	file	

If	name	is	a	library,	then	this	library	is	included	before	the	MPI	library.	This
allows	the	simple	use	of	libraries	that	make	use	of	the	MPI	profiling	interface
and	that	are	installed	in	the	same	directory	as	the	MPI	library.

If	name.conf	is	the	name	of	a	file	in	the	sysconfdir	directory,	then	this	is	read
and	may	define	the	following	variables:

PROFILE_PRELIB
Libraries	(and	paths)	to	include	before	the	MPI	library

PROFILE_POSTLIB
Libraries	to	include	after	the	MPI	library

PROFILE_INCPATHS
C	preprocessor	arguments	for	any	include	files	For	example,	to	add
/usr/local/myprof/include	to	the	include	path	and	the	library
libmyprof.a	in	/usr/local/myprof/lib	to	the	link	step,	you	could	create
the	file	myprof.conf	with	the	lines

				PROFILE_PRELIB="-L/usr/local/myprof/lib	-lmyprof"

				PROFILE_INCPATHS="-I/usr/local/myprof/include"

and	place	it	in	the	sysconfdir	directory	(this	directory	is	set	at	configure	time
when	MPICH	is	built).	Then	using	the	command-line	argument	-
profile=myprof	will	cause	these	definitions	to	be	added	to	the	relevant	compile
commands.

See	Also

mpif77,	mpicxx,	mpif90,	mpiexec	

Location:mpicc.txt

mpicxx
Compiles	and	links	MPI	programs	written	in	C++

Description

This	command	can	be	used	to	compile	and	link	MPI	programs	written	in	C++.	It
provides	the	options	and	any	special	libraries	that	are	needed	to	compile	and	link
MPI	programs.

It	is	important	to	use	this	command,	particularly	when	linking	programs,	as	it
provides	the	necessary	libraries.

Command	line	arguments

-show
Show	the	commands	that	would	be	used	without	runnning	them

-help
Give	short	help

-cxx=name
Use	compiler	name	instead	of	the	default	choice.	Use	this	only	if	the
compiler	is	compatible	with	the	MPICH	library	(see	below)

-config=name
Load	a	configuration	file	for	a	particular	compiler.	This	allows	a	single
mpicxx	command	to	be	used	with	multiple	compilers.

-compile_info
Show	the	steps	for	compiling	a	program.	This	option	can	be	used	to	see
what	options	and	include	paths	are	used	by	mpicxx.

-link_info
Show	the	steps	for	linking	a	program.	This	optoin	can	be	used	to	see	what
options	and	libraries	are	used	by	mpicxx.

-profile=name
Use	the	MPI	profiling	given	by	name.	See	below	for	details

-mpe=name
Use	an	MPE	profiling	library.	The	behavior	is	similar	to	using	-
profile=mpe_name.conf.

-echo
Show	exactly	what	this	program	is	doing.	This	option	should	normally	not
be	used.

others
are	passed	to	the	compiler	or	linker.	For	example,	-c	causes	files	to	be
compiled,	-g	selects	compilation	with	debugging	on	most	systems,	and	-o
name	causes	linking	with	the	output	executable	given	the	name	name.

Environment	Variables

The	environment	variables	MPICH_CXX	may	be	used	to	select	different	C++
compiler	and	linker.	Note	that	since	MPICH	is	built	with	a	particular	C	and
Fortran	compiler,	changing	the	compilers	used	can	cause	problems.	Use	this	only
if	you	could	intermix	code	compiled	with	the	different	compilers.

The	environment	variable	MPICC_PROFILE	specifies	a	profile	library	and	has	the
same	effect	as	if	-profile=$MPICC_PROFILE	were	used	as	an	argument	to	mpicc.
See	the	discussion	of	-profile	below	for	more	details.

Compatible	Compilers

The	MPI	library	may	be	used	with	any	compiler	that	uses	the	same	lengths	for
basic	data	objects	(such	as	long	double)	and	that	uses	compatible	run-time
libraries.	On	many	systems,	the	various	compilers	are	compatible	and	may	be
used	interchangably.	There	are	exceptions;	if	you	use	the	MPICH_CXX
environment	variable	or	the	-cxx=name	command-line	argument	to	override	the
choice	of	compiler	and	encounter	problems,	try	reconfiguring	MPICH2	with	the
new	compiler,	and	installing	MPICH2	in	a	separate	location.	See	the	installation
manual	for	more	details.

Examples

To	compile	a	single	file	foo.c,	use

			mpicxx	-c	foo.cxx

To	link	the	output	and	make	an	executable,	use

			mpicxx	-o	foo	foo.o

Combining	compilation	and	linking	in	a	single	command

			mpicxx	-o	foo	foo.cxx

is	a	convenient	way	to	build	simple	programs.

Selecting	a	Profiling	Library

The	-profile=name	argument	allows	you	to	specify	an	MPI	profiling	library	to
be	used.	name	can	have	two	forms:

A	library	in	the	same	directory	as	the	MPI	library	
The	name	of	a	profile	configuration	file	

If	name	is	a	library,	then	this	library	is	included	before	the	MPI	library.	This
allows	the	simple	use	of	libraries	that	make	use	of	the	MPI	profiling	interface
and	that	are	installed	in	the	same	directory	as	the	MPI	library.

If	name.conf	is	the	name	of	a	file	in	the	sysconfdir	directory,	then	this	is	read
and	may	define	the	following	variables:

PROFILE_PRELIB
Libraries	(and	paths)	to	include	before	the	MPI	library

PROFILE_POSTLIB
Libraries	to	include	after	the	MPI	library

PROFILE_INCPATHS
C	preprocessor	arguments	for	any	include	files	For	example,	to	add
/usr/local/myprof/include	to	the	include	path	and	the	library
libmyprof.a	in	/usr/local/myprof/lib	to	the	link	step,	you	could	create
the	file	myprof.conf	with	the	lines

				PROFILE_PRELIB="-L/usr/local/myprof/lib	-lmyprof"

				PROFILE_INCPATHS="-I/usr/local/myprof/include"

and	place	it	in	the	sysconfdir	directory	(this	directory	is	set	at	configure	time
when	MPICH	is	built).	Then	using	the	command-line	argument	-
profile=myprof	will	cause	these	definitions	to	be	added	to	the	relevant	compile
commands.

See	Also

mpif77,	mpicc,	mpif90,	mpiexec	

Location:mpicxx.txt

mpiexec
Run	an	MPI	program

Synopsis
				mpiexec	args	executable	pgmargs	[:	args	executable	pgmargs	...]

where	args	are	command	line	arguments	for	mpiexec	(see	below),	executable
is	the	name	of	an	executable	MPI	program,	and	pgmargs	are	command	line
arguments	for	the	executable.	Multiple	executables	can	be	specified	by	using	the
colon	notation	(for	MPMD	-	Multiple	Program	Multiple	Data	applications).	For
example,	the	following	command	will	run	the	MPI	program	a.out	on	4
processes:

				mpiexec	-n	4	a.out

The	MPI	standard	specifies	the	following	arguments	and	their	meanings:

-n	<np>
Specify	the	number	of	processes	to	use

-host	<hostname>
Name	of	host	on	which	to	run	processes

-arch	<architecture	name>
Pick	hosts	with	this	architecture	type

-wdir	<working	directory>
cd	to	this	one	before	running	executable

-path	<pathlist>
use	this	to	find	the	executable

-soft	<triplets>
comma	separated	triplets	that	specify	requested	numbers	of	processes	(see
the	MPI-2	specification	for	more	details)

-file	<name>
implementation-defined	specification	file

-configfile	<name>
file	containing	specifications	of	host/program,	one	per	line,	with	#	as	a
comment	indicator,	e.g.,	the	usual	mpiexec	input,	but	with	":"	replaced	with
a	newline.	That	is,	the	configfile	contains	lines	with	-soft,	-n	etc.

Additional	arguments	that	are	specific	to	the	MPICH2	implementation	are
discussed	below.

Note	that	not	all	of	these	parameters	are	meaningful	for	all	systems.	For

example,	the	gforker	version	of	mpiexec	creates	all	processes	on	the	same
system	on	which	it	is	running;	in	that	case,	the	-arch	and	-host	options	are
ignored.

The	colon	character	(:)	may	be	used	to	separate	different	executables	for	MPMD
(multiple	program	multiple	data)	programming.	For	example,	to	run	the	program
ocean	on	4	processes	and	air	on	8	processes,	use:

				mpiexec	-n	4	ocean	:	-n	8	air

MPICH2-Specific	Arguments

Many	of	the	implementations	of	process	managers	in	MPICH2	support	the
following	arguments	to	mpiexec:

-np	<num>
A	synonym	for	the	standard	-n	argument

-env	<name>	<value>
Set	the	environment	variable	<name>	to	<value>	for	the	processes	being	run
by	mpiexec

-envnone
Pass	no	environment	variables	(other	than	ones	specified	with	other	-env	or
-genv	arguments)	to	the	processes	being	run	by	mpiexec.	By	default,	all
environment	variables	are	provided	to	each	MPI	process	(rationale:
principle	of	least	surprise	for	the	user)

-envlist	<list>
Pass	the	listed	environment	variables	(names	separated	by	commas),	with
their	current	values,	to	the	processes	being	run	by	mpiexec.

-genv	<name>	<value>
The	-genv	options	have	the	same	meaning	as	their	corresponding	-env
version,	except	they	apply	to	all	executables,	not	just	the	current	executable
(in	the	case	that	the	colon	syntax	is	used	to	specify	multiple	execuables).

-genvnone
Like	-envnone,	but	for	all	executables

-genvlist	<list>
Like	-envlist,	but	for	all	executables

-usize	<n>
Specify	the	value	returned	for	the	value	of	the	attribute
MPI_UNIVERSE_SIZE.

-l
Label	standard	out	and	standard	error	(stdout	and	stderr)	with	the	rank	of
the	process

-maxtime	<n>
Set	a	timelimit	of	<n>	seconds.

-exitinfo
Provide	more	information	on	the	reason	each	process	exited	if	there	is	an
abnormal	exit

Environment	variables	for	mpiexec

The	following	environment	variables	are	understood	by	some	versions	of
mpiexec.	The	command	line	arguments	have	priority	over	these;	that	is,	if	both
the	environment	variable	and	command	line	argument	are	used,	the	value
specified	by	the	command	line	argument	is	used.

MPIEXEC_TIMEOUT
Maximum	running	time	in	seconds.	mpiexec	will	terminate	MPI	programs
that	take	longer	than	the	value	specified	by	MPIEXEC_TIMEOUT.

MPIEXEC_UNIVERSE_SIZE
Set	the	universe	size

MPIEXEC_PORT_RANGE
Set	the	range	of	ports	that	mpiexec	will	use	in	communicating	with	the
processes	that	it	starts.	The	format	of	this	is	<low>:<high>.	For	example,	to
specify	any	port	between	10000	and	10100,	use	10000:10100.

MPICH_PORT_RANGE
Has	the	same	meaning	as	MPIEXEC_PORT_RANGE	and	is	used	if
MPIEXEC_PORT_RANGE	is	not	set.

MPIEXEC_PREFIX_DEFAULT
If	this	environment	variable	is	set,	output	to	standard	output	is	prefixed	by
the	rank	in	MPI_COMM_WORLD	of	the	process	and	output	to	standard	error	is
prefixed	by	the	rank	and	the	text	(err);	both	are	followed	by	an	angle
bracket	(>).	If	this	variable	is	not	set,	there	is	no	prefix.

MPIEXEC_PREFIX_STDOUT
Set	the	prefix	used	for	lines	sent	to	standard	output.	A	%d	is	replaced	with
the	rank	in	MPI_COMM_WORLD;	a	%w	is	replaced	with	an	indication	of	which
MPI_COMM_WORLD	in	MPI	jobs	that	involve	multiple	MPI_COMM_WORLDs	(e.g.,
ones	that	use	MPI_Comm_spawn	or	MPI_Comm_connect).

MPIEXEC_PREFIX_STDERR
Like	MPIEXEC_PREFIX_STDOUT,	but	for	standard	error.

Return	Status

mpiexec	returns	the	maximum	of	the	exit	status	values	of	all	of	the	processes
created	by	mpiexec.

Location:mpiexec.txt

mpif77
Compiles	and	links	MPI	programs	written	in	Fortran	77

Description

This	command	can	be	used	to	compile	and	link	MPI	programs	written	in	Fortran.
It	provides	the	options	and	any	special	libraries	that	are	needed	to	compile	and
link	MPI	programs.

It	is	important	to	use	this	command,	particularly	when	linking	programs,	as	it
provides	the	necessary	libraries.

Command	line	arguments

-show
Show	the	commands	that	would	be	used	without	runnning	them

-help
Give	short	help

-f77=name
Use	compiler	name	instead	of	the	default	choice.	Use	this	only	if	the
compiler	is	compatible	with	the	MPICH	library	(see	below)

-config=name
Load	a	configuration	file	for	a	particular	compiler.	This	allows	a	single
mpif77	command	to	be	used	with	multiple	compilers.

-compile_info
Show	the	steps	for	compiling	a	program.	This	option	can	be	used	to	see
what	options	and	include	paths	are	used	by	mpif77.

-link_info
Show	the	steps	for	linking	a	program.	This	optoin	can	be	used	to	see	what
options	and	libraries	are	used	by	mpif77.

-profile=name
Use	the	MPI	profiling	given	by	name.	See	below	for	details

-mpe=name
Use	an	MPE	profiling	library.	The	behavior	is	similar	to	using	-
profile=mpe_name.conf.

-echo
Show	exactly	what	this	program	is	doing.	This	option	should	normally	not
be	used.

others
are	passed	to	the	compiler	or	linker.	For	example,	-c	causes	files	to	be
compiled,	-g	selects	compilation	with	debugging	on	most	systems,	and	-o
name	causes	linking	with	the	output	executable	given	the	name	name.

Environment	Variables

The	environment	variables	MPICH_F77	may	be	used	to	select	different	Fortran
compiler	and	linker.	Note	that	since	MPICH	is	built	with	a	particular	C	and
Fortran	compiler,	change	the	compilers	used	can	cause	problems.	Use	this	only	if
you	could	intermix	code	compiled	with	the	different	compilers.

Compatible	Compilers

The	MPI	library	may	be	used	with	any	compiler	that	uses	the	same	lengths	for
basic	data	objects	(such	as	long	double)	and	that	uses	compatible	run-time
libraries.	On	many	systems,	the	various	compilers	are	compatible	and	may	be
used	interchangably.	There	are	exceptions;	if	you	use	the	MPICH_F77
environment	variable	or	the	-f77=name	command-line	argument	to	override	the
choice	of	compiler	and	encounter	problems,	try	reconfiguring	MPICH2	with	the
new	compiler	and	installing	MPICH2	in	a	separate	location.	See	the	installation
manual	for	more	details.

Examples

To	compile	a	single	file	foo.f,	use

			mpif77	-c	foo.f	

To	link	the	output	and	make	an	executable,	use

			mpif77	-o	foo	foo.o

Combining	compilation	and	linking	in	a	single	command

			mpif77	-o	foo	foo.f

is	a	convenient	way	to	build	simple	programs.

Selecting	a	Profiling	Library

The	-profile=name	argument	allows	you	to	specify	an	MPI	profiling	library	to
be	used.	name	can	have	two	forms:

A	library	in	the	same	directory	as	the	MPI	library	
The	name	of	a	profile	configuration	file	

If	name	is	a	library,	then	this	library	is	included	before	the	MPI	library.	This
allows	the	simple	use	of	libraries	that	make	use	of	the	MPI	profiling	interface
and	that	are	installed	in	the	same	directory	as	the	MPI	library.

If	name.conf	is	the	name	of	a	file	in	the	sysconfdir	directory,	then	this	is	read
and	may	define	the	following	variables:

PROFILE_PRELIB
Libraries	(and	paths)	to	include	before	the	MPI	library

PROFILE_POSTLIB
Libraries	to	include	after	the	MPI	library

PROFILE_INCPATHS
C	preprocessor	arguments	for	any	include	files	For	example,	to	add
/usr/local/myprof/include	to	the	include	path	and	the	library
libmyprof.a	in	/usr/local/myprof/lib	to	the	link	step,	you	could	create
the	file	myprof.conf	with	the	lines

				PROFILE_PRELIB="-L/usr/local/myprof/lib	-lmyprof"

				PROFILE_INCPATHS="-I/usr/local/myprof/include"

and	place	it	in	the	sysconfdir	directory	(this	directory	is	set	at	configure	time
when	MPICH	is	built).	Then	using	the	command-line	argument	-
profile=myprof	will	cause	these	definitions	to	be	added	to	the	relevant	compile
commands.

See	Also

mpicc,	mpicxx,	mpif90,	mpiexec	

Location:mpif77.txt

mpif90
Compiles	and	links	MPI	programs	written	in	Fortran	90

Description

This	command	can	be	used	to	compile	and	link	MPI	programs	written	in	Fortran.
It	provides	the	options	and	any	special	libraries	that	are	needed	to	compile	and
link	MPI	programs.

It	is	important	to	use	this	command,	particularly	when	linking	programs,	as	it
provides	the	necessary	libraries.

Command	line	arguments

-show
Show	the	commands	that	would	be	used	without	runnning	them

-help
Give	short	help

-f90=name
Use	compiler	name	instead	of	the	default	choice.	Use	this	only	if	the
compiler	is	compatible	with	the	MPICH	library	(see	below)

-config=name
Load	a	configuration	file	for	a	particular	compiler.	This	allows	a	single
mpif90	command	to	be	used	with	multiple	compilers.

-compile_info
Show	the	steps	for	compiling	a	program.	This	option	can	be	used	to	see
what	options	and	include	paths	are	used	by	mpif90.

-link_info
Show	the	steps	for	linking	a	program.	This	optoin	can	be	used	to	see	what
options	and	libraries	are	used	by	mpif90.

-profile=name
Use	the	MPI	profiling	given	by	name.	See	below	for	details

-mpe=name
Use	an	MPE	profiling	library.	The	behavior	is	similar	to	using	-
profile=mpe_name.conf.

-echo
Show	exactly	what	this	program	is	doing.	This	option	should	normally	not
be	used.

others
are	passed	to	the	compiler	or	linker.	For	example,	-c	causes	files	to	be
compiled,	-g	selects	compilation	with	debugging	on	most	systems,	and	-o
name	causes	linking	with	the	output	executable	given	the	name	name.

Environment	Variables

The	environment	variables	MPICH_F90	may	be	used	to	select	different	Fortran
compiler	and	linker.	Note	that	since	MPICH	is	built	with	a	particular	C	and
Fortran	compiler,	change	the	compilers	used	can	cause	problems.	Use	this	only	if
you	could	intermix	code	compiled	with	the	different	compilers.

Compatible	Compilers

The	MPI	library	may	be	used	with	any	compiler	that	uses	the	same	lengths	for
basic	data	objects	(such	as	long	double)	and	that	uses	compatible	run-time
libraries.	On	many	systems,	the	various	compilers	are	compatible	and	may	be
used	interchangably.	There	are	exceptions;	if	you	use	the	MPICH_F90
environment	variable	or	the	-f90=name	command-line	argument	to	override	the
choice	of	compiler	and	encounter	problems,	try	reconfiguring	MPICH2	with	the
new	compiler	and	installing	MPICH2	in	a	separate	location.	See	the	installation
manual	for	more	details.

Examples

To	compile	a	single	file	foo.f,	use

			mpif90	-c	foo.f	

To	link	the	output	and	make	an	executable,	use

			mpif90	-o	foo	foo.o

Combining	compilation	and	linking	in	a	single	command

			mpif90	-o	foo	foo.f

is	a	convenient	way	to	build	simple	programs.

Selecting	a	Profiling	Library

The	-profile=name	argument	allows	you	to	specify	an	MPI	profiling	library	to
be	used.	name	can	have	two	forms:

A	library	in	the	same	directory	as	the	MPI	library	
The	name	of	a	profile	configuration	file	

If	name	is	a	library,	then	this	library	is	included	before	the	MPI	library.	This
allows	the	simple	use	of	libraries	that	make	use	of	the	MPI	profiling	interface
and	that	are	installed	in	the	same	directory	as	the	MPI	library.

If	name.conf	is	the	name	of	a	file	in	the	sysconfdir	directory,	then	this	is	read
and	may	define	the	following	variables:

PROFILE_PRELIB
Libraries	(and	paths)	to	include	before	the	MPI	library

PROFILE_POSTLIB
Libraries	to	include	after	the	MPI	library

PROFILE_INCPATHS
C	preprocessor	arguments	for	any	include	files	For	example,	to	add
/usr/local/myprof/include	to	the	include	path	and	the	library
libmyprof.a	in	/usr/local/myprof/lib	to	the	link	step,	you	could	create
the	file	myprof.conf	with	the	lines

				PROFILE_PRELIB="-L/usr/local/myprof/lib	-lmyprof"

				PROFILE_INCPATHS="-I/usr/local/myprof/include"

and	place	it	in	the	sysconfdir	directory	(this	directory	is	set	at	configure	time
when	MPICH	is	built).	Then	using	the	command-line	argument	-
profile=myprof	will	cause	these	definitions	to	be	added	to	the	relevant	compile
commands.

See	Also

mpicc,	mpicxx,	mpif90,	mpiexec	

Location:mpif90.txt

MPIX_Group_comm_create
Creates	a	new	communicator	from	a	group

Synopsis
int	MPIX_Group_comm_create(MPI_Comm	old_comm,	MPI_Group	group,	int	tag,	MPI_Comm	*	new_comm)

Input	Parameters

comm
communicator	(handle)

group
group,	which	is	a	subset	of	the	group	of	comm	(handle)

tag
tag	to	distinguish	group	creation	in	threaded	environments

Output	Parameter

new_comm
new	communicator	(handle)

Thread	and	Interrupt	Safety

This	routine	is	thread-safe.	This	means	that	this	routine	may	be	safely	used	by
multiple	threads	without	the	need	for	any	user-provided	thread	locks.	However,
the	routine	is	not	interrupt	safe.	Typically,	this	is	due	to	the	use	of	memory
allocation	routines	such	as	malloc	or	other	non-MPICH	runtime	routines	that
are	themselves	not	interrupt-safe.

Notes	for	Fortran

All	MPI	routines	in	Fortran	(except	for	MPI_WTIME	and	MPI_WTICK)	have	an
additional	argument	ierr	at	the	end	of	the	argument	list.	ierr	is	an	integer	and
has	the	same	meaning	as	the	return	value	of	the	routine	in	C.	In	Fortran,	MPI
routines	are	subroutines,	and	are	invoked	with	the	call	statement.

All	MPI	objects	(e.g.,	MPI_Datatype,	MPI_Comm)	are	of	type	INTEGER	in	Fortran.

Errors

All	MPI	routines	(except	MPI_Wtime	and	MPI_Wtick)	return	an	error	value;	C
routines	as	the	value	of	the	function	and	Fortran	routines	in	the	last	argument.
Before	the	value	is	returned,	the	current	MPI	error	handler	is	called.	By	default,
this	error	handler	aborts	the	MPI	job.	The	error	handler	may	be	changed	with
MPI_Comm_set_errhandler	(for	communicators),	MPI_File_set_errhandler
(for	files),	and	MPI_Win_set_errhandler	(for	RMA	windows).	The	MPI-1
routine	MPI_Errhandler_set	may	be	used	but	its	use	is	deprecated.	The
predefined	error	handler	MPI_ERRORS_RETURN	may	be	used	to	cause	error	values
to	be	returned.	Note	that	MPI	does	not	guarentee	that	an	MPI	program	can
continue	past	an	error;	however,	MPI	implementations	will	attempt	to	continue
whenever	possible.

MPI_SUCCESS
No	error;	MPI	routine	completed	successfully.

MPI_ERR_COMM
Invalid	communicator.	A	common	error	is	to	use	a	null	communicator	in	a
call	(not	even	allowed	in	MPI_Comm_rank).

MPI_ERR_GROUP
Null	or	invalid	group	passed	to	function.

Location:group_comm.c

欢迎使用	CHM	制作精灵

				“CHM	制作精灵”是一款将网页文件（Html文档）转化为CHM文件（已
编译的	HTML	帮助文件）和将CHM文件转化为网页文件的软件，即网
页“打包”和CHM文件“解包”（CHM文件反编译）；是集	HTML	Help
Workshop工程创建，目录、索引编写，工程编译和CHM文件反编译等多种
功能于一身的	CHM电子图书处理软件。与HTML	Help	Workshop	v4.74配合
使用制作出来的	Html	Help	文档会更见出色。欢迎使用	“CHM	制作精灵”来
制作更多	CHM电子图书！！！

　

软件开发背景：

1、CHM文件格式已在网上广为流传，被称为一种电子书籍格式。
其特点在于，它的每一个帮助页都是一个Web页，您可以像浏览网站一样
容易地阅读	HTML	帮助文件。HTML	帮助文件甚至支持	ActiveX,
JavaScrip,	VBScrip	和	Dll	等。HTML帮助文件类似资源管理器的窗口的浏
览方式，使用极其方便。另外，还具有管理文档方便、容量大、压缩比例
高等优点。

2、目前HTML	Help	Workshop	v4.74是制作chm唯一比较流行的工具，
但是，存在着效率低，动作简单重复等缺点；另外，网上也有一些制
作chm文档小软件，但是，它们多为共享软件，注册费少则人民币十几元
多则上百元，几乎没有免费的，至少我没有找到。

3、制作一种高效工具让电脑来完成这种简单重复的工作是必要的，
从工程文件的结构来看是可读的，所以说制作一种高效工具是可行的。

	

版本历程：

						2005	年	12	月	22	日推出	V1.18	版本
						☆修正了错误处理“工程文件名”含有空格的BUG
						☆修正了不能反编译“CHM文件名”含有空格的BUG

						2005	年	12	月	10	日推出	V1.1	版本

						☆首页不再是CHM制作精灵的关于文件
						☆首页换成了index.html,若不存在，则是第一个html文件
						☆修正了一个不规范html产生死锁的BUG
						☆可以自由更改CHM文件的标题
						☆增加了CHM文件的反编译功能

						2003	年	3	月	8	日推出	V1.0	版本
						☆HTML	Help	Workshop工程创建功能
						☆目录、索引编写功能
						☆工程编译功能

联系方式：

			作者：孙学勇

			下载1：http://www.skycn.com/soft/11261.html

			下载2：http://www.onlinedown.net/soft/7474.htm

			E-mail:sxy868@sohu.com

			QQ:	76429797

　

sxy868（孙学勇）	版权所有
Copyright	©	2002-2006
sxy868@sohu.com

	

http://www.skycn.com/soft/11261.html
http://www.onlinedown.net/soft/7474.htm
mailto:sxy868@sohu.com
mailto:sxy868@sohu.com

	关于CHM 制作精灵

