
USB	Device	Library	Help Contents	|	Index Next

Introduction
Welcome	to	Microchip's	MCHPFSUSB	USB	firmware	framework.	

Getting	Started:	

There	are	a	couple	of	important	folders	to	point	out	to	those	new	to	the
MCHPFSUSB	firmware	framework.	The	first	the	documentation	folder
associated	with	this	library.	This	folder	contains	documentation,
application	notes,	getting	started	guides,	etc	about	USB	and	this
framework.	This	folder	is	located	in	the	"<Install
Directory>\Microchip\USB\Documentation"	folder.	This	document	is
also	located	in	that	folder.	Please	refer	to	this	folder	for	additional
information.	

The	MCHPFSUSB	firmware	framework	has	the	following	structure:

<Install	Directory>
Microchip
<Demo	1>
<Demo	2>
USB	Tools

The	Demo1	and	Demo2	folders	are	example	user	application	folders
giving	showing	how	to	use	the	various	function	drivers	provided	in	this
library.	These	folders	include	the	files	that	would	need	to	be	created	or
modified	by	a	user	of	this	framework.	

The	Microchip	folder	contains	the	framework	files	and	documentation.
These	files	in	most	cases	will	not	require	modification	by	the	user.
Users,	however,	will	need	to	include	these	framework	files	into	their
projects.	For	more	information	about	the	various	files	and	API	available
in	the	framework,	please	see	the	MCHPFSUSB	Device	Library	topic	of
this	document.	

For	additional	information	please	see	www.microchip.com/usb

Introduction

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Next

Function	Drivers

Topics

Name	 Description	

Communication
Device	Class
(CDC)	

The	Communication	Device	Class	(CDC)	is	a	USB	defined	class	for
communication	device.	These	typically	include	devices	like	USB	to	Serial
converters,	Modems,	USB	to	Ethernet	dongles,	etc.

For	more	information	about	CDC	class	devices,	please	see	the	following
documents:

AN956	-	"Migrating	Applications	to	USB	from	RS-232	UART	with	Minimal
Impact	on	PC	Software"	-	This	document	is	located	in	the	"<Install
Directory>\Microchip\USB\Documentation"	folder
www.usb.org/developers/devclass_docs/CDC1.2_WMC1.1.zip

	

Human
Interface
Device	(HID)	

The	Human	Interface	Device	(HID)	class	include	devices	like	mice,	keyboards,
joysticks,	game	controllers,	etc.	These	devices	provide	input	(and	in	some
cases	feedback)	providing	a	user	interface	to	the	computer.	The	HID	class	can
also	be	used	to	create	custom	devices	that	don't	fall	into	the	typical	human
interface	usage	model.	Examples	of	both	standard	devices	and	custom	HID
devices	are	provided	in	this	framework.
The	HID	driver	is	found	in	nearly	all	operating	systems	and	requires	no	driver
installation	on	most	systems.
For	more	information	about	HID	class	devices,	please	see	the	following
sources:

http://www.usb.org/developers/hidpage

	

Mass	Storage
Device	(MSD)	

Mass	Storage	Device	(MSD)	class	are	devices	that	appear	like	drives	when
plugged	into	a	host.	Examples	of	these	types	of	devices	are	thumbdrives
(memory	sticks),	external	USB	hard	disks,	or	external	USB	CD	drives.
MSD	drivers	can	be	found	in	nearly	all	operating	systems	and	requires	no	driver
installation	on	most	systems.
This	framework	includes	several	examples	examples	of	MSD	examples	using
different	physical	storage	media.	The	MSD	implementation	in	this	release	uses
the	Microchip	Memory	Disk	(MDD)	File	System	as	the	physical	layer.
For	more	information	about	MSD	class	devices,	please	see	the	following
sources:

http://www.usb.org/developers/devclass_docs/usb_msc_overview_1.2.pdf
http://www.usb.org/developers/devclass_docs/usbmassbulk_10.pdf
http://ww1.microchip.com/downloads/en/AppNotes/01189a.pdf...	more	

Vendor	Class	

Vendor	Class	function	drivers	are	drivers	are	custom	drivers	who's	functionality
is	not	defined	by	the	USB	specification.	Examples	of	vendor	class	drivers
include	MCHPUSB	(Microchip's	custom	class	driver),	WinUSB	(provided	by
Microsoft),	and	LibUSB	(an	open	source	driver).	

MCHPFSUSB	Device	Library	>	Function	Drivers

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Communication	Device	Class	(CDC)
The	Communication	Device	Class	(CDC)	is	a	USB	defined	class	for
communication	device.	These	typically	include	devices	like	USB	to
Serial	converters,	Modems,	USB	to	Ethernet	dongles,	etc.	

	

For	more	information	about	CDC	class	devices,	please	see	the
following	documents:

AN956	-	"Migrating	Applications	to	USB	from	RS-232	UART	with	Minimal	Impact	on	PC
Software"	-	This	document	is	located	in	the	"<Install
Directory>\Microchip\USB\Documentation"	folder
www.usb.org/developers/devclass_docs/CDC1.2_WMC1.1.zip

Topics

Name	 Description	

Public	API	Members	 This	section	includes	the	API	members	required	to	access
the	CDC	function	driver	

Files	
This	section	lists	the	files	required	for	use	with	the	device
stack.	These	files	should	be	included	in	any	project	using
the	CDC	function	driver	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Public	API	Members
This	section	includes	the	API	members	required	to	access	the	CDC
function	driver

Topics

Name	 Description	

Functions	and	Macros	 	

Definitions,	Constants,	and
Enums	 	

Variables	 	

Depricated	API	Members	 	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Functions	and	Macros

Functions

	 Name	 Description	

	 CDCInitEP	
This	function	initializes	the	CDC	function	driver.	This
function	should	be	called	after	the	SET_CONFIGURATION
command.	

	 CDCTxService	
CDCTxService	handles	device-to-host	transaction(s).	This
function	should	be	called	once	per	Main	Program	loop	after
the	device	reaches	the	configured	state.	

	 getsUSBUSART	

getsUSBUSART	copies	a	string	of	BYTEs	received
through	USB	CDC	Bulk	OUT	endpoint	to	a	user's	specified
location.	It	is	a	non-blocking	function.	It	does	not	wait	for
data	if	there	is	no	data	available.	Instead	it	returns	'0'	to
notify	the	caller	that	there	is	no	data	available.	

	 putrsUSBUSART	
putrsUSBUSART	writes	a	string	of	data	to	the	USB
including	the	null	character.	Use	this	version,	'putrs',	to
transfer	data	literals	and	data	located	in	program	memory.	

	 putsUSBUSART	
putsUSBUSART	writes	a	string	of	data	to	the	USB
including	the	null	character.	Use	this	version,	'puts',	to
transfer	data	from	a	RAM	buffer.	

	 putUSBUSART	
putUSBUSART	writes	an	array	of	data	to	the	USB.	Use
this	version,	is	capable	of	transfering	0x00	(what	is	typically
a	NULL	character	in	any	of	the	string	transfer	functions).	

Macros

	 Name	 Description	

	 USBUSARTIsTxTrfReady	 This	macro	is	used	to	check	if	the	CDC	class	is	ready
to	send	more	data.	

	 CDCSetLineCoding	
This	function	is	used	to	manually	set	the	data	reported
back	to	the	host	during	a	get	line	coding	request.
(optional)	

CDCSetBaudRate	 This	macro	is	used	set	the	baud	rate	reported	back	to

	 the	host	during	a	get	line	coding	request.	(optional)	

	 CDCSetCharacterFormat	
This	macro	is	used	manually	set	the	character	format
reported	back	to	the	host	during	a	get	line	coding
request.	(optional)	

	 CDCSetParity	
This	function	is	used	manually	set	the	parity	format
reported	back	to	the	host	during	a	get	line	coding
request.	(optional)	

	 CDCSetDataSize	
This	function	is	used	manually	set	the	number	of	data
bits	reported	back	to	the	host	during	a	get	line	coding
request.	(optional)	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CDCInitEP	Function
C
void	CDCInitEP();

Description

This	function	initializes	the	CDC	function	driver.	This	function	sets	the
default	line	coding	(baud	rate,	bit	parity,	number	of	data	bits,	and
format).	This	function	also	enables	the	endpoints	and	prepares	for	the
first	transfer	from	the	host.	

This	function	should	be	called	after	the	SET_CONFIGURATION
command.	This	is	most	simply	done	by	calling	this	function	from	the
USBCBInitEP()	function.	

Typical	Usage:

Copy	Code

				void	USBCBInitEP(void)

				{

								CDCInitEP();

				}

Preconditions

None

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	CDCInitEP	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CDCTxService	Function
C
void	CDCTxService();

Description

CDCTxService	handles	device-to-host	transaction(s).	This	function
should	be	called	once	per	Main	Program	loop	after	the	device	reaches
the	configured	state.	

Typical	Usage:

Copy	Code

void	main(void)

{

				USBDeviceInit();

				while(1)

				{

								USBDeviceTasks();

								if((USBGetDeviceState()	<	CONFIGURED_STATE)	||

											(USBIsDeviceSuspended()	==	TRUE))

								{

												//Either	the	device	is	not	configured	or	we	are	suspended

												//		so	we	don't	want	to	do	execute	any	application	code

												continue;			//go	back	to	the	top	of	the	while	loop

								}

								else

								{

												//Keep	trying	to	send	data	to	the	PC	as	required

												CDCTxService();

												//Run	application	code.

												UserApplication();

								}

				}

}

Preconditions

None

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	CDCTxService	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

getsUSBUSART	Function
C
BYTE	getsUSBUSART(

				char	*	buffer,	

				BYTE	len

);

Description

getsUSBUSART	copies	a	string	of	BYTEs	received	through	USB	CDC
Bulk	OUT	endpoint	to	a	user's	specified	location.	It	is	a	non-blocking
function.	It	does	not	wait	for	data	if	there	is	no	data	available.	Instead	it
returns	'0'	to	notify	the	caller	that	there	is	no	data	available.	

Typical	Usage:

Copy	Code

				BYTE	numBytes;

				BYTE	buffer[64]

				numBytes	=	getsUSBUSART(buffer,sizeof(buffer));	//until	the	buffer	is	free.

				if(numBytes	>	0)

				{

								//we	received	numBytes	bytes	of	data	and	they	are	copied	into

								//		the	"buffer"	variable.		We	can	do	something	with	the	data

								//		here.

				}

Preconditions

Value	of	input	argument	'len'	should	be	smaller	than	the	maximum
endpoint	size	responsible	for	receiving	bulk	data	from	USB	host	for
CDC	class.	Input	argument	'buffer'	should	point	to	a	buffer	area	that	is
bigger	or	equal	to	the	size	specified	by	'len'.

Parameters

Parameters	 Description	

buffer	 Pointer	to	where	received	BYTEs	are	to	be	stored	

len	 The	number	of	BYTEs	expected.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	getsUSBUSART	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

putrsUSBUSART	Function
C
void	putrsUSBUSART(

				const	ROM	char	*	data

);

Description

putrsUSBUSART	writes	a	string	of	data	to	the	USB	including	the	null
character.	Use	this	version,	'putrs',	to	transfer	data	literals	and	data
located	in	program	memory.	

Typical	Usage:

Copy	Code

				if(USBUSARTIsTxTrfReady())

				{

								putrsUSBUSART("Hello	World");

				}

	

The	transfer	mechanism	for	device-to-host(put)	is	more	flexible	than
host-to-device(get).	It	can	handle	a	string	of	data	larger	than	the
maximum	size	of	bulk	IN	endpoint.	A	state	machine	is	used	to	transfer	a
long	string	of	data	over	multiple	USB	transactions.	CDCTxService()
must	be	called	periodically	to	keep	sending	blocks	of	data	to	the	host.

Preconditions

USBUSARTIsTxTrfReady()	must	return	TRUE.	This	indicates	that	the
last	transfer	is	complete	and	is	ready	to	receive	a	new	block	of	data.
The	string	of	characters	pointed	to	by	'data'	must	equal	to	or	smaller
than	255	BYTEs.

Parameters

Parameters	 Description	

const	ROM	char	*data	
null-terminated	string	of	constant	data.	If	a	null	character	is
not	found,	255	BYTEs	of	data	will	be	transferred	to	the
host.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	putrsUSBUSART	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

putsUSBUSART	Function
C
void	putsUSBUSART(

				char	*	data

);

Description

putsUSBUSART	writes	a	string	of	data	to	the	USB	including	the	null
character.	Use	this	version,	'puts',	to	transfer	data	from	a	RAM	buffer.	

Typical	Usage:

Copy	Code

				if(USBUSARTIsTxTrfReady())

				{

								char	data[]	=	"Hello	World";

								putsUSBUSART(data);

				}

	

The	transfer	mechanism	for	device-to-host(put)	is	more	flexible	than
host-to-device(get).	It	can	handle	a	string	of	data	larger	than	the
maximum	size	of	bulk	IN	endpoint.	A	state	machine	is	used	to	transfer	a
long	string	of	data	over	multiple	USB	transactions.	CDCTxService()
must	be	called	periodically	to	keep	sending	blocks	of	data	to	the	host.

Preconditions

USBUSARTIsTxTrfReady()	must	return	TRUE.	This	indicates	that	the
last	transfer	is	complete	and	is	ready	to	receive	a	new	block	of	data.
The	string	of	characters	pointed	to	by	'data'	must	equal	to	or	smaller
than	255	BYTEs.

Parameters

Parameters	 Description	

char	*data	
null-terminated	string	of	constant	data.	If	a	null	character	is
not	found,	255	BYTEs	of	data	will	be	transferred	to	the
host.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	putsUSBUSART	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

putUSBUSART	Function
C
void	putUSBUSART(

				char	*	data,	

				BYTE	Length

);

Description

putUSBUSART	writes	an	array	of	data	to	the	USB.	Use	this	version,	is
capable	of	transfering	0x00	(what	is	typically	a	NULL	character	in	any	of
the	string	transfer	functions).	

Typical	Usage:

Copy	Code

				if(USBUSARTIsTxTrfReady())

				{

								char	data[]	=	{0x00,	0x01,	0x02,	0x03,	0x04};

								putUSBUSART(data,5);

				}

	

The	transfer	mechanism	for	device-to-host(put)	is	more	flexible	than
host-to-device(get).	It	can	handle	a	string	of	data	larger	than	the
maximum	size	of	bulk	IN	endpoint.	A	state	machine	is	used	to	transfer	a
long	string	of	data	over	multiple	USB	transactions.	CDCTxService()
must	be	called	periodically	to	keep	sending	blocks	of	data	to	the	host.

Preconditions

USBUSARTIsTxTrfReady()	must	return	TRUE.	This	indicates	that	the
last	transfer	is	complete	and	is	ready	to	receive	a	new	block	of	data.
The	string	of	characters	pointed	to	by	'data'	must	equal	to	or	smaller
than	255	BYTEs.

Parameters

Parameters	 Description	

char	*data	 pointer	to	a	RAM	array	of	data	to	be	transfered	to	the	host	

BYTE	length	 the	number	of	bytes	to	be	transfered	(must	be	less	than
255).	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	putUSBUSART	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBUSARTIsTxTrfReady	Macro
C
#define	USBUSARTIsTxTrfReady	(cdc_trf_state	==	CDC_TX_READY)

Description

This	macro	is	used	to	check	if	the	CDC	class	is	ready	to	send	more
data.	

Typical	Usage:

Copy	Code

				if(USBUSARTIsTxTrfReady())

				{

								putrsUSBUSART("Hello	World");

				}

Preconditions

None

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	USBUSARTIsTxTrfReady	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CDCSetLineCoding	Macro
C
#define	CDCSetLineCoding(baud,format,parity,dataSize)	{\

												CDCSetBaudRate(baud);\

												CDCSetCharacterFormat(format);\

												CDCSetParity(parity);\

												CDCSetDataSize(dataSize);\

								}

Description

This	function	is	used	to	manually	set	the	data	reported	back	to	the	host
during	a	get	line	coding	request.	

Typical	Usage:

Copy	Code

				CDCSetLineCoding(19200,	NUM_STOP_BITS_1,	PARITY_NONE,	8);

	

This	function	is	optional	for	CDC	devices	that	do	not	actually	convert
the	USB	traffic	to	a	hardware	UART.

Preconditions

None

Parameters

Parameters	 Description	

DWORD	baud	 The	desired	baudrate	

BYTE	format	

number	of	stop	bits.	Available	options	are:
NUM_STOP_BITS_1	-	1	Stop	bit
NUM_STOP_BITS_1_5	-	1.5	Stop	bits
NUM_STOP_BITS_2	-	2	Stop	bits

	

BYTE	parity	

Type	of	parity.	The	options	are	the	following:
PARITY_NONE
PARITY_ODD
PARITY_EVEN
PARITY_MARK
PARITY_SPACE

	

BYTE	dataSize	 number	of	data	bits.	The	options	are	5,	6,	7,	8,	or	16.	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	CDCSetLineCoding	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CDCSetBaudRate	Macro
C
#define	CDCSetBaudRate(baudRate)	{line_coding.dwDTERate.Val=baudRate;}

Description

This	macro	is	used	set	the	baud	rate	reported	back	to	the	host	during	a
get	line	coding	request.	

Typical	Usage:

Copy	Code

				CDCSetBaudRate(19200);

	

This	function	is	optional	for	CDC	devices	that	do	not	actually	convert
the	USB	traffic	to	a	hardware	UART.

Preconditions

None

Parameters

Parameters	 Description	

DWORD	baudRate	 The	desired	baudrate	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	CDCSetBaudRate	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CDCSetCharacterFormat	Macro
C
#define	CDCSetCharacterFormat(charFormat)	{line_coding.bCharFormat=charFormat;}

Description

This	macro	is	used	manually	set	the	character	format	reported	back	to
the	host	during	a	get	line	coding	request.	

Typical	Usage:

Copy	Code

				CDCSetCharacterFormat(19200);

	

This	function	is	optional	for	CDC	devices	that	do	not	actually	convert
the	USB	traffic	to	a	hardware	UART.

Preconditions

None

Parameters

Parameters	 Description	

BYTE	charFormat	

number	of	stop	bits.	Available	options	are:
NUM_STOP_BITS_1	-	1	Stop	bit
NUM_STOP_BITS_1_5	-	1.5	Stop	bits
NUM_STOP_BITS_2	-	2	Stop	bits

	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public

API	Members	>	Functions	and	Macros	>	CDCSetCharacterFormat	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CDCSetParity	Macro
C
#define	CDCSetParity(parityType)	{line_coding.bParityType=parityType;}

Description

This	macro	is	used	manually	set	the	parity	format	reported	back	to	the
host	during	a	get	line	coding	request.	

Typical	Usage:

Copy	Code

				CDCSetParity(PARITY_NONE);

	

This	function	is	optional	for	CDC	devices	that	do	not	actually	convert
the	USB	traffic	to	a	hardware	UART.

Preconditions

None

Parameters

Parameters	 Description	

BYTE	parityType	

Type	of	parity.	The	options	are	the	following:
PARITY_NONE
PARITY_ODD
PARITY_EVEN
PARITY_MARK
PARITY_SPACE

	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	CDCSetParity	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CDCSetDataSize	Macro
C
#define	CDCSetDataSize(dataBits)	{line_coding.bDataBits=dataBits;}

Description

This	function	is	used	manually	set	the	number	of	data	bits	reported
back	to	the	host	during	a	get	line	coding	request.	

Typical	Usage:

Copy	Code

				CDCSetDataSize(8);

	

This	function	is	optional	for	CDC	devices	that	do	not	actually	convert
the	USB	traffic	to	a	hardware	UART.

Preconditions

None

Parameters

Parameters	 Description	

BYTE	dataBits	 number	of	data	bits.	The	options	are	5,	6,	7,	8,	or	16.	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Functions	and	Macros	>	CDCSetDataSize	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Definitions,	Constants,	and	Enums

Macros

	 Name	 Description	

	 NUM_STOP_BITS_1	 1	stop	bit	-	used	by	CDCSetLineCoding()	and
CDCSetCharacterFormat()	

	 NUM_STOP_BITS_1_5	 1.5	stop	bit	-	used	by	CDCSetLineCoding()	and
CDCSetCharacterFormat()	

	 NUM_STOP_BITS_2	 2	stop	bit	-	used	by	CDCSetLineCoding()	and
CDCSetCharacterFormat()	

	 PARITY_EVEN	 even	parity	-	used	by	CDCSetLineCoding()	and
CDCSetParity()	

	 PARITY_MARK	 mark	parity	-	used	by	CDCSetLineCoding()	and
CDCSetParity()	

	 PARITY_NONE	 no	parity	-	used	by	CDCSetLineCoding()	and
CDCSetParity()	

	 PARITY_ODD	 odd	parity	-	used	by	CDCSetLineCoding()	and
CDCSetParity()	

	 PARITY_SPACE	 space	parity	-	used	by	CDCSetLineCoding()	and
CDCSetParity()	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Definitions,	Constants,	and	Enums

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NUM_STOP_BITS_1	Macro
C
#define	NUM_STOP_BITS_1	0			//1	stop	bit	-	used	by	CDCSetLineCoding()	and	CDCSetCharacterFormat()

Description

1	stop	bit	-	used	by	CDCSetLineCoding()	and
CDCSetCharacterFormat()

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Definitions,	Constants,	and	Enums	>	NUM_STOP_BITS_1	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NUM_STOP_BITS_1_5	Macro
C
#define	NUM_STOP_BITS_1_5	1			//1.5	stop	bit	-	used	by	CDCSetLineCoding()	and	CDCSetCharacterFormat()

Description

1.5	stop	bit	-	used	by	CDCSetLineCoding()	and
CDCSetCharacterFormat()

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Definitions,	Constants,	and	Enums	>	NUM_STOP_BITS_1_5	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NUM_STOP_BITS_2	Macro
C
#define	NUM_STOP_BITS_2	2			//2	stop	bit	-	used	by	CDCSetLineCoding()	and	CDCSetCharacterFormat()

Description

2	stop	bit	-	used	by	CDCSetLineCoding()	and
CDCSetCharacterFormat()

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Definitions,	Constants,	and	Enums	>	NUM_STOP_BITS_2	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PARITY_EVEN	Macro
C
#define	PARITY_EVEN	2	//even	parity	-	used	by	CDCSetLineCoding()	and	CDCSetParity()

Description

even	parity	-	used	by	CDCSetLineCoding()	and	CDCSetParity()

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Definitions,	Constants,	and	Enums	>	PARITY_EVEN	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PARITY_MARK	Macro
C
#define	PARITY_MARK	3	//mark	parity	-	used	by	CDCSetLineCoding()	and	CDCSetParity()

Description

mark	parity	-	used	by	CDCSetLineCoding()	and	CDCSetParity()

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Definitions,	Constants,	and	Enums	>	PARITY_MARK	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PARITY_NONE	Macro
C
#define	PARITY_NONE	0	//no	parity	-	used	by	CDCSetLineCoding()	and	CDCSetParity()

Description

no	parity	-	used	by	CDCSetLineCoding()	and	CDCSetParity()

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Definitions,	Constants,	and	Enums	>	PARITY_NONE	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PARITY_ODD	Macro
C
#define	PARITY_ODD	1	//odd	parity	-	used	by	CDCSetLineCoding()	and	CDCSetParity()

Description

odd	parity	-	used	by	CDCSetLineCoding()	and	CDCSetParity()

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Definitions,	Constants,	and	Enums	>	PARITY_ODD	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PARITY_SPACE	Macro
C
#define	PARITY_SPACE	4	//space	parity	-	used	by	CDCSetLineCoding()	and	CDCSetParity()

Description

space	parity	-	used	by	CDCSetLineCoding()	and	CDCSetParity()

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Definitions,	Constants,	and	Enums	>	PARITY_SPACE	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Variables
MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Variables

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Depricated	API	Members

Macros

	 Name	 Description	

	 mUSBUSARTIsTxTrfReady	 Depricated	in	MCHPFSUSB	v2.3.	This	macro	has
been	replaced	by	USBUSARTIsTxTrfReady().	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Depricated	API	Members

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

mUSBUSARTIsTxTrfReady	Macro
C
#define	mUSBUSARTIsTxTrfReady	USBUSARTIsTxTrfReady()

Description

Depricated	in	MCHPFSUSB	v2.3.	This	macro	has	been	replaced	by
USBUSARTIsTxTrfReady().

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Public
API	Members	>	Depricated	API	Members	>	mUSBUSARTIsTxTrfReady	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Files
This	section	lists	the	files	required	for	use	with	the	device	stack.	These
files	should	be	included	in	any	project	using	the	CDC	function	driver

Files

Name	 Description	

usb_function_cdc.h	

This	file	contains	all	of	functions,	macros,	definitions,
variables,	datatypes,	etc.	that	are	required	for	usage	with
the	CDC	function	driver.	This	file	should	be	included	in
projects	that	use	the	CDC	function	driver.	This	file	should
also	be	included	into	the	usb_descriptors.c	file	and	any
other	user	file	that	requires	access	to	the	CDC	interface.

This	file	is	located	in	the	"<Install
Directory>\Microchip\Include\USB"	directory.	

usb_function_cdc.c	

This	file	contains	all	of	functions,	macros,	definitions,
variables,	datatypes,	etc.	that	are	required	for	usage	with
the	CDC	function	driver.	This	file	should	be	included	in
projects	that	use	the	CDC	function	driver.

This	file	is	located	in	the	"<Install
Directory>\Microchip\USB\CDC	Device	Driver"	directory.	

Topics

Name	 Description	

usb_config.h	

usb_config.h	is	a	file	used	to	configure	the	MCHPFSUSB
stack.	This	file	provides	compile	time	selection	of	options
provided	by	the	stack.	This	file	defines	constants	needed
by	the	stack	and	various	function	drivers.	

HardwareProfile.h	

HardwareProfile.h	is	a	file	used	to	define	hardware	specific
definitions	that	are	required	by	the	MCHPFSUSB	stack.
This	file	should	be	modified	to	match	the	application
hardware.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Files

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008

Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_function_cdc.h
USB	CDC	Function	Driver	File	

This	file	contains	all	of	functions,	macros,	definitions,	variables,
datatypes,	etc.	that	are	required	for	usage	with	the	CDC	function	driver.
This	file	should	be	included	in	projects	that	use	the	CDC	function	driver.
This	file	should	also	be	included	into	the	usb_descriptors.c	file	and	any
other	user	file	that	requires	access	to	the	CDC	interface.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

Functions

	 Name	 Description	

	 CDCInitEP	
This	function	initializes	the	CDC	function	driver.	This
function	should	be	called	after	the	SET_CONFIGURATION
command.	

	 CDCTxService	
CDCTxService	handles	device-to-host	transaction(s).	This
function	should	be	called	once	per	Main	Program	loop	after
the	device	reaches	the	configured	state.	

	 getsUSBUSART	

getsUSBUSART	copies	a	string	of	BYTEs	received
through	USB	CDC	Bulk	OUT	endpoint	to	a	user's	specified
location.	It	is	a	non-blocking	function.	It	does	not	wait	for
data	if	there	is	no	data	available.	Instead	it	returns	'0'	to
notify	the	caller	that	there	is	no	data	available.	

	 putrsUSBUSART	
putrsUSBUSART	writes	a	string	of	data	to	the	USB
including	the	null	character.	Use	this	version,	'putrs',	to
transfer	data	literals	and	data	located	in	program	memory.	

	 putsUSBUSART	
putsUSBUSART	writes	a	string	of	data	to	the	USB
including	the	null	character.	Use	this	version,	'puts',	to
transfer	data	from	a	RAM	buffer.	

	 putUSBUSART	
putUSBUSART	writes	an	array	of	data	to	the	USB.	Use
this	version,	is	capable	of	transfering	0x00	(what	is	typically
a	NULL	character	in	any	of	the	string	transfer	functions).	

Macros

	 Name	 Description	

	 CDCSetBaudRate	 This	macro	is	used	set	the	baud	rate	reported	back	to
the	host	during	a	get	line	coding	request.	(optional)	

	 CDCSetCharacterFormat	
This	macro	is	used	manually	set	the	character	format
reported	back	to	the	host	during	a	get	line	coding
request.	(optional)	

	 CDCSetDataSize	
This	function	is	used	manually	set	the	number	of	data
bits	reported	back	to	the	host	during	a	get	line	coding
request.	(optional)	

	 CDCSetLineCoding	
This	function	is	used	to	manually	set	the	data
reported	back	to	the	host	during	a	get	line	coding

request.	(optional)	

	 CDCSetParity	
This	function	is	used	manually	set	the	parity	format
reported	back	to	the	host	during	a	get	line	coding
request.	(optional)	

	 mUSBUSARTIsTxTrfReady	 Depricated	in	MCHPFSUSB	v2.3.	This	macro	has
been	replaced	by	USBUSARTIsTxTrfReady().	

	 NUM_STOP_BITS_1	 1	stop	bit	-	used	by	CDCSetLineCoding()	and
CDCSetCharacterFormat()	

	 NUM_STOP_BITS_1_5	 1.5	stop	bit	-	used	by	CDCSetLineCoding()	and
CDCSetCharacterFormat()	

	 NUM_STOP_BITS_2	 2	stop	bit	-	used	by	CDCSetLineCoding()	and
CDCSetCharacterFormat()	

	 PARITY_EVEN	 even	parity	-	used	by	CDCSetLineCoding()	and
CDCSetParity()	

	 PARITY_MARK	 mark	parity	-	used	by	CDCSetLineCoding()	and
CDCSetParity()	

	 PARITY_NONE	 no	parity	-	used	by	CDCSetLineCoding()	and
CDCSetParity()	

	 PARITY_ODD	 odd	parity	-	used	by	CDCSetLineCoding()	and
CDCSetParity()	

	 PARITY_SPACE	 space	parity	-	used	by	CDCSetLineCoding()	and
CDCSetParity()	

	 USBUSARTIsTxTrfReady	 This	macro	is	used	to	check	if	the	CDC	class	is	ready
to	send	more	data.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Files	>
usb_function_cdc.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_function_cdc.c
USB	CDC	Function	Driver	File	

This	file	contains	all	of	functions,	macros,	definitions,	variables,
datatypes,	etc.	that	are	required	for	usage	with	the	CDC	function	driver.
This	file	should	be	included	in	projects	that	use	the	CDC	function
driver.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\USB\CDC
Device	Driver"	directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\Microchip\Include	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Files	>
usb_function_cdc.c

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_config.h
usb_config.h	is	a	file	used	to	configure	the	MCHPFSUSB	stack	and
various	function	drivers.	This	file	provides	compile	time	selection	of
options	provided	by	the	stack.	This	file	defines	constants	needed	by	the
stack	and	various	function	drivers.	

This	section	will	detail	the	definitions	required	by	the	CDC	function
driver.	Additional	definitions	may	be	required	by	the	stack	itself.	Please
see	the	Files	topic	of	the	Stack	section	for	more	details	about	stack
specific	definitions.	

Please	note	that	the	usb_config.h	file	can	also	be	generated	using	the
USBConfig.exe	tool	provided	in	the	"<Install	Directory>\USB
Tools\USBConfig	Tool"	directory.	

USB_USE_CDC	-	this	definitions	indicates	to	the	stack	that	it	will	be
using	the	CDC	function	driver.	This	needs	to	be	defined	for	any	device
using	the	CDC	class.	

#define	USB_USE_CDC	

CDC_COMM_INTF_ID	-	this	defines	the	interface	number	of	the
communication	interface	used	by	the	CDC	function	driver.	This	number
should	be	unique	from	other	interface	numbers	used	in	the	device	for
either	this	class	or	any	other	class.	

#define	CDC_COMM_INTF_ID	0x00	

CDC_COMM_EP	-	this	defines	the	endpoint	number	of	the
communication	interface	used	by	the	CDC	function	driver.	This	number
should	be	unique	from	other	endpoint	numbers	used	in	the	device	for
either	this	class	or	any	other	class.	The	valid	range	for	this	entry	is	1-
15.	

#define	CDC_COMM_EP	2	

CDC_COMM_IN_EP_SIZE	-	this	defines	the	size	of	the	communication
endpoint	used	by	the	CDC	function	driver's	communication	interface.

The	current	CDC	specification	only	uses	8-byte	packets	on	this
endpoint	so	at	this	point	of	time	this	value	should	be	8.	

CDC_DATA_INTF_ID	-	this	defines	the	interface	number	of	the	data
interface	used	by	the	CDC	function	driver.	This	number	should	be
unique	from	other	interface	numbers	used	in	the	device	for	either	this
class	or	any	other	class.	

#define	CDC_DATA_INTF_ID	0x01	

CDC_DATA_EP	-	this	defines	the	endpoint	number	of	the	data	interface
used	by	the	CDC	function	driver.	This	number	should	be	unique	from
other	endpoint	numbers	used	in	the	device	for	either	this	class	or	any
other	class.	The	valid	range	for	this	entry	is	1-15.	

#define	CDC_DATA_EP	3	

CDC_DATA_OUT_EP_SIZE	-	this	defines	the	size	of	the	data	OUT
endpoint	used	by	the	CDC	function	driver's	data	interface.	

#define	CDC_DATA_OUT_EP_SIZE	64	

CDC_DATA_IN_EP_SIZE	-	this	defines	the	size	of	the	data	IN	endpoint
used	by	the	CDC	function	driver's	data	interface.	

#define	CDC_DATA_IN_EP_SIZE	64	

USB_CDC_SUPPORT_ABSTRACT_CONTROL_MANAGEMENT_CAPABILITIES_D1
-	this	define	tells	the	CDC	function	driver	to	support	ACM	capabilities
D1	(the	Set_Line_Coding,	Set_Control_Line_State,	Get_Line_Coding,
and	Serial_State	commands).	For	more	details	please	refer	to	section
5.2.3.3	of	the	CDC	specification	(usbcdc11.pdf)	available	from
www.usb.org.	Create	this	definition	if	these	options	are	desired.	

#define	USB_CDC_SUPPORT_ABSTRACT_CONTROL_MANAGEMENT_CAPABILITIES_D1	

USB_CDC_SUPPORT_ABSTRACT_CONTROL_MANAGEMENT_CAPABILITIES_D2
-	this	define	tells	the	CDC	function	driver	to	support	ACM	capabilities
D2	(the	SEND_BREAK	command).	For	more	details	please	refer	to
section	5.2.3.3	of	the	CDC	specification	(usbcdc11.pdf)	available	from
www.usb.org.	Create	this	definition	if	these	options	are	desired.	

#define	USB_CDC_SUPPORT_ABSTRACT_CONTROL_MANAGEMENT_CAPABILITIES_D2	

USB_CDC_SUPPORT_HARDWARE_FLOW_CONTROL	-	this	define
tells	the	CDC	function	driver	to	implement	hardware	flow	control	and
UART	features.	This	feature	is	optional	and	should	only	be	defined	for
applications	that	want	this	feature.	Additional	definitions	are	required	in
HardwareProfiles.h	if	this	definition	is	enabled.	Please	see	the
HardwareProfiles.h	topic	in	the	CDC	function	driver	for	more	details
about	those	definitions.	

#define	USB_CDC_SUPPORT_HARDWARE_FLOW_CONTROL	

USB_CDC_SET_LINE_CODING_HANDLER	-	this	define	tells	the
CDC	function	driver	which	function	to	call	when	a	set	line	coding
command	is	received.	This	function	can	be	used	to	verify	that	the	line
coding	is	within	a	supported	range	and	can	set	the	hardware	according
to	the	specified	settings.	If	this	definition	is	not	defined	then	no	function
is	called	when	a	set	line	coding	is	received	and	the	device	will
defaulting	respond	to	the	host	with	a	successful	update	of	the	line
coding	parameters.	

#define	USB_CDC_SET_LINE_CODING_HANDLER	mySetLineCodingHandler	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Files	>
usb_config.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

HardwareProfile.h
HardwareProfile.h	is	a	file	used	to	define	hardware	specific	definitions
that	are	required	by	the	MCHPFSUSB	stack.	This	file	should	be
modified	to	match	the	application	hardware.	

	

The	following	definitions	are	required	if
USB_CDC_SUPPORT_HARDWARE_FLOW_CONTROL	is	defined	in
the	usb_config.h	file.	These	definitions	should	be	added	to	the
HardwareProfile.h	file	associated	with	the	project.	

UART_TRISTx	-	this	defines	the	TRIS	control	bit	for	the	TX	pin	of	the
UART	module	in	use.	

#define	UART_TRISTx	TRISBbits.TRISB7	

UART_TRISRx	-	this	defines	the	TRIS	control	bit	for	the	RX	pin	of	the
UART	module	in	use.	

#define	UART_TRISRx	TRISBbits.TRISB5	

UART_Tx	-	this	defines	the	PORT	pin	control	bit	for	the	TX	pin	of	the
UART	module	in	use.	

#define	UART_Tx	PORTBbits.RB7	

UART_Rx	-	this	defines	the	PORT	pin	control	bit	for	the	RX	pin	of	the
UART	module	in	use.	

#define	UART_Rx	PORTBbits.RB5	

UART_TRISRTS	-	this	defines	the	TRIS	control	bit	for	the	RTS	pin	of
the	UART	module	in	use.	Depending	on	the	device	selected	this	may
not	be	part	of	the	module.	In	this	case	a	general	purpose	I/O	pin	should
be	selected.	

#define	UART_TRISRTS	TRISBbits.TRISB4	

UART_RTS	-	this	defines	the	PORT	pin	control	bit	for	the	RTS	pin	of
the	UART	module	in	use.	Depending	on	the	device	selected	this	may
not	be	part	of	the	module.	In	this	case	a	general	purpose	I/O	pin	should
be	selected.	

#define	UART_RTS	PORTBbits.RB4	

UART_TRISDTR	-	this	defines	the	TRIS	control	bit	for	the	DTR	pin	of
the	UART	module	in	use.	Depending	on	the	device	selected	this	may
not	be	part	of	the	module.	In	this	case	a	general	purpose	I/O	pin	should
be	selected.	

#define	UART_TRISRTS	TRISBbits.TRISB4	

UART_DTR	-	this	defines	the	PORT	pin	control	bit	for	the	DTR	pin	of
the	UART	module	in	use.	Depending	on	the	device	selected	this	may
not	be	part	of	the	module.	In	this	case	a	general	purpose	I/O	pin	should
be	selected.	

#define	UART_RTS	PORTBbits.RB4	

UART_ENABLE	-	this	defines	bit	in	the	device	that	enables	the	UART
module.	This	bit	may	vary	between	devices.	Please	refer	to	the
appropriate	device	datasheet	for	more	information.	

#define	UART_ENABLE	RCSTAbits.SPEN	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Communication	Device	Class	(CDC)	>	Files	>
HardwareProfile.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Human	Interface	Device	(HID)
The	Human	Interface	Device	(HID)	class	include	devices	like	mice,
keyboards,	joysticks,	game	controllers,	etc.	These	devices	provide
input	(and	in	some	cases	feedback)	providing	a	user	interface	to	the
computer.	The	HID	class	can	also	be	used	to	create	custom	devices
that	don't	fall	into	the	typical	human	interface	usage	model.	Examples
of	both	standard	devices	and	custom	HID	devices	are	provided	in	this
framework.	

The	HID	driver	is	found	in	nearly	all	operating	systems	and	requires	no
driver	installation	on	most	systems.	

For	more	information	about	HID	class	devices,	please	see	the	following
sources:

http://www.usb.org/developers/hidpage

Topics

Name	 Description	

Public	API	Members	 This	section	includes	the	API	members	required	to	access
the	CDC	function	driver	

Files	
This	section	lists	the	files	required	for	use	with	the	device
stack.	These	files	should	be	included	in	any	project	using
the	HID	function	driver	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Public	API	Members
This	section	includes	the	API	members	required	to	access	the	CDC
function	driver

Topics

Name	 Description	

Functions	and	Macros	 	

Definitions,	Constants,	and
Enums	 	

Variables	 	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Public	API
Members

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Functions	and	Macros

Functions

	 Name	 Description	

	 USBCheckHIDRequest	

This	routine	handles	HID	specific	request	that	happen	on
EP0.	This	function	should	be	called	from	the
USBCBCheckOtherReq()	call	back	function	whenever
implementing	a	HID	device.	

Macros

	 Name	 Description	

	 HIDTxPacket	 Sends	the	specified	data	out	the	specified	endpoint	

	 HIDTxHandleBusy	 Retreives	the	status	of	the	buffer	ownership	

	 HIDRxPacket	 Receives	the	specified	data	out	the	specified	endpoint	

	 HIDRxHandleBusy	 Retreives	the	status	of	the	buffer	ownership	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Public	API
Members	>	Functions	and	Macros

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCheckHIDRequest	Function
C
void	USBCheckHIDRequest();

Description

This	routine	handles	HID	specific	request	that	happen	on	EP0.	These
include,	but	are	not	limited	to,	requests	for	the	HID	report	descriptors.
This	function	should	be	called	from	the	USBCBCheckOtherReq()	call
back	function	whenever	using	an	HID	device.	

Typical	Usage:

Copy	Code

void	USBCBCheckOtherReq(void)

{

				//Since	the	stack	didn't	handle	the	request	I	need	to	check

				//		my	class	drivers	to	see	if	it	is	for	them

				USBCheckHIDRequest();

}

Preconditions

None

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Public	API
Members	>	Functions	and	Macros	>	USBCheckHIDRequest	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

HIDTxPacket	Macro
C
#define	HIDTxPacket	USBTxOnePacket

Description

This	function	sends	the	specified	data	out	the	specified	endpoint	and
returns	a	handle	to	the	transfer	information.	

Typical	Usage:

Copy	Code

//make	sure	that	the	last	transfer	isn't	busy	by	checking	the	handle

if(!HIDTxHandleBusy(USBInHandle))

{

				//Send	the	data	contained	in	the	ToSendDataBuffer[]	array	out	on

				//		endpoint	HID_EP

				USBInHandle	=	HIDTxPacket(HID_EP,(BYTE*)&ToSendDataBuffer[0],sizeof

}

Preconditions

None

Parameters

Parameters	 Description	

ep	 the	endpoint	you	want	to	send	the	data	out	of	

data	 pointer	to	the	data	that	you	wish	to	send	

len	 the	length	of	the	data	that	you	wish	to	send	

Return	Values

Return	Values	 Description	

USB_HANDLE	 a	handle	for	the	transfer.	This	information	should	be	kept	to
track	the	status	of	the	transfer	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Public	API
Members	>	Functions	and	Macros	>	HIDTxPacket	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

HIDTxHandleBusy	Macro
C
#define	HIDTxHandleBusy(handle)	USBHandleBusy(handle)

Description

Retreives	the	status	of	the	buffer	ownership.	This	function	will	indicate	if
the	previous	transfer	is	complete	or	not.	

This	function	will	take	the	input	handle	(pointer	to	a	BDT	entry)	and	will
check	the	UOWN	bit.	If	the	UOWN	bit	is	set	then	that	indicates	that	the
transfer	is	not	complete	and	the	USB	module	still	owns	the	data
memory.	If	the	UOWN	bit	is	clear	that	means	that	the	transfer	is
complete	and	that	the	CPU	now	owns	the	data	memory.	

For	more	information	about	the	BDT,	please	refer	to	the	appropriate
datasheet	for	the	device	in	use.	

Typical	Usage:

Copy	Code

//make	sure	that	the	last	transfer	isn't	busy	by	checking	the	handle

if(!HIDTxHandleBusy(USBInHandle))

{

				//Send	the	data	contained	in	the	ToSendDataBuffer[]	array	out	on

				//		endpoint	HID_EP

				USBInHandle	=	HIDTxPacket(HID_EP,(BYTE*)&ToSendDataBuffer[0],sizeof

}

Preconditions

None.

Parameters

Parameters	 Description	

the	handle	for	the	transfer	in	question.	The	handle	is

USB_HANDLE	handle	 returned	by	the	HIDTxPacket()	and	HIDRxPacket()
functions.	Please	insure	that	USB_HANDLE	objects	are
initialized	to	NULL.	

Return	Values

Return	Values	 Description	

TRUE	 the	HID	handle	is	still	busy	

FALSE	 the	HID	handle	is	not	busy	and	is	ready	to	send	additional
data.	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Public	API
Members	>	Functions	and	Macros	>	HIDTxHandleBusy	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

HIDRxPacket	Macro
C
#define	HIDRxPacket	USBRxOnePacket

Description

Receives	the	specified	data	out	the	specified	endpoint.	

Typical	Usage:

Copy	Code

//Read	64-bytes	from	endpoint	HID_EP,	into	the	ReceivedDataBuffer	array.

//		Make	sure	to	save	the	return	handle	so	that	we	can	check	it	later

//		to	determine	when	the	transfer	is	complete.

USBOutHandle	=	HIDRxPacket(HID_EP,(BYTE*)&ReceivedDataBuffer,64);

Preconditions

None

Parameters

Parameters	 Description	

ep	 the	endpoint	you	want	to	receive	the	data	into	

data	 pointer	to	where	the	data	will	go	when	it	arrives	

len	 the	length	of	the	data	that	you	wish	to	receive	

Return	Values

Return	Values	 Description	

USB_HANDLE	 a	handle	for	the	transfer.	This	information	should	be	kept	to
track	the	status	of	the	transfer	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Public	API
Members	>	Functions	and	Macros	>	HIDRxPacket	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

HIDRxHandleBusy	Macro
C
#define	HIDRxHandleBusy(handle)	USBHandleBusy(handle)

Description

Retreives	the	status	of	the	buffer	ownership.	This	function	will	indicate	if
the	previous	transfer	is	complete	or	not.	

This	function	will	take	the	input	handle	(pointer	to	a	BDT	entry)	and	will
check	the	UOWN	bit.	If	the	UOWN	bit	is	set	then	that	indicates	that	the
transfer	is	not	complete	and	the	USB	module	still	owns	the	data
memory.	If	the	UOWN	bit	is	clear	that	means	that	the	transfer	is
complete	and	that	the	CPU	now	owns	the	data	memory.	

For	more	information	about	the	BDT,	please	refer	to	the	appropriate
datasheet	for	the	device	in	use.	

Typical	Usage:

Copy	Code

if(!HIDRxHandleBusy(USBOutHandle))

{

				//The	data	is	available	in	the	buffer	that	was	specified	when	the

				//		HIDRxPacket()	was	called.

}

Preconditions

None

Return	Values

Return	Values	 Description	

TRUE	 the	HID	handle	is	still	busy	

the	HID	handle	is	not	busy	and	is	ready	to	receive

FALSE	 additional	data.	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Public	API
Members	>	Functions	and	Macros	>	HIDRxHandleBusy	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Definitions,	Constants,	and	Enums
MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Public	API
Members	>	Definitions,	Constants,	and	Enums

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Variables
MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Public	API
Members	>	Variables

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Files
This	section	lists	the	files	required	for	use	with	the	device	stack.	These
files	should	be	included	in	any	project	using	the	HID	function	driver

Files

Name	 Description	

usb_function_hid.c	

This	file	contains	all	of	functions,	macros,	definitions,
variables,	datatypes,	etc.	that	are	required	for	usage	with
the	HID	function	driver.	This	file	should	be	included	in
projects	that	use	the	HID	function	driver.

This	file	is	located	in	the	"<Install
Directory>\Microchip\USB\HID	Device	Driver"	directory.	

usb_function_hid.h	

This	file	contains	all	of	functions,	macros,	definitions,
variables,	datatypes,	etc.	that	are	required	for	usage	with
the	HID	function	driver.	This	file	should	be	included	in
projects	that	use	the	HID	function	driver.	This	file	should
also	be	included	into	the	usb_descriptors.c	file	and	any
other	user	file	that	requires	access	to	the	HID	interface.

This	file	is	located	in	the	"<Install
Directory>\Microchip\Include\USB"	directory.	

Topics

Name	 Description	

usb_config.h	

usb_config.h	is	a	file	used	to	configure	the	MCHPFSUSB
stack.	This	file	provides	compile	time	selection	of	options
provided	by	the	stack.	This	file	defines	constants	needed
by	the	stack	and	various	function	drivers.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Files

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_function_hid.c
USB	HID	Function	Driver	File	

This	file	contains	all	of	functions,	macros,	definitions,	variables,
datatypes,	etc.	that	are	required	for	usage	with	the	HID	function	driver.
This	file	should	be	included	in	projects	that	use	the	HID	function	driver.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\USB\HID	Device
Driver"	directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\Microchip\Include	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Files	>

usb_function_hid.c

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_function_hid.h
USB	HID	Function	Driver	File	

This	file	contains	all	of	functions,	macros,	definitions,	variables,
datatypes,	etc.	that	are	required	for	usage	with	the	HID	function	driver.
This	file	should	be	included	in	projects	that	use	the	HID	function	driver.
This	file	should	also	be	included	into	the	usb_descriptors.c	file	and	any
other	user	file	that	requires	access	to	the	HID	interface.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

Functions

	 Name	 Description	

	 USBCheckHIDRequest	

This	routine	handles	HID	specific	request	that	happen	on
EP0.	This	function	should	be	called	from	the
USBCBCheckOtherReq()	call	back	function	whenever
implementing	a	HID	device.	

Macros

	 Name	 Description	

	 HIDRxHandleBusy	 Retreives	the	status	of	the	buffer	ownership	

	 HIDRxPacket	 Receives	the	specified	data	out	the	specified	endpoint	

	 HIDTxHandleBusy	 Retreives	the	status	of	the	buffer	ownership	

	 HIDTxPacket	 Sends	the	specified	data	out	the	specified	endpoint	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Files	>
usb_function_hid.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_config.h
usb_config.h	is	a	file	used	to	configure	the	MCHPFSUSB	stack	and
various	function	drivers.	This	file	provides	compile	time	selection	of
options	provided	by	the	stack.	This	file	defines	constants	needed	by	the
stack	and	various	function	drivers.	

This	section	will	detail	the	definitions	required	by	the	HID	function
driver.	Additional	definitions	may	be	required	by	the	stack	itself.	Please
see	the	Files	topic	of	the	Stack	section	for	more	details	about	stack
specific	definitions.	

Please	note	that	the	usb_config.h	file	can	also	be	generated	using	the
USBConfig.exe	tool	provided	in	the	"<Install	Directory>\USB
Tools\USBConfig	Tool"	directory.	

USB_USE_HID	-	This	define	lets	the	USB	stack	know	that	it	will	be
using	the	HID	function	driver.	This	should	be	defined	for	any	device
using	the	HID	driver.	

#define	USB_USE_HID	

HID_INTF_ID	-	This	defines	the	interface	number	for	the	HID	device.
This	number	should	be	unique	within	the	configuration.	Valid	numbers
range	from	0-255.	

#define	HID_INTF_ID	0x00	

HID_EP	-	This	defines	the	endpoint	number	used	by	the	HID	driver.
This	number	should	be	unique	within	the	configuration.	

#define	HID_EP	1	

HID_INT_OUT_EP_SIZE	-	this	defines	the	size	of	the	OUT	endpoint
used	by	the	HID	driver.	The	valid	range	is	1-64.	

#define	HID_INT_OUT_EP_SIZE	3	

HID_INT_IN_EP_SIZE	-	this	defines	the	size	of	the	IN	endpoint	used	by
the	HID	driver.	The	valid	range	is	1-64.	

#define	HID_INT_IN_EP_SIZE	3	

HID_NUM_OF_DSC	-	The	HID	class	specifies	its	own	class
descriptors.	This	defines	the	number	of	HID	descriptors	that	this	device
has	in	the	current	configuration.	

#define	HID_NUM_OF_DSC	1	

HID_RPT01_SIZE	-	This	is	the	size	of	the	first	HID	report	descriptor	in
bytes.	

#define	HID_RPT01_SIZE	50	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Human	Interface	Device	(HID)	>	Files	>
usb_config.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Mass	Storage	Device	(MSD)
Mass	Storage	Device	(MSD)	class	are	devices	that	appear	like	drives
when	plugged	into	a	host.	Examples	of	these	types	of	devices	are
thumbdrives	(memory	sticks),	external	USB	hard	disks,	or	external	USB
CD	drives.	

MSD	drivers	can	be	found	in	nearly	all	operating	systems	and	requires
no	driver	installation	on	most	systems.	

This	framework	includes	several	examples	examples	of	MSD	examples
using	different	physical	storage	media.	The	MSD	implementation	in	this
release	uses	the	Microchip	Memory	Disk	(MDD)	File	System	as	the
physical	layer.	

For	more	information	about	MSD	class	devices,	please	see	the
following	sources:

http://www.usb.org/developers/devclass_docs/usb_msc_overview_1.2.pdf
http://www.usb.org/developers/devclass_docs/usbmassbulk_10.pdf
http://ww1.microchip.com/downloads/en/AppNotes/01189a.pdf	(also	located	in	the
documenation	folder	of	this	distribution)
http://ww1.microchip.com/downloads/en/AppNotes/01045b.pdf	(also	located	in	the
documenation	folder	of	this	distribution)

Topics

Name	 Description	

Public	API	Members	 This	section	includes	the	API	members	required	to	access
the	MSD	function	driver	

Files	

This	section	lists	the	files	required	for	use	with	the	device
stack.	These	files	should	be	included	in	any	project	using
the	MSD	function	driver

In	addition	to	these	files	additional	files	may	be	required
from	the	Microchip	MDD	File	System	Library	for	the
physical	storage	function	calls	(SD-SPI.c,	etc).	Please	refer
to	the	section	discussing	the	LUN_FUNCTIONS	type
definition	for	more	details	about	configuring	the	library	to
work	with	different	physical	layers	in	the	MDD	File	System
Library.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Public	API	Members
This	section	includes	the	API	members	required	to	access	the	MSD
function	driver

Topics

Name	 Description	

Functions	and	Macros	 	

Definitions,	Constants,	and
Enums	 	

Variables	 	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Functions	and	Macros

Functions

	 Name	 Description	

	 MSDTasks	

This	function	runs	the	MSD	class	state	machines	and	all
of	its	sub-systems.	This	function	should	be	called
periodically	once	the	device	is	in	the	configured	state	in
order	to	keep	the	MSD	state	machine	going.	

	 USBMSDInit	

This	routine	initializes	the	MSD	class	packet	handles,
prepares	to	receive	a	MSD	packet,	and	initializes	the
MSD	state	machine.	This	function	should	be	called	once
after	the	device	is	enumerated.	

	 USBCheckMSDRequest	

This	routine	handles	MSD	specific	request	that	happen
on	EP0.	This	function	should	be	called	from	the
USBCBCheckOtherReq()	call	back	function	whenever
implementing	an	MSD	device.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Functions	and	Macros

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MSDTasks	Function
C
BYTE	MSDTasks();

Description

This	function	runs	the	MSD	class	state	machines	and	all	of	its	sub-
systems.	This	function	should	be	called	periodically	once	the	device	is
in	the	configured	state	in	order	to	keep	the	MSD	state	machine	going.	

Typical	Usage:

Copy	Code

void	main(void)

{

				USBDeviceInit();

				while(1)

				{

								USBDeviceTasks();

								if((USBGetDeviceState()	<	CONFIGURED_STATE)	||

											(USBIsDeviceSuspended()	==	TRUE))

								{

												//Either	the	device	is	not	configured	or	we	are	suspended

												//		so	we	don't	want	to	do	execute	any	application	code

												continue;			//go	back	to	the	top	of	the	while	loop

								}

								else

								{

												//Keep	the	MSD	state	machine	going

												MSDTasks();

												//Run	application	code.

												UserApplication();

								}

				}

}

Preconditions

None

Return	Values

Return	Values	 Description	

BYTE	

the	current	state	of	the	MSD	state	machine	the	valid	values
are	defined	in	MSD.h	under	the	MSDTasks	state	machine
declaration	section.	The	possible	values	are	the	following:

MSD_WAIT
MSD_DATA_IN
MSD_DATA_OUT
MSD_SEND_CSW

	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Functions	and	Macros	>	MSDTasks	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBMSDInit	Function
C
void	USBMSDInit();

Description

This	routine	initializes	the	MSD	class	packet	handles,	prepares	to
receive	a	MSD	packet,	and	initializes	the	MSD	state	machine.	This
function	should	be	called	once	after	the	device	is	enumerated.	

Typical	Usage:

Copy	Code

void	USBCBInitEP(void)

{

				USBEnableEndpoint(MSD_DATA_IN_EP,USB_IN_ENABLED|USB_OUT_ENABLED|USB_HANDSHAKE_ENABLED|USB_DISALLOW_SETUP);

				USBMSDInit();

}

Preconditions

The	device	should	already	be	enumerated	with	a	configuration	that
supports	MSD	before	calling	this	function.	

Paramters:	None

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Functions	and	Macros	>	USBMSDInit	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCheckMSDRequest	Function
C
void	USBCheckMSDRequest();

Description

This	routine	handles	MSD	specific	request	that	happen	on	EP0.	These
include,	but	are	not	limited	to,	the	standard	RESET	and
GET_MAX_LUN	command	requests.	This	function	should	be	called
from	the	USBCBCheckOtherReq()	call	back	function	whenever	using
an	MSD	device.	

Typical	Usage:

Copy	Code

void	USBCBCheckOtherReq(void)

{

				//Since	the	stack	didn't	handle	the	request	I	need	to	check

				//		my	class	drivers	to	see	if	it	is	for	them

				USBCheckMSDRequest();

}

Preconditions

None

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Functions	and	Macros	>	USBCheckMSDRequest	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Definitions,	Constants,	and	Enums

Macros

	 Name	 Description	

	 MSD_WAIT	 MSD_WAIT	is	when	the	MSD	state	machine	is	idle
(returned	by	MSDTasks())	

	 MSD_DATA_IN	 MSD_DATA_IN	is	when	the	device	is	sending	data
(returned	by	MSDTasks())	

	 MSD_DATA_OUT	 MSD_DATA_OUT	is	when	the	device	is	receiving	data
(returned	by	MSDTasks())	

	 MSD_SEND_CSW	 MSD_SEND_CSW	is	when	the	device	is	waiting	to	send
the	CSW	(returned	by	MSDTasks())	

Structures

	 Name	 Description	

	 LUN_FUNCTIONS	

LUN_FUNCTIONS	is	a	structure	of	function	pointers	that
tells	the	stack	where	to	find	each	of	the	physical	layer
functions	it	is	looking	for.	This	structure	needs	to	be
defined	for	any	project	for	PIC24F	or	PIC32.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Definitions,	Constants,	and	Enums

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LUN_FUNCTIONS	Structure
C
typedef	struct	{

		BYTE	(*	MediaInitialize)();

		DWORD	(*	ReadCapacity)();

		WORD	(*	ReadSectorSize)();

		BYTE	(*	MediaDetect)();

		BYTE	(*	SectorRead)(DWORD	sector_addr,	BYTE*	buffer);

		BYTE	(*	WriteProtectState)();

		BYTE	(*	SectorWrite)(DWORD	sector_addr,	BYTE*	buffer,	BYTE	allowWriteToZero);

}	LUN_FUNCTIONS;

Description

LUN_FUNCTIONS	is	a	structure	of	function	pointers	that	tells	the	stack
where	to	find	each	of	the	physical	layer	functions	it	is	looking	for.	This
structure	needs	to	be	defined	for	any	project	for	PIC24F	or	PIC32.	

Typical	Usage:

Copy	Code

				LUN_FUNCTIONS	LUN[MAX_LUN	+	1]	=

				{

								{

												&MDD_SDSPI_MediaInitialize,

												&MDD_SDSPI_ReadCapacity,

												&MDD_SDSPI_ReadSectorSize,

												&MDD_SDSPI_MediaDetect,

												&MDD_SDSPI_SectorRead,

												&MDD_SDSPI_WriteProtectState,

												&MDD_SDSPI_SectorWrite

								}

				};

	

In	the	above	code	we	are	passing	the	address	of	the	SDSPI	functions
to	the	corresponding	member	of	the	LUN_FUNCTIONS	structure.	In	the
above	case	we	have	created	an	array	of	LUN_FUNCTIONS	structures
so	that	it	is	possible	to	have	multiple	physical	layers	by	merely
increasing	the	MAX_LUN	variable	and	by	adding	one	more	set	of

entries	in	the	array.	Please	take	caution	to	insure	that	each	function	is
in	the	the	correct	location	in	the	structure.	Incorrect	alignment	will	cause
the	USB	stack	to	call	the	incorrect	function	for	a	given	command.	

See	the	MDD	File	System	Library	for	additional	information	about	the
available	physical	media,	their	requirements,	and	how	to	use	their
associated	functions.

Members

Members	 Description	

BYTE	(*	MediaInitialize)();	 Function	pointer	to	the	MediaInitialize()	function	of	the
physical	media	being	used.	

DWORD	(*	ReadCapacity)();	 Function	pointer	to	the	ReadCapacity()	function	of	the
physical	media	being	used.	

WORD	(*	ReadSectorSize)();	 Function	pointer	to	the	ReadSectorSize()	function	of	the
physical	media	being	used.	

BYTE	(*	MediaDetect)();	 Function	pointer	to	the	MediaDetect()	function	of	the
physical	media	being	used.	

BYTE	(*	SectorRead)(DWORD
sector_addr,	BYTE*	buffer);	

Function	pointer	to	the	SectorRead()	function	of	the
physical	media	being	used.	

BYTE	(*	WriteProtectState)();	 Function	pointer	to	the	WriteProtectState()	function	of	the
physical	media	being	used.	

BYTE	(*	SectorWrite)(DWORD
sector_addr,	BYTE*	buffer,
BYTE	allowWriteToZero);	

Function	pointer	to	the	SectorWrite()	function	of	the
physical	media	being	used.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Definitions,	Constants,	and	Enums	>	LUN_FUNCTIONS	Structure

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MSD_WAIT	Macro
C
#define	MSD_WAIT	0x00

Description

MSD_WAIT	is	when	the	MSD	state	machine	is	idle	(returned	by
MSDTasks())

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Definitions,	Constants,	and	Enums	>	MSD_WAIT	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MSD_DATA_IN	Macro
C
#define	MSD_DATA_IN	0x01

Description

MSD_DATA_IN	is	when	the	device	is	sending	data	(returned	by
MSDTasks())

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Definitions,	Constants,	and	Enums	>	MSD_DATA_IN	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MSD_DATA_OUT	Macro
C
#define	MSD_DATA_OUT	0x02

Description

MSD_DATA_OUT	is	when	the	device	is	receiving	data	(returned	by
MSDTasks())

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Definitions,	Constants,	and	Enums	>	MSD_DATA_OUT	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MSD_SEND_CSW	Macro
C
#define	MSD_SEND_CSW	0x03

Description

MSD_SEND_CSW	is	when	the	device	is	waiting	to	send	the	CSW
(returned	by	MSDTasks())

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Definitions,	Constants,	and	Enums	>	MSD_SEND_CSW	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Variables
MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Public	API
Members	>	Variables

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Files
This	section	lists	the	files	required	for	use	with	the	device	stack.	These
files	should	be	included	in	any	project	using	the	MSD	function	driver	

	

In	addition	to	these	files	additional	files	may	be	required	from	the
Microchip	MDD	File	System	Library	for	the	physical	storage	function
calls	(SD-SPI.c,	etc).	Please	refer	to	the	section	discussing	the
LUN_FUNCTIONS	type	definition	for	more	details	about	configuring	the
library	to	work	with	different	physical	layers	in	the	MDD	File	System
Library.

Files

Name	 Description	

usb_function_msd.c	

This	file	contains	functions,	macros,	definitions,	variables,
datatypes,	etc.	that	are	required	for	use	of	the	MSD
function	driver.	This	file	should	be	included	in	projects	that
use	the	MSD	function	driver.

This	file	is	located	in	the	"<Install
Directory>\Microchip\USB\MSD	Device	Driver"	directory.	

usb_function_msd.h	

This	file	contains	functions,	macros,	definitions,	variables,
datatypes,	etc.	that	are	required	for	use	of	the	MSD
function	driver.	This	file	should	be	included	in	projects	that
use	the	MSD	function	driver.

This	file	is	located	in	the	"<Install
Directory>\Microchip\USB\MSD	Device	Driver"	directory.	

Topics

Name	 Description	

usb_config.h	

usb_config.h	is	a	file	used	to	configure	the	MCHPFSUSB
stack	and	various	function	drivers.	This	file	provides
compile	time	selection	of	options	provided	by	the	stack.
This	file	defines	constants	needed	by	the	stack	and	various
function	drivers.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Files

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_function_msd.c
USB	MSD	Function	Driver	File	

This	file	contains	functions,	macros,	definitions,	variables,	datatypes,
etc.	that	are	required	for	use	of	the	MSD	function	driver.	This	file	should
be	included	in	projects	that	use	the	MSD	function	driver.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\USB\MSD
Device	Driver"	directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\Microchip\Include	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Files	>

usb_function_msd.c

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_function_msd.h
USB	MSD	Function	Driver	File	

This	file	contains	functions,	macros,	definitions,	variables,	datatypes,
etc.	that	are	required	for	use	of	the	MSD	function	driver.	This	file	should
be	included	in	projects	that	use	the	MSD	function	driver.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\USB\MSD
Device	Driver"	directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\Microchip\Include	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

Functions

	 Name	 Description	

	 MSDTasks	

This	function	runs	the	MSD	class	state	machines	and	all
of	its	sub-systems.	This	function	should	be	called
periodically	once	the	device	is	in	the	configured	state	in
order	to	keep	the	MSD	state	machine	going.	

	 USBCheckMSDRequest	

This	routine	handles	MSD	specific	request	that	happen
on	EP0.	This	function	should	be	called	from	the
USBCBCheckOtherReq()	call	back	function	whenever
implementing	an	MSD	device.	

	 USBMSDInit	

This	routine	initializes	the	MSD	class	packet	handles,
prepares	to	receive	a	MSD	packet,	and	initializes	the
MSD	state	machine.	This	function	should	be	called	once
after	the	device	is	enumerated.	

Macros

	 Name	 Description	

	 MSD_DATA_IN	 MSD_DATA_IN	is	when	the	device	is	sending	data
(returned	by	MSDTasks())	

	 MSD_DATA_OUT	 MSD_DATA_OUT	is	when	the	device	is	receiving	data
(returned	by	MSDTasks())	

	 MSD_SEND_CSW	 MSD_SEND_CSW	is	when	the	device	is	waiting	to	send
the	CSW	(returned	by	MSDTasks())	

	 MSD_WAIT	 MSD_WAIT	is	when	the	MSD	state	machine	is	idle
(returned	by	MSDTasks())	

Structures

	 Name	 Description	

	 LUN_FUNCTIONS	

LUN_FUNCTIONS	is	a	structure	of	function	pointers	that
tells	the	stack	where	to	find	each	of	the	physical	layer
functions	it	is	looking	for.	This	structure	needs	to	be
defined	for	any	project	for	PIC24F	or	PIC32.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Files	>
usb_function_msd.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_config.h
usb_config.h	is	a	file	used	to	configure	the	MCHPFSUSB	stack	and
various	function	drivers.	This	file	provides	compile	time	selection	of
options	provided	by	the	stack.	This	file	defines	constants	needed	by	the
stack	and	various	function	drivers.	

This	section	will	detail	the	definitions	required	by	the	MSD	function
driver.	Additional	definitions	may	be	required	by	the	stack	itself.	Please
see	the	Files	topic	of	the	Stack	section	for	more	details	about	stack
specific	definitions.	

Please	note	that	the	usb_config.h	file	can	also	be	generated	using	the
USBConfig.exe	tool	provided	in	the	"<Install	Directory>\USB
Tools\USBConfig	Tool"	directory.	

USB_USE_MSD	-	This	define	lets	the	USB	stack	know	that	it	will	be
using	the	MSD	function	driver.	This	should	be	defined	for	any	device
using	the	MSD	driver.	

#define	USB_USE_MSD	

MSD_INTF_ID	-	This	defines	the	interface	number	for	the	MSD	device.
This	number	should	be	unique	within	the	configuration.	Valid	numbers
range	from	0-255.	

#define	MSD_INTF_ID	0x00	

MSD_IN_EP_SIZE	-	this	defines	the	size	of	the	IN	endpoint	used	by	the
MSD	driver.	The	valid	range	is	1-64.	

#define	MSD_IN_EP_SIZE	64	

MSD_OUT_EP_SIZE	-	this	defines	the	size	of	the	OUT	endpoint	used
by	the	MSD	driver.	The	valid	range	is	1-64.	

#define	MSD_OUT_EP_SIZE	64	

MAX_LUN	-	This	defines	the	largest	logical	unit	number	(LUN)	of	the
device	(0	indexed).	Each	LUN	will	appear	to	the	computer	as	its	own

drive.	For	one	drive,	use	0.	For	sixteen	drives,	use	15.	The	valid	range
is	0-15.	For	each	valid	LUN	defined	here	there	should	be	a
corresponding	entry	in	the	array	of	LUN_FUNCTIONS	variables.	

#define	MAX_LUN	0	

MSD_DATA_IN_EP	-	This	defined	the	IN	endpoint	number	used	by	the
MSD	driver.	This	number	should	be	unique	within	the	configuration	(but
can	be	the	same	as	the	MSD_DATA_OUT_EP).	

#define	MSD_DATA_IN_EP	1	

MSD_DATA_OUT_EP	-	This	defined	the	OUT	endpoint	number	used
by	the	MSD	driver.	This	number	should	be	unique	within	the
configuration	(but	can	be	the	same	as	the	MSD_DATA_IN_EP).	

#define	MSD_DATA_OUT_EP	1	

MSD_BUFFER_ADDRESS	-	This	defines	the	address	where	the	MSD
RAM	buffer	will	reside.	This	implementation	requires	a	sector	size
buffer	(typically	512	bytes).	

#define	MSD_BUFFER_ADDRESS	0x600	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Mass	Storage	Device	(MSD)	>	Files	>
usb_config.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Vendor	Class
Vendor	Class	function	drivers	are	drivers	are	custom	drivers	who's
functionality	is	not	defined	by	the	USB	specification.	Examples	of
vendor	class	drivers	include	MCHPUSB	(Microchip's	custom	class
driver),	WinUSB	(provided	by	Microsoft),	and	LibUSB	(an	open	source
driver).

Topics

Name	 Description	

Public	API	Members	 	

Files	
This	section	lists	the	files	required	for	use	with	the	device
stack.	These	files	should	be	included	in	any	project	using
vendor	function	drivers	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Public	API	Members

Topics

Name	 Description	

Functions	and	Macros	 	

Definitions,	Constants,	and
Enums	 	

Variables	 	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class	>	Public	API	Members

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Functions	and	Macros

Macros

	 Name	 Description	

	 USBGenRead	 Receives	the	specified	data	out	the	specified	endpoint	

	 USBGenWrite	 Sends	the	specified	data	out	the	specified	endpoint	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class	>	Public	API	Members	>
Functions	and	Macros

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBGenRead	Macro
C
#define	USBGenRead(ep,data,len)	USBRxOnePacket(ep,data,len)

Description

Receives	the	specified	data	out	the	specified	endpoint.	

Typical	Usage:

Copy	Code

//Read	64-bytes	from	endpoint	USBGEN_EP_NUM,	into	the	OUTPacket	array.

//		Make	sure	to	save	the	return	handle	so	that	we	can	check	it	later

//		to	determine	when	the	transfer	is	complete.

if(!USBHandleBusy(USBOutHandle))

{

				USBOutHandle	=	USBGenRead(USBGEN_EP_NUM,(BYTE*)&OUTPacket,64);

}

Preconditions

None

Parameters

Parameters	 Description	

ep	 the	endpoint	you	want	to	receive	the	data	into	

data	 pointer	to	where	the	data	will	go	when	it	arrives	

len	 the	length	of	the	data	that	you	wish	to	receive	

Return	Values

Return	Values	 Description	

USB_HANDLE	 a	handle	for	the	transfer.	This	information	should	be	kept	to
track	the	status	of	the	transfer	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class	>	Public	API	Members	>
Functions	and	Macros	>	USBGenRead	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBGenWrite	Macro
C
#define	USBGenWrite(ep,data,len)	USBTxOnePacket(ep,data,len)

Description

This	function	sends	the	specified	data	out	the	specified	endpoint	and
returns	a	handle	to	the	transfer	information.	

Typical	Usage:

Copy	Code

//make	sure	that	the	last	transfer	isn't	busy	by	checking	the	handle

if(!USBHandleBusy(USBGenericInHandle))

{

				//Send	the	data	contained	in	the	INPacket[]	array	out	on

				//		endpoint	USBGEN_EP_NUM

				USBGenericInHandle	=	USBGenWrite(USBGEN_EP_NUM,(BYTE*)&INPacket[0],

}

Preconditions

None

Parameters

Parameters	 Description	

ep	 the	endpoint	you	want	to	send	the	data	out	of	

data	 pointer	to	the	data	that	you	wish	to	send	

len	 the	length	of	the	data	that	you	wish	to	send	

Return	Values

Return	Values	 Description	

USB_HANDLE	 a	handle	for	the	transfer.	This	information	should	be	kept	to
track	the	status	of	the	transfer	

Remarks

None

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class	>	Public	API	Members	>
Functions	and	Macros	>	USBGenWrite	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Definitions,	Constants,	and	Enums
MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class	>	Public	API	Members	>
Definitions,	Constants,	and	Enums

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Variables
MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class	>	Public	API	Members	>
Variables

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Files
This	section	lists	the	files	required	for	use	with	the	device	stack.	These
files	should	be	included	in	any	project	using	vendor	function	drivers

Files

Name	 Description	

usb_function_generic.c	

This	file	contains	functions,	macros,	definitions,	variables,
datatypes,	etc.	that	are	required	for	use	of	vendor	class
function	drivers.	This	file	should	be	included	in	projects	that
use	vendor	class	function	drivers.	Vendor	class	function
drivers	include	MCHPUSB	(Microchip's	custom	class
driver),	WinUSB,	and	LibUSB.

This	file	is	located	in	the	"<Install
Directory>\Microchip\USB\Generic	Device	Driver"
directory.	

usb_function_generic.h	

This	file	contains	all	of	functions,	macros,	definitions,
variables,	datatypes,	etc.	that	are	required	for	usage	with
vendor	class	function	drivers.	This	file	should	be	included
in	projects	that	use	vendor	class	function	drivers.	This	file
should	also	be	included	into	the	usb_descriptors.c	file	and
any	other	user	file	that	requires	access	to	vendor	class
interfaces.

This	file	is	located	in	the	"<Install
Directory>\Microchip\Include\USB"	directory.	

Topics

Name	 Description	

usb_config.h	

usb_config.h	is	a	file	used	to	configure	the	MCHPFSUSB
stack	and	various	function	drivers.	This	file	provides
compile	time	selection	of	options	provided	by	the	stack.
This	file	defines	constants	needed	by	the	stack	and	various
function	drivers.	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class	>	Files

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008

Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_function_generic.c
USB	Vender	Class	Custom	Driver	Header	File	

This	file	contains	functions,	macros,	definitions,	variables,	datatypes,
etc.	that	are	required	for	use	of	vendor	class	function	drivers.	This	file
should	be	included	in	projects	that	use	vendor	class	function	drivers.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\USB\Generic
Device	Driver"	directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\Microchip\Include	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class	>	Files	>	usb_function_generic.c

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_function_generic.h
USB	Vender	Class	Custom	Driver	File	

This	file	contains	all	of	functions,	macros,	definitions,	variables,
datatypes,	etc.	that	are	required	for	usage	with	vendor	class	function
drivers.	This	file	should	be	included	in	projects	that	use	vendor	class
function	drivers.	This	file	should	also	be	included	into	the
usb_descriptors.c	file	and	any	other	user	file	that	requires	access	to
vendor	class	interfaces.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\Microchip\Include	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

Macros

	 Name	 Description	

	 USBGenRead	 Receives	the	specified	data	out	the	specified	endpoint	

	 USBGenWrite	 Sends	the	specified	data	out	the	specified	endpoint	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class	>	Files	>	usb_function_generic.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_config.h
usb_config.h	is	a	file	used	to	configure	the	MCHPFSUSB	stack	and
various	function	drivers.	This	file	provides	compile	time	selection	of
options	provided	by	the	stack.	This	file	defines	constants	needed	by	the
stack	and	various	function	drivers.	

This	section	will	detail	the	definitions	required	by	vendor	class	function
drivers.	Additional	definitions	may	be	required	by	the	stack	itself.
Please	see	the	Files	topic	of	the	Stack	section	for	more	details	about
stack	specific	definitions.	

Please	note	that	the	usb_config.h	file	can	also	be	generated	using	the
USBConfig.exe	tool	provided	in	the	"<Install	Directory>\USB
Tools\USBConfig	Tool"	directory.	

USB_USE_GEN	-	This	define	lets	the	USB	stack	know	that	it	will	be
using	a	vendor	class	function	driver.	This	should	be	defined	for	any
device	using	a	vendor	class	function	driver.	

#define	USB_USE_GEN	

USBGEN_EP_SIZE	-	this	defines	the	size	of	the	IN	endpoint	used	by
the	MSD	driver.	The	valid	range	is	1-64	for	bulk	endpoints	and	1-1023
for	Isochronous	endpoints.	

#define	USBGEN_EP_SIZE	64	

USBGEN_EP_NUM	-	This	defines	the	endpoint	number	used	by	the
driver.	This	number	should	be	unique	within	the	configuration.	

#define	USBGEN_EP_NUM	1	

MCHPFSUSB	Device	Library	>	Function	Drivers	>	Vendor	Class	>	Files	>	usb_config.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Next

Stack

Topics

Name	 Description	

Public	API	Members	
This	section	includes	the	Functions,	Macros,	Variables,
Definitions,	Constants,	and	Enumerations	that	are	part	of
the	public	API	of	the	MCHPFSUSB	stack.	

Files	
This	section	lists	the	files	required	for	use	with	the	device
stack.	These	files	should	be	included	in	any	project	using
the	USB	device	stack	

MCHPFSUSB	Device	Library	>	Stack

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Public	API	Members
This	section	includes	the	Functions,	Macros,	Variables,	Definitions,
Constants,	and	Enumerations	that	are	part	of	the	public	API	of	the
MCHPFSUSB	stack.

Topics

Name	 Description	

Functions	and	Macros	 	

Definitions,	Constants,	and
Enums	 	

Variables	and	Types	 	

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Functions	and	Macros

Functions

	 Name	 Description	

	 USBDeviceInit	

This	function	initializes	the	device	stack	it	in	the
default	state.	The	USB	module	will	be	completely
reset	including	all	of	the	internal	variables,	registers,
and	interrupt	flags.	

	 USBDeviceTasks	

This	function	is	the	main	state	machine	of	the	USB
device	side	stack.	This	function	should	be	called
periodically	to	receive	and	transmit	packets	through
the	stack.	This	function	should	be	called	preferably
once	every	100us	during	the	enumeration	process.
After	the	enumeration	process	this	function	still
needs	to	be	called	periodically	to	respond	to	various
situations	on	the	bus	but	is	more	relaxed	in	its	time
requirements.	This	function	should	also	be	called	at
least	as	fast	as	the	OUT	data	expected	from	the	PC.	

	 USBEnableEndpoint	 This	function	will	enable	the	specified	endpoint	with
the	specified	options	

	 USBCBInitEP	 This	function	is	called	whenever	the	device	receives
a	SET_CONFIGURATION	request.	

	 USBCBSuspend	 Call	back	that	is	invoked	when	a	USB	suspend	is
detected.	

	 USBCBWakeFromSuspend	 This	call	back	is	invoked	when	a	wakeup	from	USB
suspend	is	detected.	

	 USBCBCheckOtherReq	
This	function	is	called	whenever	a	request	comes
over	endpoint	0	(the	control	endpoint)	that	the	stack
does	not	know	how	to	handle.	

	 USBCBSendResume	 This	function	should	be	called	to	initiate	a	remote
wakeup.	(optional)	

	 USBCBErrorHandler	 This	callback	is	called	whenever	a	USB	error	occurs.
(optional)	

	 USBCBStdSetDscHandler	 This	callback	is	called	when	a	SET_DESCRIPTOR
request	is	received	(optional)	

	 USBCB_SOF_Handler	 This	callback	is	called	when	a	SOF	packet	is
received	by	the	host.	(optional)	

	 USBCBEP0DataReceived	 This	function	is	called	whenever	a	EP0	data	packet	is
received.	(optional)	

Macros

	 Name	 Description	

	 USBGetDeviceState	

This	function	will	return	the	current	state	of	the
device	on	the	USB.	This	function	should	return
CONFIGURED_STATE	before	an	application	tries
to	send	information	on	the	bus.	

	 USBGetRemoteWakeupStatus	

This	function	indicates	if	remote	wakeup	has	been
enabled	by	the	host.	Devices	that	support	remote
wakeup	should	use	this	function	to	determine	if	it
should	send	a	remote	wakeup.	

	 USBIsDeviceSuspended	
This	function	indicates	if	this	device	is	currently
suspended.	When	a	device	is	suspended	it	will	not
be	able	to	transfer	data	over	the	bus.	

	 USBHandleBusy	 Checks	to	see	if	the	input	handle	is	busy	

	 USBHandleGetAddr	 Retrieves	the	address	of	the	destination	buffer	of
the	input	handle	

	 USBHandleGetLength	 Retrieves	the	length	of	the	destination	buffer	of
the	input	handle	

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBDeviceInit	Function
C
void	USBDeviceInit();

Description

This	function	initializes	the	device	stack	it	in	the	default	state.	The	USB
module	will	be	completely	reset	including	all	of	the	internal	variables,
registers,	and	interrupt	flags.

Preconditions

This	function	must	be	called	before	any	of	the	other	USB	Device
functions	can	be	called,	including	USBDeviceTasks().

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBDeviceInit	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBDeviceTasks	Function
C
void	USBDeviceTasks();

Description

This	function	is	the	main	state	machine	of	the	USB	device	side	stack.
This	function	should	be	called	periodically	to	receive	and	transmit
packets	through	the	stack.	This	function	should	be	called	preferably
once	every	100us	during	the	enumeration	process.	After	the
enumeration	process	this	function	still	needs	to	be	called	periodically	to
respond	to	various	situations	on	the	bus	but	is	more	relaxed	in	its	time
requirements.	This	function	should	also	be	called	at	least	as	fast	as	the
OUT	data	expected	from	the	PC.	

Typical	usage:

Copy	Code

void	main(void)

{

				USBDeviceInit()

				while(1)

				{

								USBDeviceTasks();

								if((USBGetDeviceState()	<	CONFIGURED_STATE)	||

											(USBIsDeviceSuspended()	==	TRUE))

								{

												//Either	the	device	is	not	configured	or	we	are	suspended

												//		so	we	don't	want	to	do	execute	any	application	code

												continue;			//go	back	to	the	top	of	the	while	loop

								}

								else

								{

												//Otherwise	we	are	free	to	run	user	application	code.

												UserApplication();

								}

				}

}

Preconditions

None

Remarks

This	function	should	be	called	preferably	once	every	100us	during	the
enumeration	process.	After	the	enumeration	process	this	function	still
needs	to	be	called	periodically	to	respond	to	various	situations	on	the
bus	but	is	more	relaxed	in	its	time	requirements.

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBDeviceTasks	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBGetDeviceState	Macro
C
#define	USBGetDeviceState	USBDeviceState

Description

This	function	returns	the	current	state	of	the	device	on	the	USB.	This
function	is	used	to	determine	when	the	device	is	ready	to	communicate
on	the	bus.	Applications	should	not	try	to	send	or	receive	data	until	this
function	returns	CONFIGURED_STATE.	

It	is	also	important	that	applications	yield	as	much	time	as	possible	to
the	USBDeviceTasks()	function	as	possible	while	the	this	function
returns	any	value	between	ATTACHED_STATE	through
CONFIGURED_STATE.	

For	more	information	about	the	various	device	states,	please	refer	to
the	USB	specification	section	9.1	available	from	www.usb.org.	

Typical	usage:

Copy	Code

void	main(void)

{

				USBDeviceInit()

				while(1)

				{

								USBDeviceTasks();

								if((USBGetDeviceState()	<	CONFIGURED_STATE)	||

											(USBIsDeviceSuspended()	==	TRUE))

								{

												//Either	the	device	is	not	configured	or	we	are	suspended

												//		so	we	don't	want	to	do	execute	any	application	code

												continue;			//go	back	to	the	top	of	the	while	loop

								}

								else

								{

												//Otherwise	we	are	free	to	run	user	application	code.

												UserApplication();

								}

				}

}

Preconditions

None

Return	Values

Return	Values	 Description	

DETACHED_STATE	 The	device	is	not	attached	to	the	bus	

ATTACHED_STATE	 The	device	is	attached	to	the	bus	but	

POWERED_STATE	 The	device	is	not	officially	in	the	powered	state	

DEFAULT_STATE	 The	device	has	received	a	RESET	from	the	host	

ADR_PENDING_STATE	
The	device	has	received	the	SET_ADDRESS	command
but	hasn't	received	the	STATUS	stage	of	the	command	so
it	is	still	operating	on	address	0.	

ADDRESS_STATE	

The	device	has	an	address	assigned	but	has	not	received
a	SET_CONFIGURATION	command	yet	or	has	received	a
SET_CONFIGURATION	with	a	configuration	number	of	0
(deconfigured)	

CONFIGURED_STATE	
the	device	has	received	a	non-zero
SET_CONFIGURATION	command	is	now	ready	for
communication	on	the	bus.	

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBGetDeviceState	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBGetRemoteWakeupStatus	Macro
C
#define	USBGetRemoteWakeupStatus	RemoteWakeup

Description

This	function	indicates	if	remote	wakeup	has	been	enabled	by	the	host.
Devices	that	support	remote	wakeup	should	use	this	function	to
determine	if	it	should	send	a	remote	wakeup.	

If	a	device	does	not	support	remote	wakeup	(the	Remote	wakeup	bit,
bit	5,	of	the	bmAttributes	field	of	the	Configuration	descriptor	is	set	to
1),	then	it	should	not	send	a	remote	wakeup	command	to	the	PC	and
this	function	is	not	of	any	use	to	the	device.	If	a	device	does	support
remote	wakeup	then	it	should	use	this	function	as	described	below.	

If	this	function	returns	FALSE	and	the	device	is	suspended,	it	should
not	issue	a	remote	wakeup	(resume).	

If	this	function	returns	TRUE	and	the	device	is	suspended,	it	should
issue	a	remote	wakeup	(resume).	

A	device	can	add	remote	wakeup	support	by	having	the	_RWU	symbol
added	in	the	configuration	descriptor	(located	in	the	usb_descriptors.c
file	in	the	project).	This	done	in	the	8th	byte	of	the	configuration
descriptor.	For	example:	

	

Copy	Code

		ROM	BYTE	configDescriptor1[]={

				0x09,																											//	Size	

				USB_DESCRIPTOR_CONFIGURATION,			//	descriptor	type	

				DESC_CONFIG_WORD(0x0022),							//	Total	length	

				1,																														//	Number	of	interfaces	

				1,																														//	Index	value	of	this	cfg	

				0,																														//	Configuration	string	index	

				_DEFAULT	|	_SELF	|	_RWU,								//	Attributes,	see	usb_device.h	

				50,																													//	Max	power	consumption	in	2X	mA(100mA)

				

				//The	rest	of	the	configuration	descriptor	should	follow

	

For	more	information	about	remote	wakeup,	see	the	following	section	of
the	USB	v2.0	specification	available	at	www.usb.org:

Section	9.2.5.2
Table	9-10
Section	7.1.7.7
Section	9.4.5

Preconditions

None

Return	Values

Return	Values	 Description	

TRUE	 Remote	Wakeup	has	been	enabled	by	the	host	

FALSE	 Remote	Wakeup	is	not	currently	enabled	

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBGetRemoteWakeupStatus	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBIsDeviceSuspended	Macro
C
#define	USBIsDeviceSuspended	USBSuspendControl

Description

This	function	indicates	if	this	device	is	currently	suspended.	When	a
device	is	suspended	it	will	not	be	able	to	transfer	data	over	the	bus.
This	function	can	be	used	by	the	application	to	skip	over	section	of
code	that	do	not	need	to	exectute	if	the	device	is	unable	to	send	data
over	the	bus.	

Typical	usage:

Copy	Code

			void	main(void)

			{

							USBDeviceInit()

							while(1)

							{

											USBDeviceTasks();

											if((USBGetDeviceState()	<	CONFIGURED_STATE)	||

														(USBIsDeviceSuspended()	==	TRUE))

											{

															//Either	the	device	is	not	configured	or	we	are	suspended

															//		so	we	don't	want	to	do	execute	any	application	code

															continue;			//go	back	to	the	top	of	the	while	loop

											}

											else

											{

															//Otherwise	we	are	free	to	run	user	application	code.

															UserApplication();

											}

							}

			}

Preconditions

None

Return	Values

Return	Values	 Description	

TRUE	 this	device	is	suspended.	

FALSE	 this	device	is	not	suspended.	

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBIsDeviceSuspended	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBEnableEndpoint	Function
C
void	USBEnableEndpoint(

				BYTE	ep,	

				BYTE	options

);

Description

This	function	will	enable	the	specified	endpoint	with	the	specified
options.	

Typical	Usage:

Copy	Code

void	USBCBInitEP(void)

{

				USBEnableEndpoint(MSD_DATA_IN_EP,USB_IN_ENABLED|USB_OUT_ENABLED|USB_HANDSHAKE_ENABLED|USB_DISALLOW_SETUP);

				USBMSDInit();

}

	

In	the	above	example	endpoint	number	MSD_DATA_IN_EP	is	being
configured	for	both	IN	and	OUT	traffic	with	handshaking	enabled.	Also
since	MSD_DATA_IN_EP	is	not	endpoint	0	(MSD	does	not	allow	this),
then	we	can	explicitly	disable	SETUP	packets	on	this	endpoint.

Preconditions

None

Parameters

Parameters	 Description	

BYTE	ep	 the	endpoint	to	be	configured	

optional	settings	for	the	endpoint.	The	options	should	be

BYTE	options	

ORed	together	to	form	a	single	options	string.	The
available	optional	settings	for	the	endpoint.	The	options
should	be	ORed	together	to	form	a	single	options	string.
The	available	options	are	the	following:

USB_HANDSHAKE_ENABLED	enables	USB
handshaking	(ACK,	NAK)
USB_HANDSHAKE_DISABLED	disables	USB
handshaking	(ACK,	NAK)
USB_OUT_ENABLED	enables	the	out	direction
USB_OUT_DISABLED	disables	the	out	direction
USB_IN_ENABLED	enables	the	in	direction
USB_IN_DISABLED	disables	the	in	direction
USB_ALLOW_SETUP	enables	control	transfers
USB_DISALLOW_SETUP	disables	control	transfers
USB_STALL_ENDPOINT	STALLs	this	endpoint

	

Returns

None

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBEnableEndpoint	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBHandleBusy	Macro
C
#define	USBHandleBusy(handle)	(handle==0?0:handle->STAT.UOWN)

Description

Checks	to	see	if	the	input	handle	is	busy	

Typical	Usage

Copy	Code

//make	sure	that	the	last	transfer	isn't	busy	by	checking	the	handle

if(!USBHandleBusy(USBGenericInHandle))

{

				//Send	the	data	contained	in	the	INPacket[]	array	out	on

				//		endpoint	USBGEN_EP_NUM

				USBGenericInHandle	=	USBGenWrite(USBGEN_EP_NUM,(BYTE*)&INPacket[0],

}

Preconditions

None

Parameters

Parameters	 Description	

USB_HANDLE	handle	 handle	of	the	transfer	that	you	want	to	check	the	status	of	

Return	Values

Return	Values	 Description	

TRUE	 The	specified	handle	is	busy	

FALSE	 The	specified	handle	is	free	and	available	for	a	transfer	

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBHandleBusy	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBHandleGetAddr	Macro
C
#define	USBHandleGetAddr(handle)	(handle->ADR)

Description

Retrieves	the	address	of	the	destination	buffer	of	the	input	handle

Preconditions

None

Parameters

Parameters	 Description	

USB_HANDLE	handle	 the	handle	to	the	transfer	you	want	the	address	for.	

Return	Values

Return	Values	 Description	

WORD	 address	of	the	current	buffer	that	the	input	handle	points
to.	

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBHandleGetAddr	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBHandleGetLength	Macro
C
#define	USBHandleGetLength(handle)	(handle->CNT)

Description

Retrieves	the	length	of	the	destination	buffer	of	the	input	handle

Preconditions

None

Parameters

Parameters	 Description	

USB_HANDLE	handle	 the	handle	to	the	transfer	you	want	the	address	for.	

Return	Values

Return	Values	 Description	

WORD	
length	of	the	current	buffer	that	the	input	handle	points	to.	If
the	transfer	is	complete	then	this	is	the	length	of	the	data
transmitted	or	the	length	of	data	actually	received.	

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBHandleGetLength	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCBInitEP	Function
C
void	USBCBInitEP();

Description

This	function	is	called	when	the	device	becomes	initialized,	which
occurs	after	the	host	sends	a	SET_CONFIGURATION	(wValue	not	=	0)
request.	This	callback	function	should	initialize	the	endpoints	for	the
device's	usage	according	to	the	current	configuration.	

Typical	Usage:

Copy	Code

void	USBCBInitEP(void)

{

				USBEnableEndpoint(MSD_DATA_IN_EP,USB_IN_ENABLED|USB_OUT_ENABLED|USB_HANDSHAKE_ENABLED|USB_DISALLOW_SETUP);

				USBMSDInit();

}

Preconditions

None

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBCBInitEP	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCBSuspend	Function
C
void	USBCBSuspend();

Description

Call	back	that	is	invoked	when	a	USB	suspend	is	detected.	

Example	power	saving	code.	Insert	appropriate	code	here	for	the
desired	application	behavior.	If	the	microcontroller	will	be	put	to	sleep,	a
process	similar	to	that	shown	below	may	be	used:	

Example	Psuedo	Code:

Copy	Code

ConfigureIOPinsForLowPower();

SaveStateOfAllInterruptEnableBits();

DisableAllInterruptEnableBits();

//should	enable	at	least	USBActivityIF	as	a	wake	source

EnableOnlyTheInterruptsWhichWillBeUsedToWakeTheMicro();

Sleep();

//Preferrably,	this	should	be	done	in	the

//		USBCBWakeFromSuspend()	function	instead.

RestoreStateOfAllPreviouslySavedInterruptEnableBits();

//Preferrably,	this	should	be	done	in	the

//		USBCBWakeFromSuspend()	function	instead.

RestoreIOPinsToNormal();

	

IMPORTANT	NOTE:	Do	not	clear	the	USBActivityIF	(ACTVIF)	bit	here.
This	bit	is	cleared	inside	the	usb_device.c	file.	Clearing	USBActivityIF
here	will	cause	things	to	not	work	as	intended.

Preconditions

None	

Paramters:	None

Side	Effects

None	

Remark:	None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBCBSuspend	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCBWakeFromSuspend	Function
C
void	USBCBWakeFromSuspend();

Description

The	host	may	put	USB	peripheral	devices	in	low	power	suspend	mode
(by	"sending"	3+ms	of	idle).	Once	in	suspend	mode,	the	host	may	wake
the	device	back	up	by	sending	non-	idle	state	signalling.	

This	call	back	is	invoked	when	a	wakeup	from	USB	suspend	is
detected.	

If	clock	switching	or	other	power	savings	measures	were	taken	when
executing	the	USBCBSuspend()	function,	now	would	be	a	good	time	to
switch	back	to	normal	full	power	run	mode	conditions.	The	host	allows
a	few	milliseconds	of	wakeup	time,	after	which	the	device	must	be	fully
back	to	normal,	and	capable	of	receiving	and	processing	USB	packets.
In	order	to	do	this,	the	USB	module	must	receive	proper	clocking	(IE:
48MHz	clock	must	be	available	to	SIE	for	full	speed	USB	operation).

Preconditions

None

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBCBWakeFromSuspend	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCBCheckOtherReq	Function
C
void	USBCBCheckOtherReq();

Description

When	SETUP	packets	arrive	from	the	host,	some	firmware	must
process	the	request	and	respond	appropriately	to	fulfill	the	request.
Some	of	the	SETUP	packets	will	be	for	standard	USB	"chapter	9"	(as
in,	fulfilling	chapter	9	of	the	official	USB	specifications)	requests,	while
others	may	be	specific	to	the	USB	device	class	that	is	being
implemented.	For	example,	a	HID	class	device	needs	to	be	able	to
respond	to	"GET	REPORT"	type	of	requests.	This	is	not	a	standard
USB	chapter	9	request,	and	therefore	not	handled	by	usb_device.c.
Instead	this	request	should	be	handled	by	class	specific	firmware,	such
as	that	contained	in	usb_function_hid.c.	

Typical	Usage:

Copy	Code

void	USBCBCheckOtherReq(void)

{

				//Since	the	stack	didn't	handle	the	request	I	need	to	check

				//		my	class	drivers	to	see	if	it	is	for	them

				USBCheckMSDRequest();

}

Preconditions

None

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBCBCheckOtherReq	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCBSendResume	Function
C
void	USBCBSendResume();

Description

The	USB	specifications	allow	some	types	of	USB	peripheral	devices	to
wake	up	a	host	PC	(such	as	if	it	is	in	a	low	power	suspend	to	RAM
state).	This	can	be	a	very	useful	feature	in	some	USB	applications,
such	as	an	Infrared	remote	control	receiver.	If	a	user	presses	the
"power"	button	on	a	remote	control,	it	is	nice	that	the	IR	receiver	can
detect	this	signalling,	and	then	send	a	USB	"command"	to	the	PC	to
wake	up.	

The	USBCBSendResume()	"callback"	function	is	used	to	send	this
special	USB	signalling	which	wakes	up	the	PC.	This	function	may	be
called	by	application	firmware	to	wake	up	the	PC.	This	function	should
only	be	called	when:	

1.	 The	USB	driver	used	on	the	host	PC	supports	the	remote	wakeup	capability.
2.	 The	USB	configuration	descriptor	indicates	the	device	is	remote	wakeup	capable	in	the

bmAttributes	field.	(see	usb_descriptors.c	and	_RWU)
3.	 The	USB	host	PC	is	currently	sleeping,	and	has	previously	sent	your	device	a	SET

FEATURE	setup	packet	which	"armed"	the	remote	wakeup	capability.	(see
USBGetRemoteWakeupStatus())

	

This	callback	should	send	a	RESUME	signal	that	has	the	period	of	1-
15ms.	

Typical	Usage:

Copy	Code

if((USBDeviceState	==	CONFIGURED_STATE)

				&&	(USBIsDeviceSuspended()	==	TRUE)

				&&	(USBGetRemoteWakeupStatus()	==	TRUE))

{

				if(ButtonPressed)

				{

								//Wake	up	the	USB	module	from	suspend

								USBWakeFromSuspend();

								//Issue	a	remote	wakeup	command	on	the	bus

								USBCBSendResume();

				}

}

Preconditions

None

Remarks

A	user	can	switch	to	primary	first	by	calling
USBCBWakeFromSuspend()	if	required/desired.	

The	modifiable	section	in	this	routine	should	be	changed	to	meet	the
application	needs.	Current	implementation	temporary	blocks	other
functions	from	executing	for	a	period	of	1-13	ms	depending	on	the	core
frequency.	

According	to	USB	2.0	specification	section	7.1.7.7,	"The	remote
wakeup	device	must	hold	the	resume	signaling	for	at	lest	1	ms	but	for
no	more	than	15	ms."	The	idea	here	is	to	use	a	delay	counter	loop,
using	a	common	value	that	would	work	over	a	wide	range	of	core
frequencies.	That	value	selected	is	1800.	See	table	below:

Core	Freq(MHz)	 MIP	(for	PIC18)	 RESUME	Signal	Period	(ms)	

48	 12	 1.05	

4	 1	 12.6	

These	timing	could	be	incorrect	when	using	code	optimization	or	extended	instruction
mode,	or	when	having	other	interrupts	enabled.	Make	sure	to	verify	using	the	MPLAB
SIM's	Stopwatch	and	verify	the	actual	signal	on	an	oscilloscope.
These	timing	numbers	should	be	recalculated	when	using	PIC24	or	PIC32	as	they	have
different	clocking	structures.
A	timer	can	be	used	in	place	of	the	blocking	loop	if	desired.

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBCBSendResume	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCBErrorHandler	Function
C
void	USBCBErrorHandler();

Description

This	callback	is	called	whenever	a	USB	error	occurs.	(optional)	

The	purpose	of	this	callback	is	mainly	for	debugging	during
development.	Check	UEIR	to	see	which	error	causes	the	interrupt.

Preconditions

None

Remarks

No	need	to	clear	UEIR	to	0	here.	Callback	caller	is	already	doing	that.	

Typically,	user	firmware	does	not	need	to	do	anything	special	if	a	USB
error	occurs.	For	example,	if	the	host	sends	an	OUT	packet	to	your
device,	but	the	packet	gets	corrupted	(ex:	because	of	a	bad	connection,
or	the	user	unplugs	the	USB	cable	during	the	transmission)	this	will
typically	set	one	or	more	USB	error	interrupt	flags.	Nothing	specific
needs	to	be	done	however,	since	the	SIE	will	automatically	send	a
"NAK"	packet	to	the	host.	In	response	to	this,	the	host	will	normally	retry
to	send	the	packet	again,	and	no	data	loss	occurs.	The	system	will
typically	recover	automatically,	without	the	need	for	application	firmware
intervention.	

Nevertheless,	this	callback	function	is	provided,	such	as	for	debugging
purposes.

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBCBErrorHandler	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCBStdSetDscHandler	Function
C
void	USBCBStdSetDscHandler();

Description

The	USBCBStdSetDscHandler()	callback	function	is	called	when	a
SETUP,	bRequest:	SET_DESCRIPTOR	request	arrives.	Typically
SET_DESCRIPTOR	requests	are	not	used	in	most	applications,	and	it
is	optional	to	support	this	type	of	request.

Preconditions

None

Return	Values

Return	Values	 Description	

Remark	 None	

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBCBStdSetDscHandler	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCB_SOF_Handler	Function
C
void	USBCB_SOF_Handler();

Description

This	callback	is	called	when	a	SOF	packet	is	received	by	the	host.
(optional)	

The	USB	host	sends	out	a	SOF	packet	to	full-speed	devices	every	1
ms.	This	interrupt	may	be	useful	for	isochronous	pipes.	End	designers
should	implement	callback	routine	as	necessary.

Preconditions

None

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBCB_SOF_Handler	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USBCBEP0DataReceived	Function
C
void	USBCBEP0DataReceived();

Description

This	function	is	called	whenever	a	EP0	data	packet	is	received.	This
gives	the	user	(and	thus	the	various	class	examples	a	way	to	get	data
that	is	received	via	the	control	endpoint.	This	function	needs	to	be	used
in	conjunction	with	the	USBCBCheckOtherReq()	function	since	the
USBCBCheckOtherReq()	function	is	the	apps	method	for	getting	the
initial	control	transfer	before	the	data	arrives.

Preconditions

ENABLE_EP0_DATA_RECEIVED_CALLBACK	must	be	defined
already	(in	usb_config.h)

Remarks

None

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Functions	and	Macros	>
USBCBEP0DataReceived	Function

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Definitions,	Constants,	and	Enums

Macros

	 Name	 Description	

	 DETACHED_STATE	

Detached	is	the	state	in	which	the	device	is	not	attached
to	the	bus.	When	in	the	detached	state	a	device	should
not	have	any	pull-ups	attached	to	either	the	D+	or	D-
line.	This	defintions	is	a	return	value	of	the	function
USBGetDeviceState()	

	 ATTACHED_STATE	

Attached	is	the	state	in	which	the	device	is	attached	ot
the	bus	but	the	hub/port	that	it	is	attached	to	is	not	yet
configured.	This	defintions	is	a	return	value	of	the
function	USBGetDeviceState()	

	 POWERED_STATE	

Powered	is	the	state	in	which	the	device	is	attached	to
the	bus	and	the	hub/port	that	it	is	attached	to	is
configured.	This	defintions	is	a	return	value	of	the
function	USBGetDeviceState()	

	 DEFAULT_STATE	
Default	state	is	the	state	after	the	device	receives	a
RESET	command	from	the	host.	This	defintions	is	a
return	value	of	the	function	USBGetDeviceState()	

	 ADR_PENDING_STATE	

Address	pending	state	is	not	an	official	state	of	the	USB
defined	states.	This	state	is	internally	used	to	indicate
that	the	device	has	received	a	SET_ADDRESS
command	but	has	not	received	the	STATUS	stage	of
the	transfer	yet.	The	device	is	should	not	switch
addresses	until	after	the	STATUS	stage	is	complete.
This	defintions	is	a	return	value	of	the	function
USBGetDeviceState()	

	 ADDRESS_STATE	
Address	is	the	state	in	which	the	device	has	its	own
specific	address	on	the	bus.	This	defintions	is	a	return
value	of	the	function	USBGetDeviceState().	

	 CONFIGURED_STATE	

Configured	is	the	state	where	the	device	has	been	fully
enumerated	and	is	operating	on	the	bus.	The	device	is
now	allowed	to	excute	its	application	specific	tasks.	It	is
also	allowed	to	increase	its	current	consumption	to	the
value	specified	in	the	configuration	descriptor	of	the
current	configuration.	This	defintions	is	a	return	value	of
the	function	USBGetDeviceState().	

	 _DEFAULT	 Default	Value	(Bit	7	is	set)	

	 _RWU	 Remote	Wakeup	(Supports	if	set)	

	 _SELF	 Self-powered	(Supports	if	set)	

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DETACHED_STATE	Macro
C
#define	DETACHED_STATE	0x00

Description

Detached	is	the	state	in	which	the	device	is	not	attached	to	the	bus.
When	in	the	detached	state	a	device	should	not	have	any	pull-ups
attached	to	either	the	D+	or	D-	line.	This	defintions	is	a	return	value	of
the	function	USBGetDeviceState()

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums
>	DETACHED_STATE	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ATTACHED_STATE	Macro
C
#define	ATTACHED_STATE	0x01

Description

Attached	is	the	state	in	which	the	device	is	attached	ot	the	bus	but	the
hub/port	that	it	is	attached	to	is	not	yet	configured.	This	defintions	is	a
return	value	of	the	function	USBGetDeviceState()

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums
>	ATTACHED_STATE	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

POWERED_STATE	Macro
C
#define	POWERED_STATE	0x02

Description

Powered	is	the	state	in	which	the	device	is	attached	to	the	bus	and	the
hub/port	that	it	is	attached	to	is	configured.	This	defintions	is	a	return
value	of	the	function	USBGetDeviceState()

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums
>	POWERED_STATE	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DEFAULT_STATE	Macro
C
#define	DEFAULT_STATE	0x04

Description

Default	state	is	the	state	after	the	device	receives	a	RESET	command
from	the	host.	This	defintions	is	a	return	value	of	the	function
USBGetDeviceState()

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums
>	DEFAULT_STATE	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADR_PENDING_STATE	Macro
C
#define	ADR_PENDING_STATE	0x08

Description

Address	pending	state	is	not	an	official	state	of	the	USB	defined	states.
This	state	is	internally	used	to	indicate	that	the	device	has	received	a
SET_ADDRESS	command	but	has	not	received	the	STATUS	stage	of
the	transfer	yet.	The	device	is	should	not	switch	addresses	until	after
the	STATUS	stage	is	complete.	This	defintions	is	a	return	value	of	the
function	USBGetDeviceState()

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums
>	ADR_PENDING_STATE	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADDRESS_STATE	Macro
C
#define	ADDRESS_STATE	0x10

Description

Address	is	the	state	in	which	the	device	has	its	own	specific	address	on
the	bus.	This	defintions	is	a	return	value	of	the	function
USBGetDeviceState().

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums
>	ADDRESS_STATE	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CONFIGURED_STATE	Macro
C
#define	CONFIGURED_STATE	0x20

Description

Configured	is	the	state	where	the	device	has	been	fully	enumerated
and	is	operating	on	the	bus.	The	device	is	now	allowed	to	excute	its
application	specific	tasks.	It	is	also	allowed	to	increase	its	current
consumption	to	the	value	specified	in	the	configuration	descriptor	of	the
current	configuration.	This	defintions	is	a	return	value	of	the	function
USBGetDeviceState().

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums
>	CONFIGURED_STATE	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_DEFAULT	Macro
C
#define	_DEFAULT	(0x01<<7)							//Default	Value	(Bit	7	is	set)

Description

Default	Value	(Bit	7	is	set)

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums
>	_DEFAULT	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_RWU	Macro
C
#define	_RWU	(0x01<<5)							//Remote	Wakeup	(Supports	if	set)

Description

Remote	Wakeup	(Supports	if	set)

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums
>	_RWU	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

_SELF	Macro
C
#define	_SELF	(0x01<<6)							//Self-powered	(Supports	if	set)

Description

Self-powered	(Supports	if	set)

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Definitions,	Constants,	and	Enums
>	_SELF	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Variables	and	Types

Macros

	 Name	 Description	

	 USB_HANDLE	

USB_HANDLE	is	a	pointer	to	an	entry	in	the	BDT.	This
pointer	can	be	used	to	read	the	length	of	the	last	transfer,
the	status	of	the	last	transfer,	and	various	other
information.	Insure	to	initialize	USB_HANDLE	objects	to
NULL	so	that	they	are	in	a	known	state	during	their	first
usage.	

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Variables	and	Types

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

USB_HANDLE	Macro
C
#define	USB_HANDLE	volatile	BDT_ENTRY*

Description

USB_HANDLE	is	a	pointer	to	an	entry	in	the	BDT.	This	pointer	can	be
used	to	read	the	length	of	the	last	transfer,	the	status	of	the	last
transfer,	and	various	other	information.	Insure	to	initialize
USB_HANDLE	objects	to	NULL	so	that	they	are	in	a	known	state	during
their	first	usage.

MCHPFSUSB	Device	Library	>	Stack	>	Public	API	Members	>	Variables	and	Types	>
USB_HANDLE	Macro

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Files
This	section	lists	the	files	required	for	use	with	the	device	stack.	These
files	should	be	included	in	any	project	using	the	USB	device	stack

Files

Name	 Description	

usb_device.c	

This	file	contains	functions,	macros,	definitions,	variables,
datatypes,	etc.	that	are	required	for	usage	with	the
MCHPFSUSB	device	stack.	This	file	should	be	included	in
projects	that	use	the	device	stack.
This	file	is	located	in	the	"<Install
Directory>\Microchip\USB"	directory.	

usb.h	

This	file	aggregates	all	necessary	header	files	for	the
Microchip	USB	Host,	Device,	and	OTG	libraries.	It	provides
a	single-file	can	be	included	in	application	code.	The	USB
libraries	simplify	the	implementation	of	USB	applications	by
providing	an	abstraction	of	the	USB	module	and	its
registers	and	bits	such	that	the	source	code	for	the	can	be
the	same	across	various	hardware	platforms.	

usb_ch9.h	

This	file	defines	data	structures,	constants,	and	macros
that	are	used	to	to	support	the	USB	Device	Framework
protocol	described	in	Chapter	9	of	the	USB	2.0
specification.	

usb_common.h	
This	file	defines	data	types,	constants,	and	macros	that	are
common	to	multiple	layers	of	the	Microchip	USB	Firmware
Stack.	

usb_device.h	

This	file,	with	its	associated	C	source	file,	provides	the
main	substance	of	the	USB	device	side	stack.	These	files
will	receive,	transmit,	and	process	various	USB	commands
as	well	as	take	action	when	required	for	various	events	that
occur	on	the	bus.	

usb_hal.h	 This	file	abstracts	the	hardware	interface.	

usb_hal_pic18.h	

This	file	abstracts	the	hardware	interface.	The	USB	stack
firmware	can	be	compiled	to	work	on	different	USB
microcontrollers,	such	as	PIC18	and	PIC24.	The	USB
related	special	function	registers	and	bit	names	are
generally	very	similar	between	the	device	families,	but

small	differences	in	naming	exist.	

usb_hal_pic24.h	

This	file	abstracts	the	hardware	interface.	The	USB	stack
firmware	can	be	compiled	to	work	on	different	USB
microcontrollers,	such	as	PIC18	and	PIC24.	The	USB
related	special	function	registers	and	bit	names	are
generally	very	similar	between	the	device	families,	but
small	differences	in	naming	exist.	

usb_hal_pic32.h	

This	file	abstracts	the	hardware	interface.	The	USB	stack
firmware	can	be	compiled	to	work	on	different	USB
microcontrollers,	such	as	PIC18	and	PIC24.	The	USB
related	special	function	registers	and	bit	names	are
generally	very	similar	between	the	device	families,	but
small	differences	in	naming	exist.	

Topics

Name	 Description	

usb_config.h	

usb_config.h	is	a	file	used	to	configure	the	MCHPFSUSB
stack.	This	file	provides	compile	time	selection	of	options
provided	by	the	stack.	This	file	defines	constants	needed
by	the	stack	and	various	function	drivers.	

HardwareProfile.h	

HardwareProfile.h	is	a	file	used	to	define	hardware	specific
definitions	that	are	required	by	the	MCHPFSUSB	stack.
This	file	should	be	modified	to	match	the	application
hardware.	

MCHPFSUSB	Device	Library	>	Stack	>	Files

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_device.c
USB	Device	Stack	File	

This	file	contains	functions,	macros,	definitions,	variables,	datatypes,
etc.	that	are	required	for	usage	with	the	MCHPFSUSB	device	stack.
This	file	should	be	included	in	projects	that	use	the	device	stack.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\USB"	directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	usb_device.c

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb.h
USB	Header	File	

This	file	aggregates	all	necessary	header	files	for	the	Microchip	USB
Host,	Device,	and	OTG	libraries.	It	provides	a	single-file	can	be
included	in	application	code.	The	USB	libraries	simplify	the
implementation	of	USB	applications	by	providing	an	abstraction	of	the
USB	module	and	its	registers	and	bits	such	that	the	source	code	for	the
can	be	the	same	across	various	hardware	platforms.	

Note	that	this	file	does	not	include	the	header	files	for	any	client	or
function	drivers.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the

following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	usb.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_ch9.h
USB	Chapter	9	Protocol	(Header	File)	

This	file	defines	data	structures,	constants,	and	macros	that	are	used	to
to	support	the	USB	Device	Framework	protocol	described	in	Chapter	9
of	the	USB	2.0	specification.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	usb_ch9.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_common.h
Common	USB	Library	Definitions	(Header	File)	

This	file	defines	data	types,	constants,	and	macros	that	are	common	to
multiple	layers	of	the	Microchip	USB	Firmware	Stack.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	usb_common.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_device.h
USB	Device	header	file	

This	file,	with	its	associated	C	source	file,	provides	the	main	substance
of	the	USB	device	side	stack.	These	files	will	receive,	transmit,	and
process	various	USB	commands	as	well	as	take	action	when	required
for	various	events	that	occur	on	the	bus.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

Functions

	 Name	 Description	

	 USBCB_SOF_Handler	 This	callback	is	called	when	a	SOF	packet	is
received	by	the	host.	(optional)	

	 USBCBCheckOtherReq	
This	function	is	called	whenever	a	request	comes
over	endpoint	0	(the	control	endpoint)	that	the	stack
does	not	know	how	to	handle.	

	 USBCBEP0DataReceived	 This	function	is	called	whenever	a	EP0	data	packet	is
received.	(optional)	

	 USBCBErrorHandler	 This	callback	is	called	whenever	a	USB	error	occurs.
(optional)	

	 USBCBInitEP	 This	function	is	called	whenever	the	device	receives
a	SET_CONFIGURATION	request.	

	 USBCBSendResume	 This	function	should	be	called	to	initiate	a	remote
wakeup.	(optional)	

	 USBCBStdSetDscHandler	 This	callback	is	called	when	a	SET_DESCRIPTOR
request	is	received	(optional)	

	 USBCBSuspend	 Call	back	that	is	invoked	when	a	USB	suspend	is
detected.	

	 USBCBWakeFromSuspend	 This	call	back	is	invoked	when	a	wakeup	from	USB
suspend	is	detected.	

	 USBDeviceInit	

This	function	initializes	the	device	stack	it	in	the
default	state.	The	USB	module	will	be	completely
reset	including	all	of	the	internal	variables,	registers,
and	interrupt	flags.	

	 USBDeviceTasks	

This	function	is	the	main	state	machine	of	the	USB
device	side	stack.	This	function	should	be	called
periodically	to	receive	and	transmit	packets	through
the	stack.	This	function	should	be	called	preferably
once	every	100us	during	the	enumeration	process.
After	the	enumeration	process	this	function	still
needs	to	be	called	periodically	to	respond	to	various
situations	on	the	bus	but	is	more	relaxed	in	its	time
requirements.	This	function	should	also	be	called	at
least	as	fast	as	the	OUT	data	expected	from	the	PC.	

	 USBEnableEndpoint	 This	function	will	enable	the	specified	endpoint	with
the	specified	options	

Macros

	 Name	 Description	

	 _DEFAULT	 Default	Value	(Bit	7	is	set)	

	 _RWU	 Remote	Wakeup	(Supports	if	set)	

	 _SELF	 Self-powered	(Supports	if	set)	

	 ADDRESS_STATE	

Address	is	the	state	in	which	the	device	has	its
own	specific	address	on	the	bus.	This	defintions	is
a	return	value	of	the	function
USBGetDeviceState().	

	 ADR_PENDING_STATE	

Address	pending	state	is	not	an	official	state	of	the
USB	defined	states.	This	state	is	internally	used	to
indicate	that	the	device	has	received	a
SET_ADDRESS	command	but	has	not	received
the	STATUS	stage	of	the	transfer	yet.	The	device
is	should	not	switch	addresses	until	after	the
STATUS	stage	is	complete.	This	defintions	is	a
return	value	of	the	function	USBGetDeviceState()	

	 ATTACHED_STATE	

Attached	is	the	state	in	which	the	device	is
attached	ot	the	bus	but	the	hub/port	that	it	is
attached	to	is	not	yet	configured.	This	defintions	is
a	return	value	of	the	function
USBGetDeviceState()	

	 CONFIGURED_STATE	

Configured	is	the	state	where	the	device	has	been
fully	enumerated	and	is	operating	on	the	bus.	The
device	is	now	allowed	to	excute	its	application
specific	tasks.	It	is	also	allowed	to	increase	its
current	consumption	to	the	value	specified	in	the
configuration	descriptor	of	the	current
configuration.	This	defintions	is	a	return	value	of
the	function	USBGetDeviceState().	

	 DEFAULT_STATE	

Default	state	is	the	state	after	the	device	receives
a	RESET	command	from	the	host.	This	defintions
is	a	return	value	of	the	function
USBGetDeviceState()	

Detached	is	the	state	in	which	the	device	is	not

	 DETACHED_STATE	
attached	to	the	bus.	When	in	the	detached	state	a
device	should	not	have	any	pull-ups	attached	to
either	the	D+	or	D-	line.	This	defintions	is	a	return
value	of	the	function	USBGetDeviceState()	

	 POWERED_STATE	

Powered	is	the	state	in	which	the	device	is
attached	to	the	bus	and	the	hub/port	that	it	is
attached	to	is	configured.	This	defintions	is	a
return	value	of	the	function	USBGetDeviceState()	

	 USB_HANDLE	

USB_HANDLE	is	a	pointer	to	an	entry	in	the	BDT.
This	pointer	can	be	used	to	read	the	length	of	the
last	transfer,	the	status	of	the	last	transfer,	and
various	other	information.	Insure	to	initialize
USB_HANDLE	objects	to	NULL	so	that	they	are	in
a	known	state	during	their	first	usage.	

	 USBGetDeviceState	

This	function	will	return	the	current	state	of	the
device	on	the	USB.	This	function	should	return
CONFIGURED_STATE	before	an	application	tries
to	send	information	on	the	bus.	

	 USBGetRemoteWakeupStatus	

This	function	indicates	if	remote	wakeup	has	been
enabled	by	the	host.	Devices	that	support	remote
wakeup	should	use	this	function	to	determine	if	it
should	send	a	remote	wakeup.	

	 USBHandleBusy	 Checks	to	see	if	the	input	handle	is	busy	

	 USBHandleGetAddr	 Retrieves	the	address	of	the	destination	buffer	of
the	input	handle	

	 USBHandleGetLength	 Retrieves	the	length	of	the	destination	buffer	of
the	input	handle	

	 USBIsDeviceSuspended	
This	function	indicates	if	this	device	is	currently
suspended.	When	a	device	is	suspended	it	will	not
be	able	to	transfer	data	over	the	bus.	

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	usb_device.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_hal.h
USB	Hardware	Abstraction	Layer	(HAL)	(Header	File)	

This	file	abstracts	the	hardware	interface.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	usb_hal.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_hal_pic18.h
USB	Hardware	Abstraction	Layer	(HAL)	(Header	File)	

This	file	abstracts	the	hardware	interface.	The	USB	stack	firmware	can
be	compiled	to	work	on	different	USB	microcontrollers,	such	as	PIC18
and	PIC24.	The	USB	related	special	function	registers	and	bit	names
are	generally	very	similar	between	the	device	families,	but	small
differences	in	naming	exist.	

In	order	to	make	the	same	set	of	firmware	work	accross	the	device
families,	when	modifying	SFR	contents,	a	slightly	abstracted	name	is
used,	which	is	then	"mapped"	to	the	appropriate	real	name	in	the
usb_hal_picxx.h	header.	

Make	sure	to	include	the	correct	version	of	the	usb_hal_picxx.h	file	for
the	microcontroller	family	which	will	be	used.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	usb_hal_pic18.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_hal_pic24.h
USB	Hardware	Abstraction	Layer	(HAL)	(Header	File)	

This	file	abstracts	the	hardware	interface.	The	USB	stack	firmware	can
be	compiled	to	work	on	different	USB	microcontrollers,	such	as	PIC18
and	PIC24.	The	USB	related	special	function	registers	and	bit	names
are	generally	very	similar	between	the	device	families,	but	small
differences	in	naming	exist.	

In	order	to	make	the	same	set	of	firmware	work	accross	the	device
families,	when	modifying	SFR	contents,	a	slightly	abstracted	name	is
used,	which	is	then	"mapped"	to	the	appropriate	real	name	in	the
usb_hal_picxx.h	header.	

Make	sure	to	include	the	correct	version	of	the	usb_hal_picxx.h	file	for
the	microcontroller	family	which	will	be	used.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	usb_hal_pic24.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_hal_pic32.h
USB	Hardware	Abstraction	Layer	(HAL)	(Header	File)	

This	file	abstracts	the	hardware	interface.	The	USB	stack	firmware	can
be	compiled	to	work	on	different	USB	microcontrollers,	such	as	PIC18
and	PIC24.	The	USB	related	special	function	registers	and	bit	names
are	generally	very	similar	between	the	device	families,	but	small
differences	in	naming	exist.	

In	order	to	make	the	same	set	of	firmware	work	accross	the	device
families,	when	modifying	SFR	contents,	a	slightly	abstracted	name	is
used,	which	is	then	"mapped"	to	the	appropriate	real	name	in	the
usb_hal_picxx.h	header.	

Make	sure	to	include	the	correct	version	of	the	usb_hal_picxx.h	file	for
the	microcontroller	family	which	will	be	used.	

This	file	is	located	in	the	"<Install	Directory>\Microchip\Include\USB"
directory.	

When	including	this	file	in	a	new	project,	this	file	can	either	be
referenced	from	the	directory	in	which	it	was	installed	or	copied	directly
into	the	user	application	folder.	If	the	first	method	is	chosen	to	keep	the
file	located	in	the	folder	in	which	it	is	installed	then	include	paths	need
to	be	added	so	that	the	library	and	the	application	both	know	where	to
reference	each	others	files.	If	the	application	folder	is	located	in	the
same	folder	as	the	Microchip	folder	(like	the	current	demo	folders),	then
the	following	include	paths	need	to	be	added	to	the	application's
project:	

..\Include	

..\..\Include	

..\..\MicrochipInclude	

..\..\<Application	Folder>	

..\..\..\<Application	Folder>	

If	a	different	directory	structure	is	used,	modify	the	paths	as	required.
An	example	using	absolute	paths	instead	of	relative	paths	would	be	the
following:	

C:\Microchip	Solutions\Microchip\Include	

C:\Microchip	Solutions\My	Demo	Application

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	usb_hal_pic32.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

usb_config.h
usb_config.h	is	a	file	used	to	configure	the	MCHPFSUSB	stack.	This
file	provides	compile	time	selection	of	options	provided	by	the	stack.
This	file	defines	constants	needed	by	the	stack	and	various	function
drivers.	

This	section	will	detail	the	definitions	required	by	the	stack.	Additional
definitions	may	be	required	by	the	function	drivers.	Please	see	the	Files
topic	of	the	Function	Drivers	section	for	more	details	about	function
driver	specific	definitions.	

Please	note	that	the	usb_config.h	file	can	also	be	generated	using	the
USBConfig.exe	tool	provided	in	the	"<Install	Directory>\USB
Tools\USBConfig	Tool"	directory.	

USB_USE_DEVICE	-	This	enables	the	stack	to	run	in	device	mode	and
must	be	included	in	any	project	using	the	USB	device	side	firmware.	

#define	USB_USE_DEVICE	

USB_EP0_BUFF_SIZE	-	this	defines	the	size	of	the	endpoint	0	buffer.
Using	larger	options	take	more	SRAM,	but	does	not	provide	much
advantage	in	most	types	of	applications.	Exceptions	to	this,	are
applications	that	use	EP0	IN	or	OUT	for	sending	large	amounts	of
application	related	data.	The	available	options	are	8,	16,	32,	or	64.	

#define	USB_EP0_BUFF_SIZE	8	//	Valid	Options:	8,	16,	32,	or	64	bytes.	

USB_MAX_NUM_INT	-	this	defines	the	maximum	interface	number
used	by	the	device.	If	the	device	uses	multiple	configurations	then	this
is	the	largest	interface	number	in	any	of	the	configurations.	

#define	USB_MAX_NUM_INT	1	//	For	tracking	Alternate	Setting	

USB_USER_DEVICE_DESCRIPTOR	-	this	defines	a	pointer	to	the
device	descriptor.	If	this	definition	is	not	defined	then	the	application
must	define	a	ROM	variable	named	device_dsc	that	holds	the	device
descriptor.	

#define	USB_USER_DEVICE_DESCRIPTOR	&device_dsc	

USB_USER_DEVICE_DESCRIPTOR_INCLUDE	-	this	defines	any
prototype	that	needs	to	be	included	into	the	library	files	in	order	to
access	the	variables/functions	required	by	the
USB_USER_DEVICE_DESCRIPTOR	option.	

Example	where	USB_USER_DEVICE_DESCRIPTOR	is	a	ROM
variable:	

#define	USB_USER_DEVICE_DESCRIPTOR	&device_dsc	

#define	USB_USER_DEVICE_DESCRIPTOR_INCLUDE	extern	ROM

USB_DEVICE_DESCRIPTOR	device_dsc	

Example	where	USB_USER_DEVICE_DESCRIPTOR	is	a	function:	

#define	USB_USER_DEVICE_DESCRIPTOR	myDeviceDescriptorFunction()	

#define	USB_USER_DEVICE_DESCRIPTOR_INCLUDE	ROM	BYTE*

myDeviceDescriptorFunction(void)	

USB_USER_CONFIG_DESCRIPTOR	-	this	defines	a	pointer	to	the
configuration	descriptor.	If	this	definition	is	not	defined	then	the
application	must	define	a	ROM	variable	named	USB_CD_Ptr	that	holds
the	configuration	descriptor.	

USB_USER_CONFIG_DESCRIPTOR_INCLUDE	-	this	defines	any
prototype	that	needs	to	be	included	into	the	library	files	in	order	to
access	the	variables/functions	required	by	the
USB_USER_DEVICE_DESCRIPTOR	option.	

Example	where	USB_USER_CONFIG_DESCRIPTOR	is	a	ROM
variable:	

#define	USB_USER_CONFIG_DESCRIPTOR	USB_CD_Ptr	

#define	USB_USER_CONFIG_DESCRIPTOR_INCLUDE	extern	ROM	BYTE

USB_CD_Ptr[]	

Example	where	USB_USER_CONFIG_DESCRIPTOR	is	a	function:	

#define	USB_USER_CONFIG_DESCRIPTOR	myConfigDescriptorFunction()	

#define	USB_USER_CONFIG_DESCRIPTOR_INCLUDE	ROM	BYTE*

myConfigDescriptorFunction(void)	

	

USB_PING_PONG_MODE	-	This	defines	the	ping	pong	mode	of
operation.	When	ping	ponging	is	enabled,	the	device	is	capable	of
preparing	up	to	two	buffers	to	send/receive	per	endpoint	direction	at
any	given	point	of	time.	This	can	be	used	to	increase	throughput	but
requires	additional	RAM.	USB_PING_PONG_MODE	must	be	defined
as	one	of	the	following	options:

USB_PING_PONG__NO_PING_PONG

USB_PING_PONG__FULL_PING_PONG

USB_PING_PONG__EP0_OUT_ONLY

USB_PING_PONG__ALL_BUT_EP0

Example:	

#define	USB_PING_PONG_MODE	USB_PING_PONG__FULL_PING_PONG	

Please	note	that	not	every	device	can	support	all	ping	pong	modes.
Please	refer	to	the	device	datasheet	for	available	options.	Here	are
some	limitations:

PIC18F4550	family	rev	A3	devices	do	not	support	USB_PING_PONG__ALL_BUT_EP0
PIC32MX460F512L	family	devices	only	support	USB_PING_PONG__FULL_PING_PONG

USB_POLLING	-	this	defintion	tells	the	stack	that	it	is	going	to	be
polled.	The	user	is	responsible	for	calling	USBDeviceTasks()	frequently
enough	to	keep	the	USB	stack	running.	Currently	this	is	the	only
available	option.	

#define	USB_POLLING	

USB_PULLUP_OPTION	-	This	option	tells	the	USB	stack	if	it	should
enable	the	internal	pull-up	resistors	or	not.	There	are	two	possible
options:

USB_PULLUP_ENABLE

USB_PULLUP_DISABLE

Example:	

#define	USB_PULLUP_OPTION	USB_PULLUP_ENABLE	

USB_TRANSCEIVER_OPTION	-	This	option	allows	the	user	to	specify
if	they	wish	to	use	the	internal	or	external	USB	transceiver	module.	The
available	options	are:

USB_INTERNAL_TRANSCEIVER

USB_EXTERNAL_TRANSCEIVER

Example:	

#define	USB_TRANSCEIVER_OPTION	USB_INTERNAL_TRANSCEIVER	

USB_SPEED_OPTION	-	This	option	allows	users	to	select	the	USB
speed	that	want	to	operate.	The	available	options	are	the	following:

USB_FULL_SPEED

USB_LOW_SPEED

Example:	

#define	USB_SPEED_OPTION	USB_FULL_SPEED	

Please	note	that	not	all	options	are	available	on	every	device.	Please
refer	to	the	appropriate	device	datasheet	for	more	information	about	a
devices	capabilities.	Some	of	the	known	limitations	are	the	following:

PIC24FJ256GB110	family	devices	only	support	USB_FULL_SPEED
PIC32MX460F512L	family	devices	only	support	USB_FULL_SPEED

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	usb_config.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

HardwareProfile.h
HardwareProfile.h	is	a	file	used	to	define	hardware	specific	definitions
that	are	required	by	the	MCHPFSUSB	stack.	This	file	should	be
modified	to	match	the	application	hardware.	

The	following	definitions	are	used	by	the	stack	and	example	code.
Additional	definitions	may	be	required	by	the	function	drivers	used	in
the	application.	Please	see	the	HardwareProfiles.h	Topic	in	each	of	the
function	driver	sections	for	additional	information	about	class	specific
definition	requirements.	

GetSystemClock()	-	this	macro	should	be	defined	to	return	the	current
clock	rate	of	the	CPU.	Because	this	rate	is	defined	as	the	rate	the	CPU
is	clocked	then	any	PLLs,	pre-scalars,	post-scalars,	etc.	should	already
be	included	in	this	value.	

#define	GetSystemClock()	48000000	

PROGRAMMABLE_WITH_USB_HID_BOOTLOADER	-	The	existence
of	this	definition	tells	the	example	firmware	that	this	application	will	be
bootloaded	using	the	HID	bootloader.	The	example	applications	will
remap	any	vectors	required	to	the	appropriate	address	if	this	is	defined.
This	definition	is	optional.	

#define	PROGRAMMABLE_WITH_USB_HID_BOOTLOADER	

PROGRAMMABLE_WITH_USB_MCHPUSB_BOOTLOADER	-	The
existence	of	this	definition	tells	the	example	firmware	that	this
application	will	be	bootloaded	using	the	MCHPUSB	bootloader.	The
example	applications	will	remap	any	vectors	required	to	the	appropriate
address	if	this	is	defined.	The	MCHPUSB	bootloader	only	supports	the
PIC18F4550	and	PIC18F4450	device	families.	This	definition	is
optional.	

#define	PROGRAMMABLE_WITH_USB_MCHPUSB_BOOTLOADER	

USE_SELF_POWER_SENSE_IO	-	The	existence	of	this	definition	tells
the	stack	that	the	application	is	capable	of	sensing	if	it	is	self	powered

or	not.	If	this	is	defined	then	the	tris_self_power	and	self_power
definitions	must	also	be	defined.	

#define	USE_SELF_POWER_SENSE_IO	

tris_self_power	-	This	definition	tells	the	firmware	which	TRIS	pin	to
tri-state	in	order	to	detect	if	the	device	is	self	powered	or	not.	If	the	self
power	is	determined	from	something	other	than	a	port	pin,	then	this
definition	can	point	to	a	dummy	variable	bit.	

#define	tris_self_power	TRISAbits.TRISA2	//	Input	

self_power	-	This	definition	is	what	is	used	by	the	stack	to	determine	if
the	device	is	currently	self	powered.	This	can	be	a	function	or	a	bit.	This
definition	should	equate	to	1	if	the	device	is	self	powered	and	0	if	the
device	is	not	currently	self	powered.	This	definition	should	exist
irrespective	of	if	the	device	is	capable	of	sensing	its	own	self	power.	

#if	defined(USE_SELF_POWER_SENSE_IO)	

#define	self_power	PORTAbits.RA2	

#else	

#define	self_power	1	

#endif	

USE_USB_BUS_SENSE_IO	-	The	existence	of	this	definition	tells	the
stack	that	the	application	is	capable	of	sensing	if	it	is	bus	powered	or
not.	If	this	is	defined	then	the	tris_usb_bus_sense	and
USB_BUS_SENSE	definitions	must	also	be	defined.	

#define	USE_USB_BUS_SENSE_IO	

tris_self_power	-	This	definition	tells	the	firmware	which	TRIS	pin	to
tri-state	in	order	to	detect	if	the	device	is	bus	powered	or	not.	If	the	bus
power	is	determined	from	something	other	than	a	port	pin,	then	this
definition	can	point	to	a	dummy	variable	bit.	

#define	tris_usb_bus_sense	TRISAbits.TRISA1	//	Input	

USB_BUS_SENSE	-	This	definition	is	what	is	used	by	the	stack	to
determine	if	the	device	is	currently	self	powered.	This	can	be	a	function
or	a	bit.	This	definition	should	equate	to	1	if	the	device	is	self	powered
and	0	if	the	device	is	not	currently	self	powered.	This	definition	should
exist	irrespective	of	if	the	device	is	capable	of	sensing	its	own	self
power.	

#if	defined(USE_USB_BUS_SENSE_IO)	

#define	USB_BUS_SENSE	PORTAbits.RA1	

#else	

#define	USB_BUS_SENSE	1	

#endif	

MCHPFSUSB	Device	Library	>	Stack	>	Files	>	HardwareProfile.h

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Next

MCHPFSUSB
	

License	Agreement	for	usage	of	the	MCHPFSUSB	v2.3	library.

Remarks

IMPORTANT:	

MICROCHIP	TECHNOLOGY	INC.	("COMPANY")	IS	WILLING	TO
LICENSE	USB	FRAMEWORK	SOFTWARE	AND	ACCOMPANYING
DOCUMENTATION	OFFERED	TO	YOU	ONLY	ON	THE	CONDITION
THAT	YOU	ACCEPT	ALL	OF	THE	FOLLOWING	TERMS.	TO	ACCEPT
THE	TERMS	OF	THIS	LICENSE,	CLICK	"I	ACCEPT"	AND	PROCEED
WITH	THE	DOWNLOAD	OR	INSTALL.	IF	YOU	DO	NOT	ACCEPT
THESE	LICENSE	TERMS,	CLICK	"I	DO	NOT	ACCEPT,"	AND	DO	NOT
DOWNLOAD	OR	INSTALL	THIS	SOFTWARE.	

	

NON-EXCLUSIVE	SOFTWARE	LICENSE	AGREEMENT	

FOR	MICROCHIP	USB	FRAMEWORK	SOFTWARE	

	

IMPORTANT	-	READ	CAREFULLY.	

	

This	Nonexclusive	Software	License	Agreement	(“Agreement”)	is	a
contract	between	you,	either	as	an	individual	or	a	single	entity,
(“Licensee”)	and	Microchip	Technology	Incorporated	(“Company”)	for
Company’s	USB	Framework	software	which	may	include	firmware
source	code	(“Software”)	and	accompanying	proprietary	documentation
(“Documentation”).	

	

The	Software	and	Documentation	are	licensed	under	this	Agreement
and	not	sold.	The	Software	and	Documentation	are	protected	by	U.S.
copyright	laws	and	international	copyright	treaties,	and	other	intellectual
property	laws	and	treaties.	

	

In	consideration	of	the	mutual	covenants	of	the	parties	and	for	the
consideration	received	herein,	the	parties	hereby	agree	as	follows:	

	

1.	Ownership	of	Proprietary	Rights.	Except	as	expressly	licensed
herein,	Company	retains	all	right,	title	and	interest	in	and	to	the
Software	(“Proprietary	Rights”),	including,	but	not	limited	to:	(i)	patent,
copyright,	trade	secret	and	similar	right	in	the	Software	and	underlying
technology;	(ii)	all	copies	and	derivative	works	thereof	(by	whomever
produced)	and	(iii)	the	Documentation.	Licensee	shall	have	no	right	to
modify,	use,	copy,	license,	create	derivative	works	of,	sell,	assign	or
otherwise	transfer	all	or	any	portion	of	the	Software	or	the	Proprietary
Rights	for	the	Software	except	as	expressly	set	forth	in	the	Agreement.
Except	to	the	extent	provided	in	this	Agreement,	all	uses	of	the
Proprietary	Rights	of	the	Software	hereunder,	including	hardware,
firmware	and	software	implementations	of	the	technology,	will	inure	to
the	benefit	of	the	Company,	and	any	all	equities	or	rights	in	and	to	the
Proprietary	Rights	of	the	Software	resulting	from	Licensee's	acts	or
endeavors	hereunder	will	automatically	transfer	to	the	Company.	

	

2.	License	Grant.	

	

(a)	Subject	to	the	terms	of	this	Agreement,	Company	grants,	strictly	to
Licensee,	a	personal,	worldwide,	fully	paid-up,	non-exclusive,	non-
transferable,	limited	license	to	reproduce,	market,	license,	distribute,
use	and	create	derivative	works	of	the	Software,	solely	for	incorporation
into	a	product	manufactured	by	Licensee	which	only	implements	the
Software	on	proprietary	products	manufactured	by	Company	and

purchased	by	Licensee	from	Company	or	Company’s	authorized
distributor	(a	“Device”).	The	product	produced	by	the	Licensee	which
integrates	a	Device	programmed	with	the	Software	shall	hereafter	be
called	a	“Licensee	Product.”	The	Company	also	grants,	strictly	to
Licensee,	a	personal,	worldwide,	fully	paid-up,	non-exclusive,	non-
transferable,	limited	license	to	use	the	Documentation	in	support	of
Licensee’s	authorized	use	of	the	Software.	

	

(b)	Subject	to	the	terms	of	this	Agreement,	Licensee	may	grant	a
limited	sublicense	to	a	third	party	(“Sublicensee”)	of	the	rights	granted
to	Licensee	in	Section	2(a)	above	with	the	following	additional
limitations.	Such	sublicense	shall	permit	the	Sublicensee	to	use	the
Software	only	as	described	below	in	subparagraphs	2(b)(i)	through	2(b)
(v)	and	only	IF	such	Sublicensee	expressly	agrees	in	writing	to	be
bound	by	terms	of	confidentiality	and	limited	use	that	are	no	broader	in
scope	and	duration	than	the	confidentiality	and	limited	use	terms	of	this
Agreement:	

(i)	Sublicensee	may	modify	source	code	solely	for	use	by	Licensee.	

(ii)	Sublicensee	may	program	Software	into	Devices	for	Licensee.	

(iii)	Sublicensee	may	use	the	Software	to	develop	and/or	manufacture
Licensee	Products.	

(iv)	Sublicensee	may	use	the	Software	to	develop	and/or	manufacture
products	where	either:	(x)	the	sublicensed	Software	contains	source
code	modified	or	otherwise	optimized	by	Licensee	for	Sublicensee	use
and	the	Software	is	implemented	only	on	proprietary	products
manufactured	by	Company	and	purchased	from	Company	or
Company’s	authorized	distributor;	or	(y)	the	sublicensed	Software	is
programmed	into	a	Device	by	Licensee	on	behalf	of	such	Sublicensee.	

(v)	Sublicensee	may	use	the	Documentation	in	support	of
Sublicensee’s	authorized	use	of	the	Software	in	conformance	with	this
Section	2(b).	

	

Sublicensee	shall	have	no	right	to	further	sublicense	any	right	granted
under	this	Agreement.	

	

(c)	Authorized	representatives	of	the	Company	shall	have	the	right	to
reasonably	inspect	Licensee’s	or	Sublicensee’s	premises	and	to	audit
Licensee’s	or	Sublicensee’s	records	and	inventory	of	products	in	which
the	Software	is	implemented,	whether	located	on	Licensee’s	or
Sublicensee’s	premises	or	elsewhere	at	any	time,	announced	or
unannounced,	and	in	its	sole	and	absolute	discretion,	in	order	to	ensure
Licensee's	and	Sublicensee’s	adherence	to	the	terms	of	this
Agreement.	

	

3.	Licensee	Obligations.	

	

(a)	Licensee	will	not	(i)	engage	in	unauthorized	sublicensing,	disclosure
or	distribution	of	Software	or	Documentation,	(ii)	use	all	or	any	portion
of	the	Software	or	the	Proprietary	Rights	of	the	Software	except	in
conjunction	with	a	Device;	or	(iii)	reverse	engineer	(by	disassembly,
decompilation	or	otherwise)	the	Software.	For	purposes	of	clarity,
Licensee’s	use	of	the	Software	binary	driver	file	on	a	Windows®
operating	system	to	interface	with	a	Device	does	not	violate	this
Section	3(a).	

	

(b)	Licensee	will	not,	during	the	term	of	this	Agreement	or	any	time
thereafter,	attack,	dispute	or	contest,	directly	or	indirectly,	the
Company's	exclusive	right,	title	and	interest	in	or	to	the	Proprietary
Rights	of	the	Software	or	the	validity	of	the	Company's	ownership
thereof,	nor	will	Licensee	assist	or	encourage	others	to	do	so.	

	

4.	Indemnification.	

	

(a)	Licensee	Indemnity.	Licensee	will	defend,	indemnify	and	hold
Company	harmless	from	and	against	any	and	all	claims,	losses,
liabilities,	damages,	costs,	and	expenses	(including	attorney's	fees)
directly	or	indirectly	arising	from	or	related	to	(i)	any	use	or	disclosure	of
the	Software	not	permitted	under	this	Agreement,	(ii)	any	use	of	the
Software	in	combination	with	other	products,	equipment,	software	or
data	not	supplied	by	Company,	including	but	not	limited	to	use	in	the
Licensee	Product,	(iii)	any	modification	of	the	Software	made	by	any
person	other	than	Company,	or	(iv)	any	products	liability	claims	with
respect	to	the	Licensee	Product.	

	

(b)	THE	FOREGOING	STATES	THE	SOLE	AND	EXCLUSIVE
REMEDY	AND	LIABILITY	OF	THE	PARTIES	FOR	INTELLECTUAL
PROPERTY	INFRINGEMENT.	

	

5.	Term	and	Termination.	

	

(a)	Term.	This	Agreement	and	the	license	granted	herein	shall	be
effective	from	the	date	of	acceptance	of	the	Agreement,	or	first
installation,	copy	or	use	of	the	Software,	whichever	event	occurs	first.
The	term	of	this	Agreement	shall	run	until	terminated	in	accordance
with	this	Section	5.	

	

(b)	Termination	for	Cause.	This	Agreement	may	be	terminated	if	either
party	materially	fails	to	perform	or	comply	with	any	provisions	of	this
Agreement.	In	the	event	of	Licensee’s	breach,	termination	shall	be
effective	immediately	without	notice	from	Company.	

	

(c)	Termination	for	Convenience.	This	Agreement	may	be	terminated	by

either	party	for	convenience	upon	60	days	written	notice.	

	

(d)	Effects	of	Termination.	Upon	termination,	Licensee	shall	immediately
discontinue	all	use	of	the	Software,	including	but	limited	to	inclusion	in
any	Licensee	Product,	and	shall	destroy	any	tangible	media	Licensee
has	on	which	the	Software	or	Documentation	exist,	and	remove	the
Software	and	Documentation	from	any	and	all	systems.	

	

6.	Injunctive	Relief.	Licensee	agrees	that	the	provisions	in	this
Agreement	regarding	unauthorized	use	of	the	Software	and
nondisclosure	are	necessary	to	protect	the	legitimate	business	interests
of	the	Company.	Licensee	also	agrees	that	monetary	damages	alone
cannot	adequately	compensate	the	Company	if	there	is	a	violation	of
such	provisions	by	Licensee	and	that	injunctive	relief	against	Licensee
is	essential	for	the	protection	of	the	Company.	Licensee	agrees,
therefore,	that	if	the	Company	alleges	that	Licensee	has	breached	or
violated	such	provisions	then,	in	addition	to	any	other	remedies	it	may
have,	the	Company	will	have	the	right	to	petition	a	court	of	competent
jurisdiction,	with	the	requirement	for	the	posting	of	a	bond,	for	injunctive
relief	against	Licensee	in	addition	to	all	other	remedies	at	law	or	in
equity.	

	

7.	Confidentiality.	Licensee	agrees	that	all	source	code,	source
documentation	and	underlying	inventions,	algorithms,	know-how	and
ideas	relating	to	the	Software	and	the	Documentation	are	the
Company's	proprietary	information	("Proprietary	Information").	Except
as	expressly	and	unambiguously	allowed	herein,	the	Licensee	will	hold
in	confidence	and	not	use	or	disclose	any	Proprietary	Information	and
shall	similarly	bind	its	employees	and	Subcontractors	in	writing.
Proprietary	Information	shall	not	include	information	that	(i)	is	in	or
enters	the	public	domain	without	breach	of	this	Agreement	and	through
no	fault	of	the	receiving	party;	(ii)	the	receiving	party	was	legally	in
possession	of	prior	to	receiving	it;	(iii)	the	receiving	party	can

demonstrate	was	developed	by	it	independently	and	without	use	of	or
reference	to	the	disclosing	party’s	Proprietary	Information;	or	(iv)	the
receiving	party	receives	from	a	third	party	without	restriction	on
disclosure.	If	a	party	is	required	to	disclose	Proprietary	Information	by
law,	court	order,	or	government	agency,	such	disclosure	shall	not	be
deemed	a	breach	of	this	Agreement.	Licensee's	obligation	under	this
Section	7	will	survive	for	a	period	of	twenty	(20)	years	following	the
expiration	or	termination	of	this	Agreement.	

	

8.	Warranties	and	Disclaimers.	THE	SOFTWARE	AND
DOCUMENTATION	ARE	PROVIDED	“AS	IS”	WITHOUT	WARRANTY
OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED,	INCLUDING
WITHOUT	LIMITATION,	ANY	WARRANTY	OF	MERCHANTABILITY,
TITLE,	NON-INFRINGEMENT	AND	FITNESS	FOR	A	PARTICULAR
PURPOSE.	LICENSEE	ASSUMES	THE	ENTIRE	RISK	ARISING	OUT
OF	USE	OR	PERFORMANCE	OF	THE	SOFTWARE	AND
DOCUMENTATION,	AND	COMPANY	ASSUMES	NO
RESPONSIBILITY	FOR	THE	ACCURACY	OR	APPLICATION	OR	OF
ERRORS	OR	OMISSIONS	IN	THE	SOFTWARE.	THE	LIMITED
REMEDIES	SET	FORTH	HEREIN	SHALL	APPLY
NOTWITHSTANDING	FAILURE	OF	THEIR	ESSENTIAL	PURPOSE.	

	

10.	Limited	Liability.	IN	NO	EVENT	SHALL	COMPANY	BE	LIABLE	OR
OBLIGATED	UNDER	CONTRACT,	NEGLIGENCE,	STRICT	LIABILITY,
CONTRIBUTION,	BREACH	OF	WARRANTY,	OR	OTHER	LEGAL	OR
EQUITABLE	THEORY	FOR	ANY	DIRECT	OR	INDIRECT	DAMAGES
OR	EXPENSES	INCLUDING	BUT	NOT	LIMITED	TO	INCIDENTAL,
SPECIAL,	INDIRECT,	PUNITIVE	OR	CONSEQUENTIAL	DAMAGES,
LOST	PROFITS	OR	LOST	DATA,	COST	OF	PROCUREMENT	OF
SUBSTITUTE	GOODS,	TECHNOLOGY,	SERVICES,	OR	ANY	CLAIMS
BY	THIRD	PARTIES	(INCLUDING	BUT	NOT	LIMITED	TO	ANY
DEFENSE	THEREOF),	OR	OTHER	SIMILAR	COSTS.	The	aggregate
and	cumulative	liability	of	Company	for	damages	hereunder	will	in	no
event	exceed	$100	and	Licensee	acknowledges	that	the	foregoing

limitations	are	reasonable	and	an	essential	part	of	this	Agreement.	

	

11.	General.	

	

(a)	Electronic	Notices	and	Requests.	When	Licensee	visits	Company’s
website	or	send	e-mails	to	the	Company,	Licensee	ise	communicating
with	Company	electronically.	Licensee	hereby	consents	to	receive
communications	from	Company	electronically.	Company	will
communicate	with	Licensee	by	e-mail	or	by	posting	notices	on
www.Microchip.com.	Licensee	agrees	that	all	agreements,	notices,
disclosures	and	other	communications	that	Company	provide	to
Licensee	electronically	satisfy	any	legal	requirement	that	such
communications	be	in	writing.	In	giving	notice	to	Company,	Licensee
will	address	notices	to	Legal.Department@Microchip.com.	and	include
Licensee’s	name,	company	name,	physical	address	and	phone	number,
and	include	“USB	Framework	Software”	in	the	subject	line.	

	

(b)	Governing	Law.	THIS	AGREEMENT	SHALL	BE	GOVERNED	BY
AND	CONSTRUED	UNDER	THE	LAWS	OF	THE	STATE	OF	ARIZONA
AND	THE	UNITED	STATES	WITHOUT	REGARD	TO	CONFLICTS	OF
LAWS	PROVISIONS.	THEREOF	AND	WITHOUT	REGARD	TO	THE
UNITED	NATIONS	CONVENTION	ON	CONTRACTS	FOR	THE
INTERNATIONAL	SALE	OF	GOODS.	The	sole	jurisdiction	and	venue
for	actions	related	to	the	subject	matter	hereof	shall	be	the	state	and
federal	courts	located	in	Arizona.	

	

(c)	Attorneys'	Fees.	If	either	the	Company	or	Licensee	employs
attorneys	to	enforce	any	rights	arising	out	of	or	relating	to	this
Agreement,	the	prevailing	party	shall	be	entitled	to	recover	its
reasonable	attorneys'	fees,	costs	and	other	expenses.	

	

(d)	Entire	Agreement.	This	Agreement	shall	constitute	the	entire
agreement	between	the	parties	with	respect	to	the	subject	matter
hereof.	It	shall	not	be	modified	except	by	a	written	agreement	signed	by
an	authorized	representative	of	the	Company.	

	

(e)	Severability.	If	any	provision	of	this	Agreement	shall	be	held	by	a
court	of	competent	jurisdiction	to	be	illegal,	invalid	or	unenforceable,
that	provision	shall	be	limited	or	eliminated	to	the	minimum	extent
necessary	so	that	this	Agreement	shall	otherwise	remain	in	full	force
and	effect	and	enforceable.	

	

(f)	Waiver.	No	waiver	of	any	breach	of	any	provision	of	this	Agreement
shall	constitute	a	waiver	of	any	prior,	concurrent	or	subsequent	breach
of	the	same	or	any	other	provisions	hereof,	and	no	waiver	shall	be
effective	unless	made	in	writing	and	signed	by	an	authorized
representative	of	the	waiving	party.	

	

(g)	Export	Regulation.	Each	party	hereby	agrees	to	comply	with	all
export	laws	and	restrictions	and	regulations	of	the	Department	of
Commerce	or	other	United	States	or	foreign	agency	or	authority.	

	

(h)	Survival.	The	indemnities	herein,	and	any	right	of	action	for	breach
of	this	Agreement	prior	to	termination	shall	survive	any	termination	of
this	Agreement.	

	

(i)	Assignment.	Neither	this	Agreement	nor	any	rights,	licenses	or
obligations	hereunder,	may	be	assigned	by	Licensee	without	the	prior
written	approval	of	the	Company.	

	

	

License	Rev.	02-032907

License	Agreements	>	MCHPFSUSB

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous	|	Next

MDD	File	System
	

License	Agreement	for	usage	of	the	Microchip	MDD	File	System	v1.2

Remarks

IMPORTANT:	

MICROCHIP	IS	WILLING	TO	LICENSE	THE	MEMORY	DISK	DRIVE
FILE	SYSTEM	SOFTWARE	AND	ACCOMPANYING
DOCUMENTATION	OFFERED	TO	YOU	ONLY	ON	THE	CONDITION
THAT	YOU	ACCEPT	ALL	OF	THE	FOLLOWING	TERMS.	TO	ACCEPT
THE	TERMS	OF	THIS	LICENSE,	CLICK	"I	ACCEPT"	AND	PROCEED
WITH	THE	DOWNLOAD	OR	INSTALL.	IF	YOU	DO	NOT	ACCEPT
THESE	LICENSE	TERMS,	CLICK	"I	DO	NOT	ACCEPT,"	AND	DO	NOT
DOWNLOAD	OR	INSTALL	THIS	SOFTWARE.	

	

NON-EXCLUSIVE	SOFTWARE	LICENSE	AGREEMENT	

FOR	MICROCHIP	MEMORY	DISK	DRIVE	FILE	SYSTEM	SOFTWARE
VERSION	1.2	

	

IMPORTANT	-	READ	CAREFULLY.	

	

This	Nonexclusive	Software	License	Agreement	(“Agreement”)	is	a
contract	between	you,	your	heirs,	successors	and	assigns	(“Licensee”)
and	Microchip	Technology	Incorporated,	a	Delaware	corporation,	with	a
principal	place	of	business	at	2355	W.	Chandler	Blvd.,	Chandler,	AZ
85224-6199,	and	its	subsidiary,	Microchip	Technology	(Barbados)
Incorporated	(collectively,	“Microchip”)	for	Microchip’s	Memory	Disk
Drive	File	System	Software	version	1.2	(“Software”)	and	accompanying

documentation	(“Documentation”).	

	

The	Software	and	Documentation	are	licensed	under	this	Agreement
and	not	sold.	U.S.	copyright	laws	and	international	copyright	treaties,
and	other	intellectual	property	laws	and	treaties	protect	the	Software
and	Documentation.	Microchip	reserves	all	rights	not	expressly	granted
to	Licensee	in	this	Agreement.	

	

1.	Compliance	with	Third	Party	Requirements.	Licensee	acknowledges
that	it	is	Licensee’s	responsibility	to	obtain	a	copy	of,	familiarize	itself
fully	with,	and	comply	with	the	requirements	and	licensing	obligations
applicable	to	third	party	tools,	systems	and/or	specifications	including,
but	not	limited	to,	flash-based	media	and	FAT	files	systems	available
from	Compact	Flash	Association,	SD	Card	Association,	Multi	Media
Card	Association,	and	Microsoft	Corporation.	Microchip	is	not
responsible	and	shall	not	be	held	responsible	in	any	manner	for
Licensee’s	failure	to	comply	with	such	requirements,	including
applicable	license	terms,	if	any.	

	

2.	License	and	Sublicense	Grant.	

	

(a)	Definitions.	As	used	in	this	Agreement,	the	following	terms	shall
have	the	meanings	defined	below:	

(i)	“Microchip	Products”	means	Microchip	microcontrollers	and	digital
signal	controllers	that	use	or	implement	the	Software.	

(ii)	“Object	Code”	means	the	Software	computer	programming	code
provided	by	Microchip	that	is	in	binary	form	(including	related
documentation,	if	any),	and	error	corrections,	improvements	and
updates	to	such	code	provided	by	Microchip	in	its	sole	discretion,	if
any.	

(iii)	“Source	Code”	means	the	Software	computer	programming	code
provided	by	Microchip	that	may	be	printed	out	or	displayed	in	human
readable	form	(including	related	programmer	comments	and
documentation,	if	any),	and	error	corrections,	improvements,	updates,
modifications	and	derivatives	of	such	code	developed	by	Microchip,
Licensee	or	Third	Party	(defined	below).	

	

(b)	Software	License	Grant.	Subject	to	the	terms	of	this	Agreement,
Microchip	grants	strictly	to	Licensee	a	personal,	worldwide,	non-
exclusive,	non-transferable	limited	license	to	use,	modify,	copy	and
distribute	the	Software	only	when	embedded	in	a	Microchip	Product
that	is	either	integrated	into:	(i)	Licensee’s	product	(hereafter	“Licensee
Product”);	or	(ii)	Third	Party	Product	pursuant	to	Section	2(d)	below.	

	

(c)	Documentation	License	Grant.	Subject	to	the	terms	of	this
Agreement,	Microchip	grants	strictly	to	Licensee	a	personal,	worldwide,
non-exclusive,	non-transferable	limited	license	to	use	the
Documentation	in	support	of	Licensee’s	authorized	use	of	the
Software.	

	

(d)	Sublicense	Grants.	Subject	to	the	terms	of	this	Agreement,
Licensee	may	grant	a	limited	sublicense	to	a	third	party	(“Third	Party”)
to	use	the	Software	as	described	below	only	IF	such	Third	Party
expressly	agrees	in	writing	to	be	bound	by	terms	of	confidentiality	and
limited	use	that	are	no	broader	in	scope	and	duration	than	the
confidentiality	and	limited	use	terms	of	this	Agreement:	

(i)	Third	Party	may	modify	Source	Code	for	Licensee.	

(ii)	Third	Party	may	program	Software	into	Microchip	Products	for
Licensee.	

(iii)	Third	Party	may	use	the	Software	to	develop	and/or	manufacture
Licensee	Products.	

(iv)	Third	Party	may	use	the	Software	to	develop	and/or	manufacture
Third	Party	Products	where	either:	(x)	the	sublicensed	Software
contains	Source	Code	modified	or	otherwise	optimized	by	Licensee	for
integration	into	Third	Party	Products;	and/or	(y)	the	sublicensed
Software	is	programmed	into	Microchip	Products	by	Licensee	on	behalf
of	such	Third	Party.	

(v)	Third	Party	may	use	the	Documentation	in	support	of	Third	Party’s
authorized	use	of	the	Software	in	conformance	with	this	Section	2(d).	

	

As	used	in	this	Agreement,	“Licensee	Products”	means	Licensee
products	that	use	or	incorporate	Microchip	Products.	“Third	Party
Products”	means	Third	party	products	that	use	or	incorporate	Microchip
Products.	

	

Licensee	shall	be	responsible	for	any	Third	Party	breach	of	the
foregoing	sublicense	rights.	

	

(e)	Audit.	Authorized	representatives	of	Microchip	shall	have	the	right	to
reasonably	inspect	Licensee’s	premises	and	to	audit	Licensee’s	records
and	inventory	of	Licensee	Products,	whether	located	on	Licensee’s
premises	or	elsewhere	at	any	time,	announced	or	unannounced,	and	in
its	sole	and	absolute	discretion,	in	order	to	ensure	Licensee's
adherence	to	the	terms	of	this	Agreement.	

	

3.	Licensee	Obligations.	

	

(a)	Licensee	will	ensure	Third	Party	compliance	with	the	terms	of	this
Agreement.	

	

(b)	Licensee	will	not:	(i)	engage	in	unauthorized	use,	modification,
disclosure	or	distribution	of	Software	or	Documentation,	or	its
derivatives;	(ii)	use	all	or	any	portion	of	the	Software,	Documentation,	or
its	derivatives	except	in	conjunction	with	Microchip	Products	or	Third
Party	Products;	or	(iii)	reverse	engineer	(by	disassembly,	decompilation
or	otherwise)	Software	or	any	portion	thereof.	

	

(c)	Licensee	must	include	Microchip’s	copyright,	trademark	and	other
proprietary	notices	in	all	copies	of	the	Software,	Documentation,	and	its
derivatives.	Licensee	may	not	remove	or	alter	any	Microchip	copyright
or	other	proprietary	rights	notice	posted	in	any	portion	of	the	Software
or	Documentation.	

	

(d)	Licensee	will	defend,	indemnify	and	hold	Microchip	and	its
subsidiaries	harmless	from	and	against	any	and	all	claims,	costs,
damages,	expenses	(including	reasonable	attorney’s	fees),	liabilities,
and	losses,	including	without	limitation	product	liability	claims,	directly
or	indirectly	arising	from	or	related	to:	(i)	the	use,	modification,
disclosure	or	distribution	of	the	Software,	Documentation	or	any
intellectual	property	rights	related	thereto;	(ii)	the	use,	sale	and
distribution	of	Licensee	Products	or	Third	Party	Products;	and	(iii)
breach	of	Sections	1	or	2	of	this	Agreement.	THE	FOREGOING
STATES	THE	SOLE	AND	EXCLUSIVE	LIABILITY	OF	THE	PARTIES
FOR	INTELLECTUAL	PROPERTY	INFRINGEMENT.	

	

4.	Confidentiality.	

	

(a)	Licensee	agrees	that	the	Software	(including	but	not	limited	to	the
Source	Code,	Object	Code	and	library	files)	and	its	derivatives,
Documentation	and	underlying	inventions,	algorithms,	know-how	and
ideas	relating	to	the	Software	and	the	Documentation	are	proprietary
information	belonging	to	Microchip	and	its	licensors	(“Proprietary

Information”).	Except	as	expressly	and	unambiguously	allowed	herein,
Licensee	will	hold	in	confidence	and	not	use	or	disclose	any	Proprietary
Information	and	shall	similarly	bind	its	employees	and	Third	Party(ies)
in	writing.	Proprietary	Information	shall	not	include	information	that:	(i)	is
in	or	enters	the	public	domain	without	breach	of	this	Agreement	and
through	no	fault	of	the	receiving	party;	(ii)	the	receiving	party	was
legally	in	possession	of	prior	to	receiving	it;	(iii)	the	receiving	party	can
demonstrate	was	developed	by	it	independently	and	without	use	of	or
reference	to	the	disclosing	party’s	Proprietary	Information;	or	(iv)	the
receiving	party	receives	from	a	third	party	without	restriction	on
disclosure.	If	Licensee	is	required	to	disclose	Proprietary	Information	by
law,	court	order,	or	government	agency,	such	disclosure	shall	not	be
deemed	a	breach	of	this	Agreement	provided	that	Licensee	gives
Microchip	prompt	notice	of	such	requirement	in	order	to	allow	Microchip
to	object	or	limit	such	disclosure,	Licensee	cooperates	with	Microchip	to
protect	Proprietary	Information,	and	Licensee	complies	with	any
protective	order	in	place	and	discloses	only	the	information	required	by
process	of	law.	

	

(b)	Licensee	agrees	that	the	provisions	of	this	Agreement	regarding
unauthorized	use	and	nondisclosure	of	the	Software,	Documentation
and	related	Proprietary	Rights	are	necessary	to	protect	the	legitimate
business	interests	of	Microchip	and	its	licensors	and	that	monetary
damages	alone	cannot	adequately	compensate	Microchip	or	its
licensors	if	such	provisions	are	violated.	Licensee,	therefore,	agrees
that	if	Microchip	alleges	that	Licensee	or	Third	Party	has	breached	or
violated	such	provision	then	Microchip	will	have	the	right	to	petition	for
injunctive	relief,	without	the	requirement	for	the	posting	of	a	bond,	in
addition	to	all	other	remedies	at	law	or	in	equity.	

	

5.	Ownership	of	Proprietary	Rights.	

	

(a)	Microchip	and	its	licensors	retain	all	right,	title	and	interest	in	and	to

the	Software	and	Documentation	(“Proprietary	Rights”)	including,	but
not	limited	to:	(i)	patent,	copyright,	trade	secret	and	other	intellectual
property	rights	in	the	Software,	Documentation,	and	underlying
technology;	(ii)	the	Software	as	implemented	in	any	device	or	system,
all	hardware	and	software	implementations	of	the	Software	technology
(expressly	excluding	Licensee	and	Third	Party	code	developed	and
used	in	conformance	with	this	Agreement	solely	to	interface	with	the
Software	and	Licensee	Products	and/or	Third	Party	Products);	and	(iii)
all	copies	and	derivative	works	thereof	(by	whomever	produced).
Further,	copies	and	derivative	works	shall	be	considered	works	made
for	hire	with	ownership	vesting	in	Microchip	on	creation.	To	the	extent
such	modifications	and	derivatives	do	not	qualify	as	a	“work	for	hire,”
Licensee	hereby	irrevocably	transfers,	assigns	and	conveys	the
exclusive	copyright	thereof	to	Microchip,	free	and	clear	of	any	and	all
liens,	claims	or	other	encumbrances,	to	the	fullest	extent	permitted	by
law.	Licensee	and	Third	Party	use	of	such	modifications	and	derivatives
is	limited	to	the	license	rights	described	in	Section	2	above.	

	

(b)	Licensee	shall	have	no	right	to	sell,	assign	or	otherwise	transfer	all
or	any	portion	of	the	Software,	Documentation	or	any	related
intellectual	property	rights	except	as	expressly	set	forth	in	this
Agreement.	

	

6.	Termination	of	Agreement.	Without	prejudice	to	any	other	rights,	this
Agreement	terminates	immediately,	without	notice	by	Microchip,	upon	a
failure	by	License	or	Third	Party	to	comply	with	any	provision	of	this
Agreement.	Further,	Microchip	may	also	terminate	this	Agreement	upon
reasonable	belief	that	Licensee	or	Third	Party	have	failed	to	comply
with	this	Agreement.	Upon	termination,	Licensee	and	Third	Party	will
immediately	stop	using	the	Software,	Documentation,	and	derivatives
thereof,	and	immediately	destroy	all	such	copies.	

	

7.	Warranties	and	Disclaimers.	THE	SOFTWARE	AND

DOCUMENTATION	ARE	PROVIDED	“AS	IS”	WITHOUT	WARRANTY
OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED,	INCLUDING
WITHOUT	LIMITATION,	ANY	WARRANTY	OF	MERCHANTABILITY,
TITLE,	NON-INFRINGEMENT	AND	FITNESS	FOR	A	PARTICULAR
PURPOSE.	MICROCHIP	AND	ITS	LICENSORS	ASSUME	NO
RESPONSIBILITY	FOR	THE	ACCURACY,	RELIABILITY	OR
APPLICATION	OF	THE	SOFTWARE	OR	DOCUMENTATION.
MICROCHIP	AND	ITS	LICENSORS	DO	NOT	WARRANT	THAT	THE
SOFTWARE	WILL	MEET	REQUIREMENTS	OF	LICENSEE	OR	THIRD
PARTY,	BE	UNINTERRUPTED	OR	ERROR-FREE.	MICROCHIP	AND
ITS	LICENSORS	HAVE	NO	OBLIGATION	TO	CORRECT	ANY
DEFECTS	IN	THE	SOFTWARE.	LICENSEE	AND	THIRD	PARTY
ASSUME	THE	ENTIRE	RISK	ARISING	OUT	OF	USE	OR
PERFORMANCE	OF	THE	SOFTWARE	AND	DOCUMENTATION
PROVIDED	UNDER	THIS	AGREEMENT.	

	

8.	Limited	Liability.	IN	NO	EVENT	SHALL	MICROCHIP	OR	ITS
LICENSORS	BE	LIABLE	OR	OBLIGATED	UNDER	CONTRACT,
NEGLIGENCE,	STRICT	LIABILITY,	CONTRIBUTION,	BREACH	OF
WARRANTY,	OR	OTHER	LEGAL	OR	EQUITABLE	THEORY	FOR	ANY
DIRECT	OR	INDIRECT	DAMAGES	OR	EXPENSES	INCLUDING	BUT
NOT	LIMITED	TO	INCIDENTAL,	SPECIAL,	INDIRECT,	PUNITIVE	OR
CONSEQUENTIAL	DAMAGES,	LOST	PROFITS	OR	LOST	DATA,
COST	OF	PROCUREMENT	OF	SUBSTITUTE	GOODS,
TECHNOLOGY,	SERVICES,	OR	ANY	CLAIMS	BY	THIRD	PARTIES
(INCLUDING	BUT	NOT	LIMITED	TO	ANY	DEFENSE	THEREOF),	OR
OTHER	SIMILAR	COSTS.	The	aggregate	and	cumulative	liability	of
Microchip	and	its	licensors	for	damages	hereunder	will	in	no	event
exceed	$1000	or	the	amount	Licensee	paid	Microchip	for	the	Software
and	Documentation,	whichever	is	greater.	Licensee	acknowledges	that
the	foregoing	limitations	are	reasonable	and	an	essential	part	of	this
Agreement.	

	

9.	General.	

	

(a)	Governing	Law,	Venue	and	Waiver	of	Trial	by	Jury.	THIS
AGREEMENT	SHALL	BE	GOVERNED	BY	AND	CONSTRUED	UNDER
THE	LAWS	OF	THE	STATE	OF	ARIZONA	AND	THE	UNITED	STATES
WITHOUT	REGARD	TO	CONFLICTS	OF	LAWS	PROVISIONS.
Licensee	agrees	that	any	disputes	arising	out	of	or	related	to	this
Agreement,	Software	or	Documentation	shall	be	brought	in	the	courts
of	State	of	Arizona.	The	parties	agree	to	waive	their	rights	to	a	jury	trial
in	actions	relating	to	this	Agreement.	

	

(b)	Attorneys'	Fees.	If	either	the	Microchip	or	Licensee	employs
attorneys	to	enforce	any	rights	arising	out	of	or	relating	to	this
Agreement,	the	prevailing	party	shall	be	entitled	to	recover	its
reasonable	attorneys'	fees,	costs	and	other	expenses.	

	

(c)	Entire	Agreement.	This	Agreement	shall	constitute	the	entire
agreement	between	the	parties	with	respect	to	the	subject	matter
hereof.	It	shall	not	be	modified	except	by	a	written	agreement	signed	by
an	authorized	representative	of	the	Microchip.	

	

(d)	Severability.	If	any	provision	of	this	Agreement	shall	be	held	by	a
court	of	competent	jurisdiction	to	be	illegal,	invalid	or	unenforceable,
that	provision	shall	be	limited	or	eliminated	to	the	minimum	extent
necessary	so	that	this	Agreement	shall	otherwise	remain	in	full	force
and	effect	and	enforceable.	

	

(e)	Waiver.	No	waiver	of	any	breach	of	any	provision	of	this	Agreement
shall	constitute	a	waiver	of	any	prior,	concurrent	or	subsequent	breach
of	the	same	or	any	other	provisions	hereof,	and	no	waiver	shall	be
effective	unless	made	in	writing	and	signed	by	an	authorized
representative	of	the	waiving	party.	

	

(f)	Export	Regulation.	Licensee	agrees	to	comply	with	all	export	laws
and	restrictions	and	regulations	of	the	Department	of	Commerce	or
other	United	States	or	foreign	agency	or	authority.	

	

(g)	Survival.	The	indemnities	and	obligations	of	confidentiality	herein,
and	any	right	of	action	for	breach	of	this	Agreement	prior	to	termination
shall	survive	any	termination	of	this	Agreement.	

	

(h)	Assignment.	Neither	this	Agreement	nor	any	rights,	licenses	or
obligations	hereunder,	may	be	assigned	by	Licensee	without	the	prior
written	approval	of	Microchip	except	pursuant	to	a	merger,	sale	of	all
assets	of	Licensee	or	other	corporate	reorganization,	provided	that
assignee	agrees	in	writing	to	be	bound	by	the	Agreement.	

	

(i)	Restricted	Rights.	Use,	duplication	or	disclosure	by	the	United	States
Government	is	subject	to	restrictions	set	forth	in	subparagraphs	(a)
through	(d)	of	the	Commercial	Computer-Restricted	Rights	clause	of
FAR	52.227-19	when	applicable,	or	in	subparagraph	(c)(1)(ii)	of	the
Rights	in	Technical	Data	and	Computer	Software	clause	at	DFARS
252.227-7013,	and	in	similar	clauses	in	the	NASA	FAR	Supplement.
Contractor/manufacturer	is	Microchip	Technology	Inc.,	2355	W.
Chandler	Blvd.,	Chandler,	AZ	85225-6199.	

	

If	Licensee	has	any	questions	about	this	Agreement,	please	write	to
Microchip	Technology	Inc.,	2355	W.	Chandler	Blvd.,	Chandler,	AZ
85224-6199	USA,	ATTN:	Marketing.	

	

License	Rev.	No.	01-081407

License	Agreements	>	MDD	File	System

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home Previous

Graphics
License	Agreement	for	usage	of	the	Microchip	Graphics	Library	v1.52

Remarks

IMPORTANT:	

MICROCHIP	IS	WILLING	TO	LICENSE	THIS	GRAPHICS	LIBRARY
SOFTWARE	

AND	ACCOMPANYING	DOCUMENTATION	OFFERED	TO	YOU	ONLY
ON	THE	

CONDITION	THAT	YOU	ACCEPT	ALL	OF	THE	FOLLOWING	TERMS.
TO	

ACCEPT	THE	TERMS	OF	THIS	LICENSE,	CLICK	"I	ACCEPT"	AND
PROCEED	

WITH	THE	DOWNLOAD	OR	INSTALL.	IF	YOU	DO	NOT	ACCEPT
THESE	

LICENSE	TERMS,	CLICK	"I	DO	NOT	ACCEPT"	AND	DO	NOT
DOWNLOAD	OR	

INSTALL	THIS	SOFTWARE.	

NON-EXCLUSIVE	SOFTWARE	LICENSE	AGREEMENT	FOR	

MICROCHIP	GRAPHICS	LIBRARY	SOFTWARE	Version	1.52	

IMPORTANT	-	READ	CAREFULLY	

This	Nonexclusive	Software	License	Agreement	(“Agreement”)	is
contract	between	you,	

your	heirs,	agents,	successors	and	assigns	(“Licensee”)	and	Microchip
Technology	

Incorporated,	a	Delaware	corporation,	with	a	principal	place	of	business

at	2355	W.	

Chandler	Blvd.,	Chandler,	AZ	85224-6199,	and	its	subsidiary,	Microchip
Technology	

(Barbados)	Incorporated	(collectively,	“Microchip”)	for	Microchip's
Graphics	Library	

Software	Version	1.52	(“Software”)	and	accompanying	documentation,
including	images	

and	any	other	graphic	resources	provided	by	Microchip
(“Documentation”).	

The	Software	and	Documentation	are	licensed	under	this	Agreement
and	not	sold.	U.S.	

copyright	laws	and	international	copyright	treaties,	and	other	intellectual
property	laws	

and	treaties	protect	the	Software	and	Documentation.	Microchip
reserves	all	rights	not	

expressly	granted	to	Licensee	in	this	Agreement.	

1.	License	and	Sublicense	Grant.	

Definitions.	As	used	this	Agreement,	the	following	terms	shall	have	the
meanings	defined	

below:	

“Microchip	Product”	means	Microchip	microcontroller	and	digital	signal
controllers.	

“Object	Code”	means	the	Software	computer	programming	code
provided	by	Microchip	

that	is	in	binary	form	(including	related	documentation,	if	any)	and	error
corrections,	

improvements	and	updates	to	such	code	provided	by	Microchip	in	its

sole	discretion,	if	

any.	

“Source	Code”	means	the	Software	computer	programming	code
provided	by	Microchip	

that	may	be	printed	out	or	displayed	in	human	readable	form	(including
related	

programmer	comments	and	documentation,	if	any),	and	error
corrections,	improvements,	

updates,	modifications	and	derivatives	of	such	code	developed	by
Microchip,	Licensee	or	

Third	Party.	

(b)	Software	License	Grant.	Subject	to	the	terms	of	this	Agreement,
Microchip	grants	

strictly	to	Licensee	a	personal,	worldwide,	non-exclusive,	non-
transferable	limited	license	

to	use,	modify,	copy	and	distribute	the	Software	only	when	embedded
on	a	Microchip	

Product	that	is	integrated	into	Licensee’s	product	(hereafter	“Licensee
Product”)	or	Third	

Party	Product	pursuant	to	Section	2(d)	below.	

Any	portion	of	the	Software	(including	derivatives	or	modifications
thereof)	may	not	be:	

embedded	on	a	non-Microchip	microcontroller	or	digital	signal
controller;	

distributed	in	Source	Code	or	Object	Code,	except	as	described	in
Section	2(d)	below.	

(c)	Documentation	License	Grant.	Subject	to	all	of	the	terms	and

conditions	of	this	

Agreement,	Microchip	grants	strictly	to	Licensee	a	perpetual,
worldwide,	non-exclusive	

license	to	use	the	Documentation	within	Licensee’s	company	for
purposes	of	developing	

and	supporting	Conforming	Systems.	

(d)	Sublicense	Grants.	Subject	to	terms	of	this	Agreement,	Licensee
may	grant	a	limited	

sublicense	to	a	third	party	(“Third	Party”)	to	use	the	Software	as
described	below	only	IF	

such	Third	Party	expressly	agrees	to	be	bound	by	terms	of
confidentiality	and	limited	use	

that	are	no	broader	in	scope	and	duration	than	the	confidentiality	and
limited	use	terms	of	

this	Agreement:	

Third	Party	may	modify	Source	Code	for	Licensee.	

Third	Party	may	program	Software	into	Microchip	Products	for
Licensee.	

Third	Party	may	use	Software	to	develop	and/or	manufacture	Licensee
Product.	

Third	Party	may	use	Software	to	develop	and/or	manufacture	Third
Party	Products	where	

either:	(x)	the	sublicensed	Software	contains	Source	Code	modified	or
otherwise	

optimized	by	Licensee	for	Third	Party	use;	or	(y)	the	sublicensed
Software	is	

programmed	into	Microchip	Products	by	Licensee	on	behalf	of	such

Third	Party.	

Third	Party	may	use	the	Documentation	in	support	of	Third	Party’s
authorized	use	of	the	

Software	in	conformance	with	this	Section	2(d).	

(e)	Audit.	Authorized	representatives	of	Microchip	shall	have	the	right	to
reasonably	

inspect	Licensee’s	premises	and	to	audit	Licensee’s	records	and
inventory	of	Licensee	

Products,	whether	located	on	Licensee’s	premises	or	elsewhere	at	any
time,	announced	or	

unannounced,	and	in	its	sole	and	absolute	discretion,	in	order	to	ensure
Licensee’s	

adherence	to	the	terms	of	this	Agreement.	

2.	Licensee’s	Obligations.	

Licensee	will	ensure	Third	Party	compliance	with	the	terms	of	this
Agreement.	

Licensee	will	not:	(i)	engage	in	unauthorized	use,	modification,
disclosure	or	distribution	

of	Software	or	Documentation,	or	its	derivatives;	(ii)	use	all	or	any
portion	of	the	

Software,	Documentation,	or	its	derivatives	except	in	conjunction	with
Microchip	

Products;	or	(iii)	reverse	engineer	(by	disassembly,	decompilation	or
otherwise)	Software	

or	any	portion	thereof.	

(c)	Licensee	must	include	Microchip’s	copyright,	trademark	and	other
proprietary	notices	

in	all	copies	of	the	Software,	Documentation,	and	its	derivatives.
Licensee	may	not	

remove	or	alter	any	Microchip	copyright	or	other	proprietary	rights
notice	posted	in	any	

portion	of	the	Software	or	Documentation.	

(d)	Licensee	will	defend,	indemnify	and	hold	Microchip	and	its
subsidiaries	harmless	

from	and	against	any	and	all	claims,	costs,	damages,	expenses
(including	reasonable	

attorney’s	fees),	liabilities,	and	losses,	including	without	limitation
product	liability	

claims,	directly	or	indirectly	arising	from	or	related	to:	(i)	the	use,
modification,	

disclosure	or	distribution	of	the	Software,	Documentation	or	any
intellectual	property	

rights	related	thereto;	and	(ii)	the	sale	of	Licensee	Products	or	Third
Party	Products.	THE	

FOREGOING	STATES	THE	SOLE	AND	EXCLUSIVE	LIABILITY	OF
THE	PARTIES	

FOR	INTELLECTUAL	PROPERTY	RIGHTS	INFRINGEMENT.	

3.	Confidentiality.	

(a)	Licensee	agrees	that	the	Software	(including	but	not	limited	to	the
Source	Code,	

Object	Code	and	library	files)	and	its	derivatives,	Documentation	and
underlying	

inventions,	algorithms,	know-how	and	ideas	relating	to	the	Software
and	the	

Documentation	are	proprietary	information	belonging	to	Microchip	and
its	licensors	

(“Proprietary	Information”).	Except	as	expressly	and	unambiguously
allowed	herein,	

Licensee	will	hold	in	confidence	and	not	use	or	disclose	any	Proprietary
Information	and	

shall	similarly	bind	its	employees	and	Third	Party(ies)	in	writing.
Proprietary	Information	

shall	not	include	information	that:	(i)	is	in	or	enters	the	public	domain
without	breach	of	

this	Agreement	and	through	no	fault	of	the	receiving	party;	(ii)	the
receiving	party	was	

legally	in	possession	of	prior	to	receiving	it;	(iii)	the	receiving	party	can
demonstrate	was	

developed	by	it	independently	and	without	use	of	or	reference	to	the
disclosing	party’s	

Proprietary	Information;	or	(iv)	the	receiving	party	receives	from	a	third
party	without	

restriction	on	disclosure.	If	Licensee	is	required	to	disclose	Proprietary
Information	by	

law,	court	order,	or	government	agency,	such	disclosure	shall	not	be
deemed	a	breach	of	

this	Agreement	provided	that	Licensee	gives	Microchip	prompt	notice	of
such	

requirement	in	order	to	allow	Microchip	to	object	or	limit	such
disclosure,	Licensee	

cooperates	with	Microchip	to	protect	Proprietary	Information,	and
Licensee	complies	

with	any	protective	order	in	place	and	discloses	only	the	information
required	by	process	

of	law.	

(b)	Licensee	agrees	that	the	provisions	of	this	Agreement	regarding
unauthorized	use	and	

nondisclosure	of	the	Software,	Documentation	and	related	Proprietary
Rights	are	

necessary	to	protect	the	legitimate	business	interests	of	Microchip	and
its	licensors	and	

that	monetary	damages	alone	cannot	adequately	compensate
Microchip	or	its	licensors	if	

such	provisions	are	violated.	Licensee,	therefore,	agrees	that	if
Microchip	alleges	that	

Licensee	or	Third	Party	has	breached	or	violated	such	provision	then
Microchip	will	have	

the	right	to	petition	for	injunctive	relief,	without	the	requirement	for	the
posting	of	a	

bond,	in	addition	to	all	other	remedies	at	law	or	in	equity.	

4.	Ownership	of	Proprietary	Rights.	

(a)	Microchip	and	its	licensors	retain	all	right,	title	and	interest	in	and	to
the	Software	and	

Documentation	(“Proprietary	Rights”)	including,	but	not	limited	to:	(i)
patent,	copyright,	

trade	secret	and	other	intellectual	property	rights	in	the	Software,
Documentation,	and	

underlying	technology;	(ii)	the	Software	as	implemented	in	any	device
or	system,	all	

hardware	and	software	implementations	of	the	Software	technology
(expressly	excluding	

Licensee	and	Third	Party	code	developed	and	used	in	conformance
with	this	Agreement	

solely	to	interface	with	the	Software	and	Licensee	Products	and/or
Third	Party	Products);	

and	(iii)	all	copies	and	derivative	works	thereof	(by	whomever
produced).	Further,	copies	

and	derivative	works	shall	be	considered	works	made	for	hire	with
ownership	vesting	in	

Microchip	on	creation.	To	the	extent	such	modifications	and	derivatives
do	not	qualify	as	

a	“work	for	hire,”	Licensee	hereby	irrevocably	transfers,	assigns	and
conveys	the	

exclusive	copyright	thereof	to	Microchip,	free	and	clear	of	any	and	all
liens,	claims	or	

other	encumbrances,	to	the	fullest	extent	permitted	by	law.	Licensee
and	Third	Party	use	

of	such	modifications	and	derivatives	is	limited	to	the	license	rights
described	in	Section	

1	above.	

(b)	Licensee	shall	have	no	right	to	sell,	assign	or	otherwise	transfer	all
or	any	portion	of	

the	Software,	Documentation	or	any	related	intellectual	property	rights
except	as	

expressly	set	forth	in	this	Agreement.	

5.	Termination	of	Agreement.	Without	prejudice	to	any	other	rights,	this
Agreement	

terminates	immediately,	without	notice	by	Microchip,	upon	a	failure	by
License	or	Third	

Party	to	comply	with	any	provision	of	this	Agreement.	Further,
Microchip	may	also	

terminate	this	Agreement	upon	reasonable	belief	that	Licensee	or	Third
Party	have	failed	

to	comply	with	this	Agreement.	Upon	termination,	Licensee	and	Third
Party	will	

immediately	stop	using	the	Software,	Documentation,	and	derivatives
thereof,	and	

immediately	destroy	all	such	copies.	

6.	Warranties	and	Disclaimers.	THE	SOFTWARE	AND
DOCUMENTATION	ARE	

PROVIDED	“AS	IS”	WITHOUT	WARRANTY	OF	ANY	KIND,	EITHER
EXPRESS	

OR	IMPLIED,	INCLUDING	WITHOUT	LIMITATION,	ANY	WARRANTY
OF	

MERCHANTABILITY,	TITLE,	NON-INFRINGEMENT	AND	FITNESS
FOR	A	

PARTICULAR	PURPOSE.	MICROCHIP	AND	ITS	LICENSORS
ASSUME	NO	

RESPONSIBILITY	FOR	THE	ACCURACY,	RELIABILITY	OR
APPLICATION	OF	

THE	SOFTWARE	OR	DOCUMENTATION.	MICROCHIP	AND	ITS
LICENSORS	DO	

NOT	WARRANT	THAT	THE	SOFTWARE	WILL	MEET
REQUIREMENTS	OF	

LICENSEE	OR	THIRD	PARTY,	BE	UNINTERRUPTED	OR	ERROR-

FREE.	

MICROCHIP	AND	ITS	LICENSORS	HAVE	NO	OBLIGATION	TO
CORRECT	ANY	

DEFECTS	IN	THE	SOFTWARE.	LICENSEE	AND	THIRD	PARTY
ASSUME	THE	

ENTIRE	RISK	ARISING	OUT	OF	USE	OR	PERFORMANCE	OF	THE
SOFTWARE	

AND	DOCUMENTATION	PROVIDED	UNDER	THIS	AGREEMENT.	

7.	Limited	Liability.	IN	NO	EVENT	SHALL	MICROCHIP	OR	ITS
LICENSORS	BE	

LIABLE	OR	OBLIGATED	UNDER	CONTRACT,	NEGLIGENCE,
STRICT	

LIABILITY,	CONTRIBUTION,	BREACH	OF	WARRANTY,	OR	OTHER
LEGAL	OR	

EQUITABLE	THEORY	FOR	ANY	DIRECT	OR	INDIRECT	DAMAGES
OR	

EXPENSES	INCLUDING	BUT	NOT	LIMITED	TO	INCIDENTAL,
SPECIAL,	

INDIRECT,	PUNITIVE	OR	CONSEQUENTIAL	DAMAGES,	LOST
PROFITS	OR	

LOST	DATA,	COST	OF	PROCUREMENT	OF	SUBSTITUTE	GOODS,	

TECHNOLOGY,	SERVICES,	OR	ANY	CLAIMS	BY	THIRD	PARTIES
(INCLUDING	

BUT	NOT	LIMITED	TO	ANY	DEFENSE	THEREOF),	OR	OTHER
SIMILAR	COSTS.	

The	aggregate	and	cumulative	liability	of	Microchip	and	its	licensors	for
damages	

hereunder	will	in	no	event	exceed	$1000	or	the	amount	Licensee	paid
Microchip	for	the	

Software	and	Documentation,	whichever	is	greater.	Licensee
acknowledges	that	the	

foregoing	limitations	are	reasonable	and	an	essential	part	of	this
Agreement.	

8.	Third	Party	Technology.	

(a)	This	software	is	based	in	part	on	the	work	of	the	Independent	JPEG
Group.	If	such	

software	is	provided	in	source	code	format,	then	the	applicable	license
terms	are	posted	in	

the	‘IJG	License.pdf’	file	which	can	be	found	in:	<Installed
Folder>\Microchip\Image	

Decoders.	

(b)	With	respect	to	the	uncompressed	GIFs,	the	Graphics	Interchange
Format©	is	

copyright	of	CompuServe	Incorporated	and	the	GIF(SM)	is	a	service
mark	of	

CompuServe	Incorporated.	

9.	General.	

(a)	Governing	Law,	Venue	and	Waiver	of	Trial	by	Jury.	THIS
AGREEMENT	SHALL	

BE	GOVERNED	BY	AND	CONSTRUED	UNDER	THE	LAWS	OF	THE
STATE	OF	

ARIZONA	AND	THE	UNITED	STATES	WITHOUT	REGARD	TO
CONFLICTS	OF	

LAWS	PROVISIONS.	Licensee	agrees	that	any	disputes	arising	out	of

or	related	to	this	

Agreement,	Software	or	Documentation	shall	be	brought	in	the	courts
of	State	of	

Arizona.	The	parties	agree	to	waive	their	rights	to	a	jury	trial	in	actions
relating	to	this	

Agreement.	

(b)	Attorneys'	Fees.	If	either	the	Microchip	or	Licensee	employs
attorneys	to	enforce	any	

rights	arising	out	of	or	relating	to	this	Agreement,	the	prevailing	party
shall	be	entitled	to	

recover	its	reasonable	attorneys'	fees,	costs	and	other	expenses.	

(c)	Entire	Agreement.	This	Agreement	shall	constitute	the	entire
agreement	between	the	

parties	with	respect	to	the	subject	matter	hereof.	It	shall	not	be	modified
except	by	a	

written	agreement	signed	by	an	authorized	representative	of	the
Microchip.	

(d)	Severability.	If	any	provision	of	this	Agreement	shall	be	held	by	a
court	of	competent	

jurisdiction	to	be	illegal,	invalid	or	unenforceable,	that	provision	shall	be
limited	or	

eliminated	to	the	minimum	extent	necessary	so	that	this	Agreement
shall	otherwise	

remain	in	full	force	and	effect	and	enforceable.	

(e)	Waiver.	No	waiver	of	any	breach	of	any	provision	of	this	Agreement
shall	constitute	a	

waiver	of	any	prior,	concurrent	or	subsequent	breach	of	the	same	or

any	other	provisions	

hereof,	and	no	waiver	shall	be	effective	unless	made	in	writing	and
signed	by	an	

authorized	representative	of	the	waiving	party	

(f)	Export	Regulation.	Licensee	agrees	to	comply	with	all	export	laws
and	restrictions	and	

regulations	of	the	Department	of	Commerce	or	other	United	States	or
foreign	agency	or	

authority.	

(g)	Survival.	The	indemnities	and	obligations	of	confidentiality	herein,
and	any	right	of	

action	for	breach	of	this	Agreement	prior	to	termination	shall	survive
any	termination	of	

this	Agreement.	

(h)	Assignment.	Neither	this	Agreement	nor	any	rights,	licenses	or
obligations	hereunder,	

may	be	assigned	by	Licensee	without	the	prior	written	approval	of
Microchip	except	

pursuant	to	a	merger,	sale	of	all	assets	of	Licensee	or	other	corporate
reorganization,	

provided	that	assignee	agrees	in	writing	to	be	bound	by	the
Agreement.	

(i)	Restricted	Rights.	Use,	duplication	or	disclosure	by	the	United	States
Government	is	

subject	to	restrictions	set	forth	in	subparagraphs	(a)	through	(d)	of	the
Commercial	

Computer-Restricted	Rights	clause	of	FAR	52.227-19	when	applicable,

or	in	

subparagraph	(c)(1)(ii)	of	the	Rights	in	Technical	Data	and	Computer
Software	clause	at	

DFARS	252.227-7013,	and	in	similar	clauses	in	the	NASA	FAR
Supplement.	

Contractor/manufacturer	is	Microchip	Technology	Inc.,	2355	W.
Chandler	Blvd.,	

Chandler,	AZ	85225-6199.	

If	Licensee	has	any	questions	about	this	Agreement,	please	write	to
Microchip	

Technology	Inc.,	2355	W.	Chandler	Blvd.,	Chandler,	AZ	85224-6199
USA,	ATTN:	

Marketing.	

Microchip	Graphics	Library	Software	Version	1.52	Copyright	©	2008
Microchip	

Technology	Inc.	All	rights	reserved.	

License	Rev.	(290808)

License	Agreements	>	Graphics

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home

Contents
Introduction
MCHPFSUSB	Device	Library

Function	Drivers
Communication	Device	Class	(CDC)
Public	API	Members
Functions	and	Macros
CDCInitEP	Function
CDCTxService	Function
getsUSBUSART	Function
putrsUSBUSART	Function
putsUSBUSART	Function
putUSBUSART	Function
USBUSARTIsTxTrfReady	Macro
CDCSetLineCoding	Macro
CDCSetBaudRate	Macro
CDCSetCharacterFormat	Macro
CDCSetParity	Macro
CDCSetDataSize	Macro

Definitions,	Constants,	and	Enums
NUM_STOP_BITS_1	Macro
NUM_STOP_BITS_1_5	Macro
NUM_STOP_BITS_2	Macro
PARITY_EVEN	Macro
PARITY_MARK	Macro
PARITY_NONE	Macro
PARITY_ODD	Macro
PARITY_SPACE	Macro

Variables
Depricated	API	Members
mUSBUSARTIsTxTrfReady	Macro

Files
usb_function_cdc.h
usb_function_cdc.c
usb_config.h
HardwareProfile.h

Human	Interface	Device	(HID)
Public	API	Members
Functions	and	Macros

USBCheckHIDRequest	Function
HIDTxPacket	Macro
HIDTxHandleBusy	Macro
HIDRxPacket	Macro
HIDRxHandleBusy	Macro

Definitions,	Constants,	and	Enums
Variables

Files
usb_function_hid.c
usb_function_hid.h
usb_config.h

Mass	Storage	Device	(MSD)
Public	API	Members
Functions	and	Macros
MSDTasks	Function
USBMSDInit	Function
USBCheckMSDRequest	Function

Definitions,	Constants,	and	Enums
LUN_FUNCTIONS	Structure
MSD_WAIT	Macro
MSD_DATA_IN	Macro
MSD_DATA_OUT	Macro
MSD_SEND_CSW	Macro

Variables
Files
usb_function_msd.c
usb_function_msd.h
usb_config.h

Vendor	Class
Public	API	Members
Functions	and	Macros
USBGenRead	Macro
USBGenWrite	Macro

Definitions,	Constants,	and	Enums
Variables

Files
usb_function_generic.c
usb_function_generic.h
usb_config.h

Stack
Public	API	Members

Functions	and	Macros
USBDeviceInit	Function
USBDeviceTasks	Function
USBGetDeviceState	Macro
USBGetRemoteWakeupStatus	Macro
USBIsDeviceSuspended	Macro
USBEnableEndpoint	Function
USBHandleBusy	Macro
USBHandleGetAddr	Macro
USBHandleGetLength	Macro
USBCBInitEP	Function
USBCBSuspend	Function
USBCBWakeFromSuspend	Function
USBCBCheckOtherReq	Function
USBCBSendResume	Function
USBCBErrorHandler	Function
USBCBStdSetDscHandler	Function
USBCB_SOF_Handler	Function
USBCBEP0DataReceived	Function

Definitions,	Constants,	and	Enums
DETACHED_STATE	Macro
ATTACHED_STATE	Macro
POWERED_STATE	Macro
DEFAULT_STATE	Macro
ADR_PENDING_STATE	Macro
ADDRESS_STATE	Macro
CONFIGURED_STATE	Macro
_DEFAULT	Macro
_RWU	Macro
_SELF	Macro

Variables	and	Types
USB_HANDLE	Macro

Files
usb_device.c
usb.h
usb_ch9.h
usb_common.h
usb_device.h
usb_hal.h
usb_hal_pic18.h
usb_hal_pic24.h
usb_hal_pic32.h

usb_config.h
HardwareProfile.h

License	Agreements
MCHPFSUSB
MDD	File	System
Graphics

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

USB	Device	Library	Help Contents	|	Index	|	Home

Index
_	|	A	|	C	|	D	|	F	|	G	|	H	|	I	|	L	|	M	|	N	|	P	|	S	|	U	|	V

_
_DEFAULT	macro
_RWU	macro
_SELF	macro

A
ADDRESS_STATE	macro
ADR_PENDING_STATE	macro
ATTACHED_STATE	macro

C
CDCInitEP	function
CDCSetBaudRate	macro
CDCSetCharacterFormat	macro
CDCSetDataSize	macro
CDCSetLineCoding	macro
CDCSetParity	macro
CDCTxService	function
Communication	Device	Class
(CDC)
CONFIGURED_STATE	macro

D
DEFAULT_STATE	macro
Definitions,	Constants,	and
Enums
Depricated	API	Members
DETACHED_STATE	macro

Public	API	Members
putrsUSBUSART	function
putsUSBUSART	function
putUSBUSART	function

S
Stack

U
usb.h
usb_ch9.h
usb_common.h
usb_config.h
usb_device.c
usb_device.h
usb_function_cdc.c
usb_function_cdc.h
usb_function_generic.c
usb_function_generic.h
usb_function_hid.c

F
Files
Function	Drivers
Functions	and	Macros

G
getsUSBUSART	function
Graphics

H
HardwareProfile.h
HIDRxHandleBusy	macro
HIDRxPacket	macro
HIDTxHandleBusy	macro
HIDTxPacket	macro
Human	Interface	Device	(HID)

I
Introduction

L
LUN_FUNCTIONS	structure

M
Mass	Storage	Device	(MSD)
MAX_LUN
MCHPFSUSB
MDD	File	System
MSD_DATA_IN	macro
MSD_DATA_OUT	macro
MSD_SEND_CSW	macro
MSD_WAIT	macro

usb_function_hid.h
usb_function_msd.c
usb_function_msd.h
usb_hal.h
usb_hal_pic18.h
usb_hal_pic24.h
usb_hal_pic32.h
USB_HANDLE	macro
USBCB_SOF_Handler	function
USBCBCheckOtherReq	function
USBCBEP0DataReceived
function
USBCBErrorHandler	function
USBCBInitEP	function
USBCBSendResume	function
USBCBStdSetDscHandler
function
USBCBSuspend	function
USBCBWakeFromSuspend
function
USBCheckHIDRequest	function
USBCheckMSDRequest	function
USBDeviceInit	function
USBDeviceTasks	function
USBEnableEndpoint	function
USBGenRead	macro
USBGenWrite	macro
USBGetDeviceState	macro
USBGetRemoteWakeupStatus
macro
USBHandleBusy	macro
USBHandleGetAddr	macro
USBHandleGetLength	macro
USBIsDeviceSuspended	macro
USBMSDInit	function

MSDTasks	function
mUSBUSARTIsTxTrfReady
macro

N
NUM_STOP_BITS_1	macro
NUM_STOP_BITS_1_5	macro
NUM_STOP_BITS_2	macro

P
PARITY_EVEN	macro
PARITY_MARK	macro
PARITY_NONE	macro
PARITY_ODD	macro
PARITY_SPACE	macro
POWERED_STATE	macro

USBUSARTIsTxTrfReady	macro

V
Variables
Variables	and	Types
Vendor	Class

Microchip	MCHPFSUSB	v2.3	-	Sept	20,	2008
Copyright	©	2008	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

	Introduction

