4.8.2 While °j°é ``` while °j°é¬O¥Î¦b·í°;"¬¬Y"DZø¥ó«h«½Æ°õ¦æ³°°â¦;;A¥¡³°µ²°c¦p¤U;G while expression command group A end "Ò¦p¡G sum = 0; k = 1; while x(k) \ge 0 & k \le length(k) sum = sum + x(k); k = k+1; end \P \cdot ^a \cdot N^{ao} \neg O | b^3] @w \pm \emptyset \$ \acute{e} n | \grave{O} \frac{1}{4} \{ \P g \$ \dot{p}_i A \S _ \ \ \ \langle h \cdot |^2 \pounds \$ \acute{l} \mu L^a k \mu^2 \S \hat{o}^{ao} \circ j^o \acute{e}_i C \} '¹¥~ÁÙ'³¤@Ó break ao«ü¥O¡A¬O¥Î"Ó¸õ¥X°j°é;A¥i¥H¥Î¦b¤Wzao for, while aou2oc¤¤;C"Ò'p;G >> num=0; EPS=1; % ³oÓ¨Ò¤l¬O§ä¥XMATLAB¥ip°â¨ì³Ì¤p^{ao}¥¿È >> for num=1:1000 % EPS±q1p°â°_¡A¹w³]np°â¦¸¼Ænum¬° 1000 EPS=EPS/2; % "C', ±NEPS'î¤Ö¤@¥b ``` $if (1+EPS) <= 1 \% pº\^a"i³\grave{l} «á³¹⁄₂"ìEPS¤Ó¤p"\"I±o 1+EPS ¤p©\'oµ¥©\'o 1$ break % ¦pªG°¡¨¬¤Wz±ø¥ó§Y¸õ¥X°j°é end end >> EPS, num >> EPS = 1.1102e-016 >> num = 53 ¤W¤@¶¡@¤U¤@¶¡@Á¿¸q¤j°õ ### 4.8.1 For ``` for for index = array command A end (d) 10 v) if d \le 10, v = 0.425 + 0.0175d^2 if d > 10, v = 0.625 + 0.12d - 0.00025d^2 d for >> for k = 1:length(d) if d(k) \le 10 velocity = 0.425 + 0.00175*d(k)^2; else velocity = 0.625 + 0.12*d - 0.00025*d(k)^2; end fprintf('d= %f velocity= %f\n',d(k),velocity) end >> for n=1:10 ``` ``` x(n)=\sin(n*pi/10); end >> disp(x) >> for n=1:5 for m=5:-1:1 A(n,m)=n^2+m^2; end disp(n) end >> disp(A) for >> n=1:10; >> x=sin(n*pi/10); for 1. for (index) k=1:0 2. array k=1:1 3. array k=1:b, b=[1 3 5] 4. array k=1:B, B=[1 2; 3 4] 5. array for k = first:increment:last first, increment, last 6. for floor((last-first)/increment)+1 ``` ### $^{2}\ddot{A}^{2}$ 1 1 2 u $^{2}\ddot{E}$ 1 1 4 2 #### ¤uµ{°ÝÃD¬D¾Ô¡R¤HÅé°ò¦]¸ÑŪ ¥H¯x°}¤è¦¡«Ü¾A¦Xªí¥Ü¤uμ{¤Î¬ì¾Çªº¼Æ¾Ú¡A¦Ó¦b«e±´X³¹§Ṳ́]¬Ý¹L»P¯x°}¬ÛÃö^{ao}¹B°â¨ç¼Æ¤Î«ü¥O¡C¦b³o³¹ §Ú̱ΝμÛ«©ó¤¶²Đ±N¯x°}μø¬°³æ ¤@¹ï¶H^{ao}¹B°â¨ç¼Æ¤Î«ü¥O¡A¦Ó¦³§O©ó«e±´X³¹ao¨ç¼Æ¤Î«ü¥O¥u¬O°w¹ï¯x°}¤° «Ó§O¤¸¯À°μ¹B°â¡C $\label{eq:continuity} $$ \frac{b^3o^{31} \cdot E^{"}}{u} = V^{\circ} \hat{A} - D^{3}\hat{O}_{i} = H^{\circ} \hat{O}_{i}^{\circ} \hat{A}^{\circ} \hat{O}_{i}^{\circ} \hat{A}^{\circ} \hat{O}_{i}^{\circ} \hat{A}^{\circ} \hat{O}_{i}^{\circ} \hat{A}^{\circ} \hat{O}_{i}^{\circ} \hat{A}^{\circ} \hat{O}_{i}^{\circ} \hat{$ ½Đ°Ñ¦Ò¦³Ãö<u>¤HÅé°ò¦]³°¤¶²Đ</u>¡C - ${}^{2}\ddot{A}^{31} \frac{1}{2}u @ \hat{E} Y N 4 A P x^{\circ}$ - $\circ 5.1 x^{\circ} B^{\circ} \hat{a}$ - $\circ \ 5.2 \, \tfrac{1\!/2}{d^{\prime\prime}} \grave{O}^{\circ} \acute{Y} \tilde{A} D_{\dagger} G^{3} J \underbrace{\tilde{O}^{1\!/2}} \grave{e}^{ao} \underline{\overset{\circ}{a}} \grave{A} \underline{\overset{\circ}{a}} \underline{\overset{\overset{\circ}{a}} \underline{\overset{\circ}{a}} \underline{\overset{\overset{\circ}{a}}} \underline{\overset{\overset{\overset}{a}}} \underline{\overset{\overset{\overset{\overset{\overset}{a}}{a}}} \underline{\overset{\overset{\overset{\overset}{a}}{a}}} \underline{$ - 5.3 <u>x</u>°}"c½Æ ¤W¤@¶¡@¤U¤@¶¡@Á¿¸q¤j°õ #### **ME116** o 1.1 · 1.2 · 1.3 /_ <u>MATLAB</u> • 2.1 <u>MATLAB</u> o 2.2 ■ 2.2.1 <u>MATLAB</u> **2.2.2 2.2.3 2.2.4** · 2.3 o 2.4 _____ **2.4.1 2.4.2 2.4.3 2.4.4 2.4.5** · 2.5. · 2.6 **2.6.1 2.6.2** • 2.7 <u>MATLAB</u> **2.7.1** · 2.8 0 2.9 o 2.10 · 3.1 **3.1.1 3.1.2 3.1.3 3.1.4 3.1.5** ``` 3.1.6 · 3.2 3.1.1 3.1.2 MATLAB --- · 4.1 4.1.14.1.2 4.1.3 4.1.4 · 4.2 4.2.14.2.2 4.2.3 · 4.3 4.3.14.3.2 <u>if-else-end</u> o 4.4 ___ 4.54.6 4.6.14.6.2 · 4.7 · 4.8 4.8.1 For4.8.2 While o 5.1 5.1.15.1.2 o 5.2 ___ o 5.3 5.3.1 _5.3.2 _5.3.3 _ ``` -- - 6.16.2 - · 7.1 - **7.1.1** - **7.1.2** - 7.1.3 <u>Spline</u> - o 7.2 ____ - o 7.3 - **7.3.1** - **7.3.2** - **7.3.3** - · 8.1 - · 8.2 - --- - o 9.1. - 9.1.1 - 9.1.2 - o 9.2 ___ - · 9.3 - 9.3.1 - 9.3.2 - o 10.1 - · 10.2 <u>-</u> - · 10.3 _ - · 10.4 - o 11.1 - **11.1.1** - **11.1.2** - **11.1.3** - o 11.2 - **11.2.1** - **11.2.2** - o 11.3 - 11.3.111.3.2 - o 11.4 ___ - o 12.1 - **12.1.1** - **12.1.2** - o 12.2 - 12.2.112.2.212.2.3 - 12.3 - 0 12.4 - 12.4.1 IIR 12.4.2 IIR 12.4.3 FIR - o 12.5 :___ - · 13.1 - 13.1.1 13.1.2 <u>-</u> - 13.1.3 - · 13.2 - 13.3 - 13.3.1 <u>Bode</u>13.3.2 <u>Nyquist</u> - **13.3.3** - **13.3.4** - · 13.4 ___ ## 4.8.2 While °j°é ``` while °j°é¬O¥Î¦b·í°;"¬¬Y"DZø¥ó«h«½Æ°õ¦æ³°°â¦;;A¥¡³°µ²°c¦p¤U;G while expression command group A end "Ò¦p¡G sum = 0; k = 1; while x(k) \ge 0 & k \le length(k) sum = sum + x(k); k = k+1; end \P \cdot ^a \cdot N^{ao} \neg O | b^3] @w \pm \emptyset \$ \acute{e} n | \grave{O} \frac{1}{4} \{ \P g \$ \dot{p}_i A \S _ \ \ \ \langle h \cdot |^2 \pounds \$ \acute{l} \mu L^a k \mu^2 \S \hat{o}^{ao} \circ j^o \acute{e}_i C \} '¹¥~ÁÙ'³¤@Ó break ao«ü¥O¡A¬O¥Î"Ó¸õ¥X°j°é;A¥i¥H¥Î¦b¤Wzao for, while aou2oc¤¤;C"Ò'p;G >> num=0; EPS=1; % ³oÓ¨Ò¤l¬O§ä¥XMATLAB¥ip°â¨ì³Ì¤p^{ao}¥¿È >> for num=1:1000 % EPS±q1p°â°_¡A¹w³]np°â¦¸¼Ænum¬° 1000 EPS=EPS/2; % "C', ±NEPS'î¤Ö¤@¥b ``` $if (1+EPS) <= 1 \% pº\^a"i³\grave{l} «á³¹⁄₂"ìEPS¤Ó¤p"\"I±o 1+EPS ¤p©\'oµ¥©\'o 1$ break % ¦pªG°¡¨¬¤Wz±ø¥ó§Y¸õ¥X°j°é end end >> EPS, num >> EPS = 1.1102e-016 >> num = 53 ¤W¤@¶¡@¤U¤@¶¡@Á¿¸q¤j°õ ## $^{\circ}\dot{\mathbf{o}}^{\dagger}_{1}$, $\mathbf{t}^{3}4\hat{\mathbf{O}}$ ($\mathbf{\mu}^{2}$ $\mathbf{t}^{2}\mathbf{y}$) #### $\hat{\hat{y}}_{i}^{\dagger}\hat{\mathbf{U}}^{"\circ}\hat{\mathbf{o}}_{i}^{\dagger}]_{s}t^{3}\hat{\mathbf{O}}^{"},$ ¤ $\hat{\mathbf{N}}$ ¤ $\mathbf{U}\mathbf{Y}\mathbf{X}^{a}\mathbf{\mathbb{C}}^{a}\hat{\mathbf{A}}$ ¤¶²Đ¤@³ù¤´¦b§Ö³tμo®i¤¤³º¬ì¾Ç;A¹ê¦b¬O¥ó¦³¨Ç«_ÀI³ºÃø¨Æ;C ¤j³;¤À¬ì¾Çμo©ú³£¬O¥Ñ¥@¬É¦U¦a³º¬ì¾Ç®a;A'b¤£¦P®É¥N¤@ÂI ¤@⁰w¿n²Ö¦Ó¦¨³º¡C¦³¤@ÂIˬO±q¨Ó¤£ÅÜ;GÆ[¹î¬ì¾Çμo®i³º·í ¥Nμû½×³Ì;A§Y«K¬O¬ì¾Ç®a¦Û¤w;A¦b§PÂ_²³¦h¬ã¨s³⁰«n©Ê®É;A¤]§K¤£¤F·| ¥Ç¿ù¡X;X©¿²¤¤F¤é«á³QÃÒ©ú¬°«D±`«n³⁰¨Æ¥ó;A¦Ó¹L¤À±j½Õμo®i¦³³⁰®Ç¤ä ¥½¸`¡C¥u¦³¦b³\¦h¦~«á;A¾ú¥v¾Ç®a¤~¯à¦^ÅU³Ì»ô³Æ³°¸ê®Æ;A°ë½T«ü ¥X;A¦b¬Y¶μ¬ì¾Ç¬ð¯}¤¤;A¬Oþ¤@¨Ç¯S®í¹êÅç¥H¤Î¬ì¾Ç®a§ê°t¤FÃöÁä¨ ¤¦â¡C¸ÜÁö¦p¦¹;A¦³®É¨ÌμM·|¥X²{¤@¨Ç«¤j¬ì¾Ç¬ð¯};A¹ï¤HÃþåÀ·|³y¦¨·¥ ¤j½ÄÀ»;A¦Ó¥ß¨è´NÅã²{¥X¥¦Ì³⁰«n©Ê;CÂǥѥ¿§Ö³tµo®i³⁰·s¿³¾Ç³ù;X;X¤À ¤l¿ò¶Ç¾Ç;]molecular genetics;^;A¨Ó©w¦ì¨Ã¿ëÃѤHÅ餰³°·CÓ°ò¦];A´N¬O² ´«e³Ì¦n³°¨Ò¤l;C #### "ü§N¸"ao¬ã"s "S^{'3}¥ô¦ó¤H¡A¯à·Ç½T»¡¥X¦b¹L¥h¤Q¤¦~¶¡¡B¦"¦Ê^{ao}¹êÅ礤¡Aþ"Ǥ~¬O¯u¥¿°V¶} $YN^{z}(A;A') = (a^{-1}A^{-1}$ ¸§Ö¼W³ø¡F¦p¤μ¡Aμο²{·s°ò¦]³ο³t«×«h´X¥G¥H´X¦ó¯Å¼Æ¦¨³ø¡CμM¦Ó¡A³o¨Ç·s $XXA^{a^0} \otimes W^{a^3} \otimes O^{a^1} \otimes A^{a^1} \otimes A^{a^1} \otimes O^{a^1} O^$ $f^{a}(3a^{a}) = f^{a}(3a^{a}) + f^{a}(3a^{a}$ ¤î¡A©Ò¦³Ãö©ó¡u¦ó®É¯à§ä¥X¤HÅé¨CÓ°ò¦]¡v^{ao1}w´ú¡A¥þ³£μυμø^{ao}§½-¦b;u¦pªGμο®i¥X¬Y¶μ©l®Æ¥¼ ¤Ĵao¤À¤l¿ò¶Ç·s§Þ3N;v»q±¥´Âà;C¤Q¤¦~«e;A $\mathbb{P}[\mu \rightarrow i 4 \mathbb{Q}] = i 4 \mathbb{Q}$ $°o'_i]'_ia^i\ddot{I}_iA'_ip^{\mu}\neg\acute{Y}"\acute{O}_iA^{1/4}\cancel{E}^{\mu}Q'_i\sim^{\mu}^{0}\S Y \\ ¥i\S^{1}_i"_iC \acute{A}\ddot{o}\mu M\cdot s°o'_i]^{ao}\mu o^{2}\{\pm q"\acute{O}'N^{\mu}E^{\mu}\}_{i}^{a}(a^{\mu})^{\mu}$ ʹ¿³Qμø¬°¯¦±K;A¦ýªÀ·|¤j²³«ο¥¼ª`·N¨ì¥¦Ìªº«n©Ê;A¬Æ¦Ü¥¼¤©¥HÆg¬ü;C¦p ¦P $\alpha G_{\infty}^{\prime} = 3^{\circ} A^{\circ} A^{\circ} = 3^{\circ} A^{\circ} A^{\circ}$ ¤§®Èao¬ã¨s¤W¡A«Ü¤Ö¤H¦³®É¶¡©Î¦³·NÄ@¸ó¥X¹êÅç«Ç¡A«ä¯Á³o¶µ¬ã¨s ¥i¯à³y¦¨ao«¤j¼vÅT¡C¦Ó¥B¡A³o¨Ç·sµo²{¤]ÂA¤Ö¯àÀ¸¼@¤Æaoµn¤W¬ü°ê ³ø¯ÈÀY±ø¡A©Î¨ü¨ì¤½^{23a}`¥Ø¦Ó¤Þµo³§ÅG¡C ¤@¤E¤K¤T¦~¡A³oÓ∙s¿³¾Çªùª°²Ä \mathbb{Z}^{0} \mathbb{Z}^{1} \mathbb{Z}^{0} °ò¦]¡A´¿,gµn¤W¥þ¬ü³ø¯ÈÀYª©¡A¦P¼Ëªº¡A¤@¤E¤K ¤C¦~μο²{¦Ù¦×μäÁY¯g¡]muscular dystrophy¡^a°P¯f °ò¦]¤]¬O¦p¦¹¡C #### ¥Ía«§Cµ¥¤H¡H $\square @\square E\square K\square E' - \square \S «\acute{a}; A¥\~N @\acute{o}\muo^2 \{°o',]^{ao_3}t «×·U"\acute{O}·U\S\ddot{O}; A', \ddot{U}\square\ddot{O}', [³\square @',]^3 »', v\square A\square I$ $Y^{a} = \frac{1}{2} W' u' G = \frac{3}{4} C = \frac{1}{4} W' u' G = \frac{3}{4}
C = \frac{1}{4} W' u' G = \frac{3}{4} C = \frac{1}{4} W' u' G = \frac{3}{4} \frac{$ $;A^{13}\neg O"M@w''4^-$ à $;B';a=\circ;A\neg A';U';u^{1}4O;BAA^{3}N@lAe"|§P$@^{ao\circ}o';];C;u';b§U'»{¬°}$ °ò¦];C;v»;³o¸Ü^{ao}¬O¬ü°ê²Ä¤@¬y ^{ao}¤À¤l¥Ía«¾Ç®a·Å§B®æ;]Robert $We in berg; ^{\uparrow}CYL^{1}w'u; A \neg i^{3}4Q \otimes a \pm N\tilde{A}O^{1}\hat{e}^{"}M \otimes w' \otimes a \neg \circ ^{-}S \otimes \hat{E};] "O'|p \otimes @'_{1}\pm p \sim -a; ^{ao\circ}O' \otimes a \neg \circ ^{-}S \otimes \hat{E};] "O'|p \otimes (a) \otimes$ ¦]¡A¦³¤»¨ì¤@¥´¤§¦h¡C¡u©;®É¡A¦³Ãö¥ý¤Ñ©Î«á¤Ñ¡Aþ¼Ë¹ïÓ¤H¼vÅT¤ñ¸û ¤j^{ao}ÅG½×;A°¨¤W´N·|¦]¬°¤@¹D¥b·s^{ao} ÀÆ¥ú;A¦Ó¹ý©³§áÂà;C;v \cdot Ŭf®æ¬OÃh®ü¼w¬ã"s©Ò;]Whitehead Institute;A¦ì©ó³Â¬Ù²z¤u¾Ç°|ao $\square @ \bigcirc D_{\mu} U^{\dagger}W^{ao} \square A^{\mu} = A^{\mu} A^{\mu} + \alpha G^{\mu} - \alpha G^{\mu} - \alpha G^{\mu} + \alpha G^{\mu} - \alpha G^{\mu} + \alpha G^{\mu} - \alpha G^{\mu} - \alpha G^{\mu} + \alpha G^{\mu} - G^{\mu$ $\pm \acute{O}$ ³/U^{ao} $\neg i$ ³/C[®]a; A¹/ \acute{O} ¥B \square] $\neg O$ ³i¹/4~ \square ß; u°o¹/i³/2©w§ \acute{Y} ³/4C²`»·i⁴vÅT; v^{ao} \square À ¤l¿ò¶CÂå®v¤§¤@;A¥L¤jÁn¯e©I;G°ò¦]Ų©w¬ì¾C¹ï©óªÀ·|±N²£ ¥Í;u»G»k©Ê;v^{ao}½ÄÀ»;C "ä¹ê¦b¤@¤E¤K¤E¦~¤U¥b¦~;A¦n"ǪÀ·|¹D¼w¾ÇªÌ¤w¶} $@l^{\circ}Q^{1/2} \times \text{$$L$} L^{ao} \acute{A} \acute{o}^{1/4} \sim : G \mathring{A}^{2} @w^{\circ} \acute{o}^{!} \\ \text{$$|$$} b^{3} N \text{$$$$$$$$$$$$$$!} '' \acute{O} \cdot |\text{$$\underline{\alpha}$} \pounds \cdot |^{3} D^{3} V \text{$$$$$$$$$$$$$$$$} X \text{$$\underline{\alpha}$} @^{\circ} \mathscr{O} \cdot s^{aoa} \grave{A} \cdot |\P \rangle$ ¥¯Å¡A©Ò¿×¡u¥Ía«§Cµ¥¤H;v;]biological underclass;^¡H3QÅ2©w¥X $\pm a^{1/3} \cdot \hat{O} \mathbb{C} \mathbb{R} z \hat{A} I^{ao} \times H \cdot A \times i^{-} \hat{a} \cdot | \ddot{u} \cdot \hat{I} + Y D^{aoa} [\mu \emptyset : A \times I]$ ¥i¯à¦b§ë«OÂåÀøÀI©Î¹ØÀI®É¡A§xÃø««¡C¨Ò¦p¡A¤@¯ë°Ó·~¾÷°c¦ÛµM¤ñ¸û¤ £Ä@·N¶±¥Î®e ©ö¥Í¯fao¤H;A¦]¬°··o·|©ï°a¥ø·~¥D©Ò»Ýt¾áaoo·«O¶O¥Î;C©Ò¥H ¥ø·~¥D¦b¶±¥Îû¤u«e;A¥i¯à·Q¥ýÀˬd¥LÌao¿ò ¶ÇÅé½è;C¹D¼w®a̤@°}¼Tù¼M³â«á¡A³Đ¥X¤F´XÓ´dÆ[¦Wµü¡A¹³¡u¿ò¶Çª[µø¡v¡B¡u¿ò¶Çì¦]¤£¿ý¥Î¡v¡A¥H ¤Î¡u¿ò¶Ç ¼ĐÅÒ¡vµ¥¡C¦Ó¥B¡A¥L̤]¶}©l©IÆ~¬ì¾Ç®a¨«¥X¹êÅç«Ç¡A¦n¦n #### ¤HÃþ°ὸ¦]¸ÑŪpμe ¦b¬ì¤Û¤p»;;]©Î¦Ü¤Ö¬O¤UÓ¥@¬ö;∧¤¤¸Ñ¨M³o¨C¹w´ú;A¥i¯à¬O»´¦Ó©öÁ∣ ao"Æ;C"ƹê¤W;A¤HÃb°ò¦]aoµo²{³t «×;A§Ö±o¥O¤À¤l¿ò¶C¾Ca̦b¤¦~«e³£¤£ $'\pm !p!^{11}w'\acute{u};C^3o"C\neg i^34C@a^2\{!b\P\}@lE\sim !/2Dau\cdot \sim \circ e^{ao\circ}e\cdot |@M\ddot{A}^3\cdot |XX\pm ;A|"YBa@ \acute{O}^{!32} \~O\^A^{'aoo}\^e *\acute{U} @\^E^{3/4} \div o_{C} A \pm M^3 d_{c} "\~A @w_{i} "A @w_{i} "A \acute{E} \acute{E}$ pue;vuo©úì¤l¼u;A;uªüªiùpue;v °e¤H¤W¤ë²y;A;u¤HÃþ°ò¦],ÑŪpue;v;]Human Genome Project;Λ^{ao}¥Ø^{ao};AμL«D¬O¾"§Ö¬°¤,U"ì¤Q,UÓ;]¹w¦ô ^{ao};^¤HÅé°ò¦];Aø¥X¤@±i°ò¦]¦a¹Ï¨Ó;C μL½×³o¶μø»s¤HÅé°ò¦]aopμe;A¬O¥Ñ¦U $°\hat{e}\neg F @^2|@\acute{A}_{\cdot}^2 \pm \acute{A}|^{ao} \Psi_{\dot{e}}|_{\dot{f}}^2 \\ ?\hat{O}\hat{A}'"\acute{O} \Pi|_{\mathcal{B}_{\dot{f}}} \\ A@\hat{I} \neg O\tilde{A}P'^{2ao}\acute{O} \\ \S O \neg \tilde{a}"s_{\dot{f}}A|_{\dot{b}} \\ \# O \tilde{A}P \otimes \hat{A} \\ + \hat{A} \otimes \hat{A} \otimes \hat{A} \\ + \hat{A} \otimes \hat{A} \otimes \hat{A} \otimes \hat{A} \\ + \hat{A} \otimes \hat{A} \otimes \hat{A} \otimes \hat{A} \otimes \hat{A} \otimes \hat{A} \otimes \hat{A} \\ + \hat{A} \otimes \otimes$ $^{\circ}$; $A = ^{\circ}$; $A = ^{\circ}$; $^{\circ}$ °ò¦]¦a¹Ïªº§Þ³N¡A¤£¥i¯à¹³±`¦~µo©ú¨T¨®¡B¾÷Ãö°j©Îì $\alpha l^{1/4}u^{-}\ddot{e}; A\ddot{u}\ddot{A}\ddot{A} \times a^{aoa}\dot{v}AZ; A^{-} - a^{oa}\dot{v}AZ; a^{oa$ $p_{\alpha} = p_{\alpha} p_{\alpha$ ¥i¯àaoμo®i¼ç¤O¡C ø»s¤HÃþ°ò¦¦¦a¹Ïaoρμe¡A¨ä¹ê¥u¬O¤@¶μ¦¦b¤@¤Ε¡³;³¦~′N $|x| = |x| \le |x|$ $\Psi \otimes \neg \ddot{o}^{ao1}F^{o}$, $\ddot{a}^{3}4C$ »; A^{b}_{a} W « \ddot{u} Y \dot{O}^{a} « $\dot{A}\dot{e}^{ao0}$ d A^{c}_{a} ±"îÀô¹Ò;A«O¯d¦³§U¦s¬;ao¤ÑµM¬ðÅÜ;A"Ã¥h°£'³®`¦s¬;ao¬ðÅÜ;A«h´Óa«"| $^{\circ}$ Q^{ao3} t«×± $N^{\alpha}Q^{\alpha}A$ § \ddot{O}^{3} t; C^{2} $\omega\mu L^{\circ}\ddot{A}^{\circ}\dot{Y}$; $A'b^{\circ}\dot{O}'$,~ ${}^{4}N$; $A^{\circ}\mu^{\alpha}+{}^{4}\dot{A}^{ao}$ · $i\mu M^{\alpha}$]·[§ $\hat{a}'_{i}\hat{U}$ v^{ao} S©Ê ψ^{1} pl v^{1} pl v^{1} k v^{1} X v^{2} S© v^{3} O v^{3} O v^{2} S v^{2} P v^{1} P v^{3} P v^{2} P v^{3} P v^{2} P v^{3} £°â¬O·s»D;A¦ý¬O«o¤Ö¦³¤H¥h«ä¦Ò ¨ä¤¤ì©e;C #### ¦^∙¹¿ò¶Ç¾Ç^{ao}¾ú¥v $\mathbb{Z}_{\mathbb{Z}} = \mathbb{Z}_{\mathbb{Z}} =$ 'μ; |Karl Correns; A 1864 ; X1933; ^; B¶ø°êao¯ao¨§J; |Erich von Tschemak; ^¥H ¤Î²üÄõao}«Â§Q´μ;]Hugo De Vries;A1848;X1935;^;A ÁöµM¦U¦Û®IÀY¬ã¨s¡A©¼¦¹¤¬¤£¬ÛÃÑ¡A«o³£¦P®Éµo²{¿ò¶Ç¯S©Êì¨Ó¬O¥H ¤@ºØ©ú½T¤S¥i¥H¹w´úaº¼Ò¦;¦b¹B¦æµÛ¡C ³o¶µ¼Ò¦;ÃÒ©ú;G©Ò¦3¤l¥N©ÒÀò ±o^{ao}¿ò¶Ç¯S©Ê³£"Ó¦Û"âÓ¿ò¶Ç³æ¦ì¡A¦Ó³o"âÓ¿ò¶Ç³æ¦ì¥¿¤À§O"Ó¦ÛÂù¿Ë¡C ¤T $^{\alpha}H^{\alpha}E^{-}u'O'P_{i}A\pm \ddot{A}\ddot{u}^{\alpha}Q^{\mu}\pm q'^{13}Q^{-}i^{34}Q^{-}\dot{E}^{a}u^{2}a'^{a}\otimes \hat{E}_{i}X_{i}X_{i}^{2}b\pm ^{2}M^{-}d'O^{a}\otimes ^{4}Q^{1/2}\times \hat{E}^{a}u^{2}a'^{a}\otimes \hat{E}_{i}X_{i}^{2}X_{i}^{2}$ ¤å;Cμ²aG¥LÌμο²{;A'',b¤@¤K ¤»¤»¦~;A¶ø¦a§Q¯«¤÷©s¼w°;;]Gregor Mendel, 1822-1884;^´N¤w,guo³í¹L¦P¼Ë³°¬ã¨su²³G;A¥u¬O¤j³;¥÷¾ÇªÌ ³£¤£³¾¹D¦Ó $\texttt{ww}_i C @ \acute{o} \neg O_i A \texttt{w} T \texttt{w} H^3 £ \ddot{A} \pm \pm o_i \texttt{y}_i q° \grave{E} \$ \hat{a}^3 o \P \mu^o a \ddot{A} \pounds \hat{A} k \mu^1 @ s^1 4 w^o, i A \$ \hat{a} Y_i^{1aoi} W_i' r \pm 3 4 \texttt{w} W has a sum of the o$ $prile F^{1/2} \times prile F^{0} : C^{pr} + A^{pr} = prile F^{1/2} \times prile F^{0} = prile$ ¤v¬O¦p¦ó«ö·Ó©s¼w°¸©w«ß;]Mendelian Law;^¿ò¶Ç"ì¶ý¶ýa°′IJ′;A©Î $\neg O^{a - a - a \circ o} \tilde{N}^{2'}; C = @ E_{i}^{3} | - A - \ddot{u}^{o} = 1^{3} C = A \ddot{A}^{1}y; Walter$ $Sutton_{i}^{h}\mu^{o^{2}}\{iA@\grave{O}_{\dot{c}}\times^{-}\text{``}_{\dot{a}}^{-}i^{ao}_{\dot{c}}\grave{O}^{q}Q^{3}\text{''}_{\dot{a}}^{i}i_{\dot{a}}A\grave{i}^{\dot{a}}\hat{O}A\tilde{A}_{\dot{a}}^{\dot{b}}\hat{O}M@\ddot{O}\grave{u}O^{a}_{\dot{a}}^{\dot{a}}\ddot{u}\tilde{A}^{3}\text{''}_{\dot{a}}z^{aoo}_{\dot{a}}c^{3}y^{a}\text{''}_{\dot{a}}$ ¡C³o°Ø°c³y³«³Q°Ù¬°;u¬V¦âÅé;v;]chromosome;^;A³oÓ¦W¦r·½¦Û§ÆÃ¾¤å³°;u ±m¦âÅé;v;A¦]¬°¬ì¾Ç®a¥²»Ý¥ý¥Î¯S®í¬V®Æ¬V¦â«á;A¤~¯à¦bÅã·LÃè ${}^{\square}U \pounds [{}^{1}\widehat{\mathbf{i}} \ {}^{"}\widehat{\mathbf{i}} {$ $\Psi u \circ \dot{U}^{a \cdot a \cdot a \cdot c} = A \Psi t \circ \dot{U} \cdot \dot{U}$ Johannsen, 1857-1927 ¡^®Ú¾Ú§ÆÃ¾¤å;uµ¹¤©¥Í©R ;v¤§¸q;A³Đ³y¤F°ò;] ¡]gene;^³oÓ¦Wμü;A¨Ó°Ù©I¨°¨Ç¥Ñ¬V¦âÅéÄâ±a°°;B¬Ý¤£¨£°°¿ò¶Ç³æ¦ì;C¦Û±q $\mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}} = \mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}} \times \mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}} = \mathbb{Z}^{\mathbb{Z}} \mathbb{Z}^{\mathbb$ ¤@¤E¤T¤T¦~¿Õ¨©°¸¥ÍÂå¼ú±o ¥D;^®i¶} $\mu \hat{\mathbf{U}} | \mathbf{W}^{aoa} \mathbf{G} \tilde{\mathbf{A}} \mathbf{C} - \mathbf{V} | \hat{\mathbf{a}} \hat{\mathbf{A}} \hat{\mathbf{e}} - \tilde{\mathbf{a}} \cdot \mathbf{s} \cdot \hat{\mathbf{a}} + \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} = \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} = \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} = \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} = \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} \cdot \hat{\mathbf{A}} = \hat{\mathbf{A}} \cdot \hat$ \^a;C¤j®a«Ü§Ö´Nµo²{;A¥Ía« Å餰´X¥G"C¤@¶µ¥Í¤Æ¯S©Ê3£¬O¥Ñ°ò¦]©Ò± \pm "î;C'«¥y,Ü»;;A°ò¦]²ª½'N¬O¥Í©Rª°°ò¦;C"ì¤F¤@¤E¥|¤@¦~;A"â¦ì¬ü °ê¬ì¾Ç®a²¦¦h¡]George W. Beadle,1903-1989;^¤Î®õ©Z;]Edward L. Tatum,1903-1975,»P²¦¦h¦PÀò¤@¤E¤ ¤K¦~¿Õ¨©°、¥ÍÂå¼ú;^µo²{¡A°ò¦]ªº¥ \^a¦b©ó»s³y©Ò¦³¥Í©RÅ骰°ò¥»µ²°c;X;X³J¥Õ½è;A¨Ò¦pt³d¶Ê¤Æ¥Íª«Åé«í ʹΧ¶μ·m²´aºμο²{¤§¥~;Α°ὸ¦]aº¥»½è¦b·í®É"̬O¤@¹DÁ¼;C"S¦³¤Ha¾¹D°ò¦]aø¤ °»ò¼Ë¤l¡B¦p ¦óµo´§¥\¯à¡A¤]¨S¤H³¾¹D²ÓM«ç¼Ë½Æ»s¥¦a°°ò¦]¡A ¥H«K§¹¾ãª°¶Çµ¹¤l¥N²ÓM;C¤£¹L;A¤@¤E¥|;³!~¥N¤w¦æ³\¦h ·sµo²{Åã¥Ü;A $°o'_{1}] \neg O ¥ \tilde{N}^{2} \acute{O} M @ \ddot{O} \Box ^{oao} \neg Y^{o} Ø » \ddot{A} @ \hat{E}^{a} «\frac{1}{2} \grave{e} @ \grave{O}^{o} c_{1}^{i \cdot ao}; C ¥ \tilde{N} @ \acute{O}^{3} o^{o} Ø @ \ddot{O} » \ddot{A}_{1}^{i} b ¥ h @ \tilde{n} @ \ddot{O}_{2} \}$ ### ~~¦ÂùÁ³±Û $\circ o' = 0$
Crick,1916;X;^\\\alpha\bar{1}'\alpha\cdot'\alpha\seq^\alpha\cdot'\ 1928;X;A»P§J"½§J¦PÀò¤@¤E¤»¤G¦~¿Õ"©°¸¥ÍÂå¼ú;^¤@¦Pµo²{¤F¢Ò¢Ü¢Ï aoa « 2 z μ^{2o} c $_i$ C 1 iaoo c 3 y« \ddot{U}^{13} ia @ \acute{O} iao \acute{A} iao \acute{A}^3 iao $YDÅ\acute{e}; A^a \phi \tilde{A}^a \Pi; C^1 \phi \phi p - q \tilde{A} \div NYH \phi \phi \hat{A}^{23} e^{ao} \dot{A} \approx 1 - \hat{U}^3 s; A \mu S \cdot p \pm e^{ao} \hat{A}^2 \hat{A}$ ¤ì;C"C®Ú¾î¤ì"ä¹ê¬O¥Ñ"âӬ۹类ÖÆP°ò;]©Î²ºÙÆP°ò;A¤]ºÙÆQ °ò;^©Ò°c¦";C³Ì«á;A¦A§â¾ã±ø±è¤l§áÂà¦"ÂùÁ³±Û;CÆP°ò¥u¦³¥|ºØ;A¤À§O¬O、 ¢áIËï; |¢Ï, adenine; B Ý, ¢áIÔr; |¢â, thymine; B 3¾ÁTáIËï; |¢Õ, guanine; D 4. $M\acute{a}I\^{O}r;]$ $^{\circ}N$, cytosine; $^{\circ}C'_{\circ}V$ $^{\circ}O_{\circ}A^{\circ}C^{\circ}N^{\circ}$ $^{\circ}A$ $^{\circ}EP^{\circ}O'_{\circ}A$ $^{\circ}EY$ $^{\circ}O'_{\circ}A$ $^{\circ}O'_{\circ}$ £2M;C3ÌÅå¤Hao¬O;AµL½×¦ó®É;A¥unaøÃì¬YÂI¤W¥X2{¢ÏÆP°ò;A«h¥t \mathbb{P}^{2} °ò;A«h¥t±ø³ø Ãì¤W»P¤§°t¹ï³°¥²©w¬O¢ÕÆP°ò;C "C±ø¬V¦âÅé³£¬O¥Ñ $\mathbb{Z} = \mathbb{Z} = \mathbb{Z} + \mathbb{Z} = \mathbb{Z} + +$ ¡AÅãµM´N¬O¢Ò¢Ü¢Ï ¤ù¬q¡C¦Ó"C±ø¬V¦âÅé°°¢Ò¢Ü¢Ï¤W«h±Æ¤F¼Æ¤dÓ°ò¦] ${}_{i}C\ |p|P^{2}|^{i}h@M@\~{o}@Z^{i}b^{\mu}@^{\mu}E^{\mu}@^{\nu}_{i}\sim \muo^{2}\{^{ao};A^{o}O^{i}\}^{\mu}_{c}\rightarrow O^{2}OM^{\mu}^{2}O^{i}X^{3}J^{\mu}_{c}$ ¥Õ½èaoÂŹÏ¡C³J¥Õ½è¦³!p¤@±ø¯Â¥ÑÓi°ò »Ä¤À¤l°c¦aoaø¶µÁå¡A¦Ó¤£¦P³J ¥Õ½èªÓi°ò»Ä±Æ§Ç¦U¤£¬Û¦P¡C ·í¢Ò¢Ü¢Ïµ²°c¤§Á¼´¦¾å«á¡A¦³¤@¼Î¨Æ¹ê ´NÅܱo§ó©úÅã¤F¡G¨CÓ°ò¦]·í¤¤ªºÆP°ò±Æ¦C¶¶§Ç¡A¯à°÷¼vÅT¸Ó°ò ¦]¦b²ÓM $\alpha^2\tilde{O}'X^{ao3}JY\tilde{O}'^2\hat{e}^{ao}\hat{O}i^3/4 \div \tilde{A}\pm \tilde{A}'C\P\P\SC_iC'(Y_i)^2 = \tilde{A}EP^{\circ}\hat{O}'_in^{13}Y_i|O'_i\hat{u}^{ao}|^2$ ¥À;X;X¢Õ;B¢Ï;B¢â¤Î¢Ñ ;C"Cӥѳo"Ǧr¥À²Õ¦"aºÆP°ò;u³æ¦r;v;A³£¯à¯S¤Æ ¤@ºØÓi°ò»Ä¤À¤l¡C¦Ó"CÓ¥y¤l«h¥Ñ¦"¦Ê¬Æ¦Ü¼Æ¤dÓÆP°ò;u 3 æ¦r¡v©Ò²Õ¦¨¡X¡X¤@Ó¥y¤l§Y¯à¯S¤Æ¥X¤@°Ø¨ã¦³¤£¦PÓi¾÷»Ä±Æ§Cao3J ¥Õ½è¡C ¤@¤E¤»¡³¹~¥N¦´Á¡A¿ò¶Ç±K½X²×©ó¸Ñ¶}¤F¡C¬ì¾Ç®aμο²{¡Aì¨Ó¯S ¤Æ¤@°ØÓi°ò»Ä¥u»Ý¤TÓÆP°ò¦r¥À;C"Ò¦p;A³æ¦r¢Ñ¢â¢Õ¯à"Ï ¥ÕÓi¾÷»Ä;]leucine;^ ±Æ¦C"쥿¦b¦X¦"ao3J¥Õ½è¤W;A¦Ó¥t¤@ÓÆP°ò3æ¦r¢Ñ¢Ï ¢â«h¯S¤Æ¥VÓi ¾÷»Ä;]aspartic acid;^;C¬JµMÆP°ò¦r¥À¦@'3¥| °Ø¡A¨°»ò¿ò¶Ç»y¨¥¤¤, ¥Ñ¤TÓ¦r¥À²Õ¦¨³æ³æ¦r´NÀ³¸Ó¦³¥|¤Q ¤»Ó μM¦Ó¡AÓi °ò»Ä°°¼Æ¥Ø´N¦³¤G¤Q°Ø¡C³o¬O¦]¬°±K½X¥\¯à¦³®É·|«½Æ¡C"Ò¦p¡A°£¤F¢Ñ¢â ¢Õ¤§¥~;AÁÙ¦³¤Ó ³æ¦r¤]¦P¼Ë¯à¯S¤Æ¥ÕÓi°ò»Ä;C ¢Ò¢Ü¢ÏÁÙ³zÅS¥X¥O ¤@¶µ¦³Äö¿ò¶Çao¯¦±K¡C²ÓM¤Àµõao·í¨à¡A¢Ò¢Ü¢Ï¥Î¦ó§®¤è«þ¨©¦Û¤v¡A½Æ»s $^{\text{a}} @^{2} \tilde{O} \cdot s^{\text{aoo}} \hat{o} |_{1} \P C \mu^{1} \text{al}^{2} \hat{O} M_{1} C^{3} \hat{O} \hat{O}^{-} \text{l}^{\pm} K^{'} N \hat{A} \tilde{A} |_{b}|^{-1} \tilde{I}^{\text{ao}} \mathcal{Z} P^{\circ} \hat{o} \hat{c} \tilde{I} \hat{c} \hat{a} \text{@} M \hat{c} \tilde{O} \hat{c} \tilde{N} \cdot \hat{I}^{\text{a}} \hat{a} \hat{o} \hat{A} \hat{I}^{\text{a}} \hat{I}^{$ $;C\frac{1}{2}$ E»s®É;A¢Ò¢Ü¢Ï^{ao}··â±ø^aøÃì¹³©ÔÁå¯ë±q¤¤¤À¶};AµM«á°C¤@ $\mathbb{C}^{\tilde{N}^{ao}}$ $\mathbb{C}^{\tilde{N}^{oo}}$ $\mathbb{C}^{\tilde{N}$ ¢Ü¢Ï:C #### ·s¬ö¤¸¤w"ÓÁ{ Ä~¯}.Ñ;ò¶C±K½X¥H¤Î¢Ò¢Ü¢Ï½Æ»s¤§Á¼«á;A¥Í¤Æ¾C®a«KµÛ ¤âμο®i¾Þ§@°ò¦]ao¤u¨ã¡C¤@¤E¤C¡³!~¥N¤¤´Á;Α¬ì¾C®aμο²{¡A»Ã¯À¥i¥H¦Û $Y^{a}(\hat{a})^{-1} = \hat{A} + \hat{$ $\alpha_i C_i^{-1} A \S U \alpha_i A \S U \alpha_i A \S U \alpha_i A \Omega A$ °Ê¹L¤â, }ao·L¥Ía«µo»Ã;A¤j¶q¥Í²£Âå Àø¥Îao¬Ã¶Q¤HÃb³J¥Õ½è;C±q¦¹¶}±Ò¤F $\circ o'_{i}$ uu_{i} uu $\tilde{a}_{i}^{c} C^{o} \tilde{a}_{i}^{d} = \tilde{a}_{i}^{d} \tilde{a}_{i}$ $\alpha E^{a} \approx i^{3!} \sim YN_{i}A^{a} = A^{3} + C^{a} = A^{a} + A^{a} = A^{$ ¤¤ªº Ói°ò»Ä±Æ§Ç¡C¦]¦¹¡A·í¿ò¶Ç±K½X¤@¯}¸Ñ¡A¬ì¾Ç®a´N¦¾¾÷·|§ä¥X¨ÏÓi \circ ò» \ddot{A} ¤ \dot{A} ¤ \dot{A} # $\dot{$ $\alpha_{\mu}^{3} = \mu^{a} + \lambda_{i}^{3} \lambda_{i}^{3$ $\hspace{1cm}\hspace{1c$ ¤J²ÓµßÅ餰¡A´N¥i»s³y¥X¤j¶qa°¤HÃþ¯Ø®q¯À¡C¥Ñ©ó³\¦h¿}§¿¯f±waÌ·| ¹ï¨ú¦Û½Þ©Î¤ûÅéao¯Ø®q¯À¹L±Ó¡A©Ò¥H²×¨sÁÙ¬O¥H ¤HÃþ¯Ø®q¯À¨ÓavÀø³Ì²z·Q¡C μM¦Ó¡A¯Ø®q¯À°ò¦]¨s³oaø¦bþùØ©O¡H³\¦h¤H³ $^{\square}Q^{\square}T^{1}^{\square}H\tilde{A}b^{-}V_{a}^{\hat{A}e_{i}}A_{\mu}M^{\hat{a}\cdot\hat{Q}\cdot\hat{Q}^{ao}}$ $^{\omega}Y_{i}G^{\hat{D}}Q^{\Omega}q^{\hat{A}\circ\hat{o}'_{i}}N_{b}^{i}O^{\hat{a}\circ\hat{o}'_{i}}$
¤HÃþ¦³¤G¤Q¤T¹ï¬V¦âÅé ¡A¨C±ø¬V¦âÅé¤W¤S¦³¼Æ¤dÓ°ò¦] ;A"¾C®a¹ï©ó¯Ø®g¯À¥i¯à;u¸ú;v¦bþùØ;A¯u¬O¤@ÂI·§©À¤]¨S¦³;C ### Åý§Ú²Ó»¡±qÀY $\label{eq:local_$ #### DNA的自我複製 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11 243 | 11/2 11/18 | 11/2 11/11 | 1 1 1 1 1 1 1 1 1 1 | | |--|---|----------------|------------|---------------------|-----| 5.1 | | | | | | | 7. T | 03/03/03/03/03/03/03/03/03/03/03/03/03/0 | | | | | | | . 「1 | | | | | | | • 5.1 | 163 111 | 263 3113 | | | | | o 5.1.1 | 100 m | | | | | | o 5.1.2 | 240 11 11 11 | | | | | | | | | | | | | | | | | | 100 | | | | 263 700 | | | | | | | | | | | | CORRELATION HOLDER | 12 192 | 1000 | 13 THE 18 THE | 11 243 | 11/2 11/2 | 1971 | 11/11/11/11 | Marie Land | 11/11/19/19 | Section 1 | Marie Contract | 1 | HE STILL FOR STILL | 111111111111111111111111111111111111111 | Electric Marie | | | 189 | | | | | | | | ### **5.3** MATLAB (rank) (dec - 5.3 - · 5.3.1 _ - 5.3.25.3.3 ## $^{2}\ddot{\mathbf{A}}$ \mathbf{a} \mathbf{a} 31 $\mathbf{\hat{A}}$ 2 \mathbf{a} \mathbf{q} - ²Ĥ@³¹ Â²¤¶ - 1.1 pºâ¾÷À³¥Î»P¤uµ{°ÝÃD 1.2 ¤uµ{°ÝÃD³°¸Ñ"M¤è¦; 1.3 »{ÃѧA/©p³0¹q¸£¤u§@Àô¹Ò 1.1 WWW () 1994 () http://sun.gcc.ntu.edu.tw/ http://taiwan.csie.ntu.edu.tw/b5/yam GAIS http://gais.cs.ccu.edu.tw/cgais.html Yahoo http://www.yahoo.com/ Alta Vista http://www.altavista.digital.com Scientific American http://www.thesphere.com/sas/SciAm/SciAm.html New Scientist Planet http://www.newscientist.com - (Internet) - (Email) - (Electronic Bulletin Boards) - (World Wide Web, WWW) WWW-FAQ (http://www.a FAQ (http://www.acer.net/document/internet/index.html) MATLAB(MathWorks) http://www.mathworks.com/ Prentice-Hall http://www.prenhall.com http://www.ncu.edu.tw/~junwu # 1.2 1. 2. / 3. 4. MATLAB 5. MATLAB (p. 21-24) E2-308 PC 30 486/586, Win3.1 Win95 MATLAB NetTerm, Netscape Win3.1 EscDoswins Win3.1 MATLAB 4.0 Win3.1MATLAB for Windows(Icon)MATLAB MATLAB with SIMULINK, MATLAB HelpMATLAB with SIMULINK SIMULINKMATLABSIMULINK **MATLABMATLAB** NetTerm PCWin3.1 NetTermTcpman WindowsNetTermNetTerm **Netscape** (WWW) (browser)NetscapeNetTerm | 11.16 | | | | | | | |-----------|-----------------------------------|-----------|--|----------------|----------------|-------------| | | | | | | | | | The same | | | | | | | | 37.76 | | | | | | | | | | | | | | | | 11. 100 | | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | | | | | | | | | | | The same | | | | | | | | | | | | | | | | NAATI | LABMATLAB | | | | | | | WIAII | LADMAILAD | 186 | 11 5 6 7 19 | | 11 2 6 2 1 1 1 | | | | | 1000000 | | | | | | Section 1 | | | | | | | | • | | | | | | | | | • 2.1 <u>MATLA</u> | <u>B</u> | | | | | | | o 2.2 | 187 | 11 5 67 11 | 11 2 6 5 17 | 11.565 | 11 6 6 5 11 | | | 0 2.3 | | | | | | | Mary Mary | 2.32.4 | | | | | | | | · 2.5 | | | | | | | | | | | | | | | | · 2.6 | | 11 5 6 7 1 1 1 | 11 11 11 11 11 | 11.685.11 | 11 8 83 1 | | | • 2.7 <u>MATL</u> | | | | | | | W. H. | o 2.8 | 1811 1818 | | | | | | | o 2.9 | | | | | | | | o 2.10 | | | | | | | | 17 (43 17) | 242 | 11 8 42 1 | 11 3 10 1 | 11.662 | 11 6 6 7 | | | | | | | | | | | 100000 | | | | | | | | J. A. | 363.5 | 1860 | 10000 | 128621 | 12.00 | | 4 | ₽ | | | | 10347 | 1000 | #### 2.1 MATLAB #### MATLAB (MATrix LABoratory) - - MATLAB500 - - MATLAB - - MATLAB FORTRAN - - MATLAB - - MATLAB mu MATLAB3.1MATLAB for Windows, SIMULINK MacintchUnix - MATLAB for WindowsPC3.1DOS 4.04.2 5.0MathWorks - SIMULINK3.1/ - Student Edition of MATLABMATLAB1995Mathworks Edtion of MATLAB4.2 308MATLAB 4.0 #### MATLAB - 2.2 - 2.2.1 <u>MATLAB</u> - o 2.2.2 ____ - 2.2.3 ___2.2.4 ___ ### **2.2.1 MATLAB** MATLABMATLAB Command Window **Options, Windows, Help** # 2.2.2 MATLAB x=1+2+3MATLAB >> 1+2+3 ans = 6 >> 1*10 + 2*20 + 3*30 ans = 140 >> x=1+2+3 $\mathbf{x} =$ 6 >> x=1+2+3; >> x x = 6 MATLAB >> apple=5 ``` apples = >> orange=10 orange = 10 >> total_cost=apple*2+orange*4 total_cost = 50 >> average_cost=total_cost/(apple+orange) average_cost = 3.33334 MATLAB (+) (-) (*) (/) (^) 5+3, 5-3, 5*3, 5/3, 5^3 \pi r^2, r=2 Area = >> r=2; >> area=pi*r^2; >> area = 12.5664 >> r=2, area=pi*r^2 >> r=2; area=pi*r^2; ``` >> r=2; >> area = pi ... *r^2 % % >> r=2; % >> area=pi*r^2; % ## MATLAB | | | | 1000 | |-------------------|------------------|----|------| | format short | 3.1416 | 4 | | | | 3.14159265358979 | 15 | | | format short
e | 3.1416e+000 | 4 | | # 2.2.3 #### MATLAB - apple, Apple, AppLe 19 3. #### MATLAB | VII 11 21 12 | | | | | | |--------------|----------------------------|--|--|--|--| | | | | | | | | help | , help quit | | | | | | who | | | | | | | ans | CHECOST HEROCOST HERO | | | | | | eps | MATLAB=2.2204e-16 | | | | | | pi | π | | | | | | inf | ∞ ($\frac{1}{0}$) | | | | | | NaN | $(\frac{0}{0})$ | | | | | # 2.2.4 MATLAB↑↓↑ → ←, Delete, Insert DosMATLAB! who clear xy clear x y Ctrl-C CtrlCMATLAB ## 2.3 #### MATLAB(on-line) - 1. help (topic) help <topic> help - 2. lookfor(key-word)MATLAB - 3. HelpTable of Contents Index >> help sqrt SQRT Square root. SQRT(X) is the square root of the elements of X. Complex results are produced if X is not positive. >> help monkey monkey not found. >>* lookfor tangent ACOT Inverse cotangent. ACOTH Inverse hyperbolic cotangent. ATAN Inverse tangent. ATANH Inverse hyperbolic tangent. ATAN2 Four quadrant inverse tangent. COT Cotangent. COTH Hyperbolic cotangent. TAN Tangent. TANH Hyperbolic tangent. >> help atan ATAN Inverse tangent. ATAN(X) is the arctangent of the elements of X. See also ATAN2. ## 2.4.1 #### MATLAB (array) (matrix) MATLAB ``` >> x = [1 2 3] \% 1x3 >> x = [1 \ 2 \ 3; 4 \ 5 \ 6] \% \ 2x3; >> x = [1 2 3 \% 2x3] 456] y = \sin(x), 0x\pi x = 0, 0.2\pi, 0.4\pi,...,\pi >> x = [0 0.2*pi 0.4*pi 0.6*pi 0.8*pi pi] % 0 0.6283 1.2566 1.8850 2.5133 3.1416 >> y=sin(x) 0 0.5878 0.9511 0.9511 0.5878 0.0000 >> x(3) \% x ans = 1.2566 >> y(5) % y ``` ``` ans = ``` 0.5878 >> x(1:5) % x ans = 0 0.6283 1.2566 1.8850 2.5133 >> y(3:-1:1) % y31-1 ans = 0.9511 0.5878 0 >> x(2:2:6) % x262 ans = 0.6283 1.8850 3.1416 >> y([4 2 5 1]) % yy4,2,5,1 ans = 0.9511 0.5878 0.5878 0 ## 2.4.2 ``` >> x=(0:0.0.2:1) % :=0=0.0.2=1 ``` a b $$c =$$ $$d =$$ ### 159101 >> a=1:5; a-2 % a2 ans = -10123 >> 2*a-1 % 2a1 ans = 13579 >> b=1:2:9; a+b % ab ans = 2581114 >> a.*b % ab ans = 1 6 15 28 45 >> a./b % ab ans = 1.0000 0.66667 0.6000 0.5714 0.5556 >> a.^2 % ans = 1 4 9 16 25 >> 2.^a % 2 ans = 2 4 8 16 32 >> b.^a % ba ans = 1 9 125 2401 59049 >> b=a' % ba b = 1 2 3 4 5 ## 2.4.5 #### MATLAB $a = [a_1, a_2 \cdots a_n] b = [b_1, b_2 \cdots b_n]$ $a \cdot b = [a_1 \cdot b_1, a_2 \cdot b_2, \cdots a_n \cdot b_n]$ $a \cdot b \cdot [a_1 \cdot b_1, a_2 \cdot b_2, \cdots a_n \cdot b_n]$ >> x = 1.5; % x \Rightarrow y = exp(x 2); % exp(x 2) >> y1 = x/y
% x/y >> x = 1:0.1:2; % x \Rightarrow y = exp(x. 2); % exp(x. 2) >> y1= x./y % x./y $$f = \frac{x^3 - 2x^2 + x - 6.3}{x^2 + 0.05x - 3.14}$$ >> x=2.0 % x >> nume = $x^3 - 2*x^2 + x - 6.3$; >> deno = $x^2 + 0.05*x - 3.14$; >> f = nume/deno >> x=1:5; % x +, - >> nume = $$x.^3 - 2*x.^2 + x - 6.3$$; $$>>$$ deno = $x.^2 + 0.05*x - 3.14;$ >> f = nume./deno ## 2.5 MATLAB plotxy xlabel, ylabel, titlehelp xlabel, help ylabel, help titleplot3help plot **MATLAB Figure Windows** **MATLAB** >> v1=linspace(0,2*pi,20); v2=sin(v1); % v1 v2 >> plot(v1,v2) % plot >> v3=cos(v1); % v3 >> plot(v1,v2,v1,v3) % v1-v2 % v1-v3 >> plot(v1,v2,v1,v2,'+') % >> plot(v1,v2,v1,v2.*v3,'--') % v1-v2 % v1-(v2.*v3) ' >> xlabel('x-axis') % x >> ylabel('y-axis') % y >> title('2D plot') % >> plot3(v2,v3,v1), grid % v2-v1-v3 xyz # 2.6.1 Area= $\pi r^2, r=2$ input >> r = input('Type radius:') % Type radius: % 2 r = 2 >> area=pi*r^2; % >> name = input('Your name please: ','s') % 's's (string) Your name please: % J.C. Wu name = J.C. Wu ## 2.6.2 ``` disp) (fprintf) disp >> temp=20; >> disp(temp); disp('degrees C'); disp(' C') % 20 degrees C C fprintf >> fprintf('The area is %8.5f\n', area) The area is%8.5f >> fprintf('The area is %8.5f\n', area) % %\ The area is 12.56637 % 85 >> fprintf('f_form: %12.5f\n',12345.2) % 125 f_form: 12345.20000 >> fprintf('f_form: %12.3f\n',1.23452) % 123 f_form: 1.235 >> fprintf('e_form: %12.5e\n',12345.2) % 125 e_form: 1.23452e+004 ``` >> fprintf('f_form: %12.0f\n',12345.2) % 12 f_form: 12345 ## 2.7 MATLAB ``` MATLAB Win3.1Dos PE2 Word, AmiPro Ascii M-file testRun M-file M-f .m M-file Open M-file M-file tutex1.mM-file % M-file, tutex1.m % Simple plot for illustration of using M-file. % M-file x=linspace(0,2*pi,20); y=sin(x); plot(x,y,'r+') xlabel('x-value') ylabel('y-value') title('2D plot') tutex1tutex1.m M-file: tutex2.m % M-file, tutex2.m % r = input('Type radius:'); area=pi*r^2; ``` volume=(4/3)*pi*r^3; fprintf('The radius is %12.5f\n',r) fprintf('The area of a circle is %12.5f\n',area) fprintf('The volume of a sphere is %12.5f\n',volume) • 2.7 MATLAB • 2.7.1 ## 2.7.1 ``` M-fileM-fileMATLAB (1) MATLAB >> path(path,'c:\wufile\my_work') % \wufile\my_work % MATLAB >> path('c:\wufile\my_work',path) % \wufile\my_work % MATLAB path path MATLAB M- startup.m path (2) cdMATLAB >> cd \wufile\my_work % \wufile\my_work >> cd % cd c:\WUFILE\MY_WORK >> dir % tutex1.m tutex2.m .. test.txt >> delete test.txt % test.txt ``` ## 2.8 ``` MATLAB (binary format) MAT-file(2) ASCII ASCII-fileMAT-file (input/output) test.mattestMATLABMAT-fileASCII-file test.dattestMATLAB MAT-fileASCII- saveMAT saveASCII MATASCII MAT-fileASCII-file save, load >> x=1:5; y=11:15; % (row array) x, y >> save data1 x y % x,y data1 MAT-file %data1data1.matdata1.mat x, y(1:5, 11:15) >> save data2.dat x y -ascii % data1ASCII-ascii % data2.dat (1:5, 11:15) >> type data2.dat % type data2.dat >> load data1 % data1.mat >> x, y % data1.mat(1:5, 11:15) >> load data2.dat % data2.dat >> x2=data2(1,:); y2=data2(2,:); % data2x2y2 % >> x=21:25; y=31:35; ``` ``` >> save data3.dat x y -ascii ``` % - >> save data4.dat A -ascii %Adata4ASCII-file - >> load data4.dat - >> x4=data4(:,1); % x4 data4 - >> y4=data4(:,2); % y4 data4 - >> z4=data4(:,3); % z4 data4 ``` title, xlabel, yla gtext('string') gtext >> x = linspace(0,2*pi,30); y = sin(x); z = cos(x); \Rightarrow plot(x,y,x,z) % y=sin(x), z=cos(x) >> text(2.5,0.7,sin(x)) % (2.5,0.7) >> gtext('cos(x)') % x-y x y loglog xy x y >> y=0:0.1:10; x=10.^y >> plot(x,y) % >> semilogx(x,y) % >> x=[0 2 5 7 10 12 15 17 20 21]; >> y=[0.1 0.2 0.5 0.6 0.9 1 1.2 1.26 1.22 1.2]; >> plot(x,y) % >> semilogx(x,y) % >> semilogy(x,y) >> loglog(x,y) ``` # MATLAB 3.1 _____3.2 _____ 0 U ## # 3.1.1 axis | <pre>axis([xmin xmax ymin ymax])</pre> | xmin xmax | ymin ymax | | |--|--------------------|------------------------|--| | axis auto | 4:3 | 1 5 10 11 11 11 | | | axis square | 1:1 | | | | axis equal | 11 6 19 11 11 | 1863 2013 | | | axis xy | 000000 | 100000 | | | axis ij | STORY OF THE STORY | | | | axis normal | | The second second | | | axis off | 12/1/25 | | | | axis on | | 1. 6. 18 - 1. 1. 1. 1. | | axis(' ') axis - >> x=linspace(0,2*pi,30); y=sin(x); z=cos(x); - >> plot(x,y,x,z) - >> axis off - >> axis on - >> axis('square','equal') - >> axis('xy','normal') ## 3.1.2 subplot subplot(m,n,p) m, n m x n m y subplot >> x=[0 2 5 7 10 12 15 17 20 21]; >> y=[0.1 0.2 0.5 0.6 0.9 1 1.2 1.26 1.22 1.2]; >> subplot(2,2,1), plot(x,y) % >> subplot(2,2,2), semilogx(x,y) % >> subplot(2,2,3), semilogy(x,y) % >> subplot(2,2,4), loglog(x,y) % zoom onzoom out zoom off >> M=peaks(25); % peaks MATLAB 25 >> plot(M) % >> zoom on % Enter >> zoom out % Enter >> zoom off % fplot xmax, ymin, ymax f(x)=si - $>> fplot('sin(x)./x',[-20\ 20\ -0.4\ 1.2])$ - >> title('Fplot of f(x)=sin(x)/x') - >> xlabel('x'), ylabel('f(x)') MATLAB print options] [] print print filenamefilenam ## MATLAB | device | | |--------|-----------------------------------| | -dps | (PostScript) .ps | | -dps2 | (PostScript II) .ps | | -deps | (Encapsulated PostScript) .eps | | -deps2 | (Encapsulated PostScript II) .eps | ### **MATLAB** ## Ghostscript FTP Win31 ftp://ftp.ncu.edu.tw/PC/win3/print/gs403*.zip (5zip) Win95 ftp://ftp.ncu.edu.tw/PC/win95/simtelnet/print/gs403*.zip (5zip) | device | SECTION 1257 SE | 1225 | 112/11/11 | 1122 | |------------|-------------------------|--------|------------|---| | -dcdjcolor | 24 bits HP DeskJet 500C | 1000 | 11000 | 11/6/11/17 | | -depson | Epson | 11/6/2 | | | | -dgif8 | 8 bits GIF .gif | | | | | -dpcx256 | 256 PCX .pcx | 1000 | 1111111111 | 111111111111111111111111111111111111111 | - >> print fig1 -dps % PostScript fig1.ps - >> print fig1 -dgif8 % GIF fig1.gif - >> print fig1 -pcx256 % 256PCX fig1.pcx # [-option] ``` >> x=linspace(-2*pi,2*pi,60); ``` $$>> y=\sin(x).^2./(x+eps);$$ % epsx y - >> plot(x,y) - >> [a,b]=ginput(8); % 8 - >> hold on - >> plot(a,b,'co') % - >> hold off | 3.2 | | | | | | | |-------|-----------------|--|---------|--------|--------------|-----| | 0.4 | | | | | | | | 11111 | 97111 | 471111 | | 1977 | 40000 | 100 | | | | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 100000 | | | | • 3.2 | | | | | | | | · 3.2 | 2.1 | | | | | | | · 3.2 | 2.2 | 10 11 11 1 | | | | | | | | | | | | | | 0 0 | 43.577.3 | 41 11 11 11 | | | | 100 | 18 | 61111111 | 1000 | 43 3313 | | AT STATE | Charles and the | A COLOR | A COLOR | | A CONTRACTOR | | | | | | | | | | ## 3.2.1 ``` plot3 plot z plot3(X,Y,Z) plot3(X,Y,Z,'linetype') linetype >> t=0:pi/50:10*pi; >> plot3(sin(t),cos(t),t) ``` >> title('Helix'), xlabel('sin(t)', ylabel('cos(t)'), zlabel('t') >> axis('ij') % y ## 3.2.2 ### MATLAB meshgridmeshsurf meshgridx-y ``` >> x=-7.5:0.5:7.5; y=x; % xy ``` $$>> R = \operatorname{sqrt}(X.^2 + Y.^2) + \operatorname{eps};$$ % epsR $$>> Z=sin(R)./R; \% z$$ $$\gg$$ mesh(X,Y,Z) % z ## zx,y $\begin{array}{c} contour, contour 3 contour \\ contour(X,Y,Z), contour(X,Y,Z,n)X,Y,\ Zx,y,z \end{array}$ contour contour3 contour, contour3 >> subplot(2,2,3) - >> contour3(Z,20) % peaksZ - >> subplot(2,2,4) - >> contour3(X,Y,Z,20) % peaks x,y # **MATLAB** MATLAB • MATLAB MATLAB - · 4.1 - o 4.2 - o 4.3 _ - 0 4.4 - · 4.5 - o 4.6 - o 4.7 ___ - o 4.8 ___ # MATLAB >> angle1=pi/2; >> b=sin(angle1); %angle1sin >> angle2=90; %angle2 >> b=sin(angle2*pi/180); % >> x=sqrt(2)/2; y=asin(x); y_deg=y*180/pi >> x = 0.7071 >> y = 0.7854 >> y_deg = round(x) x 45.0000 fix(x) x0 floor(x) $x-\infty$ ceil(x) x∞ sign(x) x < 0-1x = 00 x > 01 rem(x,y) x/y rem(25,4)1 exp(x) log(x) 2.718282 log10(x) 10 MATLAB sinh(x), cosh(x), tanh(x), asinh(x), acosh(x), atanh(x)MATLAB $$f(\pi) = \pi^2 + 4\pi + 13$$ $\pi_{12} = -2 \pm 3\sqrt{-1} = -2 \pm 3i$ (-2) (± 3) MATLABMATLAB lookfor complex $x = a + bi$ $\bar{x} = a - bi$, $r = \sqrt{a^2 + b^2}$, $\theta = \tan \frac{-1}{1}(b/a)$ $a = r \cos \theta$, $b = r \sin \theta$, $x = r e^{i\theta}$ MATLAB $a = real(x)$, $b = imag(x)$, $\bar{x} = conj(x)$, $r = abs(x)$, $\theta = angle(x)$, $x = r \exp(i * angle(x))$ >> $x = 1 - 2 * i$; % $2 * i$ $2i$ >> $real(x)$ % $ans = 1$ >> $imag(x)$ % $ans = -2$ >> $conj(x)$ % ``` ans = 1.0000 + 2.0000i >> abs(x) % ans = 2.2361 >> angle(x) % ans = -1.1071 >> a=1; b=4; c=13; >> x1=(-b+sqrt(b^2-4*a*c))/(2*a) % x1 = -2.0000 + 3.0000i >> x2=(-b-sqrt(b^2-4*a*c))/(2*a) x2 = -2.0000 - 3.0000i >> y=exp(i) % 0.5403 + 0.8415i \Rightarrow y=exp(i*pi*0.75) -0.7071 + 0.7071i ``` ``` polar ``` ``` >> t=0:0.01:2*pi; ``` $$>> r = \sin(2*t).*\cos(2*t);$$ >> grid p(x) $$p(x) = x^3 + 4x^2 - 7x - 10$$ **MATLAB** p=[1 4 -7 -10] p X $$>> p=x.^3+4*x.^2-7*x-10$$ polyval polyval(p,x)p $$>> p=[1 4 7 -10];$$ $$a(x) = x^3 + 2x^2 + 3x + 4$$, $b(x) = x^3 + 4x^2 + 9x + 16$ $$c(x) = a(x) + b(x)$$ $$c(x) = 2x^3 + 6x^2 + 12x + 20$$ $$d(x) = a(x) - b(x)$$ $$d(x) = -2x^2 - 6x - 12$$ $$e(x) = a(x)b(x)$$ $$\varepsilon(x) = x^{6} + 6x^{5} + 20x^{4} + 50x^{3} + 75x^{2} + 84x + 64$$ $$f(x) = \frac{e(x)}{b(x)} = a(x)$$ $$f(x) = x^3 + 2x^2 + 3x + 4$$ (de-convolution) deconv convdeconv [q,r]=deconv(a,b)q,r (convo $$>> c=a+b$$ C = 2 6 12 20 >> d=a-b d = 0 -2 -6 -12 >> e=conv(a,b) e = 1 6 20 50 75 84 64 >> g=e+[0 0 0 c] g = 1 6 20 52 81 96 84 >> [f,r]=deconv(e,b) f = ``` 1234 ``` $$r =$$ $$f =$$ $$0\ 0\ 0\ 0\ 2\ 6\ 12\ \%\ 2*x^2 + 6*x$$ $$r =$$ ``` roots poly, real ``` 2, 1 $$p(x) = (x-2)(x-1) = x^2 + 3x + 2$$ poly poly(r) r real $$>> r=[-2 -1];$$ >> pp=poly(r) % pp=(x+2)(x+1)= $$x^2+3x+2$$ 132 $$>> p=[1-46-4];$$ r = I r = $$-1.0303 + 0.8721i$$ pp = 1.0000 7.0000 12.0000
9.0000 + 0.0000i >> pp=real(pp) % real pp = 1.0000 7.0000 12.0000 9.0000 | 4.2 | | | | | |--|-------|----------|-------|--------| | | | | | | | | 12000 | 112 (12) | 777 | 77.77 | | MATLAB | | | | | | WITT LITE | | | | | | | 6.00 | 16000 | 10000 | 116211 | | • 4.2
• 4.2.1 | | | | | | 4.2.24.2.3 | | | | | | o 4.2.3 | 10.00 | | | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | | | | ar had ar ha | 3/3 | | | | | 0111361111 | | | | | | | | | | | | | 367 | | | | | | | | | | | STATE OF THE PARTY. | | | | | | | | 13.16.20 | | | ## 4.2.1 ``` max(x) x max(x,y) xy xy [y,i]=\max(x) xy xi min(x) x min(x,y) xy xy [y,i]=min(x) xy xi mean(x) x median(x) x sum(x) x prod(x) x cumsum(x) x cumprod(x) x >> rains % rains2x1 rains = 126.8 148.5 173.0 148.4 194.7 208.9 328.8 300.7 268.3 210.5 278.4 321.5 ``` ``` >> avg_rain=mean(rains) % rains avg_rain = 227.8000 224.6000 220.6500 179.4500 236.5500 265.2000 >> avg_rain=mean(avg_rain) % avg_rain = 225.7083 >> max_rain=max(rains) % rains max_rain = 328.8000 300.7000 268.3000 210.5000 278.4000 321.5000 >> [max_rain,x]=max(rains) % rains max_rain = 328.8000 300.7000 268.3000 210.5000 278.4000 321.5000 \mathbf{x} = 222222 >> min_rain=min(rains) % rains min rain = 126.8000 148.5000 173.0000 148.4000 194.7000 208.9000 >> s_sort=sort(rains) % rains s sort = 126.8000 148.5000 173.0000 148.4000 194.7000 208.9000 328.8000 300.7000 268.3000 210.5000 278.4000 321.5000 ``` ``` >> x=[1 2 3 4 5]; ``` ans = 15 >> prod(x) % x ans = 120 >> cumsum(x) % x ans = 1 3 6 10 15 >> cumprod(x) % x ans = 1 2 6 24 120 # 4.2.3 (histogram) MATLAB hist >> x=-3:0.1:3; >> y=sin(x); % x >> hist(y) % sin(y)histogramy[-1,1]y >> hist(y,25) % 1025 >> hist(y,x) % -33 # 4.3 ## MATLAB (sequential) - 4.3 4.3.1 4.3.2 <u>if-else-end</u> ## 4.3.1 MATLAB (True) < <= > >= == ~= & and or ~ not >> a=1:5, b=5-a, a = 12345 **b** = 43210 >> tf = a > 4 $$\Rightarrow$$ tf= \sim (a>4) ## - >> plot(x,z) - >> xlabel('x'),ylabel('z=f(x)') - >> title('A discontinuous signal') - >> hold off xor(x,y), any(x), all(x), isnan(x), isinan(x) ## 4.5 ``` M-file M- file: cirarea.m % M-file function, cirarea.m % Calculate the area of a circle with raduis r % r can be a scalar or an array function c=cirarea(r) c=pi*r.^2; MATLABlinspace function y = linspace(d1, d2, n) % LINSPACE Linearly spaced vector. % LINSPACE(x1, x2) generates a row vector of 100 linearly % equally spaced points between x1 and x2. % LINSPACE(x1, x2, N) generates N points between x1 and x2. % % See also LOGSPACE, :. % Copyright (c) 1984-94 by The MathWorks, Inc. if nargin == 2 n = 100; ``` ``` end ``` y = [d1+(0:n-2)*(d2-d1)/(n-1) d2]; ## M-file - 1. function in1 function [out1, out2]= serfun(in1, in2) [out1,out2] in2) - 2. - 3. - 4. help cirarea >> ar=cirarea(r) % cirarea.m ar = 📗 3.1416 12.5664 28.2743 >> disp(ar) % disp 3.1416 12.5664 28.2743 | 4.6 | | | | | | | |----------------|---|---|----------------|----------------|----------------|-----| (normal) | | | | (Gaussian) | | | | | REAL STATE | 80000 | REAL PROPERTY. | 80000 | REAL PROPERTY. | 100 | | • 4.6 | | | | | | | | | 6.1 | | | | | | | | 6.2 | | | | | | | 10 11 11 11 11 | OF THE PARTY | 10 11 11 11 11 | 10 11 11 11 11 | 10 11 11 11 11 | 10 11 11 11 11 | 100 | | ما ما | | | | | | | | む ひ | 61111111 | 61 (2) | | 61 (2) (4) | | 19 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | FILL STATE | 61111111 | FILL STATE | Contract of the second | Contract of the second | 1. 10 1. 1. | 1000 | 1. 10 | | | 100 | | | | | | | | | # 4.6.1 | MATLAB
nxn | rand [0, 1] [0, 1] mxn | | seed | | |-------------------|------------------------|------------|------|--| | >> rand(1,6) % | | | | | | ans = | | | | | | 0.2190 0.0470 0. | 6789 0.6793 0.934 | 7 0.3835 | | | | >>hist(ans) % | | | | | | >>plot(ans) % | | | | | | >> rand(1,6) % | | | | | | ans = | | | | | | 0.5194 0.8310 0. | 0346 0.0535 0.529 | 7 0.6711 | | | | >> rand('seed',0) | % | | | | | >>rand('seed') % | | =931316785 | 5 | | | ans = | | | | | | 931316785 | | | | | | >> rand(2,3) % | | [0,1] | | | | ans = | | | | | ``` 0.2190 0.6789 0.9347 0.0470 0.6793 0.3835 >> rand('seed') % seed=412659990 ans = 412659990 >> rand('seed',0) >> rand(1,6) ans = 0.2190 0.0470 0.6789 0.6793 0.9347 0.3835 >> rand('seed',100) % =100 >> rand('seed') ans = 100 >> rand(2,5) ans = 0.2909 0.0395 0.3671 0.5968 0.9253 0.0484 0.5046 0.9235 0.8085 0.3628 [0,1][0,1] x=(b-a)*r+a, ``` ``` >>data_1 = 2*rand(1,500)+2; %500 ``` >>plot(data_1) % >>axis([1 500 0 6]) %/ >>hist(data_1) % # 4.6.2 | MATLAB randn randr | n(n)randn(n,m) | nxnmxn | 01 | |-----------------------------------|----------------|--------|------------| | >> x=-2.9:0.2:2.9; % hist | | | | | >> y=randn(1,5000); | | | 60000 | | >> hist(y,x) | | | | | >> title('Histogram of Normal Ran | dom Data') | | | | >> y1=rand(1,5000); | | | (A11116) | | >> hist(y1,x) | | | | | >> title('Histogram of Uniform Ra | ndom Data') | | | | 01 | | | | | x=a*r+b | | | 10000 | | x | | | | | >>data_2 = randn(1,500)+3 %500 | | | | | >>plot(data_2) % | | | | | >>axis([1 500 0 6]) | | | | | >>hist(data_2) % | | | at litight | | | | | | #### rot90, fliplr, flipud >> A=[2 1 0; -2 5 -1; 3 4 6]; >> B=rot90(A) % A90 B = 0 -1 6 154 2 -2 3 >> A=[1 2; 4 8; -2 0]; >> B=fliplr(A); % A >> C=flipud(A); % A >> B, C B = 2 1 84 0 -2 C = -20 48 12 reshape diag, tri ``` 020 ``` $$C =$$ D= >> B=tril(A) B = >> C=triu(A,-1) C =>> D=triu(A,3) D =3 6 9 12 ## 5.1.1 #### MATLAB (array) (matrix) MATLAB | + | + | | |-----------|---|----------| | 1111-1111 | 1163111 | 11/11/11 | | * | * | | | ./ | / | 166 1.3 | | | \ | | | ·\ | ↑ | | | 1 | 1 | | >> A=[2 5 1; 7 3 8; 4 5 21; 16 13 0]; >> A' % A A = 27416 5 3 5 13 18210 >> A=[4 -1 3]; B=[-2 5 2]; >> dot_prod = sum(A.*B) % dot_prod = $$c =$$ $$C =$$ ## **5.1.2** polyvalm polyval polyvalm(a,X)Xa >> X=[1 1 1; 2 2 2; 3 3 3]; >> a=[1 1 1]; % a=X*X+X+I >> f=polyvalm(a,X) 877 14 15 14 21 21 22 ## 5.3.1 $\mathbf{A} \mathbf{A}^{-1} \mathbf{A} \mathbf{A}^{-1} \mathbf{A}^{-1} \mathbf{A}$ (singular) (ill-con MATLAB inv(A), rank(A) >> A=[2 1; 4 3]; >> rank(A) 2 % A2 >> inv(A) % ans = 1.5000 -0.5000 -2.0000 1.0000 >> B=[2 1; 3 2; 4 5]; % B >> rank(B) ans = 2 % B23 >> inv(B) ??? Error using ==> inv Matrix must be square. **MATLAB** >> A=[1 3 0; -1 5 2; 1 2 1]; ``` >> det(A) % ans = 10 p MATLAB det(A) >> A=[1 3 0; -1 5 2; 1 2 1]; >> det(A) % ans = 10 ``` ## 5.3.2 $$\mathbf{A} n \times n \qquad \mathbf{X} \mathbf{n}$$ $$AX = \lambda X$$ $X \longrightarrow A$ (eigenvalue)XA (eigenvector)(orthonormal) (normalization) $$(A - \lambda I)X = 0$$ $$\mathbf{I} n \times n$$ $$A = \begin{bmatrix} 0.5 & 0.25 \\ 0.25 & 0.5 \end{bmatrix}$$ #### eigenvalue $$|A - \lambda I| = \begin{vmatrix} 0.5 - \lambda & 0.25 \\ 0.25 & 0.5 - \lambda \end{vmatrix} = \lambda^2 - \lambda + 0.1875 = 0$$ $$\hat{\lambda} = 0.25, 0.75_{A}$$ A $$\begin{bmatrix} 0.5 - 0.25 & 0.25 \\ 0.25 & 0.5 - 0.25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} 0.25 & 0.25 \\ 0.25 & 0.25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies x_1 = -x_2$$ $$\lambda = 0.75$$ $x_1 = x_2$ $$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \end{bmatrix} \begin{bmatrix} 0.1 \\ -0.1 \end{bmatrix} \dots, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} -0.4 \\ -0.4 \end{bmatrix} \dots$$ (orthonormal) $Q^{\mathbb{Q}\mathbb{Q}^T} = I$ $$QQ^{T} = \begin{bmatrix} c_{1} & c_{2} \\ -c_{1} & c_{2} \end{bmatrix} \begin{bmatrix} c_{1} & -c_{1} \\ c_{2} & c_{2} \end{bmatrix} = \begin{bmatrix} c_{1}^{2} + c_{2}^{2} & -c_{1}^{2} + c_{2}^{2} \\ -c_{1}^{2} + c_{2}^{2} & c_{1}^{2} + c_{2}^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ $$c_1 = c_2 = \pm 1/\sqrt{2} \mathbf{Q}$$ $$Q = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$ $A^{2\times2}$ **MATLAB** $$>> A = [0.5 \ 0.25; \ 0.25 \ 0.5];$$ $$\gg$$ [Q,d] = eig(A) Q = 0.7071 0.7071 -0.7071 0.7071 d = % 0.25000 0 0.7500 >> Q*Q' % Q*Q'=I ans= 10 01 >> $A*Q(:,1); 0.25*Q(:,1) \% A*X=\lambda X X=Q(:,1)$ ans = % A*X 0.1768 -0.1768 ans = $\% \lambda X$ 0.1768 -0.1768 ### 5.3.3 0.5 1 1 (decomposition, factorization)(triangular matrix) Factorization)2)QR (QR Factorization)3) (Singular Value Decon (1) (square) (permuted) AB $A = [LA][UA] = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{bmatrix} \quad B = [LB][UB] \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & 3 \\ 0 & 0 & 5 \end{bmatrix}$ B[LB] MATLABLU [L,U]=lu(A)LU >> A = [1 2 -1, -2 -5 3; -1 -3 0]; B=[1 3 2; -2 -6 1; 2 5 7]; MATLABLU [L,U]=lu(A)LU >> A = [1 2 -1, -2 -5 3; -1 -3 0]; B=[1 3 2; -2 -6 1 >> [L1,U1] = lu(A); [L2,U2] = lu(B); >> L1; U1 L1 = % L1[LA] -0.5 1 0 1 0 0 ``` U1 = \% U1[UA] -2 -5 3 0 -0.5 0.5 0 0 -2 >> L2; U2 L2 = \% L2[LB] -0.5 0 1 100 -110 U2 = \% U2[UB] -2 -6 1 0 -1 8 0 0 2.5 (2) QR QRQ MATLAB qrQR [Q,R]=qr(A)Q (3) (sigular value decomposition, SVD) SVD QR QR SVD ``` | | 27. 44 | | | | 11.64 | 11861 | | |----------|----------|----------|----------|-------------------|---------------
--------------|------------| | | | | | | | | | | 11.00 | | | | | | | | | 11.00 | | | | | | | | | 11/10 | | | | | | | | | 10 10 1 | 100 | 1160 | 21/11/11 | 100000 | 11041 | 11245 | 10000 | 21.04 | http://w | www2.see | eder.net.tw/e | evs/ | 11.66 | | | EV In | formatio | | | | net/~futurev/ | | | | 17.180 | 1111111 | 1000 | 16.10.1 | 11/1/11/11/11 | 110000 | ALC: A TOTAL | 11/1/11/11 | | 100 | | | | | | | | | 11/10 | · 6.1 | | | | | | | | W. J. | · 6.2 | 11.00 | 2000 | | | | | | | | | | | 311/11/11 | 3111111 | | | Δ | | | | | | | | | | <u> </u> | 27 44 | | | 11 11 11 11 11 11 | | | | | 18 | 100 | | | | | | | | | | | | | | | | | | | 111.64 | | | | | | | | 18 | ## 6.1 $$3x + 2y - z = 10$$ $$-x + 3y + 2z = 5$$ $$x - y - z = -1$$ #### AX=B $$A = \begin{bmatrix} 3 & 2 & -1 \\ -1 & 3 & 2 \\ 1 & -1 & -1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 10 \\ 5 \\ -1 \end{bmatrix}$$ #### XA=B X, A B $$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad A = \begin{bmatrix} 3 & -1 & 1 \\ 2 & 3 & -1 \\ -1 & 2 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 10 \\ 5 \\ -1 \end{bmatrix}$$ $$AX=B, X=A^{-1}B X=inv(A)*B XA=B, X=BA^{-1} X=B*inv(A)$$ $X=A\B$ $$X = \% X$$ $$C = \% C = B$$ 10 -1 $$X = \% X$$ 10 5 -1 >> X=B*inv(A); % $$f(x_k)$$, $k = 1, 2, ...n$, $x_1 = a$, $x_n = c$ x_i x_k $a \le x_i \le c \ f(x_i)$ (interpolation) - 7.1 - 7.1.1 ____7.1.2 ____ - 7.1.3 <u>Spline</u> *a*, *b*) $$f(b) = f(a) + \frac{b-a}{c-a}(f(c) - f(a))$$ $$a < b < c \ b$$ $f(b)$ \pcxfile[12cm,5cm]{fig9_1.pcx} \caption{ spline } x,y xi method spline sec | time | temp1 | temp2 | temp3 | |------|-------|-------|-------| | 0 | 0 | 0 | 0 | | 1 | 20 | 110 | 176 | | 2 | 60 | 180 | 220 | | 3 | 68 | 240 | 349 | | 4 | 77 | 310 | 450 | | 5 | 110 | 405 | 503 | ``` y1 = % 2.6 64.8 64.8 >> y1=interp1(x,y,[2.6 4.9]) % 2.6, 4.9[] y1 = 64.8 106.7 >> y1=interp1(x,y,2.6,'cubic') % 2.6 y1 = % 2.6 66.264 66.264 >> y1=interp1(x,y,2.6,'spline') % spline 2.6 y1 = % 2.6 66.368 66.368 >> h=1:12; >> temp=[5 8 9 15 25 29 31 30 22 25 27 24]; % >> plot(h,temp,'--',h,temp,'+') % >> h_3=1:0.1:12 % 0.1 >> t_3=interp1(h,temp,h_3,'cubic') % >> t_s=interp1(h,temp,h_3,'spline') % spline >> hold on >> subplot(1,2,1) ``` >> plot(h,temp,'--',h,temp,'+',h_3,t_3) % >> subplot(1,2,2) >> plot(h,temp,'--',h,temp,'+',h_3,t_s) % spline >> hold off ## 7.1.2 ¤G°û¤°′; $\Box G^{\circ}\hat{u}^{\circ}$ '; $\Box P^{\circ} = \partial^{\circ}\hat{u}^{\circ}$ '; \Box° | | - | | | |------|-------|------|------| | time | speed | | 13/1 | | 0 | 2000 | 3000 | 4000 | | | rpm | rpm | rpm | | 1 | 20 | 110 | 176 | | 2 | 60 | 180 | 220 | | 3 | 68 | 240 | 349 | | 4 | 77 | 310 | 450 | | 5 | 110 | 405 | 503 | | | | | | "䤤·Å«×a°¼Æ¾Ú±q 20°CÅܤÆ"ì 503°C¡A¦paGn¦ôp¦bt=2.6, sec, rpm=2500 a°·Å«×¡A¥i¥H¤U¦C«ü¥Op°â - >> d2(:,1)=[0 1 2 3 4 5]'; % ±N®É¶¡¿é¤J - >> d2(:,2)=[2000 20 60 68 77 110]'; % ±N rpm=2000 ^{ao}·Å«×¿é¤J - >> d2(:,3)=[3000 110 180 240 310 405]'; % ±N rpm=3000 ^{ao}·Å«×¿é¤J - >> d2(:,4)=[4000 176 220 349 450 503]'; % ±N rpm=4000 ao·Å«×¿é¤J ``` >> t=d2(2:6,1); % ¿ï¾Ü°µ¤º′; aº®É¶; ``` >>_temp_i=interp2(rpm,t,temp,2500,2.6) % \{\frac{1}{2}u\circ\text{E}^o'; "M\circ\text{w} rpm=2500,t=2.6"} ao·Å«× temp_i = 140.4000 ¤W¤@¶¡@¤U¤@¶¡@Á¿¸q¤j°ĉ # **7.1.3 Spline** ``` spline7.1.1 interp1spline spline(x,y,xi) x,y,xiinter interp1(x,y,xi,'spline')MATLAB spline(x,y,xi) interp1 7.1.1 spline >> x=[0 1 2 3 4 5]'; >> y=[0 20 60 68 77 110]'; >> y1=spline(x,y,2.6) y1 = 67.3 >> y1=spline(x,y,[2.6,4.9]) y1 = 67.3 105.2 ``` | | Marie Contract | | Marie Contract | | | |---|--|-------------------|----------------|-------------------|-------| 7.3 | | | | | | | | | | | | | | 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 | 10 7 10 10 10 | Section 1 | 10 11 11 11 11 | 10 11 11 11 11 11 | 100 | | 014101111111111111111111111111111111111 | 11/2/11 | 211411 | 271101011 | 10000 | | | (curve-fitting) | 17.10.19.10.10 | 17.11.11.11.11.11 | 17.10.11.11.11 | 0.10.0000 | 17.18 | | 7.0 | | | | | | | • 7.3 | | | | | | | o 7.3.1 | | | | | | | • 7.3.2 | | | | | | | o 7.3.3 | | | | | | | | | | | | | | ① 및 | 13 311 6 60 311 6 | 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1 | 1000 | 13 37 11 15 | 1000 | | | | | | | | | ### 7.3.1 ``` y=y(x) x=\{0, 1, 2, 3, 4, 5\}, y=\{0, 20, 60, 68, 77, 110\} y = 20x MATLAB >> x=[0 1 2 3 4 5]; >> y=[0 20 60 68 77 110]; >> y1=20*x; % y1 >> sum_sq = sum(y-y1).^2); % 573 >> axis([-1,6,-20,120]) >> plot(x,y1,x,y,'o'), title('Linear estimate'), grid polyfit x,ynn=1 f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x^1 + a_0 \mathbf{polyfit}^{\mathcal{A}_0,\mathcal{A}_1,\cdots,\mathcal{A}_{n-1},\mathcal{A}_n} \mathbf{n} = 1 \quad \mathcal{A}_0,\mathcal{A}_1 coef=polyfit(x,y,n)coef(1)= ,...,coef(n+1)= \frac{\partial}{\partial x}n n+1 >> x=[0 1 2 3 4 5]; >> y=[0 20 60 68 77 110]; >> coef=polyfit(x,y,1); % coef ``` ``` >> a0=coef(1); a1=coef(2); ``` >> plot(x,ybest,x,y,'o'), title('Linear regression estimate'), grid | 7.3.2 | | | | | | |--|--|--|------------------
--|-----| | 1.5.4 | | | | | | | | | | | | | | A CONTRACTOR OF THE PARTY TH | 100 100 100 100 | 300 | War was a second | TOP TO THE PARTY | 100 | | | | | | | | | polyfi | t <i>n</i> ≥ 2 | | | | | | polyli | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 21111111 | 21111111 | 2111111 | | | | | | | | | | A1 01 | | | | | | | 4 | | | | | | | ت ت | Marie Carlo | 83 3318 | 43 1111 8 | Wall of | 63 311 3 | 63 111 6 | The state of s | | A STATE OF THE STA | 42 2111 | 100000 | 63 3311 6 | | | | | | | | | | | | | | | | ### 7.3.3 ``` (a_0, a_1, \cdots, a_{\pi-1}, a_{\pi}) polyfit polyval polyfit polyval polyval(>> x=[0 1 2 3 4 5]; >> y=[0 20 60 68 77 110]; >> coef=polyfit(x,y,1); % >> ybest=polyval(coef,x); % polyval polyval >> coef=polyfit(x,y,5); >> a0=coef(1); >> a1=coef(2); >> a2=coef(3); >> a3=coef(4); >> a4=coef(5); >> a5=coef(6); >> f=a0 + a1*x + a2*x.^2 + a3*x.^3 + a4*x.^4 + a5*x.^5; >> x=[0 1 2 3 4 5]; >> y=[0 20 60 68 77 110]; ``` ``` >> newx=0:0.05:5; % >> for n=2:9 >> f(:,n)=polyval(polyfit(x,y,n),newx)'; >> plot(newx,f(:,n),x,y,'o') >> title(['Poly. regression, deg=',int2str(n)]) >> xlabel('Time'), ylabel('Temp'), grid >> pause % >> end titlen int2str (integer) (string)title title [title, int2str, num2str ``` ``` >> p=[1 3 2]; >> r=roots(p) -1 >> p=[1 -12 0 25 116]; % >> r=roots(p) % 11.7473 2.7028 -1.2251 + 1.4672i -1.2251 - 1.4672i roots poly, real p(x) = (x-2)(x-1) = x^2 + 3x + 2 poly poly(r) r real >> r=[-2 1]; >> pp=poly(r) % pp=(x+2)(x-1)=x^2+3x+2 ``` ``` pp = 132 >> p=[1 -4 6 -4]; >> r=roots(p) 2.0000 1.0000 + 1.0000i 1.0000 - 1.0000i >> pp=poly(r) % p pp = 1 -4 6 -4 >> pp=[1 7 12 9]; % >> r=roots(pp) -4.9395 -1.0303 + 0.8721i -1.0303 - 0.8721i >> pp=poly(r) % pp = 1.0000 7.0000 12.0000 9.0000 + 0.0000i >> pp=real(pp) % real pp = ``` 1.0000 7.0000 12.0000 9.0000 ``` roots 'h fzero x)=3 f(x)=\sin(x)-3 m-file 1. f(x)=0 \sin(2. \quad x, y(x) 3. y(x)(x0) x fzerofzero('function',x0) x0 function \sin(x)=0 \pi,2\pi,3\pi,... >> r=fzero('sin',3) % sin(x)sin r = \% x = 3 3.1416 >> r=fzero('sin',6) % x=6 6.2832 MATLAB humps >> x=linspace(-2,3); >> y=humps(x); ``` ``` >> plot(x,y), grid % 01 ``` r = 1.2995 $$x^3 - 2x - 5 = 0$$ roots % m-function, f_1.m $$y=x.^3-2*x-5;$$ r = 2.0946 $$>> p=[1 0 -2 -5]$$ r = -1.0473 - 1.1359i $x^2\sin(x)+\cos(x)=0$ % m-function, f_2.m function $y=f_2(x) \% f_2.m$ $y=x.^2.*sin(x)+cos(x);$ >> x=linspace(-3,3); $>> y=f_2(x);$ >> plot(x,y), grid % -13 >> r=fzero('f_2',-1); % -1 r = -0.8952 >> r=fzero('f_2',3); % 3 r = 3.0333 $2e^{-x}\sin(2\pi x) - 0.5 = 0$ % m-function, f_3.m function $y=f_3(x) \% f_3.m$ ``` y=2*exp(-x).*sin(2*pi*x)-0.5; ``` 0.4368 | | | | | | | 63 12 11 1 | | |----------|--------|------------|---|-------------------|------------|-------------------|-------| 13 | | | | | | | | | | | | 1160 | | 7/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1 | / | (analytical) | 19 11 11 | 100 | 0.70.70.70 | 10 11 11 11 11 | W. N. S. S. S. S. | 0.70.70.70 | 1000000 | 10.70 | | • | 2 | | | | | | | 0 | 9.3 | 3 | | | | | | | | | | 3.1.7.1.16.10 | | | 15.17.17.16.16.19 | | | | IJ | | | | | | 1000 | | | \leq | 11.00 | 10000 | | | | | | | | | | | | | $$K = \int_{a}^{b} f(x) \, dx$$ a, b f(x) a, b f(x) MATLAB f(x) a, b [a,b] (discretized po - 9.1 - o 9.1.1 __ - o 9.1.2 # 9.1.1 MATLABtrapztrapz(x,y)x,y $y=\sin(x)$ yx $$k = \int_0^{\pi} \sin(x) dx = -\cos(x) \Big|_0^{\pi} = 2$$ MATLAB >> x=0:pi/100:pi; >> y=sin(x); >> k=trapz(x,y) k = ## 9.1.2 trapz, quad, quad8 quad('function a, b trapz quad, quad8 $$k = \int_{a}^{b} \sqrt{x} dx = \frac{2}{3} (b^{3/2} - a^{3/2})$$ #### MATLAB kq = 0.2357 >> kq8=quad8('sqrt',a,b) kq8 = 0.2357 >> x=-1:0.17:2; >> y=humps(x); >> area=trapz(x,y) area = ``` 25.9174 >> x=-1:0.07:2; >> y=humps(x); >> area=trapz(x,y) area = 26.6243 >> area=quad('hump',-1,2) area = 26.3450 >> area=quad8('hump',-1,2) area = 26.3450 ``` f(x) x=a $$f'(z) = \frac{df(x)}{dx}\bigg|_{x=z}$$ x=a - 9.3 9.3.1 ___ 9.3.2 ___ ### 9.3.1 x+h x $$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x}$$ X_0 , X_1 ,..., X_{k-1} , X_k , X_{k+1} ,... $$f'(x_k) = \frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k}$$ $$h = x_{k+1} - x_k \qquad x_k \qquad x_{k+1}$$ $f(x_{k+1}), f(x_k)_{x_k}$ 後向差分 $$f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$ 中央差分 $$f'(x_k) = \frac{f(x_{k+1}) - f(x_{k+1})}{x_{k+1} - x_{k+1}}$$ $$f''(x) = \frac{df'(x)}{dx}$$ 前向差分 $$f''(x_k) = \frac{f'(x_{k+1}) - f'(x_k)}{x_{k+1} - x_k}$$ 後向差分 $$f''(x_k) = \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$$ 中央差分 $$f''(x_k) = \frac{f'(x_{k+1}) - f'(x_{k+1})}{x_{k+1} - x_{k+1}}$$ $$x_{k} - x_{k-1}, k = 1,...,n$$ MATLAB diff $x = [1 \ 3 \ 5 \ 7 \ 9], y = [1 \ 4 \ 9 \ 16 \ 25]$ diff(x) = $[2 \ 2 \ 2 \ 2], \text{ diff}(y) = [3 \ 5 \ 7 \ 9] \ 4 \ 5$ $[-4, 5]$ $f(x) = x^{5} - 3x^{4} - 11x^{3} + 27x^{2} + 10x - 24$ >> $x = \text{linspace}(-4,5); \% \ 100x$ >> $p = [1 \ -3 \ -11 \ 27 \ 10 \ -24];$ >> f = polyval(p,x); >> plot(x,f) % >> title('Fifth-deg. equation') >> $x = x(2 : \text{length}(x)); \% \ 99 \text{df} \qquad x2,x3,...,x100}$ >> plot(xd,dfb) % >> title('Derivative of fifth-deg. equation') (local critical value) >> product=dfb(1:length(dfb)-1).*dfb(2:length(dfb)); % ``` >> crit=xd(find(product<0)) % find diff >> num=f(3:length(f))-f(1:length(f)-2); % f(k+1)-f(k-1) >> deno=x(3:length(f))-x(1:length(f)-2); % x(k+1)-x(k-1) >> df_c=num./deno; >> xd=x(2:length(x)-1); % xd98 >> plot(xd,df_c) >> title('Derivative of fifth-deg. polynomial') >> x=0:0.1:1; >> y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; >> plot(x,y,'o',x,y) >> title('y(x) data plot') >> ylabel('y(x)'), xlabel('x') >> dy=diff(y)./diff(x); >> xd=x(1:length(x)-1); >> plot(xd,dy) >> title('Approximate derivative using diff') >> ylabel('dy/dx'), xlabel('x') ``` | 1000 | | | 711/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/ | | | |---------|---|------|--|-------|-------| engine | e)UDF1980 | | (vehicle) | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1000 | 1000 | 11000 | 16.00 | | | | | | | | | | o 10.1 | | | | | | | 10.2 -10.3 | | | | | | | o 10.4 | | | | | | 1 | 10 11 1 | #### (ordinary differential equation, ODE) $$y' = \frac{dy}{dx} = g(x, y)$$ x y x y(x) ODE ODE $$y' = g_1(x,y) = 3x^2$$ $y' = g_2(x,y) = -0.13y$ $y' = g_3(x,y) = 2x\cos^2 y$ $$y' = g_4(x, y) = 3y + e^{2x}$$ ODE $$y0=y(x0)$$ $x=x0$ $y(x)=y0$ y(x)=y0 (analy $$y = x^3 - 7.5$$ $$y = 4e^{-0.13x}$$ $$y = \tan^{-1}(x^2 + 1)$$ $$y = 4e^{3x} - e^{2x}$$ ODE $$y(a) y(b) y(b)$$ $$y(b) = y(a) + by'(a) +
\frac{b^2}{2}y''(a) + \dots + \frac{h^n}{n!}y^n(a) + \dots$$ $$b=a+h$$ $$y(b) = y(a) + hy'(a)$$ $$y(b) = y(a) + by'(a) + \frac{b^2}{2}y''(a)$$ #### MATLAB ODE ### 10.2 - #### - (Runge-Kutta) ODE $$y_b = y_a + h y_a'$$ $$y(b) = y_b, y(a) = y_a, y'(a) = y'_a, -ODE$$ ode23, ode45ode23- ode45 - g_1, g_2, \dots x_0, x_n ODE [x_0, x_n] MATLAB- ODE ode23 ODE [2, 4] ODE $$y' = g_1(x,y) = 3x^2$$ 起始値 $y(2) = 0.5$ % m-function, g1.m function dy=g1(x,y) $dy=3*x.^2;$ >> [x,num_y]=ode23('g1',2,4,0.5); >> anl_y= $x.^3-7.5$; >> plot(x,num_y,x,anl_y,'o') >> title('Solution of g1') >> xlabel('x'), ylabel('y=f(x)'), grid [0, 5] ODE $y' = g_2(x,y) = -0.131y$ 起始値 y(0) = 4 ``` % m-function, g2.m function dy=g2(x,y) dy = -0.131*y; >> [x,num_y]=ode23('g2',0,5,4); >> anl_y=4*exp(-0.131*x); >> plot(x,num_y,x,anl_y,'o') >> title('Solution of g2') >> xlabel('x'), ylabel('y=f(x)'), grid [0, 2] ODE y' = g_3(x,y) = 2x\cos y^2 起始値 y(0) = 0.25\pi % m-function, g3.m function dy=g3(x,y) dy=2*x*cos(y)^2; >> [x,num_y]=ode23('g3',0,2,pi/4); \Rightarrow anl_y=atan(x.*x+1); >> plot(x,num_y,x,anl_y,'o') >> title('Solution of g3') >> xlabel('x'), ylabel('y=f(x)'), grid [0, 3] ODE y' = g_4(x, y) = 3y + e^{2x} 起始値 y(0) = 3 % m-function, g4.m ``` ``` function dy=g4(x,y) dy=3*y+exp(2*x); >> [x,num_y]=ode23('g4',0,3,3); >> anl_y=4*exp(3*x)-exp(2*x); >> plot(x,num_y,x,anl_y,'o') >> title('Solution of g4') >> xlabel('x'), ylabel('y=f(x)'), grid ode45 ode23 ODE % m-function, g1.m function dy=g1(x,y) dy=3*x.^2; % m-file, odes1.m % Solve an ode using ode23 and ode45 clg [x1,num_y1]=ode23('g1',2,4,0.5); anl y1=x1.^3-7.5; error_1=abs(anl_y1-num_y1)./abs(anl_y1); % ode23 [x2,num_y2]=ode45('g1',2,4,0.5); anl y2=x2.^3-7.5; % x2 x1 error_2=abs(anl_y2-num_y2)./abs(anl_y2); % ode45 hold on ``` ``` subplot(2,2,1) plot(x1,num_y1,x1,anl_y1,'o') title('ODE23 solution'), ylabel('y') subplot(2,2,2) plot(x1,error_y1) % title('ODE23 error'), ylabel('y') % ode23 1.e-16 subplot(2,2,3) plot(x2,num_y2,x2,anl_y2,'o') title('ODE45 solution'), ylabel('y') subplot(2,2,4) plot(x1,error_y2) title('ODE45 error'), ylabel('y') % ode45 hold off % m-function, g5.m function dy=g5(x,y) dy = -y + 2*\cos(x); % m-file, odes1.m % Solve an ode using ode23 and ode45 clg [x1,num_y1]=ode23('g5',0,5,1); ``` ``` anl_y1=sin(x1)+cos(x1); error_1=abs(anl_y1-num_y1)./abs(anl_y1); [x2,num_y2]=ode45('g5',0,5,1); anl_y2=sin(x2)+cos(x2); error_2=abs(anl_y2-num_y2)./abs(anl_y2); hold on subplot(2,2,1) plot(x1,num_y1,x1,anl_y1,'o') title('ODE23 solution'), ylabel('y') subplot(2,2,2) plot(x1,error_y1) % title('ODE23 error'), ylabel('y') % ode23 1.e-4 subplot(2,2,3) plot(x2,num_y2,x2,anl_y2,'o') title('ODE45 solution'), ylabel('y') subplot(2,2,4) plot(x1,error_y2) title('ODE45 error'), ylabel('y') % ode45 1.e-6 hold off ``` | | 1611 1111111 | 11 11 11 11 | 11 3 11 11 11 | | | |--|---------------------------------------|-------------------------|-------------------|--|--| 100 | | | | | | | 10.3 | | | | | | | | | | | | | | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 18 040 111 | 18 040 111 | 10.000 | 10 0 10 10 | | | 10/1/2/11/0 | 3163000 | 31631110 | 311/31/11/20 | 1000 | | | | | | | | | 43 211843 | 2018 | 11.843. | 11.842 1 | 11 11 11 11 11 | 11.843 | | | | | | | | | | | | | | | | 0 U | | | | | | | T. Walleton B. | 63 77 663 | 2018 | 11.882.17 | 11.000 | 11 11 11 11 11 | 11 6 63 11 | all the second | 63 771 663 | 11 13 11 11 | 11 11 11 11 11 | 11. 5 6 5 15 | 11 | 11 18 18 18 18 | The second second | 16 11 11 11 11 11 | 11 11 11 11 11 11 11 11 | 11.31.11.11.11.11 | 67. 27.1 8.67. | 11181111 | 1118/03 | 11.843.3 | 11 6 6 3 1 | 11 | | A STATE OF THE STA | | | | | | | 1 10 11 11 11 11 | | | | | | #### (change of variables) $$y^{n} = g(x, y, y', y'', ..., y^{n-1})$$ $$n^{y,y',y'',\dots,y^{n-1}}$$ $$u_1(X) = \mathcal{Y}^{n-1}$$ $$u_2(X) = y^{n-2}$$ $$u_{n-1}(X) = y^t$$ $$u_n(X) = y$$ #### ODE $$u_1' = y^n = g(x, u_n, u_{n-1}, ..., u_1)$$ $$u_2' = u_1$$ $$u_{n-2}'=u_{n-3}$$ $$u'_{n-1} = u_{n-2}$$ #### ODE $$y'' = g(x, y, y') = y'(1-y^2) - y$$ $$u_1(x) = y^t \quad u_2(x) = y$$ #### ODE $$u_1' = y'' = g(x, u_2, u_1) = u_1(1 - u_2^2) - u_2$$ $u_2' = u_1$ #### ODE ``` function u_prime =eqns2(x,u) u_prime(1) = u(1)*(1-u(2)^2) - u(2); u_prime(2) = u(1); initial = [0 \ 0.25]; [x,num_y] = ode23('eqns2',0,20,initial); subplot(2,1,1), plot(x,num_y(:,1)) title('1st derivative of y'), xlabel('x'), grid subplot(2,1,2), plot(x,num_y(:,2)) title('y'), xlabel('x'), grid ``` | 11.1 | | | | | | | |-----------------|-------|----------|-------|--------|----------|----| | 111111 | 11111 | 11/11/11 | 11111 | 111111 | 1111111 | | | | | | | | | | | | | | | 1- | +0.5=1.5 | | | sin(x) | | | | | | | | MATLABMa | iple | • 11.1
• 11. | 1.1 | | | | | | | o 11. | 1.2 | | | | | | | • 11. | 1.3 | | | | | | | 0 0 | | 10000 | | 10000 | 110000 | 9 | | A A | 63 | ## 11.1.1 MATLAB (character string) MATLA expression S symvar(S) 'tan(y/x)' x 'x^3-2*x^2+3' x '1/(cos(angle)+2)' x '3*a*b-6' b $[-2\pi,2\pi]$ ezplot(S), S ezplot ezplot(S,[xmin,xmax MATLAB # 11.1.2 ``` collect(S) S collect(S,'v') S v expand(S) S factor(S) S(factorization) simple(S) simplify(S) MapleS >> S1 = 'x^3-1'; >> S2 = '(x-3)^2 + (y-4)^2'; >> S3 = 'sqrt(a^4*b^7)' >> S4 = '14*x^2/(22*x*y)'; >> factor(S1) ans= (x-1)*(x^2+x+1) >> expand(S2) ans= x^2-6*x+25+y^2-8*y ``` ``` >>collect(S2) ans= x^2-6*x+9+(y-4)^2 >>collect(S2,'y') ans= y^2-8*y+(x-3)62+16 >>simplify(S3) ans= a^2*b^(7/2) >>simple(S4) ans= ``` 7/11*x/y ### 11.1.3 horner(S) S numden(S) S numeric(S) S(S) poly2sym(c) pretty(S) S sym2poly(S) S symadd(A,B) A+B symdiv(A,B) A+B symmul(A,B) A+B sympow(S,p) S^p symsub(A,B) A+B >>p1 = '1/(y-3)'; >> p2 = '3*y/(y+2)';>> p3 = '(y+4)*(y-3)*y';>> symmul(p1,p3) ans= ``` (y+4)*y >> sympow(p2,3) ans= 27*y^3/(y+2)^3 >> symadd(p1,p2) ans= 1/(y-3)+3*y/(y+2) >>[num,den] = numden(symadd(p1,p2)) ans= [-8*y+2+3*y, (y-3)*(y+2)] >> horner(symadd(p3,'1') 1+(-12+(1+y)*y)*y ``` | 11.2 | 1000 | 60000 | 1000 | | Property of | | |----------------
--|---|-----------------|--------------|----------------|-----| | | | | | | | | | 10 11 11 11 11 | 100 11 11 11 11 | 100 11 11 11 11 | 100 11 11 11 11 | 100-10-10-10 | 10 10 11 11 11 | 100 | • 11.2 | | | | | | | | o 11 | .2.1 | | | | | | | | .2.2 | | | | | | | | 120 66 | | | | | | | 11 11 11 11 11 | The state of s | 10 TO 11 | 10 1 1 1 1 C | 60000 | W. W. W. W. W. | 100 | | 신 & | 63 (3) (4) | 63 (2) 6 | | | 10 | 11 10 11 11 | 11 10 11 | 11. 100 11. | | | 100 | 1000 | Marie Contract | | | | | | | | | | | | | ### 11.2.1 ``` solve(f) f solve(f1,,fn) f1,,fn >>eq1 = 'x-3=4'; % ' eq1=x-7' >>eq2 = 'x*2-x-6=0'; % ' eq2=x*2-x-6' >> eq3 = 'x2+2*x+4=0'; >> eq4 = '3*x+2*y-z=10'; >>eq5 = '-x+3*y+2*z=5'; >>eq6 = 'x-y-z=-1'; >>solve(eq1) ans= >>solve(eq2) ans= [[3],[-2]]' % 3, -2 >>solve(eq3) ans= ``` >>solve(eq4,eq5,eq6) % ans= $$x = -2$$, $y = 5$, $z = -6$ #### 11.2.2 (first-order ordinary differential equation, ODE) ans= $-\exp(2^*x)+4^*\exp(3^*x)$ | 11 2 | | | | | | | |------------|------------------------|------------------|--|---|---|-------| | 11.3 | W. A. W. W. | | N. A. S. W. | W. A. W. W. | W. A. W. W. | • 11.3 | | | | | | | | | .3.1 | | | | | | | | | | | | | | | • 11 | .3.2 | 2111 6 | the second | 10 11 11 11 11 | 10 11 11 11 11 | 103 | | | | | | | | | | 0 10 0 0 0 | 100 100 100 100 100 | 10 70 00 00 | 100 | 100 100 100 100 100 100 100 100 100 100 | 100 100 100 100 100 100 100 100 100 100 | 900 3 | | 0 0 | | | | | | | | 4월 국회 | | | | | | | | | | | | | | | | | 8 11 1 1 1 1 1 1 1 1 1 | 8.11 11 11 11 11 | A STATE OF S | 8 11 11 11 11 11 | 8 11 11 11 11 11 | 60 | Marie Contraction | 6 6 6 | 61 12 11 11 | Marie Marie | the same | The same of | The same | The same | 60 | 62 21118 | | | | | 100 | 8.11/1/18 | 8 18 18 18 18 | 63 33 33 33 | 8 11 11 11 11 11 11 11 | 63 33 33 3 | 63 | | | | | | | | | | | | | | | | | ### 11.3.1 ``` diff 4 diff(f) f diff(f,'t') ft diff(f,n) fn diff(f,'t',n) ftn diff >> S1 = '6*x^3-4*x^2+b*x-5'; >>S2 = 'sin(a)'; >>S3 = '(1 - t^3)/(1 + t^4)'; >>diff(S1) ans= 18*x^2-8*x+b >>diff(S1,2) ans= 36*x-8 >>diff(S1,'b') ans= ``` ``` >>diff(S2) ans= cos(a) >>diff(S3) ans= -3*t^2/(1+t^4)-4*(1-t^3)/(1+t^4)^2*t^3 >>simplify(diff(S3)) ans= t^2*(-3+t^4-4*t)/(1+t^4)^2 ``` ### 11.3.2 ``` int F diff(F)=f (analytical form, closed form) MATLAB int(f) f int(f,'t') ft int(f,a,b) f [a,b]ab int(f,'t',a,b) ft [a,b]ab int(f,'m','n') f [m,n]mn >>S1 = '6*x^3-4*x^2+b*x-5'; >>S2 = 'sin(a)'; >>S3 = 'sqrt(x)'; >>int(S1) ans= 3/2*x^4-4/3*x^3+1/2*b*x^2-5*x >>int(S2) ans= -cos(a) >>int(S3) ans= ``` 2/3*x^(3/2) >>int(\$3,'a','b') ans= 2/3*b^(3/2)- 2/3*a^(3/2) >>int(S3,0.5,0.6) ans= 2/25*15^(1/2)-1/6*2^(1/2)
>>numeric(int(S3,0.5,0.6)) % numeric ans= 0.0741