
LuaFAR	for	Editor	(version	3.7)

LuaFAR	for	Editor	(a	Far	Manager	plugin)	is	a	collection	of	utilities	working
in	the	Far	Editor.	The	plugin	also	allows	to	add	the	unlimited	number	of	new
utilities.	Both	the	plugin	and	the	utilities	are	written	in	Lua	programming
language.

For	description	of	the	built-in	utilities	and	the	Configuration	Dialog,	see	the
plugin’s	help	file.

What’s	new
Incompatibilities	with	the	previous	version
User’s	utilities
Command	line
Plugin	API
Lua	Modules
Credits

What's	new

See	the	Changelog.

Changelog

--

		Legend:			[+]	added;			[-]	deleted;			[*]	changed;			[!]	fixed;

--

2012-04-09,	v3.0.6

2012-03-26,	v3.0.5

2012-03-24,	v3.0.4

						[!]	Maintenance	versions	(minor	fixes).

						[+]	Examples	added.

2012-03-04,	v3.0.3

		PLUGIN:

						[*]	Function	lf4ed.version	moved	to	`utils'	module	and	renamed	to

										GetPluginVersion.

2012-01-04,	v3.0.0

		PLUGIN:

						[*]	Adaptation	to	Far	3.0	/	LuaFAR	3.0	API.

						[*]	Calling	from	macros	via	GUID	instead	of	SysId.

						[-]	"searchmenu"	is	not	used	by	the	plugin	(but	remains	available

										to	user	scripts).

		Sort	Lines:

						[*]	Column	pattern	is	Far	regex	(was:	Lua	regex).

						[*]	Added	flag	SORT_STRINGSORT	to	case-insensitive	sort.

						[+]	"Case-sensitive"	check	boxes	made	3-state.

		Block	Sum:

						[+]	If	no	text	is	selected,	the	current	line	is	processed.

		Lua	Script:

						[+]	External	script	can	be	specified	(via	Script	Parameters	dialog).

2011-02-02,	v2.8.0

		PLUGIN:

						[+]	Got	a	SysId	(0x10000)	for	calling	from	macros.	The	call	syntax	is

										the	same	as	for	command	line	calls	(but	the	prefix	is	not	needed).

										New	switch	-a	for	asynchronous	calls.

						[+]	Function	MakeResident:	parameter	can	be	a	table.	That	makes

										possible	to	require()	files	containing	event	handlers.

		Sort	Lines:

						[+]	a	GUID	added	to	the	dialog.

		Reformat	Block:

						[+]	a	GUID	added	to	the	dialog.

2010-12-24,	v2.7.1

						[!]	The	build	of	2.7.0	was	broken	due	to	an	error	in	Makefile.

2010-12-23,	v2.7.0

		PLUGIN:

						[+]	64-bit	build	added	(works	with	64-bit	LuaFAR).

						[*]	Plugin	keeps	its	data	in	"%APPDATA%\LuaFAR	for	Editor"	directory

										(was:	in	the	plugin	directory).

2010-11-26,	v2.6.0

		PLUGIN:

						[*]	Lua	modules	used	by	the	plugin	do	not	set	global	variables.

										Use	the	value	returned	by	`require`.

		Sort	Lines:

						[*]	A	single	"undo"	in	Editor	undoes	the	entire	operation.

		Reformat	Block:

						[*]	A	single	"undo"	in	Editor	undoes	the	entire	operation.

		Block	Sum:

						[*]	The	dialog	moved	from	the	configuration	to	the	utility.

						[+]	The	result	can	be	edited	in	the	dialog.

						[*]	Items	immediately	followed	by	[,;:]	are	considered	valid.

		Lua	Expression:

						[*]	The	dialog	moved	from	the	configuration	to	the	utility.

						[+]	The	result	can	be	edited	in	the	dialog.

						[+]	If	there's	no	selection,	the	current	line	is	processed.

2010-10-14,	v2.5.0

		PLUGIN:

						[!]	Error	when	calling	"Block	Sum"	or	"Lua	Expression"	settings	dialogs.

						[!]	Utilities	could	interfere	with	each	other	via	parameters	table.

		Lua	Script:

						[+]	Parameters	can	be	passed	to	the	script.	Parameters	dialog	added.

2010-08-30,	v2.4.0

		PLUGIN:

						[+]	AddToMenu:	parameter	"where"	can	include	letter	"d"	(for	"dialog").

						[*]	AddToMenu,	AddCommand:	unlimited	number	of	additional	arguments.

						[*]	Installed	scripts	get	their	parameters	in	a	table	(was:	2	parameters).

										The	table	may	also	include	fields	"From"	and	"hDlg".

						[!]	Fix	"Reload	user	file"	with	default	plugin	settings.

2010-07-25,	v2.3.0

		PLUGIN:

						[*]	'Reload	User	File'	operation	resets	`package.loaded',	in	order	to

										behave	as	close	as	possible	to	the	initial	loading.

						[+]	new	callback	("resident")	function	ExitScript.

						[+]	function	AddToMenu	supports	localization.

2010-06-25,	v2.2.0

		PLUGIN:

						[*]	LuaFAR	2.3	required.

						[+]	Localization	of	the	configuration	dialog.

						[+]	Utility	for	localization	of	script	packets.

		Sort	Lines:

						[!]	Fixed	shortcut	keys	in	the	dialogs.

						[!]	Sorting	made	stable.

		Block	Sum:

						[*]	Made	compatible	with	LuaFAR	2.3.

2010-04-24,	v2.1.0

		PLUGIN:

						[!]	Fixes	to	work	with	Unicode	file	names	and	paths	(LuaFAR	2.2	required).

		Sort	Lines:

						[+]	Added	constant	`I'	(number	of	lines	in	selection).	Help	files	updated.

2010-02-25,	v2.0.1

		PLUGIN:

						[+]	Added	function	unicode.utf8.cfind	(see	the	manual).

		Sort	Lines:

						[+]	Added	variable	`i'	(number	of	selected	line).	Help	files	updated.

2010-02-20,	v2.0.0

		PLUGIN:

						[*]	First	Unicode	version.

						[*]	Requires	LuaFAR	version	2.0.0.

						[*]	s:find()	accesses	unicode.utf8.find(s),	the	same	goes	for	all

										string	function	names.	To	access	the	standard	string	library,

										write	string.find(s),	etc.

		Sort	Lines:

						[*]	"Case	sensitive"	checkboxes	added.	Help	files	updated.

2010-02-04,	v0.12.1

		PLUGIN:

						[!]	LuaFAR	version	check	was	done	after	the	exported	functions	were

										already	connected	(that	is,	too	late).

						[*]	Requires	LuaFAR	version	1.1.

2010-01-16,	v0.12.0

		PLUGIN:

						[!]	When	errors	occured	in	a	utility	called	from	Editor	via	shortcut,

										the	shortcut	was	reported	to	Far	as	needing	further	processing.

						[!]	Broken	stack	traceback	in	error	messages	(since	version	0.11.0).

						[!]	Error	message	window:	could	not	jump	to	an	already	open	editor

										from	the	panels.

						[*]	Command	line	syntax	changed:	see	the	manual.

		Lua	Script:

						[*]	When	running	on	the	whole	Editor	buffer,	ignore	the	1-st	line

										if	it	starts	with	a	#	character.

2010-01-03,	v0.11.0

		PLUGIN:

						[+]	Plugin	can	be	called	from	the	command	line,	via	`lfe'	prefix.

										A	new	function	`AddCommand'	was	added.

						[!]	lf4ed:config:	changes	to	the	"ReturnToMainMenu"	option	did	not	work.

						[!]	lf4ed:config:	changes	were	not	reverted	in	case	of	error.

2009-12-02,	v0.10.0

		PLUGIN:

						[!]	`far2.history'	module	was	raising	error	given	an	empty	history	file.

						[*]	`far2.history'	module	renamed	to	`history'.

						[*]	configuration	changes	done	by	a	user	script	are	reverted	by	the

										plugin	after	the	script	exits.

						[*]	lf4ed.config:	always	returns	configuration	existed	prior	to	the	call.

						[!]	far.OnError:	eliminate	jumps	to	embedded	scripts.

						[!]	far.OnError:	jump	to	incorrect	line	in	another	file,	when	there

										was	selection	in	the	current	file	(the	bug	existed	since	v.	0.9.0).

						[*]	Main	Menu,	Config.	Menu:	removed	separators	after	the	built-in	items.

										(They	can	be	added	via	files	_usermenu.lua).

						[*]	The	plugin's	DLL,	as	supplied,	now	embeds	scripts	and	modules	in

										source	code	form	(not	compiled).	That	allows	to	work	with	LuaJIT.

2009-11-02,	v0.9.1

		PLUGIN:

						[!]	configuration	changes	were	not	saved	in	the	history	file

										(the	bug	existed	since	version	0.8.0).

2009-11-01,	v0.9.0

		PLUGIN:

						[*]	all	utilities	added	by	AddToMenu	calls	within	a	single	usermenu	file

										share	a	common	environment	that	does	not	change	until	the	next

										"Reload	User	File"	operation	(or	until	FAR	termination);

						[+]	plugin	checks	LuaFAR	version;

						[*]	error	handler	(far.OnError)	improved;

						[*]	plugin	(as	it	is	supplied)	does	not	embed	LuaFAR	library;

2009-10-02,	v0.8.0

		PLUGIN:

						[*]	signature	and	functionality	of	AddToMenu	function	changed;

										[*]	removed	"global	functions	requirement"	for	user	scripts;

										[+]	become	possible	to	add	items	to	Configuration	Menu;

										[+]	menu	separators	can	be	added;

						[+]	added	function	AddUserFile	(callable	from	_usermenu.lua);

						[+]	added	function	AutoInstall	(callable	from	_usermenu.lua);

						[*]	'<plugin_path>/scripts/?.lua'	is	added	to	package.path;

						[+]	added	function	lf4ed.config:	get/set	plugin	settings	from	script;

						[+]	added	function	lf4ed.version:	get	plugin	version;

						[+]	built-in	Lua	modules	(dialog,	history,	searchmenu)	used	in	plugin

										are	documented;	user	scripts	can	now	"officially"	use	them;

						[*]	"embedded"	versions	of	the	plugin	contain	LuaFAR	0.8.0;

						[!]	unneeded	"require	'strict'"	removed	from	far2/sortlines.lua;

						[-]	lf4ed_emb.dll	is	not	supplied	any	more;

2009-09-01,	v0.7.4

		PLUGIN:

						[!]	function	far.OnError	can	be	reliably	replaced	from	_usermenu.lua

						[*]	plugin	built	on	base	LuaFAR	0.7.3

2009-08-28,	v0.7.3

		PLUGIN:

						[*]	plugin	built	on	base	LuaFAR	0.7.2

2009-06-18,	v0.7.2

		PLUGIN:

						[*]	plugin	built	on	base	LuaFAR	0.7.1

2009-02-14,	v0.7.1

		Reformat	Block:

						[!]	error	loading	and	saving	start	and	end	column	data

2009-02-13,	v0.7

		PLUGIN:

						[*]	plugin	built	on	base	LuaFAR	0.7

2009-01-14,	v0.6

		PLUGIN:

						[*]	plugin	built	on	base	LuaFAR	0.6

2008-12-31,	v0.5.2

		PLUGIN:

						[!]	improvements	in	jumping	to	error	lines

						[*]	_usermenu.lua	(and	event	handler	files)	are	run	in	2	cases	only:

													a)	on	plugin	start-up

													b)	on	configuration	menu	command	"Reload	User	File"

						[*]	_usermenu.lua:	input	arguments	are	deprecated

						[+]	configuration	menu	command	"Reload	User	File"

						[+]	user	is	able	to	install	event	handlers,	by	means

										of	calling	new	function	MakeResident	in	_usermenu.lua

2008-12-27,	v0.5.1

		PLUGIN:

						[!]	did	not	work	if	file	_usermenu.lua	was	missing

						[!]	option	"always	reload	on	require"	was	not	independent	from	option

										"always	reload	default	script"

						[!]	several	problems	related	to	jumping	to	error	lines

						[*]	plugin	built	on	base	LuaFAR	0.5.1

2008-12-22,	v0.5

		PLUGIN:

						[+]	configuration	dialog	"Plugin	Settings"

						[+]	work	from	viewer	and	panels

						[+]	file	farkeys.lua

						[*]	_usermenu.lua:	AddToMenu	API	changed

						[*]	added	<plugin	directory>\?.lua	to	initial	value	of	package.path

						[*]	env.	variable	LUAFAR_INIT	is	processed	on	start	up	(was:	LUA_INIT)

						[*]	plugin	menus	can	be	made	"searchable"	(thanks	to	maxdrfl)

						[*]	indicator	of	memory	used	by	the	Lua	State	on	the	error	message	boxes

						[*]	buttons	on	error	message	boxes	for	jumping	to	error	lines

						[*]	plugin	built	on	base	LuaFAR	0.5

2008-12-13,	v0.4

		Reformat	Block:

						[+]	Russian	interface	translation

		Block	Sum:

						[!]	editor	window	not	redrawn	after	hotkey-initiated	execution

		Lua	Expression:

						[!]	editor	window	not	redrawn	after	hotkey-initiated	execution

		PLUGIN:

						[!]	hot	keys:	multiple	executions	after	a	single	key	press

						[!]	hot	keys:	did	not	work	when	they	were	part	of	a	macro

						[*]	_usermenu.lua:	is	passed	2	arguments	(event	type	and	editor	ID)

						[*]	plugin	built	on	base	LuaFAR	0.4

2008-12-06,	v0.3d

		PLUGIN:

						[!]	hot	keys:	worked	only	after	the	menu	was	called

						[!]	hot	keys:	triple	combinations	didn't	work

						[+]	hot	keys:	can	be	assigned	without	adding	items	to	the	menu

						[+]	hot	keys:	can	be	assigned	to	the	built-in	utilities

						[*]	_usermenu.lua:	is	(almost)	not	restricted	by	its	scope

						[*]	_usermenu.lua:	is	run	when	either	of	4	different	events	occurs,

										and	is	passed	an	argument	(event	type)

2008-12-04,	v0.3c

		PLUGIN:

						[!]	incorrect	processing	of	editor	input

2008-12-04,	v0.3b

		PLUGIN:

						[+]	hot	keys	can	be	assigned	to	user	utilities

						[+]	can	work	with	external	Lua	DLL

						[*]	plugin	built	on	base	LuaFAR	0.3

2008-11-26,	v0.3

		Sort	Lines:

						[!]	handling	different	types	of	EOLs.

						[!]	sorting	"only	selected"	in	vertical	blocks.

		Block	Sum:

						[*]	the	dialog	moved	to	Configuration	Menu.

		Lua	Expression:

						[*]	the	dialog	moved	to	Configuration	Menu.

						[*]	a	semicolon	is	appended	to	result	when	inserting	into	the	editor.

		Lua	Script:

						[*]	works	either	on	selection	or	on	the	whole	editor	buffer.

		PLUGIN:

						[+]	adding	utilities	by	the	user.

						[+]	configuration	menu	added

2008-11-06,	v0.2.1

		Sort	Lines:

						[!]	sorting	"only	selected"	in	vertical	blocks.

2008-11-05,	v0.2

		PLUGIN:

						[+]	first	public	release.

Version	2.5.0

PLUGIN:	[!]	Error	when	calling	“Block	Sum”	or	“Lua	Expression”	settings
dialogs.
[!]	Utilities	could	interfere	with	each	other	via	parameters	table.

Lua	Script:
[+]	Parameters	can	be	passed	to	the	script.	Parameters	dialog	added.

Version	2.4.0

[+]	AddToMenu:	parameter	“where”	can	include	letter	“d”	(for	“dialog”).
[*]	AddToMenu,	AddCommand:	unlimited	number	of	additional	arguments.
[*]	Installed	scripts	get	their	parameters	in	a	table	(was:	2	parameters).	The	table
may	also	include	fields	“From”	and	“hDlg”.
[!]	Fix	“Reload	user	file”	with	default	plugin	settings.

Version	2.3.0

Plugin

[*]	‘Reload	User	File’	operation	resets	package.loaded,	in	order	to	behave	as
close	as	possible	to	the	initial	loading.
[+]	new	callback	(“resident”)	function	ExitScript	(see	MakeResident
function).
[+]	function	AddToMenu	supports	localization.

Version	2.2.0

Plugin

[+]	Localization	of	the	configuration	dialog.
[+]	Utility	for	localization	of	script	packets.

Sort	Lines

[!]	Fixed	shortcut	keys	in	the	dialogs.
[!]	Sorting	made	stable.

Version	2.1.0

Plugin:

[!]	Fixes	to	work	with	Unicode	file	names	and	paths	(LuaFAR	2.2	required).

Sort	Lines:

[+]	Added	constant	I	(number	of	lines	in	selection).	Help	files	updated.

Version	2.0.1

See	also	Changelog.

1.	 unicode.utf8.cfind	function	added.

Version	0.12.1

Bug	fix:	LuaFAR	version	check	was	done	after	the	exported	functions	were
already	connected	(that	is,	too	late).
Requires	LuaFAR	version	1.1.

Version	0.12.0

Command	line	syntax	extended.
far2.searchmenu:

produce	data	allowing	custom	highlighting	of	the	matched	part	of	the
item	text
added	property	Map

Several	bugs	fixed:	see	Changelog.

Version	0.11.0

Plugin

Plugin	can	be	called	from	the	command	line,	via	the	prefix	lfe	(see	User’s
utilities	and	AddCommand).

Modules

history:	method	setfield	added.
far2.searchmenu:	added	properties	AllowEmpty,	Menu,	CheckItem,
SearchText;	property	SearchPlain	replaced	by	SearchMethod.

Version	0.10.0

PLUGIN:

far2.history	module	renamed	to	history.
configuration	changes	done	by	a	user	script	are	reverted	by	the	plugin	after
the	script	exits.
lf4ed.config:	always	returns	configuration	existed	prior	to	the	call.
Main	Menu,	Config.	Menu:	removed	separators	after	the	built-in	items.
(They	can	be	added	via	files	_usermenu.lua).
The	plugin’s	DLL,	as	supplied,	now	embeds	scripts	and	modules	in	source
code	form	(not	compiled).	That	allows	to	work	with	LuaJIT.

Version	0.9.0

Installing	user’s	utilities

All	utilities	added	by	AddToMenu	calls	within	a	single	usermenu	file	share	a
common	environment	that	does	not	change	until	the	next	Reload	User	File
operation	(or	until	FAR	termination).	See	AddUserFile.

Version	0.8.0

Installing	user’s	utilities

Improved	AddToMenu	function
Added	AddUserFile	function
Added	AutoInstall	function
<plugin_path>/scripts/?.lua	is	added	to	package.path.
(See	Packets	of	scripts).

Plugin	API

Added	lf4ed.config	function
Added	lf4ed.version	function

Lua	modules

Added	documentation	for	a	few	built-in	Lua	modules	used	in	plugin;	user
utilities	can	use	those	modules.

Version	0.7.3

Plugin	is	built	on	base	LuaFAR	0.7.2

Version	0.7

Plugin	is	built	on	base	LuaFAR	0.7

Version	0.6

Plugin	is	built	on	base	LuaFAR	0.6

Version	0.5.2

User	is	able	to	install	event	handlers,	by	means	of	calling	new	function
MakeResident	in	_usermenu.lua
Configuration	menu	command	“Reload	User	File”

Version	0.5.1

This	version	is	mainly	a	bug-fixing	release.

Also,	since	this	version	embeds	LuaFAR	0.5.1,	it	is	possible	to	assign	hot	keys
that	were	unavailable	to	previous	versions	(keys	with	punctuation	characters).

Incompatibilities	with	the	previous	version

Version	2.6.0

1.	 Lua	modules	used	by	the	plugin	do	not	set	global	variables.	Use	the	value
returned	by	require.

Version	2.4.0

1.	 Installed	scripts	get	their	parameters	in	a	table	(was:	2	parameters).

Version	2.1.0

Module	history

1.	 Methods	hobj:field	and	hobj:setfield	–	API	changed;	the	code	using
those	methods	must	be	fixed.

Version	2.0.0

1.	 See	Incompatibilities	section	of	LuaFAR	2.0.0	manual.

Version	0.12.0

Command	line	syntax	changed.
MakeResident:	handlers'	return	values	are	treated	slightly	differently.

Version	0.11.0

1.	 far2.searchmenu:	property	SearchPlain	replaced	by	SearchMethod.

Version	0.10.0

1.	 Module	far2.history	renamed	to	history.

Version	0.9.0

1.	 LuaFAR	version	0.9	required.

Version	0.8.0

1.	 AddToMenu:	function	signature	changed.	Both	the	existing	_usermenu.lua
files	and	user	script	files	must	be	adapted	in	order	to	work	correctly	with
the	new	API.

Version	0.7

1.	 See	Incompatibilities	section	of	LuaFAR	0.7	manual.

Version	0.6

1.	 See	Incompatibilities	section	of	LuaFAR	0.6	manual.

Version	0.5.2

1.	 _usermenu.lua:	no	input	arguments	are	passed.

Version	0.5.1

1.	 Incompatibilities	of	LuaFAR-0.5.1	versus	LuaFAR-0.5	(see	LuaFAR	0.5.1
manual)

Version	0.5

1.	 Function	AddToMenu:	a	new	first	parameter;	all	existing	parameters	are
shifted	toward	the	right.

2.	 "<plugin	directory>\?.lua;"	is	prepended	to	the	initial	value	of
package.path

3.	 Environment	variable	LUAFAR_INIT	(if	it	exists)	is	processed	on	start	up
(was:	LUA_INIT)

4.	 Incompatibilities	of	LuaFAR-0.5	versus	LuaFAR-0.4	(see	LuaFAR	0.5
manual)

User's	utilities

Installing	user’s	utilities

The	plugin	treats	the	file	_usermenu.lua	lying	in	the	plugin’s	directory	as	the
installation	script	for	user’s	utilities.	This	script	is	run	in	two	cases:

When	Far	calls	SetStartupInfoW	of	the	plugin
When	the	command	“Reload	User	File”	from	the	Configuration	Menu	is
executed

There	are	a	few	installation	functions	that	are	intended	to	be	called	from
_usermenu.lua.

Running	installed	user’s	utilities

User	utilities	can	be	configured	to	run	in	the	following	ways:

Via	a	menu	item;	see	AddToMenu.
Via	a	shortcut	(from	Editor	only);	see	AddToMenu.
From	the	command	line	(the	plugin	registers	a	command	line	prefix	lfe);
see	AddCommand.

Running	scripts	without	installation

From	the	Editor:	use	the	included	utility	Lua	Script.
From	the	command	line.

Installation	functions

AddToMenu	AddCommand
AddUserFile

AutoInstall

MakeResident

AddToMenu

AddToMenu	(where,	text,	hotkey,	file	[,	...])

Function	AddToMenu	is	available	to	the	_usermenu.lua	script.
It	allows	to	add	a	specified	utility	to	the	plugin’s	menu	and	assign	it	a	hot	key.

Parameters

1.	 where
Where	the	utility	is	intended	to	run	from:	any	combination	of	letters
[cdepv]	(c=configuration	menu,	d=dialog,	e=editor,	p=panels,	v=viewer).

2.	 text
Text	that	should	appear	in	the	menu.
—	To	assign	a	hot	key	without	adding	a	menu	item,	supply	a	nil.
—	To	add	a	separator,	specify	a	string	beginning	with	":sep:"	following	by
optional	text,	e.g.	":sep:Block	commands".
—	If	the	utility	for	localization	is	used,	and	text	begins	with	"::",	then	the
rest	of	the	text	is	treated	as	a	message	identifier.	(In	the	case	of	separator,
prefix	":sep:::"	can	be	used).

3.	 hotkey
A	key	combination	for	calling	the	utility,	e.g.	"Alt+Shift+F4".
Supply	nil	if	no	hot	key	is	needed.
NOTE:	a	hot	key	assigned	this	way	works	only	from	Editor,	provided	that
no	macro	is	assigned	to	that	key.

4.	 file
A	specification	for	a	Lua	script	to	run	upon	this	item	activation.	The	exact
file	name	is	determined	according	to	the	same	rules	as	with	require
function,	that	is,	package.path	is	used	to	search	for	the	file.	But	contrary	to
require,	the	value	returned	by	the	script	is	not	cached	in	package.loaded.

5.	 Extra	parameters	(optional)
Values	that	will	be	passed	to	user	script	(they	are	passed	to	the	script	in	a
table).	There	can	be	any	number	of	values	of	any	Lua	type.

Examples

		AddToMenu	("e",			"Count	words",			nil,						"farscripts.edit.count",	"words")

		AddToMenu	("e",			"Count	letters",	"Alt+F2",	"farscripts.edit.count",	"letters")

		AddToMenu	("e",			"Search",								"Ctrl+F",	"farscripts.edit.search")

		AddToMenu	("p",			"Rename	Files",		nil,						"farscripts.rename")

		AddToMenu	("evp",	"Calendar",					"Alt+F12",	"farscripts.calendar",			"show")

To	assign	a	hot	key	to	a	built-in	utility,	supply	text	as	true	and	specify	the
menu	position	via	file:

		AddToMenu	("e",			true,											"Ctrl+1",		1)

AddCommand

AddCommand	(command,	file	[,	...])

Function	AddCommand	is	available	to	the	_usermenu.lua	script.
It	establishes	a	correspondence	between	the	given	command	and	the	specified
utility	(file).	This	allows	to	call	that	utility	from	the	command	line	(or	a
macro).

Parameters

1.	 command
The	first	command	line	parameter	after	the	plugin’s	prefix.

2.	 file
A	specification	for	a	Lua	script	to	run	upon	this	item	activation.	The	exact
file	name	is	determined	according	to	the	same	rules	as	with	require
function,	that	is,	package.path	is	used	to	search	for	the	file.	But	contrary	to
require,	the	value	returned	by	the	script	is	not	cached	in	package.loaded.

3.	 Extra	parameters	(optional)
Values	that	will	be	passed	to	user	script	(they	are	passed	to	the	script	in	a
table).	There	can	be	any	number	of	values	of	any	Lua	type.

Examples

		AddCommand("calc",		"scripts.fl_scripts.common.calc")

		AddCommand("umenu",	"scripts.Rh_Scripts.LuaPUM.LuaPUM")

AddUserFile

AddUserFile	(filename)

Function	AddUserFile	is	available	to	the	_usermenu.lua	script.

Parameter	filename	(its	path	is	relative	to	the	plugin’s	directory)	specifies	a	file
that	is	treated	as	an	additional	_usermenu.lua	file.

All	utilities	added	by	AddToMenu	and	AddCommand	calls	within	the	file	specified
by	filename	share	a	common	environment	that	does	not	change	until	the	next
Reload	User	File	operation	(or	until	FAR	termination).

In	fact,	the	plugin	itself	executes	AddUserFile("_usermenu.lua").

AutoInstall

AutoInstall	(startpath,	[filepattern],	[depth])

Function	AutoInstall	is	available	to	the	_usermenu.lua	script.
It	looks	for	files	whose	names	match	filepattern	in	the	directory	given	by
startpath	and	its	subdirectories	recursively,	and	calls	AddUserFile	for	each
matching	file	found.

Parameters

1.	 startpath	(string)
A	path	relative	to	the	plugin’s	directory

2.	 filepattern	(string,	or	nil)
Lua	regular	expression	specifying	what	files	to	install.	Only	file	name
(without	path)	is	matched	against	this	regular	expression.	If	the	parameter	is
not	specified,	the	value	"^_usermenu%.lua$"	is	used.

3.	 depth	(number,	or	nil)
The	maximum	depth	of	subdirectories	to	recurse	into.	When	it	is	0,	the
search	is	conducted	only	in	startpath.	When	it	is	not	specified,	the
recursion	depth	is	unlimited.

Warning

This	function	should	be	used	with	caution	since	it	runs	every	matching	file
found.

Examples

		AutoInstall	("scripts")

		AutoInstall	("scripts",	nil,	1)

		AutoInstall	("scripts/cool",	"^_.*menu%.lua$",	0)

MakeResident

MakeResident	(file)

Function	MakeResident	is	available	to	the	_usermenu.lua	script.
It	allows	to	add	a	file,	containing	one	or	more	handlers	that	will	be	further	called
on	some	FAR	events.

The	following	handlers	are	supported:

ProcessEditorInput

ProcessEditorEvent

ProcessViewerEvent

ExitScript

Parameters

1.	 file
A	specification	for	a	Lua	script	that	is	run	by	this	function.	The	exact	file
name	is	determined	according	to	the	same	rules	as	with	require	function,
that	is,	package.path	is	used	to	search	for	the	file.	But	contrary	to	require,
the	value	returned	by	the	script	is	not	cached	in	package.loaded.

Notes	about	the	handlers

1.	 Handlers	must	be	defined	as	global	functions.
2.	 There	can	be	multiple	handlers	for	the	same	event	type.	They	will	be	called

in	the	order	their	files	are	specified	in	_usermenu.lua.
3.	 The	handlers'	input	parameters	correspond	to	the	exported	functions	with

the	same	names,	e.g.	ProcessViewerEvent	corresponds	to
export.ProcessViewerEvent,	etc.	(see	LuaFAR	manual	for	details).
ExitScript	has	no	parameters,	no	return	value.

4.	 If	the	return	value	of	a	handler’s	ProcessEditorInput	is	true,	the	rest	of
ProcessEditorInput	handlers	are	not	called,	and	true	is	returned	to	Far.

5.	 The	return	values	of	ProcessEditorEvent	and	ProcessViewerEvent	are
ignored.

6.	 ProcessEditorInput	handlers	are	not	called	when	a	user-defined	hot	key	is
pressed.

7.	 ExitScript	is	called	when	the	plugin	is	about	to	be	unloaded.	It	is	also
called	before	the	“Reload	User	file”	operation.

Passing	data	to	installed	scripts

An	installed	script,	when	it	is	run	conventionally,	always	receives	a	single
argument	of	table	type.

Scripts	installed	via	AddToMenu	call	(run	from	plugin	menu	or
shortcut)

The	array	part	of	the	table	contains	the	additional	arguments	specified	in	the
AddToMenu	call.
The	hash	part	of	the	table	has	the	field	From	that	contains	either	of	the
following	strings:	“config”,	“dialog”,	“editor”,	“panels”	or	“viewer”.
In	the	case	From=="dialog",	the	table	also	has	the	field	hDlg,	that	contains
the	dialog	handle	(a	userdata	value).

Scripts	installed	via	AddCommand	call	(run	via	plugin	command)

The	array	part	of	the	table	contains	the	additional	arguments	specified	in	the
AddCommand	call	followed	by	the	command	line	arguments.
The	hash	part	of	the	table	has	the	field	From	that	contains	the	string
“panels”.

Packets	of	scripts

If	there	is	a	set	of	utilities	that	is	distributed	as	a	single	unit	(“packet	of	scripts”),
it	makes	sense	to	install	it	separately	from	other	scripts.

The	standard	location	for	adding	packets	of	scripts	is
<plugin_path>/scripts.	It	is	recommended	to	install	the	packet	in
subdirectory	<plugin_path>/scripts/<packet_name>.

The	plugin	modifies	package.path	by	adding	at	the	beginning:
<plugin_path>/scripts/?.lua;.	(So	the	user	doesn’t	have	to.)

Due	to	the	danger	of	module	names	collision,	it	is	not	recommended	for
packet	writers	to	further	modify	package.path.	Instead,	start	the	argument
of	every	require	call	with	<packet_name>.	E.g.,	if	the	packet	is	named
fl_scripts	then	do:	require	'fl_scripts/utils/read_config'

Utility	for	localization

The	plugin	contains	a	utility	for	adding	localization	to	user	packets	of	scripts.
The	utility	consists	of	two	files:	<plugin_directory>/lf4ed_lang.lua	and
far2/makelang.lua.

(1)	Create	a	“language	template”	file	(similar	to	lf4ed_lang.templ	file	in	the
plugin	directory),	let’s	assume	it	is	scripts/my_package/lang.templ.

The	exact	syntax	of	“language	template”	files	is	described	in	the	file
far2/makelang.lua.	The	template	file	should	be	in	UTF-8	encoding,	with
or	without	BOM.

Choose	some	prefix	for	all	your	message	identifiers	(e.g.	“mp”),	to	avoid
conflicts	with	the	existing	message	identifiers	(if	conflicts	occur,	they	are
detected	by	the	program).

Every	script	using	this	message	system	should	require	"lf4ed_message".
This	returns	a	table	that	can	be	accessed	for	retrieving	localized	messages.

(2)	Run	the	following	command	from	the	plugin’s	directory:

				lua	lf4ed_lang.lua	scripts/my_package/lang.templ

If	no	errors	occured,	this	will	extend	*.lng	files	and	lf4ed_message.lua	file
with	the	localized	messages	of	your	script	package.

(3)	Restart	Far.

Example	of	use:

				local	M	=	require	"lf4ed_message"

			

				far.Message(M.mpSomeMsgText,	M.mpSomeMsgTitle,	M.mpSomeMsgButtons)

Binary	modules

Sometimes,	user	scripts	may	need	some	binary	module	(e.g.,	LuaFileSystem)	for
its	functioning.	There	are	two	ways	of	installing	the	binary	modules:

If	there	is	no	specific	setup	for	changing	package.cpath	(usually	via	the
environment	variable	LUAFAR_CPATH),	then	put	the	binary	modules	into
%FARHOME%	directory.

Otherwise,	put	the	binary	modules	into	any	directory	listed	in
package.cpath.

Example	of	use

_usermenu.lua

AddToMenu("e",			"Count	words",			"Alt+F2",		"edit.count",	"words")

AddToMenu("e",			"Count	letters",	"Alt+F12",	"edit.count",	"letters")

AddToMenu("evp",	"Calendar",						nil,							"calendar",			"show")

AddToMenu("c",			"Calendar",						nil,							"calendar",			"config")

AddCommand("calen",	"calendar",	"show")

AddUserFile("scripts/fl_scripts/_usermenu.lua")

AddUserFile("scripts/Rh_Scripts/_testmenu.lua")

MakeResident("handlers")

handlers.lua

local	F	=	far.Flags

function	ProcessEditorInput	(Rec)

		if	(Rec.EventType	==	F.FARMACRO_KEY_EVENT)	or

					(Rec.EventType	==	F.KEY_EVENT	and	Rec.bKeyDown)

		then

				if	Rec.AsciiChar	==	("t"):byte()	then

						editor.InsertText(nil,	"X")

						editor.Redraw()

						return	true

				end

		end

end

function	ProcessEditorEvent	(Event,	Param)

		if	Event	==	F.EE_READ	then

				require	'fl_scripts/editor/template'

				templates_menu()

		end

end

Command	line	calls

Syntax

		lfe:	[<options>]	<command>|-r<filename>	[<arguments>]

Options

		-a										asynchronous	execution

		-e	<str>				execute	string	<str>

		-l	<lib>				load	library	<lib>

Command

Any	command	added	via	AddCommand	function	in	_usermenu.lua.

Filename

Name	of	a	Lua	script	file.	It	can	be	either	absolute,	or	relative	to	the	current
directory.

Example

		lfe:	calc	2+2

Macro	calls

Macro	call	syntax

1.	 Plugin.Call(guid,	"code",	<code>	[,<arguments>])	Execute	string
containing	Lua	code	<code>.

2.	 Plugin.Call(guid,	"file",	<filename>	[,<arguments>])
Execute	Lua	script	<filename>.
<filename>	may	contain	environment	variables.

3.	 Plugin.Call(guid,	"command",	<command>	[,<arguments>])
Execute	<command>	(any	command	added	via	AddCommand	function	in
_usermenu.lua).

4.	 Plugin.Call(guid,	"own",	<command>	[,<arguments>])
Execute	own	(internal)	plugin’s	command	<command>.

Examples

				local	guid	=	"6F332978-08B8-4919-847A-EFBB6154C99A"

				Plugin.Call(guid,	"code",	"return	2+2,3+3")

				Plugin.Call(guid,	"file",	"%farprofile%\\tests\\test1.lua",	"fulltest"

				Plugin.Call(guid,	"command",	"calc",	"2+2")

Plugin	API

1.	 There	is	an	important	thing	to	know	when	writing	scripts	for	LuaFAR	for
Editor:	indexing	string	variables	accesses	functions	in	unicode.utf8	rather
than	in	string	namespace.

For	example,	s:sub(1,2)	means	unicode.utf8.sub(s,1,2).
To	use	string	library,	specify	that	explicitly,	e.g.,
string.sub(s,1,2).
#s	refers	to	string.len(s).	Use	s:len()	to	obtain	number	of
characters.

2.	 The	plugin	has	a	few	functions	that	are	available	to	user	scripts.	They	are
placed	under	lf4ed	namespace.

lf4ed.config

lf4ed.version

unicode.utf8.cfind

lf4ed.config

Get	or	set	the	plugin	configuration.

cfg	=	lf4ed.config	([newcfg])

Parameters:

		newcfg:		table

											Fields	of	newcfg	(every	field	is	optional):

													ReloadDefaultScript	:	boolean

													RequireWithReload			:	boolean

													UseStrict											:	boolean

													ReturnToMainMenu				:	boolean

Returns:

		cfg:					table	(the	configuration	as	it	was	before	the	call)

Description:

		If	newcfg	is	given,	it	is	a	table	with	configuration

		parameters	to	be	set.	Parameters	not	contained	in	this

		table	will	remain	unchanged.	This	means	that

		(newcfg.param	==	false)	will	set	'param'	to	false,	but

		(newcfg.param	==	nil)	will	leave	'param'	as	it	was	before

		the	call.

		Returned	is	a	copy	of	the	"old"	configuration	table	(as	it

		was	before	the	call).

		If	newcfg	is	not	given,	an	up-to-date	copy	of	the

		configuration	table	is	returned.	This	table	contains	the

		same	fields	as	the	newcfg	table	described	above.

Note:

		Configuration	changes	done	by	a	user	script	via	this

		function	are	reverted	by	the	plugin	after	the	user	script

		exits.

unicode.utf8.cfind

It	is	a	helper	function.	It	behaves	like	unicode.utf8.find	except	that	it	treats	its
input	offset	and	expresses	its	output	offsets	in	characters	rather	than	bytes.	(The
only	exception	are	“position	captures”	that	are	still	returned	expressed	in	bytes).

Lua	Modules

There	are	a	few	Lua	modules	that	can	be	used	in	the	utilities	added	by	the	user:

far2.dialog

far2.history

far2.searchmenu

far2.dialog

Module	far2.dialog	makes	common	operations	with	FAR	dialogs	easier.	It
contains	the	following	functions:	NewDialog,	LoadData	and	SaveData.

The	module	is	loaded	as	follows:
require	"far2.dialog"

NewDialog

dlg	=	far2_dialog.NewDialog()

Parameters:

		none

Returns:

		dlg:	Dialog	object	(a	table).

							It	represents	the	full	set	of	dialog	items,	and	is	eventually

							passed	to	function	far.Dialog	as	its	6-th	parameter.

Description:

The	dialog	object	has	the	following	features:

1.	To	add	an	item,	assign	it	to	some	string	field	of	the	object,	e.g.:

					dlg.cbxCase	=	{"DI_CHECKBOX",10,4,0,0,	0,	"","",0,	"&Case	sensitive"}

					dlg.cbxWord	=	{"DI_CHECKBOX",10,5,0,0,	0,	"","",0,	"&Whole	words"}

			The	added	items	are	now	accessible	by	their	names:	dlg.cbxCase,

			dlg.cbxWord.	If	there	are	items	that	need	not	to	be	accessed

			after	their	adding,	they	can	be	assigned	the	same	name,	e.g.,

			dlg.label	or	dlg._

2.	The	properties	of	the	added	items	are	accessible	in	two	ways:

			either	by	index,	or	by	name.

					print(dlg.cbxCase[3])	-->	4

					print(dlg.cbxCase.Y1)	-->	4

					dlg.cbxCase.Y1	=	6

					print(dlg.cbxCase[3])	-->	6

					print(dlg.cbxCase.Y1)	-->	6

2.1.	Here	is	the	correspondence	between	indexes	and	names	of	dialog

			item	properties	(wherever	multiple	names	are	listed	for	an	index,

			any	of	them	may	be	used):

						1	:	Type

						2	:	X1

						3	:	Y1

						4	:	X2

						5	:	Y2

						6	:	Selected,	ListItems,	VBuf

						7	:	History

						8	:	Mask

						9	:	Flags

					10	:	Data

					11	:	MaxLength

					12	:	UserData

LoadData

far2_dialog.LoadData(aDialog,	aData)

Parameters:

		aDialog	:	a	dialog	object	created	by	a	NewDialog	call

		aData			:	a	table	with	data	to	load	into	aDialog

Returns:

		nothing

Description:

		The	function	copies	input	data	aData	into	a	dialog	object	aDialog.

		The	dialog	items	must	be	added	to	the	object	before	this	function

		is	called,	since	this	function	loads	data	only	to	existing	dialog

		items.

		-	The	following	item	types	are	supported	by	the	function:

				DI_CHECKBOX,	DI_RADIOBUTTON,	DI_EDIT,	DI_FIXEDIT,	DI_LISTBOX,

				DI_COMBOBOX.

		

		-	The	following	properties	are	loaded	by	the	function:

					-	For	DI_CHECKBOX,	DI_RADIOBUTTON:	only	index	6	("Selected").

					-	For	DI_LISTBOX,	DI_COMBOBOX:	only		field	"SelectIndex"

							of	index	6	("ListItems").

					-	For	DI_EDIT,	DI_FIXEDIT:	only	index	10	("Data").

		-	Data	are	loaded	to	items	whose	names	are	identical	to	the	names

				of	the	aData	fields.

		-	If	an	item	has	either	of	fields	_noautoload	or	_noauto	set	to

				true,	it	is	not	loaded.

Example:

		local	dlg	=	far2_dialog.NewDialog()

		dlg.cbxCase	=	{"DI_CHECKBOX",10,4,0,0,	0,	"","",0,	"&Case	sensitive"}

		dlg.cbxWord	=	{"DI_CHECKBOX",10,5,0,0,	0,	"","",0,	"&Whole	words"}

		far2_dialog.LoadData(dlg,	{cbxCase=true,	cbxWord=false})

SaveData

far2_dialog.SaveData(aDialog,	aData)

Parameters:

		aDialog	:	a	dialog	object	created	by	a	NewDialog	call

		aData			:	a	table	to	save	data	in	from	aDialog

Returns:

		nothing

Description:

		The	function	copies	data	from	a	dialog	object	aDialog	to	aData.

		-	The	following	item	types	are	supported	by	the	function:

				DI_CHECKBOX,	DI_RADIOBUTTON,	DI_EDIT,	DI_FIXEDIT,	DI_LISTBOX,

				DI_COMBOBOX.

		

		-	The	following	properties	are	saved	by	the	function:

					-	For	DI_CHECKBOX,	DI_RADIOBUTTON:	only	index	6	("Selected").

					-	For	DI_LISTBOX,	DI_COMBOBOX:	only		field	"SelectIndex"

							of	index	6	("ListItems").

					-	For	DI_EDIT,	DI_FIXEDIT:	only	index	10	("Data").

		-	Data	are	saved	by	the	names	identical	to	the	item	names.

		-	If	an	item	has	either	of	fields	_noautosave	or	_noauto	set	to

				true,	it	is	not	saved.

Example:

		local	dlg	=	far2_dialog.NewDialog()

		dlg.cbxCase	=	{"DI_CHECKBOX",10,4,0,0,	0,	"","",0,	"&Case	sensitive"}

		dlg.cbxWord	=	{"DI_CHECKBOX",10,5,0,0,	0,	"","",0,	"&Whole	words"}

		--	add	other	items

		--	call	far.Dialog(...)

		local	data	=	{}

		far2.dialog.SaveData(dlg,	data)

		return	data

far2.history

Module	history	saves	specified	plugin	data	to	files	and	loads	the	data	from
files.	The	module	API	consists	of	functions	that	create	objects	and	methods	of
those	objects.

Functions

newfile

newsettings

Methods

hobj:field

hobj:setfield

hobj:serialize

hobj:save

The	module	is	loaded	as	follows:
require	"far2.history"

newfile

hobj	=	far2_history.newfile	(filename)

Parameters:

		filename	:	string

Returns:

		hobj					:	history	object	(a	table).

Description:

		-	The	function	executes	filename	as	a	Lua	script,	in	an	empty

				environment	table.

		-	The	script	is	assumed	to	contain	Lua	data	in	the	global

				variable	Data	(a	table).

		-	The	environment	table	is	returned,	with	its	field	FileName

				set	to	the	value	of	filename	argument.

		-	If	the	file	filename	was	absent	or	failed	to	compile,	then

				the	field	Data	of	the	returned	object	is	an	empty	table.

		-	The	returned	history	object	hobj	has	four	methods:

				hobj:field,	hobj:setfield,	hobj:serialize	and	hobj:save.

newsettings

hobj	=	far2_history.newsettings	(Subkey,	Name)

Parameters:

		Subkey:	string;	nil	for	the	root	key

		Name		:	string

Returns:

		hobj		:	history	object	(a	table).

Description:

		-	The	function	reads	in	the	data	from	Far	plugin	settings

				database	and	executes	this	data	as	a	Lua	script,	in	an	empty

				environment	table.

		-	The	script	is	assumed	to	contain	Lua	data	in	the	global

				variable	Data	(a	table).

		-	The	environment	table	is	returned,	with	its	fields	Subkey

				and	Name	set	to	the	value	of	the	respective	received	arguments.

		-	If	the	subkey	or	data	were	absent	or	failed	to	compile,	then

				the	field	Data	of	the	returned	object	is	an	empty	table.

		-	If	Subkey	argument	contains	dots,	then	hierarchical	subkeys	are

				created	in	the	database.	E.g.	specifying	"key1.key2.key3"	will

				create	or	access	subkey	"key3"	under	subkey	"key2"	under	subkey

				"key1"	under	root.

		-	The	returned	history	object	hobj	has	four	methods:

				hobj:field,	hobj:setfield,	hobj:serialize	and	hobj:save.

hobj:field

val	=	hobj:field	(name)

Parameters:

		name			:	sequence	of	dot-delimitered	fields;

Returns:

		val				:	value	of	the	given	nested	field	in	history	object	hobj

											(will	be	created	if	absent).

Description:

		-	hobj:field("key1.key2	...	keyN")	returns	the	equivalent	of

				hobj["key1"]["key2"]...["keyN"].

		-	If	at	any	stage	of	retrieving	some	intermediate	nested	field

				"keyM",	its	value	is	nil,	then	both	that	and	all	subsequent

				fields	are	created	by	assigning	each	of	them	a	new	table.

Example:

		if	From	==	"e"	then					hist	=	_Hist:field	("menu.editor")

		elseif	From	==	"v"	then	hist	=	_Hist:field	("menu.viewer")

		elseif	From	==	"p"	then	hist	=	_Hist:field	("menu.pluginsmenu")

		else	return

hobj:getfield

val	=	hobj:getfield	(name)

Parameters:

		name			:	sequence	of	dot-delimitered	fields;

Returns:

		val				:	value	of	the	given	nested	field	in	history	object	hobj

Description:

		-	hobj:field("key1.key2	...	keyN")	returns	the	equivalent	of

				hobj["key1"]["key2"]...["keyN"].

hobj:save

hobj:save	()

Parameters:

		none

Returns:

		nothing

Description:

		-	The	method	serializes	and	saves	the	"history	object".	The	object	is	saved	either

				into	a	file	(see	newfile),	or	into	a	data	base	entry	(see	newsettings

				corresponding	file	(or	the	data	base	entry)	exist,	their	contents	are	overwritten.

		-	Only	"Data"	field	of	the	hobj	is	saved.

				-	Within	it,	values	of	the	following	types	are	saved:

						numbers,	strings,	booleans	and	tables	(recursively).

				-	Not	saved:	functions,	coroutines	and	userdatas.

				-	Not	saved:	metatable	relations.

hobj:serialize

str	=	hobj:serialize	()

Parameters:

		none

Returns:

		str:	string

Description:

		-	The	method	serializes	the	"history	object"	into	a	string.

		-	Only	"Data"	field	of	the	hobj	is	saved.

				-	Within	it,	values	of	the	following	types	are	saved:

						numbers,	strings,	booleans	and	tables	(recursively).

				-	Not	saved:	functions,	coroutines	and	userdatas.

				-	Not	saved:	metatable	relations.

hobj:setfield

val	=	hobj:setfield	(name,	val)

Parameters:

		name		:	sequence	of	dot-delimitered	fields;

		val			:	value	to	set	the	field	with

Returns:

		val

Description:

		-	hobj:setfield("key1.key2		...	keyN",	val)	does	the	equivalent	of

				hobj["key1"]["key2"]...["keyN"]	=	val.

		-	If	at	any	stage	of	retrieving	some	intermediate	nested	field

				"keyM",	its	value	is	nil,	then	both	that	and	all	subsequent

				fields	are	created	by	assigning	each	of	them	a	new	table.

far2.message

Message

result	=	far2_message.Message	(Text,	Title,	Buttons,	Flags,	HelpTopic,	Id)

Parameters:

		Text							:	Text	elements	to	display	inside	the	dialog	frame.

															Either	a	string	or	a	table,	depending	on	flag	'c'.

															Sequences	'\n',	'\r\n'	and	'\r'	are	treated	as	line	separators.

		Title						:	Title	string;	optional.

		Buttons				:	Buttons	string;	';'	and	'\n'	serve	as	button	separators;	optional.

															Buttons	automatically	wrap	on	multiple	lines	if	don't	fit	on	one

															line.	Separator	'\n'	forces	new	line	for	the	next	button.

		Flags						:	Concatenation	of	0	or	more	character	flags;	optional.

															'l'	-	left-align	text	lines	(default:	center	lines	on	the	dialog).

															'w'	-	use	"warning"	color	set	for	the	dialog	and	its	elements.

															'R'	-	don't	wrap	long	text	lines	(default:	wrap).

															'c'	-	"color"-mode,	that	changes	treating	the	aText	argument.	With

																		this	flag	set,	aText	should	be	an	array	of	individual	elements,

																		each	of	which	is	either	a	string	or	a	table.

																		A	table	elements	may	have	the	following	fields:

																					"text"	(string)

																					"color"	(number;	optional)

																					"separator"	(1	=	single	line,	2	=	double	line;	optional)

																		Each	element's	begins	at	the	position	next	to	the	previous

																		element's	end.	Separators	are	always	put	on	separate	lines.

		HelpTopic		:	Help	topic	string;	optional.

		Id									:	Dialog	Id;	binary	GUID	string;	optional.

Returns:

		result					:	negative	number	when	dialog	was	canceled,	button	number	otherwise

															(1	is	the	first	button).

TableBox

result	=	far2_message.TableBox	(items,	title,	buttons,	flags,	helptopic,	id)

Display	a	two-column	table.

Parameters:

		items:	an	array	of	rows	(tables);	row[1],row[2]	=	left	and	right	column	texts.

									A	row	can	also	be	a	single	or	double	separator	line	if	row.separator	is

									1	or	2;	a	separator	can	have	optional	field	row.text.

Other	parameters	and	return	value	are	similar	to	those	of	far.Message

far2.searchmenu

Description

This	provides	a	filter	for	standard	menu.	Every	typed	symbol	is	added	to	the
pattern	which	is	used	to	check	every	menu	item.	Every	item	which	satisfies	the
pattern	is	displayed,	others	become	hidden.	The	pattern	is	displayed	in	the	menu
header.

Parameters

Item,	Position	=	far2.searchmenu(Properties,	Items	[,	BreakKeys])

All	arguments	and	return	values	are	the	same	as	for	far.Menu	(see	LuaFAR
manual),	except	some	optional	additional	fields	of	Properties	table:

		AllowEmpty:				Allow	the	user	to	input	patterns	that	make	menu

																	empty	(boolean)

		CheckItem:					Function	for	determining	if	an	item	should	be

																	displayed:

																			from,to	=	CheckItem(pattern,text[,searchmethod])

		Map:											Table	that	maps	keys	and	key	combinations

																	to	characters	and	actions.	It	allows	to	add

																	keys	or	redefine	the	treatment	of	user's	input.

		Menu:										Function	for	displaying	the	menu

																	(defaults	to	far.Menu)

		Pattern:							Initial	search	pattern	(string)

		SearchMethod:		"lua"			=	use	Lua	regexps	(default)

																	"dos"			=	use	DOS	wildcards	*	and	?

																	"plain"	=	plain	text	search

Also,	there	is	an	optional	field	SearchText	in	a	menu	item.	When	present,	it	is
used	instead	of	the	text	field	when	checking	the	item,	while	the	text	field	is
used	for	displaying	the	item.

Predefined	keys

		Space					-	insert	a	space	character

		DELETE				-	delete	the	entire	pattern

		BACKSPACE	-	delete	the	last	symbol

		CtrlV					-	insert	a	pattern	from	the	clipboard

Available	symbols

		Small	English	letters:	a-z

		Numbers:		0-9

		Symbols:	.,><=+-_;:/?`~[]{}()\~|'"!@#$%^&*

far2.tableview

Диалог-браузер	таблиц	lua.

Работает	так:

showDialog('_G',	_G)	-	отображает	таблицу	_G	(верит,	что	она	находится	по

																							адресу	'_G')

showDialog('_G',)				-	отображает	таблицу	_G,	получая	её	по	адресу

showDialog(nil,	_G)		-	отображает	таблицу	_G,	адресная	строка	в	этом	случае

																							содержит	запись	<internal>

Когда	в	фокусе	находится	поле,	там	можно	ввести	адрес	таблицы	и	открыть	её

на	редактирование.

Когда	в	фокусе	находится	список:

				Enter	-	открыть	таблицу	под	курсором

				BS				-	вернутся	к	предыдущей	таблице

				Ins			-	Вставить	новое	поле.	Запрашиваются	четыре	значения:	тип	ключа

												(number,	boolean,	string),	ключ,	тип	значения	(тоже	самое	+	table),

												значение

				Del			-	Удалить	поле.	С	подтверждением.

				F4				-	Редактировать	значение.	При	этом	тип	сохраняется.

Когда	в	фокусе	функция,	по	enter	можно	её	выполнить,	передав	список	аргументов.

Отображаемая	информация:	полное	количество	элементов	в	текущей	таблице,	а

так-же	поля	метатаблицы	в	заголовке.	Строки,	числа,	булевы	переменные	-

как	есть.	Функция	-	function.

Для	таблицы	отображается	число	элементов	в	массиве,	наличие	метатаблицы,	и

отдельно	пишется,	если	таблица	пуста.

far2.utils

This	module	is	intended	for	the	development	of	LuaFAR	plugins.	User	scripts
usually	do	not	need	it.

AddMenuItems

trg	=	utils.AddMenuItems	(trg,	src,	msgtable)

Parameters:

		trg	:					table	(array	of	menu	items),	or	nil

		src	:					table	(array	of	menu	items)

		msgtable:	table	(localization	conversion	table)

Returns:

		trg:						table

Description:

		--	Adds	menu	items	from	src	table	to	trg	table.

		--	If	trg	argument	is	nil,	a	new	empty	table	is	first	created.

		--	The	items	whose	text	starts	with	::	are	replaced	with	items

					with	their	text	converted	by	msgtable	(see	AddToMenu	and

					Utility	for	localization).

GetPluginVersion

version	=	GetPluginVersion()

Parameters:

		none

Returns:

		version:	string,	e.g.	"3.0.0"

InitPlugin

plugin	=	utils.InitPlugin()

Parameters:

		none

Returns:

		plugin:		table

Description:

		The	function	does	the	following:

		--	redirects	indexing	of	strings	to	unicode.utf8	table,	so	that	e.g.

					str:len()	ends	up	with	unicode.utf8.len(str)	instead	of	string.len(str)

		--	adds	function	unicode.utf8.cfind.

		--	sets	up	export.OnError	function.

		--	returns	a	table	with	ModuleDir	field	set	to	plugin's	directory.

LoadUserMenu

menuItems,	commands,	hotKeys,	handlers	=	utils.LoadUserMenu	(FileName)

Parameters:

		FileName:		string	(filename	relative	to	the	plugin's	directory;

																					usually	it	is	"_usermenu.lua")

Returns:

		menuItems:	table	with	the	following	structure:

															{	editor={},viewer={},panels={},config={},dialog={}	}

		commands:		table	with	the	following	structure:

															{	<command1>={},	...,	<commandN>={}	}

		hotKeys:			table	with	the	following	structure:

															{	<hotkey1>={},	...,	<hotkeyN>={}	}

		handlers:		table	with	the	following	structure:

															{	EditorInput={},EditorEvent={},ViewerEvent={},ExitScript={}	}

Description:

		1.	An	environment	table	env	containing	all	the	Installation	functions

		2.	env.AddUserFile(FileName)	is	run.

OpenMacro

results	=	utils.OpenMacro	(Item,	Commands,	ConfigFunc)

Parameters:

		Item:								table

		Commands:				table

		ConfigFunc:		function,	or	nil

Returns:

		results:					zero	or	more	Lua	values

Description:

		This	function	is	intended	to	be	called	from	export.Open	function.

		The	function	does	arguments	processing	as	described	in	the	section

		Macro	calls.

		This	function	should	not	be	called	when	the	plugin	creates	panels	from	the	command

		line	or	macro	calls.

OpenCommandLine

utils.OpenCommandLine	(Item,	Commands,	ConfigFunc)

Parameters:

		Item:								integer	or	string

		Commands:				table

		ConfigFunc:		function,	or	nil

Returns:

		result:						nothing

Description:

		This	function	is	intended	to	be	called	from	export.Open	function.

		The	function	does	arguments	processing	as	described	in	the	section

		Command	line	calls.

		This	function	should	not	be	called	when	the	plugin	creates	panels	from	the	command

		line	or	macro	calls.

RunInternalScript

result	=	utils.RunInternalScript	(name,	...)

Parameters:

		name:				string

													either	field	name	in	package.preload	table	(without	prefix	"<"),

													or	file	name	relative	to	plugin	dir	(without	suffix	".lua").

		...	:				additional	parameters	(optional)

Returns:

		result:		any	type

Description:

		This	function	is	intended	to	run	utilities	coming	with	the	plugin	(as	opposed

		to	"user's	utilities").	Those	utilities	can	either	be	part	of	the	plugin's	DLL

		("embedded"),	or	located	in	disk	files.

		For	example,	given	argument	name	==	"wrap",	the	function	will	first	try

		to	run	a	script	from	package.preload["<wrap"],	then	from	the	file

		<plugin_directory>/wrap.lua.

RunUserItem

results	=	RunUserItem	(Item,	Properties,	...)

Parameters:

		Item:							table

																filename:	string;	script	file	specification

																env:						table;	environment	to	run	the	script	in

																arg:						table;	array	of	arguments	associated	with	

		Properties:	table

																From:					string	("config",	"dialog",	"editor",	"panels"	or	"viewer")

																hDlg:					userdata	(dialog	handle),	or	nil

		...	:							sequence	of	additional	arguments	(appended	to	existing	arguments)

Returns:

		results:				zero	or	more	Lua	values

Description:

		The	function	runs	user's	menu	item,	created	as	a	result	of	execution	of	

		Item.filename	is	a	specification	for	a	Lua	script	to	run	upon	this	item	activation.

		The	exact	file	name	is	determined	according	to	the	same	rules	as	with	`require`	function,

		that	is,	`package.path`	is	used	to	search	for	the	file.	But	contrary	to	`require`,

		the	value	returned	by	the	script	is	not	cached	in	`package.loaded`.

		For	the	script's	input	arguments,	see	Passing	data	to	installed	scripts

Credits

Many	thanks	to:

Maxim	Gonchar:	ideas,	bug	reports,	Searchable	Menu	and	Table	View
scripts.
GalS:	bug	reports.
ccaid:	bug	reports.
Aidar	Rakhmatullin:	ideas,	translation	of	the	help	file	into	Russian;	bug
reports.
Grey:	bug	reports.
Vadim	Yegorov:	ideas,	code	examples,	bug	reports.

	LuaFAR for Editor (version 3.7)
	What's new
	Changelog
	Version 2.5.0
	Version 2.4.0
	Version 2.3.0
	Version 2.2.0
	Version 2.1.0
	Version 2.0.1
	Version 0.12.1
	Version 0.12.0
	Version 0.11.0
	Version 0.10.0
	Version 0.9.0
	Version 0.8.0
	Version 0.7.3
	Version 0.7
	Version 0.6
	Version 0.5.2
	Version 0.5.1

	Incompatibilities with the previous version
	Version 2.6.0
	Version 2.4.0
	Version 2.1.0
	Version 2.0.0
	Version 0.12.0
	Version 0.11.0
	Version 0.10.0
	Version 0.9.0
	Version 0.8.0
	Version 0.7
	Version 0.6
	Version 0.5.2
	Version 0.5.1
	Version 0.5

	User's utilities
	Installation functions
	AddToMenu
	AddCommand
	AddUserFile
	AutoInstall
	MakeResident

	Passing data to installed scripts
	Packets of scripts
	Utility for localization
	Binary modules
	Example of use

	Command line calls
	Macro calls
	Plugin API
	lf4ed.config
	unicode.utf8.cfind

	Lua Modules
	far2.dialog
	NewDialog
	LoadData
	SaveData

	far2.history
	newfile
	newsettings
	hobj:field
	hobj:getfield
	hobj:save
	hobj:serialize
	hobj:setfield

	far2.message
	Message
	TableBox

	far2.searchmenu
	far2.tableview
	far2.utils
	AddMenuItems
	GetPluginVersion
	InitPlugin
	LoadUserMenu
	OpenMacro
	OpenCommandLine
	RunInternalScript
	RunUserItem

	Credits

