
MDDFS	Interface	Library
Help Contents	|	Index Next

Microchip	MDD	File	System	Interface	Library
Welcome	to	the	Microchip	Memory	Disk	Drive	File	System
Interface	Library!
The	MDDFS	Interface	Library	will	provide	an	easy	way	to	create
and	manipulate	files	on	removable	flash-based	media	devices.	

This	help	file	served	two	purposes.	The	first	is	to	be	a	guide	for
first-time	users	of	the	MDDFS	Interface	Library.	The	Getting
Started	section	begins	a	series	of	pages	to	help	you	become
familiar	with	the	library	and	configure	it	for	use	on	a	Microchip
development	board.	

The	second	purpose	is	to	serve	as	a	programmer's	reference
guide.	Many	significant	changes	have	been	made	to	the	stack
since	AN1045	was	first	published,	and	this	document	will	serve
as	a	more	up-to-date	guide	to	the	features	and	APIs	available	in
the	MDDFS	Interface	Library.

USB	Functionality
Note	that	the	source	code	package	and	help	file	for	this	library	do
not	include	USB	physical	layer	information.	For	more	information
about	using	the	USB	Host	stack	as	a	physical	layer,	please	visit	
Microchip's	USB	Development	Page	or	the	 AN1145:	Using	a

USB	Flash	Drive	with	an	Embedded	Host	page.

Updates
The	latest	version	of	the	Microchip	MDD	File	System	Interface
library	is	always	available	at	 http://www.microchip.com.	New
features	are	constantly	being	added,	so	check	there	periodically
for	updates	and	bug	fixes.

Thank	You!
We	appreciate	your	interest	in	the	Microchip	MDD	File	System

Interface	Library,	and	thank	you	for	choosing	Microchip	products!

Topics

Name	 Description	

Getting	Help	 Where	to	go	for	more	help	

Microchip	MDD	File	System	Interface	Library

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Getting	Help
The	MDDFS	Interface	Library	is	supported	through	Microchip's
standard	support	channels.	If	you	encounter	difficulties,	you	may
submit	ticket	requests	at	 http://support.microchip.com.

Microchip	MDD	File	System	Interface	Library	>	Getting	Help

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Next

Getting	Started
This	section	will	walk	through	the	initial	configuration	of	the	stack
and	compatible	Microchip	development	hardware.	

To	begin,	start	by	familiarizing	yourself	with	the	Directory
Structure.

Topics

Name	 Description	

Terminology	 A	list	of	terms	that	may	appear	in	this	help
file.	

Directory	Structure	 Describes	where	to	find	files	in	the	MDDFS
Interface	Library.	

Configuring	Hardware	 Walks	through	hardware	configuration	for
supported	development	platforms.	

Software
Configuration	

Information	about	software	configuration
options	for	the	library.	

The	SD	Card	Demo	 Information	about	the	default	SD	Card
demo.	

The	SD	Data	Logger
Demo	

Information	about	the	SD	card	file	explorer
demo.	

Getting	Started

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Terminology
A	list	of	terms	that	may	appear	in	this	help	file.

Topics

Name	 Description	

Boot	sector	
The	boot	sector	is	the	first	sector	of	a
partition.	It	contains	information	about	how
the	partition	is	organized.	

Cluster	

A	cluster	is	a	group	of	sectors	in	the	data
region	of	a	FAT	partition.	The	number	of
sectors	per	cluster	can	be	any	positive,
power-of-two	signed	8-bit	value	(1,	2,	4,	8,
16,	32,	or	64)	and	is	set	when	the	partition	is
formatted.	

Current	Working
Directory	

All	file	I/O	operations	(except	those	that
accept	a	path	variable)	take	place	within	the
current	working	directory.	When	FSInit
completes	successfully	the	CWD	will	be	set
the	the	root	directory.	It	can	be	changed
using	the	FSchdir	or	FSchdirpgm	function.	

Directory	 A	directory	is	a	type	of	file	that	contains
pointers	to	other	files	or	directories.	

FAT	

The	File	Allocation	Table.	The	FAT	is	an
array-based	linked	list	with	one	entry	for
each	data	cluster	on	the	device.	Each	entry
either	points	to	the	next	cluster	of	a	file	or
contains	a	special	value.	FAT12	has	12-bit
entries,	FAT16	has	16-bit	entries,	and
FAT32	has	32-bit	entries.

FAT	can	also	refer	to	the	FAT	file	system
itself.	

Master	Boot	Record	

The	first	cluster	of	a	device.	The	master
boot	record	contains	pointers	to	different
partitions	on	the	device	and	information
about	how	they're	organized.	

Root	directory	

The	root	directory	is	a	directory	that	is	the
base	of	the	directory	tree.	For	FAT12	and
FAT16	the	root	directory	is	located	after	the
FAT;	for	FAT32	the	root	directory	is	make	up
of	clusters	(like	a	regular	directory)	and	is
located	in	the	data	region	of	the	device.	

Sector	
A	sector	is	a	group	of	bytes	in	the	FAT	file
system.	Sectors	are	most	commonly	512
bytes.	

Getting	Started	>	Terminology

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Boot	sector
The	boot	sector	is	the	first	sector	of	a	partition.	It	contains
information	about	how	the	partition	is	organized.

Getting	Started	>	Terminology	>	Boot	sector

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Cluster
A	cluster	is	a	group	of	sectors	in	the	data	region	of	a	FAT
partition.	The	number	of	sectors	per	cluster	can	be	any	positive,
power-of-two	signed	8-bit	value	(1,	2,	4,	8,	16,	32,	or	64)	and	is
set	when	the	partition	is	formatted.

Getting	Started	>	Terminology	>	Cluster

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Current	Working	Directory
All	file	I/O	operations	(except	those	that	accept	a	path	variable)
take	place	within	the	current	working	directory.	When	FSInit
completes	successfully	the	CWD	will	be	set	the	the	root
directory.	It	can	be	changed	using	the	FSchdir	or	FSchdirpgm
function.

Getting	Started	>	Terminology	>	Current	Working	Directory

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Directory
A	directory	is	a	type	of	file	that	contains	pointers	to	other	files	or
directories.

Getting	Started	>	Terminology	>	Directory

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FAT
The	File	Allocation	Table.	The	FAT	is	an	array-based	linked	list
with	one	entry	for	each	data	cluster	on	the	device.	Each	entry
either	points	to	the	next	cluster	of	a	file	or	contains	a	special
value.	FAT12	has	12-bit	entries,	FAT16	has	16-bit	entries,	and
FAT32	has	32-bit	entries.	

FAT	can	also	refer	to	the	FAT	file	system	itself.

Getting	Started	>	Terminology	>	FAT

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Master	Boot	Record
The	first	cluster	of	a	device.	The	master	boot	record	contains
pointers	to	different	partitions	on	the	device	and	information
about	how	they're	organized.

Getting	Started	>	Terminology	>	Master	Boot	Record

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Root	directory
The	root	directory	is	a	directory	that	is	the	base	of	the	directory
tree.	For	FAT12	and	FAT16	the	root	directory	is	located	after	the
FAT;	for	FAT32	the	root	directory	is	make	up	of	clusters	(like	a
regular	directory)	and	is	located	in	the	data	region	of	the	device.

Getting	Started	>	Terminology	>	Root	directory

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Sector
A	sector	is	a	group	of	bytes	in	the	FAT	file	system.	Sectors	are
most	commonly	512	bytes.

Getting	Started	>	Terminology	>	Sector

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Directory	Structure
The	MDDFS	Library	comes	with	many	files,	documents,	and
project	examples.	Before	getting	started,	take	a	moment	to
familiarize	yourself	with	the	directory	structure	so	that	you	may
find	what	you	need	quickly.

Directory	Structure
By	default,	the	MDDFS	Library	installs	into	C:\Microchip
Solutions	along	with	any	other	Microchip	software	stacks	you
may	be	using.	Insize	that	folder,	several	subfolders	are	created,
as	documented	in	the	table	below.

C:\Microchip\Solutions	 Root	folder	for	all	library	files	

-	Microchip	 Internal	stack	files.	These	files	rarely	need
modification.	

--	Include	 	

---	MDD	File	System	 Header	(*.h)	files	for	the	MDDFS	Library	

---	PIC18	salloc	 Header	(*.h)	files	for	dynamic	memory
allocation	for	PIC18	

--	MDD	File	System	 Source	(*.c)	files	for	the	MDDFS	Library	

---	Documentation	 Readme	files,	schematics,	and	AN1045.	

--	PIC18	salloc	 Source	(*.c)	files	for	dynamic	memory
allocation	for	PIC18	

--	Help	 The	location	of	this	help	file.	

-	MDD	File	System-SD
Card	 Main	file	I/O	demo	application.	

Configuration	files	for	the	PIC18F	project

--	PIC18F	 in	the	demo.	

--	PIC24F	 Configuration	files	for	the	PIC24F	project
in	the	demo.	

--	PIC32	 Configuration	files	for	the	PIC32	project	in
the	demo.	

-	MDD	File	System-
SD	Data	Logger	

Demo	application	that	functions	as	a	shell
program	using	the	UART	module	and	an
SD	card.	

Getting	Started	>	Directory	Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Configuring	Hardware
The	first	step	to	use	the	stack	is	to	make	sure	an	appropriate
development	board	is	configured.	To	get	started,	select	a
platform	from	the	topics	presented	below.

Topics

Name	 Description	

Explorer	16	with
PICtail	for	SD	and
MMC	

Information	about	how	to	configure	the
Explorer	16	board	to	use	the	demo
projects.	

HPC	Explorer	with
PICtail	for	SD	and
MMC	

Information	about	how	to	configure	the	HPC
Explorer	board	to	use	the	demo	projects.	

Getting	Started	>	Configuring	Hardware

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Explorer	16	with	PICtail	for	SD	and	MMC
Visit	the	Microchip	web	site	to	view	the	Explorer	16	 Product
Page	and	 User's	Guide,	and	the	 PICtail	Board	for	SD	and
MMC,	

The	Explorer	16	board	can	be	expanded	for	SD	card	support
using	the	PICtailTM	Board	for	SD	and	MMC.	The	daughterboard
should	be	inserted	into	the	top-most	socket	of	the	J5	header.	The
orientation	of	the	daughterboard	should	be	such	that	the	card
socket	faces	towards	the	Processor	Interface	Module.	

Check	that:

1.	 Switch	S2	selects	PIM.
2.	 Jumper	J7	selects	PIC24.

The	development	board	is	now	ready	to	use.

Project	Setup
A	few	configuration	settings	are	required	to	ensure	that	the
MDDFS	Interface	Library	will	run	on	your	hardware:

1.	 Start	with	an	appropriate	MPLAB	IDE	project:
16-bit	parts:	MDD	File	System-SD	Card\MDDFS-SD-
PIC24.mcp
32-bit	parts:	MDD	File	System-SD	Card\MDDFS-SD-
PIC32.mcp

2.	 Change	the	MPLAB	IDE	processor	target	selection	to	match	the
part	installed	on	the	Explorer	16	(e.x.	PIC24FJ128GA010,
PIC32MX360F256L).

Getting	Started	>	Configuring	Hardware	>	Explorer	16	with	PICtail	for	SD
and	MMC

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

HPC	Explorer	with	PICtail	for	SD	and	MMC
Visit	the	Microchip	web	site	to	view	the	HPC	Explorer	 Product
Page	and	 User's	Guide,	and	the	 PICtail	Board	for	SD	and
MMC,	

The	HPC	Explorer	board	can	be	expanded	for	SD	card	support
using	the	PICtailTM	Board	for	SD	and	MMC.	The	daughterboard
should	be	inserted	into	the	PICtail	connector.	

The	development	board	is	now	ready	to	use.

Project	Setup
A	few	configuration	settings	are	required	to	ensure	that	the
MDDFS	Interface	Library	will	run	on	your	hardware:

1.	 Start	with	an	appropriate	MPLAB	IDE	project:	MDD	File	System-
SD	Card\MDDFS-SD-PIC18.mcp

2.	 Change	the	MPLAB	IDE	processor	target	selection	to	match	the
part	installed	on	the	HPC	Explorer	Board	(e.x.	PIC18F8722).

Troubleshooting

Because	of	the	level	translator	on	the	PICtailTM	board	for	SD
and	MMC,	some	versions	of	the	HPC	Explorer	may	experience
communication	errors	between	the	microcontroller	and	SD	card.
This	disruption	is	not	limited	to	a	specific	range	of	clock
frequencies.	To	improve	the	chances	of	a	successful
communication,	some	options	are:

1.	 Change	the	SPI	module	speed	so	the	communication	will	proceed
more	slowly.

2.	 Cut	the	traces	that	correspond	to	the	SPI	pins	near	the	PICtail
connector.	Bridge	the	trace	cuts	with	100-400	Ohm	terminating
resistors.	Note	that	this	solution	will	cause	damage	to	the	HPC
Explorer	board.

Getting	Started	>	Configuring	Hardware	>	HPC	Explorer	with	PICtail	for
SD	and	MMC

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Software	Configuration
Once	your	hardware	is	configured,	the	next	step	is	to	configure
the	MDDFS	Library	firmware.	Library	configuration	is	stored	as	a
set	of	configuration	macros	in	FSconfig.h	and	HardwareProfiles.h
in	the	demo	application	folders.	To	begin,	open	FSconfig.h	in	a
text	editor	program	like	MPLAB.

FSconfig.h
This	file	contains	options	to	configure	the	library	firmware.	The
configuration	macros	include:

Macro/Option	 Category	 Indication	

FS_MAX_FILES_OPEN	 Definition	

Describes	the	maximum
number	of	files	that
can/will	be	opened	at
once.	

MEDIA_SECTOR_SIZE	 Definition	

Describes	the	size	of	a
sector	on	the	device.
This	will	almost	always
equal	512.	

ALLOW_FILESEARCH	 Feature
toggle	

Comment	this	definition
out	to	disable	the	file
search	functions
(FindFirst	and
FindNext).	This	will
reduce	code	size.	

ALLOW_WRITES	 Feature
toggle	

Comment	this	definition
out	to	disable	all	write
functionality.	This	will
reduce	code	size.	

Comment	this	definition

ALLOW_FORMATS	 Feature
toggle	

out	to	disable	the	format
function.	This	will
reduce	code	size.	

ALLOW_DIRS	 Feature
toggle	

Comment	this	definition
out	to	disable	all
directory	functionality.
This	will	reduce	code
size.	

ALLOW_PGMFUNCTIONS	 Feature
toggle	

Comment	this	definition
out	to	disable	-pgm
functions.	The	library
requires	-pgm	functions
to	be	disabled	when	not
using	PIC18.	This	will
reduce	code	size.	

ALLOW_FSFPRINTF	 Feature
toggle	

Comment	this	definition
out	to	disable	the
FSfprintf	function.	This
will	reduce	code	size.	

SUPPORT_FAT32	 Feature
toggle	

Comment	this	definition
out	to	disable	FAT32
support.	FAT12	and
FAT16	will	still	be
supported.	

USEREALTIMECLOCK	

Create/last
modified
timestamp
generator	

Uncomment	this	macro
to	generate	timestamps
automatically	with	the
RTCC	module.	You
must	configure	the
RTCC	for	this	method
to	work	correctly.	Only
one	timestamp
generation	method	may
be	enabled	at	one	time.	

USERDEFINEDCLOCK	

Create/last
modified
timestamp
generator	

Uncomment	this	macro
to	generate	timestamps
based	on	global
variabled	that	are	set
manually	by	the	user
using	the
SetClockVars()	function.
Only	one	timestamp
generation	method	may
be	enabled	at	one	time.	

INCREMENTTIMESTAMP	

Create/last
modified
timestamp
generator	

Uncomment	this	macro
to	generate	static
timestamps.	These
timestamps	will	be
incremented	by	1
whenever	the	file	is
accessed.	This	should
only	be	used	in
applications	when
create.modified	times
are	not	required.	Only
one	timestamp
generation	method	may
be	enabled	at	one	time.	

FS_DYNAMIC_MEM	
Static/dynamic
FSFILE	object
allocation.	

Set	the	#if	preprocessor
definition	to	1	to
allocate	FSFILE	objects
dynamically.	You	will	be
required	to	allocate	a
heap	to	do	this.	For
PIC18,	you	will	be
required	to	include	the
salloc.c	and	salloc.h
files	in	your	project.	If
the	#if	statement	is	set
to	0,	FSFILE	objects	will

be	allocated	in	a	static
array,	with	the
maximum	number	of
FSFILE	objects
determined	by	the
FS_MAX_FILES_OPEN
macro.	

HardwareProfiles.h
The	HardwareProfiles.h	header	file	reflects	the	state	of	the
hardware.	It	contains	the	following	macros:

Macro	 Indication	

GetSystemClock()	 Returns	the	value	of	the
system	clock.	

GetPeripheralClock()	
Returns	the	value	of	the
microcontroller's	peripheral
clock	

GetInstructionClock()	
Returns	the	value	of	the
microcontroller's	instruction
clock	

USE_SD_INTERFACE_WITH_SPI	

Uncomment	this	definition	to
use	the	SD-SPI	physical	layer.
Only	one	physical	layer	may
be	enabled	at	one	time.	

USE_CF_INTERFACE_WITH_PMP	

Uncomment	this	definition	to
use	the	CF-PMP	physical
layer.	Only	one	physical	layer
may	be	enabled	at	one	time.	

USE_MANUAL_CF_INTERFACE	

Uncomment	this	definition	to
use	the	CF-Manual	physical
layer.	Only	one	physical	layer
may	be	enabled	at	one	time.	

USE_USB_INTERFACE	

Uncomment	this	definition	to
use	the	USB	host	physical
layer.	This	physical	layer	is
described	in	greater	detail	at	

http://www.microchip.com/usb.
Only	one	physical	layer	may
be	enabled	at	one	time.	

SD_CS,	SD_CD,	SD_WE	

Used	for	the	SD-SPI	physical
layer.	Set	these	to	the	I/O	port
register	locations	for	the	chip
select,	card	detect,	and	write
protect	signals	(e.g.
PORTBbits.RB3).	

SD_CS_TRIS,	SD_CD_TRIS,
SD_WE_TRIS	

Used	for	the	SD-SPI	physical
layer.	Set	these	to	the	I/O	tris
register	locations	that
correspond	to	the	pins	used
for	each	signal	(e.g.
TRISBbits.TRISB3).	

SPICON1,	SPISTAT,	SPIBUF,
SPISTAT_RBF,	SPICON1bits,
SPISTATbits,
SPI_INTERRUPT_FLAG,
SPIENABLE	

Used	for	the	SD-SPI	physical
layer.	Set	these	to	the	SPI
registers	or	bits	that
correspond	to	the	module
you're	using	(e.g.
SSP1CON1,	SSP1STAT,
SSP1BUF,	SSP1STATbits.BF,
SSP1CON1bits,
SSP1STATbits,
PIR1bits.SSPIF).	

SPICLOCK,	SPIIN,	SPIOUT,
SPICLOCKLAT,	SPIINLAT,
SPIOUTLAT,	SPICLOCKPORT,
SPIINPORT,	SPIOUTPORT	

Used	for	the	SD-SPI	physical
layer.	Set	these	to	the	SPI
tris/lat/port	register	bits	for	the
module	you're	using.	

CF_PMP_RST,	CF_PMP_RDY,
CF_PMP_CD1	

Used	with	the	CF-PMP
physical	layer.	Set	these	to
the	I/O	port	register	locations
for	the	reset,	ready,	and	card
detect	signals	for	your	card.	

CF_PMP_RESETDIR,
CF_PMP_READYDIR,
CF_PMP_CD1DIR	

Used	with	the	CF-PMP
physical	layer.	Set	these	to
the	I/O	tris	register	that
corresponds	to	the	reset,
ready,	and	card	detect
signals.	

MDD_CFPMP_DATADIR	

Used	with	the	CF-PMP
physical	layer.	Set	this	to	the
tris	register	that	corresponds
to	the	PMP	data	bus.	

ADDBL,	ADDDIR	

Used	with	the	CF-Manual
physical	layer.	Set	these	to
the	lat	and	tris	registers	that
correspond	to	the	address	bus
(PIC18).	

ADDR0,	ADDR1,	ADDR2,	ADDR3	

Used	with	the	CF-Manual
physical	layer.	Set	these	to
the	4	lat	pins	used	for	your
address	bus.	

ADRTRIS0,	ADRTRIS1,	ADRTRIS2,
ADRTRIS3	

Used	with	the	CF-Manual
physical	layer.	Set	these	to
the	corresponding	tris	bits	for
your	data	bus.	

MDD_CFBT_DATABIN,
MDD_CFBT_DATABOUT,
MDD_CFBT_DATADIR	

Used	with	the	CF-Manual
physical	layer.	Set	these	to
the	port,	lat,	and	tris	registers
that	correspond	to	your	data
bus.	

CF_CE,	CF_OE,	CF_WE,
CF_BT_RST,	CF_BT_RDY,
CF_BT_CD1	

Used	with	the	CF-Manual
physical	layer.	Set	these	to
the	I/O	lat	and	port	bits	that
correspond	to	the	chip	select,
output	enable	strobe,	write
enable	strobe,	reset,	ready,
and	card	detect	signals,
respectively.	

CF_CEDIR,	CF_OEDIR,
CF_WEDIR,	CF_BT_RESETDIR,
CF_BT_READYDIR,
CF_BT_CD1DIR	

Used	with	the	CF-Manual
physical	layer.	Set	these	to	tris
bits	that	correspond	to	the
control	signals	for	the	card.	

Getting	Started	>	Software	Configuration

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

The	SD	Card	Demo
The	basic	SD	Card	demo	application	is	located	in	the	MDD	File
System-SD	Card	folder.	It	contains	projects	for	PIC18,	PIC24,
and	PIC32	architectures.	This	project	will	give	a	basic
demonstration	of	how	most	of	the	file	I/O	functions	can	be	used.

Getting	Started	>	The	SD	Card	Demo

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

The	SD	Data	Logger	Demo
The	SD	Data	Logger	project	is	based	on	the	USB	Data	logger
project	found	in	 AN1145.

Additional	Hardware	Setup
This	demonstration	is	set	up	to	use	the	Explorer	16	board	with	a
PIC24	or	PIC32	part.	It	will	require	a	serial	connection	from	the
D-sub	(DB-9)	connector	on	the	Explorer	16	to	a	PC	running	a
terminal	program	(e.g.	HyperTerminal)	with	the	following	settings:
57600	BPS,	8	data	bits,	no	parity,	1	stop	bit,	no	flow	control.

Using	the	Demo
Upon	programming	and	running	the	demo	code,	a	command
prompt	will	appear	on	the	PC's	terminal	screen.	By	typing
"HELP"	or	"?"	and	pressing	enter,	the	user	can	display	a	list	of
commands	that	can	be	used	to	access	and	modify	files	and
directories	on	the	card.	Note	that	the	terminal	program	is	only
transmitting	and	receiving	information	from	the	microcontroller;
all	functionality	(including	echoing	characters)	is	handled	by	the
microcontroller.	Available	shell	commands	in	this	demo	include:	

	

COMMAND	 SYNTAX	 EXAMPLE	 FUNCTION	

ATTRIB	

ATTRIB	<+|-
>R	<+|->S
<+|->H	<+|-
>A	<name>	

ATTRIB	+S	+A	-H
FILE.TXT	

Clears	or	sets
read-only,
system,	hidden,
or	archive
attributes	from	a
file	or	directory.	

CD
Changes	the
directory	to	the

CD	 <name>	 CD	DIR1\DIR2	 path	specified	by
<name>.	

COPY	
COPY
<file1>
<file2>	

COPY	ONE.TXT
TWO.TXT	 Copies	a	file.	

COPY	 COPY	CON
<file1>	

COPY	CON
EXAMPLE.TXT	

Copies	data	from
the	console	into
a	file	as	the	user
types	it.	

DATE	 DATE	[yyyy-
mm-dd]	 DATE	2008-08-19	

Sets	the	date.	If
no	date	is
specified,	this
command	will
display	the
currently	set
date.	

DEL	 DEL	<file>	 DEL	FILE.TXT	 Deletes	a	file.	

DIR	 DIR	[file]	 DIR	EXAMPLE.*	

Displays	files	or
directories	in	the
current	working
directory	that
match	the
specified	naming
criteria.	If	no
argument	is
specified,	all	files
in	the	current
working	directory
will	be
displayed.	

HELP/?	 HELP	 HELP	
Displays	a	list	of
available
commands.	

LOG	
LOG
<POT|TMP>
<file>	

LOG	TMP
DATA.CSV	

Logs	data	from
the	temperature
sensor	to
potentiometer	on
the	Explorer	16
to	the	specified
file.	

MD	 MD
<name>	

MD
ONE\TWO\THREE	

Create	one	or
more
directories.	

RD	 RD
<name>	

RD
ONE\TWO\THREE	

Remove	a
directory.	

REN	 REN	<file1>
<file2>	

REN	ONE.TXT
TWO.TXT	

Rename	<file1>
to	<file2>	

TIME	 TIME
[hh:mm:ss]	 TIME	[10:52:03]	

Set	the	time	to
the	specified
value.	If	no	value
is	specified,	the
current	time	will
be	output.	

TYPE	 TYPE
<file>	

TYPE
EXAMPLE.TXT	

Display	the
contents	of	a	file
in	ASCII	text	

Getting	Started	>	The	SD	Data	Logger	Demo

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Next

APIs
The	Microchip	MDDFS	Interface	Library	is	implemented	as	an
application	layer	(written	by	the	user),	a	file	manipulation	layer,
which	actually	performs	operations	on	files,	and	one	of	several
physical	interface	layers,	including	an	SD	card	interface	and	two
methods	for	interfacing	with	CF	cards.	The	APIs	for	the	file
manipulation	layer	and	each	physical	layer	are	described	in	this
section.

Topics

Name	 Description	

File	Manipulation	Layer
(FSIO)	

The	File	Manipulation	Layer	contains
functions	for	manipulating	files	or	functions
to	access	the	device	that	are	common
across	all	physical	layers.	

SD-SPI	Physical
Layer	

The	SD-SPI	physical	layer	offers	the	ability
to	interface	to	SD	cards	using	the	SPI
protocol.	SPI	modules	can	be	found	on
many	Microchip	microcontrollers.	

CF	Physical	Layer	

The	CF	physical	layers	offer	two	methods
for	interfacing	with	CF	cards.	The	manual
interface	method	will	bit-bang	the	parallel
interface	protocol	used	by	CF	cards.	The
CF-PMP	files	will	interface	to	the	cards
using	the	parallel	master	port	on	16-bit	PIC
devices.	At	this	time,	8-bit	architecture	PMP
interface	is	not	supported.	

APIs

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

File	Manipulation	Layer	(FSIO)
The	File	Manipulation	Layer	contains	functions	for	manipulating
files	or	functions	to	access	the	device	that	are	common	across	all
physical	layers.

Topics

Name	 Description	

Public	Members	
The	following	functions,	variables,
structures,	and	macros	are	available	for	use
by	the	user	application.	

Library	Members	

The	following	functions,	variables,
structures,	and	macros	are	public,	but	are
intended	only	to	be	accessed	by	the	library
itself.	Applications	should	generally	not	call
these	functions	or	modify	these	variables.	

Internal	Members	
The	following	functions,	variables,
structures,	and	macros	are	designated	as
internal	to	the	library.	

APIs	>	File	Manipulation	Layer	(FSIO)

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Public	Members
The	following	functions,	variables,	structures,	and	macros	are
available	for	use	by	the	user	application.

Functions

	 Name	 Description	

	 FindFirst	 Initial	search	function	

	 FindFirstpgm	 Find	a	file	named	with	a	ROM	string	on
PIC18	

	 FindNext	 Sequential	search	function	

	 FSattrib	 Change	the	attributes	of	a	file	

	 FSchdir	 Change	the	current	working	directory	

	 FSchdirpgm	 Changed	the	CWD	with	a	path	in	ROM	on
PIC18	

	 FSCreateMBR	 Creates	a	master	boot	record	

	 FSerror	 Return	an	error	code	for	the	last	function
call	

	 FSfclose	 Update	file	information	and	free	FSFILE
objects	

	 FSfeof	 Indicate	whether	the	current	file	position	is
at	the	end	

	 FSfopen	 Open	a	file	

Open	a	file	named	with	a	ROM	string	on

	 FSfopenpgm	 PIC18	

	 FSformat	 Formats	a	device	

	 FSfprintf	 Function	to	write	formatted	strings	to	a	file	

	 FSfread	 Read	data	from	a	file	

	 FSfseek	 Change	the	current	position	in	a	file	

	 FSftell	 Determine	the	current	location	in	a	file	

	 FSfwrite	 Write	data	to	a	file	

	 FSgetcwd	 Get	the	current	working	directory	name	

	 FSInit	 Function	to	initialize	the	device.	

	 FSmkdir	 Create	a	directory	

	 FSmkdirpgm	 Create	a	directory	with	a	path	in	ROM	on
PIC18	

	 FSremove	 Delete	a	file	

	 FSremovepgm	 Delete	a	file	named	with	a	ROM	string	on
PIC18	

	 FSrename	 Change	the	name	of	a	file	or	directory	

	 FSrenamepgm	 Rename	a	file	named	with	a	ROM	string	on
PIC18	

	 FSrewind	 Set	the	current	position	in	a	file	to	the
beginning	

	 FSrmdir	 Delete	a	directory	

Delete	a	directory	with	a	path	in	ROM	on

	 FSrmdirpgm	 PIC18	

	 SetClockVars	 Manually	set	timestamp	variables	

Macros

	 Name	 Description	

	 ALLOW_DIRS	
A	macro	to
enable/disable	directory
operations.	

	 ALLOW_FILESEARCH	
A	macro	to
enable/disable	file	search
functions.	

	 ALLOW_FSFPRINTF	
A	macro	to
enable/disable	the
FSfprintf	function.	

	 ALLOW_FORMATS	
A	macro	to
enable/disable	format
functionality	

	 ALLOW_PGMFUNCTIONS	
A	macro	to
enable/disable	PIC18
ROM	functions.	

	 ALLOW_WRITES	
A	macro	to
enable/disable	write
functionality	

	 APPEND	 Macro	for	the	FSfopen
APPEND	mode	

	 APPENDPLUS	 Macro	for	the	FSfopen
APPEND+	mode	

	 ATTR_ARCHIVE	 An	archive	attribute
macro	

	 ATTR_DIRECTORY	 A	directory	attribute
macro	

	 ATTR_HIDDEN	 A	hidden	attribute	macro	

	 ATTR_MASK	 A	macro	for	all	attributes	

	 ATTR_READ_ONLY	 A	read-only	attribute
macro	

	 ATTR_SYSTEM	 A	system	attribute	macro	

	 ATTR_VOLUME	 A	volume	attribute	macro	

	 EOF	 Indicates	error	conditions
or	end-of-file	conditions	

	 FALSE	 False	value	

	 FS_DYNAMIC_MEM	
A	macro	indicating	that
FSFILE	objects	will	be
allocated	dynamically	

	 FS_MAX_FILES_OPEN	
A	macro	indicating	the
maximum	number	of
concurrently	open	files	

	 INCREMENTTIMESTAMP	
A	macro	to	enable	don't-
care	timestamp
generation	

	 intmax_t	
A	data	type	indicating	the
maximum	integer	size	in
an	architecture	

	 MAX_HEAP_SIZE	 A	macro	used	to	define
the	heap	size	for	PIC18	

	 MDD_MediaDetect	
Function	pointer	to	the
Media	Detect	Physical
Layer	function	

	 MEDIA_SECTOR_SIZE	 A	macro	defining	the	size
of	a	sector	

	 NEAR_MODEL	
A	macro	used	to	enable
nead-model	RAM
addressing	

	 READ	 Macro	for	the	FSfopen
READ	mode	

	 READPLUS	 Macro	for	the	FSfopen
READ+	mode	

	 SEEK_CUR	
Macro	for	the	FSfseek
SEEK_CUR	base
location.	

	 SEEK_END	
Macro	for	the	FSfseek
SEEK_END	base
location	

	 SEEK_SET	
Macro	for	the	FSfseek
SEEK_SET	base
location.	

	 SUPPORT_FAT32	
A	macro	to
enable/disable	FAT32
support.	

	 TRUE	 True	value	

	 USE_CF_INTERFACE_WITH_PMP	 Macro	used	to	enable	the
CF-PMP	physical	layer
(CF-PMP.c	and	.h)	

	 USE_MANUAL_CF_INTERFACE	

Macro	used	to	enable	the
CF-Manual	physical	layer
(CF-Bit	transaction.c	and
.h)	

	 USE_SD_INTERFACE_WITH_SPI	
Macro	used	to	enable	the
SD-SPI	physical	layer
(SD-SPI.c	and	.h)	

	 USE_USB_INTERFACE	
Macro	used	to	enable	the
USB	Host	physical	layer
(USB	host	MSD	library)	

	 USERDEFINEDCLOCK	
A	macro	to	enable
manual	timestamp
generation	

	 USEREALTIMECLOCK	
A	macro	to	enable	RTCC
based	timestamp
generation	

	 WRITE	 Macro	for	the	FSfopen
WRITE	mode	

	 WRITEPLUS	 Macro	for	the	FSfopen
WRITE+	mode	

Structures

	 Name	 Description	

	 FSFILE	 Contains	file	information	and	is	used	to
indicate	which	file	to	access.	

	 SearchRec	 A	structure	used	for	searching	for	files	on	a
device.	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FindFirst	Function
C
int	FindFirst(

				const	char	*	fileName,	

				unsigned	int	attr,	

				SearchRec	*	rec

);

Description

The	FindFirst	function	will	search	for	a	file	based	on	parameters
passed	in	by	the	user.	This	function	will	use	the	FILEfind	function
to	parse	through	the	current	working	directory	searching	for
entries	that	match	the	specified	parameters.	If	a	file	is	found,	its
parameters	are	copied	into	the	SearchRec	structure,	as	are	the
initial	parameters	passed	in	by	the	user	and	the	position	of	the
file	entry	in	the	current	working	directory.

Preconditions

None

Parameters

Parameters	 Description	

fileName	

The	name	to	search	for

Parital	string	search	characters
*	-	Indicates	the	rest	of	the	filename	or
extension	can	vary	(e.g.	FILE.*)
?	-	Indicates	that	one	character	in	a
filename	can	vary	(e.g.	F?LE.T?T)

	

attr	

The	attributes	that	a	found	file	may	have

ATTR_READ_ONLY	-	File	may	be	read
only
ATTR_HIDDEN	-	File	may	be	a	hidden
file
ATTR_SYSTEM	-	File	may	be	a	system
file
ATTR_VOLUME	-	Entry	may	be	a
volume	label
ATTR_DIRECTORY	-	File	may	be	a
directory
ATTR_ARCHIVE	-	File	may	have
archive	attribute
ATTR_MASK	-	All	attributes

	

rec	 pointer	to	a	structure	to	put	the	file
information	in	

Return	Values

Return	Values	 Description	

0	 File	was	found	

-1	 No	file	matching	the	specified	criteria	was
found	

Side	Effects

Search	criteria	from	previous	FindFirst	call	on	passed	SearchRec
object	will	be	lost.	The	FSerrno	variable	will	be	changed.

Remarks

Call	FindFirst	or	FindFirstpgm	before	calling	FindNext

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FindFirst
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FindFirstpgm	Function
C
int	FindFirstpgm(

				const	rom	char	*	fileName,	

				unsigned	int	attr,	

				SearchRec	*	rec

);

Description

The	FindFirstpgm	function	will	copy	a	PIC18	ROM	fileName
argument	into	a	RAM	array,	and	then	pass	that	array	to	the
FindFirst	function.

Preconditions

None

Parameters

Parameters	 Description	

fileName	 The	name	of	the	file	to	be	found	(ROM)	

attr	 The	attributes	of	the	file	to	be	found	

rec	 Pointer	to	a	search	record	to	store	the	file
info	in	

Return	Values

Return	Values	 Description	

0	 File	was	found	

-1	 No	file	matching	the	given	parameters	was
found	

Side	Effects

Search	criteria	from	previous	FindFirst	call	on	passed	SearchRec
object	will	be	lost.	The	FSerrno	variable	will	be	changed.

Remarks

Call	FindFirstpgm	or	FindFirst	before	calling	FindNext.	This
function	is	for	use	with	PIC18	when	passing	arguments	in	ROM.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FindFirstpgm
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FindNext	Function
C
int	FindNext(

				SearchRec	*	rec

);

Description

The	FindNext	function	performs	the	same	function	as	the
FindFirst	funciton,	except	it	does	not	copy	any	search
parameters	into	the	SearchRec	structure	(only	info	about	found
files)	and	it	begins	searching	at	the	last	directory	entry	offset	at
which	a	file	was	found,	rather	than	at	the	beginning	of	the	current
working	directory.

Preconditions

None

Parameters

Parameters	 Description	

rec	 The	structure	to	store	the	file	information	in	

Return	Values

Return	Values	 Description	

0	 File	was	found	

-1	 No	additional	files	matching	the	specified
criteria	were	found	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

Call	FindFirst	or	FindFirstpgm	before	calling	this	function

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FindNext
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSattrib	Function
C
int	FSattrib(

				FSFILE	*	file,	

				unsigned	char	attributes

);

Description

The	FSattrib	funciton	will	set	the	attributes	of	the	specified	file	to
the	attributes	passed	in	by	the	user.	This	function	will	load	the	file
entry,	replace	the	attributes	with	the	ones	specified,	and	write	the
attributes	back.	If	the	specified	file	is	a	directory,	the	directory
attribute	will	be	preserved.

Preconditions

File	opened

Parameters

Parameters	 Description	

file	 Pointer	to	file	structure	

attributes	

The	attributes	to	set	for	the	file

Attribute	-	Value	-	Indications
ATTR_READ_ONLY	-	0x01	-	The	read-
only	attribute
ATTR_HIDDEN	-	0x02	-	The	hidden
attribute
ATTR_SYSTEM	-	0x04	-	The	system
attribute

ATTR_ARCHIVE	-	0x20	-	The	archive
attribute

	

Return	Values

Return	Values	 Description	

0	 Attribute	change	was	successful	

-1	 Attribute	change	was	unsuccessful	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSattrib
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSchdir	Function
C
int	FSchdir(

				char	*	path

);

Description

The	FSchdir	function	passes	a	RAM	pointer	to	the	path	to	the
chdirhelper	function.

Preconditions

None

Parameters

Parameters	 Description	

path	 The	path	of	the	directory	to	change	to.	

Return	Values

Return	Values	 Description	

0	 The	current	working	directory	was	changed
successfully	

EOF	 The	current	working	directory	could	not	be
changed	

Side	Effects

The	current	working	directory	may	be	changed.	The	FSerrno
variable	will	be	changed.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSchdir
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSchdirpgm	Function
C
int	FSchdirpgm(

				const	rom	char	*	path

);

Description

The	FSchdirpgm	function	passes	a	PIC18	ROM	path	pointer	to
the	chdirhelper	function.

Preconditions

None

Parameters

Parameters	 Description	

path	 The	path	of	the	directory	to	change	to
(ROM)	

Return	Values

Return	Values	 Description	

0	 The	current	working	directory	was	changed
successfully	

EOF	 The	current	working	directory	could	not	be
changed	

Side	Effects

The	current	working	directory	may	be	changed.	The	FSerrno
variable	will	be	changed.

Remarks

This	function	is	for	use	with	PIC18	when	passing	arguments	in
ROM

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSchdirpgm
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSCreateMBR	Function
C
int	FSCreateMBR(

				unsigned	long	firstSector,	

				unsigned	long	numSectors

);

Description

This	function	can	be	used	to	create	a	master	boot	record	for	a
device.	Note	that	this	function	should	not	be	used	on	a	device
that	is	already	formatted	with	a	master	boot	record	(i.e.	most	SD
cards,	CF	cards,	USB	keys).	This	function	will	fill	the	global	data
buffer	with	appropriate	partition	information	for	a	FAT	partition
with	a	type	determined	by	the	number	of	sectors	available	to	the
partition.	It	will	then	write	the	MBR	information	to	the	first	sector
on	the	device.	This	function	should	be	followed	by	a	call	to
FSformat,	which	will	create	a	boot	sector,	root	dir,	and	FAT
appropriate	the	the	information	contained	in	the	new	master	boot
record.	Note	that	FSformat	only	supports	FAT12	and	FAT16
formatting	at	this	time,	and	so	cannot	be	used	to	format	a	device
with	more	than	0x3FFD5F	sectors.

Preconditions

The	I/O	pins	for	the	device	have	been	initialized	by	the	InitIO
function.

Parameters

Parameters	 Description	

The	first	sector	of	the	partition	on	the	device

firstSector	 (cannot	be	0;	that's	the	MBR)	

numSectors	 The	number	of	sectors	available	in	memory
(including	the	MBR)	

Return	Values

Return	Values	 Description	

0	 MBR	was	created	successfully	

EOF	 MBR	could	not	be	created	

Side	Effects

None

Remarks

This	function	can	damage	the	device	being	used,	and	should	not
be	called	unless	the	user	is	sure	about	the	size	of	the	device	and
the	first	sector	value.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
FSCreateMBR	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSerror	Function
C
int	FSerror();

Description

The	FSerror	function	will	return	the	FSerrno	variable.	This	global
variable	will	have	been	set	to	an	error	value	during	the	last	call	of
a	library	function.

Preconditions

The	return	value	depends	on	the	last	function	called.

Return	Values

Return	Values	 Description	

FSInit	

CE_GOOD	–	No	Error
CE_INIT_ERROR	–	The	physical
media	could	not	be	initialized
CE_BAD_SECTOR_READ	–	The	MBR
or	the	boot	sector	could	not	be	read
correctly
CE_BAD_PARITION	–	The	MBR
signature	code	was	incorrect.
CE_NOT_FORMATTED	–	The	boot
sector	signature	code	was	incorrect	or
indicates	an	invalid	number	of	bytes	per
sector.
CE_CARDFAT32	–	The	physical	media
is	FAT32	type	(only	an	error	when
FAT32	support	is	disabled).

CE_UNSUPPORTED_FS	–	The	device
is	formatted	with	an	unsupported	file
system	(not	FAT12	or	16).

	

FSfopen	

CE_GOOD	–	No	Error
CE_NOT_INIT	–	The	device	has	not
been	initialized.
CE_TOO_MANY_FILES_OPEN	–	The
function	could	not	allocate	any
additional	file	information	to	the	array	of
FSFILE	structures	or	the	heap.
CE_INVALID_FILENAME	–	The	file
name	argument	was	invalid.
CE_INVALID_ARGUMENT	–	The	user
attempted	to	open	a	directory	in	a	write
mode	or	specified	an	invalid	mode
argument.
CE_FILE_NOT_FOUND	–	The
specified	file	(which	was	to	be	opened
in	read	mode)	does	not	exist	on	the
device.
CE_BADCACHEREAD	–	A	read	from
the	device	failed.
CE_ERASE_FAIL	–	The	existing	file
could	not	be	erased	(when	opening	a
file	in	WRITE	mode).
CE_DIR_FULL	–	The	directory	is	full.
CE_DISK_FULL–	The	data	memory
section	is	full.
CE_WRITE_ERROR	–	A	write	to	the
device	failed.
CE_SEEK_ERROR	–	The	current
position	in	the	file	could	not	be	set	to
the	end	(when	the	file	was	opened	in
APPEND	mode).

	

FSfclose	

CE_GOOD	–	No	Error
CE_WRITE_ERROR	–	The	existing
data	in	the	data	buffer	or	the	new	file
entry	information	could	not	be	written	to
the	device.
CE_BADCACHEREAD	–	The	file	entry
information	could	not	be	cached

	

FSfread	

CE_GOOD	–	No	Error
CE_WRITEONLY	–	The	file	was
opened	in	a	write-only	mode.
CE_WRITE_ERROR	–	The	existing
data	in	the	data	buffer	could	not	be
written	to	the	device.
CE_BAD_SECTOR_READ	–	The	data
sector	could	not	be	read.
CE_EOF	–	The	end	of	the	file	was
reached.
CE_COULD_NOT_GET_CLUSTER	–
Additional	clusters	in	the	file	could	not
be	loaded.

	

FSfwrite	

CE_GOOD	–	No	Error
CE_READONLY	–	The	file	was	opened
in	a	read-only	mode.
CE_WRITE_PROTECTED	–	The
device	write-protect	check	function
indicated	that	the	device	has	been
write-protected.
CE_WRITE_ERROR	–	There	was	an
error	writing	data	to	the	device.
CE_BADCACHEREAD	–	The	data

sector	to	be	modified	could	not	be	read
from	the	device.
CE_DISK_FULL	–	All	data	clusters	on
the	device	are	in	use.

	

FSfseek	

CE_GOOD	–	No	Error
CE_WRITE_ERROR	–	The	existing
data	in	the	data	buffer	could	not	be
written	to	the	device.
CE_INVALID_ARGUMENT	–	The
specified	offset	exceeds	the	size	of	the
file.
CE_BADCACHEREAD	–	The	sector
that	contains	the	new	current	position
could	not	be	loaded.
CE_COULD_NOT_GET_CLUSTER	–
Additional	clusters	in	the	file	could	not
be	loaded/allocated.

	

FSftell	
CE_GOOD	–	No	Error

	

FSattrib	

CE_GOOD	–	No	Error
CE_INVALID_ARGUMENT	–	The
attribute	argument	was	invalid.
CE_BADCACHEREAD	–	The	existing
file	entry	information	could	not	be
loaded.
CE_WRITE_ERROR	–	The	file	entry
information	could	not	be	written	to	the
device.

	

FSrename	

CE_GOOD	–	No	Error
CE_FILENOTOPENED	–	A	null	file
pointer	was	passed	into	the	function.
CE_INVALID_FILENAME	–	The	file
name	passed	into	the	function	was
invalid.
CE_BADCACHEREAD	–	A	read	from
the	device	failed.
CE_FILENAME_EXISTS	–	A	file	with
the	specified	name	already	exists.
CE_WRITE_ERROR	–	The	new	file
entry	data	could	not	be	written	to	the
device.

	

FSfeof	
CE_GOOD	–	No	Error

	

FSformat	

CE_GOOD	–	No	Error
CE_INIT_ERROR	–	The	device	could
not	be	initialized.
CE_BADCACHEREAD	–	The	master
boot	record	or	boot	sector	could	not	be
loaded	successfully.
CE_INVALID_ARGUMENT	–	The	user
selected	to	create	their	own	boot	sector
on	a	device	that	has	no	master	boot
record,	or	the	mode	argument	was
invalid.
CE_WRITE_ERROR	–	The	updated
MBR/Boot	sector	could	not	be	written	to
the	device.
CE_BAD_PARTITION	–	The	calculated
number	of	sectors	per	clusters	was
invalid.

CE_NONSUPPORTED_SIZE	–	The
card	has	too	many	sectors	to	be
formatted	as	FAT12	or	FAT16.

	

FSremove	

CE_GOOD	–	No	Error
CE_WRITE_PROTECTED	–	The
device	write-protect	check	function
indicated	that	the	device	has	been
write-protected.
CE_INVALID_FILENAME	–	The
specified	filename	was	invalid.
CE_FILE_NOT_FOUND	–	The
specified	file	could	not	be	found.
CE_ERASE_FAIL	–	The	file	could	not
be	erased.

	

FSchdir	

CE_GOOD	–	No	Error
CE_INVALID_ARGUMENT	–	The	path
string	was	mis-formed	or	the	user	tried
to	change	to	a	non-directory	file.
CE_BADCACHEREAD	–	A	directory
entry	could	not	be	cached.
CE_DIR_NOT_FOUND	–	Could	not
find	a	directory	in	the	path.

	

FSgetcwd	

CE_GOOD	–	No	Error
CE_INVALID_ARGUMENT	–	The	user
passed	a	0-length	buffer	into	the
function.
CE_BADCACHEREAD	–	A	directory
entry	could	not	be	cached.
CE_BAD_SECTOR_READ	–	The

function	could	not	determine	a	previous
directory	of	the	current	working
directory.

	

FSmkdir	

CE_GOOD	–	No	Error
CE_WRITE_PROTECTED	–	The
device	write-protect	check	function
indicated	that	the	device	has	been
write-protected.
CE_INVALID_ARGUMENT	–	The	path
string	was	mis-formed.
CE_BADCACHEREAD	–	Could	not
successfully	change	to	a	recently
created	directory	to	store	its	dir	entry
information,	or	could	not	cache
directory	entry	information.
CE_INVALID_FILENAME	–	One	or
more	of	the	directory	names	has	an
invalid	format.
CE_WRITE_ERROR	–	The	existing
data	in	the	data	buffer	could	not	be
written	to	the	device	or	the	dot/dotdot
entries	could	not	be	written	to	a	newly
created	directory.
CE_DIR_FULL	–	There	are	no	available
dir	entries	in	the	CWD.
CE_DISK_FULL	–	There	are	no
available	clusters	in	the	data	region	of
the	device.

	

CE_GOOD	–	No	Error
CE_DIR_NOT_FOUND	–	The	directory
specified	could	not	be	found	or	the
function	could	not	change	to	a

FSrmdir	

subdirectory	within	the	directory	to	be
deleted	(when	recursive	delete	is
enabled).
CE_INVALID_ARGUMENT	–	The	user
tried	to	remove	the	CWD	or	root
directory.
CE_BADCACHEREAD	–	A	directory
entry	could	not	be	cached.
CE_DIR_NOT_EMPTY	–	The	directory
to	be	deleted	was	not	empty	and
recursive	subdirectory	removal	was
disabled.
CE_ERASE_FAIL	–	The	directory	or
one	of	the	directories	or	files	within	it
could	not	be	deleted.
CE_BAD_SECTOR_READ	–	The
function	could	not	determine	a	previous
directory	of	the	CWD.

	

SetClockVars	

CE_GOOD	–	No	Error
CE_INVALID_ARGUMENT	–	The	time
values	passed	into	the	function	were
invalid.

	

FindFirst	

CE_GOOD	–	No	Error
CE_INVALID_FILENAME	–	The
specified	filename	was	invalid.
CE_FILE_NOT_FOUND	–	No	file
matching	the	specified	criteria	was
found.
CE_BADCACHEREAD	–	The	file
information	for	the	file	that	was	found
could	not	be	cached.

	

FindNext	

CE_GOOD	–	No	Error
CE_NOT_INIT	–	The	SearchRec	object
was	not	initialized	by	a	call	to	FindFirst.
CE_INVALID_ARGUMENT	–	The
SearchRec	object	was	initialized	in	a
different	directory	from	the	CWD.
CE_INVALID_FILENAME	–	The
filename	is	invalid.
CE_FILE_NOT_FOUND	–	No	file
matching	the	specified	criteria	was
found.

	

FSfprintf	

CE_GOOD	–	No	Error
CE_WRITE_ERROR	–	Characters
could	not	be	written	to	the	file.

	

Side	Effects

None.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSerror
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSfclose	Function
C
int	FSfclose(

				FSFILE	*	fo

);

Description

This	function	will	update	the	directory	entry	for	the	file	pointed	to
by	'fo'	with	the	information	contained	in	'fo,'	including	the	new	file
size	and	attributes.	Timestamp	information	will	also	be	loaded
based	on	the	method	selected	by	the	user	and	written	to	the
entry	as	the	last	modified	time	and	date.	The	file	entry	will	then
be	written	to	the	device.	Finally,	the	memory	used	for	the
specified	file	object	will	be	freed	from	the	dynamic	heap	or	the
array	of	FSFILE	objects.

Preconditions

File	opened

Parameters

Parameters	 Description	

fo	 Pointer	to	the	file	to	close	

Return	Values

Return	Values	 Description	

0	 File	closed	successfully	

EOF	 Error	closing	the	file	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

A	function	to	flush	data	to	the	device	without	closing	the	file	can
be	created	by	removing	the	portion	of	this	function	that	frees	the
memory	and	the	line	that	clears	the	write	flag.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSfclose
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSfeof	Function
C
int	FSfeof(

				FSFILE	*	stream

);

Description

The	FSfeof	function	will	indicate	that	the	end-of-	file	has	been
reached	for	the	specified	file	by	comparing	the	absolute	location
in	the	file	to	the	size	of	the	file.

Preconditions

File	is	open	in	a	read	mode

Parameters

Parameters	 Description	

stream	 Pointer	to	the	target	file	

Return	Values

Return	Values	 Description	

Non-Zero	 EOF	reached	

0	 Not	at	end	of	File	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSfeof
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSfopen	Function
C
FSFILE	*	FSfopen(

				const	char	*	fileName,	

				const	char	*	mode

);

Description

This	function	will	open	a	file	or	directory.	First,	RAM	in	the
dynamic	heap	or	static	array	will	be	allocated	to	a	new	FSFILE
object.	Then,	the	specified	file	name	will	be	formatted	to	ensure
that	it's	in	8.3	format.	Next,	the	FILEfind	function	will	be	used	to
search	for	the	specified	file	name.	If	the	name	is	found,	one	of
three	things	will	happen:	if	the	file	was	opened	in	read	mode,	its
file	info	will	be	loaded	using	the	FILEopen	function;	if	it	was
opened	in	write	mode,	it	will	be	erased,	and	a	new	file	will	be
constructed	in	its	place;	if	it	was	opened	in	append	mode,	its	file
info	will	be	loaded	with	FILEopen	and	the	current	location	will	be
moved	to	the	end	of	the	file	using	the	FSfseek	function.	If	the	file
was	not	found	by	FILEfind,	it	will	be	created	if	the	mode	was
specified	as	a	write	or	append	mode.	In	these	cases,	a	pointer	to
the	heap	or	static	FSFILE	object	array	will	be	returned.	If	the	file
was	not	found	and	the	mode	was	specified	as	a	read	mode,	the
memory	allocated	to	the	file	will	be	freed	and	the	NULL	pointer
value	will	be	returned.

Preconditions

For	read	modes,	file	exists;	FSInit	performed

Parameters

Parameters	 Description	

fileName	 The	name	of	the	file	to	open	

mode	

WRITE	-	Create	a	new	file	or	replace
an	existing	file
READ	-	Read	data	from	an	existing	file
APPEND	-	Append	data	to	an	existing
file
WRITEPLUS	-	Create	a	new	file	or
replace	an	existing	file	(reads	also
enabled)
READPLUS	-	Read	data	from	an
existing	file	(writes	also	enabled)
APPENDPLUS	-	Append	data	to	an
existing	file	(reads	also	enabled)

	

Return	Values

Return	Values	 Description	

FSFILE	*	 The	pointer	to	the	file	object	

NULL	 The	file	could	not	be	opened	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSfopen
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSfopenpgm	Function
C
FSFILE	*	FSfopenpgm(

				const	rom	char	*	fileName,	

				const	rom	char	*	mode

);

Description

The	FSfopenpgm	function	will	copy	a	PIC18	ROM	fileName	and
mode	argument	into	RAM	arrays,	and	then	pass	those	arrays	to
the	FSfopen	function.

Preconditions

For	read	modes,	file	exists;	FSInit	performed

Parameters

Parameters	 Description	

fileName	 The	name	of	the	file	to	be	opened	(ROM)	

mode	 The	mode	the	file	will	be	opened	in	(ROM)	

Return	Values

Return	Values	 Description	

FSFILE	*	 A	pointer	to	the	file	object	

NULL	 File	could	not	be	opened	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

This	function	is	for	use	with	PIC18	when	passing	arguments	in
ROM.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSfopenpgm
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSformat	Function
C
int	FSformat(

				char	mode,	

				long	int	serialNumber,	

				char	*	volumeID

);

Description

The	FSformat	function	can	be	used	to	create	a	new	boot	sector
on	a	device,	based	on	the	information	in	the	master	boot	record.
This	function	will	first	initialize	the	I/O	pins	and	the	device,	and
then	attempts	to	read	the	master	boot	record.	If	the	MBR	cannot
be	loaded	successfully,	the	function	will	fail.	Next,	if	the	'mode'
argument	is	specified	as	'0'	the	existing	boot	sector	information
will	be	loaded.	If	the	'mode'	argument	is	'1'	an	entirely	new	boot
sector	will	be	constructed	using	the	disk	values	from	the	master
boot	record.	Once	the	boot	sector	has	been	successfully
loaded/created,	the	locations	of	the	FAT	and	root	will	be	loaded
from	it,	and	they	will	be	completely	erased.	If	the	user	has
specified	a	volumeID	parameter,	a	VOLUME	attribute	entry	will
be	created	in	the	root	directory	to	name	the	device.

Preconditions

The	device	must	possess	a	valid	master	boot	record.

Parameters

Parameters	 Description	

0	-	Just	erase	the	FAT	and	root

mode	 1	-	Create	a	new	boot	sector

	

serialNumber	 Serial	number	to	write	to	the	card	

volumeID	 Name	of	the	card	

Return	Values

Return	Values	 Description	

0	 Format	was	successful	

EOF	 Format	was	unsuccessful	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

FAT12	and	FAT16	formatting	is	supported.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSformat
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSfprintf	Function
C
int	FSfprintf(

				FSFILE	*	fptr,	

				const	rom	char	*	fmt,	

				...

);

Description

Writes	a	specially	formatted	string	to	a	file.

Preconditions

For	PIC18,	integer	promotion	must	be	enabled	in	the	project
build	options	menu.	File	opened	in	a	write	mode.

Parameters

Parameters	 Description	

fptr	 A	pointer	to	the	file	to	write	to.	

fmt	 A	string	of	characters	and	format	specifiers
to	write	to	the	file	

...	 Additional	arguments	inserted	in	the	string
by	format	specifiers	

Returns

The	number	of	characters	written	to	the	file

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

Consult	AN1045	for	a	full	description	of	how	to	use	format
specifiers.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSfprintf
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSfread	Function
C
size_t	FSfread(

				void	*	ptr,	

				size_t	size,	

				size_t	n,	

				FSFILE	*	stream

);

Description

The	FSfread	function	will	read	data	from	the	specified	file.	First,
the	appropriate	sector	of	the	file	is	loaded.	Then,	data	is	read	into
the	specified	buffer	until	the	specified	number	of	bytes	have	been
read.	When	a	cluster	boundary	is	reached,	a	new	cluster	will	be
loaded.	The	parameters	'size'	and	'n'	indicate	how	much	data	to
read.	'Size'	refers	to	the	size	of	one	object	to	read	(in	bytes),	and
'n'	will	refer	to	the	number	of	these	objects	to	read.	The	value
returned	will	be	equal	to	'n'	unless	an	error	occured	or	the	user
tried	to	read	beyond	the	end	of	the	file.

Preconditions

File	is	opened	in	a	read	mode

Parameters

Parameters	 Description	

ptr	 Destination	buffer	for	read	bytes	

size	 Size	of	units	in	bytes	

n	 Number	of	units	to	be	read	

stream	 File	to	be	read	from	

Returns

size_t	-	number	of	units	read

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSfread
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSfseek	Function
C
int	FSfseek(

				FSFILE	*	stream,	

				long	offset,	

				int	whence

);

Description

The	FSfseek	function	will	change	the	current	position	in	the	file	to
one	specified	by	the	user.	First,	an	absolute	offset	is	calculated
using	the	offset	and	base	location	passed	in	by	the	user.	Then,
the	position	variables	are	updated,	and	the	sector	number	that
corresponds	to	the	new	location.	That	sector	is	then	loaded.	If
the	offset	falls	exactly	on	a	cluster	boundary,	a	new	cluster	will	be
allocated	to	the	file	and	the	position	will	be	set	to	the	first	byte	of
that	cluster.

Preconditions

File	opened

Parameters

Parameters	 Description	

stream	 Pointer	to	file	structure	

offset	 Offset	from	base	location	

SEEK_SET	-	Seek	from	start	of	file
SEEK_CUR	-	Seek	from	current

whence	 location
SEEK_END	-	Seek	from	end	of	file
(subtract	offset)

	

Return	Values

Return	Values	 Description	

0	 Operation	successful	

-1	 Operation	unsuccesful	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSfseek
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSftell	Function
C
long	FSftell(

				FSFILE	*	fo

);

Description

The	FSftell	function	will	return	the	current	position	in	the	file
pointed	to	by	'fo'	by	returning	the	'seek'	variable	in	the	FSFILE
object,	which	is	used	to	keep	track	of	the	absolute	location	of	the
current	position	in	the	file.

Preconditions

File	opened

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

Returns

Current	location	in	the	file

Side	Effects

The	FSerrno	variable	will	be	changed

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSftell
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSfwrite	Function
C
size_t	FSfwrite(

				const	void	*	ptr,	

				size_t	size,	

				size_t	n,	

				FSFILE	*	stream

);

Description

The	FSfwrite	function	will	write	data	to	a	file.	First,	the	sector	that
corresponds	to	the	current	position	in	the	file	will	be	loaded	(if	it
hasn't	already	been	cached	in	the	global	data	buffer).	Data	will
then	be	written	to	the	device	from	the	specified	buffer	until	the
specified	amount	has	been	written.	If	the	end	of	a	cluster	is
reached,	the	next	cluster	will	be	loaded,	unless	the	end-of-file
flag	for	the	specified	file	has	been	set.	If	it	has,	a	new	cluster	will
be	allocated	to	the	file.	Finally,	the	new	position	and	filezize	will
be	stored	in	the	FSFILE	object.	The	parameters	'size'	and	'n'
indicate	how	much	data	to	write.	'Size'	refers	to	the	size	of	one
object	to	write	(in	bytes),	and	'n'	will	refer	to	the	number	of	these
objects	to	write.	The	value	returned	will	be	equal	to	'n'	unless	an
error	occured.

Preconditions

File	opened	in	WRITE,	APPEND,	WRITE+,	APPEND+,	READ+
mode

Parameters

Parameters	 Description	

ptr	 Pointer	to	source	buffer	

size	 Size	of	units	in	bytes	

n	 Number	of	units	to	transfer	

stream	 Pointer	to	file	structure	

Returns

size_t	-	number	of	units	written

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSfwrite
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSgetcwd	Function
C
char	*	FSgetcwd(

				char	*	path,	

				int	numbchars

);

Description

The	FSgetcwd	function	will	get	the	name	of	the	current	working
directory	and	return	it	to	the	user.	The	name	will	be	copied	into
the	buffer	pointed	to	by	'path,'	starting	at	the	root	directory	and
copying	as	many	chars	as	possible	before	the	end	of	the	buffer.
The	buffer	size	is	indicated	by	the	'numchars'	argument.	The	first
thing	this	function	will	do	is	load	the	name	of	the	current	working
directory,	if	it	isn't	already	present.	This	could	occur	if	the	user
switched	to	the	dotdot	entry	of	a	subdirectory	immediately	before
calling	this	function.	The	function	will	then	copy	the	current
working	directory	name	into	the	buffer	backwards,	and	insert	a
backslash	character.	Next,	the	function	will	continuously	switch	to
the	previous	directories	and	copy	their	names	backwards	into	the
buffer	until	it	reaches	the	root.	If	the	buffer	overflows,	it	will	be
treated	as	a	circular	buffer,	and	data	will	be	copied	over	existing
characters,	starting	at	the	beginning.	Once	the	root	directory	is
reached,	the	text	in	the	buffer	will	be	swapped,	so	that	the	buffer
contains	as	much	of	the	current	working	directory	name	as
possible,	starting	at	the	root.

Preconditions

None

Parameters

Parameters	 Description	

path	 Pointer	to	the	array	to	return	the	cwd	name
in	

numchars	 Number	of	chars	in	the	path	

Return	Values

Return	Values	 Description	

char	*	 The	cwd	name	string	pointer	(path	or
defaultArray)	

NULL	 The	current	working	directory	name	could
not	be	loaded.	

Side	Effects

The	FSerrno	variable	will	be	changed

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSgetcwd
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSInit	Function
C
int	FSInit();

Description

Initializes	the	static	or	dynamic	memory	slots	for	holding	file
structures.	Initializes	the	device	with	the	DISKmount	function.
Loads	MBR	and	boot	sector	information.	Initializes	the	current
working	directory	to	the	root	directory	for	the	device	if	directory
support	is	enabled.

Preconditions

The	physical	device	should	be	connected	to	the	microcontroller.

Return	Values

Return	Values	 Description	

TRUE	 Initialization	successful	

FALSE	 Initialization	unsuccessful	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSInit

Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSmkdir	Function
C
int	FSmkdir(

				char	*	path

);

Description

The	FSmkdir	function	passes	a	RAM	pointer	to	the	path	to	the
mkdirhelper	function.

Preconditions

None

Parameters

Parameters	 Description	

path	 The	path	of	directories	to	create.	

Return	Values

Return	Values	 Description	

0	 The	specified	directory	was	created
successfully	

EOF	 The	specified	directory	could	not	be	created	

Side	Effects

Will	create	all	non-existent	directories	in	the	path.	The	FSerrno

variable	will	be	changed.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSmkdir
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSmkdirpgm	Function
C
int	FSmkdirpgm(

				const	rom	char	*	path

);

Description

The	FSmkdirpgm	function	passes	a	PIC18	ROM	path	pointer	to
the	mkdirhelper	function.

Preconditions

None

Parameters

Parameters	 Description	

path	 The	path	of	directories	to	create	(ROM)	

Return	Values

Return	Values	 Description	

0	 The	specified	directory	was	created
successfully	

EOF	 The	specified	directory	could	not	be	created	

Side	Effects

Will	create	all	non-existent	directories	in	the	path.	The	FSerrno

variable	will	be	changed.

Remarks

This	function	is	for	use	with	PIC18	when	passing	arugments	in
ROM

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSmkdirpgm
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSremove	Function
C
int	FSremove(

				const	char	*	fileName

);

Description

The	FSremove	function	will	attempt	to	find	the	specified	file	with
the	FILEfind	function.	If	the	file	is	found,	it	will	be	erased	using
the	FILEerase	function.

Preconditions

File	not	opened,	file	exists

Parameters

Parameters	 Description	

fileName	 Name	of	the	file	to	erase	

Return	Values

Return	Values	 Description	

0	 File	removed	

EOF	 File	was	not	removed	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSremove
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSremovepgm	Function
C
int	FSremovepgm(

				const	rom	char	*	fileName

);

Description

The	FSremovepgm	function	will	copy	a	PIC18	ROM	fileName
argument	into	a	RAM	array,	and	then	pass	that	array	to	the
FSremove	function.

Preconditions

File	not	opened;	file	exists

Parameters

Parameters	 Description	

fileName	 The	name	of	the	file	to	be	deleted	(ROM)	

Return	Values

Return	Values	 Description	

0	 File	was	removed	successfully	

-1	 File	could	not	be	removed	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

This	function	is	for	use	with	PIC18	when	passing	arguments	in
ROM.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
FSremovepgm	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSrename	Function
C
int	FSrename(

				const	char	*	fileName,	

				FSFILE	*	fo

);

Description

The	FSrename	function	will	rename	a	file.	First,	it	will	search
through	the	current	working	directory	to	ensure	the	specified	new
filename	is	not	already	in	use.	If	it	isn't,	the	new	filename	will	be
written	to	the	file	entry	of	the	file	pointed	to	by	'fo.'

Preconditions

File	opened.

Parameters

Parameters	 Description	

fileName	 The	new	name	of	the	file	

fo	 The	file	to	rename	

Return	Values

Return	Values	 Description	

0	 File	was	renamed	successfully	

EOF	 File	was	not	renamed	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSrename
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSrenamepgm	Function
C
int	FSrenamepgm(

				const	rom	char	*	fileName,	

				FSFILE	*	fo

);

Description

The	Fsrenamepgm	function	will	copy	the	rom	fileName	specified
by	the	user	into	a	RAM	array	and	pass	that	array	into	the
FSrename	function.

Preconditions

File	opened.

Parameters

Parameters	 Description	

fileName	 The	new	name	of	the	file	(in	ROM)	

fo	 The	file	to	rename	

Return	Values

Return	Values	 Description	

0	 File	renamed	successfully	

-1	 File	could	not	be	renamed	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

This	function	is	for	use	with	PIC18	when	passing	arguments	in
ROM.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
FSrenamepgm	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSrewind	Function
C
void	FSrewind(

				FSFILE	*	fo

);

Description

The	FSrewind	funciton	will	reset	the	position	of	the	specified	file
to	the	beginning	of	the	file.	This	functionality	is	faster	than	using
FSfseek	to	reset	the	position	in	the	file.

Preconditions

File	opened.

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

Side	Effects

None.

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSrewind
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]

Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSrmdir	Function
C
int	FSrmdir(

				char	*	path,	

				unsigned	char	rmsubdirs

);

Description

The	FSrmdir	function	passes	a	RAM	pointer	to	the	path	to	the
rmdirhelper	function.

Preconditions

None

Parameters

Parameters	 Description	

path	 The	path	of	the	directory	to	remove	

rmsubdirs	

TRUE	-	All	sub-dirs	and	files	in	the
target	dir	will	be	removed
FALSE	-	FSrmdir	will	not	remove	non-
empty	directories

	

Return	Values

Return	Values	 Description	

0	 The	specified	directory	was	deleted

successfully	

EOF	 The	specified	directory	could	not	be	deleted	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSrmdir
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSrmdirpgm	Function
C
int	FSrmdirpgm(

				const	rom	char	*	path,	

				unsigned	char	rmsubdirs

);

Description

The	FSrmdirpgm	function	passes	a	PIC18	ROM	path	pointer	to
the	rmdirhelper	function.

Preconditions

None.

Parameters

Parameters	 Description	

path	 The	path	of	the	directory	to	remove	(ROM)	

rmsubdirs	

TRUE	-	All	sub-dirs	and	files	in	the
target	dir	will	be	removed
FALSE	-	FSrmdir	will	not	remove	non-
empty	directories

	

Return	Values

Return	Values	 Description	

0	 The	specified	directory	was	deleted

successfully	

EOF	 The	specified	directory	could	not	be	deleted	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

This	function	is	for	use	with	PIC18	when	passing	arguments	in
ROM.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSrmdirpgm
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SetClockVars	Function
C
int	SetClockVars(

				unsigned	int	year,	

				unsigned	char	month,	

				unsigned	char	day,	

				unsigned	char	hour,	

				unsigned	char	minute,	

				unsigned	char	second

);

Description

Lets	the	user	manually	set	the	timing	variables.	The	values
passed	in	will	be	converted	to	the	format	used	by	the	FAT
timestamps.

Preconditions

USERDEFINEDCLOCK	macro	defined	in	FSconfig.h.

Parameters

Parameters	 Description	

year	 The	year	(1980-2107)	

month	 The	month	(1-12)	

day	 The	day	of	the	month	(1-31)	

hour	 The	hour	(0-23)	

minute	 The	minute	(0-59)	

second	 The	second	(0-59)	

Side	Effects

Modifies	global	timing	variables

Remarks

Call	this	before	creating	a	file	or	directory	(set	create	time)	and
before	closing	a	file	(set	last	access	time,	last	modified	time)

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	SetClockVars
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ALLOW_DIRS	Macro
C
#define	ALLOW_DIRS	

Description

The	ALLOW_DIRS	definition	can	be	commented	out	to	disable
all	directory	functionality.	This	will	reduce	code	size.	If	directories
are	enabled,	write	operations	must	also	be	enabled	by
uncommenting	ALLOW_WRITES	in	order	to	use	the	FSmkdir	or
FSrmdir	functions.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ALLOW_DIRS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ALLOW_FILESEARCH	Macro
C
#define	ALLOW_FILESEARCH	

Description

The	ALLOW_FILESEARCH	definition	can	be	commented	out	to
disable	file	search	functions	in	the	library.	This	will	prevent	the
use	of	the	FindFirst	and	FindNext	functions	and	reduce	code
size.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ALLOW_FILESEARCH	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ALLOW_FSFPRINTF	Macro
C
#define	ALLOW_FSFPRINTF	

Description

The	ALLOW_FSFPRINTF	definition	can	be	commented	out	to
disable	the	FSfprintf	function.	This	will	save	code	space.	Note
that	if	FSfprintf	is	enabled	and	the	PIC18	architecture	is	used,
integer	promotions	must	be	enabled	in	the	Project->Build
Options	menu.	Write	operations	must	be	enabled	to	use
FSfprintf.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ALLOW_FSFPRINTF	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ALLOW_FORMATS	Macro
C
#define	ALLOW_FORMATS	

Description

The	ALLOW_FORMATS	definition	can	be	commented	out	to
disable	formatting	functionality.	This	will	prevent	the	use	of	the
FSformat	function.	If	formats	are	enabled,	write	operations	must
also	be	enabled	by	uncommenting	ALLOW_WRITES.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ALLOW_FORMATS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ALLOW_PGMFUNCTIONS	Macro
C
#define	ALLOW_PGMFUNCTIONS	

Description

The	ALLOW_PGMFUNCTIONS	definition	can	be	commented
out	to	disable	all	PIC18	functions	that	allow	the	user	to	pass
string	arguments	in	ROM	(denoted	by	the	suffix	-pgm).	Note	that
this	functionality	must	be	disabled	when	not	using	PIC18.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ALLOW_PGMFUNCTIONS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ALLOW_WRITES	Macro
C
#define	ALLOW_WRITES	

Description

The	ALLOW_WRITES	definition	can	be	commented	out	to
disable	all	operations	that	write	to	the	device.	This	will	greatly
reduce	code	size.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ALLOW_WRITES	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

APPEND	Macro
C
#define	APPEND	"a"

Description

If	this	macro	is	specified	as	the	mode	argument	in	a	call	of
FSfopen,	the	file	being	opened	will	be	created	if	it	doesn't	exist.	If
it	does	exist,	it's	file	information	will	be	loaded	and	the	current
location	in	the	file	will	be	set	to	the	end.	The	user	will	then	be
able	to	write	to	the	file.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	APPEND
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

APPENDPLUS	Macro
C
#define	APPENDPLUS	"a+"

Description

If	this	macro	is	specified	as	the	mode	argument	in	a	call	of
FSfopen,	the	file	being	opened	will	be	created	if	it	doesn't	exist.	If
it	does	exist,	it's	file	information	will	be	loaded	and	the	current
location	in	the	file	will	be	set	to	the	end.	The	user	will	then	be
able	to	write	to	the	file	or	read	from	the	file.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
APPENDPLUS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ATTR_ARCHIVE	Macro
C
#define	ATTR_ARCHIVE	0x20

Description

A	macro	for	the	archive	attribute.	This	attribute	will	indicate	to
some	archiving	programs	that	the	file	with	this	attribute	needs	to
be	backed	up.	Most	operating	systems	create	files	with	the
archive	attribute	set.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ATTR_ARCHIVE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ATTR_DIRECTORY	Macro
C
#define	ATTR_DIRECTORY	0x10

Description

A	macro	for	the	directory	attribute.	If	a	directory	entry	has	this
attribute	set,	the	file	it	points	to	is	a	directory-	type	file,	and	will
contain	directory	entries	that	point	to	additional	directories	or
files.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ATTR_DIRECTORY	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ATTR_HIDDEN	Macro
C
#define	ATTR_HIDDEN	0x02

Description

A	macro	for	the	hidden	attribute.	A	file	with	this	attribute	may	be
hidden	from	the	user,	depending	on	the	implementation	of	the
operating	system.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ATTR_HIDDEN	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ATTR_MASK	Macro
C
#define	ATTR_MASK	0x3f

Description

A	macro	for	all	attributes.	The	search	functions	in	this	library
require	an	argument	that	determines	which	attributes	a	file	is
allowed	to	have	in	order	to	be	found.	If	ATTR_MASK	is	specified
as	this	argument,	any	file	may	be	found,	regardless	of	its
attributes.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	ATTR_MASK
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ATTR_READ_ONLY	Macro
C
#define	ATTR_READ_ONLY	0x01

Description

A	macro	for	the	read-only	attribute.	A	file	with	this	attribute	should
not	be	written	to.	Note	that	this	attribute	will	not	actually	prevent
a	write	to	the	file;	that	functionality	is	operating-system
dependant.	The	user	should	take	care	not	to	write	to	a	read-only
file.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ATTR_READ_ONLY	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ATTR_SYSTEM	Macro
C
#define	ATTR_SYSTEM	0x04

Description

A	macro	for	the	system	attribute.	A	file	with	this	attribute	is	used
by	the	operating	system,	and	should	not	be	modified.	Note	that
this	attribute	will	not	actually	prevent	a	write	to	the	file.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ATTR_SYSTEM	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ATTR_VOLUME	Macro
C
#define	ATTR_VOLUME	0x08

Description

A	macro	for	the	volume	attribute.	If	the	first	directory	entry	in	the
root	directory	has	the	volume	attribute	set,	the	device	will	use	the
name	in	that	directory	entry	as	the	volume	name.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
ATTR_VOLUME	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EOF	Macro
C
#define	EOF	((int)-1)

Description

The	EOF	macro	is	used	to	indicate	error	conditions	in	some
function	calls.	It	is	also	used	to	indicate	that	the	end-of-file	has
been	reached.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	EOF	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FALSE	Macro
C
#define	FALSE	0

Description

This	macro	will	indicate	that	a	condition	is	false.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FALSE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FS_DYNAMIC_MEM	Macro
C
#define	FS_DYNAMIC_MEM	

Description

The	FS_DYNAMIC_MEM	macro	will	cause	FSFILE	objects	to	be
allocated	from	a	dynamic	heap.	If	it	is	undefined,	the	file	objects
will	be	allocated	using	a	static	array.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
FS_DYNAMIC_MEM	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FS_MAX_FILES_OPEN	Macro
C
#define	FS_MAX_FILES_OPEN	3

Description

The	FS_MAX_FILES_OPEN	#define	is	only	applicable	when
dynamic	memory	allocation	is	not	used	(FS_DYNAMIC_MEM	is
not	defined).	This	macro	defines	the	maximum	number	of	open
files	at	any	given	time.	The	amount	of	RAM	used	by	FSFILE
objects	will	be	equal	to	the	size	of	an	FSFILE	object	multipled	by
this	macro	value.	This	value	should	be	kept	as	small	as	possible
as	dictated	by	the	application.	This	will	reduce	memory	usage.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
FS_MAX_FILES_OPEN	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

INCREMENTTIMESTAMP	Macro
C
#define	INCREMENTTIMESTAMP	

Description

The	INCREMENTTIMESTAMP	macro	will	set	the	create	time	of	a
file	to	a	static	value	and	increment	it	when	a	file	is	updated.	This
timestamp	generation	method	should	only	be	used	in
applications	where	file	times	are	not	necessary.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
INCREMENTTIMESTAMP	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

intmax_t	Macro
C
#define	intmax_t	long	long

Description

The	intmax_t	data	type	refers	to	the	maximum-sized	data	type	on
any	given	architecture.	This	data	type	can	be	specified	as	a
format	specifier	size	specification	for	the	FSfprintf	function.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	intmax_t
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_MediaDetect	Macro
C
#define	MDD_MediaDetect	USBHostMSDSCSIMediaDetect

Description

Function	pointer	to	the	Media	Detect	Physical	Layer	function

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
MDD_MediaDetect	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MEDIA_SECTOR_SIZE	Macro
C
#define	MEDIA_SECTOR_SIZE	512

Description

The	MEDIA_SECTOR_SIZE	macro	will	define	the	size	of	a
sector	on	the	FAT	file	system.	This	value	must	equal	512	bytes,
1024	bytes,	2048	bytes,	or	4096	bytes.	The	value	of	a	sector	will
usually	be	512	bytes.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
MEDIA_SECTOR_SIZE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NEAR_MODEL	Macro
C
#define	NEAR_MODEL	

Description

By	uncommenting	the	NEAR_MODEL	macro,	the	user	can
enable	near-model	RAM	addressing	when	using	dynamic
FSFILE	object	allocation	with	PIC18

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
NEAR_MODEL	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

READ	Macro
C
#define	READ	"r"

Description

If	this	macro	is	specified	as	the	mode	argument	in	a	call	of
FSfopen,	the	file	information	for	the	specified	file	will	be	loaded.	If
the	file	does	not	exist,	the	FSfopen	function	will	fail.	The	user	will
then	be	able	to	read	from	the	file.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	READ	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

READPLUS	Macro
C
#define	READPLUS	"r+"

Description

If	this	macro	is	specified	as	the	mode	argument	in	a	call	of
FSfopen,	the	file	information	for	the	specified	file	will	be	loaded.	If
the	file	does	not	exist,	the	FSfopen	function	will	fail.	The	user	will
then	be	able	to	read	from	the	file	or	write	to	the	file.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	READPLUS
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SEEK_CUR	Macro
C
#define	SEEK_CUR	1

Description

Functions	as	an	input	for	FSfseek	that	specifies	that	the	position
in	the	file	will	be	changed	relative	to	the	current	location	of	the
file

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	SEEK_CUR
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SEEK_END	Macro
C
#define	SEEK_END	2

Description

Functions	as	an	input	for	FSfseek	that	specifies	that	the	position
in	the	file	will	be	changed	relative	to	the	end	of	the	file.	For	this
macro,	the	offset	value	will	be	subtracted	from	the	end	location	of
the	file	by	default.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	SEEK_END
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SEEK_SET	Macro
C
#define	SEEK_SET	0

Description

Functions	as	an	input	for	FSfseek	that	specifies	that	the	position
in	the	file	will	be	changed	relative	to	the	beginning	of	the	file.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	SEEK_SET
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SUPPORT_FAT32	Macro
C
#define	SUPPORT_FAT32	

Description

The	SUPPORT_FAT32	definition	can	be	commented	out	to
disable	support	for	FAT32	functionality.	This	will	save	a	small
amount	of	code	space.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
SUPPORT_FAT32	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TRUE	Macro
C
#define	TRUE	!FALSE

Description

True	value

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	TRUE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_CF_INTERFACE_WITH_PMP	Macro
C
#define	USE_CF_INTERFACE_WITH_PMP	

Description

Macro	used	to	enable	the	CF-PMP	physical	layer	(CF-PMP.c	and
.h)

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
USE_CF_INTERFACE_WITH_PMP	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_MANUAL_CF_INTERFACE	Macro
C
#define	USE_MANUAL_CF_INTERFACE	

Description

Macro	used	to	enable	the	CF-Manual	physical	layer	(CF-Bit
transaction.c	and	.h)

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
USE_MANUAL_CF_INTERFACE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_SD_INTERFACE_WITH_SPI	Macro
C
#define	USE_SD_INTERFACE_WITH_SPI	

Description

Macro	used	to	enable	the	SD-SPI	physical	layer	(SD-SPI.c	and
.h)

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
USE_SD_INTERFACE_WITH_SPI	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_USB_INTERFACE	Macro
C
#define	USE_USB_INTERFACE	

Description

Macro	used	to	enable	the	USB	Host	physical	layer	(USB	host
MSD	library)

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
USE_USB_INTERFACE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USERDEFINEDCLOCK	Macro
C
#define	USERDEFINEDCLOCK	

Description

The	USERDEFINEDCLOCK	macro	will	allow	the	user	to
manually	set	timestamp	information	using	the	SetClockVars
function.	The	user	will	need	to	set	the	time	variables	immediately
before	creating	or	closing	a	file	or	directory.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
USERDEFINEDCLOCK	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USEREALTIMECLOCK	Macro
C
#define	USEREALTIMECLOCK	

Description

The	USEREALTIMECLOCK	macro	will	configure	the	code	to
automatically	generate	timestamp	information	for	files	from	the
RTCC	module.	The	user	must	enable	and	configure	the	RTCC
module	before	creating	or	modifying	files.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
USEREALTIMECLOCK	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

WRITE	Macro
C
#define	WRITE	"w"

Description

If	this	macro	is	specified	as	the	mode	argument	in	a	call	of
FSfopen,	the	file	being	opened	will	be	created	if	it	doesn't	exist.	If
it	does	exist,	it	will	be	erased	and	replaced	by	an	empty	file	of	the
same	name.	The	user	will	then	be	able	to	write	to	the	file.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	WRITE
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

WRITEPLUS	Macro
C
#define	WRITEPLUS	"w+"

Description

If	this	macro	is	specified	as	the	mode	argument	in	a	call	of
FSfopen,	the	file	being	opened	will	be	created	if	it	doesn't	exist.	If
it	does	exist,	it	will	be	erased	and	replaced	by	an	empty	file	of	the
same	name.	The	user	will	then	be	able	to	write	to	the	file	or	read
from	the	file.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	WRITEPLUS
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSFILE	Structure
C
typedef	struct	{

		DISK	*	dsk;

		DWORD	cluster;

		DWORD	ccls;

		WORD	sec;

		WORD	pos;

		DWORD	seek;

		DWORD	size;

		FILEFLAGS	flags;

		WORD	time;

		WORD	date;

		char	name[FILE_NAME_SIZE];

		WORD	entry;

		WORD	chk;

		WORD	attributes;

		DWORD	dirclus;

		DWORD	dirccls;

}	FSFILE;

Description

The	FSFILE	structure	is	used	to	hold	file	information	for	an	open
file	as	it's	being	modified	or	accessed.	A	pointer	to	an	open	file's
FSFILE	structure	will	be	passeed	to	any	library	function	that	will
modify	that	file.

Members

Members	 Description	

DISK	*	dsk;	 Pointer	to	a	DISK	structure	

DWORD	cluster;	 The	first	cluster	of	the	file	

DWORD	ccls;	 The	current	cluster	of	the	file	

WORD	sec;	 The	current	sector	in	the	current	cluster
of	the	file	

WORD	pos;	 The	position	in	the	current	sector	

DWORD	seek;	 The	absolute	position	in	the	file	

DWORD	size;	 The	size	of	the	file	

FILEFLAGS	flags;	 A	structure	containing	file	flags	

WORD	time;	 The	file's	last	update	time	

WORD	date;	 The	file's	last	update	date	

char
name[FILE_NAME_SIZE];	 The	name	of	the	file	

WORD	entry;	 The	position	of	the	file's	directory	entry
in	it's	directory	

WORD	chk;	 File	structure	checksum	

WORD	attributes;	 The	file	attributes	

DWORD	dirclus;	 The	base	cluster	of	the	file's	directory	

DWORD	dirccls;	 The	current	cluster	of	the	file's	directory	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	FSFILE
Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SearchRec	Structure
C
typedef	struct	{

		char	filename[FILE_NAME_SIZE	+	2];

		unsigned	char	attributes;

		unsigned	long	filesize;

		unsigned	long	timestamp;

		unsigned	int	entry;

		char	searchname[FILE_NAME_SIZE	+	2];

		unsigned	char	searchattr;

		unsigned	int	cwdclus;

		unsigned	char	initialized;

}	SearchRec;

Description

The	SearchRec	structure	is	used	when	searching	for	file	on	a
device.	It	contains	parameters	that	will	be	loaded	with	file
information	when	a	file	is	found.	It	also	contains	the	parameters
that	the	user	searched	for,	allowing	further	searches	to	be
perfomed	in	the	same	directory	for	additional	files	that	meet	the
specified	criteria.

Members

Members	 Description	

char
filename[FILE_NAME_SIZE	+
2];	

The	name	of	the	file	that	has	been
found	

unsigned	char	attributes;	 The	attributes	of	the	file	that	has
been	found	

unsigned	long	filesize;	 The	size	of	the	file	that	has	been
found	

unsigned	long	timestamp;	
The	last	modified	time	of	the	file
that	has	been	found	(create	time	for
directories)	

unsigned	int	entry;	
The	directory	entry	of	the	last	file
found	that	matches	the	specified
attributes.	(Internal	use	only)	

char
searchname[FILE_NAME_SIZE
+	2];	

The	name	specified	when	the	user
began	the	search.	(Internal	use
only)	

unsigned	char	searchattr;	
The	attributes	specified	when	the
user	began	the	search.	(Internal
use	only)	

unsigned	int	cwdclus;	 The	directory	that	this	search	was
performed	in.	(Internal	use	only)	

unsigned	char	initialized;	
Check	to	determine	if	the	structure
was	initialized	by	FindFirst	(Internal
use	only)	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>	SearchRec
Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Library	Members
The	following	functions,	variables,	structures,	and	macros	are
public,	but	are	intended	only	to	be	accessed	by	the	library	itself.
Applications	should	generally	not	call	these	functions	or	modify
these	variables.

Enumerations

	 Name	 Description	

	 CETYPE	 An	enumeration	used	for	various	error
codes.	

	 _CETYPE	 An	enumeration	used	for	various	error
codes.	

	 SEARCH_TYPE	 Indicates	how	to	search	for	file	entries	in
the	FILEfind	function	

Functions

	 Name	 Description	

	 ReadByte	 Read	a	byte	from	a	buffer	

	 ReadDWord	 Read	a	32-bit	double	word	from	a
buffer	

	 ReadWord	 Read	a	16-bit	word	from	a	buffer	

	 MDD_WriteProtectState	

Function	pointer	that	points	to	a
physical	layer's
MDD_xxxxx_WriteProtectState
function	

Macros

	 Name	 Description	

	 ATTR_LONG_NAME	

A	macro	for
the	attributes
for	a	long-file
name	entry	

	 BSI_BOOTSIG	

A	macro	for
the	boot
sector	boot
signature
offset	

	 BSI_BPS	

A	macro	for
the	boot
sector	bytes
per	sector
value	offset	

	 BSI_FAT32_BOOTSIG	

A	macro	for
the	FAT32
boot	sector
boot
signature
offset	

	 BSI_FAT32_FSTYPE	

A	macro	for
the	FAT32
boot	sector
file	system
type	string
offset	

	 BSI_FATCOUNT	

A	macro	for
the	boot
sector	FAT

count	value
offset	

	 BSI_FATSZ32	

A	macro	for
the	boot
sector	32-bit
sector	per
FAT	value
offset	

	 BSI_FSTYPE	

A	macro	for
the	boot
sector	file
system	type
string	offset	

	 BSI_RESRVSEC	

A	macro	for
the	boot
sector
reserved
sector	count
value	offset	

	 BSI_ROOTCLUS	

A	macro	for
the	boot
sector	start
cluster	of
root
directory
value	offset	

	 BSI_ROOTDIRENTS	

A	macro	for
the	boot
sector	root
directory
entry	count
value	offset	

	 BSI_SPC	

A	macro	for
the	boot
sector	sector
per	cluster
value	offset	

	 BSI_SPF	

A	macro	for
the	boot
sector
sectors	per
FAT	value
offset	

	 BSI_TOTSEC16	

A	macro	for
the	boot
sector	16-bit
total	sector
count	value
offset	

	 BSI_TOTSEC32	

A	macro	for
the	boot
sector	32-bit
total	sector
count	value
offset	

	 CE_EOF	

Error	that
indicates
that	the	end
of	the	file
has	been
reached	

Error	that
indicates	an
attempt	to
read	FAT

	 CE_FAT_EOF	 entries
beyond	the
end	of	the
file	

	 CLUSTER_EMPTY	

A	macro	to
indicate	an
empty	FAT
entry	

	 CLUSTER_FAIL_FAT16	

A	macro	to
indicate	the
failure	of	the
ReadFAT
function	

	 CLUSTER_FAIL_FAT32	

A	macro	to
indicate	the
failure	of	the
ReadFAT
function	

	 DIR_DEL	

A	macro	for
a	deleted	dir
entry
marker.	

	 DIR_EMPTY	

A	macro	for
the	last	dir
entry
marker.	

	 DIR_EXTENSION	

A	macro
used	to
indicate	the
length	of	an
8.3	file

extension	

	 DIR_NAMECOMP	

A	macro
used	to
indicate	the
length	of	an
8.3	file	name
and
extension	

	 DIR_NAMESIZE	

A	macro
used	to
indicate	the
length	of	an
8.3	file
name	

	 END_CLUSTER_FAT12	

A	macro	to
indicate	the
last
allocatable
cluster	for
FAT12	

	 END_CLUSTER_FAT16	

A	macro	to
indicate	the
last
allocatable
cluster	for
FAT16	

	 END_CLUSTER_FAT32	

A	macro	to
indicate	the
last
allocatable
cluster	for
FAT32	

	 FAT_GOOD_SIGN_0	

A	macro	for
the	first	boot
sector/MBR
signature
byte	

	 FAT_GOOD_SIGN_1	

A	macro	for
the	second
boot
sector/MBR
signature
byte	

	 FAT12	

A	macro
indicating
the	device	is
formatted
with	FAT12	

	 FAT16	

A	macro
indicating
the	device	is
formatted
with	FAT16	

	 FAT32	

A	macro
indicating
the	device	is
formatted
with	FAT32	

	 FILE_NAME_SIZE	

MAcro
indicating
the	length	of
an	8.3	file
name	in	a
directory
entry	

	 FO_MBR	

A	macro
indicating
the	offset	for
the	master
boot	record	

	 FOUND	

A	macro
indicating	a
dir	entry	was
found	

	 GetInstructionClock	
Instruction
clock
frequency	

	 GetPeripheralClock	
Peripheral
clock
frequency	

	 GetSystemClock	

System
clock
frequency
(Hz)	

	 INPUT	

A	macro
used	to	set
TRIS
register	bits
to	input	

	 LAST_CLUSTER_FAT12	

A	macro	to
indicate	the
last	cluster
value	for
FAT12	

A	macro	to

	 LAST_CLUSTER_FAT16	 indicate	the
last	cluster
value	for
FAT16	

	 LAST_CLUSTER_FAT32	

A	macro	to
indicate	the
last	cluster
value	for
FAT32	

	 MASK_MAX_FILE_ENTRY_LIMIT_BITS	

A	mask	that
indicates	the
limit	of
directory
entries	in	a
sector	

	 MDD_InitIO	

Function
pointer	to
the	I/O
Initialization
Physical
Layer
function	

	 MDD_MediaInitialize	

Function
pointer	to
the	Media
Initialize
Physical
Layer
function	

	 MDD_ReadCapacity	

Function
pointer	to
the	Read
Capacity

Physical
Layer
function	

	 MDD_ReadSectorSize	

Function
pointer	to
the	Read
Sector	Size
Physical
Layer
Function	

	 MDD_SectorRead	

Function
pointer	to
the	Sector
Read
Physical
Layer
function	

	 MDD_SectorWrite	

Function
pointer	to
the	Sector
Write
Physical
Layer
function	

	 MDD_ShutdownMedia	

Function
pointer	to
the	Media
Shutdown
Physical
Layer
function	

A	macro
indicating

	 NO_MORE	 that	no	more
files	were
found	

	 NOT_FOUND	

A	macro
indicating	no
dir	entry	was
found	

	 NUMBER_OF_BYTES_IN_DIR_ENTRY	

A	macro
indicating
the	number
of	bytes	in	a
directory
entry.	

	 OUTPUT	

A	macro
used	to	set
TRIS
register	bits
to	output	

	 RAMread	
A	macro	to
read	a	byte
from	RAM	

	 RAMreadD	

A	macro	to
read	a	32-bit
word	from
RAM	

	 RAMreadW	

A	macro	to
read	a	16-bit
word	from
RAM	

	 RAMwrite	
A	macro	to
write	a	byte

to	RAM	

	 TOTAL_FILE_SIZE	

Macro
indicating
the	length	of
a	8.3	file
name	

	 VALUE_BASED_ON_ENTRIES_PER_CLUSTER	

Value	used
for	shift
operations	to
calculate	the
sector	offset
in	a
directory	

	 VALUE_DOTDOT_CLUSTER_VALUE_FOR_ROOT	

A	value	that
will	indicate
that	a	dotdot
directory
entry	points
to	the	root.	

Structures

	 Name	 Description	

	 _BootSec	 A	structure	of	the	organization	of	a	boot
sector.	

	 _BPB_FAT12	
A	structure	containing	the	bios	parameter
block	for	a	FAT12	file	system	(in	the	boot
sector)	

	 _BPB_FAT16	
A	structure	containing	the	bios	parameter
block	for	a	FAT16	file	system	(in	the	boot
sector)	

	 _BPB_FAT32	
A	structure	containing	the	bios	parameter
block	for	a	FAT32	file	system	(in	the	boot
sector)	

	 _PT_MBR	 A	structure	of	the	organization	of	a	master
boot	record.	

	 DISK	 A	structure	containing	information	about	the
device.	

	 FILEFLAGS	 Indicates	flag	conditions	for	a	file	object	

	 PTE_MBR	 A	partition	table	entry	structure.	

	 SWORD	 A	24-bit	data	type	

Types

	 Name	 Description	

	 BootSec	 A	pointer	to	a	_BootSec	structure	

	 PT_MBR	 A	pointer	to	a	_PT_MBR	structure	

	 SALLOC	 The	segment	header	data	type	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ReadByte	Function
C
BYTE	ReadByte(

				BYTE*	pBuffer,	

				WORD	index

);

Description

Reads	a	byte	from	a	buffer

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

pBuffer	 pointer	to	a	buffer	to	read	from	

index	 index	in	the	buffer	to	read	to	

Returns

BYTE	-	the	byte	read

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	ReadByte
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ReadDWord	Function
C
DWORD	ReadDWord(

				BYTE*	pBuffer,	

				WORD	index

);

Description

Reads	a	32-bit	double	word	from	a	buffer

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

pBuffer	 pointer	to	a	buffer	to	read	from	

index	 index	in	the	buffer	to	read	to	

Returns

DWORD	-	the	double	word	read

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	ReadDWord
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ReadWord	Function
C
WORD	ReadWord(

				BYTE*	pBuffer,	

				WORD	index

);

Description

Reads	a	16-bit	word	from	a	buffer

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

pBuffer	 pointer	to	a	buffer	to	read	from	

index	 index	in	the	buffer	to	read	to	

Returns

WORD	-	the	word	read

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	ReadWord
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ATTR_LONG_NAME	Macro
C
#define	ATTR_LONG_NAME	0x0f

Description

A	macro	for	the	long-name	attributes.	If	a	directory	entry	is	used
in	a	long-file	name	implementation,	it	will	have	all	four	lower	bits
set.	This	indicates	that	any	software	that	does	not	support	long
file	names	should	ignore	that	entry.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
ATTR_LONG_NAME	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_BOOTSIG	Macro
C
#define	BSI_BOOTSIG	38

Description

A	macro	for	the	boot	sector	boot	signature	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_BOOTSIG	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_BPS	Macro
C
#define	BSI_BPS	11

Description

A	macro	for	the	boot	sector	bytes	per	sector	value	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	BSI_BPS
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_FAT32_BOOTSIG	Macro
C
#define	BSI_FAT32_BOOTSIG	66

Description

A	macro	for	the	FAT32	boot	sector	boot	signature	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_FAT32_BOOTSIG	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_FAT32_FSTYPE	Macro
C
#define	BSI_FAT32_FSTYPE	82

Description

A	macro	for	the	FAT32	boot	sector	file	system	type	string	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_FAT32_FSTYPE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_FATCOUNT	Macro
C
#define	BSI_FATCOUNT	16

Description

A	macro	for	the	boot	sector	FAT	count	value	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_FATCOUNT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_FATSZ32	Macro
C
#define	BSI_FATSZ32	36

Description

A	macro	for	the	boot	sector	32-bit	sector	per	FAT	value	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_FATSZ32	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_FSTYPE	Macro
C
#define	BSI_FSTYPE	54

Description

A	macro	for	the	boot	sector	file	system	type	string	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_FSTYPE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_RESRVSEC	Macro
C
#define	BSI_RESRVSEC	14

Description

A	macro	for	the	boot	sector	reserved	sector	count	value	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_RESRVSEC	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_ROOTCLUS	Macro
C
#define	BSI_ROOTCLUS	44

Description

A	macro	for	the	boot	sector	start	cluster	of	root	directory	value
offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_ROOTCLUS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_ROOTDIRENTS	Macro
C
#define	BSI_ROOTDIRENTS	17

Description

A	macro	for	the	boot	sector	root	directory	entry	count	value	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_ROOTDIRENTS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_SPC	Macro
C
#define	BSI_SPC	13

Description

A	macro	for	the	boot	sector	sector	per	cluster	value	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	BSI_SPC
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_SPF	Macro
C
#define	BSI_SPF	22

Description

A	macro	for	the	boot	sector	sectors	per	FAT	value	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	BSI_SPF
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_TOTSEC16	Macro
C
#define	BSI_TOTSEC16	19

Description

A	macro	for	the	boot	sector	16-bit	total	sector	count	value	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_TOTSEC16	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BSI_TOTSEC32	Macro
C
#define	BSI_TOTSEC32	32

Description

A	macro	for	the	boot	sector	32-bit	total	sector	count	value	offset

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
BSI_TOTSEC32	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CE_EOF	Macro
C
#define	CE_EOF	61			//	Error	that	indicates	that	the	end	of	the	file	has	been	reached

Description

Error	that	indicates	that	the	end	of	the	file	has	been	reached

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	CE_EOF
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CE_FAT_EOF	Macro
C
#define	CE_FAT_EOF	60			//	Error	that	indicates	an	attempt	to	read	FAT	entries	beyond	the	end	of	the	file

Description

Error	that	indicates	an	attempt	to	read	FAT	entries	beyond	the
end	of	the	file

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
CE_FAT_EOF	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CLUSTER_EMPTY	Macro
C
#define	CLUSTER_EMPTY	0x0000

Description

The	CLUSTER_EMPTY	value	is	used	to	indicate	that	a	FAT
entry	and	it's	corresponding	cluster	are	available.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
CLUSTER_EMPTY	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CLUSTER_FAIL_FAT16	Macro
C
#define	CLUSTER_FAIL_FAT16	0xFFFF

Description

The	CLUSTER_FAIL_FAT16	macro	is	used	by	the	ReadFAT
function	to	indicate	that	an	error	occured	reading	a	FAT12	or
FAT16	file	allocation	table.	Note	that	since	'0xFFF8'	is	used	for
the	last	cluster	return	value	in	the	FAT16	implementation	the
end-of-file	value	'0xFFFF'	can	be	used	to	indicate	an	error
condition.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
CLUSTER_FAIL_FAT16	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CLUSTER_FAIL_FAT32	Macro
C
#define	CLUSTER_FAIL_FAT32	0x0FFFFFFF

Description

The	CLUSTER_FAIL_FAT32	macro	is	used	by	the	ReadFAT
function	to	indicate	that	an	error	occured	reading	a	FAT32	file
allocation	able.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
CLUSTER_FAIL_FAT32	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DIR_DEL	Macro
C
#define	DIR_DEL	0xE5

Description

The	DIR_DEL	macro	is	used	to	mark	a	directory	entry	as
deleted.	When	a	file	is	deleted,	this	value	will	replace	the	first
character	in	the	file	name,	and	will	indicate	that	the	file	the	entry
points	to	was	deleted.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	DIR_DEL
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DIR_EMPTY	Macro
C
#define	DIR_EMPTY	0

Description

The	DIR_EMPTY	macro	is	used	to	indicate	the	last	entry	in	a
directory.	Since	entries	in	use	cannot	start	with	a	0	and	deleted
entries	start	with	the	DIR_DEL	character,	a	0	will	mark	the	end	of
the	in-use	or	previously	used	group	of	entries	in	a	directory

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	DIR_EMPTY
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DIR_EXTENSION	Macro
C
#define	DIR_EXTENSION	3

Description

The	DIR_EXTENSION	macro	is	used	when	validating	the
extension	portion	of	8.3	filenames

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
DIR_EXTENSION	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DIR_NAMECOMP	Macro
C
#define	DIR_NAMECOMP	(DIR_NAMESIZE+DIR_EXTENSION)

Description

The	DIR_NAMECOMP	macro	is	used	when	validating	8.3
filenames

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
DIR_NAMECOMP	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DIR_NAMESIZE	Macro
C
#define	DIR_NAMESIZE	8

Description

The	DIR_NAMESIZE	macro	is	used	when	validing	the	name
portion	of	8.3	filenames

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
DIR_NAMESIZE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

END_CLUSTER_FAT12	Macro
C
#define	END_CLUSTER_FAT12	0xFF7

Description

The	END_CLUSTER_FAT12	value	is	used	as	a	comparison	in
FAT12	to	determine	that	the	firmware	has	reached	the	end	of	the
range	of	allowed	allocatable	clusters.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
END_CLUSTER_FAT12	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

END_CLUSTER_FAT16	Macro
C
#define	END_CLUSTER_FAT16	0xFFF7

Description

The	END_CLUSTER_FAT16	value	is	used	as	a	comparison	in
FAT16	to	determine	that	the	firmware	has	reached	the	end	of	the
range	of	allowed	allocatable	clusters.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
END_CLUSTER_FAT16	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

END_CLUSTER_FAT32	Macro
C
#define	END_CLUSTER_FAT32	0x0FFFFFF7

Description

The	END_CLUSTER_FAT32	value	is	used	as	a	comparison	in
FAT32	to	determine	that	the	firmware	has	reached	the	end	of	the
range	of	allowed	allocatable	clusters.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
END_CLUSTER_FAT32	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FAT_GOOD_SIGN_0	Macro
C
#define	FAT_GOOD_SIGN_0	0x55

Description

The	FAT_GOOD_SIGN_0	macro	is	used	to	determine	that	the
first	byte	of	the	MBR	or	boot	sector	signature	code	is	correct

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
FAT_GOOD_SIGN_0	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FAT_GOOD_SIGN_1	Macro
C
#define	FAT_GOOD_SIGN_1	0xAA

Description

The	FAT_GOOD_SIGN_1	macro	is	used	to	determine	that	the
second	byte	of	the	MBR	or	boot	sector	signature	code	is	correct

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
FAT_GOOD_SIGN_1	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FAT12	Macro
C
#define	FAT12	1

Description

The	FAT12	macro	is	used	to	indicate	that	the	file	system	on	the
device	being	accessed	is	a	FAT12	file	system.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	FAT12
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FAT16	Macro
C
#define	FAT16	2

Description

The	FAT16	macro	is	used	to	indicate	that	the	file	system	on	the
device	being	accessed	is	a	FAT16	file	system.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	FAT16
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FAT32	Macro
C
#define	FAT32	3

Description

The	FAT32	macro	is	used	to	indicate	that	the	file	system	on	the
device	being	accessed	is	a	FAT32	file	system.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	FAT32
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FILE_NAME_SIZE	Macro
C
#define	FILE_NAME_SIZE	11

Description

The	FILE_NAME_SIZE	macro	indicates	the	number	of
characters	that	an	8.3	file	name	will	take	up	when	packed	in	a
directory	entry.	This	value	includes	8	characters	for	the	name
and	3	for	the	extension.	Note	that	the	radix	is	not	stored	in	the
directory	entry.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
FILE_NAME_SIZE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FO_MBR	Macro
C
#define	FO_MBR	0L

Description

FO_MBR	is	a	macro	that	indicates	the	addresss	of	the	master
boot	record	on	the	device.	When	the	device	is	initialized	this
sector	will	be	read

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	FO_MBR
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FOUND	Macro
C
#define	FOUND	0

Description

The	FOUND	macro	indicates	that	a	directory	entry	was	found	in
the	specified	position

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	FOUND
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

GetInstructionClock	Macro
C
#define	GetInstructionClock	(GetSystemClock())

Description

Instruction	clock	frequency

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
GetInstructionClock	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

GetPeripheralClock	Macro
C
#define	GetPeripheralClock	(GetSystemClock())

Description

Peripheral	clock	frequency

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
GetPeripheralClock	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

GetSystemClock	Macro
C
#define	GetSystemClock	(60000000ul)

Description

System	clock	frequency	(Hz)

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
GetSystemClock	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

INPUT	Macro
C
#define	INPUT	1

Description

A	macro	used	to	set	TRIS	register	bits	to	input

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	INPUT
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LAST_CLUSTER_FAT12	Macro
C
#define	LAST_CLUSTER_FAT12	0xff8

Description

The	LAST_CLUSTER_FAT12	macro	is	used	when	reading	the
FAT	to	indicate	that	the	next	FAT12	entry	for	a	file	contains	the
end-of-file	value.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
LAST_CLUSTER_FAT12	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LAST_CLUSTER_FAT16	Macro
C
#define	LAST_CLUSTER_FAT16	0xfff8

Description

The	LAST_CLUSTER_FAT16	macro	is	used	when	reading	the
FAT	to	indicate	that	the	next	FAT16	entry	for	a	file	contains	the
end-of-file	value.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
LAST_CLUSTER_FAT16	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LAST_CLUSTER_FAT32	Macro
C
#define	LAST_CLUSTER_FAT32	0x0FFFFFF8

Description

The	LAST_CLUSTER_FAT32	macro	is	used	when	reading	the
FAT	to	indicate	that	the	next	FAT32	entry	for	a	file	contains	the
end-of-file	value.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
LAST_CLUSTER_FAT32	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MASK_MAX_FILE_ENTRY_LIMIT_BITS	Macro
C
#define	MASK_MAX_FILE_ENTRY_LIMIT_BITS	0x0f

Description

The	MASK_MAX_FILE_ENTRY_LIMIT_BITS	is	used	to	indicate
to	the	Cache_File_Entry	function	that	a	new	sector	needs	to	be
loaded.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
MASK_MAX_FILE_ENTRY_LIMIT_BITS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_InitIO	Macro
C
#define	MDD_InitIO	;

Description

Function	pointer	to	the	I/O	Initialization	Physical	Layer	function

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	MDD_InitIO
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_MediaInitialize	Macro
C
#define	MDD_MediaInitialize	USBHostMSDSCSIMediaInitialize

Description

Function	pointer	to	the	Media	Initialize	Physical	Layer	function

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
MDD_MediaInitialize	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_ReadCapacity	Macro
C
#define	MDD_ReadCapacity	MDD_SDSPI_ReadCapacity

Description

Function	pointer	to	the	Read	Capacity	Physical	Layer	function

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
MDD_ReadCapacity	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_ReadSectorSize	Macro
C
#define	MDD_ReadSectorSize	MDD_SDSPI_ReadSectorSize

Description

Function	pointer	to	the	Read	Sector	Size	Physical	Layer
Function

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
MDD_ReadSectorSize	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SectorRead	Macro
C
#define	MDD_SectorRead	USBHostMSDSCSISectorRead

Description

Function	pointer	to	the	Sector	Read	Physical	Layer	function

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
MDD_SectorRead	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SectorWrite	Macro
C
#define	MDD_SectorWrite	USBHostMSDSCSISectorWrite

Description

Function	pointer	to	the	Sector	Write	Physical	Layer	function

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
MDD_SectorWrite	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_ShutdownMedia	Macro
C
#define	MDD_ShutdownMedia	USBHostMSDSCSIMediaReset

Description

Function	pointer	to	the	Media	Shutdown	Physical	Layer	function

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
MDD_ShutdownMedia	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_WriteProtectState	Function
C
BYTE	MDD_WriteProtectState();

Description

Function	pointer	that	points	to	a	physical	layer's
MDD_xxxxx_WriteProtectState	function

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
MDD_WriteProtectState	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NO_MORE	Macro
C
#define	NO_MORE	2

Description

The	NO_MORE	macro	indicates	that	there	are	no	more	directory
entries	to	search	for

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	NO_MORE
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NOT_FOUND	Macro
C
#define	NOT_FOUND	1

Description

The	NOT_FOUND	macro	indicates	that	the	specified	directory
entry	to	load	was	deleted

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
NOT_FOUND	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NUMBER_OF_BYTES_IN_DIR_ENTRY	Macro
C
#define	NUMBER_OF_BYTES_IN_DIR_ENTRY	32

Description

The	NUMBER_OF_BYTES_IN_DIR_ENTRY	macro	represents
the	number	of	bytes	in	one	directory	entry.	It	is	used	to	calculate
the	number	of	sectors	in	the	root	directory	based	on	information
in	the	boot	sector.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
NUMBER_OF_BYTES_IN_DIR_ENTRY	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

OUTPUT	Macro
C
#define	OUTPUT	0

Description

A	macro	used	to	set	TRIS	register	bits	to	output

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	OUTPUT
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RAMread	Macro
C
#define	RAMread(a,	f)	*(a+f)

Description

The	RAMread	macro	is	used	to	read	a	byte	of	data	from	a	RAM
array

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	RAMread
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RAMreadD	Macro
C
#define	RAMreadD(a,	f)	*(DWORD	*)(a+f)

Description

The	RAMreadD	macro	is	used	to	read	four	bytes	of	data	from	a
RAM	array

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	RAMreadD
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RAMreadW	Macro
C
#define	RAMreadW(a,	f)	*(WORD	*)(a+f)

Description

The	RAMreadW	macro	is	used	to	read	two	bytes	of	data	from	a
RAM	array

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	RAMreadW
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RAMwrite	Macro
C
#define	RAMwrite(a,	f,	d)	*(a+f)	=	d

Description

The	RAMwrite	macro	is	used	to	write	a	byte	of	data	to	a	RAM
array

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	RAMwrite
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TOTAL_FILE_SIZE	Macro
C
#define	TOTAL_FILE_SIZE	8+3+1

Description

The	TOTAL_FILE_SIZE	macro	indicates	the	maximum	number
of	characters	in	an	8.3	file	name.	This	value	includes	8
characters	for	the	name,	three	for	the	extentsion,	and	1	for	the
radix	('.')

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
TOTAL_FILE_SIZE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

VALUE_BASED_ON_ENTRIES_PER_CLUSTER
Macro
C
#define	VALUE_BASED_ON_ENTRIES_PER_CLUSTER	4

Description

The	VALUE_BASED_ON_ENTRIES_PER_CLUSTER	macro	is
used	to	calculate	sector	offsets	for	directories.	The	position	of	the
entry	is	shifted	by	4	bits	(divided	by	16,	since	there	are	16	entries
in	a	sector)	to	calculate	how	many	sectors	a	specified	entry	is
offset	from	the	beginning	of	the	directory.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
VALUE_BASED_ON_ENTRIES_PER_CLUSTER	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

VALUE_DOTDOT_CLUSTER_VALUE_FOR_ROOT
Macro
C
#define	VALUE_DOTDOT_CLUSTER_VALUE_FOR_ROOT	0

Description

The	VALUE_DOTDOT_CLUSTER_VALUE_FOR_ROOT	macro
is	used	as	an	absolute	address	when	writing	information	to	a
dotdot	entry	in	a	newly	created	directory.	If	a	dotdot	entry	points
to	the	root	directory,	it's	cluster	value	must	be	set	to	0,	regardless
of	the	actual	cluster	number	of	the	root	directory.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
VALUE_DOTDOT_CLUSTER_VALUE_FOR_ROOT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_BootSec	Structure
C
typedef	struct	{

		union	{

				_BPB_FAT32	FAT_32;

				_BPB_FAT16	FAT_16;

				_BPB_FAT12	FAT_12;

		}	FAT;

		BYTE	Reserved[MEDIA_SECTOR_SIZE-sizeof(_BPB_FAT32)-2];

		BYTE	Signature0;

		BYTE	Signature1;

}	_BootSec;

Description

The	_BootSec	structure	has	the	same	form	as	a	boot	sector.
When	the	boot	sector	is	loaded	from	the	device,	it	will	be	cast	as
a	_BootSec	structure	so	the	boot	sector	elements	can	be
accessed.

Members

Members	 Description	

union	{
_BPB_FAT32	FAT_32;
_BPB_FAT16	FAT_16;
_BPB_FAT12	FAT_12;
}	FAT;	

A	union	of	different	bios
parameter	blocks	

BYTE
Reserved[MEDIA_SECTOR_SIZE-
sizeof(_BPB_FAT32)-2];	

Reserved	space	

BYTE	Signature0;	 Boot	sector	signature	code	-
equal	to	0x55	

BYTE	Signature1;	 Boot	sector	signature	code	-
equal	to	0xAA	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	_BootSec
Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_BPB_FAT12	Structure
C
typedef	struct	{

		SWORD	BootSec_JumpCmd;

		BYTE	BootSec_OEMName[8];

		WORD	BootSec_BPS;

		BYTE	BootSec_SPC;

		WORD	BootSec_ResrvSec;

		BYTE	BootSec_FATCount;

		WORD	BootSec_RootDirEnts;

		WORD	BootSec_TotSec16;

		BYTE	BootSec_MDesc;

		WORD	BootSec_SPF;

		WORD	BootSec_SPT;

		WORD	BootSec_HeadCnt;

		DWORD	BootSec_HiddenSecCnt;

		DWORD	BootSec_Reserved;

		BYTE	BootSec_DriveNum;

		BYTE	BootSec_Reserved2;

		BYTE	BootSec_BootSig;

		BYTE	BootSec_VolID[4];

		BYTE	BootSec_VolLabel[11];

		BYTE	BootSec_FSType[8];

}	_BPB_FAT12;

Description

The	_BPB_FAT12	structure	provides	a	layout	of	the	"bios
parameter	block"	in	the	boot	sector	of	a	FAT12	partition.

Members

Members	 Description	

SWORD
BootSec_JumpCmd;	

Jump	Command	

BYTE
BootSec_OEMName[8];	 OEM	name	

WORD	BootSec_BPS;	 Number	of	bytes	per	sector	

BYTE	BootSec_SPC;	 Number	of	sectors	per	cluster	

WORD
BootSec_ResrvSec;	

Number	of	reserved	sectors	at	the
beginning	of	the	partition	

BYTE
BootSec_FATCount;	 Number	of	FATs	on	the	partition	

WORD
BootSec_RootDirEnts;	 Number	of	root	directory	entries	

WORD
BootSec_TotSec16;	 Total	number	of	sectors	

BYTE	BootSec_MDesc;	 Media	descriptor	

WORD	BootSec_SPF;	 Number	of	sectors	per	FAT	

WORD	BootSec_SPT;	 Number	of	sectors	per	track	

WORD
BootSec_HeadCnt;	 Number	of	heads	

DWORD
BootSec_HiddenSecCnt;	 Number	of	hidden	sectors	

DWORD
BootSec_Reserved;	 Reserved	space	

BYTE
BootSec_DriveNum;	 Drive	number	

BYTE
BootSec_Reserved2;	 Reserved	space	

BYTE	BootSec_BootSig;	 Boot	signature	-	equal	to	0x29	

BYTE	BootSec_VolID[4];	 Volume	ID	

BYTE
BootSec_VolLabel[11];	 Volume	Label	

BYTE
BootSec_FSType[8];	

File	system	type	in	ASCII.	Not	used	for
determination	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
_BPB_FAT12	Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_BPB_FAT16	Structure
C
typedef	struct	{

		SWORD	BootSec_JumpCmd;

		BYTE	BootSec_OEMName[8];

		WORD	BootSec_BPS;

		BYTE	BootSec_SPC;

		WORD	BootSec_ResrvSec;

		BYTE	BootSec_FATCount;

		WORD	BootSec_RootDirEnts;

		WORD	BootSec_TotSec16;

		BYTE	BootSec_MDesc;

		WORD	BootSec_SPF;

		WORD	BootSec_SPT;

		WORD	BootSec_HeadCnt;

		DWORD	BootSec_HiddenSecCnt;

		DWORD	BootSec_TotSec32;

		BYTE	BootSec_DriveNum;

		BYTE	BootSec_Reserved;

		BYTE	BootSec_BootSig;

		BYTE	BootSec_VolID[4];

		BYTE	BootSec_VolLabel[11];

		BYTE	BootSec_FSType[8];

}	_BPB_FAT16;

Description

The	_BPB_FAT16	structure	provides	a	layout	of	the	"bios
parameter	block"	in	the	boot	sector	of	a	FAT16	partition.

Members

Members	 Description	

SWORD
BootSec_JumpCmd;	

Jump	Command	

BYTE
BootSec_OEMName[8];	 OEM	name	

WORD	BootSec_BPS;	 Number	of	bytes	per	sector	

BYTE	BootSec_SPC;	 Number	of	sectors	per	cluster	

WORD
BootSec_ResrvSec;	

Number	of	reserved	sectors	at	the
beginning	of	the	partition	

BYTE
BootSec_FATCount;	 Number	of	FATs	on	the	partition	

WORD
BootSec_RootDirEnts;	 Number	of	root	directory	entries	

WORD
BootSec_TotSec16;	 Total	number	of	sectors	

BYTE	BootSec_MDesc;	 Media	descriptor	

WORD	BootSec_SPF;	 Number	of	sectors	per	FAT	

WORD	BootSec_SPT;	 Number	of	sectors	per	track	

WORD
BootSec_HeadCnt;	 Number	of	heads	

DWORD
BootSec_HiddenSecCnt;	 Number	of	hidden	sectors	

DWORD
BootSec_TotSec32;	 Total	sector	count	(32	bits)	

BYTE
BootSec_DriveNum;	 Drive	number	

BYTE
BootSec_Reserved;	 Reserved	space	

BYTE	BootSec_BootSig;	 Boot	signature	-	equal	to	0x29	

BYTE	BootSec_VolID[4];	 Volume	ID	

BYTE
BootSec_VolLabel[11];	 Volume	Label	

BYTE
BootSec_FSType[8];	

File	system	type	in	ASCII.	Not	used	for
determination	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
_BPB_FAT16	Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_BPB_FAT32	Structure
C
typedef	struct	{

		SWORD	BootSec_jmpBoot;

		BYTE	BootSec_OEMName[8];

		WORD	BootSec_BytsPerSec;

		BYTE	BootSec_SecPerClus;

		WORD	BootSec_RsvdSecCnt;

		BYTE	BootSec_NumFATs;

		WORD	BootSec_RootEntCnt;

		WORD	BootSec_TotSec16;

		BYTE	BootSec_Media;

		WORD	BootSec_FATSz16;

		WORD	BootSec_SecPerTrk;

		WORD	BootSec_NumHeads;

		DWORD	BootSec_HiddSec;

		DWORD	BootSec_TotSec32;

		DWORD	BootSec_FATSz32;

		WORD	BootSec_ExtFlags;

		WORD	BootSec_FSVers;

		DWORD	BootSec_RootClus;

		WORD	BootSec_FSInfo;

		WORD	BootSec_BkBootSec;

		BYTE	BootSec_Reserved[12];

		BYTE	BootSec_DrvNum;

		BYTE	BootSec_Reserved1;

		BYTE	BootSec_BootSig;

		BYTE	BootSec_VolID[4];

		BYTE	BootSec_VolLab[11];

		BYTE	BootSec_FilSysType[8];

}	_BPB_FAT32;

Description

The	_BPB_FAT32	structure	provides	a	layout	of	the	"bios
parameter	block"	in	the	boot	sector	of	a	FAT32	partition.

Members

Members	 Description	

SWORD
BootSec_jmpBoot;	 Jump	Command	

BYTE
BootSec_OEMName[8];	 OEM	name	

WORD
BootSec_BytsPerSec;	 Number	of	bytes	per	sector	

BYTE
BootSec_SecPerClus;	 Number	of	sectors	per	cluster	

WORD
BootSec_RsvdSecCnt;	

Number	of	reserved	sectors	at	the
beginning	of	the	partition	

BYTE
BootSec_NumFATs;	 Number	of	FATs	on	the	partition	

WORD
BootSec_RootEntCnt;	 Number	of	root	directory	entries	

WORD
BootSec_TotSec16;	 Total	number	of	sectors	

BYTE	BootSec_Media;	 Media	descriptor	

WORD
BootSec_FATSz16;	 Number	of	sectors	per	FAT	

WORD
BootSec_SecPerTrk;	 Number	of	sectors	per	track	

WORD
BootSec_NumHeads;	 Number	of	heads	

DWORD
BootSec_HiddSec;	 Number	of	hidden	sectors	

DWORD
BootSec_TotSec32;	 Total	sector	count	(32	bits)	

DWORD
BootSec_FATSz32;	 Sectors	per	FAT	(32	bits)	

WORD
BootSec_ExtFlags;	

Presently	active	FAT.	Defined	by	bits	0-3	if
bit	7	is	1.	

WORD
BootSec_FSVers;	 FAT32	filesystem	version.	Should	be	0:0	

DWORD
BootSec_RootClus;	

Start	cluster	of	the	root	directory	(should
be	2)	

WORD
BootSec_FSInfo;	 File	system	information	

WORD
BootSec_BkBootSec;	 Backup	boot	sector	address.	

BYTE
BootSec_Reserved[12];	 Reserved	space	

BYTE
BootSec_DrvNum;	 Drive	number	

BYTE
BootSec_Reserved1;	 Reserved	space	

BYTE
BootSec_BootSig;	 Boot	signature	-	0x29	

BYTE
BootSec_VolID[4];	 Volume	ID	

BYTE
BootSec_VolLab[11];	 Volume	Label	

BYTE
BootSec_FilSysType[8];	

File	system	type	in	ASCII.	Not	used	for
determination	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
_BPB_FAT32	Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_PT_MBR	Structure
C
typedef	struct	{

		BYTE	ConsChkRtn[446];

		PTE_MBR	Partition0;

		PTE_MBR	Partition1;

		PTE_MBR	Partition2;

		PTE_MBR	Partition3;

		BYTE	Signature0;

		BYTE	Signature1;

}	_PT_MBR;

Description

The	_PT_MBR	structure	has	the	same	form	as	a	master	boot
record.	When	the	MBR	is	loaded	from	the	device,	it	will	be	cast
as	a	_PT_MBR	structure	so	the	MBR	elements	can	be	accessed.

Members

Members	 Description	

BYTE
ConsChkRtn[446];	 Boot	code	

PTE_MBR	Partition0;	 The	first	partition	table	entry	

PTE_MBR	Partition1;	 The	second	partition	table	entry	

PTE_MBR	Partition2;	 The	third	partition	table	entry	

PTE_MBR	Partition3;	 The	fourth	partition	table	entry	

BYTE	Signature0;	 MBR	signature	code	-	equal	to	0x55	

BYTE	Signature1;	 MBR	signature	code	-	equal	to	0xAA	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	_PT_MBR
Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BootSec	Type
C
typedef	_BootSec	*	BootSec;

Description

The	BootSec	pointer	points	to	a	_BootSec	structure.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	BootSec
Type

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CETYPE	Enumeration
C
typedef	enum	_CETYPE	{

		CE_GOOD	=	0,

		CE_ERASE_FAIL,

		CE_NOT_PRESENT,

		CE_NOT_FORMATTED,

		CE_BAD_PARTITION,

		CE_UNSUPPORTED_FS,

		CE_INIT_ERROR,

		CE_NOT_INIT,

		CE_BAD_SECTOR_READ,

		CE_WRITE_ERROR,

		CE_INVALID_CLUSTER,

		CE_FILE_NOT_FOUND,

		CE_DIR_NOT_FOUND,

		CE_BAD_FILE,

		CE_DONE,

		CE_COULD_NOT_GET_CLUSTER,

		CE_FILENAME_2_LONG,

		CE_FILENAME_EXISTS,

		CE_INVALID_FILENAME,

		CE_DELETE_DIR,

		CE_DIR_FULL,

		CE_DISK_FULL,

		CE_DIR_NOT_EMPTY,

		CE_NONSUPPORTED_SIZE,

		CE_WRITE_PROTECTED,

		CE_FILENOTOPENED,

		CE_SEEK_ERROR,

		CE_BADCACHEREAD,

		CE_CARDFAT32,

		CE_READONLY,

		CE_WRITEONLY,

		CE_INVALID_ARGUMENT,

		CE_TOO_MANY_FILES_OPEN

}	CETYPE;

Description

The	CETYPE	enumeration	is	used	to	indicate	different	error
conditions	during	device	operation.

Members

Members	 Description	

CE_GOOD	=	0	 No	error	

CE_ERASE_FAIL	 An	erase	failed	

CE_NOT_PRESENT	 No	device	was	present	

CE_NOT_FORMATTED	 The	disk	is	of	an	unsupported
format	

CE_BAD_PARTITION	 The	boot	record	is	bad	

CE_UNSUPPORTED_FS	 The	file	system	type	is
unsupported	

CE_INIT_ERROR	 An	initialization	error	has
occured	

CE_NOT_INIT	 An	operation	was	performed
on	an	uninitialized	device	

CE_BAD_SECTOR_READ	 A	bad	read	of	a	sector
occured	

CE_WRITE_ERROR	 Could	not	write	to	a	sector	

CE_INVALID_CLUSTER	 Invalid	cluster	value	>	maxcls	

CE_FILE_NOT_FOUND	 Could	not	find	the	file	on	the
device	

CE_DIR_NOT_FOUND	 Could	not	find	the	directory	

CE_BAD_FILE	 File	is	corrupted	

CE_DONE	 No	more	files	in	this	directory	

CE_COULD_NOT_GET_CLUSTER	 Could	not	load/allocate	next
cluster	in	file	

CE_FILENAME_2_LONG	 A	specified	file	name	is	too
long	to	use	

CE_FILENAME_EXISTS	 A	specified	filename	already
exists	on	the	device	

CE_INVALID_FILENAME	 Invalid	file	name	

CE_DELETE_DIR	 The	user	tried	to	delete	a
directory	with	FSremove	

CE_DIR_FULL	 All	root	dir	entry	are	taken	

CE_DISK_FULL	 All	clusters	in	partition	are
taken	

CE_DIR_NOT_EMPTY	 This	directory	is	not	empty	yet,
remove	files	before	deleting	

CE_NONSUPPORTED_SIZE	 The	disk	is	too	big	to	format	as
FAT16	

CE_WRITE_PROTECTED	 Card	is	write	protected	

CE_FILENOTOPENED	 File	not	opened	for	the	write	

CE_SEEK_ERROR	 File	location	could	not	be
changed	successfully	

CE_BADCACHEREAD	 Bad	cache	read	

CE_CARDFAT32	 FAT	32	-	card	not	supported	

CE_READONLY	 The	file	is	read-only	

CE_WRITEONLY	 The	file	is	write-only	

CE_INVALID_ARGUMENT	 Invalid	argument	

CE_TOO_MANY_FILES_OPEN	 Too	many	files	are	already
open	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	CETYPE
Enumeration

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DISK	Structure
C
typedef	struct	{

		BYTE	*	buffer;

		DWORD	firsts;

		DWORD	fat;

		DWORD	root;

		DWORD	data;

		WORD	maxroot;

		DWORD	maxcls;

		WORD	fatsize;

		BYTE	fatcopy;

		BYTE	SecPerClus;

		BYTE	type;

		BYTE	mount;

}	DISK;

Description

The	DISK	structure	contains	information	about	the	device	being
accessed.

Members

Members	 Description	

BYTE	*	buffer;	 Address	of	the	global	data	buffer	used	to
read	and	write	file	information	

DWORD	firsts;	 Logical	block	address	of	the	first	sector	of
the	FAT	partition	on	the	device	

DWORD	fat;	 Logical	block	address	of	the	FAT	

DWORD	root;	 Logical	block	address	of	the	root	directory	

DWORD	data;	 Logical	block	address	of	the	data	section	of
the	device.	

WORD	maxroot;	 The	maximum	number	of	entries	in	the	root
directory.	

DWORD	maxcls;	 The	maximum	number	of	clusters	in	the
partition.	

WORD	fatsize;	 The	number	of	sectors	in	the	FAT	

BYTE	fatcopy;	 The	number	of	copies	of	the	FAT	in	the
partition	

BYTE	SecPerClus;	 The	number	of	sectors	per	cluster	in	the
data	region	

BYTE	type;	 The	file	system	type	of	the	partition	(FAT12,
FAT16	or	FAT32)	

BYTE	mount;	 Device	mount	flag	(TRUE	if	disk	was
mounted	successfully,	FALSE	otherwise)	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	DISK
Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FILEFLAGS	Structure
C
typedef	struct	{

		unsigned	write	:	1;

		unsigned	read	:	1;

		unsigned	FileWriteEOF	:	1;

}	FILEFLAGS;

Description

The	FILEFLAGS	structure	is	used	to	indicate	conditions	in	a	file.
It	contains	three	flags:	'write'	indicates	that	the	file	was	opened	in
a	mode	that	allows	writes,	'read'	indicates	that	the	file	was
opened	in	a	mode	that	allows	reads,	and	'FileWriteEOF'
indicates	that	additional	data	that	is	written	to	the	file	will
increase	the	file	size.

Members

Members	 Description	

unsigned	write	:	1;	 Indicates	a	file	was	opened	in	a	mode	that
allows	writes	

unsigned	read	:	1;	 Indicates	a	file	was	opened	in	a	mode	that
allows	reads	

unsigned	FileWriteEOF
:	1;	

Indicates	the	current	position	in	a	file	is	at
the	end	of	the	file	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	FILEFLAGS
Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]

Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PT_MBR	Type
C
typedef	_PT_MBR	*	PT_MBR;

Description

The	PT_MBR	pointer	points	to	a	_PT_MBR	structure.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	PT_MBR
Type

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PTE_MBR	Structure
C
typedef	struct	{

		BYTE	PTE_BootDes;

		SWORD	PTE_FrstPartSect;

		BYTE	PTE_FSDesc;

		SWORD	PTE_LstPartSect;

		DWORD	PTE_FrstSect;

		DWORD	PTE_NumSect;

}	PTE_MBR;

Description

The	PTE_MBR	structure	contains	values	found	in	a	partition
table	entry	in	the	MBR	of	a	device.

Members

Members	 Description	

BYTE	PTE_BootDes;	 The	boot	descriptor	(should	be	0x00	in	a
non-bootable	device)	

SWORD
PTE_FrstPartSect;	

The	cylinder-head-sector	address	of	the	first
sector	of	the	partition	

BYTE	PTE_FSDesc;	 The	file	system	descriptor	

SWORD
PTE_LstPartSect;	

The	cylinder-head-sector	address	of	the	last
sector	of	the	partition	

DWORD
PTE_FrstSect;	

The	logical	block	address	of	the	first	sector
of	the	partition	

DWORD
PTE_NumSect;	

The	number	of	sectors	in	a	partition	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	PTE_MBR
Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SALLOC	Type
C
typedef	union	_SALLOC	SALLOC;

Description

The	SALLOC	union	allows	the	PIC18	dynamic	memory	allocation
algorithm	to	perform	bitwise	accesses	on	segment	headers.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	SALLOC
Type

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SEARCH_TYPE	Enumeration
C
typedef	enum	{

		LOOK_FOR_EMPTY_ENTRY	=	0,

		LOOK_FOR_MATCHING_ENTRY

}	SEARCH_TYPE;

Description

The	values	in	the	SEARCH_TYPE	enumeration	are	used
internally	by	the	library	to	indicate	how	the	FILEfind	function	how
to	perform	a	search.	The	'LOOK_FOR_EMPTY_ENTRY'	value
indicates	that	FILEfind	should	search	for	an	empty	file	entry.	The
'LOOK_FOR_MATCHING_ENTRY'	value	indicates	that	FILEfind
should	search	for	an	entry	that	matches	the	FSFILE	object	that
was	passed	into	the	FILEfind	function.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>
SEARCH_TYPE	Enumeration

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Internal	Members
The	following	functions,	variables,	structures,	and	macros	are
designated	as	internal	to	the	library.

Functions

	 Name	 Description	

	 _SRAMmerge	

This	function	tries	to	merge
adjacent	segments	that	have	not
been	allocated.	The	largest
possible	segment	is	merged	if
possible.	

	 Cache_File_Entry	 Load	a	file	entry	

	 CacheTime	 Automatically	store	timestamp
information	from	the	RTCC	

	 chdirhelper	 Helper	function	for	FSchdir	

	 Cluster2Sector	 Convert	a	cluster	number	to	the
corresponding	sector	

	 CreateDIR	 FSmkdir	helper	function	to	create	a
directory	

	 CreateFileEntry	 Create	a	new	file	entry	

	 CreateFirstCluster	 Create	the	first	cluster	for	a	file	

	 DISKmount	 Initialies	the	device	and	loads	MBR
and	boot	sector	information	

	 EraseCluster	 Erase	a	cluster	

	 FAT_erase_cluster_chain	 Erase	a	chain	of	clusters	

	 FATfindEmptyCluster	 Find	the	next	available	cluster	on
the	device	

	 FILEallocate_new_cluster	

This	function	will	find	an	empty
cluster	on	the	device	using	the
FATfindEmptyCluster	function.	It
will	then	mark	it	as	the	last	cluster
in	the	file	in	the	FAT	chain,	and	link
the	current	last	cluster	of	the
passed	file	to	the	new	cluster.	If	the
new	cluster	is	a	directory	cluster,	it
will	be	erased	(so	there	are	no
extraneous	directory	entries).	If	it's
allocated	to	a	non-directory	file,	it
doesn't	need	to	be	erased;
extraneous	data	in	the	cluster	will
be	unviewable	because	of	the	file
size	parameter.	

	 FILECreateHeadCluster	 Create	the	first	cluster	of	a	file	

	 FILEerase	 Erase	a	file	

	 FILEfind	 Finds	a	file	on	the	device	

	 FILEget_next_cluster	 Step	through	a	chain	of	clusters	

	 FileObjectCopy	 Copy	a	file	object	

	 FILEopen	 Loads	file	information	from	the
device	

	 eraseDir	 FSrmdir	helper	function	to	erase
dirs	

Fill_File_Object	
Fill	a	file	object	with	specified	dir

	 entry	data	

	 FindEmptyEntries	 Find	an	empty	dir	entry	

	 flushData	 Flush	unwritten	data	to	a	file	

	 FormatDirName	 Format	a	dir	name	into	dir	entry
format	

	 FormatFileName	 Format	a	file	name	into	dir	entry
format	

	 FSputc	 FSfprintf	helper	function	to	write	a
char	

	 FSvfprintf	 Helper	function	for	FSfprintf	

	 GetFullClusterNumber	 Gets	the	cluster	number	from	a
directory	entry	

	 GetPreviousEntry	 Get	the	file	entry	info	for	the	parent
dir	of	the	specified	dir	

	 IncrementTimeStamp	 Automatically	set	the	timestamp	to
"don't	care"	data	

	 LoadBootSector	 Load	the	boot	sector	and	extract
the	necessary	information	

	 LoadDirAttrib	
Load	file	information	from	a
directory	entry	and	cache	the
entry	

	 LoadMBR	 Loads	the	MBR	and	extracts
necessary	information	

	 mkdirhelper	 Helper	function	for	FSmkdir	

	 PopulateEntries	 Populate	a	dir	entry	with	data	

	 ReadFAT	 Read	the	next	entry	from	the	FAT	

	 rmdirhelper	 Helper	function	for	FSrmdir	

	 SRAMInitHeap	

This	function	initializes	the
dynamic	heap.	It	inserts	segment
headers	to	maximize	segment
space.	

	 str_put_n_chars	 FSfprintf	helper	function	to	write	a
char	multiple	times	

	 ValidateChars	 Validate	the	characters	in	a	given
file	name	

	 Write_File_Entry	 Write	dir	entry	info	into	a	specified
entry	

	 writeDotEntries	 Create	dot	and	dotdot	entries	in	a
non-root	directory	

Macros

	 Name	 Description	

	 _FLAG_MINUS	 FSfprintf	minus	flag	indicator	

	 _FLAG_OCTO	 FSfprintf	octothorpe	(hash
mark)	flag	indicator	

	 _FLAG_PLUS	 FSfprintf	plus	flag	indicator	

	 _FLAG_SIGNED	 FSfprintf	signed	flag	indicator	

	 _FLAG_SPACE	 FSfprintf	space	flag	indicator	

	 _FLAG_ZERO	 FSfprintf	zero	flag	indicator	

	 _FMT_BYTE	 FSfprintf	8-bit	argument	size
flag	

	 _FMT_LONG	 FSfprintf	32-bit	argument	size
flag	

	 _FMT_LONGLONG	 FSfprintf	64-bit	argument	size
flag	

	 _FMT_SHRTLONG	 FSfprintf	24-bit	argument	size
flag	

	 _FMT_UNSPECIFIED	 FSfprintf	unspecified	argument
size	flag	

	 _MAX_HEAP_SIZE	 A	macro	used	to	determine	the
heap	initialization	size.	

	 _MAX_SEGMENT_SIZE	
A	macro	used	to	determine	the
maximum	size	of	a	dynamic
memory	segment.	

	 DIRECTORY	
Value	indicating	that	the
CreateFileEntry	function	will	be
creating	a	directory	

	 DIRENTRIES_PER_SECTOR	 The	number	of	directory
entries	in	a	sector	

	 NEAR	 A	macro	used	to	specify	the
near-model	action	

Structures

	 Name	 Description	

	 _DIRENTRY	 Directory	entry	structure	

Types

	 Name	 Description	

	 DIRENTRY	 A	pointer	to	a	directory	entry	structure	

	 FILEOBJ	 Pointer	to	an	FSFILE	object	

Variables

	 Name	 Description	

	 _uDynamicHeap	 The	PIC18	dynamic	memory	heap	

	 cwd	 Global	current	working	directory	

	 cwdptr	 Pointer	to	the	current	working
directory	

	 defaultArray	
This	string	is	used	by	FSgetcwd	to
return	the	cwd	name	if	the	path
passed	into	the	function	is	NULL	

	 defaultString	 This	string	is	used	by	dir	functions	to
hold	dir	names	temporarily	

	 dirCleared	

Global	variable	used	by	the
"recursive"	FSrmdir	function	to
indicate	that	all	subdirectories	and
files	have	been	deleted	from	the
target	directory.	

	 FatRootDirClusterValue	
Global	variable	containing	the	cluster
number	of	the	root	dir	(0	for

FAT12/16)	

	 FSerrno	
Global	error	variable.	Set	to	one	of
many	error	codes	after	each	function
call.	

	 gBufferOwner	 Global	variable	indicating	which	file
is	using	the	data	buffer	

	 gBufferZeroed	 Global	variable	indicating	that	the
data	buffer	contains	all	zeros	

	 gDataBuffer	 The	global	data	sector	buffer	

	 gDiskData	 Global	structure	containing	device
information.	

	 gFATBuffer	 The	global	FAT	sector	buffer	

	 gFileArray	 Array	that	contains	file	information
(static	allocation)	

	 gFileSlotOpen	 Array	that	indicates	which	elements
of	gFileArray	are	available	for	use	

	 gFileTemp	 Global	variable	used	for	file
operations.	

	 gLastDataSectorRead	 Global	variable	indicating	which	data
sector	was	read	last	

	 gLastFATSectorRead	 Global	variable	indicating	which	FAT
sector	was	read	last	

	 gNeedDataWrite	
Global	variable	indicating	that	there
is	information	that	needs	to	be
written	to	the	data	section	

Global	variable	indicating	that	there

	 gNeedFATWrite	 is	information	that	needs	to	be
written	to	the	FAT	

	 gTimeAccDate	 Global	time	variable	(for	timestamps)
used	to	indicate	last	access	date	

	 gTimeCrtDate	 Global	time	variable	(for	timestamps)
used	to	indicate	create	date	

	 gTimeCrtMS	
Global	time	variable	(for	timestamps)
used	to	indicate	create	time
(milliseconds)	

	 gTimeCrtTime	 Global	time	variable	(for	timestamps)
used	to	indicate	create	time	

	 gTimeWrtDate	 Global	time	variable	(for	timestamps)
used	to	indicate	last	update	date	

	 gTimeWrtTime	 Global	time	variable	(for	timestamps)
used	to	indicate	last	update	time	

	 nextClusterIsLast	
Global	variable	indicating	that	the
entries	in	a	directory	align	with	a
cluster	boundary	

	 recache	

Global	variable	used	by	the
"recursive"	FSrmdir	function	to
indicate	that	additional	cache	reads
are	needed.	

	 s_digits	 FSfprintf	table	of	conversion	digits	

	 tempArray	 This	array	is	used	to	prevent	a	stack
frame	error	

	 TempClusterCalc	
Global	variable	used	to	store	the
calculated	value	of	the	cluster	of	a

specified	sector.	

	 tempCWDobj	
Global	variable	used	to	preserve	the
current	working	directory
information.	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_SRAMmerge	Function
C
NEAR	unsigned	char	_SRAMmerge(

				SALLOC	*	NEAR	pSegA

);

Description

This	function	tries	to	merge	adjacent	segments	that	have	not
been	allocated.	The	largest	possible	segment	is	merged	if
possible.

Parameters

Parameters	 Description	

SALLOC	*	NEAR
pSegA	 pointer	to	the	first	segment.	

Returns

usnigned	char	-	returns	the	length	of	the	merged	segment	or
zero	if	failed	to	merge.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_SRAMmerge	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Cache_File_Entry	Function
C
DIRENTRY	Cache_File_Entry(

				FILEOBJ	fo,	

				WORD	*	curEntry,	

				BYTE	ForceRead

);

Description

Load	the	sector	containing	the	file	entry	pointed	to	by	'curEntry'
from	the	directory	pointed	to	by	the	variables	in	'fo.'

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 File	information	

curEntry	 Offset	of	the	directory	entry	to	load.	

ForceRead	 Forces	loading	of	a	new	sector	of	the
directory.	

Returns

DIRENTRY	-	Pointer	to	the	directory	entry	that	was	loaded.

Side	Effects

Any	unwritten	data	in	the	data	buffer	will	be	written	to	the	device.

Remarks

Any	modification	of	this	function	is	extremely	likely	to	break
something.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
Cache_File_Entry	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CacheTime	Function
C
void	CacheTime();

Description

This	function	will	automatically	load	information	from	an	RTCC
module	and	use	it	to	update	the	global	timing	variables.	These
can	then	be	used	to	update	file	timestamps.

Preconditions

RTCC	module	enabled.	Should	not	be	called	by	the	user.

Side	Effects

Modifies	global	timing	variables

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	CacheTime
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

chdirhelper	Function
C
int	chdirhelper(

				BYTE	mode,	

				char	*	ramptr,	

				const	rom	char	*	romptr

);

Description

This	helper	function	is	used	by	the	FSchdir	function.	If	the	path
argument	is	specified	in	ROM	for	PIC18	this	function	will	be	able
to	parse	it	correctly.	The	function	will	loop	through	a	switch
statement	to	process	the	tokens	in	the	path	string.	Dot	or	dotdot
entries	are	handled	in	the	first	case	statement.	A	backslash
character	is	handled	in	the	second	case	statement	(note	that	this
case	statement	will	only	be	used	if	backslash	is	the	first
character	in	the	path;	backslash	token	delimiters	will
automatically	be	skipped	after	each	token	in	the	path	is
processed).	The	third	case	statement	will	handle	actual	directory
name	strings.

Preconditions

None

Parameters

Parameters	 Description	

mode	 Indicates	which	path	pointer	to	use	

ramptr	 Pointer	to	the	path	specified	in	RAM	

romptr	 Pointer	to	the	path	specified	in	ROM	

Return	Values

Return	Values	 Description	

0	 Directory	was	changed	successfully.	

EOF	 Directory	could	not	be	changed.	

Side	Effects

The	current	working	directory	will	be	changed.	The	FSerrno
variable	will	be	changed.	Any	unwritten	data	in	the	data	buffer
will	be	written	to	the	device.

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	chdirhelper
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Cluster2Sector	Function
C
DWORD	Cluster2Sector(

				DISK	*	disk,	

				DWORD	cluster

);

Description

The	Cluster2Sector	function	will	calculate	the	sector	number	that
corresponds	to	the	first	sector	of	the	cluster	whose	value	was
passed	into	the	function.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

disk	 Disk	structure	

cluster	 Cluster	to	be	converted	

Returns

sector	-	Sector	that	corresponds	to	given	cluster

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
Cluster2Sector	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CreateDIR	Function
C
int	CreateDIR(

				char	*	path

);

Description

The	CreateDIR	function	is	a	helper	function	for	the	mkdirhelper
function.	The	CreateDIR	function	will	create	a	new	file	entry	for	a
directory	and	assign	a	cluster	to	it.	It	will	erase	the	cluster	and
write	a	dot	and	dotdot	entry	to	it.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

path	 The	name	of	the	dir	to	create	

Return	Values

Return	Values	 Description	

TRUE	 Directory	was	created	successfully	

FALSE	 Directory	could	not	be	created.	

Side	Effects

Any	unwritten	data	in	the	data	buffer	or	the	FAT	buffer	will	be
written	to	the	device.

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	CreateDIR
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CreateFileEntry	Function
C
CETYPE	CreateFileEntry(

				FILEOBJ	fo,	

				WORD	*	fHandle,	

				BYTE	mode

);

Description

With	the	data	passed	within	fo,	create	a	new	file	entry	in	the
current	directory.	This	function	will	first	search	for	empty	file
entries.	Once	an	empty	entry	is	found,	the	entry	will	be	populated
with	data	for	a	file	or	directory	entry.	Finally,	the	first	cluster	of	the
new	file	will	be	located	and	allocated,	and	its	value	will	be	written
into	the	file	entry.

Preconditions

Should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

fHandle	 Location	to	create	file	

Return	Values

Return	Values	 Description	

CE_GOOD	 File	Creation	successful	

CE_DIR_FULL	 All	root	directory	entries	are	taken	

CE_WRITE_ERROR	 The	head	cluster	of	the	file	could	not	be
created.	

Side	Effects

Modifies	the	FSerrno	variable.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
CreateFileEntry	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CreateFirstCluster	Function
C
CETYPE	CreateFirstCluster(

				FILEOBJ	fo

);

Description

This	function	will	find	an	unused	cluster,	link	it	to	a	file's	directory
entry,	and	write	the	entry	back	to	the	device.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 The	file	that	contains	the	first	cluster	

Return	Values

Return	Values	 Description	

CE_GOOD	 First	cluster	created	successfully	

CE_WRITE_ERROR	 Cluster	creation	failed	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
CreateFirstCluster	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DISKmount	Function
C
BYTE	DISKmount(

				DISK	*	dsk

);

Description

This	function	will	use	the	function	pointed	to	by	the
MDD_MediaInitialize	function	pointer	to	initialize	the	device	(if
any	initialization	is	required).	It	then	attempts	to	load	the	master
boot	record	with	the	LoadMBR	function	and	the	boot	sector	with
the	LoadBootSector	function.	These	two	functions	will	be	used	to
initialize	a	global	DISK	structure	that	will	be	used	when
accessing	file	information	in	the	future.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

dsk	 The	disk	structure	to	be	initialized.	

Return	Values

Return	Values	 Description	

CE_GOOD	 Disk	mounted	

CE_INIT_ERROR	 Initialization	error	has	occured	

Side	Effects

None

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	DISKmount
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EraseCluster	Function
C
BYTE	EraseCluster(

				DISK	*	disk,	

				DWORD	cluster

);

Description

The	EraseCluster	function	will	write	a	0	value	into	every	byte	of
the	specified	cluster.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

dsk	 Disk	structure	

cluster	 Cluster	to	be	erased	

Return	Values

Return	Values	 Description	

CE_GOOD	 File	closed	successfully	

CE_WRITE_ERROR	 Could	not	write	to	the	sector	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
EraseCluster	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FAT_erase_cluster_chain	Function
C
BYTE	FAT_erase_cluster_chain(

				DWORD	cluster,	

				DISK	*	dsk

);

Description

This	function	will	parse	through	a	cluster	chain	starting	with	the
cluster	pointed	to	by	'cluster'	and	mark	all	of	the	FAT	entries	as
empty	until	the	end	of	the	chain	has	been	reached	or	an	error
occurs.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

cluster	 The	cluster	number	

dsk	 The	disk	structure	

Return	Values

Return	Values	 Description	

TRUE	 Operation	successful	

FALSE	 Operation	failed	

Side	Effects

None

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
FAT_erase_cluster_chain	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FATfindEmptyCluster	Function
C
DWORD	FATfindEmptyCluster(

				FILEOBJ	fo

);

Description

This	function	will	search	through	the	FAT	to	find	the	next
available	cluster	on	the	device.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

Return	Values

Return	Values	 Description	

DWORD	 Address	of	empty	cluster	

0	 Could	not	find	empty	cluster	

Side	Effects

None

Remarks

Should	not	be	called	by	user

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
FATfindEmptyCluster	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FILEallocate_new_cluster	Function
C
BYTE	FILEallocate_new_cluster(

				FILEOBJ	fo,	

				BYTE	mode

);

Description

This	function	will	find	an	empty	cluster	on	the	device	using	the
FATfindEmptyCluster	function.	It	will	then	mark	it	as	the	last
cluster	in	the	file	in	the	FAT	chain,	and	link	the	current	last	cluster
of	the	passed	file	to	the	new	cluster.	If	the	new	cluster	is	a
directory	cluster,	it	will	be	erased	(so	there	are	no	extraneous
directory	entries).	If	it's	allocated	to	a	non-directory	file,	it	doesn't
need	to	be	erased;	extraneous	data	in	the	cluster	will	be
unviewable	because	of	the	file	size	parameter.

Preconditions

Should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

mode	
0	-	Allocate	a	cluster	to	a	file
1	-	Allocate	a	cluster	to	a	directory

	

Return	Values

Return	Values	 Description	

CE_GOOD	 Cluster	allocated	

CE_DISK_FULL	 No	clusters	available	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
FILEallocate_new_cluster	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FILECreateHeadCluster	Function
C
CETYPE	FILECreateHeadCluster(

				FILEOBJ	fo,	

				DWORD	*	cluster

);

Description

The	FILECreateHeadCluster	function	will	create	the	first	cluster
of	a	file.	First,	it	will	find	an	empty	cluster	with	the
FATfindEmptyCluster	function	and	mark	it	as	the	last	cluster	in
the	file.	It	will	then	erase	the	cluster	using	the	EraseCluster
function.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

cluster	 Cluster	location	

Return	Values

Return	Values	 Description	

CE_GOOD	 File	closed	successfully	

CE_WRITE_ERROR	 Could	not	write	to	the	sector	

CE_DISK_FULL	 All	clusters	in	partition	are	taken	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
FILECreateHeadCluster	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FILEerase	Function
C
CETYPE	FILEerase(

				FILEOBJ	fo,	

				WORD	*	fHandle,	

				BYTE	EraseClusters

);

Description

This	function	will	cache	the	sector	of	directory	entries	in	the
directory	pointed	to	by	the	dirclus	value	in	the	FSFILE	object	'fo'
that	contains	the	entry	that	corresponds	to	the	fHandle	offset.	It
will	then	mark	that	entry	as	deleted.	If	the	EraseClusters
argument	is	TRUE,	the	chain	of	clusters	for	that	file	will	be
marked	as	unused	in	the	FAT	by	the	FAT_erase_cluster_chain
function.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

fHandle	 Location	of	file	information	

EraseClusters	 Remove	cluster	allocation	from	FAT?	

Return	Values

Return	Values	 Description	

CE_GOOD	 File	erased	successfully	

CE_FILE_NOT_FOUND	 Could	not	find	the	file	on	the	card	

CE_ERASE_FAIL	 Internal	Card	erase	failed	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	FILEerase
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FILEfind	Function
C
CETYPE	FILEfind(

				FILEOBJ	foDest,	

				FILEOBJ	foCompareTo,	

				BYTE	cmd,	

				BYTE	mode

);

Description

The	FILEfind	function	will	sequentially	cache	directory	entries
within	the	current	working	directory	into	the	foDest	FSFILE
object.	If	the	cmd	parameter	is	specified	as
LOOK_FOR_EMPTY_ENTRY	the	search	will	continue	until	an
empty	directory	entry	is	found.	If	the	cmd	parameter	is	specified
as	LOOK_FOR_MATCHING_ENTRY	these	entries	will	be
compared	to	the	foCompareTo	object	until	a	match	is	found	or
there	are	no	more	entries	in	the	current	working	directory.	If	the
mode	is	specified	a	'0'	the	attributes	of	the	FSFILE	entries	are
irrelevant.	If	the	mode	is	specified	as	'1'	the	attributes	of	the
foDest	entry	must	match	the	attributes	specified	in	the
foCompareTo	file	and	partial	string	search	characters	may
bypass	portions	of	the	comparison.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

foDest	 FSFILE	object	containing	information	of	the
file	found	

foCompareTo	 FSFILE	object	containing	the	name/attr	of
the	file	to	be	found	

cmd	

LOOK_FOR_EMPTY_ENTRY:	Search
for	empty	entry.
LOOK_FOR_MATCHING_ENTRY:
Search	for	matching	entry.

	

mode	

0:	Match	file	exactly	with	default
attributes.
1:	Match	file	to	user-specified	attributes.

	

Return	Values

Return	Values	 Description	

CE_GOOD	 File	found.	

CE_FILE_NOT_FOUND	 File	not	found.	

Side	Effects

None.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	FILEfind
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FILEget_next_cluster	Function
C
BYTE	FILEget_next_cluster(

				FILEOBJ	fo,	

				DWORD	n

);

Description

This	function	will	load	'n'	proximate	clusters	for	a	file	from	the
FAT	on	the	device.	It	will	stop	checking	for	clusters	if	the
ReadFAT	function	returns	an	error,	if	it	reaches	the	last	cluster	in
a	file,	or	if	the	device	tries	to	read	beyond	the	last	cluster	used	by
the	device.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 The	file	to	get	the	next	cluster	of	

n	 Number	of	links	in	the	FAT	cluster	chain	to
jump	through	

Return	Values

Return	Values	 Description	

CE_GOOD	 Operation	successful	

CE_BAD_SECTOR_READ	 A	bad	read	occured	of	a	sector	

CE_INVALID_CLUSTER	 Invalid	cluster	value	>	maxcls	

CE_FAT_EOF	 Fat	attempt	to	read	beyond	EOF	

Side	Effects

None

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
FILEget_next_cluster	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FileObjectCopy	Function
C
void	FileObjectCopy(

				FILEOBJ	foDest,	

				FILEOBJ	foSource

);

Description

The	FileObjectCopy	function	will	make	an	exacy	copy	of	a
specified	FSFILE	object.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

foDest	 The	destination	

foSource	 the	source	

Returns

None

Side	Effects

None

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
FileObjectCopy	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FILEopen	Function
C
CETYPE	FILEopen(

				FILEOBJ	fo,	

				WORD	*	fHandle,	

				char	type

);

Description

This	function	will	cache	a	directory	entry	in	the	directory	specified
by	the	dirclus	parameter	of	hte	FSFILE	object	'fo.'	The	offset	of
the	entry	in	the	directory	is	specified	by	fHandle.	Once	the
directory	entry	has	been	loaded,	the	first	sector	of	the	file	can	be
loaded	using	the	cluster	value	specified	in	the	directory	entry.
The	type	argument	will	specify	the	mode	the	files	will	be	opened
in.	This	will	allow	this	function	to	set	the	correct	read/write	flags
for	the	file.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 File	to	be	opened	

fHandle	 Location	of	file	

WRITE	-	Create	a	new	file	or	replace
an	existing	file

type	 READ	-	Read	data	from	an	existing	file
APPEND	-	Append	data	to	an	existing
file

	

Return	Values

Return	Values	 Description	

CE_GOOD	 FILEopen	successful	

CE_NOT_INIT	 Device	is	not	yet	initialized	

CE_FILE_NOT_FOUND	 Could	not	find	the	file	on	the	device	

CE_BAD_SECTOR_READ	 A	bad	read	of	a	sector	occured	

Side	Effects

None

Remarks

If	the	mode	the	file	is	being	opened	in	is	a	plus	mode	(e.g.
READ+)	the	flags	will	be	modified	further	in	the	FSfopen	function.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	FILEopen
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Fill_File_Object	Function
C
BYTE	Fill_File_Object(

				FILEOBJ	fo,	

				WORD	*	fHandle

);

Description

This	function	will	cache	the	sector	of	directory	entries	in	the
directory	pointed	to	by	the	dirclus	value	in	the	FSFILE	object	'fo'
that	contains	the	entry	that	corresponds	to	the	fHandle	offset.	It
will	then	copy	the	file	information	for	that	entry	into	the	'fo'
FSFILE	object.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

fHandle	 Passed	member's	location	

Return	Values

Return	Values	 Description	

FOUND	 Operation	successful	

NOT_FOUND	 Operation	failed	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
Fill_File_Object	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FindEmptyEntries	Function
C
BYTE	FindEmptyEntries(

				FILEOBJ	fo,	

				WORD	*	fHandle

);

Description

This	function	will	cache	directory	entries,	starting	with	the	one
pointed	to	by	the	fHandle	argument.	It	will	then	search	through
the	entries	until	an	unused	one	is	found.	If	the	end	of	the	cluster
chain	for	the	directory	is	reached,	a	new	cluster	will	be	allocated
to	the	directory	(unless	it's	a	FAT12	or	FAT16	root)	and	the	first
entry	of	the	new	cluster	will	be	used.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

fHandle	 Start	of	entries	

Return	Values

Return	Values	 Description	

TRUE	 One	found	

FALSE	 None	found	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
FindEmptyEntries	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

flushData	Function
C
BYTE	flushData();

Description

The	flushData	function	is	called	when	it	is	necessary	to	read	new
data	into	the	global	data	buffer	and	the	gNeedDataWrite	variable
indicates	that	there	is	data	in	the	buffer	that	hasn't	been	written
to	the	device.	The	flushData	function	will	write	the	data	from	the
buffer	into	the	current	cluster	of	the	FSFILE	object	that	is	stored
in	the	gBufferOwner	global	variable.

Preconditions

File	opened	in	a	write	mode,	data	needs	to	be	written

Return	Values

Return	Values	 Description	

CE_GOOD	 Data	was	updated	successfully	

CE_WRITE_ERROR	 Data	could	not	be	updated	

Side	Effects

None

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	flushData
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FormatDirName	Function
C
BYTE	FormatDirName(

				char	*	string,	

				BYTE	mode

);

Description

Format	an	8.3	filename	into	directory	structure	format.	If	the
name	is	less	than	8	chars,	then	it	will	be	padded	with	spaces.	If
the	extension	name	is	fewer	than	3	chars,	then	it	will	also	be
oadded	with	spaces.	The	ValidateChars	function	is	used	to
ensure	the	characters	in	the	specified	directory	name	are	valid	in
this	filesystem.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

string	 The	name	to	be	formatted	

mode	

TRUE	-	Partial	string	search	characters
are	allowed
FALSE	-	Partial	string	search
characters	are	forbidden

	

Return	Values

Return	Values	 Description	

TRUE	 The	name	was	formatted	correctly	

FALSE	 The	name	contained	invalid	characters	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
FormatDirName	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FormatFileName	Function
C
BYTE	FormatFileName(

				const	char*	fileName,	

				char*	fN2,	

				BYTE	mode

);

Description

Format	an	8.3	filename	into	FSFILE	structure	format.	If	filename
is	less	than	8	chars,	then	it	will	be	padded	with	spaces.	If	the
extension	name	is	fewer	than	3	chars,	then	it	will	also	be	oadded
with	spaces.	The	ValidateChars	function	is	used	to	ensure	the
characters	in	the	specified	filename	are	valid	in	this	filesystem.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fileName	 The	name	to	be	formatted	

fN2	 The	location	the	formatted	name	will	be
stored	

mode	 Non-zero	if	parital	string	search	chars	are
allowed	

Return	Values

Return	Values	 Description	

TRUE	 Name	formatted	successfully	

FALSE	 File	name	could	not	be	formatted	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
FormatFileName	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSputc	Function
C
int	FSputc(

				char	c,	

				FSFILE	*	file

);

Description

This	is	a	helper	function	for	FSfprintf.	It	will	write	one	character	to
a	file.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

c	 The	character	to	write	to	the	file.	

file	 The	file	to	write	to.	

Return	Values

Return	Values	 Description	

0	 The	character	was	written	successfully	

EOF	 The	character	was	not	written	to	the	file.	

Side	Effects

None

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	FSputc
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSvfprintf	Function
C
int	FSvfprintf(

				auto	FSFILE	*	handle,	

				auto	const	rom	char	*	formatString,	

				auto	va_list	ap

);

Description

This	helper	function	will	access	the	elements	passed	to	FSfprintf

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

handle	 A	pointer	to	the	file	to	write	to.	

formatString	 A	string	of	characters	and	format	specifiers
to	write	to	the	file	

ap	 A	structure	pointing	to	the	arguments	on	the
stack	

Returns

The	number	of	characters	written	to	the	file

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

Consult	AN1045	for	a	full	description	of	how	to	use	format
specifiers.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	FSvfprintf
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

GetFullClusterNumber	Function
C
DWORD	GetFullClusterNumber(

				DIRENTRY	entry

);

Description

This	function	will	load	both	the	high	and	low	16-bit	first	cluster
values	of	a	file	from	a	directory	entry	and	copy	them	into	a	32-bit
cluster	number	variable,	which	will	be	returned.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

entry	 The	cached	directory	entry	to	get	the	cluster
number	from	

Returns

The	cluster	value	from	the	passed	directory	entry

Side	Effects

None.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
GetFullClusterNumber	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

GetPreviousEntry	Function
C
BYTE	GetPreviousEntry(

				FSFILE	*	fo

);

Description

The	GetPreviousEntry	function	is	used	by	the	FSgetcwd	function
to	load	the	previous	(parent)	directory.	This	function	will	load	the
parent	directory	and	then	search	through	the	file	entries	in	that
directory	for	one	that	matches	the	cluster	number	of	the	original
directory.	When	the	matching	entry	is	found,	the	name	of	the
original	directory	is	copied	into	the	'fo'	FSFILE	object.

Preconditions

Should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 The	file	to	get	the	previous	entry	of	

Return	Values

Return	Values	 Description	

0	 The	previous	entry	was	successfully
retrieved	

-1	 The	previous	entry	could	not	be	retrieved	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
GetPreviousEntry	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

IncrementTimeStamp	Function
C
void	IncrementTimeStamp(

				DIRENTRY	dir

);

Description

This	function	will	increment	the	timestamp	variable	in	the	'dir'
directory	entry.	This	is	used	for	the	don't-care	timing	method.

Preconditions

Should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

dir	 Pointer	to	directory	structure	

Side	Effects

None

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
IncrementTimeStamp	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LoadBootSector	Function
C
BYTE	LoadBootSector(

				DISK	*	dsk

);

Description

LoadBootSector	will	use	the	function	pointed	to	by	the
MDD_SectorWrite	function	pointer	to	load	the	boot	sector,	whose
location	was	obtained	by	a	previous	call	of	LoadMBR.	If	the	boot
sector	is	loaded	successfully,	partition	information	will	be
calcualted	from	it	and	copied	into	the	DISK	structure	pointed	to
by	'dsk.'

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

dsk	 The	disk	containing	the	boot	sector	

Return	Values

Return	Values	 Description	

CE_GOOD	 Boot	sector	loaded	

CE_BAD_SECTOR_READ	 A	bad	read	occured	of	a	sector	

CE_NOT_FORMATTED	 The	disk	is	of	an	unsupported	format	

CE_CARDFAT32	 FAT	32	device	not	supported	

Side	Effects

None

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
LoadBootSector	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LoadDirAttrib	Function
C
DIRENTRY	LoadDirAttrib(

				FILEOBJ	fo,	

				WORD	*	fHandle

);

Description

This	function	will	cache	the	sector	of	directory	entries	in	the
directory	pointed	to	by	the	dirclus	value	in	the	FSFILE	object	'fo'
that	contains	the	entry	that	corresponds	to	the	fHandle	offset.	It
will	then	return	a	pointer	to	the	directory	entry	in	the	global	data
buffer.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

fHandle	 Information	location	

Return	Values

Return	Values	 Description	

DIRENTRY	 Pointer	to	the	directory	entry	

NULL	 Directory	entry	could	not	be	loaded	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
LoadDirAttrib	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LoadMBR	Function
C
BYTE	LoadMBR(

				DISK	*	dsk

);

Description

The	LoadMBR	function	will	use	the	function	pointed	to	by	the
MDD_SectorRead	function	pointer	to	read	the	0	sector	from	the
device.	If	a	valid	boot	signature	is	obtained,	this	function	will
compare	fields	in	that	cached	sector	to	the	values	that	would	be
present	if	that	sector	was	a	boot	sector.	If	all	of	those	values
match,	it	will	be	assumed	that	the	device	does	not	have	a	master
boot	record	and	the	0	sector	is	actually	the	boot	sector.
Otherwise,	data	about	the	partition	and	the	actual	location	of	the
boot	sector	will	be	loaded	from	the	MBR	into	the	DISK	structure
pointed	to	by	'dsk.'

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

dsk	 The	disk	containing	the	master	boot	record
to	be	loaded	

Return	Values

Return	Values	 Description	

CE_GOOD	 MBR	loaded	successfully	

CE_BAD_SECTOR_READ	 A	bad	read	occured	of	a	sector	

CE_BAD_PARTITION	 The	boot	record	is	bad	

Side	Effects

None

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	LoadMBR
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

mkdirhelper	Function
C
int	mkdirhelper(

				BYTE	mode,	

				char	*	ramptr,	

				const	rom	char	*	romptr

);

Description

This	helper	function	is	used	by	the	FSchdir	function.	If	the	path
argument	is	specified	in	ROM	for	PIC18	this	function	will	be	able
to	parse	it	correctly.	This	function	will	first	scan	through	the	path
to	ensure	that	any	DIR	names	don't	exceed	11	characters.	It	will
then	backup	the	current	working	directory	and	begin	changing
directories	through	the	path	until	it	reaches	a	directory	than	can't
be	changed	to.	It	will	then	create	the	specified	directory	and
change	directories	to	the	new	directory.	The	function	will
continue	creating	and	changing	to	directories	until	the	end	of	the
path	is	reached.	The	function	will	then	restore	the	original	current
working	directory.

Preconditions

None

Parameters

Parameters	 Description	

mode	 Indicates	which	path	pointer	to	use	

ramptr	 Pointer	to	the	path	specified	in	RAM	

romptr	 Pointer	to	the	path	specified	in	ROM	

Return	Values

Return	Values	 Description	

0	 Directory	was	created	

-1	 Directory	could	not	be	created	

Side	Effects

Will	create	all	non-existant	directories	in	the	path.	The	FSerrno
variable	will	be	changed.

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	mkdirhelper
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PopulateEntries	Function
C
BYTE	PopulateEntries(

				FILEOBJ	fo,	

				char	*	name,	

				WORD	*	fHandle,	

				BYTE	mode

);

Description

This	function	will	write	data	into	a	new	file	entry.	It	will	also	load
timestamp	data	(based	on	the	method	selected	by	the	user)	and
update	the	timestamp	variables.

Preconditions

Should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 Pointer	to	file	structure	

name	 Name	of	the	file	

fHandle	 Location	of	the	file	

Return	Values

Return	Values	 Description	

CE_GOOD	 Population	successful	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
PopulateEntries	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ReadFAT	Function
C
DWORD	ReadFAT(

				DISK	*	dsk,	

				DWORD	ccls

);

Description

The	ReadFAT	function	will	read	the	FAT	and	determine	the	next
cluster	value	after	the	cluster	specified	by	'ccls.'	Note	that	the
FAT	sector	that	is	read	is	stored	in	the	global	FAT	cache	buffer.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

dsk	 The	disk	structure	

ccls	 The	current	cluster	

Returns

DWORD	-	The	next	cluster	in	a	file	chain

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	ReadFAT
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

rmdirhelper	Function
C
int	rmdirhelper(

				BYTE	mode,	

				char	*	ramptr,	

				const	rom	char	*	romptr,	

				unsigned	char	rmsubdirs

);

Description

This	helper	function	is	used	by	the	FSmkdir	function.	If	the	path
argument	is	specified	in	ROM	for	PIC18	this	function	will	be	able
to	parse	it	correctly.	This	function	will	first	change	to	the	specified
directory.	If	the	rmsubdirs	argument	is	FALSE	the	function	will
search	through	the	directory	to	ensure	that	it	is	empty	and	then
remove	it.	If	the	rmsubdirs	argument	is	TRUE	the	function	will
also	search	through	the	directory	for	subdirectories	or	files.
When	the	function	finds	a	file,	the	file	will	be	erased.	When	the
function	finds	a	subdirectory,	it	will	switch	to	the	subdirectory	and
begin	removing	all	of	the	files	in	that	subdirectory.	Once	the
subdirectory	is	empty,	the	function	will	switch	back	to	the	original
directory.	return	to	the	original	position	in	that	directory,	and
continue	removing	files.	Once	the	specified	directory	is	empty,
the	function	will	change	to	the	parent	directory,	search	through	it
for	the	directory	to	remove,	and	then	erase	that	directory.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

path	 The	path	of	the	dir	to	delete	

rmsubdirs	

TRUE	-	Remove	all	sub-directories	and
files	in	the	directory
FALSE	-	Non-empty	directories	can	not
be	removed

	

Return	Values

Return	Values	 Description	

0	 The	specified	directory	was	successfully
removed.	

EOF	 The	specified	directory	could	not	be
removed.	

Side	Effects

The	FSerrno	variable	will	be	changed.

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	rmdirhelper
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SRAMInitHeap	Function
C
void	SRAMInitHeap();

Description

This	function	initializes	the	dynamic	heap.	It	inserts	segment
headers	to	maximize	segment	space.

Returns

void

Remarks

This	function	must	be	called	at	least	one	time.	And	it	could	be
called	more	times	to	reset	the	heap.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
SRAMInitHeap	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

str_put_n_chars	Function
C
unsigned	char	str_put_n_chars(

				FSFILE	*	handle,	

				unsigned	char	n,	

				char	c

);

Description

This	funciton	is	used	by	the	FSfprintf	function	to	write	multiple
instances	of	a	single	character	to	a	file	(for	example,	when
padding	a	format	specifier	with	leading	spacez	or	zeros).

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

handle	 The	file	to	write	to.	

n	 The	number	of	times	to	write	that	character
to	a	file.	

c	 The	character	to	write	to	the	file.	

Return	Values

Return	Values	 Description	

0	 The	characters	were	written	successfully	

EOF	 The	characters	were	not	written	to	the	file.	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
str_put_n_chars	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ValidateChars	Function
C
BYTE	ValidateChars(

				char	*	FileName,	

				BYTE	mode

);

Description

The	ValidateChars	function	will	compare	characters	in	a
specified	filename	to	determine	if	they're	permissable	in	the	FAT
file	system.	Lower-case	characters	will	be	converted	to	upper-
case.	If	the	mode	argument	is	specifed	to	be	'TRUE,'	partial
string	search	characters	are	allowed.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fileName	 The	name	to	be	validated	

mode	 Determines	if	partial	string	search	is
allowed	

Return	Values

Return	Values	 Description	

TRUE	 Name	was	validated	

FALSE	 File	name	was	not	valid	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
ValidateChars	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Write_File_Entry	Function
C
BYTE	Write_File_Entry(

				FILEOBJ	fo,	

				WORD	*	curEntry

);

Description

This	function	will	calculate	the	sector	of	the	directory	(whose
base	sector	is	pointed	to	by	the	dirccls	value	in	the	FSFILE
object	'fo')	that	contains	a	directory	entry	whose	offset	is
indicated	by	the	curEntry	parameter.	It	will	then	write	the	data	in
the	global	data	buffer	(which	should	already	contain	the	entries
for	that	sector)	to	the	device.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

fo	 File	structure	

curEntry	 Write	destination	

Return	Values

Return	Values	 Description	

TRUE	 Operation	successful	

FALSE	 Operation	failed	

Side	Effects

None

Remarks

None

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
Write_File_Entry	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

writeDotEntries	Function
C
BYTE	writeDotEntries(

				DISK	*	dsk,	

				DWORD	dotAddress,	

				DWORD	dotdotAddress

);

Description

The	writeDotEntries	function	will	create	and	write	dot	and	dotdot
entries	to	a	newly	created	directory.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

disk	 The	global	disk	structure	

dotAddress	 The	cluster	the	current	dir	is	in	

dotdotAddress	 The	cluster	the	previous	directory	was	in	

Return	Values

Return	Values	 Description	

TRUE	 The	dot	and	dotdot	entries	were	created	

The	dot	and	dotdot	entries	could	not	be

FALSE	 created	in	the	new	directory	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
writeDotEntries	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FLAG_MINUS	Macro
C
#define	_FLAG_MINUS	0x1													//	FSfprintf	minus	flag	indicator

Description

FSfprintf	minus	flag	indicator

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FLAG_MINUS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FLAG_OCTO	Macro
C
#define	_FLAG_OCTO	0x8													//	FSfprintf	octothorpe	(hash	mark)	flag	indicator

Description

FSfprintf	octothorpe	(hash	mark)	flag	indicator

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FLAG_OCTO	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FLAG_PLUS	Macro
C
#define	_FLAG_PLUS	0x2													//	FSfprintf	plus	flag	indicator

Description

FSfprintf	plus	flag	indicator

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FLAG_PLUS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FLAG_SIGNED	Macro
C
#define	_FLAG_SIGNED	0x80											//	FSfprintf	signed	flag	indicator

Description

FSfprintf	signed	flag	indicator

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FLAG_SIGNED	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FLAG_SPACE	Macro
C
#define	_FLAG_SPACE	0x4													//	FSfprintf	space	flag	indicator

Description

FSfprintf	space	flag	indicator

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FLAG_SPACE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FLAG_ZERO	Macro
C
#define	_FLAG_ZERO	0x10												//	FSfprintf	zero	flag	indicator

Description

FSfprintf	zero	flag	indicator

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FLAG_ZERO	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FMT_BYTE	Macro
C
#define	_FMT_BYTE	3													//	FSfprintf	8-bit	argument	size	flag

Description

FSfprintf	8-bit	argument	size	flag

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FMT_BYTE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FMT_LONG	Macro
C
#define	_FMT_LONG	2													//	FSfprintf	32-bit	argument	size	flag

Description

FSfprintf	32-bit	argument	size	flag

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FMT_LONG	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FMT_LONGLONG	Macro
C
#define	_FMT_LONGLONG	1									//	FSfprintf	64-bit	argument	size	flag

Description

FSfprintf	64-bit	argument	size	flag

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FMT_LONGLONG	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FMT_SHRTLONG	Macro
C
#define	_FMT_SHRTLONG	2									//	FSfprintf	24-bit	argument	size	flag

Description

FSfprintf	24-bit	argument	size	flag

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FMT_SHRTLONG	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_FMT_UNSPECIFIED	Macro
C
#define	_FMT_UNSPECIFIED	0						//	FSfprintf	unspecified	argument	size	flag

Description

FSfprintf	unspecified	argument	size	flag

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_FMT_UNSPECIFIED	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_MAX_HEAP_SIZE	Macro
C
#define	_MAX_HEAP_SIZE	MAX_HEAP_SIZE-1

Description

A	macro	used	to	determine	the	heap	initialization	size.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_MAX_HEAP_SIZE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_MAX_SEGMENT_SIZE	Macro
C
#define	_MAX_SEGMENT_SIZE	0x7F

Description

A	macro	used	to	determine	the	maximum	size	of	a	dynamic
memory	segment.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_MAX_SEGMENT_SIZE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DIRECTORY	Macro
C
#define	DIRECTORY	0x12										//	Value	indicating	that	the	CreateFileEntry	function	will	be	creating	a	directory

Description

Value	indicating	that	the	CreateFileEntry	function	will	be	creating
a	directory

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
DIRECTORY	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DIRENTRIES_PER_SECTOR	Macro
C
#define	DIRENTRIES_PER_SECTOR	(MEDIA_SECTOR_SIZE	/	32)								

Description

The	number	of	directory	entries	in	a	sector

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
DIRENTRIES_PER_SECTOR	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NEAR	Macro
C
#define	NEAR	

Description

Functions	can	be	declared	using	the	NEAR	macro.	If	the
NEAR_MODEL	macro	is	uncommented,	the	NEAR	macro	will	be
ignored.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	NEAR
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_DIRENTRY	Structure
C
typedef	struct	{

		char	DIR_Name[DIR_NAMESIZE];

		char	DIR_Extension[DIR_EXTENSION];

		BYTE	DIR_Attr;

		BYTE	DIR_NTRes;

		BYTE	DIR_CrtTimeTenth;

		WORD	DIR_CrtTime;

		WORD	DIR_CrtDate;

		WORD	DIR_LstAccDate;

		WORD	DIR_FstClusHI;

		WORD	DIR_WrtTime;

		WORD	DIR_WrtDate;

		WORD	DIR_FstClusLO;

		DWORD	DIR_FileSize;

}	_DIRENTRY;

Description

Directory	entry	structure

Members

Members	 Description	

char	DIR_Name[DIR_NAMESIZE];	 File	name	

char
DIR_Extension[DIR_EXTENSION];	 File	extension	

BYTE	DIR_Attr;	 File	attributes	

BYTE	DIR_NTRes;	 Reserved	byte	

BYTE	DIR_CrtTimeTenth;	 Create	time	(millisecond	field)	

WORD	DIR_CrtTime;	 Create	time	(second,	minute,
hour	field)	

WORD	DIR_CrtDate;	 Create	date	

WORD	DIR_LstAccDate;	 Last	access	date	

WORD	DIR_FstClusHI;	 High	word	of	the	entry's	first
cluster	number	

WORD	DIR_WrtTime;	 Last	update	time	

WORD	DIR_WrtDate;	 Last	update	date	

WORD	DIR_FstClusLO;	 Low	word	of	the	entry's	first
cluster	number	

DWORD	DIR_FileSize;	 The	32-bit	file	size	

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_DIRENTRY	Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DIRENTRY	Type
C
typedef	_DIRENTRY	*	DIRENTRY;

Description

A	pointer	to	a	directory	entry	structure

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	DIRENTRY
Type

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FILEOBJ	Type
C
typedef	FSFILE	*	FILEOBJ;

Description

Pointer	to	an	FSFILE	object

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	FILEOBJ
Type

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_uDynamicHeap	Variable
C
unsigned	char	_uDynamicHeap[MAX_HEAP_SIZE];

Description

The	_uDynamicHeap	array	is	used	as	a	heap	for	PIC18	dynamic
memory	allocation.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
_uDynamicHeap	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cwd	Variable
C
FSFILE	cwd;

Description

Global	current	working	directory

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	cwd
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cwdptr	Variable
C
FSFILE	*	cwdptr	=	&cwd;

Description

Pointer	to	the	current	working	directory

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	cwdptr
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

defaultArray	Variable
C
char	defaultArray[10];

Description

This	string	is	used	by	FSgetcwd	to	return	the	cwd	name	if	the
path	passed	into	the	function	is	NULL

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	defaultArray
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

defaultString	Variable
C
char	defaultString[13];

Description

This	string	is	used	by	dir	functions	to	hold	dir	names	temporarily

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
defaultString	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

dirCleared	Variable
C
BYTE	dirCleared;

Description

Global	variable	used	by	the	"recursive"	FSrmdir	function	to
indicate	that	all	subdirectories	and	files	have	been	deleted	from
the	target	directory.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	dirCleared
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FatRootDirClusterValue	Variable
C
DWORD	FatRootDirClusterValue;

Description

Global	variable	containing	the	cluster	number	of	the	root	dir	(0	for
FAT12/16)

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
FatRootDirClusterValue	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FSerrno	Variable
C
BYTE	FSerrno;

Description

Global	error	variable.	Set	to	one	of	many	error	codes	after	each
function	call.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	FSerrno
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gBufferOwner	Variable
C
FSFILE	*	gBufferOwner	=	NULL;

Description

Global	variable	indicating	which	file	is	using	the	data	buffer

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gBufferOwner	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gBufferZeroed	Variable
C
BYTE	gBufferZeroed	=	FALSE;

Description

Global	variable	indicating	that	the	data	buffer	contains	all	zeros

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gBufferZeroed	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gDataBuffer	Variable
C
BYTE	gDataBuffer[MEDIA_SECTOR_SIZE];

Description

The	global	data	sector	buffer

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	gDataBuffer
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gDiskData	Variable
C
DISK	gDiskData;

Description

Global	structure	containing	device	information.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	gDiskData
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gFATBuffer	Variable
C
BYTE	gFATBuffer[MEDIA_SECTOR_SIZE];

Description

The	global	FAT	sector	buffer

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	gFATBuffer
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gFileArray	Variable
C
FSFILE	gFileArray[FS_MAX_FILES_OPEN];

Description

Array	that	contains	file	information	(static	allocation)

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	gFileArray
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gFileSlotOpen	Variable
C
BYTE	gFileSlotOpen[FS_MAX_FILES_OPEN];

Description

Array	that	indicates	which	elements	of	gFileArray	are	available
for	use

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gFileSlotOpen	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gFileTemp	Variable
C
FSFILE	gFileTemp;

Description

Global	variable	used	for	file	operations.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	gFileTemp
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gLastDataSectorRead	Variable
C
DWORD	gLastDataSectorRead	=	0xFFFFFFFF;

Description

Global	variable	indicating	which	data	sector	was	read	last

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gLastDataSectorRead	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gLastFATSectorRead	Variable
C
DWORD	gLastFATSectorRead	=	0xFFFF;

Description

Global	variable	indicating	which	FAT	sector	was	read	last

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gLastFATSectorRead	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gNeedDataWrite	Variable
C
BYTE	gNeedDataWrite	=	FALSE;

Description

Global	variable	indicating	that	there	is	information	that	needs	to
be	written	to	the	data	section

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gNeedDataWrite	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gNeedFATWrite	Variable
C
BYTE	gNeedFATWrite	=	FALSE;

Description

Global	variable	indicating	that	there	is	information	that	needs	to
be	written	to	the	FAT

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gNeedFATWrite	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gTimeAccDate	Variable
C
WORD	gTimeAccDate;

Description

Global	time	variable	(for	timestamps)	used	to	indicate	last	access
date

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gTimeAccDate	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gTimeCrtDate	Variable
C
WORD	gTimeCrtDate;

Description

Global	time	variable	(for	timestamps)	used	to	indicate	create
date

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gTimeCrtDate	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gTimeCrtMS	Variable
C
BYTE	gTimeCrtMS;

Description

Global	time	variable	(for	timestamps)	used	to	indicate	create	time
(milliseconds)

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	gTimeCrtMS
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gTimeCrtTime	Variable
C
WORD	gTimeCrtTime;

Description

Global	time	variable	(for	timestamps)	used	to	indicate	create	time

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gTimeCrtTime	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gTimeWrtDate	Variable
C
WORD	gTimeWrtDate;

Description

Global	time	variable	(for	timestamps)	used	to	indicate	last	update
date

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gTimeWrtDate	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

gTimeWrtTime	Variable
C
WORD	gTimeWrtTime;

Description

Global	time	variable	(for	timestamps)	used	to	indicate	last	update
time

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
gTimeWrtTime	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

nextClusterIsLast	Variable
C
BYTE	nextClusterIsLast	=	FALSE;

Description

Global	variable	indicating	that	the	entries	in	a	directory	align	with
a	cluster	boundary

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
nextClusterIsLast	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

recache	Variable
C
BYTE	recache	=	FALSE;

Description

Global	variable	used	by	the	"recursive"	FSrmdir	function	to
indicate	that	additional	cache	reads	are	needed.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	recache
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

s_digits	Variable
C
const	char	s_digits[]	=	"0123456789abcdef";

Description

FSfprintf	table	of	conversion	digits

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	s_digits
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

tempArray	Variable
C
char	tempArray[13]	=	"											";

Description

This	array	is	used	to	prevent	a	stack	frame	error

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	tempArray
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TempClusterCalc	Variable
C
DWORD	TempClusterCalc;

Description

Global	variable	used	to	store	the	calculated	value	of	the	cluster
of	a	specified	sector.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
TempClusterCalc	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

tempCWDobj	Variable
C
FSFILE	tempCWDobj;

Description

Global	variable	used	to	preserve	the	current	working	directory
information.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>
tempCWDobj	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SD-SPI	Physical	Layer
The	SD-SPI	physical	layer	offers	the	ability	to	interface	to	SD
cards	using	the	SPI	protocol.	SPI	modules	can	be	found	on
many	Microchip	microcontrollers.

Topics

Name	 Description	

Public	Members	
The	following	functions,	variables,
structures,	and	macros	are	available	for	use
by	the	user	application.	

Library	Members	

The	following	functions,	variables,
structures,	and	macros	are	public,	but	are
intended	only	to	be	accessed	by	the	library
itself.	Applications	should	generally	not	call
these	functions	or	modify	these	variables.	

Internal	Members	
The	following	functions,	variables,
structures,	and	macros	are	designated	as
internal	to	the	library.	

APIs	>	SD-SPI	Physical	Layer

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Public	Members
The	following	functions,	variables,	structures,	and	macros	are
available	for	use	by	the	user	application.

Macros

	 Name	 Description	

	 SD_CD	 SD-SPI	Card	Detect	Input	bit	

	 SD_CD_TRIS	 SD-SPI	Card	Detect	TRIS	bit	

	 SD_CS	 SD-SPI	Chip	Select	Output	bit	

	 SD_CS_TRIS	 SD-SPI	Chip	Select	TRIS	bit	

	 SD_WE	 SD-SPI	Write	Protect	Check	Input
bit	

	 SD_WE_TRIS	 SD-SPI	Write	Protect	Check	TRIS
bit	

	 SPI_INTERRUPT_FLAG	 The	interrupt	flag	for	the	SPI
module	

	 SPIBRG	 The	definition	for	the	SPI	baud	rate
generator	register	(PIC32)	

	 SPIBUF	 The	SPI	Buffer	

	 SPICLOCK	 The	TRIS	bit	for	the	SCK	pin	

	 SPICLOCKPORT	 The	port	for	the	SCK	pin	

	 SPICLOCKLAT	 The	output	latch	for	the	SCK	pin	

	 SPICON1	 The	main	SPI	control	register	

	 SPICON1bits	 The	bitwise	define	for	the	SPI
control	register	(i.e.	_____bits)	

	 SPIENABLE	 The	enable	bit	for	the	SPI	module	

	 SPIIN	 The	TRIS	bit	for	the	SDI	pin	

	 SPIINPORT	 The	port	for	the	SDI	pin	

	 SPIINLAT	 The	output	latch	for	the	SDI	pin	

	 SPIOUT	 The	TRIS	bit	for	the	SDO	pin	

	 SPIOUTPORT	 The	port	for	the	SDO	pin	

	 SPIOUTLAT	 The	output	latch	for	the	SDO	pin	

	 SPISTAT	 The	SPI	status	register	

	 SPISTAT_RBF	 The	receive	buffer	full	bit	in	the	SPI
status	register	

	 SPISTATbits	 The	bitwise	define	for	the	SPI
status	register	(i.e.	_____bits)	

APIs	>	SD-SPI	Physical	Layer	>	Public	Members

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SD_CD	Macro
C
#define	SD_CD	PORTFbits.RF0

Description

SD-SPI	Card	Detect	Input	bit

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SD_CD	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SD_CD_TRIS	Macro
C
#define	SD_CD_TRIS	TRISFbits.TRISF0

Description

SD-SPI	Card	Detect	TRIS	bit

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SD_CD_TRIS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SD_CS	Macro
C
#define	SD_CS	PORTBbits.RB1

Description

SD-SPI	Chip	Select	Output	bit

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SD_CS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SD_CS_TRIS	Macro
C
#define	SD_CS_TRIS	TRISBbits.TRISB1

Description

SD-SPI	Chip	Select	TRIS	bit

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SD_CS_TRIS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SD_WE	Macro
C
#define	SD_WE	PORTFbits.RF1

Description

SD-SPI	Write	Protect	Check	Input	bit

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SD_WE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SD_WE_TRIS	Macro
C
#define	SD_WE_TRIS	TRISFbits.TRISF1

Description

SD-SPI	Write	Protect	Check	TRIS	bit

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SD_WE_TRIS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPI_INTERRUPT_FLAG	Macro
C
#define	SPI_INTERRUPT_FLAG	PIR1bits.SSPIF

Description

The	interrupt	flag	for	the	SPI	module

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>
SPI_INTERRUPT_FLAG	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPIBRG	Macro
C
#define	SPIBRG	SPI1BRG

Description

The	definition	for	the	SPI	baud	rate	generator	register	(PIC32)

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPIBRG	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPIBUF	Macro
C
#define	SPIBUF	SPI1BUF

Description

The	SPI	Buffer

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPIBUF	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPICLOCK	Macro
C
#define	SPICLOCK	TRISFbits.TRISF6

Description

The	TRIS	bit	for	the	SCK	pin

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPICLOCK	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPICLOCKPORT	Macro
C
#define	SPICLOCKPORT	PORTCbits.RC3

Description

The	port	for	the	SCK	pin

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPICLOCKPORT
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPICLOCKLAT	Macro
C
#define	SPICLOCKLAT	LATCbits.LATC3

Description

The	output	latch	for	the	SCK	pin

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPICLOCKLAT
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPICON1	Macro
C
#define	SPICON1	SPI1CON

Description

The	main	SPI	control	register

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPICON1	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPICON1bits	Macro
C
#define	SPICON1bits	SPI1CONbits

Description

The	bitwise	define	for	the	SPI	control	register	(i.e.	_____bits)

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPICON1bits	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPIENABLE	Macro
C
#define	SPIENABLE	SPICON1bits.ON

Description

The	enable	bit	for	the	SPI	module

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPIENABLE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPIIN	Macro
C
#define	SPIIN	TRISFbits.TRISF7

Description

The	TRIS	bit	for	the	SDI	pin

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPIIN	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPIINPORT	Macro
C
#define	SPIINPORT	PORTCbits.RC4

Description

The	port	for	the	SDI	pin

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPIINPORT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPIINLAT	Macro
C
#define	SPIINLAT	LATCbits.LATC4

Description

The	output	latch	for	the	SDI	pin

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPIINLAT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPIOUT	Macro
C
#define	SPIOUT	TRISFbits.TRISF8

Description

The	TRIS	bit	for	the	SDO	pin

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPIOUT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPIOUTPORT	Macro
C
#define	SPIOUTPORT	PORTCbits.RC5

Description

The	port	for	the	SDO	pin

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPIOUTPORT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPIOUTLAT	Macro
C
#define	SPIOUTLAT	LATCbits.LATC5

Description

The	output	latch	for	the	SDO	pin

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPIOUTLAT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPISTAT	Macro
C
#define	SPISTAT	SPI1STAT

Description

The	SPI	status	register

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPISTAT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPISTAT_RBF	Macro
C
#define	SPISTAT_RBF	SPI1STATbits.SPIRBF

Description

The	receive	buffer	full	bit	in	the	SPI	status	register

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPISTAT_RBF	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SPISTATbits	Macro
C
#define	SPISTATbits	SPI1STATbits

Description

The	bitwise	define	for	the	SPI	status	register	(i.e.	_____bits)

APIs	>	SD-SPI	Physical	Layer	>	Public	Members	>	SPISTATbits	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Library	Members
The	following	functions,	variables,	structures,	and	macros	are
public,	but	are	intended	only	to	be	accessed	by	the	library	itself.
Applications	should	generally	not	call	these	functions	or	modify
these	variables.

Enumerations

	 Name	 Description	

	 RESP	 Enumeration	of	different	SD	response	types	

	 sdmmc_cmd	 An	enumeration	of	SD	commands	

Functions

	 Name	 Description	

	 MDD_SDSPI_InitIO	 Initializes	the	I/O	lines
connected	to	the	card	

	 MDD_SDSPI_MediaDetect	 Determines	whether	an	SD
card	is	present	

	 MDD_SDSPI_MediaInitialize	 Initializes	the	SD	card.	

	 MDD_SDSPI_ReadCapacity	 Determines	the	current
capacity	of	the	SD	card	

	 MDD_SDSPI_ReadMedia	 Reads	a	byte	of	data	from
the	SD	card.	

	 MDD_SDSPI_ReadSectorSize	 Determines	the	current
sector	size	on	the	SD	card	

	 MDD_SDSPI_SectorWrite	 Writes	a	sector	of	data	to	an
SD	card.	

	 MDD_SDSPI_SectorRead	 Reads	a	sector	of	data	from
an	SD	card.	

	 MDD_SDSPI_ShutdownMedia	 Disables	the	SD	card	

	 MDD_SDSPI_WriteProtectState	 Indicates	whether	the	card	is
write-protected.	

Macros

	 Name	 Description	

	 cmdAPP_CMD	

This	macro	defines	the
command	code	to	begin
application	specific	command
inputs	

	 cmdCRC_ON_OFF	
This	macro	defines	the
command	code	to	disable	CRC
checking	

	 cmdERASE	
This	macro	defines	the
command	code	to	erase	all
previously	selected	blocks	

	 cmdGO_IDLE_STATE	
This	macro	defines	the
command	code	to	reset	the	SD
card	

	 cmdREAD_MULTI_BLOCK	
This	macro	defines	the
command	code	to	read
multiple	blocks	from	the	card	

This	macro	defines	the
command	code	to	get	the	OCR

	 cmdREAD_OCR	 register	information	from	the
card	

	 cmdREAD_SINGLE_BLOCK	
This	macro	defines	the
command	code	to	read	one
block	from	the	card	

	 cmdSEND_CID	
This	macro	defines	the
command	code	to	get	the	Card
Information	

	 cmdSEND_CSD	
This	macro	defines	the
command	code	to	get	the	Card
Specific	Data	

	 cmdSEND_OP_COND	
This	macro	defines	the
command	code	to	initialize	the
SD	card	

	 cmdSEND_STATUS	
This	macro	defines	the
command	code	to	get	the	card
status	information	

	 cmdSET_BLOCKLEN	
This	macro	defines	the
command	code	to	set	the	block
length	of	the	card	

	 cmdSTOP_TRANSMISSION	

This	macro	defines	the
command	code	to	stop
transmission	during	a	multi-
block	read	

	 cmdTAG_SECTOR_END	

This	macro	defines	the
command	code	to	set	the
address	of	the	end	of	an	erase
operation	

This	macro	defines	the

	 cmdTAG_SECTOR_START	 command	code	to	set	the
address	of	the	start	of	an	erase
operation	

	 cmdWRITE_MULTI_BLOCK	
This	macro	defines	the
command	code	to	write
multiple	blocks	to	the	card	

	 cmdWRITE_SINGLE_BLOCK	
This	macro	defines	the
command	code	to	write	one
block	to	the	card	

	 DATA_ACCEPTED	 This	macro	represents	an	SD
card	data	accepted	token	

	 DATA_START_TOKEN	 This	macro	represents	an	SD
card	start	token	

	 DELAY_OVERHEAD	
An	approximation	of	the
number	of	cycles	per	delay
loop	of	overhead	

	 DELAY_PRESCALER	 A	delay	prescaler	

	 MASTER_ENABLE_ON	 This	macro	indicates	the	SPI
enable	bit	for	16-bit	PICs	

	 MILLISECDELAY	

An	approximate	calculation	of
how	many	times	to	loop	to
delay	1	ms	in	the	Delayms
function	

	 MMC_BAD_RESPONSE	 This	macro	represents	a	bad
SD	card	response	byte	

	 MMC_FLOATING_BUS	 This	macro	represents	a
floating	SPI	bus	condition	

	 MOREDATA	 This	macro	indicates	that	the
SD	card	expects	to	transmit	or
receive	more	data	

	 mReadCRC	 A	macro	to	send	clock	cycles
to	dummy-read	the	CRC	

	 mSend8ClkCycles	 A	macro	to	send	8	clock	cycles
for	SD	timing	requirements	

	 mSendCRC	 A	macro	to	send	clock	cycles
to	dummy-write	the	CRC	

	 NODATA	
This	macro	indicates	that	the
SD	card	does	not	expect	to
transmit	or	receive	more	data	

	 PRI_PRESCAL_1_1	
This	macro	is	used	to	initialize
a	16-bit	PIC	SPI	module
primary	prescaler	

	 SEC_PRESCAL_1_1	
This	macro	is	used	to	initialize
a	16-bit	PIC	SPI	module
secondary	prescaler	

	 SYNC_MODE_FAST	 This	macro	is	used	to	initialize
a	16-bit	PIC	SPI	module	

	 SYNC_MODE_MED	
This	macro	is	used	to	initialize
a	PIC18	SPI	module	with	a	16x
prescale	divider	

	 SYNC_MODE_SLOW	 This	macro	is	used	to	initialize
a	16-bit	PIC	SPI	module	

Structures

	 Name	 Description	

	 typMMC_CMD	 SD	card	command	data	structure	

Unions

	 Name	 Description	

	 CID	 A	description	of	the	card	information
register	

	 CMD_PACKET	 An	SD	command	packet	

	 CSD	 A	description	of	the	card	specific	data
register	

	 RESPONSE_1	 The	format	of	an	R1	type	response	

	 RESPONSE_2	 The	format	of	an	R2	type	response	

	 MMC_RESPONSE	 A	union	of	responses	from	an	SD	card	

APIs	>	SD-SPI	Physical	Layer	>	Library	Members

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_InitIO	Function
C
void	MDD_SDSPI_InitIO();

Description

The	MDD_SDSPI_InitIO	function	initializes	the	I/O	pins
connected	to	the	SD	card.

Preconditions

MDD_MediaInitialize()	is	complete.	The	MDD_InitIO	function
pointer	is	pointing	to	this	function.

Returns

None

Side	Effects

None.

Remarks

None

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	MDD_SDSPI_InitIO
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_MediaDetect	Function
C
BYTE	MDD_SDSPI_MediaDetect();

Description

The	MDD_SDSPI_MediaDetect	function	will	determine	if	an	SD
card	is	connected	to	the	microcontroller	by	polling	the	SD	card
detect	pin.

Preconditions

The	MDD_MediaDetect	function	pointer	must	be	configured	to
point	to	this	function	in	FSconfig.h

Return	Values

Return	Values	 Description	

TRUE	 Card	detected	

FALSE	 No	card	detected	

Side	Effects

None.

Remarks

None

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MDD_SDSPI_MediaDetect	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_MediaInitialize	Function
C
BYTE	MDD_SDSPI_MediaInitialize();

Description

This	function	will	send	initialization	commands	to	and	SD	card.

Preconditions

The	MDD_MediaInitialize	function	pointer	must	be	pointing	to	this
function.

Return	Values

Return	Values	 Description	

TRUE	 The	card	was	successfully	initialized	

FALSE	 Communication	could	not	be	established.	

Side	Effects

None.

Remarks

None.

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MDD_SDSPI_MediaInitialize	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_ReadCapacity	Function
C
DWORD	MDD_SDSPI_ReadCapacity();

Description

The	MDD_SDSPI_ReadCapacity	function	is	used	by	the	USB
mass	storage	class	to	return	the	total	number	of	sectors	on	the
card.

Preconditions

MDD_MediaInitialize()	is	complete

Returns

The	capacity	of	the	device

Side	Effects

None.

Remarks

None

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MDD_SDSPI_ReadCapacity	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_ReadMedia	Function
C
BYTE	MDD_SDSPI_ReadMedia();

Description

The	MDD_SDSPI_ReadMedia	function	will	read	one	byte	from
the	SPI	port.

Preconditions

None.

Returns

The	byte	read.

Side	Effects

None.

Remarks

This	function	replaces	ReadSPI,	since	some	implementations	of
that	function	will	initialize	SSPBUF/SPIBUF	to	0x00	when
reading.	The	card	expects	0xFF.

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MDD_SDSPI_ReadMedia	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_ReadSectorSize	Function
C
WORD	MDD_SDSPI_ReadSectorSize();

Description

The	MDD_SDSPI_ReadSectorSize	function	is	used	by	the	USB
mass	storage	class	to	return	the	card's	sector	size	to	the	PC	on
request.

Preconditions

MDD_MediaInitialize()	is	complete

Returns

The	size	of	the	sectors	for	the	physical	media

Side	Effects

None.

Remarks

None

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MDD_SDSPI_ReadSectorSize	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_SectorWrite	Function
C
BYTE	MDD_SDSPI_SectorWrite(

				DWORD	sector_addr,	

				BYTE*	buffer,	

				BYTE	allowWriteToZero

);

Description

The	MDD_SDSPI_SectorWrite	function	writes	512	bytes	of	data
from	the	location	pointed	to	by	'buffer'	to	the	specified	sector	of
the	SD	card.

Preconditions

The	MDD_SectorWrite	function	pointer	must	be	pointing	to	this
function.

Parameters

Parameters	 Description	

sector_addr	 The	address	of	the	sector	on	the	card.	

buffer	 The	buffer	with	the	data	to	write.	

allowWriteToZero	

TRUE	-	Writes	to	the	0	sector	(MBR)
are	allowed
FALSE	-	Any	write	to	the	0	sector	will
fail.

	

Return	Values

Return	Values	 Description	

TRUE	 The	sector	was	written	successfully.	

FALSE	 The	sector	could	not	be	written.	

Side	Effects

None.

Remarks

The	card	expects	the	address	field	in	the	command	packet	to	be
a	byte	address.	The	sector_addr	value	is	ocnverted	to	a	byte
address	by	shifting	it	left	nine	times	(multiplying	by	512).

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MDD_SDSPI_SectorWrite	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_SectorRead	Function
C
BYTE	MDD_SDSPI_SectorRead(

				DWORD	sector_addr,	

				BYTE*	buffer

);

Description

The	MDD_SDSPI_SectorRead	function	reads	512	bytes	of	data
from	the	SD	card	starting	at	the	sector	address	and	stores	them
in	the	location	pointed	to	by	'buffer.'

Preconditions

The	MDD_SectorRead	function	pointer	must	be	pointing	towards
this	function.

Parameters

Parameters	 Description	

sector_addr	 The	address	of	the	sector	on	the	card.	

byffer	
The	buffer	where	the	retrieved	data	will	be
stored.	If	buffer	is	NULL,	do	not	store	the
data	anywhere.	

Return	Values

Return	Values	 Description	

TRUE	 The	sector	was	read	successfully	

FALSE	 The	sector	could	not	be	read	

Side	Effects

None

Remarks

The	card	expects	the	address	field	in	the	command	packet	to	be
a	byte	address.	The	sector_addr	value	is	converted	to	a	byte
address	by	shifting	it	left	nine	times	(multiplying	by	512).

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MDD_SDSPI_SectorRead	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_ShutdownMedia	Function
C
void	MDD_SDSPI_ShutdownMedia();

Description

This	function	will	disable	the	SPI	port	and	deselect	the	SD	card.

Preconditions

The	MDD_ShutdownMedia	function	pointer	is	pointing	towards
this	function.

Returns

None

Side	Effects

None.

Remarks

None

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MDD_SDSPI_ShutdownMedia	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdAPP_CMD	Macro
C
#define	cmdAPP_CMD	55

Description

This	macro	defines	the	command	code	to	begin	application
specific	command	inputs

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	cmdAPP_CMD
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdCRC_ON_OFF	Macro
C
#define	cmdCRC_ON_OFF	59

Description

This	macro	defines	the	command	code	to	disable	CRC	checking

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	cmdCRC_ON_OFF
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdERASE	Macro
C
#define	cmdERASE	38

Description

This	macro	defines	the	command	code	to	erase	all	previously
selected	blocks

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	cmdERASE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdGO_IDLE_STATE	Macro
C
#define	cmdGO_IDLE_STATE	0

Description

This	macro	defines	the	command	code	to	reset	the	SD	card

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
cmdGO_IDLE_STATE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdREAD_MULTI_BLOCK	Macro
C
#define	cmdREAD_MULTI_BLOCK	18

Description

This	macro	defines	the	command	code	to	read	multiple	blocks
from	the	card

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
cmdREAD_MULTI_BLOCK	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdREAD_OCR	Macro
C
#define	cmdREAD_OCR	58

Description

This	macro	defines	the	command	code	to	get	the	OCR	register
information	from	the	card

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	cmdREAD_OCR
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdREAD_SINGLE_BLOCK	Macro
C
#define	cmdREAD_SINGLE_BLOCK	17

Description

This	macro	defines	the	command	code	to	read	one	block	from
the	card

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
cmdREAD_SINGLE_BLOCK	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdSEND_CID	Macro
C
#define	cmdSEND_CID	10

Description

This	macro	defines	the	command	code	to	get	the	Card
Information

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	cmdSEND_CID
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdSEND_CSD	Macro
C
#define	cmdSEND_CSD	9

Description

This	macro	defines	the	command	code	to	get	the	Card	Specific
Data

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	cmdSEND_CSD
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdSEND_OP_COND	Macro
C
#define	cmdSEND_OP_COND	1

Description

This	macro	defines	the	command	code	to	initialize	the	SD	card

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
cmdSEND_OP_COND	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdSEND_STATUS	Macro
C
#define	cmdSEND_STATUS	13

Description

This	macro	defines	the	command	code	to	get	the	card	status
information

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	cmdSEND_STATUS
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdSET_BLOCKLEN	Macro
C
#define	cmdSET_BLOCKLEN	16

Description

This	macro	defines	the	command	code	to	set	the	block	length	of
the	card

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
cmdSET_BLOCKLEN	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdSTOP_TRANSMISSION	Macro
C
#define	cmdSTOP_TRANSMISSION	12

Description

This	macro	defines	the	command	code	to	stop	transmission
during	a	multi-block	read

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
cmdSTOP_TRANSMISSION	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdTAG_SECTOR_END	Macro
C
#define	cmdTAG_SECTOR_END	33

Description

This	macro	defines	the	command	code	to	set	the	address	of	the
end	of	an	erase	operation

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
cmdTAG_SECTOR_END	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdTAG_SECTOR_START	Macro
C
#define	cmdTAG_SECTOR_START	32

Description

This	macro	defines	the	command	code	to	set	the	address	of	the
start	of	an	erase	operation

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
cmdTAG_SECTOR_START	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdWRITE_MULTI_BLOCK	Macro
C
#define	cmdWRITE_MULTI_BLOCK	25

Description

This	macro	defines	the	command	code	to	write	multiple	blocks	to
the	card

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
cmdWRITE_MULTI_BLOCK	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

cmdWRITE_SINGLE_BLOCK	Macro
C
#define	cmdWRITE_SINGLE_BLOCK	24

Description

This	macro	defines	the	command	code	to	write	one	block	to	the
card

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
cmdWRITE_SINGLE_BLOCK	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DATA_ACCEPTED	Macro
C
#define	DATA_ACCEPTED	0x05

Description

This	macro	represents	an	SD	card	data	accepted	token

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	DATA_ACCEPTED
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DATA_START_TOKEN	Macro
C
#define	DATA_START_TOKEN	0xFE

Description

This	macro	represents	an	SD	card	start	token

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
DATA_START_TOKEN	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DELAY_OVERHEAD	Macro
C
#define	DELAY_OVERHEAD	(BYTE)						5

Description

An	approximation	of	the	number	of	cycles	per	delay	loop	of
overhead

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	DELAY_OVERHEAD
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DELAY_PRESCALER	Macro
C
#define	DELAY_PRESCALER	(BYTE)						8

Description

A	delay	prescaler

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
DELAY_PRESCALER	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MASTER_ENABLE_ON	Macro
C
#define	MASTER_ENABLE_ON	0x0020

Description

This	macro	indicates	the	SPI	enable	bit	for	16-bit	PICs

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MASTER_ENABLE_ON	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MILLISECDELAY	Macro
C
#define	MILLISECDELAY	(WORD)						((GetInstructionClock

Description

An	approximate	calculation	of	how	many	times	to	loop	to	delay	1
ms	in	the	Delayms	function

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	MILLISECDELAY
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MMC_BAD_RESPONSE	Macro
C
#define	MMC_BAD_RESPONSE	MMC_FLOATING_BUS

Description

This	macro	represents	a	bad	SD	card	response	byte

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MMC_BAD_RESPONSE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MMC_FLOATING_BUS	Macro
C
#define	MMC_FLOATING_BUS	0xFF

Description

This	macro	represents	a	floating	SPI	bus	condition

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MMC_FLOATING_BUS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MOREDATA	Macro
C
#define	MOREDATA	!0

Description

This	macro	indicates	that	the	SD	card	expects	to	transmit	or
receive	more	data

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	MOREDATA	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

mReadCRC	Macro
C
#define	mReadCRC	WriteSPIM(0xFF);WriteSPIM(0xFF);

Description

A	macro	to	send	clock	cycles	to	dummy-read	the	CRC

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	mReadCRC	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

mSend8ClkCycles	Macro
C
#define	mSend8ClkCycles	WriteSPIM(0xFF);

Description

A	macro	to	send	8	clock	cycles	for	SD	timing	requirements

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	mSend8ClkCycles
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

mSendCRC	Macro
C
#define	mSendCRC	WriteSPIM(0xFF);WriteSPIM(0xFF);

Description

A	macro	to	send	clock	cycles	to	dummy-write	the	CRC

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	mSendCRC	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NODATA	Macro
C
#define	NODATA	0

Description

This	macro	indicates	that	the	SD	card	does	not	expect	to
transmit	or	receive	more	data

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	NODATA	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PRI_PRESCAL_1_1	Macro
C
#define	PRI_PRESCAL_1_1	0x0003

Description

This	macro	is	used	to	initialize	a	16-bit	PIC	SPI	module	primary
prescaler

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	PRI_PRESCAL_1_1
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SEC_PRESCAL_1_1	Macro
C
#define	SEC_PRESCAL_1_1	0x001c

Description

This	macro	is	used	to	initialize	a	16-bit	PIC	SPI	module
secondary	prescaler

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
SEC_PRESCAL_1_1	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SYNC_MODE_FAST	Macro
C
#define	SYNC_MODE_FAST	0x3E

Description

This	macro	is	used	to	initialize	a	16-bit	PIC	SPI	module

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	SYNC_MODE_FAST
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SYNC_MODE_MED	Macro
C
#define	SYNC_MODE_MED	0x01

Description

This	macro	is	used	to	initialize	a	PIC18	SPI	module	with	a	16x
prescale	divider

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	SYNC_MODE_MED
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SYNC_MODE_SLOW	Macro
C
#define	SYNC_MODE_SLOW	0x3C

Description

This	macro	is	used	to	initialize	a	16-bit	PIC	SPI	module

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
SYNC_MODE_SLOW	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CID	Union
C
typedef	union	{

		struct	{

				DWORD	_u320;

				DWORD	_u321;

				DWORD	_u322;

				DWORD	_u323;

		}

		struct	{

				BYTE	_byte[16];

		}

		struct	{

				unsigned	NOT_USED	:	1;

				unsigned	CRC	:	7;

				unsigned	MDT	:	8;

				DWORD	PSN;

				unsigned	PRV	:	8;

				char	PNM[6];

				WORD	OID;

				unsigned	MID	:	8;

		}

}	CID;

Description

This	union	represents	different	ways	to	access	information	in	a
packet	with	SD	card	CID	register	informaiton.	For	more
information	on	the	CID	register,	consult	an	SD	card	user's
manual.

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	CID	Union

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]

Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CMD_PACKET	Union
C
typedef	union	{

		struct	{

				BYTE	field[7];

		}

		struct	{

				BYTE	crc;

				BYTE	c30filler;

				BYTE	c32filler[3];

				BYTE	addr0;

				BYTE	addr1;

				BYTE	addr2;

				BYTE	addr3;

				BYTE	cmd;

		}

		struct	{

				BYTE	END_BIT	:	1;

				BYTE	CRC7	:	7;

				DWORD	address;

				BYTE	CMD_INDEX	:	6;

				BYTE	TRANSMIT_BIT	:	1;

				BYTE	START_BIT	:	1;

		}

}	CMD_PACKET;

Description

This	union	represents	different	ways	to	access	an	SD	card
command	packet

Members

Members	 Description	

BYTE	field[7];	 BYTE	array	

BYTE	crc;	 The	CRC	byte	

BYTE	c30filler;	 Filler	space	(since	bitwise	declarations	can't
cross	a	WORD	boundary)	

BYTE	c32filler[3];	 Filler	space	(since	bitwise	declarations	can't
cross	a	DWORD	boundary)	

BYTE	addr0;	 Address	byte	0	

BYTE	addr1;	 Address	byte	1	

BYTE	addr2;	 Address	byte	2	

BYTE	addr3;	 Address	byte	3	

BYTE	cmd;	 Command	code	byte	

BYTE	END_BIT	:	1;	 Packet	end	bit	

BYTE	CRC7	:	7;	 CRC	value	

DWORD	address;	 Address	

BYTE	CMD_INDEX	:
6;	 Command	code	

BYTE	TRANSMIT_BIT
:	1;	 Transmit	bit	

BYTE	START_BIT	:	1;	 Packet	start	bit	

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	CMD_PACKET
Union

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CSD	Union
C
typedef	union	{

		struct	{

				DWORD	_u320;

				DWORD	_u321;

				DWORD	_u322;

				DWORD	_u323;

		}

		struct	{

				BYTE	_byte[16];

		}

		struct	{

				unsigned	NOT_USED	:	1;

				unsigned	CRC	:	7;

				unsigned	ECC	:	2;

				unsigned	FILE_FORMAT	:	2;

				unsigned	TMP_WRITE_PROTECT	:	1;

				unsigned	PERM_WRITE_PROTECT	:	1;

				unsigned	COPY	:	1;

				unsigned	FILE_FORMAT_GRP	:	1;

				unsigned	RESERVED_1	:	5;

				unsigned	WRITE_BL_PARTIAL	:	1;

				unsigned	WRITE_BL_LEN_L	:	2;

				unsigned	WRITE_BL_LEN_H	:	2;

				unsigned	R2W_FACTOR	:	3;

				unsigned	DEFAULT_ECC	:	2;

				unsigned	WP_GRP_ENABLE	:	1;

				unsigned	WP_GRP_SIZE	:	5;

				unsigned	ERASE_GRP_SIZE_L	:	3;

				unsigned	ERASE_GRP_SIZE_H	:	2;

				unsigned	SECTOR_SIZE	:	5;

				unsigned	C_SIZE_MULT_L	:	1;

				unsigned	C_SIZE_MULT_H	:	2;

				unsigned	VDD_W_CURR_MAX	:	3;

				unsigned	VDD_W_CUR_MIN	:	3;

				unsigned	VDD_R_CURR_MAX	:	3;

				unsigned	VDD_R_CURR_MIN	:	3;

				unsigned	C_SIZE_L	:	2;

				unsigned	C_SIZE_H	:	8;

				unsigned	C_SIZE_U	:	2;

				unsigned	RESERVED_2	:	2;

				unsigned	DSR_IMP	:	1;

				unsigned	READ_BLK_MISALIGN	:	1;

				unsigned	WRITE_BLK_MISALIGN	:	1;

				unsigned	READ_BL_PARTIAL	:	1;

				unsigned	READ_BL_LEN	:	4;

				unsigned	CCC_L	:	4;

				unsigned	CCC_H	:	8;

				unsigned	TRAN_SPEED	:	8;

				unsigned	NSAC	:	8;

				unsigned	TAAC	:	8;

				unsigned	RESERVED_3	:	2;

				unsigned	SPEC_VERS	:	4;

				unsigned	CSD_STRUCTURE	:	2;

		}

}	CSD;

Description

This	union	represents	different	ways	to	access	information	in	a
packet	with	SD	card	CSD	informaiton.	For	more	information	on
the	CSD	register,	consult	an	SD	card	user's	manual.

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	CSD	Union

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RESPONSE_1	Union
C
typedef	union	{

		BYTE	_byte;

		struct	{

				unsigned	IN_IDLE_STATE	:	1;

				unsigned	ERASE_RESET	:	1;

				unsigned	ILLEGAL_CMD	:	1;

				unsigned	CRC_ERR	:	1;

				unsigned	ERASE_SEQ_ERR	:	1;

				unsigned	ADDRESS_ERR	:	1;

				unsigned	PARAM_ERR	:	1;

				unsigned	B7	:	1;

		}

}	RESPONSE_1;

Description

This	union	represents	different	ways	to	access	an	SD	card	R1
type	response	packet.

Members

Members	 Description	

BYTE	_byte;	 Byte-wise	access	This	structure	allows
bitwise	access	of	the	response	

unsigned
IN_IDLE_STATE	:	1;	 Card	is	in	idle	state	

unsigned
ERASE_RESET	:	1;	 Erase	reset	flag	

unsigned
ILLEGAL_CMD	:	1;	

Illegal	command	flag	

unsigned	CRC_ERR	:
1;	 CRC	error	flag	

unsigned
ERASE_SEQ_ERR	:
1;	

Erase	sequence	error	flag	

unsigned
ADDRESS_ERR	:	1;	 Address	error	flag	

unsigned
PARAM_ERR	:	1;	 Parameter	flag	

unsigned	B7	:	1;	 Unused	bit	7	

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	RESPONSE_1
Union

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RESPONSE_2	Union
C
typedef	union	{

		WORD	_word;

		struct	{

				BYTE	_byte0;

				BYTE	_byte1;

		}

		struct	{

				unsigned	IN_IDLE_STATE	:	1;

				unsigned	ERASE_RESET	:	1;

				unsigned	ILLEGAL_CMD	:	1;

				unsigned	CRC_ERR	:	1;

				unsigned	ERASE_SEQ_ERR	:	1;

				unsigned	ADDRESS_ERR	:	1;

				unsigned	PARAM_ERR	:	1;

				unsigned	B7	:	1;

				unsigned	CARD_IS_LOCKED	:	1;

				unsigned	WP_ERASE_SKIP_LK_FAIL	:	1;

				unsigned	ERROR	:	1;

				unsigned	CC_ERROR	:	1;

				unsigned	CARD_ECC_FAIL	:	1;

				unsigned	WP_VIOLATION	:	1;

				unsigned	ERASE_PARAM	:	1;

				unsigned	OUTRANGE_CSD_OVERWRITE	:	1;

		}

}	RESPONSE_2;

Description

This	union	represents	different	ways	to	access	an	SD	card	R2
type	response	packet

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	RESPONSE_2

Union

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MMC_RESPONSE	Union
C
typedef	union	{

		RESPONSE_1	r1;

		RESPONSE_2	r2;

}	MMC_RESPONSE;

Description

The	MMC_RESPONSE	union	represents	any	of	the	possible
responses	that	an	SD	card	can	return	after	being	issued	a
command.

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	MMC_RESPONSE
Union

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RESP	Enumeration
C
typedef	enum	{

		R1,

		R1b,

		R2,

		R3

}	RESP;

Description

Enumeration	of	different	SD	response	types

Members

Members	 Description	

R1	 R1	type	response	

R1b	 R1b	type	response	

R2	 R2	type	response	

R3	 R3	type	response	

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	RESP	Enumeration

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

sdmmc_cmd	Enumeration
C
typedef	enum	{

		GO_IDLE_STATE,

		SEND_OP_COND,

		SEND_CSD,

		SEND_CID,

		STOP_TRANSMISSION,

		SEND_STATUS,

		SET_BLOCKLEN,

		READ_SINGLE_BLOCK,

		READ_MULTI_BLOCK,

		WRITE_SINGLE_BLOCK,

		WRITE_MULTI_BLOCK,

		TAG_SECTOR_START,

		TAG_SECTOR_END,

		ERASE,

		APP_CMD,

		READ_OCR,

		CRC_ON_OFF

}	sdmmc_cmd;

Description

This	enumeration	corresponds	to	the	position	of	each	command
in	the	sdmmc_cmdtable	array	These	macros	indicate	to	the
SendMMCCmd	function	which	element	of	the	sdmmc_cmdtable
array	to	retrieve	command	code	information	from.

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	sdmmc_cmd
Enumeration

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

typMMC_CMD	Structure
C
typedef	struct	{

		BYTE	CmdCode;

		BYTE	CRC;

		RESP	responsetype;

		BYTE	moredataexpected;

}	typMMC_CMD;

Description

The	typMMC_CMD	structure	is	used	to	create	a	command	table
of	information	needed	for	each	relevant	SD	command

Members

Members	 Description	

BYTE	CmdCode;	 The	command	code	

BYTE	CRC;	 The	CRC	value	for	that	command	

RESP	responsetype;	 The	response	type	

BYTE
moredataexpected;	

Set	to	MOREDATA	or	NODATA,	depending
on	whether	more	data	is	expected	or	not	

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>	typMMC_CMD
Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Internal	Members
The	following	functions,	variables,	structures,	and	macros	are
designated	as	internal	to	the	library.

Functions

	 Name	 Description	

	 Delayms	 Delay.	

	 CloseSPIM	 Disables	the	SPI	module.	

	 OpenSPIM	 This	is	function	OpenSPIM.	

	 ReadMediaManual	 Reads	a	byte	of	data	from	the	SD
card.	

	 SendMMCCmd	 Sends	a	command	packet	to	the	SD
card.	

	 SendMMCCmdManual	 Sends	a	command	packet	to	the	SD
card	with	bit-bang	SPI.	

	 WriteSPIM	 Writes	data	to	the	SD	card.	

	 WriteSPIManual	 Write	a	character	to	the	SD	card	with
bit-bang	SPI.	

Macros

	 Name	 Description	

	 MANUAL_SPI_CLOCK_VALUE	 Delay	value	for	the	manual
SPI	clock	

Variables

	 Name	 Description	

	 sdmmc_cmdtable	 Table	of	SD	card	commands	and
parameters	

	 MDD_SDSPI_finalLBA	 Used	for	the	mass-storage	library	to
determine	capacity	

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Delayms	Function
C
void	Delayms(

				BYTE	milliseconds

);

Description

The	Delayms	function	will	delay	a	specified	number	of
milliseconds.	Used	for	SPI	timing.

Preconditions

None.

Parameters

Parameters	 Description	

BYTE	milliseconds	 Number	of	ms	to	delay	

Returns

None.

Side	Effects

None.

Remarks

Depending	on	compiler	revisions,	this	function	may	delay	for	the
exact	time	specified.	This	shouldn't	create	a	significant	problem.

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>	Delayms	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CloseSPIM	Function
C
void	CloseSPIM();

Description

Disables	the	SPI	module.

Preconditions

None.

Returns

None.

Side	Effects

None.

Remarks

None.

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>	CloseSPIM
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

OpenSPIM	Function
C
void	OpenSPIM(

				unsigned	int	sync_mode

);

Description

This	is	function	OpenSPIM.

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>	OpenSPIM	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ReadMediaManual	Function
C
BYTE	ReadMediaManual();

Description

The	MDD_SDSPI_ReadMedia	function	will	read	one	byte	from
the	SPI	port.

Preconditions

None.

Returns

The	byte	read.

Side	Effects

None.

Remarks

This	function	replaces	ReadSPI,	since	some	implementations	of
that	function	will	initialize	SSPBUF/SPIBUF	to	0x00	when
reading.	The	card	expects	0xFF.	This	function	is	for	use	on	a
PIC18	when	the	clock	speed	is	so	high	that	the	maximum	SPI
clock	prescaler	cannot	reduce	the	SPI	clock	below	the	maximum
SD	card	initialization	speed.

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>	ReadMediaManual
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SendMMCCmd	Function
C
MMC_RESPONSE	SendMMCCmd(

				BYTE	cmd,	

				DWORD	address

);

Description

SendMMCCmd	prepares	a	command	packet	and	sends	it	out
over	the	SPI	interface.	Response	data	of	type	'R1'	(as	indicated
by	the	SD/MMC	product	manual	is	returned.

Preconditions

None.

Return	Values

Return	Values	 Description	

MMC_RESPONSE	

The	response	from	the	card

Bit	0	-	Idle	state
Bit	1	-	Erase	Reset
Bit	2	-	Illegal	Command
Bit	3	-	Command	CRC	Error
Bit	4	-	Erase	Sequence	Error
Bit	5	-	Address	Error
Bit	6	-	Parameter	Error
Bit	7	-	Unused.	Always	0.

	

Side	Effects

None.

Remarks

None.

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>	SendMMCCmd
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SendMMCCmdManual	Function
C
MMC_RESPONSE	SendMMCCmdManual(

				BYTE	cmd,	

				DWORD	address

);

Description

SendMMCCmd	prepares	a	command	packet	and	sends	it	out
over	the	SPI	interface.	Response	data	of	type	'R1'	(as	indicated
by	the	SD/MMC	product	manual	is	returned.	This	function	is
intended	to	be	used	when	the	clock	speed	of	a	PIC18	device	is
so	high	that	the	maximum	SPI	divider	can't	reduce	the	clock
below	the	maximum	SD	card	initialization	sequence	speed.

Preconditions

None.

Return	Values

Return	Values	 Description	

MMC_RESPONSE	

The	response	from	the	card

Bit	0	-	Idle	state
Bit	1	-	Erase	Reset
Bit	2	-	Illegal	Command
Bit	3	-	Command	CRC	Error
Bit	4	-	Erase	Sequence	Error
Bit	5	-	Address	Error
Bit	6	-	Parameter	Error
Bit	7	-	Unused.	Always	0.

	

Side	Effects

None.

Remarks

None.

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>
SendMMCCmdManual	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

WriteSPIM	Function
C
unsigned	char	WriteSPIM(

				unsigned	char	data_out

);

Description

The	WriteSPIM	function	will	write	a	byte	of	data	from	the
microcontroller	to	the	SD	card.

Preconditions

None.

Parameters

Parameters	 Description	

data_out	 The	data	to	write.	

Returns

0.

Side	Effects

None.

Remarks

None.

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>	WriteSPIM	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

WriteSPIManual	Function
C
unsigned	char	WriteSPIManual(

				unsigned	char	data_out

);

Description

Writes	a	character	to	the	SD	card.

Preconditions

None.

Parameters

Parameters	 Description	

data_out	 Data	to	send.	

Returns

0.

Side	Effects

None.

Remarks

The	WriteSPIManual	function	is	for	use	on	a	PIC18	when	the
clock	speed	is	so	high	that	the	maximum	SPI	clock	divider
cannot	reduce	the	SPI	clock	speed	below	the	maximum	SD	card

initialization	speed.

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>	WriteSPIManual
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MANUAL_SPI_CLOCK_VALUE	Macro
C
#define	MANUAL_SPI_CLOCK_VALUE	1

Description

Delay	value	for	the	manual	SPI	clock

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>
MANUAL_SPI_CLOCK_VALUE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

sdmmc_cmdtable	Variable
C
const	rom	typMMC_CMD	sdmmc_cmdtable[]	=	const	typMMC_CMD

Description

The	sdmmc_cmdtable	contains	an	array	of	SD	card	commands,
the	corresponding	CRC	code,	the	response	type	that	the	card
will	return,	and	a	parameter	indicating	whether	to	expect
additional	data	from	the	card.

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>	sdmmc_cmdtable
Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_finalLBA	Variable
C
DWORD	MDD_SDSPI_finalLBA;

Description

Used	for	the	mass-storage	library	to	determine	capacity

APIs	>	SD-SPI	Physical	Layer	>	Internal	Members	>
MDD_SDSPI_finalLBA	Variable

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF	Physical	Layer
The	CF	physical	layers	offer	two	methods	for	interfacing	with	CF
cards.	The	manual	interface	method	will	bit-bang	the	parallel
interface	protocol	used	by	CF	cards.	The	CF-PMP	files	will
interface	to	the	cards	using	the	parallel	master	port	on	16-bit	PIC
devices.	At	this	time,	8-bit	architecture	PMP	interface	is	not
supported.

Topics

Name	 Description	

Public	Members	
The	following	functions,	variables,
structures,	and	macros	are	available	for	use
by	the	user	application.	

Library	Members	

The	following	functions,	variables,
structures,	and	macros	are	public,	but	are
intended	only	to	be	accessed	by	the	library
itself.	Applications	should	generally	not	call
these	functions	or	modify	these	variables.	

APIs	>	CF	Physical	Layer

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Public	Members
The	following	functions,	variables,	structures,	and	macros	are
available	for	use	by	the	user	application.

Functions

	 Name	 Description	

	 MDD_CFBT_MediaDetect	 Determines	if	a	card	is	inserted	

	 MDD_CFPMP_MediaDetect	 Determines	if	a	card	is	inserted	

Macros

	 Name	 Description	

	 MDD_CFBT_DATABIN	 The	Manual	CF	data	bus	port
register	

	 MDD_CFBT_DATABOUT	 The	Manual	CF	data	bus	output
latch	register	

	 MDD_CFBT_DATADIR	 The	Manual	CF	data	bus	TRIS
register	

	 MDD_CFPMP_DATADIR	 Defines	the	PMP	data	bus	direction
register	

	 MDD_CFread	
Function	pointer	to	the
CompactFlash	Read	Physical
Layer	function	

	 MDD_CFwait	
Function	pointer	to	the
CompactFlash	Wait	Physical	Layer
function	

	 MDD_CFwrite	
Function	pointer	to	the
CompactFlash	Write	Physical
Layer	function	

	 ADDBL	 The	CF	address	bus	output	latch
register	(for	PIC18)	

	 ADDDIR	 The	CF	address	bus	TRIS	register
(for	PIC18)	

	 ADDR0	
The	CF	address	bus	bit	0	output
latch	definition	(for
PIC24/30/33/32)	

	 ADDR1	
The	CF	address	bus	bit	1	output
latch	definition	(for
PIC24/30/33/32)	

	 ADDR2	
The	CF	address	bus	bit	2	output
latch	definition	(for
PIC24/30/33/32)	

	 ADDR3	
The	CF	address	bus	bit	3	output
latch	definition	(for
PIC24/30/33/32)	

	 ADRTRIS0	 The	CF	address	bus	bit	0	TRIS
definition	(for	PIC24/30/33/32)	

	 ADRTRIS1	 The	CF	address	bus	bit	1	TRIS
definition	(for	PIC24/30/33/32)	

	 ADRTRIS2	 The	CF	address	bus	bit	2	TRIS
definition	(for	PIC24/30/33/32)	

	 ADRTRIS3	 The	CF	address	bus	bit	3	TRIS
definition	(for	PIC24/30/33/32)	

	 CF_BT_CD1	 The	CF	card	detect	signal	port	bit	

	 CF_BT_CD1DIR	 The	CF	card	detect	signal	TRIS	bit	

	 CF_BT_RDY	 The	CF	card	ready	signal	port	bit	

	 CF_BT_READYDIR	 The	CF	card	ready	signal	TRIS	bit	

	 CF_BT_RESETDIR	 The	CF	card	reset	signal	TRIS	bit	

	 CF_BT_RST	 The	CF	card	reset	signal	latch	bit	

	 CF_CE	 The	CF	card	chip	select	output
latch	bit	

	 CF_CEDIR	 The	CF	card	chip	select	TRIS	bit	

	 CF_OE	 The	CF	card	output	enable	strobe
latch	bit	

	 CF_OEDIR	 The	CF	card	output	enable	strobe
TRIS	bit	

	 CF_PMP_CD1	 The	input	port	for	the	CF	card
detect	signal	

	 CF_PMP_CD1DIR	 The	TRIS	bit	for	the	CF	card	detect
signal	

	 CF_PMP_RDY	 The	input	port	for	the	CF	Ready
signal	

	 CF_PMP_READYDIR	 The	TRIS	bit	for	the	CF	Ready
signal	

	 CF_PMP_RESETDIR	 The	TRIS	bit	for	the	CF	Reset
signal	

The	output	latch	for	the	CF	Reset

	 CF_PMP_RST	 signal	

	 CF_WE	 The	CF	card	write	enable	strobe
latch	bit	

	 CF_WEDIR	 The	CF	card	write	enable	strobe
TRIS	bit	

APIs	>	CF	Physical	Layer	>	Public	Members

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_DATABIN	Macro
C
#define	MDD_CFBT_DATABIN	PORTE

Description

The	Manual	CF	data	bus	port	register

APIs	>	CF	Physical	Layer	>	Public	Members	>	MDD_CFBT_DATABIN
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_DATABOUT	Macro
C
#define	MDD_CFBT_DATABOUT	PORTE

Description

The	Manual	CF	data	bus	output	latch	register

APIs	>	CF	Physical	Layer	>	Public	Members	>	MDD_CFBT_DATABOUT
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_DATADIR	Macro
C
#define	MDD_CFBT_DATADIR	TRISE

Description

The	Manual	CF	data	bus	TRIS	register

APIs	>	CF	Physical	Layer	>	Public	Members	>	MDD_CFBT_DATADIR
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_MediaDetect	Function
C
BYTE	MDD_CFBT_MediaDetect();

Description

Determines	if	a	card	is	inserted

Preconditions

None

Returns

TRUE	-	Card	present	FALSE	-	Card	absent

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Public	Members	>	MDD_CFBT_MediaDetect
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_DATADIR	Macro
C
#define	MDD_CFPMP_DATADIR	TRISE

Description

Defines	the	PMP	data	bus	direction	register

APIs	>	CF	Physical	Layer	>	Public	Members	>	MDD_CFPMP_DATADIR
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_MediaDetect	Function
C
BYTE	MDD_CFPMP_MediaDetect();

Description

Determines	if	a	card	is	inserted

Preconditions

None

Returns

TRUE	-	Card	present	FALSE	-	Card	absent

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Public	Members	>
MDD_CFPMP_MediaDetect	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFread	Macro
C
#define	MDD_CFread	MDD_CFBT_CFread

Description

Function	pointer	to	the	CompactFlash	Read	Physical	Layer
function

APIs	>	CF	Physical	Layer	>	Public	Members	>	MDD_CFread	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFwait	Macro
C
#define	MDD_CFwait	MDD_CFBT_CFwait

Description

Function	pointer	to	the	CompactFlash	Wait	Physical	Layer
function

APIs	>	CF	Physical	Layer	>	Public	Members	>	MDD_CFwait	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFwrite	Macro
C
#define	MDD_CFwrite	MDD_CFBT_CFwrite

Description

Function	pointer	to	the	CompactFlash	Write	Physical	Layer
function

APIs	>	CF	Physical	Layer	>	Public	Members	>	MDD_CFwrite	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADDBL	Macro
C
#define	ADDBL	LATA

Description

The	CF	address	bus	output	latch	register	(for	PIC18)

APIs	>	CF	Physical	Layer	>	Public	Members	>	ADDBL	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADDDIR	Macro
C
#define	ADDDIR	TRISA

Description

The	CF	address	bus	TRIS	register	(for	PIC18)

APIs	>	CF	Physical	Layer	>	Public	Members	>	ADDDIR	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADDR0	Macro
C
#define	ADDR0	LATBbits.LATB15

Description

The	CF	address	bus	bit	0	output	latch	definition	(for
PIC24/30/33/32)

APIs	>	CF	Physical	Layer	>	Public	Members	>	ADDR0	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADDR1	Macro
C
#define	ADDR1	LATBbits.LATB14

Description

The	CF	address	bus	bit	1	output	latch	definition	(for
PIC24/30/33/32)

APIs	>	CF	Physical	Layer	>	Public	Members	>	ADDR1	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADDR2	Macro
C
#define	ADDR2	LATGbits.LATG9

Description

The	CF	address	bus	bit	2	output	latch	definition	(for
PIC24/30/33/32)

APIs	>	CF	Physical	Layer	>	Public	Members	>	ADDR2	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADDR3	Macro
C
#define	ADDR3	LATGbits.LATG8

Description

The	CF	address	bus	bit	3	output	latch	definition	(for
PIC24/30/33/32)

APIs	>	CF	Physical	Layer	>	Public	Members	>	ADDR3	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADRTRIS0	Macro
C
#define	ADRTRIS0	TRISBbits.TRISB15

Description

The	CF	address	bus	bit	0	TRIS	definition	(for	PIC24/30/33/32)

APIs	>	CF	Physical	Layer	>	Public	Members	>	ADRTRIS0	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADRTRIS1	Macro
C
#define	ADRTRIS1	TRISBbits.TRISB14

Description

The	CF	address	bus	bit	1	TRIS	definition	(for	PIC24/30/33/32)

APIs	>	CF	Physical	Layer	>	Public	Members	>	ADRTRIS1	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADRTRIS2	Macro
C
#define	ADRTRIS2	TRISGbits.TRISG9

Description

The	CF	address	bus	bit	2	TRIS	definition	(for	PIC24/30/33/32)

APIs	>	CF	Physical	Layer	>	Public	Members	>	ADRTRIS2	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADRTRIS3	Macro
C
#define	ADRTRIS3	TRISGbits.TRISG8

Description

The	CF	address	bus	bit	3	TRIS	definition	(for	PIC24/30/33/32)

APIs	>	CF	Physical	Layer	>	Public	Members	>	ADRTRIS3	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_BT_CD1	Macro
C
#define	CF_BT_CD1	PORTCbits.RC4

Description

The	CF	card	detect	signal	port	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_BT_CD1	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_BT_CD1DIR	Macro
C
#define	CF_BT_CD1DIR	TRISCbits.TRISC4

Description

The	CF	card	detect	signal	TRIS	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_BT_CD1DIR	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_BT_RDY	Macro
C
#define	CF_BT_RDY	PORTDbits.RD12

Description

The	CF	card	ready	signal	port	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_BT_RDY	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_BT_READYDIR	Macro
C
#define	CF_BT_READYDIR	TRISDbits.TRISD12

Description

The	CF	card	ready	signal	TRIS	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_BT_READYDIR
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_BT_RESETDIR	Macro
C
#define	CF_BT_RESETDIR	TRISDbits.TRISD0

Description

The	CF	card	reset	signal	TRIS	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_BT_RESETDIR
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_BT_RST	Macro
C
#define	CF_BT_RST	PORTDbits.RD0

Description

The	CF	card	reset	signal	latch	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_BT_RST	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_CE	Macro
C
#define	CF_CE	PORTDbits.RD11

Description

The	CF	card	chip	select	output	latch	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_CE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_CEDIR	Macro
C
#define	CF_CEDIR	TRISDbits.TRISD11

Description

The	CF	card	chip	select	TRIS	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_CEDIR	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_OE	Macro
C
#define	CF_OE	PORTDbits.RD5

Description

The	CF	card	output	enable	strobe	latch	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_OE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_OEDIR	Macro
C
#define	CF_OEDIR	TRISDbits.TRISD5

Description

The	CF	card	output	enable	strobe	TRIS	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_OEDIR	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_PMP_CD1	Macro
C
#define	CF_PMP_CD1	PORTCbits.RC4

Description

The	input	port	for	the	CF	card	detect	signal

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_PMP_CD1	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_PMP_CD1DIR	Macro
C
#define	CF_PMP_CD1DIR	TRISCbits.TRISC4

Description

The	TRIS	bit	for	the	CF	card	detect	signal

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_PMP_CD1DIR	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_PMP_RDY	Macro
C
#define	CF_PMP_RDY	PORTDbits.RD12

Description

The	input	port	for	the	CF	Ready	signal

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_PMP_RDY	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_PMP_READYDIR	Macro
C
#define	CF_PMP_READYDIR	TRISDbits.TRISD12

Description

The	TRIS	bit	for	the	CF	Ready	signal

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_PMP_READYDIR
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_PMP_RESETDIR	Macro
C
#define	CF_PMP_RESETDIR	TRISDbits.TRISD0

Description

The	TRIS	bit	for	the	CF	Reset	signal

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_PMP_RESETDIR
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_PMP_RST	Macro
C
#define	CF_PMP_RST	PORTDbits.RD0

Description

The	output	latch	for	the	CF	Reset	signal

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_PMP_RST	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_WE	Macro
C
#define	CF_WE	PORTDbits.RD4

Description

The	CF	card	write	enable	strobe	latch	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_WE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CF_WEDIR	Macro
C
#define	CF_WEDIR	TRISDbits.TRISD4

Description

The	CF	card	write	enable	strobe	TRIS	bit

APIs	>	CF	Physical	Layer	>	Public	Members	>	CF_WEDIR	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Library	Members
The	following	functions,	variables,	structures,	and	macros	are
public,	but	are	intended	only	to	be	accessed	by	the	library	itself.
Applications	should	generally	not	call	these	functions	or	modify
these	variables.

Functions

	 Name	 Description	

	 MDD_CFBT_CFread	 Reads	a	byte	from	the	CF
card	

	 MDD_CFBT_CFwait	 Wait	until	the	card	is	ready	

	 MDD_CFBT_CFwrite	 Writes	a	byte	to	the	CF
card	

	 MDD_CFBT_InitIO	 None	

	 MDD_CFBT_SectorRead	

SectorRead	reads	512
bytes	of	data	from	the	card
starting	at	the	sector
address	specified	by
sector_addr	and	stores
them	in	the	location	pointed
to	by	'buffer'.	

	 MDD_CFBT_SectorWrite	

SectorWrite	sends	512
bytes	of	data	from	the
location	pointed	to	by
'buffer'	to	the	card	starting
at	the	sector	address
specified	by	sector_addr.	

	 MDD_CFBT_WriteProtectState	 Added	for	compatibility-	no
write	protect	feature	

	 MDD_CFPMP_CFread	 Reads	a	byte	from	the	CF
card	

	 MDD_CFPMP_CFwait	 Wait	until	the	card	and	PMP
are	ready	

	 MDD_CFPMP_CFwrite	 Writes	a	byte	to	the	CF
card	

	 MDD_CFPMP_InitIO	 None	

	 MDD_CFPMP_SectorRead	

SectorRead	reads	512
bytes	of	data	from	the	card
starting	at	the	sector
address	specified	by
sector_addr	and	stores
them	in	the	location	pointed
to	by	'buffer'.	

	 MDD_CFPMP_SectorWrite	

SectorWrite	sends	512
bytes	of	data	from	the
location	pointed	to	by
'buffer'	to	the	card	starting
at	the	sector	address
specified	by	sector_addr.	

	 MDD_CFPMP_WriteProtectState	 Added	for	compatibility-	no
write	protect	feature	

Macros

	 Name	 Description	

	 MDD_CFBT_DATABinput	 A	macro	to	set	the	CF	data	bus
TRIS	register	to	inputs	

	 MDD_CFBT_DATABoutput	 A	macro	to	set	the	CF	data	bus
TRIS	register	to	outputs	

	 MDD_CFBT_MediaInitialize	 Prototypes	

	 MDD_CFPMP_DATABinput	 A	macro	to	set	the	CF	data	bus
TRIS	register	to	inputs	

	 MDD_CFPMP_DATABoutput	 A	macro	to	set	the	CF	data	bus
TRIS	register	to	outputs	

	 MDD_CFPMP_MediaInitialize	
The	initialization	function	for
CF	cards	(no	initialization
required)	

	 R_CMD	 A	macro	for	the	command
register	offset	for	CF	cards	

	 R_COUNT	 A	macro	for	the	count	register
offset	for	CF	cards	

	 R_CYHI	 A	macro	for	the	cylinder-high
register	offset	for	CF	cards	

	 R_CYLO	 A	macro	for	the	cylinder-low
register	offset	for	CF	cards	

	 R_DATA	 A	macro	for	the	data	register
offset	for	CF	cards	

	 R_DRIVE	 A	macro	for	the	drive	register
offset	for	CF	cards	

	 R_ERROR	 A	macro	for	the	error	register
offset	for	CF	cards	

	 R_SECT	 A	macro	for	the	sector	register
offset	for	CF	cards	

	 R_STATUS	 A	macro	for	the	status	offset	for
CF	cards	

	 C_DRIVE_DIAG	 A	macro	for	the	CF	drive
diagnostic	command	

	 C_DRIVE_IDENT	 A	macro	for	the	CF	drive
identify	command	

	 C_SECTOR_READ	 A	macro	for	the	CF	read
comment	

	 C_SECTOR_WRITE	 A	macro	for	the	CF	write
command	

	 S_ERROR	
A	macro	indicating	that	the	CF
status	register	reports	an	error
condition	

	 S_READY	
A	macro	indicating	that	the	CF
status	register	reports	a	ready
condition	

APIs	>	CF	Physical	Layer	>	Library	Members

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_CFread	Function
C
BYTE	MDD_CFBT_CFread(

				BYTE	add

);

Description

Reads	a	byte	from	the	CF	card

Preconditions

None

Parameters

Parameters	 Description	

BYTE	add	 address	to	read	from	

Returns

BYTE	-	the	byte	read

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFBT_CFread
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_CFwait	Function
C
void	MDD_CFBT_CFwait();

Description

Wait	until	the	card	is	ready

Preconditions

None

Returns

None

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFBT_CFwait
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_CFwrite	Function
C
void	MDD_CFBT_CFwrite(

				BYTE	add,	

				BYTE	d

);

Description

Writes	a	byte	to	the	CF	card

Preconditions

None

Parameters

Parameters	 Description	

BYTE	add	 the	address	to	write	to	

BYTE	d	 the	byte	to	write	

Returns

None

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFBT_CFwrite
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_DATABinput	Macro
C
#define	MDD_CFBT_DATABinput	MDD_CFBT_DATADIR	=	0xff;

Description

A	macro	to	set	the	CF	data	bus	TRIS	register	to	inputs

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFBT_DATABinput
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_DATABoutput	Macro
C
#define	MDD_CFBT_DATABoutput	MDD_CFBT_DATADIR	=	0;

Description

A	macro	to	set	the	CF	data	bus	TRIS	register	to	outputs

APIs	>	CF	Physical	Layer	>	Library	Members	>
MDD_CFBT_DATABoutput	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_InitIO	Function
C
void	MDD_CFBT_InitIO();

Description

None

Preconditions

None

Returns

void

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFBT_InitIO
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_MediaInitialize	Macro
C
#define	MDD_CFBT_MediaInitialize	TRUE

Description

Prototypes

APIs	>	CF	Physical	Layer	>	Library	Members	>
MDD_CFBT_MediaInitialize	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_SectorRead	Function
C
BYTE	MDD_CFBT_SectorRead(

				DWORD	lda,	

				BYTE	*	buf

);

Description

SectorRead	reads	512	bytes	of	data	from	the	card	starting	at	the
sector	address	specified	by	sector_addr	and	stores	them	in	the
location	pointed	to	by	'buffer'.

Preconditions

None

Parameters

Parameters	 Description	

sector_addr	 Sector	address,	each	sector	contains	512-
byte	

buffer	

Buffer	where	data	will	be	stored,	see
'ram_acs.h'	for	'block'	definition.	'Block'	is
dependent	on	whether	internal	or	external
memory	is	used	

Returns

TRUE	-	Sector	read	FALSE	-	Sector	could	not	be	read

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFBT_SectorRead
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_SectorWrite	Function
C
BYTE	MDD_CFBT_SectorWrite(

				DWORD	lda,	

				BYTE	*	buf,	

				BYTE	allowWriteToZero

);

Description

SectorWrite	sends	512	bytes	of	data	from	the	location	pointed	to
by	'buffer'	to	the	card	starting	at	the	sector	address	specified	by
sector_addr.

Preconditions

None

Parameters

Parameters	 Description	

sector_addr	 Sector	address,	each	sector	contains	512
bytes	

buffer	 Buffer	where	data	will	be	read	from	

allowWriteToZero	 allows	write	to	the	MBR	sector	

Returns

TRUE	-	Sector	written	FALSE	-	Sector	could	not	be	written

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFBT_SectorWrite
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFBT_WriteProtectState	Function
C
BYTE	MDD_CFBT_WriteProtectState();

Description

Added	for	compatibility-	no	write	protect	feature

Preconditions

None

Returns

0

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>
MDD_CFBT_WriteProtectState	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_CFread	Function
C
BYTE	MDD_CFPMP_CFread(

				BYTE	add

);

Description

Reads	a	byte	from	the	CF	card

Preconditions

None

Parameters

Parameters	 Description	

BYTE	add	 address	to	read	from	

Returns

BYTE	-	the	byte	read

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFPMP_CFread
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_CFwait	Function
C
void	MDD_CFPMP_CFwait();

Description

Wait	until	the	card	and	PMP	are	ready

Preconditions

None

Returns

None

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFPMP_CFwait
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_CFwrite	Function
C
void	MDD_CFPMP_CFwrite(

				BYTE	add,	

				BYTE	d

);

Description

Writes	a	byte	to	the	CF	card

Preconditions

None

Parameters

Parameters	 Description	

BYTE	add	 the	address	to	write	to	

BYTE	d	 the	byte	to	write	

Returns

None

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFPMP_CFwrite
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_DATABinput	Macro
C
#define	MDD_CFPMP_DATABinput	MDD_CFPMP_DATADIR	=	0xff;

Description

A	macro	to	set	the	CF	data	bus	TRIS	register	to	inputs

APIs	>	CF	Physical	Layer	>	Library	Members	>
MDD_CFPMP_DATABinput	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_DATABoutput	Macro
C
#define	MDD_CFPMP_DATABoutput	MDD_CFPMP_DATADIR	=	0;

Description

A	macro	to	set	the	CF	data	bus	TRIS	register	to	outputs

APIs	>	CF	Physical	Layer	>	Library	Members	>
MDD_CFPMP_DATABoutput	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_InitIO	Function
C
void	MDD_CFPMP_InitIO();

Description

None

Preconditions

None

Returns

TRUE	-	Card	initialized	FALSE	-	Card	not	initialized

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>	MDD_CFPMP_InitIO
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_MediaInitialize	Macro
C
#define	MDD_CFPMP_MediaInitialize	TRUE

Description

The	initialization	function	for	CF	cards	(no	initialization	required)

APIs	>	CF	Physical	Layer	>	Library	Members	>
MDD_CFPMP_MediaInitialize	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_SectorRead	Function
C
BYTE	MDD_CFPMP_SectorRead(

				DWORD	lda,	

				BYTE	*	buf

);

Description

SectorRead	reads	512	bytes	of	data	from	the	card	starting	at	the
sector	address	specified	by	sector_addr	and	stores	them	in	the
location	pointed	to	by	'buffer'.

Preconditions

None

Parameters

Parameters	 Description	

sector_addr	 Sector	address,	each	sector	contains	512-
byte	

buffer	 Buffer	where	data	will	be	stored	

Returns

TRUE	-	Sector	read	FALSE	-	Sector	could	not	be	read

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>
MDD_CFPMP_SectorRead	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_SectorWrite	Function
C
BYTE	MDD_CFPMP_SectorWrite(

				DWORD	lda,	

				BYTE	*	buf,	

				BYTE	allowWriteToZero

);

Description

SectorWrite	sends	512	bytes	of	data	from	the	location	pointed	to
by	'buffer'	to	the	card	starting	at	the	sector	address	specified	by
sector_addr.

Preconditions

None

Parameters

Parameters	 Description	

sector_addr	 Sector	address,	each	sector	contains	512
bytes	

buffer	 Buffer	where	data	will	be	read	from	

allowWriteToZero	 allows	write	to	the	MBR	sector	

Returns

TRUE	-	Sector	written	FALSE	-	Sector	could	not	be	written

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>
MDD_CFPMP_SectorWrite	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_CFPMP_WriteProtectState	Function
C
BYTE	MDD_CFPMP_WriteProtectState();

Description

Added	for	compatibility-	no	write	protect	feature

Preconditions

None

Returns

0

Side	Effects

None

Remarks

None

APIs	>	CF	Physical	Layer	>	Library	Members	>
MDD_CFPMP_WriteProtectState	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

R_CMD	Macro
C
#define	R_CMD	7

Description

A	macro	for	the	command	register	offset	for	CF	cards

APIs	>	CF	Physical	Layer	>	Library	Members	>	R_CMD	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

R_COUNT	Macro
C
#define	R_COUNT	2

Description

A	macro	for	the	count	register	offset	for	CF	cards

APIs	>	CF	Physical	Layer	>	Library	Members	>	R_COUNT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

R_CYHI	Macro
C
#define	R_CYHI	5

Description

A	macro	for	the	cylinder-high	register	offset	for	CF	cards

APIs	>	CF	Physical	Layer	>	Library	Members	>	R_CYHI	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

R_CYLO	Macro
C
#define	R_CYLO	4

Description

A	macro	for	the	cylinder-low	register	offset	for	CF	cards

APIs	>	CF	Physical	Layer	>	Library	Members	>	R_CYLO	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

R_DATA	Macro
C
#define	R_DATA	0

Description

A	macro	for	the	data	register	offset	for	CF	cards

APIs	>	CF	Physical	Layer	>	Library	Members	>	R_DATA	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

R_DRIVE	Macro
C
#define	R_DRIVE	6

Description

A	macro	for	the	drive	register	offset	for	CF	cards

APIs	>	CF	Physical	Layer	>	Library	Members	>	R_DRIVE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

R_ERROR	Macro
C
#define	R_ERROR	1

Description

A	macro	for	the	error	register	offset	for	CF	cards

APIs	>	CF	Physical	Layer	>	Library	Members	>	R_ERROR	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

R_SECT	Macro
C
#define	R_SECT	3

Description

A	macro	for	the	sector	register	offset	for	CF	cards

APIs	>	CF	Physical	Layer	>	Library	Members	>	R_SECT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

R_STATUS	Macro
C
#define	R_STATUS	7

Description

A	macro	for	the	status	offset	for	CF	cards

APIs	>	CF	Physical	Layer	>	Library	Members	>	R_STATUS	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

C_DRIVE_DIAG	Macro
C
#define	C_DRIVE_DIAG	0x90

Description

A	macro	for	the	CF	drive	diagnostic	command

APIs	>	CF	Physical	Layer	>	Library	Members	>	C_DRIVE_DIAG	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

C_DRIVE_IDENT	Macro
C
#define	C_DRIVE_IDENT	0xEC

Description

A	macro	for	the	CF	drive	identify	command

APIs	>	CF	Physical	Layer	>	Library	Members	>	C_DRIVE_IDENT	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

C_SECTOR_READ	Macro
C
#define	C_SECTOR_READ	0x20

Description

A	macro	for	the	CF	read	comment

APIs	>	CF	Physical	Layer	>	Library	Members	>	C_SECTOR_READ
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

C_SECTOR_WRITE	Macro
C
#define	C_SECTOR_WRITE	0x30

Description

A	macro	for	the	CF	write	command

APIs	>	CF	Physical	Layer	>	Library	Members	>	C_SECTOR_WRITE
Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

S_ERROR	Macro
C
#define	S_ERROR	0x51

Description

A	macro	indicating	that	the	CF	status	register	reports	an	error
condition

APIs	>	CF	Physical	Layer	>	Library	Members	>	S_ERROR	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up

S_READY	Macro
C
#define	S_READY	0x58

Description

A	macro	indicating	that	the	CF	status	register	reports	a	ready
condition

APIs	>	CF	Physical	Layer	>	Library	Members	>	S_READY	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home

Contents

Microchip	MDD	File	System	Interface	Library
Getting	Help
Getting	Started
Terminology
Boot	sector
Cluster
Current	Working	Directory
Directory
FAT
Master	Boot	Record
Root	directory
Sector
Directory	Structure
Configuring	Hardware
Explorer	16	with	PICtail	for	SD	and	MMC
HPC	Explorer	with	PICtail	for	SD	and	MMC
Software	Configuration
The	SD	Card	Demo
The	SD	Data	Logger	Demo
APIs
File	Manipulation	Layer	(FSIO)
Public	Members
FindFirst	Function
FindFirstpgm	Function
FindNext	Function
FSattrib	Function
FSchdir	Function
FSchdirpgm	Function
FSCreateMBR	Function

FSerror	Function
FSfclose	Function
FSfeof	Function
FSfopen	Function
FSfopenpgm	Function
FSformat	Function
FSfprintf	Function
FSfread	Function
FSfseek	Function
FSftell	Function
FSfwrite	Function
FSgetcwd	Function
FSInit	Function
FSmkdir	Function
FSmkdirpgm	Function
FSremove	Function
FSremovepgm	Function
FSrename	Function
FSrenamepgm	Function
FSrewind	Function
FSrmdir	Function
FSrmdirpgm	Function
SetClockVars	Function
ALLOW_DIRS	Macro
ALLOW_FILESEARCH	Macro
ALLOW_FSFPRINTF	Macro
ALLOW_FORMATS	Macro
ALLOW_PGMFUNCTIONS	Macro
ALLOW_WRITES	Macro
APPEND	Macro
APPENDPLUS	Macro
ATTR_ARCHIVE	Macro
ATTR_DIRECTORY	Macro

ATTR_HIDDEN	Macro
ATTR_MASK	Macro
ATTR_READ_ONLY	Macro
ATTR_SYSTEM	Macro
ATTR_VOLUME	Macro
EOF	Macro
FALSE	Macro
FS_DYNAMIC_MEM	Macro
FS_MAX_FILES_OPEN	Macro
INCREMENTTIMESTAMP	Macro
intmax_t	Macro
MDD_MediaDetect	Macro
MEDIA_SECTOR_SIZE	Macro
NEAR_MODEL	Macro
READ	Macro
READPLUS	Macro
SEEK_CUR	Macro
SEEK_END	Macro
SEEK_SET	Macro
SUPPORT_FAT32	Macro
TRUE	Macro
USE_CF_INTERFACE_WITH_PMP	Macro
USE_MANUAL_CF_INTERFACE	Macro
USE_SD_INTERFACE_WITH_SPI	Macro
USE_USB_INTERFACE	Macro
USERDEFINEDCLOCK	Macro
USEREALTIMECLOCK	Macro
WRITE	Macro
WRITEPLUS	Macro
FSFILE	Structure
SearchRec	Structure
Library	Members
ReadByte	Function

ReadDWord	Function
ReadWord	Function
ATTR_LONG_NAME	Macro
BSI_BOOTSIG	Macro
BSI_BPS	Macro
BSI_FAT32_BOOTSIG	Macro
BSI_FAT32_FSTYPE	Macro
BSI_FATCOUNT	Macro
BSI_FATSZ32	Macro
BSI_FSTYPE	Macro
BSI_RESRVSEC	Macro
BSI_ROOTCLUS	Macro
BSI_ROOTDIRENTS	Macro
BSI_SPC	Macro
BSI_SPF	Macro
BSI_TOTSEC16	Macro
BSI_TOTSEC32	Macro
CE_EOF	Macro
CE_FAT_EOF	Macro
CLUSTER_EMPTY	Macro
CLUSTER_FAIL_FAT16	Macro
CLUSTER_FAIL_FAT32	Macro
DIR_DEL	Macro
DIR_EMPTY	Macro
DIR_EXTENSION	Macro
DIR_NAMECOMP	Macro
DIR_NAMESIZE	Macro
END_CLUSTER_FAT12	Macro
END_CLUSTER_FAT16	Macro
END_CLUSTER_FAT32	Macro
FAT_GOOD_SIGN_0	Macro
FAT_GOOD_SIGN_1	Macro
FAT12	Macro

FAT16	Macro
FAT32	Macro
FILE_NAME_SIZE	Macro
FO_MBR	Macro
FOUND	Macro
GetInstructionClock	Macro
GetPeripheralClock	Macro
GetSystemClock	Macro
INPUT	Macro
LAST_CLUSTER_FAT12	Macro
LAST_CLUSTER_FAT16	Macro
LAST_CLUSTER_FAT32	Macro
MASK_MAX_FILE_ENTRY_LIMIT_BITS	Macro
MDD_InitIO	Macro
MDD_MediaInitialize	Macro
MDD_ReadCapacity	Macro
MDD_ReadSectorSize	Macro
MDD_SectorRead	Macro
MDD_SectorWrite	Macro
MDD_ShutdownMedia	Macro
MDD_WriteProtectState	Function
NO_MORE	Macro
NOT_FOUND	Macro
NUMBER_OF_BYTES_IN_DIR_ENTRY	Macro
OUTPUT	Macro
RAMread	Macro
RAMreadD	Macro
RAMreadW	Macro
RAMwrite	Macro
TOTAL_FILE_SIZE	Macro
VALUE_BASED_ON_ENTRIES_PER_CLUSTER	Macro
VALUE_DOTDOT_CLUSTER_VALUE_FOR_ROOT	Macro
_BootSec	Structure

_BPB_FAT12	Structure
_BPB_FAT16	Structure
_BPB_FAT32	Structure
_PT_MBR	Structure
BootSec	Type
CETYPE	Enumeration
DISK	Structure
FILEFLAGS	Structure
PT_MBR	Type
PTE_MBR	Structure
SALLOC	Type
SEARCH_TYPE	Enumeration
Internal	Members
_SRAMmerge	Function
Cache_File_Entry	Function
CacheTime	Function
chdirhelper	Function
Cluster2Sector	Function
CreateDIR	Function
CreateFileEntry	Function
CreateFirstCluster	Function
DISKmount	Function
EraseCluster	Function
FAT_erase_cluster_chain	Function
FATfindEmptyCluster	Function
FILEallocate_new_cluster	Function
FILECreateHeadCluster	Function
FILEerase	Function
FILEfind	Function
FILEget_next_cluster	Function
FileObjectCopy	Function
FILEopen	Function
Fill_File_Object	Function

FindEmptyEntries	Function
flushData	Function
FormatDirName	Function
FormatFileName	Function
FSputc	Function
FSvfprintf	Function
GetFullClusterNumber	Function
GetPreviousEntry	Function
IncrementTimeStamp	Function
LoadBootSector	Function
LoadDirAttrib	Function
LoadMBR	Function
mkdirhelper	Function
PopulateEntries	Function
ReadFAT	Function
rmdirhelper	Function
SRAMInitHeap	Function
str_put_n_chars	Function
ValidateChars	Function
Write_File_Entry	Function
writeDotEntries	Function
WriteFAT	Function
_FLAG_MINUS	Macro
_FLAG_OCTO	Macro
_FLAG_PLUS	Macro
_FLAG_SIGNED	Macro
_FLAG_SPACE	Macro
_FLAG_ZERO	Macro
_FMT_BYTE	Macro
_FMT_LONG	Macro
_FMT_LONGLONG	Macro
_FMT_SHRTLONG	Macro
_FMT_UNSPECIFIED	Macro

_MAX_HEAP_SIZE	Macro
_MAX_SEGMENT_SIZE	Macro
DIRECTORY	Macro
DIRENTRIES_PER_SECTOR	Macro
NEAR	Macro
_DIRENTRY	Structure
DIRENTRY	Type
FILEOBJ	Type
_uDynamicHeap	Variable
cwd	Variable
cwdptr	Variable
defaultArray	Variable
defaultString	Variable
dirCleared	Variable
FatRootDirClusterValue	Variable
FSerrno	Variable
gBufferOwner	Variable
gBufferZeroed	Variable
gDataBuffer	Variable
gDiskData	Variable
gFATBuffer	Variable
gFileArray	Variable
gFileSlotOpen	Variable
gFileTemp	Variable
gLastDataSectorRead	Variable
gLastFATSectorRead	Variable
gNeedDataWrite	Variable
gNeedFATWrite	Variable
gTimeAccDate	Variable
gTimeCrtDate	Variable
gTimeCrtMS	Variable
gTimeCrtTime	Variable
gTimeWrtDate	Variable

gTimeWrtTime	Variable
nextClusterIsLast	Variable
recache	Variable
s_digits	Variable
tempArray	Variable
TempClusterCalc	Variable
tempCWDobj	Variable
SD-SPI	Physical	Layer
Public	Members
SD_CD	Macro
SD_CD_TRIS	Macro
SD_CS	Macro
SD_CS_TRIS	Macro
SD_WE	Macro
SD_WE_TRIS	Macro
SPI_INTERRUPT_FLAG	Macro
SPIBRG	Macro
SPIBUF	Macro
SPICLOCK	Macro
SPICLOCKPORT	Macro
SPICLOCKLAT	Macro
SPICON1	Macro
SPICON1bits	Macro
SPIENABLE	Macro
SPIIN	Macro
SPIINPORT	Macro
SPIINLAT	Macro
SPIOUT	Macro
SPIOUTPORT	Macro
SPIOUTLAT	Macro
SPISTAT	Macro
SPISTAT_RBF	Macro
SPISTATbits	Macro

Library	Members
MDD_SDSPI_InitIO	Function
MDD_SDSPI_MediaDetect	Function
MDD_SDSPI_MediaInitialize	Function
MDD_SDSPI_ReadCapacity	Function
MDD_SDSPI_ReadMedia	Function
MDD_SDSPI_ReadSectorSize	Function
MDD_SDSPI_SectorWrite	Function
MDD_SDSPI_SectorRead	Function
MDD_SDSPI_ShutdownMedia	Function
cmdAPP_CMD	Macro
cmdCRC_ON_OFF	Macro
cmdERASE	Macro
cmdGO_IDLE_STATE	Macro
cmdREAD_MULTI_BLOCK	Macro
cmdREAD_OCR	Macro
cmdREAD_SINGLE_BLOCK	Macro
cmdSEND_CID	Macro
cmdSEND_CSD	Macro
cmdSEND_OP_COND	Macro
cmdSEND_STATUS	Macro
cmdSET_BLOCKLEN	Macro
cmdSTOP_TRANSMISSION	Macro
cmdTAG_SECTOR_END	Macro
cmdTAG_SECTOR_START	Macro
cmdWRITE_MULTI_BLOCK	Macro
cmdWRITE_SINGLE_BLOCK	Macro
DATA_ACCEPTED	Macro
DATA_START_TOKEN	Macro
DELAY_OVERHEAD	Macro
DELAY_PRESCALER	Macro
MASTER_ENABLE_ON	Macro
MILLISECDELAY	Macro

MMC_BAD_RESPONSE	Macro
MMC_FLOATING_BUS	Macro
MOREDATA	Macro
mReadCRC	Macro
mSend8ClkCycles	Macro
mSendCRC	Macro
NODATA	Macro
PRI_PRESCAL_1_1	Macro
SEC_PRESCAL_1_1	Macro
SYNC_MODE_FAST	Macro
SYNC_MODE_MED	Macro
SYNC_MODE_SLOW	Macro
CID	Union
CMD_PACKET	Union
CSD	Union
RESPONSE_1	Union
RESPONSE_2	Union
MMC_RESPONSE	Union
RESP	Enumeration
sdmmc_cmd	Enumeration
typMMC_CMD	Structure
Internal	Members
Delayms	Function
CloseSPIM	Function
OpenSPIM	Function
ReadMediaManual	Function
SendMMCCmd	Function
SendMMCCmdManual	Function
WriteSPIM	Function
WriteSPIManual	Function
MANUAL_SPI_CLOCK_VALUE	Macro
sdmmc_cmdtable	Variable
MDD_SDSPI_finalLBA	Variable

CF	Physical	Layer
Public	Members
MDD_CFBT_DATABIN	Macro
MDD_CFBT_DATABOUT	Macro
MDD_CFBT_DATADIR	Macro
MDD_CFBT_MediaDetect	Function
MDD_CFPMP_DATADIR	Macro
MDD_CFPMP_MediaDetect	Function
MDD_CFread	Macro
MDD_CFwait	Macro
MDD_CFwrite	Macro
ADDBL	Macro
ADDDIR	Macro
ADDR0	Macro
ADDR1	Macro
ADDR2	Macro
ADDR3	Macro
ADRTRIS0	Macro
ADRTRIS1	Macro
ADRTRIS2	Macro
ADRTRIS3	Macro
CF_BT_CD1	Macro
CF_BT_CD1DIR	Macro
CF_BT_RDY	Macro
CF_BT_READYDIR	Macro
CF_BT_RESETDIR	Macro
CF_BT_RST	Macro
CF_CE	Macro
CF_CEDIR	Macro
CF_OE	Macro
CF_OEDIR	Macro
CF_PMP_CD1	Macro
CF_PMP_CD1DIR	Macro

CF_PMP_RDY	Macro
CF_PMP_READYDIR	Macro
CF_PMP_RESETDIR	Macro
CF_PMP_RST	Macro
CF_WE	Macro
CF_WEDIR	Macro
Library	Members
MDD_CFBT_CFread	Function
MDD_CFBT_CFwait	Function
MDD_CFBT_CFwrite	Function
MDD_CFBT_DATABinput	Macro
MDD_CFBT_DATABoutput	Macro
MDD_CFBT_InitIO	Function
MDD_CFBT_MediaInitialize	Macro
MDD_CFBT_SectorRead	Function
MDD_CFBT_SectorWrite	Function
MDD_CFBT_WriteProtectState	Function
MDD_CFPMP_CFread	Function
MDD_CFPMP_CFwait	Function
MDD_CFPMP_CFwrite	Function
MDD_CFPMP_DATABinput	Macro
MDD_CFPMP_DATABoutput	Macro
MDD_CFPMP_InitIO	Function
MDD_CFPMP_MediaInitialize	Macro
MDD_CFPMP_SectorRead	Function
MDD_CFPMP_SectorWrite	Function
MDD_CFPMP_WriteProtectState	Function
R_CMD	Macro
R_COUNT	Macro
R_CYHI	Macro
R_CYLO	Macro
R_DATA	Macro
R_DRIVE	Macro

R_ERROR	Macro
R_SECT	Macro
R_STATUS	Macro
C_DRIVE_DIAG	Macro
C_DRIVE_IDENT	Macro
C_SECTOR_READ	Macro
C_SECTOR_WRITE	Macro
S_ERROR	Macro
S_READY	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home

Index
_	|	A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	L	|	M	|	N	|	O	|	P	|	R	|	S	|	T	|	U	|	V	|	W

_
_BootSec	structure
_BPB_FAT12	structure
_BPB_FAT16	structure
_BPB_FAT32	structure
_CETYPE	enumeration
_DIRENTRY	structure
_FLAG_MINUS	macro
_FLAG_OCTO	macro
_FLAG_PLUS	macro
_FLAG_SIGNED	macro
_FLAG_SPACE	macro
_FLAG_ZERO	macro
_FMT_BYTE	macro
_FMT_LONG	macro
_FMT_LONGLONG	macro
_FMT_SHRTLONG	macro
_FMT_UNSPECIFIED	macro
_MAX_HEAP_SIZE	macro
_MAX_SEGMENT_SIZE	macro
_PT_MBR	structure
_SRAMmerge	function
_uDynamicHeap	variable

A
ADDBL	macro
ADDDIR	macro
ADDR0	macro
ADDR1	macro

FSfwrite	function
FSgetcwd	function
FSInit	function
FSmkdir	function
FSmkdirpgm	function
FSputc	function
FSremove	function
FSremovepgm	function
FSrename	function
FSrenamepgm	function
FSrewind	function
FSrmdir	function
FSrmdirpgm	function
FSvfprintf	function

G
gBufferOwner	variable
gBufferZeroed	variable
gDataBuffer	variable

ADDR2	macro
ADDR3	macro
ADRTRIS0	macro
ADRTRIS1	macro
ADRTRIS2	macro
ADRTRIS3	macro
ALLOW_DIRS	macro
ALLOW_FILESEARCH	macro
ALLOW_FORMATS	macro
ALLOW_FSFPRINTF	macro
ALLOW_PGMFUNCTIONS	macro
ALLOW_WRITES	macro
APIs
APPEND	macro
APPENDPLUS	macro
ATTR_ARCHIVE	macro
ATTR_DIRECTORY	macro
ATTR_HIDDEN	macro
ATTR_LONG_NAME	macro
ATTR_MASK	macro
ATTR_READ_ONLY	macro
ATTR_SYSTEM	macro
ATTR_VOLUME	macro

B
Boot	sector
BootSec	type
BSI_BOOTSIG	macro
BSI_BPS	macro
BSI_FAT32_BOOTSIG	macro
BSI_FAT32_FSTYPE	macro
BSI_FATCOUNT	macro
BSI_FATSZ32	macro
BSI_FSTYPE	macro

gDiskData	variable
GetFullClusterNumber	function
GetInstructionClock	macro
GetPeripheralClock	macro
GetPreviousEntry	function
GetSystemClock	macro
Getting	Help
Getting	Started
gFATBuffer	variable
gFileArray	variable
gFileSlotOpen	variable
gFileTemp	variable
gLastDataSectorRead	variable
gLastFATSectorRead	variable
gNeedDataWrite	variable
gNeedFATWrite	variable
gTimeAccDate	variable
gTimeCrtDate	variable
gTimeCrtMS	variable
gTimeCrtTime	variable
gTimeWrtDate	variable
gTimeWrtTime	variable

H
HPC	Explorer	with	PICtail	for	SD	and	MMC

I
IncrementTimeStamp	function
INCREMENTTIMESTAMP	macro
INPUT	macro
Internal	Members
intmax_t	macro

L

BSI_RESRVSEC	macro
BSI_ROOTCLUS	macro
BSI_ROOTDIRENTS	macro
BSI_SPC	macro
BSI_SPF	macro
BSI_TOTSEC16	macro
BSI_TOTSEC32	macro

C
C_DRIVE_DIAG	macro
C_DRIVE_IDENT	macro
C_SECTOR_READ	macro
C_SECTOR_WRITE	macro
Cache_File_Entry	function
CacheTime	function
CE_BAD_FILE	enumeration
member
CE_BAD_PARTITION	enumeration
member
CE_BAD_SECTOR_READ
enumeration	member
CE_BADCACHEREAD
enumeration	member
CE_CARDFAT32	enumeration
member
CE_COULD_NOT_GET_CLUSTER
enumeration	member
CE_DELETE_DIR	enumeration
member
CE_DIR_FULL	enumeration
member
CE_DIR_NOT_EMPTY
enumeration	member
CE_DIR_NOT_FOUND
enumeration	member

LAST_CLUSTER_FAT12	macro
LAST_CLUSTER_FAT16	macro
LAST_CLUSTER_FAT32	macro
Library	Members
LoadBootSector	function
LoadDirAttrib	function
LoadMBR	function

M
MANUAL_SPI_CLOCK_VALUE	macro
MASK_MAX_FILE_ENTRY_LIMIT_BITS	macro
Master	Boot	Record
MASTER_ENABLE_ON	macro
MAX_HEAP_SIZE	macro
MDD_CFBT_CFread	function
MDD_CFBT_CFwait	function
MDD_CFBT_CFwrite	function
MDD_CFBT_DATABIN	macro
MDD_CFBT_DATABinput	macro
MDD_CFBT_DATABOUT	macro
MDD_CFBT_DATABoutput	macro
MDD_CFBT_DATADIR	macro
MDD_CFBT_InitIO	function
MDD_CFBT_MediaDetect	function
MDD_CFBT_MediaInitialize	macro
MDD_CFBT_SectorRead	function
MDD_CFBT_SectorWrite	function
MDD_CFBT_WriteProtectState	function
MDD_CFPMP_CFread	function
MDD_CFPMP_CFwait	function
MDD_CFPMP_CFwrite	function
MDD_CFPMP_DATABinput	macro
MDD_CFPMP_DATABoutput	macro
MDD_CFPMP_DATADIR	macro

CE_DISK_FULL	enumeration
member
CE_DONE	enumeration	member
CE_EOF	macro
CE_ERASE_FAIL	enumeration
member
CE_FAT_EOF	macro
CE_FILE_NOT_FOUND
enumeration	member
CE_FILENAME_2_LONG
enumeration	member
CE_FILENAME_EXISTS
enumeration	member
CE_FILENOTOPENED
enumeration	member
CE_GOOD	enumeration	member
CE_INIT_ERROR	enumeration
member
CE_INVALID_ARGUMENT
enumeration	member
CE_INVALID_CLUSTER
enumeration	member
CE_INVALID_FILENAME
enumeration	member
CE_NONSUPPORTED_SIZE
enumeration	member
CE_NOT_FORMATTED
enumeration	member
CE_NOT_INIT	enumeration
member
CE_NOT_PRESENT	enumeration
member
CE_READONLY	enumeration
member
CE_SEEK_ERROR	enumeration
member

MDD_CFPMP_InitIO	function
MDD_CFPMP_MediaDetect	function
MDD_CFPMP_MediaInitialize	macro
MDD_CFPMP_SectorRead	function
MDD_CFPMP_SectorWrite	function
MDD_CFPMP_WriteProtectState	function
MDD_CFread	macro
MDD_CFwait	macro
MDD_CFwrite	macro
MDD_InitIO	macro
MDD_MediaDetect	macro
MDD_MediaInitialize	macro
MDD_ReadCapacity	macro
MDD_ReadSectorSize	macro
MDD_SDSPI_finalLBA	variable
MDD_SDSPI_InitIO	function
MDD_SDSPI_MediaDetect	function
MDD_SDSPI_MediaInitialize	function
MDD_SDSPI_ReadCapacity	function
MDD_SDSPI_ReadMedia	function
MDD_SDSPI_ReadSectorSize	function
MDD_SDSPI_SectorRead	function
MDD_SDSPI_SectorWrite	function
MDD_SDSPI_ShutdownMedia	function
MDD_SDSPI_WriteProtectState	function
MDD_SectorRead	macro
MDD_SectorWrite	macro
MDD_ShutdownMedia	macro
MDD_WriteProtectState	function
MEDIA_SECTOR_SIZE	macro
Microchip	MDD	File	System	Interface	Library
MILLISECDELAY	macro
mkdirhelper	function
MMC_BAD_RESPONSE	macro

CE_TOO_MANY_FILES_OPEN
enumeration	member
CE_UNSUPPORTED_FS
enumeration	member
CE_WRITE_ERROR	enumeration
member
CE_WRITE_PROTECTED
enumeration	member
CE_WRITEONLY	enumeration
member
CETYPE	enumeration
CF	Physical	Layer
CF_BT_CD1	macro
CF_BT_CD1DIR	macro
CF_BT_RDY	macro
CF_BT_READYDIR	macro
CF_BT_RESETDIR	macro
CF_BT_RST	macro
CF_CE	macro
CF_CEDIR	macro
CF_OE	macro
CF_OEDIR	macro
CF_PMP_CD1	macro
CF_PMP_CD1DIR	macro
CF_PMP_RDY	macro
CF_PMP_READYDIR	macro
CF_PMP_RESETDIR	macro
CF_PMP_RST	macro
CF_WE	macro
CF_WEDIR	macro
chdirhelper	function
CID	union
CloseSPIM	function
Cluster
CLUSTER_EMPTY	macro

MMC_FLOATING_BUS	macro
MMC_RESPONSE	union
MOREDATA	macro
mReadCRC	macro
mSend8ClkCycles	macro
mSendCRC	macro

N
NEAR	macro
NEAR_MODEL	macro
nextClusterIsLast	variable
NO_MORE	macro
NODATA	macro
NOT_FOUND	macro
NUMBER_OF_BYTES_IN_DIR_ENTRY	macro

O
OpenSPIM	function
OUTPUT	macro

P
PopulateEntries	function
PRI_PRESCAL_1_1	macro
PT_MBR	type
PTE_MBR	structure
Public	Members

R
R_CMD	macro
R_COUNT	macro
R_CYHI	macro
R_CYLO	macro
R_DATA	macro
R_DRIVE	macro
R_ERROR	macro

CLUSTER_FAIL_FAT16	macro
CLUSTER_FAIL_FAT32	macro
Cluster2Sector	function
CMD_PACKET	union
cmdAPP_CMD	macro
cmdCRC_ON_OFF	macro
cmdERASE	macro
cmdGO_IDLE_STATE	macro
cmdREAD_MULTI_BLOCK	macro
cmdREAD_OCR	macro
cmdREAD_SINGLE_BLOCK	macro
cmdSEND_CID	macro
cmdSEND_CSD	macro
cmdSEND_OP_COND	macro
cmdSEND_STATUS	macro
cmdSET_BLOCKLEN	macro
cmdSTOP_TRANSMISSION	macro
cmdTAG_SECTOR_END	macro
cmdTAG_SECTOR_START	macro
cmdWRITE_MULTI_BLOCK	macro
cmdWRITE_SINGLE_BLOCK
macro
Configuring	Hardware
CreateDIR	function
CreateFileEntry	function
CreateFirstCluster	function
CSD	union
Current	Working	Directory
cwd	variable
cwdptr	variable

D
DATA_ACCEPTED	macro
DATA_START_TOKEN	macro

R_SECT	macro
R_STATUS	macro
RAMread	macro
RAMreadD	macro
RAMreadW	macro
RAMwrite	macro
READ	macro
ReadByte	function
ReadDWord	function
ReadFAT	function
ReadMediaManual	function
READPLUS	macro
ReadWord	function
recache	variable
RESP	enumeration
RESPONSE_1	union
RESPONSE_2	union
rmdirhelper	function
Root	directory

S
s_digits	variable
S_ERROR	macro
S_READY	macro
SALLOC	type
SD_CD	macro
SD_CD_TRIS	macro
SD_CS	macro
SD_CS_TRIS	macro
SD_WE	macro
SD_WE_TRIS	macro
sdmmc_cmd	enumeration
sdmmc_cmdtable	variable
SD-SPI	Physical	Layer

defaultArray	variable
defaultString	variable
DELAY_OVERHEAD	macro
DELAY_PRESCALER	macro
Delayms	function
DIR_DEL	macro
DIR_EMPTY	macro
DIR_EXTENSION	macro
DIR_NAMECOMP	macro
DIR_NAMESIZE	macro
dirCleared	variable
Directory
DIRECTORY	macro
Directory	Structure
DIRENTRIES_PER_SECTOR
macro
DIRENTRY	type
DISK	structure
DISKmount	function

E
END_CLUSTER_FAT12	macro
END_CLUSTER_FAT16	macro
END_CLUSTER_FAT32	macro
EOF	macro
EraseCluster	function
eraseDir	function
Explorer	16	with	PICtail	for	SD	and
MMC

F
FALSE	macro
FAT
FAT_erase_cluster_chain	function
FAT_GOOD_SIGN_0	macro

SEARCH_TYPE	enumeration
SearchRec	structure
SEC_PRESCAL_1_1	macro
Sector
SEEK_CUR	macro
SEEK_END	macro
SEEK_SET	macro
SendMMCCmd	function
SendMMCCmdManual	function
SetClockVars	function
Software	Configuration
SPI_INTERRUPT_FLAG	macro
SPIBRG	macro
SPIBUF	macro
SPICLOCK	macro
SPICLOCKLAT	macro
SPICLOCKPORT	macro
SPICON1	macro
SPICON1bits	macro
SPIENABLE	macro
SPIIN	macro
SPIINLAT	macro
SPIINPORT	macro
SPIOUT	macro
SPIOUTLAT	macro
SPIOUTPORT	macro
SPISTAT	macro
SPISTAT_RBF	macro
SPISTATbits	macro
SRAMInitHeap	function
str_put_n_chars	function
SUPPORT_FAT32	macro
SWORD	structure
SYNC_MODE_FAST	macro

FAT_GOOD_SIGN_1	macro
FAT12	macro
FAT16	macro
FAT32	macro
FATfindEmptyCluster	function
FatRootDirClusterValue	variable
File	Manipulation	Layer	(FSIO)
FILE_NAME_SIZE	macro
FILEallocate_new_cluster	function
FILECreateHeadCluster	function
FILEerase	function
FILEfind	function
FILEFLAGS	structure
FILEget_next_cluster	function
FILEOBJ	type
FileObjectCopy	function
FILEopen	function
Fill_File_Object	function
FindEmptyEntries	function
FindFirst	function
FindFirstpgm	function
FindNext	function
flushData	function
FO_MBR	macro
FormatDirName	function
FormatFileName	function
FOUND	macro
FS_DYNAMIC_MEM	macro
FS_MAX_FILES_OPEN	macro
FSattrib	function
FSchdir	function
FSchdirpgm	function
FSCreateMBR	function
FSerrno	variable

SYNC_MODE_MED	macro
SYNC_MODE_SLOW	macro

T
tempArray	variable
TempClusterCalc	variable
tempCWDobj	variable
Terminology
The	SD	Card	Demo
The	SD	Data	Logger	Demo
TOTAL_FILE_SIZE	macro
TRUE	macro
typMMC_CMD	structure

U
USE_CF_INTERFACE_WITH_PMP	macro
USE_MANUAL_CF_INTERFACE	macro
USE_SD_INTERFACE_WITH_SPI	macro
USE_USB_INTERFACE	macro
USERDEFINEDCLOCK	macro
USEREALTIMECLOCK	macro

V
ValidateChars	function
VALUE_BASED_ON_ENTRIES_PER_CLUSTER
macro
VALUE_DOTDOT_CLUSTER_VALUE_FOR_ROOT
macro

W
WRITE	macro
Write_File_Entry	function
writeDotEntries	function
WRITEPLUS	macro
WriteSPIM	function

FSerror	function
FSfclose	function
FSfeof	function
FSFILE	structure
FSfopen	function
FSfopenpgm	function
FSformat	function
FSfprintf	function
FSfread	function
FSfseek	function
FSftell	function

WriteSPIManual	function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAX_HEAP_SIZE	Macro
C
#define	MAX_HEAP_SIZE	0x100

Description

When	using	dynamic	FSFILE	object	allocation	with	PIC18,	the
MAX_HEAP_SIZE	will	allow	the	user	to	specify	the	size	of	the
dynamic	heap	to	use

APIs	>	File	Manipulation	Layer	(FSIO)	>	Public	Members	>
MAX_HEAP_SIZE	Macro

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SWORD	Structure
C
typedef	struct	{

		unsigned	char	array[3];

}	SWORD;

Description

The	SWORD	macro	is	used	to	defined	a	24-bit	data	type.	For
16+	bit	architectures,	this	must	be	represented	as	an	array	of
three	bytes.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Library	Members	>	SWORD
Structure

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

eraseDir	Function
C
int	eraseDir(

				char	*	path

);

Description

The	eraseDir	function	is	a	helper	function	for	the	rmdirhelper
function.	The	eraseDir	function	will	search	for	the	directory	that
matches	the	specified	path	name	and	then	erase	it	with	the
FILEerase	function.

Preconditions

This	function	should	not	be	called	by	the	user.

Parameters

Parameters	 Description	

path	 The	name	of	the	directory	to	delete	

Return	Values

Return	Values	 Description	

0	 Dir	was	deleted	successfully	

-1	 Dir	could	not	be	deleted.	

Side	Effects

None

Remarks

None.

APIs	>	File	Manipulation	Layer	(FSIO)	>	Internal	Members	>	eraseDir
Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MDDFS	Interface	Library
Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MDD_SDSPI_WriteProtectState	Function
C
BYTE	MDD_SDSPI_WriteProtectState();

Description

The	MDD_SDSPI_WriteProtectState	function	will	determine	if	the
SD	card	is	write	protected	by	checking	the	electrical	signal	that
corresponds	to	the	physical	write-protect	switch.

Preconditions

The	MDD_WriteProtectState	function	pointer	must	be	pointing	to
this	function.

Return	Values

Return	Values	 Description	

TRUE	 The	card	is	write-protected	

FALSE	 The	card	is	not	write-protected	

Side	Effects

None.

Remarks

None

APIs	>	SD-SPI	Physical	Layer	>	Library	Members	>
MDD_SDSPI_WriteProtectState	Function

Microchip	MDD	File	System	Interface	1.2.0	-	[Aug	18,	2008]
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

	Microchip MDD File System Interface Library
	Getting Help

	Getting Started
	Terminology
	Boot sector
	Cluster
	Current Working Directory
	Directory
	FAT
	Master Boot Record
	Root directory
	Sector

	Directory Structure
	Configuring Hardware
	Explorer 16 with PICtail for SD and MMC
	HPC Explorer with PICtail for SD and MMC

	Software Configuration
	The SD Card Demo
	The SD Data Logger Demo

	APIs
	File Manipulation Layer (FSIO)
	Public Members
	FindFirst Function
	FindFirstpgm Function
	FindNext Function
	FSattrib Function
	FSchdir Function
	FSchdirpgm Function
	FSCreateMBR Function
	FSerror Function
	FSfclose Function
	FSfeof Function
	FSfopen Function
	FSfopenpgm Function
	FSformat Function
	FSfprintf Function
	FSfread Function
	FSfseek Function
	FSftell Function
	FSfwrite Function
	FSgetcwd Function
	FSInit Function
	FSmkdir Function
	FSmkdirpgm Function
	FSremove Function
	FSremovepgm Function
	FSrename Function
	FSrenamepgm Function
	FSrewind Function
	FSrmdir Function
	FSrmdirpgm Function
	SetClockVars Function
	ALLOW_DIRS Macro
	ALLOW_FILESEARCH Macro
	ALLOW_FSFPRINTF Macro
	ALLOW_FORMATS Macro
	ALLOW_PGMFUNCTIONS Macro
	ALLOW_WRITES Macro
	APPEND Macro
	APPENDPLUS Macro
	ATTR_ARCHIVE Macro
	ATTR_DIRECTORY Macro
	ATTR_HIDDEN Macro
	ATTR_MASK Macro
	ATTR_READ_ONLY Macro
	ATTR_SYSTEM Macro
	ATTR_VOLUME Macro
	EOF Macro
	FALSE Macro
	FS_DYNAMIC_MEM Macro
	FS_MAX_FILES_OPEN Macro
	INCREMENTTIMESTAMP Macro
	intmax_t Macro
	MDD_MediaDetect Macro
	MEDIA_SECTOR_SIZE Macro
	NEAR_MODEL Macro
	READ Macro
	READPLUS Macro
	SEEK_CUR Macro
	SEEK_END Macro
	SEEK_SET Macro
	SUPPORT_FAT32 Macro
	TRUE Macro
	USE_CF_INTERFACE_WITH_PMP Macro
	USE_MANUAL_CF_INTERFACE Macro
	USE_SD_INTERFACE_WITH_SPI Macro
	USE_USB_INTERFACE Macro
	USERDEFINEDCLOCK Macro
	USEREALTIMECLOCK Macro
	WRITE Macro
	WRITEPLUS Macro
	FSFILE Structure
	SearchRec Structure

	Library Members
	ReadByte Function
	ReadDWord Function
	ReadWord Function
	ATTR_LONG_NAME Macro
	BSI_BOOTSIG Macro
	BSI_BPS Macro
	BSI_FAT32_BOOTSIG Macro
	BSI_FAT32_FSTYPE Macro
	BSI_FATCOUNT Macro
	BSI_FATSZ32 Macro
	BSI_FSTYPE Macro
	BSI_RESRVSEC Macro
	BSI_ROOTCLUS Macro
	BSI_ROOTDIRENTS Macro
	BSI_SPC Macro
	BSI_SPF Macro
	BSI_TOTSEC16 Macro
	BSI_TOTSEC32 Macro
	CE_EOF Macro
	CE_FAT_EOF Macro
	CLUSTER_EMPTY Macro
	CLUSTER_FAIL_FAT16 Macro
	CLUSTER_FAIL_FAT32 Macro
	DIR_DEL Macro
	DIR_EMPTY Macro
	DIR_EXTENSION Macro
	DIR_NAMECOMP Macro
	DIR_NAMESIZE Macro
	END_CLUSTER_FAT12 Macro
	END_CLUSTER_FAT16 Macro
	END_CLUSTER_FAT32 Macro
	FAT_GOOD_SIGN_0 Macro
	FAT_GOOD_SIGN_1 Macro
	FAT12 Macro
	FAT16 Macro
	FAT32 Macro
	FILE_NAME_SIZE Macro
	FO_MBR Macro
	FOUND Macro
	GetInstructionClock Macro
	GetPeripheralClock Macro
	GetSystemClock Macro
	INPUT Macro
	LAST_CLUSTER_FAT12 Macro
	LAST_CLUSTER_FAT16 Macro
	LAST_CLUSTER_FAT32 Macro
	MASK_MAX_FILE_ENTRY_LIMIT_BITS Macro
	MDD_InitIO Macro
	MDD_MediaInitialize Macro
	MDD_ReadCapacity Macro
	MDD_ReadSectorSize Macro
	MDD_SectorRead Macro
	MDD_SectorWrite Macro
	MDD_ShutdownMedia Macro
	MDD_WriteProtectState Function
	NO_MORE Macro
	NOT_FOUND Macro
	NUMBER_OF_BYTES_IN_DIR_ENTRY Macro
	OUTPUT Macro
	RAMread Macro
	RAMreadD Macro
	RAMreadW Macro
	RAMwrite Macro
	TOTAL_FILE_SIZE Macro
	VALUE_BASED_ON_ENTRIES_PER_CLUSTER Macro
	VALUE_DOTDOT_CLUSTER_VALUE_FOR_ROOT Macro
	_BootSec Structure
	_BPB_FAT12 Structure
	_BPB_FAT16 Structure
	_BPB_FAT32 Structure
	_PT_MBR Structure
	BootSec Type
	CETYPE Enumeration
	DISK Structure
	FILEFLAGS Structure
	PT_MBR Type
	PTE_MBR Structure
	SALLOC Type
	SEARCH_TYPE Enumeration

	Internal Members
	_SRAMmerge Function
	Cache_File_Entry Function
	CacheTime Function
	chdirhelper Function
	Cluster2Sector Function
	CreateDIR Function
	CreateFileEntry Function
	CreateFirstCluster Function
	DISKmount Function
	EraseCluster Function
	FAT_erase_cluster_chain Function
	FATfindEmptyCluster Function
	FILEallocate_new_cluster Function
	FILECreateHeadCluster Function
	FILEerase Function
	FILEfind Function
	FILEget_next_cluster Function
	FileObjectCopy Function
	FILEopen Function
	Fill_File_Object Function
	FindEmptyEntries Function
	flushData Function
	FormatDirName Function
	FormatFileName Function
	FSputc Function
	FSvfprintf Function
	GetFullClusterNumber Function
	GetPreviousEntry Function
	IncrementTimeStamp Function
	LoadBootSector Function
	LoadDirAttrib Function
	LoadMBR Function
	mkdirhelper Function
	PopulateEntries Function
	ReadFAT Function
	rmdirhelper Function
	SRAMInitHeap Function
	str_put_n_chars Function
	ValidateChars Function
	Write_File_Entry Function
	writeDotEntries Function
	_FLAG_MINUS Macro
	_FLAG_OCTO Macro
	_FLAG_PLUS Macro
	_FLAG_SIGNED Macro
	_FLAG_SPACE Macro
	_FLAG_ZERO Macro
	_FMT_BYTE Macro
	_FMT_LONG Macro
	_FMT_LONGLONG Macro
	_FMT_SHRTLONG Macro
	_FMT_UNSPECIFIED Macro
	_MAX_HEAP_SIZE Macro
	_MAX_SEGMENT_SIZE Macro
	DIRECTORY Macro
	DIRENTRIES_PER_SECTOR Macro
	NEAR Macro
	_DIRENTRY Structure
	DIRENTRY Type
	FILEOBJ Type
	_uDynamicHeap Variable
	cwd Variable
	cwdptr Variable
	defaultArray Variable
	defaultString Variable
	dirCleared Variable
	FatRootDirClusterValue Variable
	FSerrno Variable
	gBufferOwner Variable
	gBufferZeroed Variable
	gDataBuffer Variable
	gDiskData Variable
	gFATBuffer Variable
	gFileArray Variable
	gFileSlotOpen Variable
	gFileTemp Variable
	gLastDataSectorRead Variable
	gLastFATSectorRead Variable
	gNeedDataWrite Variable
	gNeedFATWrite Variable
	gTimeAccDate Variable
	gTimeCrtDate Variable
	gTimeCrtMS Variable
	gTimeCrtTime Variable
	gTimeWrtDate Variable
	gTimeWrtTime Variable
	nextClusterIsLast Variable
	recache Variable
	s_digits Variable
	tempArray Variable
	TempClusterCalc Variable
	tempCWDobj Variable

	SD-SPI Physical Layer
	Public Members
	SD_CD Macro
	SD_CD_TRIS Macro
	SD_CS Macro
	SD_CS_TRIS Macro
	SD_WE Macro
	SD_WE_TRIS Macro
	SPI_INTERRUPT_FLAG Macro
	SPIBRG Macro
	SPIBUF Macro
	SPICLOCK Macro
	SPICLOCKPORT Macro
	SPICLOCKLAT Macro
	SPICON1 Macro
	SPICON1bits Macro
	SPIENABLE Macro
	SPIIN Macro
	SPIINPORT Macro
	SPIINLAT Macro
	SPIOUT Macro
	SPIOUTPORT Macro
	SPIOUTLAT Macro
	SPISTAT Macro
	SPISTAT_RBF Macro
	SPISTATbits Macro

	Library Members
	MDD_SDSPI_InitIO Function
	MDD_SDSPI_MediaDetect Function
	MDD_SDSPI_MediaInitialize Function
	MDD_SDSPI_ReadCapacity Function
	MDD_SDSPI_ReadMedia Function
	MDD_SDSPI_ReadSectorSize Function
	MDD_SDSPI_SectorWrite Function
	MDD_SDSPI_SectorRead Function
	MDD_SDSPI_ShutdownMedia Function
	cmdAPP_CMD Macro
	cmdCRC_ON_OFF Macro
	cmdERASE Macro
	cmdGO_IDLE_STATE Macro
	cmdREAD_MULTI_BLOCK Macro
	cmdREAD_OCR Macro
	cmdREAD_SINGLE_BLOCK Macro
	cmdSEND_CID Macro
	cmdSEND_CSD Macro
	cmdSEND_OP_COND Macro
	cmdSEND_STATUS Macro
	cmdSET_BLOCKLEN Macro
	cmdSTOP_TRANSMISSION Macro
	cmdTAG_SECTOR_END Macro
	cmdTAG_SECTOR_START Macro
	cmdWRITE_MULTI_BLOCK Macro
	cmdWRITE_SINGLE_BLOCK Macro
	DATA_ACCEPTED Macro
	DATA_START_TOKEN Macro
	DELAY_OVERHEAD Macro
	DELAY_PRESCALER Macro
	MASTER_ENABLE_ON Macro
	MILLISECDELAY Macro
	MMC_BAD_RESPONSE Macro
	MMC_FLOATING_BUS Macro
	MOREDATA Macro
	mReadCRC Macro
	mSend8ClkCycles Macro
	mSendCRC Macro
	NODATA Macro
	PRI_PRESCAL_1_1 Macro
	SEC_PRESCAL_1_1 Macro
	SYNC_MODE_FAST Macro
	SYNC_MODE_MED Macro
	SYNC_MODE_SLOW Macro
	CID Union
	CMD_PACKET Union
	CSD Union
	RESPONSE_1 Union
	RESPONSE_2 Union
	MMC_RESPONSE Union
	RESP Enumeration
	sdmmc_cmd Enumeration
	typMMC_CMD Structure

	Internal Members
	Delayms Function
	CloseSPIM Function
	OpenSPIM Function
	ReadMediaManual Function
	SendMMCCmd Function
	SendMMCCmdManual Function
	WriteSPIM Function
	WriteSPIManual Function
	MANUAL_SPI_CLOCK_VALUE Macro
	sdmmc_cmdtable Variable
	MDD_SDSPI_finalLBA Variable

	CF Physical Layer
	Public Members
	MDD_CFBT_DATABIN Macro
	MDD_CFBT_DATABOUT Macro
	MDD_CFBT_DATADIR Macro
	MDD_CFBT_MediaDetect Function
	MDD_CFPMP_DATADIR Macro
	MDD_CFPMP_MediaDetect Function
	MDD_CFread Macro
	MDD_CFwait Macro
	MDD_CFwrite Macro
	ADDBL Macro
	ADDDIR Macro
	ADDR0 Macro
	ADDR1 Macro
	ADDR2 Macro
	ADDR3 Macro
	ADRTRIS0 Macro
	ADRTRIS1 Macro
	ADRTRIS2 Macro
	ADRTRIS3 Macro
	CF_BT_CD1 Macro
	CF_BT_CD1DIR Macro
	CF_BT_RDY Macro
	CF_BT_READYDIR Macro
	CF_BT_RESETDIR Macro
	CF_BT_RST Macro
	CF_CE Macro
	CF_CEDIR Macro
	CF_OE Macro
	CF_OEDIR Macro
	CF_PMP_CD1 Macro
	CF_PMP_CD1DIR Macro
	CF_PMP_RDY Macro
	CF_PMP_READYDIR Macro
	CF_PMP_RESETDIR Macro
	CF_PMP_RST Macro
	CF_WE Macro
	CF_WEDIR Macro

	Library Members
	MDD_CFBT_CFread Function
	MDD_CFBT_CFwait Function
	MDD_CFBT_CFwrite Function
	MDD_CFBT_DATABinput Macro
	MDD_CFBT_DATABoutput Macro
	MDD_CFBT_InitIO Function
	MDD_CFBT_MediaInitialize Macro
	MDD_CFBT_SectorRead Function
	MDD_CFBT_SectorWrite Function
	MDD_CFBT_WriteProtectState Function
	MDD_CFPMP_CFread Function
	MDD_CFPMP_CFwait Function
	MDD_CFPMP_CFwrite Function
	MDD_CFPMP_DATABinput Macro
	MDD_CFPMP_DATABoutput Macro
	MDD_CFPMP_InitIO Function
	MDD_CFPMP_MediaInitialize Macro
	MDD_CFPMP_SectorRead Function
	MDD_CFPMP_SectorWrite Function
	MDD_CFPMP_WriteProtectState Function
	R_CMD Macro
	R_COUNT Macro
	R_CYHI Macro
	R_CYLO Macro
	R_DATA Macro
	R_DRIVE Macro
	R_ERROR Macro
	R_SECT Macro
	R_STATUS Macro
	C_DRIVE_DIAG Macro
	C_DRIVE_IDENT Macro
	C_SECTOR_READ Macro
	C_SECTOR_WRITE Macro
	S_ERROR Macro
	S_READY Macro

