
What	is	LuaEdit? Lua	homepage

LuaEdit	is	a	script	editor	designed	for	the	5.0.2	version	of	Lua.	This	version	of
LuaEdit	 is	 the	 2.2.1	 release.	 It	 can	 be	 used,	 completly	 free	 of	 charges,	 for
Personal	and	Commercial	purposes	and	will	always	remain	that	way.	You	may
suggest	new	features,	report	bugs	or	send	any	comments	about	LuaEdit	via	the
Contact	Us	section	of	our	Official	Web	Site.

This	 version	 of	 LuaEdit	 includes	 a	 built-in	 debugger	 for	 Lua	 5.0	 scripts,
customized	 syntax	 highlighting,	 basic	 proposal	 library,	 basic	 parameter
proposition,	 advanced	 and	 complete	 search	 engine,	 advanced	 and	 complete
search	 and	 replace,	 bookmarking	 engine,	 advanced	 printing,	 project	 supports,
quick	tools,	etc...

In	the	next	release	version	of	LuaEdit,	the	following	features	will	be	supported:
remote	 debugging,	 header	 builder,	 Lua	macros,	 Code	 profiling	 and	 any	 other
suggested	features...

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://www.lua.org
http://luaedit.luaforge.net/contactus.html
http://luaedit.luaforge.net
http://luaedit.luaforge.net

What's	new? Lua	homepage

This	 version	 of	LuaEdit	 includes	major	 and	minor	 bug	 fixes.	LuaEdit	 is	 now
faster	and	more	efficient	than	ever.	Also,	some	features	have	been	upgraded	for
more	 conviviality	 when	 others	 are	 completely	 new	 to	 serve	 better	 the
programmer's	 needs.	Here	 is	 a	 detailed	 listing	 of	 the	 changes	 brought	 in	 this
version:

Major	bug	fix	in	the	debug	engine:	A	CPU	Sleep	instruction	was	called	on
every	debug	hook	call	wich	was	dramatically	slowing	down	the	code
execution	when	running	under	LuaEdit.
Major	bug	fix	in	the	debug	engine:	When	the	unit	is	new,	an	extra	call	to
ExpandUNCFileName	was	done	wich	was	trowing	an	exeception.
Minor	bug	fix	in	the	tab	control	server:	If	prompted	to	save	before	closing
a	new	unit,	a	save	dialog	was	shown	because	the	unit	is	new	and	an	initial
path	is	required	to	be	specified	by	the	user.	Pressing	the	cancel	button	of
that	dialog	was	not	really	cancelling	the	action.
Minor	bug	fix	in	the	menus,	submenus,	popup	menus	and	toolbars	icons:
The	white	pixels	of	the	icons	were	treated	and	displayed	as	if	they	were
transparent.
Minor	bug	fix	in	the	"Fucntion	List"	window:	Sometimes	this	window
wasn't	automatically	updating	when	switching	from	a	unit	to	another.
Changed	the	look	of	the	status	bar	by	handling	a	custom	draw	to	make	it
look	more	like	.Net	style.
Updated	help	files.
Changed	the	"Project	Tree"	window	into	a	new	merge	of	a	listview	and	a
treeview	into	the	same	component
Changed	the	"Watch"	window	into	a	new	merge	of	a	listview	and	a
treeview	into	the	same	component.	This	now	allow	the	user	to	better
visualize	variables,	tables	and	sub-tables.
New	LuaEditDebug.dll	file	for	embedded	lua	code	debugging	from	user's
applications.	(Special	thanks	to	Massimo	Magnano)
New	library	engine	for	completion	proposal	(not	hardcoded	anymore)
including	a	new	section	in	the	editor	settings:	"Environment".
New	powerful	"Find	in	Files"	engine.
New	"Find	Window	1"	and	"Find	Window	2"	windows	to	output	the	"Find
in	Files"	results.

http://www.lua.org

New	IE	"Internal	Browser"	to	allow	browsing	the	internet	inside	the	IDE.
New	"History"	ring	for	the	new	"Internal	Browser"
New	Comment/Uncomment,	Uppercase/Lowercase	selection	commands
New	"Goto	Last	Edited"	action	to	send	the	cursor	back	to	the	last	edited
line.
Drag	and	drop	*.lpr	or	*.lua	files	from	Windows®	into	LuaEdit	is	now
supported.	This	means	that	LuaEdit	is	opening	the	dropped	files	if	they
have	the	*.lpr	or	*.lua	extension.

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://luaedit.luaforge.net

Minimum	Requirements Lua	homepage

LuaEdit	is	trying	to	be	compatible	with	as	many	platform	as	possible.	Officially,
LuaEdit	 is	 Win32	 compatible	 only.	 That	 means	 it	 is	 compatible	 on	 any
Windows®	platform.	However,	 the	following	requirements	should	meet	amply
the	needs	for	LuaEdit.	If	you	ever	have	trouble	running	LuaEdit	on	any	Win32
platform	you	may	visit	the	Contact	Us	section	of	our	Official	Web	Site	to	report
your	problem.	Here	is	the	minimum	requirement	list:

800MHz	or	faster
Windows	98,	2000,	XP
32MB	RAM	or	more
25MB	free	hard	disk	space

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://www.lua.org
http://luaedit.luaforge.net/contactus.html
http://luaedit.luaforge.net
http://luaedit.luaforge.net

Legal	Aspect

LuaEdit

Copyright	©	2004-2005	LuaEdit
This	program	is	free	software;	you	can	redistribute	it	and/or	modify	it	under	the	terms	of	the	GNU	General	Public	License	
the	Free	Software	Foundation;	either	version	2	of	the	License,	or	(at	your	option)	any	later	version.

This	program	is	distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT	ANY	WARRANTY;	without	even	the	implied	warranty	of
MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See	the	

You	should	have	received	a	copy	of	the	GNU	General	Public	License	along	with	this	program;	if	not,	write	to	the	Free	Software
Foundation,	Inc.,	59	Temple	Place	-	Suite	330,	Boston,	MA	02111-1307,	USA.

Lua	5.0

Copyright	©	2003-2004	Tecgraf,	PUC-Rio.	Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	software
and	associated	documentation	files	(the	"Software"),	to	deal	in	the	Software	without	restriction,	including	without	limitation	the	rights	to
use,	copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to	whom	the	Software	is
furnished	to	do	so,	subject	to	the	following	conditions:
The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or	substantial	portions	of	the	Software.	
SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT
LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR	PURPOSE	AND
NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,
DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT
OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE	SOFTWARE.

GNU	General	Public	License	(GPL)

	 	 	 	 	 	 	 Copyright	(C)	1989,	1991	Free	Software	Foundation,	Inc.		

	 	 	 	 	 	 	 59	Temple	Place	-	Suite	330,	Boston,	MA		02111-1307,	USA

	 	 	 	 	 	 	

	 	 	 	 	 	 	 Everyone	is	permitted	to	copy	and	distribute	verbatim	copies

	 	 	 	 	 	 	 of	this	license	document,	but	changing	it	is	not	allowed.

	 	 	 	 	 	 	

http://www.lua.org

Preamble

The	licenses	for	most	software	are	designed	to	take	away	your	freedom	to	share
and	change	it.	By	contrast,	the	GNU	General	Public	License	is	intended	to
guarantee	your	freedom	to	share	and	change	free	software--to	make	sure	the
software	is	free	for	all	its	users.	This	General	Public	License	applies	to	most	of
the	Free	Software	Foundation's	software	and	to	any	other	program	whose
authors	commit	to	using	it.	(Some	other	Free	Software	Foundation	software	is
covered	by	the	GNU	Library	General	Public	License	instead.)	You	can	apply	it
to	your	programs,	too.

When	we	speak	of	free	software,	we	are	referring	to	freedom,	not	price.	Our
General	Public	Licenses	are	designed	to	make	sure	that	you	have	the	freedom	to
distribute	copies	of	free	software	(and	charge	for	this	service	if	you	wish),	that
you	receive	source	code	or	can	get	it	if	you	want	it,	that	you	can	change	the
software	or	use	pieces	of	it	in	new	free	programs;	and	that	you	know	you	can	do
these	things.

To	protect	your	rights,	we	need	to	make	restrictions	that	forbid	anyone	to	deny
you	these	rights	or	to	ask	you	to	surrender	the	rights.	These	restrictions	translate
to	certain	responsibilities	for	you	if	you	distribute	copies	of	the	software,	or	if
you	modify	it.

For	example,	if	you	distribute	copies	of	such	a	program,	whether	gratis	or	for	a
fee,	you	must	give	the	recipients	all	the	rights	that	you	have.	You	must	make
sure	that	they,	too,	receive	or	can	get	the	source	code.	And	you	must	show	them
these	terms	so	they	know	their	rights.

We	protect	your	rights	with	two	steps:	(1)	copyright	the	software,	and	(2)	offer
you	this	license	which	gives	you	legal	permission	to	copy,	distribute	and/or
modify	the	software.

Also,	for	each	author's	protection	and	ours,	we	want	to	make	certain	that
everyone	understands	that	there	is	no	warranty	for	this	free	software.	If	the
software	is	modified	by	someone	else	and	passed	on,	we	want	its	recipients	to
know	that	what	they	have	is	not	the	original,	so	that	any	problems	introduced	by
others	will	not	reflect	on	the	original	authors'	reputations.

Finally,	any	free	program	is	threatened	constantly	by	software	patents.	We	wish
to	avoid	the	danger	that	redistributors	of	a	free	program	will	individually	obtain
patent	licenses,	in	effect	making	the	program	proprietary.	To	prevent	this,	we
have	made	it	clear	that	any	patent	must	be	licensed	for	everyone's	free	use	or
not	licensed	at	all.

The	precise	terms	and	conditions	for	copying,	distribution	and	modification
follow.

TERMS	AND	CONDITIONS	FOR	COPYING,
DISTRIBUTION	AND	MODIFICATION

0.	This	License	applies	to	any	program	or	other	work	which	contains	a	notice
placed	by	the	copyright	holder	saying	it	may	be	distributed	under	the	terms	of
this	General	Public	License.	The	"Program",	below,	refers	to	any	such	program
or	work,	and	a	"work	based	on	the	Program"	means	either	the	Program	or	any
derivative	work	under	copyright	law:	that	is	to	say,	a	work	containing	the
Program	or	a	portion	of	it,	either	verbatim	or	with	modifications	and/or
translated	into	another	language.	(Hereinafter,	translation	is	included	without
limitation	in	the	term	"modification".)	Each	licensee	is	addressed	as	"you".

Activities	other	than	copying,	distribution	and	modification	are	not	covered	by
this	License;	they	are	outside	its	scope.	The	act	of	running	the	Program	is	not
restricted,	and	the	output	from	the	Program	is	covered	only	if	its	contents
constitute	a	work	based	on	the	Program	(independent	of	having	been	made	by
running	the	Program).	Whether	that	is	true	depends	on	what	the	Program	does.

1.	You	may	copy	and	distribute	verbatim	copies	of	the	Program's	source	code	as
you	receive	it,	in	any	medium,	provided	that	you	conspicuously	and
appropriately	publish	on	each	copy	an	appropriate	copyright	notice	and
disclaimer	of	warranty;	keep	intact	all	the	notices	that	refer	to	this	License	and
to	the	absence	of	any	warranty;	and	give	any	other	recipients	of	the	Program	a
copy	of	this	License	along	with	the	Program.

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and	you	may	at
your	option	offer	warranty	protection	in	exchange	for	a	fee.

2.	You	may	modify	your	copy	or	copies	of	the	Program	or	any	portion	of	it,	thus
forming	a	work	based	on	the	Program,	and	copy	and	distribute	such
modifications	or	work	under	the	terms	of	Section	1	above,	provided	that	you
also	meet	all	of	these	conditions:

a)	You	must	cause	the	modified	files	to	carry	prominent	notices	stating	that
you	changed	the	files	and	the	date	of	any	change.

b)	You	must	cause	any	work	that	you	distribute	or	publish,	that	in	whole	or

in	part	contains	or	is	derived	from	the	Program	or	any	part	thereof,	to	be
licensed	as	a	whole	at	no	charge	to	all	third	parties	under	the	terms	of	this
License.

c)	If	the	modified	program	normally	reads	commands	interactively	when
run,	you	must	cause	it,	when	started	running	for	such	interactive	use	in	the
most	ordinary	way,	to	print	or	display	an	announcement	including	an
appropriate	copyright	notice	and	a	notice	that	there	is	no	warranty	(or	else,
saying	that	you	provide	a	warranty)	and	that	users	may	redistribute	the
program	under	these	conditions,	and	telling	the	user	how	to	view	a	copy	of
this	License.	(Exception:	if	the	Program	itself	is	interactive	but	does	not
normally	print	such	an	announcement,	your	work	based	on	the	Program	is
not	required	to	print	an	announcement.)

These	requirements	apply	to	the	modified	work	as	a	whole.	If	identifiable
sections	of	that	work	are	not	derived	from	the	Program,	and	can	be	reasonably
considered	independent	and	separate	works	in	themselves,	then	this	License,
and	its	terms,	do	not	apply	to	those	sections	when	you	distribute	them	as
separate	works.	But	when	you	distribute	the	same	sections	as	part	of	a	whole
which	is	a	work	based	on	the	Program,	the	distribution	of	the	whole	must	be	on
the	terms	of	this	License,	whose	permissions	for	other	licensees	extend	to	the
entire	whole,	and	thus	to	each	and	every	part	regardless	of	who	wrote	it.

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest	your	rights	to
work	written	entirely	by	you;	rather,	the	intent	is	to	exercise	the	right	to	control
the	distribution	of	derivative	or	collective	works	based	on	the	Program.

In	addition,	mere	aggregation	of	another	work	not	based	on	the	Program	with
the	Program	(or	with	a	work	based	on	the	Program)	on	a	volume	of	a	storage	or
distribution	medium	does	not	bring	the	other	work	under	the	scope	of	this
License.

3.	You	may	copy	and	distribute	the	Program	(or	a	work	based	on	it,	under
Section	2)	in	object	code	or	executable	form	under	the	terms	of	Sections	1	and	2
above	provided	that	you	also	do	one	of	the	following:

a)	Accompany	it	with	the	complete	corresponding	machine-readable
source	code,	which	must	be	distributed	under	the	terms	of	Sections	1	and	2
above	on	a	medium	customarily	used	for	software	interchange;	or,

b)	Accompany	it	with	a	written	offer,	valid	for	at	least	three	years,	to	give
any	third	party,	for	a	charge	no	more	than	your	cost	of	physically
performing	source	distribution,	a	complete	machine-readable	copy	of	the
corresponding	source	code,	to	be	distributed	under	the	terms	of	Sections	1
and	2	above	on	a	medium	customarily	used	for	software	interchange;	or,

c)	Accompany	it	with	the	information	you	received	as	to	the	offer	to
distribute	corresponding	source	code.	(This	alternative	is	allowed	only	for
noncommercial	distribution	and	only	if	you	received	the	program	in	object
code	or	executable	form	with	such	an	offer,	in	accord	with	Subsection	b
above.)

The	source	code	for	a	work	means	the	preferred	form	of	the	work	for	making
modifications	to	it.	For	an	executable	work,	complete	source	code	means	all	the
source	code	for	all	modules	it	contains,	plus	any	associated	interface	definition
files,	plus	the	scripts	used	to	control	compilation	and	installation	of	the
executable.	However,	as	a	special	exception,	the	source	code	distributed	need
not	include	anything	that	is	normally	distributed	(in	either	source	or	binary
form)	with	the	major	components	(compiler,	kernel,	and	so	on)	of	the	operating
system	on	which	the	executable	runs,	unless	that	component	itself	accompanies
the	executable.

If	distribution	of	executable	or	object	code	is	made	by	offering	access	to	copy
from	a	designated	place,	then	offering	equivalent	access	to	copy	the	source	code
from	the	same	place	counts	as	distribution	of	the	source	code,	even	though	third
parties	are	not	compelled	to	copy	the	source	along	with	the	object	code.

4.	You	may	not	copy,	modify,	sublicense,	or	distribute	the	Program	except	as
expressly	provided	under	this	License.	Any	attempt	otherwise	to	copy,	modify,
sublicense	or	distribute	the	Program	is	void,	and	will	automatically	terminate
your	rights	under	this	License.	However,	parties	who	have	received	copies,	or
rights,	from	you	under	this	License	will	not	have	their	licenses	terminated	so
long	as	such	parties	remain	in	full	compliance.

5.	You	are	not	required	to	accept	this	License,	since	you	have	not	signed	it.
However,	nothing	else	grants	you	permission	to	modify	or	distribute	the
Program	or	its	derivative	works.	These	actions	are	prohibited	by	law	if	you	do
not	accept	this	License.	Therefore,	by	modifying	or	distributing	the	Program	(or
any	work	based	on	the	Program),	you	indicate	your	acceptance	of	this	License

to	do	so,	and	all	its	terms	and	conditions	for	copying,	distributing	or	modifying
the	Program	or	works	based	on	it.

6.	Each	time	you	redistribute	the	Program	(or	any	work	based	on	the	Program),
the	recipient	automatically	receives	a	license	from	the	original	licensor	to	copy,
distribute	or	modify	the	Program	subject	to	these	terms	and	conditions.	You
may	not	impose	any	further	restrictions	on	the	recipients'	exercise	of	the	rights
granted	herein.	You	are	not	responsible	for	enforcing	compliance	by	third
parties	to	this	License.

7.	If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent	infringement
or	for	any	other	reason	(not	limited	to	patent	issues),	conditions	are	imposed	on
you	(whether	by	court	order,	agreement	or	otherwise)	that	contradict	the
conditions	of	this	License,	they	do	not	excuse	you	from	the	conditions	of	this
License.	If	you	cannot	distribute	so	as	to	satisfy	simultaneously	your	obligations
under	this	License	and	any	other	pertinent	obligations,	then	as	a	consequence
you	may	not	distribute	the	Program	at	all.	For	example,	if	a	patent	license
would	not	permit	royalty-free	redistribution	of	the	Program	by	all	those	who
receive	copies	directly	or	indirectly	through	you,	then	the	only	way	you	could
satisfy	both	it	and	this	License	would	be	to	refrain	entirely	from	distribution	of
the	Program.

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under	any
particular	circumstance,	the	balance	of	the	section	is	intended	to	apply	and	the
section	as	a	whole	is	intended	to	apply	in	other	circumstances.

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any	patents	or	other
property	right	claims	or	to	contest	validity	of	any	such	claims;	this	section	has
the	sole	purpose	of	protecting	the	integrity	of	the	free	software	distribution
system,	which	is	implemented	by	public	license	practices.	Many	people	have
made	generous	contributions	to	the	wide	range	of	software	distributed	through
that	system	in	reliance	on	consistent	application	of	that	system;	it	is	up	to	the
author/donor	to	decide	if	he	or	she	is	willing	to	distribute	software	through	any
other	system	and	a	licensee	cannot	impose	that	choice.

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to	be	a
consequence	of	the	rest	of	this	License.

8.	If	the	distribution	and/or	use	of	the	Program	is	restricted	in	certain	countries

either	by	patents	or	by	copyrighted	interfaces,	the	original	copyright	holder	who
places	the	Program	under	this	License	may	add	an	explicit	geographical
distribution	limitation	excluding	those	countries,	so	that	distribution	is
permitted	only	in	or	among	countries	not	thus	excluded.	In	such	case,	this
License	incorporates	the	limitation	as	if	written	in	the	body	of	this	License.

9.	The	Free	Software	Foundation	may	publish	revised	and/or	new	versions	of
the	General	Public	License	from	time	to	time.	Such	new	versions	will	be	similar
in	spirit	to	the	present	version,	but	may	differ	in	detail	to	address	new	problems
or	concerns.

Each	version	is	given	a	distinguishing	version	number.	If	the	Program	specifies
a	version	number	of	this	License	which	applies	to	it	and	"any	later	version",	you
have	the	option	of	following	the	terms	and	conditions	either	of	that	version	or	of
any	later	version	published	by	the	Free	Software	Foundation.	If	the	Program
does	not	specify	a	version	number	of	this	License,	you	may	choose	any	version
ever	published	by	the	Free	Software	Foundation.

10.	If	you	wish	to	incorporate	parts	of	the	Program	into	other	free	programs
whose	distribution	conditions	are	different,	write	to	the	author	to	ask	for
permission.	For	software	which	is	copyrighted	by	the	Free	Software
Foundation,	write	to	the	Free	Software	Foundation;	we	sometimes	make
exceptions	for	this.	Our	decision	will	be	guided	by	the	two	goals	of	preserving
the	free	status	of	all	derivatives	of	our	free	software	and	of	promoting	the
sharing	and	reuse	of	software	generally.

NO	WARRANTY

11.	BECAUSE	THE	PROGRAM	IS	LICENSED	FREE	OF	CHARGE,	THERE
IS	NO	WARRANTY	FOR	THE	PROGRAM,	TO	THE	EXTENT	PERMITTED
BY	APPLICABLE	LAW.	EXCEPT	WHEN	OTHERWISE	STATED	IN
WRITING	THE	COPYRIGHT	HOLDERS	AND/OR	OTHER	PARTIES
PROVIDE	THE	PROGRAM	"AS	IS"	WITHOUT	WARRANTY	OF	ANY
KIND,	EITHER	EXPRESSED	OR	IMPLIED,	INCLUDING,	BUT	NOT
LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY
AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.	THE	ENTIRE	RISK	AS
TO	THE	QUALITY	AND	PERFORMANCE	OF	THE	PROGRAM	IS	WITH
YOU.	SHOULD	THE	PROGRAM	PROVE	DEFECTIVE,	YOU	ASSUME
THE	COST	OF	ALL	NECESSARY	SERVICING,	REPAIR	OR

CORRECTION.

12.	IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR
AGREED	TO	IN	WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY
OTHER	PARTY	WHO	MAY	MODIFY	AND/OR	REDISTRIBUTE	THE
PROGRAM	AS	PERMITTED	ABOVE,	BE	LIABLE	TO	YOU	FOR
DAMAGES,	INCLUDING	ANY	GENERAL,	SPECIAL,	INCIDENTAL	OR
CONSEQUENTIAL	DAMAGES	ARISING	OUT	OF	THE	USE	OR
INABILITY	TO	USE	THE	PROGRAM	(INCLUDING	BUT	NOT	LIMITED
TO	LOSS	OF	DATA	OR	DATA	BEING	RENDERED	INACCURATE	OR
LOSSES	SUSTAINED	BY	YOU	OR	THIRD	PARTIES	OR	A	FAILURE	OF
THE	PROGRAM	TO	OPERATE	WITH	ANY	OTHER	PROGRAMS),	EVEN
IF	SUCH	HOLDER	OR	OTHER	PARTY	HAS	BEEN	ADVISED	OF	THE
POSSIBILITY	OF	SUCH	DAMAGES.

END	OF	TERMS	AND	CONDITIONS

Mozilla	Public	License	Version	1.1
1.	Definitions.

1.0.1.	"Commercial	Use"
means	distribution	or	otherwise	making	the	Covered	Code	available	to	a
third	party.

1.1.	"Contributor"
means	each	entity	that	creates	or	contributes	to	the	creation	of
Modifications.

1.2.	"Contributor	Version"
means	the	combination	of	the	Original	Code,	prior	Modifications	used	by	a
Contributor,	and	the	Modifications	made	by	that	particular	Contributor.

1.3.	"Covered	Code"
means	the	Original	Code	or	Modifications	or	the	combination	of	the
Original	Code	and	Modifications,	in	each	case	including	portions	thereof.

1.4.	"Electronic	Distribution	Mechanism"
means	a	mechanism	generally	accepted	in	the	software	development
community	for	the	electronic	transfer	of	data.

1.5.	"Executable"
means	Covered	Code	in	any	form	other	than	Source	Code.

1.6.	"Initial	Developer"
means	the	individual	or	entity	identified	as	the	Initial	Developer	in	the
Source	Code	notice	required	by	Exhibit	A.

1.7.	"Larger	Work"
means	a	work	which	combines	Covered	Code	or	portions	thereof	with	code
not	governed	by	the	terms	of	this	License.

1.8.	"License"
means	this	document.

1.8.1.	"Licensable"
means	having	the	right	to	grant,	to	the	maximum	extent	possible,	whether
at	the	time	of	the	initial	grant	or	subsequently	acquired,	any	and	all	of	the
rights	conveyed	herein.

1.9.	"Modifications"

means	any	addition	to	or	deletion	from	the	substance	or	structure	of	either

the	Original	Code	or	any	previous	Modifications.	When	Covered	Code	is
released	as	a	series	of	files,	a	Modification	is:

a.	 Any	addition	to	or	deletion	from	the	contents	of	a	file	containing
Original	Code	or	previous	Modifications.

b.	 Any	new	file	that	contains	any	part	of	the	Original	Code	or	previous
Modifications.

1.10.	"Original	Code"
means	Source	Code	of	computer	software	code	which	is	described	in	the
Source	Code	notice	required	by	Exhibit	A	as	Original	Code,	and	which,	at
the	time	of	its	release	under	this	License	is	not	already	Covered	Code
governed	by	this	License.

1.10.1.	"Patent	Claims"
means	any	patent	claim(s),	now	owned	or	hereafter	acquired,	including
without	limitation,	method,	process,	and	apparatus	claims,	in	any	patent
Licensable	by	grantor.

1.11.	"Source	Code"
means	the	preferred	form	of	the	Covered	Code	for	making	modifications	to
it,	including	all	modules	it	contains,	plus	any	associated	interface
definition	files,	scripts	used	to	control	compilation	and	installation	of	an
Executable,	or	source	code	differential	comparisons	against	either	the
Original	Code	or	another	well	known,	available	Covered	Code	of	the
Contributor's	choice.	The	Source	Code	can	be	in	a	compressed	or	archival
form,	provided	the	appropriate	decompression	or	de-archiving	software	is
widely	available	for	no	charge.

1.12.	"You"	(or	"Your")
means	an	individual	or	a	legal	entity	exercising	rights	under,	and
complying	with	all	of	the	terms	of,	this	License	or	a	future	version	of	this
License	issued	under	Section	6.1.	For	legal	entities,	"You"	includes	any
entity	which	controls,	is	controlled	by,	or	is	under	common	control	with
You.	For	purposes	of	this	definition,	"control"	means	(a)	the	power,	direct
or	indirect,	to	cause	the	direction	or	management	of	such	entity,	whether	by
contract	or	otherwise,	or	(b)	ownership	of	more	than	fifty	percent	(50%)	of
the	outstanding	shares	or	beneficial	ownership	of	such	entity.

2.	Source	Code	License.

2.1.	The	Initial	Developer	Grant.

The	Initial	Developer	hereby	grants	You	a	world-wide,	royalty-free,	non-
exclusive	license,	subject	to	third	party	intellectual	property	claims:

a.	 under	intellectual	property	rights	(other	than	patent	or	trademark)
Licensable	by	Initial	Developer	to	use,	reproduce,	modify,	display,
perform,	sublicense	and	distribute	the	Original	Code	(or	portions	thereof)
with	or	without	Modifications,	and/or	as	part	of	a	Larger	Work;	and

b.	 under	Patents	Claims	infringed	by	the	making,	using	or	selling	of	Original
Code,	to	make,	have	made,	use,	practice,	sell,	and	offer	for	sale,	and/or
otherwise	dispose	of	the	Original	Code	(or	portions	thereof).

c.	 the	licenses	granted	in	this	Section	2.1	(a)	and	(b)	are	effective	on	the	date
Initial	Developer	first	distributes	Original	Code	under	the	terms	of	this
License.

d.	 Notwithstanding	Section	2.1	(b)	above,	no	patent	license	is	granted:	1)	for
code	that	You	delete	from	the	Original	Code;	2)	separate	from	the	Original
Code;	or	3)	for	infringements	caused	by:	i)	the	modification	of	the	Original
Code	or	ii)	the	combination	of	the	Original	Code	with	other	software	or
devices.

2.2.	Contributor	Grant.

Subject	to	third	party	intellectual	property	claims,	each	Contributor	hereby
grants	You	a	world-wide,	royalty-free,	non-exclusive	license

a.	 under	intellectual	property	rights	(other	than	patent	or	trademark)
Licensable	by	Contributor,	to	use,	reproduce,	modify,	display,	perform,
sublicense	and	distribute	the	Modifications	created	by	such	Contributor	(or
portions	thereof)	either	on	an	unmodified	basis,	with	other	Modifications,
as	Covered	Code	and/or	as	part	of	a	Larger	Work;	and

b.	 under	Patent	Claims	infringed	by	the	making,	using,	or	selling	of
Modifications	made	by	that	Contributor	either	alone	and/or	in	combination
with	its	Contributor	Version	(or	portions	of	such	combination),	to	make,
use,	sell,	offer	for	sale,	have	made,	and/or	otherwise	dispose	of:	1)

Modifications	made	by	that	Contributor	(or	portions	thereof);	and	2)	the
combination	of	Modifications	made	by	that	Contributor	with	its
Contributor	Version	(or	portions	of	such	combination).

c.	 the	licenses	granted	in	Sections	2.2	(a)	and	2.2	(b)	are	effective	on	the	date
Contributor	first	makes	Commercial	Use	of	the	Covered	Code.

d.	 Notwithstanding	Section	2.2	(b)	above,	no	patent	license	is	granted:	1)	for
any	code	that	Contributor	has	deleted	from	the	Contributor	Version;	2)
separate	from	the	Contributor	Version;	3)	for	infringements	caused	by:	i)
third	party	modifications	of	Contributor	Version	or	ii)	the	combination	of
Modifications	made	by	that	Contributor	with	other	software	(except	as	part
of	the	Contributor	Version)	or	other	devices;	or	4)	under	Patent	Claims
infringed	by	Covered	Code	in	the	absence	of	Modifications	made	by	that
Contributor.

3.	Distribution	Obligations.

3.1.	Application	of	License.

The	Modifications	which	You	create	or	to	which	You	contribute	are	governed
by	the	terms	of	this	License,	including	without	limitation	Section	2.2.	The
Source	Code	version	of	Covered	Code	may	be	distributed	only	under	the	terms
of	this	License	or	a	future	version	of	this	License	released	under	Section	6.1,
and	You	must	include	a	copy	of	this	License	with	every	copy	of	the	Source
Code	You	distribute.	You	may	not	offer	or	impose	any	terms	on	any	Source
Code	version	that	alters	or	restricts	the	applicable	version	of	this	License	or	the
recipients'	rights	hereunder.	However,	You	may	include	an	additional	document
offering	the	additional	rights	described	in	Section	3.5.

3.2.	Availability	of	Source	Code.

Any	Modification	which	You	create	or	to	which	You	contribute	must	be	made
available	in	Source	Code	form	under	the	terms	of	this	License	either	on	the
same	media	as	an	Executable	version	or	via	an	accepted	Electronic	Distribution
Mechanism	to	anyone	to	whom	you	made	an	Executable	version	available;	and
if	made	available	via	Electronic	Distribution	Mechanism,	must	remain	available
for	at	least	twelve	(12)	months	after	the	date	it	initially	became	available,	or	at
least	six	(6)	months	after	a	subsequent	version	of	that	particular	Modification
has	been	made	available	to	such	recipients.	You	are	responsible	for	ensuring
that	the	Source	Code	version	remains	available	even	if	the	Electronic
Distribution	Mechanism	is	maintained	by	a	third	party.

3.3.	Description	of	Modifications.

You	must	cause	all	Covered	Code	to	which	You	contribute	to	contain	a	file
documenting	the	changes	You	made	to	create	that	Covered	Code	and	the	date	of
any	change.	You	must	include	a	prominent	statement	that	the	Modification	is
derived,	directly	or	indirectly,	from	Original	Code	provided	by	the	Initial
Developer	and	including	the	name	of	the	Initial	Developer	in	(a)	the	Source
Code,	and	(b)	in	any	notice	in	an	Executable	version	or	related	documentation
in	which	You	describe	the	origin	or	ownership	of	the	Covered	Code.

3.4.	Intellectual	Property	Matters

(a)	Third	Party	Claims

If	Contributor	has	knowledge	that	a	license	under	a	third	party's	intellectual
property	rights	is	required	to	exercise	the	rights	granted	by	such	Contributor
under	Sections	2.1	or	2.2,	Contributor	must	include	a	text	file	with	the	Source
Code	distribution	titled	"LEGAL"	which	describes	the	claim	and	the	party
making	the	claim	in	sufficient	detail	that	a	recipient	will	know	whom	to	contact.
If	Contributor	obtains	such	knowledge	after	the	Modification	is	made	available
as	described	in	Section	3.2,	Contributor	shall	promptly	modify	the	LEGAL	file
in	all	copies	Contributor	makes	available	thereafter	and	shall	take	other	steps
(such	as	notifying	appropriate	mailing	lists	or	newsgroups)	reasonably
calculated	to	inform	those	who	received	the	Covered	Code	that	new	knowledge
has	been	obtained.

(b)	Contributor	APIs

If	Contributor's	Modifications	include	an	application	programming	interface
and	Contributor	has	knowledge	of	patent	licenses	which	are	reasonably
necessary	to	implement	that	API,	Contributor	must	also	include	this	information
in	the	legal	file.

(c)	Representations.

Contributor	represents	that,	except	as	disclosed	pursuant	to	Section	3.4	(a)
above,	Contributor	believes	that	Contributor's	Modifications	are	Contributor's
original	creation(s)	and/or	Contributor	has	sufficient	rights	to	grant	the	rights
conveyed	by	this	License.

3.5.	Required	Notices.

You	must	duplicate	the	notice	in	Exhibit	A	in	each	file	of	the	Source	Code.	If	it
is	not	possible	to	put	such	notice	in	a	particular	Source	Code	file	due	to	its
structure,	then	You	must	include	such	notice	in	a	location	(such	as	a	relevant
directory)	where	a	user	would	be	likely	to	look	for	such	a	notice.	If	You	created
one	or	more	Modification(s)	You	may	add	your	name	as	a	Contributor	to	the

notice	described	in	Exhibit	A.	You	must	also	duplicate	this	License	in	any
documentation	for	the	Source	Code	where	You	describe	recipients'	rights	or
ownership	rights	relating	to	Covered	Code.	You	may	choose	to	offer,	and	to
charge	a	fee	for,	warranty,	support,	indemnity	or	liability	obligations	to	one	or
more	recipients	of	Covered	Code.	However,	You	may	do	so	only	on	Your	own
behalf,	and	not	on	behalf	of	the	Initial	Developer	or	any	Contributor.	You	must
make	it	absolutely	clear	than	any	such	warranty,	support,	indemnity	or	liability
obligation	is	offered	by	You	alone,	and	You	hereby	agree	to	indemnify	the
Initial	Developer	and	every	Contributor	for	any	liability	incurred	by	the	Initial
Developer	or	such	Contributor	as	a	result	of	warranty,	support,	indemnity	or
liability	terms	You	offer.

3.6.	Distribution	of	Executable	Versions.

You	may	distribute	Covered	Code	in	Executable	form	only	if	the	requirements
of	Sections	3.1,	3.2,	3.3,	3.4	and	3.5	have	been	met	for	that	Covered	Code,	and
if	You	include	a	notice	stating	that	the	Source	Code	version	of	the	Covered
Code	is	available	under	the	terms	of	this	License,	including	a	description	of
how	and	where	You	have	fulfilled	the	obligations	of	Section	3.2.	The	notice
must	be	conspicuously	included	in	any	notice	in	an	Executable	version,	related
documentation	or	collateral	in	which	You	describe	recipients'	rights	relating	to
the	Covered	Code.	You	may	distribute	the	Executable	version	of	Covered	Code
or	ownership	rights	under	a	license	of	Your	choice,	which	may	contain	terms
different	from	this	License,	provided	that	You	are	in	compliance	with	the	terms
of	this	License	and	that	the	license	for	the	Executable	version	does	not	attempt
to	limit	or	alter	the	recipient's	rights	in	the	Source	Code	version	from	the	rights
set	forth	in	this	License.	If	You	distribute	the	Executable	version	under	a
different	license	You	must	make	it	absolutely	clear	that	any	terms	which	differ
from	this	License	are	offered	by	You	alone,	not	by	the	Initial	Developer	or	any
Contributor.	You	hereby	agree	to	indemnify	the	Initial	Developer	and	every
Contributor	for	any	liability	incurred	by	the	Initial	Developer	or	such
Contributor	as	a	result	of	any	such	terms	You	offer.

3.7.	Larger	Works.

You	may	create	a	Larger	Work	by	combining	Covered	Code	with	other	code	not
governed	by	the	terms	of	this	License	and	distribute	the	Larger	Work	as	a	single
product.	In	such	a	case,	You	must	make	sure	the	requirements	of	this	License

are	fulfilled	for	the	Covered	Code.

4.	Inability	to	Comply	Due	to	Statute	or	Regulation.

If	it	is	impossible	for	You	to	comply	with	any	of	the	terms	of	this	License	with
respect	to	some	or	all	of	the	Covered	Code	due	to	statute,	judicial	order,	or
regulation	then	You	must:	(a)	comply	with	the	terms	of	this	License	to	the
maximum	extent	possible;	and	(b)	describe	the	limitations	and	the	code	they
affect.	Such	description	must	be	included	in	the	legal	file	described	in	Section
3.4	and	must	be	included	with	all	distributions	of	the	Source	Code.	Except	to
the	extent	prohibited	by	statute	or	regulation,	such	description	must	be
sufficiently	detailed	for	a	recipient	of	ordinary	skill	to	be	able	to	understand	it.

5.	Application	of	this	License.

This	License	applies	to	code	to	which	the	Initial	Developer	has	attached	the
notice	in	Exhibit	A	and	to	related	Covered	Code.

6.	Versions	of	the	License.

6.1.	New	Versions

Netscape	Communications	Corporation	("Netscape")	may	publish	revised
and/or	new	versions	of	the	License	from	time	to	time.	Each	version	will	be
given	a	distinguishing	version	number.

6.2.	Effect	of	New	Versions

Once	Covered	Code	has	been	published	under	a	particular	version	of	the
License,	You	may	always	continue	to	use	it	under	the	terms	of	that	version.	You
may	also	choose	to	use	such	Covered	Code	under	the	terms	of	any	subsequent
version	of	the	License	published	by	Netscape.	No	one	other	than	Netscape	has
the	right	to	modify	the	terms	applicable	to	Covered	Code	created	under	this
License.

6.3.	Derivative	Works

If	You	create	or	use	a	modified	version	of	this	License	(which	you	may	only	do
in	order	to	apply	it	to	code	which	is	not	already	Covered	Code	governed	by	this
License),	You	must	(a)	rename	Your	license	so	that	the	phrases	"Mozilla",
"MOZILLAPL",	"MOZPL",	"Netscape",	"MPL",	"NPL"	or	any	confusingly
similar	phrase	do	not	appear	in	your	license	(except	to	note	that	your	license
differs	from	this	License)	and	(b)	otherwise	make	it	clear	that	Your	version	of
the	license	contains	terms	which	differ	from	the	Mozilla	Public	License	and
Netscape	Public	License.	(Filling	in	the	name	of	the	Initial	Developer,	Original
Code	or	Contributor	in	the	notice	described	in	Exhibit	A	shall	not	of	themselves
be	deemed	to	be	modifications	of	this	License.)

7.	Disclaimer	of	warranty

Covered	code	is	provided	under	this	license	on	an	"as	is"	basis,	without
warranty	of	any	kind,	either	expressed	or	implied,	including,	without
limitation,	warranties	that	the	covered	code	is	free	of	defects,
merchantable,	fit	for	a	particular	purpose	or	non-infringing.	The	entire
risk	as	to	the	quality	and	performance	of	the	covered	code	is	with	you.
Should	any	covered	code	prove	defective	in	any	respect,	you	(not	the	initial
developer	or	any	other	contributor)	assume	the	cost	of	any	necessary
servicing,	repair	or	correction.	This	disclaimer	of	warranty	constitutes	an
essential	part	of	this	license.	No	use	of	any	covered	code	is	authorized
hereunder	except	under	this	disclaimer.

8.	Termination

8.1.	This	License	and	the	rights	granted	hereunder	will	terminate	automatically
if	You	fail	to	comply	with	terms	herein	and	fail	to	cure	such	breach	within	30
days	of	becoming	aware	of	the	breach.	All	sublicenses	to	the	Covered	Code
which	are	properly	granted	shall	survive	any	termination	of	this	License.
Provisions	which,	by	their	nature,	must	remain	in	effect	beyond	the	termination
of	this	License	shall	survive.

8.2.	If	You	initiate	litigation	by	asserting	a	patent	infringement	claim	(excluding
declatory	judgment	actions)	against	Initial	Developer	or	a	Contributor	(the
Initial	Developer	or	Contributor	against	whom	You	file	such	action	is	referred
to	as	"Participant")	alleging	that:

a.	 such	Participant's	Contributor	Version	directly	or	indirectly	infringes	any
patent,	then	any	and	all	rights	granted	by	such	Participant	to	You	under
Sections	2.1	and/or	2.2	of	this	License	shall,	upon	60	days	notice	from
Participant	terminate	prospectively,	unless	if	within	60	days	after	receipt	of
notice	You	either:	(i)	agree	in	writing	to	pay	Participant	a	mutually
agreeable	reasonable	royalty	for	Your	past	and	future	use	of	Modifications
made	by	such	Participant,	or	(ii)	withdraw	Your	litigation	claim	with
respect	to	the	Contributor	Version	against	such	Participant.	If	within	60
days	of	notice,	a	reasonable	royalty	and	payment	arrangement	are	not
mutually	agreed	upon	in	writing	by	the	parties	or	the	litigation	claim	is	not
withdrawn,	the	rights	granted	by	Participant	to	You	under	Sections	2.1
and/or	2.2	automatically	terminate	at	the	expiration	of	the	60	day	notice
period	specified	above.

b.	 any	software,	hardware,	or	device,	other	than	such	Participant's
Contributor	Version,	directly	or	indirectly	infringes	any	patent,	then	any
rights	granted	to	You	by	such	Participant	under	Sections	2.1(b)	and	2.2(b)
are	revoked	effective	as	of	the	date	You	first	made,	used,	sold,	distributed,
or	had	made,	Modifications	made	by	that	Participant.

8.3.	If	You	assert	a	patent	infringement	claim	against	Participant	alleging	that
such	Participant's	Contributor	Version	directly	or	indirectly	infringes	any	patent
where	such	claim	is	resolved	(such	as	by	license	or	settlement)	prior	to	the
initiation	of	patent	infringement	litigation,	then	the	reasonable	value	of	the

licenses	granted	by	such	Participant	under	Sections	2.1	or	2.2	shall	be	taken	into
account	in	determining	the	amount	or	value	of	any	payment	or	license.

8.4.	In	the	event	of	termination	under	Sections	8.1	or	8.2	above,	all	end	user
license	agreements	(excluding	distributors	and	resellers)	which	have	been
validly	granted	by	You	or	any	distributor	hereunder	prior	to	termination	shall
survive	termination.

9.	Limitation	of	liability

Under	no	circumstances	and	under	no	legal	theory,	whether	tort	(including
negligence),	contract,	or	otherwise,	shall	you,	the	initial	developer,	any
other	contributor,	or	any	distributor	of	covered	code,	or	any	supplier	of	any
of	such	parties,	be	liable	to	any	person	for	any	indirect,	special,	incidental,
or	consequential	damages	of	any	character	including,	without	limitation,
damages	for	loss	of	goodwill,	work	stoppage,	computer	failure	or
malfunction,	or	any	and	all	other	commercial	damages	or	losses,	even	if
such	party	shall	have	been	informed	of	the	possibility	of	such	damages.
This	limitation	of	liability	shall	not	apply	to	liability	for	death	or	personal
injury	resulting	from	such	party's	negligence	to	the	extent	applicable	law
prohibits	such	limitation.	Some	jurisdictions	do	not	allow	the	exclusion	or
limitation	of	incidental	or	consequential	damages,	so	this	exclusion	and
limitation	may	not	apply	to	you.

10.	U.S.	government	end	users

The	Covered	Code	is	a	"commercial	item,"	as	that	term	is	defined	in	48	C.F.R.
2.101	(Oct.	1995),	consisting	of	"commercial	computer	software"	and
"commercial	computer	software	documentation,"	as	such	terms	are	used	in	48
C.F.R.	12.212	(Sept.	1995).	Consistent	with	48	C.F.R.	12.212	and	48	C.F.R.
227.7202-1	through	227.7202-4	(June	1995),	all	U.S.	Government	End	Users
acquire	Covered	Code	with	only	those	rights	set	forth	herein.

11.	Miscellaneous

This	License	represents	the	complete	agreement	concerning	subject	matter
hereof.	If	any	provision	of	this	License	is	held	to	be	unenforceable,	such
provision	shall	be	reformed	only	to	the	extent	necessary	to	make	it	enforceable.
This	License	shall	be	governed	by	California	law	provisions	(except	to	the
extent	applicable	law,	if	any,	provides	otherwise),	excluding	its	conflict-of-law
provisions.	With	respect	to	disputes	in	which	at	least	one	party	is	a	citizen	of,	or
an	entity	chartered	or	registered	to	do	business	in	the	United	States	of	America,
any	litigation	relating	to	this	License	shall	be	subject	to	the	jurisdiction	of	the
Federal	Courts	of	the	Northern	District	of	California,	with	venue	lying	in	Santa
Clara	County,	California,	with	the	losing	party	responsible	for	costs,	including
without	limitation,	court	costs	and	reasonable	attorneys'	fees	and	expenses.	The
application	of	the	United	Nations	Convention	on	Contracts	for	the	International
Sale	of	Goods	is	expressly	excluded.	Any	law	or	regulation	which	provides	that
the	language	of	a	contract	shall	be	construed	against	the	drafter	shall	not	apply
to	this	License.

12.	Responsibility	for	claims

As	between	Initial	Developer	and	the	Contributors,	each	party	is	responsible	for
claims	and	damages	arising,	directly	or	indirectly,	out	of	its	utilization	of	rights
under	this	License	and	You	agree	to	work	with	Initial	Developer	and
Contributors	to	distribute	such	responsibility	on	an	equitable	basis.	Nothing
herein	is	intended	or	shall	be	deemed	to	constitute	any	admission	of	liability.

13.	Multiple-licensed	code

Initial	Developer	may	designate	portions	of	the	Covered	Code	as	"Multiple-
Licensed".	"Multiple-Licensed"	means	that	the	Initial	Developer	permits	you	to
utilize	portions	of	the	Covered	Code	under	Your	choice	of	the	MPL	or	the
alternative	licenses,	if	any,	specified	by	the	Initial	Developer	in	the	file
described	in	Exhibit	A.

Exhibit	A	-	Mozilla	Public	License.
"The	contents	of	this	file	are	subject	to	the	Mozilla	Public	License

	 	 	 	 	 	 	 Version	1.1	(the	"License");	you	may	not	use	this	file	except	in

	 	 	 	 	 	 	 compliance	with	the	License.	You	may	obtain	a	copy	of	the	License	at

	 	 	 	 	 	 	 http://www.mozilla.org/MPL/

	 	 	 	 	 	 	

	 	 	 	 	 	 	 Software	distributed	under	the	License	is	distributed	on	an	"AS	IS"

	 	 	 	 	 	 	 basis,	WITHOUT	WARRANTY	OF	ANY	KIND,	either	express	or	implied.	See	the

	 	 	 	 	 	 	 License	for	the	specific	language	governing	rights	and	limitations

	 	 	 	 	 	 	 under	the	License.

	 	 	 	 	 	 	

	 	 	 	 	 	 	 The	Initial	Developer	of	the	Original	Code	is	Jean-Francois	Goulet.

	 	 	 	 	 	 	 Portions	created	by	Jean-Francois	Goulet	are	Copyright	©	2004-2005.	

	 	 	 	 	 	 	 All	Rights	Reserved.

	 	 	 	 	 	 	

	 	 	 	 	 	 	 Contributor(s):	Jean-Francois	Goulet,	Shmuel	Zeigerman,	Massimo	Magnano.	 	 	 	 	 	 		

	 	 	 	 	 	 		

	 	 	 	 	

Programming	with	LuaEdit	Topic	Groups Lua	homepage

LuaEdit	 is	 a	 script	 editor	 designed	 to	 simplify	 the	 development	 of	 projects
created	with	Lua.	Using	LuaEdit	you	can	create	 scripts	 faster	 than	before	and
finally	be	able	to	trace	it	in	runtime.	

LuaEdit	 provides	 a	 suite	 Rapid	 Development	 Tools	 (RDT),	 including
completion	proposal,	parameters	proposition,	syntax	highlights	and	more.	Also,
you	will	find	in	LuaEdit	that	convivial	environment	found	in	the	famous	Visual
Studio	.Net®	with	auto-hide	dockable	windows.	

This	 chapter	 brievly	 describes	 the	 LuaEdit	 environment	 with	 examples	 and
colorful	images.

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://www.lua.org
http://luaedit.luaforge.net

The	Integrated	Development	Environment	Topic	Groups Lua	homepage

Once	you	started	LuaEdit,	the	Integrated	Development	Invironment	(also	called
the	 IDE)	 is	 immediately	 presented	 to	 you.	 This	 IDE	 provides	 you	 tools	 to
develop	and	debug	Lua	scripts	with	a	shorter	development	time.	

When	 developping	 with	 the	 IDE,	 you	 will	 notice	 that	 there	 is	 mainly	 two
important	environment:

The	designtime	environment
The	runtime	environment

The	designtime	environment	will	cover	important	actions	and	tools	such	as
copy,	cut,	paste,	search,	completion	proposal	list,	breakpoint	managing	window,
etc.	The	runtime	environment	will	cover	more	tools	and	actions	such	as	step
over,	step	into,	local	and	global	variables	lists,	call	stack	and	lua	stack	windows,
etc.	Designtime	tools	and	actions	will	usually	still	be	available	in	the	runtime
environment	(also	called	debugging)	when	the	runtime	environment	tools	and
actions	won't	be	actives	in	the	designtime	environment.	(also	called
programming)

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://www.lua.org
http://luaedit.luaforge.net

Working	with	Projects	Topic	Groups Lua	homepage

Projects	 in	 LuaEdit	 can	 be	 very	 useful	 in
many	 ways.	 They	 can	 group	 and	 manage
files	better	than	single	units	without	projects.
They	 also	 feature	 debug	 and	 revision
informations.	

The	 content	 of	 a	 project	 may	 consulted
through	 the	 "Project	 Tree"	 window	 (Picture
1.1).	In	this	window,	single	units	and	projects
(including	 their	member	units)	are	displayed
in	a	hierarchical	view:

+	---	Single	Units
¦
+	---	Project
					¦
					+	---	Units

Because	more	than	one	project	at	once	can
be	opened,	the	idea	of	"Active	Project"	is
used	in	synchronization	with	the	"Project"
menu	(Picture	1.2).	This	means	that	all
modifications	made	through	this	menu	will
apply	to	the	current	"Active	Project".	In
order	to	know	if	a	project	is	active	or	not,
have	a	look	at	the	"Project	Tree"	window
wich	will	display	the	"Active	Project"	in	bold.	Those	actions	are	also	available
by	right-clicking	on	the	"Active	Project"	node.	To	remove	or	add	units	to	the
"Active	Project"	simply	click	the	"Project/Add	Unit	to	Project"	menu	or	the
"Project/Remove	Unit	From	Project"	menu.	

You	can	edit	a	unit	by	double-clicking	on	a	unit	node	in	the	"Project	Tree".	This
will	add	the	unit	in	the	edition	tab	and	will	display	the	code.	

http://www.lua.org

To	display	or	hide	the	"Project	Tree",	simply	use	the	menu	"View/Project	Tree".

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://luaedit.luaforge.net

Basics	Topic	Groups Lua	homepage

Many	 basic	 actions	 and	 features	 are	 available	 in	 LuaEdit.	 The	 shortcuts	 and
icons	of	those	features	and	actions	have	been	adapted	so	that	they	can	looks	and
reacts	the	same	way	as	they	do	in	Visual	Studio	.Net	®.	This	section	will	briefly
describe	them.	

File	handling
LuaEdit	 recognize	 two	 type	of	 file:	*.lpr	extension	standing	 for	 "Lua	Project"
and	*.lua	extension	standing	for	"Lua	Units".	To	open	any	*.lpr	files,	select	the
menu	"File/Open	Lua	Project..."	or	 the	menu	"File/Open	File...".	To	open	 any
*.lua	files,	select	the	menu	"File/Open	File...".	The	selected	file	will	be	added	to
the	"Project	Tree	Window".	The	menu	"File/Save"	will	save	the	currently	edited
unit	on	its	originally	opened	localtion.	The	menu	"File/Save	As..."	will	display	a
save	dialog	wich	allow	to	save	the	file	anywhere	you	can.	The	menu	"File/Save
All"	will	 save	 any	modified	 or	 new	 units	 and	 projects.	 The	menu	 "File/Save
Project	As..."	will	display	a	save	dialog	so	that	you	can	save	the	current	"Active
Project"	anywhere	you	can.	New	units	and	projects	can	be	created	via	the	menu
"File/New/Unit"	and	"File/New/Project".	The	menu	"File/Reopen"	contains	all
recently	opened	projects	 and	units.	Simply	 click	on	any	of	 these	 to	 reopen	 it.
The	menu	 "File/Print	Steup..."	will	 display	 the	 printing	options	 and	 the	menu
"File/Print..."	will	display	a	print	dialog	to	print	the	currently	edited	unit.	

Code	handling
Luaedit	 exposed	 all	 basic	 code	 handling	 actions.	 The	menu	 "Edit/Undo"	will
undo	 the	 lastest	 changes	 and	 the	 menu	 "Edit/Redo"	 will	 redo	 the	 lastest
undoed	changes.	The	menu	"Edit/Cut"	will	cut	the	current	selection	from	the
currently	 edited	 unit	 and	 will	 add	 this	 text	 in	 the	 clipboard.	 The	 menu
"Edit/Copy"	will	 copy	 the	current	 selection	 from	 the	currently	edited	unit	and
will	add	this	text	in	the	clipboard.	The	menu	"Edit/Paste"	will	insert	the	text	in
the	 clipboard	 at	 the	 currrent	 cursor	 position	 of	 the	 currently	 edited	 unit.	 The
"Edit/Select	 All"	 menu	 will	 select	 all	 the	 text	 present	 in	 the	 currently	 edited
unit.	The	"Edit/Find..."	menu	will	display	a	 find	dialog	so	 that	you	can	easily
find	the	text	you	are	looking	for.	The	menu	"Edit/Replace..."	will	display	a	find
and	 replace	dialog	so	 that	you	can	easily	 replace	 the	 text	you	are	 looking	 for.

http://www.lua.org

The	 "Edit/Find	 Again"	 menu	 will	 continue	 the	 previous	 search	 keeping	 the
same	 given	 parameters.	 The	menu	 "Edit/Find	 in	 Files"	will	 display	 a	 find	 in
files	dialog	so	that	you	can	find	text	contained	in	some	files	of	your	hard	drive
with	ease	 (NOTE:	 the	 find	 in	 files	engine	only	 find	 text	 in	*.lua	 files	 if	 any).
The	 menu	 "Edit/Indent	 Selection"	 will	 increase	 the	 current	 selection	 of	 the
currently	 edited	 unit	 of	 one	 level	 according	 to	 your	 tab	 settings.	 The	 menu
"Edit/Unindent	 Selection"	 will	 decrease	 the	 current	 selection	 of	 the	 currently
edited	 unit	 of	 one	 level	 according	 to	 your	 tab	 settings.	 The	 "Edit/Comment
Selection"	 and	 the	 "Edit/Uncomment	 Selection"	 menus	 will
comment/uncomment	 the	 selected	 text	 in	 one	 click.	 The	 "Edit/Uppercase
Selection"	and	the	"Edit/Lowercase	Selection"	menus	will	set	all	characters	of
the	current	selection	to	upper	or	lower	case.	The	menu	"Edit/Goto	Last	Edited"
will	bring	you	to	the	last	edited	line.	The	"Edit/Go	to	Line..."	menu	will	display
a	dialog	to	enter	the	line	number	where	to	go	in	the	currently	edited	unit.

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://luaedit.luaforge.net

Editor	Settings	Topic	Groups Lua	homepage

Just	like	other	IDEs,	LuaEdit	allows	customization	of	its	own	environment.	This
section	 will	 explain	 the	 different	 modifications	 available	 through	 the	 "Editor
Settings	 Window".	 This	 window,	 available	 via	 the	 menu	 "Tools/Editor
Settings...",	 is	 divisied	 in	 three	 major	 categories:	 "General",	 "Display"	 and
"Colors".	

The	General	Tab	(Picture	1.1)
This	tab	featrues	miscellaneous	options	for	the	code	editor	and	the	IDE.	

"Associate	LuaEdit	with	Common	Lua	File"
Check	 this	 option	 to	 associate	 the	 common	 *.lua	 and	 *.lpr	 files	 with
LuaEdit	in	Windows.	When	checked,	LuaEdit	will	ask	for	a	system	reboot
in	order	for	those	changes	to	take	effect.	Once	done,	it	is	now	possible	to
simply	 double-click	 on	 *.lua	 or	 *.lpr	 files	 and	 LuaEdit	 will	 handle
automatic	opening.

http://www.lua.org

"Keep	Find	in	Files	Report	Opened"
Check	this	option	to	make	sure	that	the	find	in	files	report	will	stay	open
once	 the	 search	 is	 done.	 This	 can	 be	 useful	 to	 actually	 read	 the	 final
statistics	of	the	search.
"Save	Breakpoints"
Check	 this	 option	 in	 order	 to	 allow	 LuaEdit	 saving	 the	 breakpoints
information	such	as	their	conditions	and	positions	while	saving	a	file.	Next
time	you	will	reopen	this	file,	the	breakpoints	should	be	reinitialized.
"Show	Extended	Save	Dialog	on	Exit"
Check	 this	 option	 in	 order	 to	 display	 a	window	wich	 groups	 all	 new	 or
modified	files	opened	 that	might	need	 to	be	saved	when	exiting	LuaEdit.
Without	this	option,	LuaEdit	will	popup	a	message	box	for	every	file	that
required	a	save	on	after	the	other.
"Save	Projects	Incrementally"
Check	 this	option	 in	order	 to	save	*.lpr	 files	 in	an	 incremental	way.	This
means	 that	 if	 this	 option	 is	 checked	 and	 you	 opened	 a	 file	 called
"Project5.lpr",	it	will	automatically	save	the	file	as	"Project6.lpr"	next	time
you	will	save	it.	Just	like	"Project.lpr"	will	result	into	"Project1.lpr".	This
can	be	a	good,	safe	and	quick	way	to	backup	files	everytime	you	save	it.
(3D	studio	max	has	the	same	kind	of	feature)
"Save	Units	Incrementally"
Check	this	option	in	order	 to	save	*.lua	files	 in	an	incremental	way.	This
means	 that	 if	 this	 option	 is	 checked	 and	 you	 opened	 a	 file	 called
"Unit9.lua",	 it	 will	 automatically	 save	 the	 file	 as	 "Unit10.lpr"	 next	 time
you	will	save	it.	Just	like	"Unit.lpr"	will	result	into	"Unit1.lpr".	This	can	be
a	 good,	 safe	 and	 quick	 way	 to	 backup	 files	 everytime	 you	 save	 it.	 (3D
studio	max	has	the	same	kind	of	feature)
"Auto	Indent"
This	option	will	make	the	code	editor	indenting	the	caret	on	new	lines	with
the	same	amount	of	leading	white	spaces	or	tabs	as	the	preceding	line.
"Group	Undo"
This	will	make	 undo/redo	 actions	 to	 handle	 all	 continous	 changes	 of	 the
same	kind	in	one	call	instead	undoing/redoing	each	changes	separately	on
after	the	other.
"Use	Tab	Indent"
Check	 this	option	 in	order	 to	 simulate	 the	 indent/unindent	 actions	on	 the
current	selection	by	pressing	the	[Tab]	and	[Shift+Tab].
"Use	Smart	Tabs"
Check	this	option	in	order	to	send	the	cursor	to	the	next	non-white	space

character	of	the	previous	line	when	pressing	the	[Tab]	key.
"Move	Caret	on	Right	Click"
Check	this	option	in	order	 to	move	the	caret	position	when	right	clicking
on	the	code	editor.	(This	will	still	popup	the	code	editor	popup	menu)
"Use	Enhance	Home	Key"
Check	 this	option	 in	order	 to	send	 the	cursor	 to	 the	first	non-white	space
character	of	the	current	line	instead	of	the	very	begining	of	the	current	line.
(If	checked,	press	twice	to	do	so)
"Convert	Tabs	to	Spaces"
Check	 this	 option	 in	 order	 to	 converts	 tab	 characters	 into	 the	 specified
number	of	space	characters	for	a	tab.
"Hide	Scroll	Bars	When	Useless"
Check	 this	 option	 in	 order	 to	 hide	 the	 scroll	 bars	 whenever	 they	 are
disabled	because	they	can't	scroll.
"Scroll	Past	EOF"
Check	this	option	in	order	to	allow	scrolling	even	though	the	End	Of	File
is	reached.
"Scroll	Past	EOL"
Check	this	option	in	order	to	allow	scrolling	even	though	the	End	Of	Line
is	reached.
"Save	Breakpoints"
Check	this	option	in	order	to	keep	the	X	position	of	the	caret	when	moving
through	lines	(Takes	effects	only	if	"Scoll	Past	EOL"	is	NOT	check)
"Keep	Trailing	Blanks"
If	this	option	is	checked,	spaces	at	the	End	Of	Lines	will	be	trimmed	and
not	saved.
"Undo	Limits"
Set	 in	 this	 field	 the	number	of	undo	allowed	 to	LuaEdit.	The	higher	 this
will	be,	the	more	memory	LuaEdit	might	take	for	Undo/Redo	actions	only.
"Tab	Width"
Set	in	this	field	the	width	of	a	tab	character	in	spaces.	For	example,	if	this
setting	 is	 set	 to	 4,	 a	 tab	 character	 will	 have	 the	 equivalent	 of	 4	 white
spaces.

The	Environement	Tab	(Picture	1.2)
This	tab	features	some	environement	features	such	as	search	paths.	

"Libraries"
This	option	is	a	string	separated	by	commas	to	indicate	all	the	search	paths
for	 the	 libraries.	 Libraries	 are	 *.lib	 files	 containing	 function	 definition
datas	for	the	completion	proposal	engine	to	use.	You	can	in	any	time	create
your	own	*.lib	 file	 following	 the	same	format	as	 the	basic	Lua50.lib	and
LuaEdit	should	consider	it	and	retreive	the	data	if	the	path	where	this	file	is
located	is	specified	in	this	option.	To	make	things	easier	than	just	writing
the	paths	yourself,	a	search	path	manager	window	is	available	by	pressing
the	"..."	button	next-to	the	text	box.

The	Display	Tab	(Picture	1.3)
This	tab	features	display	options	for	the	gutter	and	the	code	editor.	

"Show
Gutter"

Check/uncheck	this	option	 in	order	 to	display/hide	 the	gutter	on	 the	code
editor.
"Show	Line	Numbers"
Check/uncheck	this	option	in	order	to	display/hide	the	line	numbers	in	the
gutter.
"Leading	Zeros"
Check/uncheck	 this	 option	 in	 order	 to	 display/hide	 leading	 zeros	 for	 the
line	numbers	in	the	gutter.	(Works	only	if	the	"Show	Line	Numbers"	option
is	check)
"Gutter	Width"
Set	 in	 this	field	 the	 total	width	of	 the	gutter	 in	pixels.	 (excluding	the	 line
numbers	 because	 they	make	 the	 gutter's	width	 beeing	 recalculated	 every
time	they	display	or	hide)
"Gutter	Color"

Choose	 the	color	you	want	 for	 the	gutter	 to	be	painted	with.	 (The	colors
proposed	 in	 the	 list	 and	 the	 colors	you	can	choose	on	 the	 light	 spectrum
may	vary	according	to	your	Operating	System	and	its	Display	Settings)
"Font"
Choose	 the	 type	of	 font	 that	will	be	used	 to	display	 the	code	 in	 the	code
editor.	 (The	 fonts	 proposed	 in	 the	 list	 may	 vary	 according	 to	 your
Operating	System)
"Size"
Set	in	this	field	the	size	of	the	font	in	points	to	be	used	to	display	the	code
in	the	code	editor.

The	Colors	Tab	(Picture	1.4)
This	tab	features	color	options	for	the	the	code	editor	only.	

"Elements"
The	item	selected	in	this	list	will	be	afected	by	all	other	options	in	this	tab.
This	 list	 groups	 all	 kind	 of	 tokens	 in	 Lua	 scripts	 such	 as	 strings	 and
numbers.

"Bold"
Check	 this	 option	 in	 order	 to	make	 the	 selected	 token	 being	 bold	 in	 the
code	editor.
"Italic"
Check	 this	 option	 in	 order	 to	make	 the	 selected	 token	being	 italic	 in	 the
code	editor.
"Underline"
Check	 this	option	 in	order	 to	make	 the	 selected	 token	being	underline	 in
the	code	editor.
"Foreground"
Choose	 the	 color	 you	 want	 for	 the	 selected	 token's	 foreground	 to	 be
painted	 with.	 (The	 colors	 proposed	 in	 the	 list	 and	 the	 colors	 you	 can
choose	 on	 the	 light	 spectrum	 may	 vary	 according	 to	 your	 Operating
System	and	its	Display	Settings)
"Background"
Choose	 the	 color	 you	 want	 for	 the	 selected	 token's	 background	 to	 be
painted	 with.	 (The	 colors	 proposed	 in	 the	 list	 and	 the	 colors	 you	 can
choose	 on	 the	 light	 spectrum	 may	 vary	 according	 to	 your	 Operating
System	and	its	Display	Settings)

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://luaedit.luaforge.net

Editing	Code	Topic	Groups Lua	homepage

The	LuaEdit	code	editor	acts	and	proposes	features	seen	in	other	famous	code
editors	 such	 as	 Visual	 C++®,	 Delphi®,	 etc.	 It	 features	 syntax	 highlighting,
completion	proposal	 list,	bookmarking	and	more.	This	section	will	summarize
and	briefly	explain	those	features.	

Syntax	Highlighting

When	programming	with	the	LuaEdit	code	editor,	you	will	notice	that
keywords	 such	 as	 "if",	 "function"	 and	 "while"	 are	 automatically
highlighted	 according	 to	 your	 highlitghting	 settings.	 Strings,
comments	and	numbers	are	also	automatically	highlighted.	For	strings
and	 comments,	 they	 can	 be	 in	 some	 circumstaces	 multiline
highlighted.	 For	 example,	 all	 code,	 spread	 on	 several	 lines	 or	 not,
included	 in	 --[[and	 --]]	 delimiters	 are	 highlighted	 as	 comments
because	it	is	also	a	Lua	5.0	feature.	Same	thing	for	strings	with	[[and
]]	delimiters.

Completion	Proposal	List

LuaEdit	 also	provides	 some	 integrated	 tools	 to	 shorten	development
time.	The	completion	proposal	list	is	a	list	that	displays	all	matching
function,	 libraries,	 global	 variables,	 etc	 with	 the	 text	 on	 left	 of	 the
cursor.	 To	 popup	 this	 list	 while	 developping	 press	 Ctrl+Space	 (For
physical	 and	 logical	 reasons,	 the	 local	 and	 global	 variables	 are	 not
shown	in	the	list	unless	they	are	specified	in	a	*.lib	file	in	one	of	the
specified	 search	 paths	 (See	 the	 Editor	 Settings	 section	 for	 more
details)).	Once	displayed,	you	may	choose	an	item	of	the	proposed	list
by	double-clicking	on	that	item	or	pressing	one	of	the	following	keys:
"Enter",	 "Space",	 ".",	 ")"	 or	 "(".	 To	 hide	 the	 list,	 simply	 ckick
anywhere	else	than	on	the	list	or	press	"Escape".

Parameter	Proposition

http://www.lua.org

When	 writing	 the	 call	 of	 a	 function	 you	 may	 want	 to	 use	 the
parameter	proposition	tool.	This	tool	display	while	programming	the
parameters	to	enter	for	the	that	function	call.	To	display	the	parameter
proposition	tools	press	Ctrl+Shift+Space.	The	parameter	in	bold	is	the
current	paramter	to	enter.

Bookmarking

Bookmarks	have	been	designed	 to	 easily	 and	quickly	 switch	 from	a
place	 in	 a	 script	 to	 another.	This	 can	 save	 lots	 of	 development	 time
and	 prevent	 confusions	 while	 developing.	 Up	 to	 10	 bookmarks	 per
unit	are	available	to	use	anywhere	in	a	script.	To	toggle	a	bookmark
press	 Ctrl+Shift+1	 for	 bookmark	 #1	 or
Ctrl+Shift+2	 for	bookmark	#2	and	 so	on
or	 use	 the	 code	 editor	 popup	 menu	 by
right-clicking	 on	 the	 code	 editor	 and
finally	 "Toggle	Bookmark"	 (Picture	1.1).
To	 go	 to	 a	 toggled	 bookmark	 press
Shift+1	 for	 Bookmark	 #1	 or	 Shift+2	 for
Bookmark	 #2	 and	 so	 on	 or	 use	 the	 code
editor	 popup	 menu	 by	 right-clicking	 on
the	 code	 editor	 and	 finally	 "Goto
Bookmark"	(Similar	to	Picture	1.1)

Regular	Actions

Of	course,	the	code	editor	exposed	regular	actions	such	as	cut,	copy,
paste,	 block	 indent,	 block	 unindent,	 etc.	 All	 those	 actions	 are
available	 through	 the	"Edit"	menu	 in	LuaEdit	and	some	of	 them	are
also	available	in	the	code	editor	popup	menu.

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://luaedit.luaforge.net

Debugging	Scripts	Topic	Groups Lua	homepage

Debugging	is	long	and	difficult	task	to	do.	It	is
also	 a	 crucial	 state	 in	 programming	 project
because	this	task	have	to	be	well	done	in	order
to	 bring	 a	 project	 successful.	 LuaEdit	 provides	 servaral	 tools	 to	 get	 this
painful	 task	 done	 as	 easy	 as	 possible.	 This	 section	 will	 explain	 the	 basic
actions	to	debug	scripts	with	LuaEdit.	

Basics
First	 of	 all,	 you	 must	 press	 the	 "Run"	 (F5)	 button	 on	 the	 "Debug	 Toolbar"
(Picture	1.1)	or	by	using	the	menu	"Run/Run	Script"	in	order	to	get	into	a	debug
session.	This	will	load	the	script	into	a	"Lua	State"	(See	Lua	5.0	documentation
available	 through	 the	menu	 "?/Lua	Help")	 and	 execute	 each	valid	 line	of	 you
script	until	 it	 reaches	 the	end	or	a	valid	breakpoint	 (See	documentation	below
for	more	 informations	about	breakpoints).	 If	 an	error	happened	while	 running
the	script,	LuaEdit	will	display	the	message	through	a	message	box	and	through
the	 "Messages	 Window"	 (Picture	 1.2).	 Several	 debugging	 informations	 are
available,	once	the	script	execution	breaks	on	a	line.	Local	and	Global	variables
values	 are	 available	 through	 the	 "Local	 Variables	 Window"	 and	 the	 "Global
Variables	 Window".	 Also,	 the	 "Lua	 Stack	Window"	 shows	 all	 Lua's	 stacked
variables	 values	 at	 the	 moment	 of	 the	 current	 execution	 and	 the	 "Call	 Stack
Window"	shows	 the	history	of	all	 function	calls	made	 from	 the	current	 script.
This	 call	 stack	may	be	useful	 to	 trace	back	 the	values	of	 the	 local	 and	global
variables	in	previous	calls.	

Step	by	Step
A	 few	 choices	 are	 available	 to
pursue	 the	 execution	 of	 the	 script.
The	 "Step	 Over"	 (F10)	 and	 "Step
Into"	 (F11)	 buttons	 allows	 to	 jump
the	 function	 call	 of	 the	 current
debugging	line	if	any.	If	"Step	into"
is	 pressed	 and	 no	 function	 call	 is	 made	 on	 the	 current	 debugging	 line,	 the
debugger	will	 simulate	 the	 "Step	Over"	 feature	wich	 simply	 jump	 to	 the	next

http://www.lua.org

executed	line.	The	"Run	Script	to	Cursor"	(Ctrl+F10)	button	will	run	the	script
until	it	reaches	the	line	where	cursor	is	currently	positioned	or	until	the	end	of
the	 script.	 The	 "Run"	 (F5)	 button	 will	 pursue	 the	 execution	 of	 the	 scipt	 if
already	started.	

Manipulating	Breakpoints
Breakpoins	are	very	useful	when	debugging.	To	insert	a	breakpoint	at	 the	 line
where	the	cursor	is,	press	the	"Toggle	Breakpoint"	(F9)	button	from	the	debug
toolbar	(Picture	1.2).	When	debugging	a	script,	the	execution	should	break	on	a
line	 where	 a	 breakpoint	 has
been	 detected.	 Advanced
manipulation	 and	 features	 for
breakpoint	 are	 available
through	 the	 "Breakpoints
Window"	(Picture	1.3)	such	as
disabling/enabling	breakpoints.
A	disabled	breakpoint	won't	break	the	execution	of	the	script	but	will	leave	the
breakpoint	 marker	 (maroon/grayed)	 on	 the	 code	 editor.	 To	 disable/enable	 a
breakpoint,	 simply	 check/uncheck	 the	 checkbox	 on	 the	 left	 of	 the	 breakpoint
name	 in	 the	 "Breakpoints	 Window".	 You	 can	 also	 set	 a	 condition	 on	 a
breakpoint	 wich	 will	 be	 evaluated	 when	 the	 scipt	 is	 runnning	 to	 determine
whether	or	not	it	will	break	on	this	breakpoint.	The	evaluation	of	the	condition
should	 always	 return	 "true"	 or	 "false".	 You	 can	 also	 remove,	 add	 and	 goto
breakpoints	through	the	"Breakpoints	Window".	

Watching	Variables
In	 Lua,	 just	 like	 other
languages,	 variables	 are	 very
important	 for	 the	 code	 to	 be
working.	 Variables	 in
programming	 are	 abstract
concept	 since	 they	 are	 located
in	 the	 RAM	 and	 that	 their
content	 may	 change	 several
times	 in	 a	 few	 operations.
That's	 why	 the	 "Watch"
window	 (Picture	 1.4)	 becomes
a	useful	 tool	 for	 the	programmer.	Since	Lua	 logic	 is	based	on	 tables,	LuaEdit
has	adapted	a	watch	window	wich	act	like	the	MS	Visual	Studio	.Net®	one.	This

means	 that	 all	 the	 content	 of	 any	 tables	 (variables	 and	 nested	 tables)	 can	 be
explored	in	a	hierarchic	way.	This	can	be	extremely	useful	when	complex	tables
are	part	of	your	code.	The	watch	window	also	display	regular	variables	content.	

NOTE:	Any	complex	data	such	as	user	data	and	functions	will	be	displayed	as
a	pointer	address.	See	picture	1.4	for	details.	

Using	the	Initializer
LuaEdit	offer	the	possibility	to	bind	the	code	to	a	Dynamic-Link	Library	(DLL)
before	the	execution	of	the	script.	This	can	be	very	useful	if	any	function	call	in
the	 scripts	 refer	 to	 some	 C++	 functions	 defined	 in	 such	 a	 file.	 By	 using	 the
initializer,	 you	 will	 prevent	 error	 raised	 by	 Lua	 5.0	 because	 it	 can't	 find	 the
reference	 of	 the	 function	 call.	 To	 set	 the	 initializer,	 just	 popup	 the	 "Project
Options	 Window"	 by	 clicking	 on	 the	 "Project/Options..."	 menu.	 Once	 the
windowis	displayed,	select	the	"Debug"	tab	and	enter	the	full	path	of	the	DLL
or	simply	click	on	the	browse	button	and	open	the	DLL	from	the	browse	dialog.
In	order	to	make	this	feature	working	your	DLL	must	export	a	function	of	one
of	these	prototype	according	to	the	right	language	it	has	been	built	from:

Delphi:		LuaDebug_Initializer(L:	PLua_State):	Integer;	cdecl;	
C/C++:		int	LuaDebug_Initializer(lua_State	*L);	

NOTE:	The	initializer	property	is	only	available	when	the	unit	is	part	of	a
project.	

Using	LuaEditDebug.dll
LuaEdit	has	been	compiled	and	adapted	into	a	Dynamic-Link	Library	(DLL)
file.	This	now	allowing	embedded	lua	code	in	executable	files	(EXE)	to	be
debug	in	LuaEdit.	First	of	all,	in	order	to	use	it,	the	lua	state	structure	must	be
opened	AND	closed	by	the	dll.	To	do	so,	here	are	the	two	function	prototypes	to
declare	in	your	application	code:

Delphi:
	function	LuaEditDebugOpen:	Plua_State;			//	Function	to	open
the	lua_state	structure	with	LuaEdit
	procedure	LuaEditDebugClose(LuaState:	Plua_State);			//
Function	to	close	the	lua_state	structure	with	LuaEdit

C/C++:
	lua_State	*LuaEditDebugOpen(void);			//	Function	to	open	the

lua_state	structure	with	LuaEdit
	void	LuaEditDebugClose(lua_State	*LuaState);			//	Function	to
close	the	lua_state	structure	with	LuaEdit

By	calling	the	LuaEditDebugOpen	function,	LuaEdit	will	perform	a	call	to	the
lua_open	Lua	API	function	and	return	the	state	as	a	pointer.	By	calling	the
LuaEditDebugClose	function,	LuaEdit	will	perform	a	call	to	the	lua_close	Lua
API	function.	Make	sure	that	only	LuaEdit	is	opening	AND	closing	the	state
structure.	If	you	intend	to	use	LuaEdit	for	this	purpose,	your	application	should
never	open	or	close	the	state.	To	begin	the	debug	session	in	LuaEdit,	two	way
are	available.	The	first	one	is	by	specifying	a	file	name	and	the	second	one	is	by
giving	the	lua	code.	Once	called,	both	functions	will	immediately	start	debuging
the	code	in	LuaEdit.	Here	are	their	prototypes:

Delphi:
	function	LuaEditDebugStart(LuaState:	Plua_State;	Code:
PChar):	Integer;	
	function	LuaEditDebugStartFile(LState:	Plua_State;	Filename:
PChar):	Integer;	

C/C++:
	int	LuaEditDebugStart(lua_State	*LuaState,	char	*Code);	
	int	LuaEditDebugStartFile(lua_State	*LState,	char	*Filename);	

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://luaedit.luaforge.net

	Reference	manual	for	Lua
5.0
Lua	5.0	Reference	Manual	[top	|	index	|	ps	|	pdf]

Copyright	©	2003	Tecgraf,	PUC-Rio.	All	rights	reserved.

1	-	Introduction
2	-	The	Language

2.1	-	Lexical	Conventions
2.2	-	Values	and	Types

2.2.1	-	Coercion
2.3	-	Variables
2.4	-	Statements

2.4.1	-	Chunks
2.4.2	-	Blocks
2.4.3	-	Assignment
2.4.4	-	Control	Structures
2.4.5	-	For	Statement
2.4.6	-	Function	Calls	as	Statements
2.4.7	-	Local	Declarations

2.5	-	Expressions
2.5.1	-	Arithmetic	Operators
2.5.2	-	Relational	Operators
2.5.3	-	Logical	Operators
2.5.4	-	Concatenation
2.5.5	-	Precedence
2.5.6	-	Table	Constructors
2.5.7	-	Function	Calls

2.5.8	-	Function	Definitions
2.6	-	Visibility	Rules
2.7	-	Error	Handling
2.8	-	Metatables
2.9	-	Garbage	Collection

2.9.1	-	Garbage-Collection	Metamethods
2.9.2	-	Weak	Tables

2.10	-	Coroutines
3	-	The	Application	Program	Interface

3.1	-	States
3.2	-	The	Stack	and	Indices
3.3	-	Stack	Manipulation
3.4	-	Querying	the	Stack
3.5	-	Getting	Values	from	the	Stack
3.6	-	Pushing	Values	onto	the	Stack
3.7	-	Controlling	Garbage	Collection
3.8	-	Userdata
3.9	-	Metatables
3.10	-	Loading	Lua	Chunks
3.11	-	Manipulating	Tables
3.12	-	Manipulating	Environments
3.13	-	Using	Tables	as	Arrays
3.14	-	Calling	Functions
3.15	-	Protected	Calls
3.16	-	Defining	C	Functions
3.17	-	Defining	C	Closures
3.18	-	Registry
3.19	-	Error	Handling	in	C
3.20	-	Threads

4	-	The	Debug	Interface
4.1	-	Stack	and	Function	Information
4.2	-	Manipulating	Local	Variables	and	Upvalues
4.3	-	Hooks

5	-	Standard	Libraries
5.1	-	Basic	Functions
5.2	-	Coroutine	Manipulation
5.3	-	String	Manipulation

5.4	-	Table	Manipulation
5.5	-	Mathematical	Functions
5.6	-	Input	and	Output	Facilities
5.7	-	Operating	System	Facilities
5.8	-	The	Reflexive	Debug	Interface

6	-	Lua	Stand-alone
The	Complete	Syntax	of	Lua

Last	update:	Wed	May	7	18:34:34	EST	2003

	Lua	5.0	Reference	Manual
by	Roberto	Ierusalimschy,	Luiz	Henrique	de	Figueiredo,	Waldemar	Celes

Copyright	©	2003	Tecgraf,	PUC-Rio.	All	rights	reserved.

http://www.lua.org/copyright.html

1	-	Introduction
Lua	is	an	extension	programming	language	designed	to	support	general
procedural	programming	with	data	description	facilities.	It	also	offers
good	support	for	object-oriented	programming,	functional	programming,
and	data-driven	programming.	Lua	is	intended	to	be	used	as	a	powerful,
light-weight	configuration	language	for	any	program	that	needs	one.	Lua
is	implemented	as	a	library,	written	in	clean	C	(that	is,	in	the	common
subset	of	ANSI	C	and	C++).

Being	an	extension	language,	Lua	has	no	notion	of	a	"main"	program:	it
only	works	embedded	in	a	host	client,	called	the	embedding	program	or
simply	the	host.	This	host	program	can	invoke	functions	to	execute	a
piece	of	Lua	code,	can	write	and	read	Lua	variables,	and	can	register
C	functions	to	be	called	by	Lua	code.	Through	the	use	of	C	functions,
Lua	can	be	augmented	to	cope	with	a	wide	range	of	different	domains,
thus	creating	customized	programming	languages	sharing	a	syntactical
framework.

The	Lua	distribution	includes	a	stand-alone	embedding	program,	lua,	that
uses	the	Lua	library	to	offer	a	complete	Lua	interpreter.

Lua	is	free	software,	and	is	provided	as	usual	with	no	guarantees,	as
stated	in	its	copyright	notice.	The	implementation	described	in	this
manual	is	available	at	Lua's	official	web	site,	www.lua.org.

Like	any	other	reference	manual,	this	document	is	dry	in	places.	For	a
discussion	of	the	decisions	behind	the	design	of	Lua,	see	the	papers
below,	which	are	available	at	Lua's	web	site.

R.	Ierusalimschy,	L.	H.	de	Figueiredo,	and	W.	Celes.	Lua---an
extensible	extension	language.	Software:	Practice	&	Experience	26
#6	(1996)	635-652.
L.	H.	de	Figueiredo,	R.	Ierusalimschy,	and	W.	Celes.	The	design	and
implementation	of	a	language	for	extending	applications.
Proceedings	of	XXI	Brazilian	Seminar	on	Software	and	Hardware

(1994)	273-283.
L.	H.	de	Figueiredo,	R.	Ierusalimschy,	and	W.	Celes.	Lua:	an
extensible	embedded	language.	Dr.	Dobb's	Journal	21	#12	(Dec
1996)	26-33.
R.	Ierusalimschy,	L.	H.	de	Figueiredo,	and	W.	Celes.	The	evolution
of	an	extension	language:	a	history	of	Lua,	Proceedings	of	V
Brazilian	Symposium	on	Programming	Languages	(2001)	B-14-B-28.

Lua	means	"moon"	in	Portuguese	and	is	pronounced	LOO-ah.

2	-	The	Language
This	section	describes	the	lexis,	the	syntax,	and	the	semantics	of	Lua.	In
other	words,	this	section	describes	which	tokens	are	valid,	how	they	can
be	combined,	and	what	their	combinations	mean.

The	language	constructs	will	be	explained	using	the	usual	extended	BNF,
in	which	{a}	means	0	or	more	a's,	and	[a]	means	an	optional	a.	Non-
terminals	are	shown	in	italics,	keywords	are	shown	in	bold,	and	other
terminal	symbols	are	shown	in	typewriter	font,	enclosed	in	single
quotes.

2.1	-	Lexical	Conventions

Identifiers	in	Lua	can	be	any	string	of	letters,	digits,	and	underscores,	not
beginning	with	a	digit.	This	coincides	with	the	definition	of	identifiers	in
most	languages.	(The	definition	of	letter	depends	on	the	current	locale:
any	character	considered	alphabetic	by	the	current	locale	can	be	used	in
an	identifier.)

The	following	keywords	are	reserved	and	cannot	be	used	as	identifiers:

							and							break					do								else						elseif

							end							false					for							function		if

							in								local					nil							not							or

							repeat				return				then						true						until					while

Lua	is	a	case-sensitive	language:	and	is	a	reserved	word,	but	And	and	AND
are	two	different,	valid	identifiers.	As	a	convention,	identifiers	starting	with
an	underscore	followed	by	uppercase	letters	(such	as	_VERSION)	are
reserved	for	internal	variables	used	by	Lua.

The	following	strings	denote	other	tokens:

							+					-					*					/					^					=

							~=				<=				>=				<					>					==

							()					{					}					[]

							;					:					,				

Literal	strings	can	be	delimited	by	matching	single	or	double	quotes,	and
can	contain	the	following	C-like	escape	sequences:

\a	---	bell
\b	---	backspace
\f	---	form	feed
\n	---	newline
\r	---	carriage	return
\t	---	horizontal	tab
\v	---	vertical	tab
\\	---	backslash

\"	---	quotation	mark
\'	---	apostrophe
\[---	left	square	bracket
\]	---	right	square	bracket

Moreover,	a	`\newline´	(that	is,	a	backslash	followed	by	a	real	newline)
results	in	a	newline	in	the	string.	A	character	in	a	string	may	also	be
specified	by	its	numerical	value	using	the	escape	sequence	`\ddd´,
where	ddd	is	a	sequence	of	up	to	three	decimal	digits.	Strings	in	Lua	may
contain	any	8-bit	value,	including	embedded	zeros,	which	can	be
specified	as	`\0´.

Literal	strings	can	also	be	delimited	by	matching	double	square	brackets
[[·	·	·]].	Literals	in	this	bracketed	form	may	run	for	several	lines,	may
contain	nested	[[·	·	·]]	pairs,	and	do	not	interpret	any	escape
sequences.	For	convenience,	when	the	opening	`[[´	is	immediately
followed	by	a	newline,	the	newline	is	not	included	in	the	string.	As	an
example,	in	a	system	using	ASCII	(in	which	`a´	is	coded	as	97,	newline	is
coded	as	10,	and	`1´	is	coded	as	49),	the	four	literals	below	denote	the
same	string:

						(1)			"alo\n123\""

						(2)			'\97lo\10\04923"'

						(3)			[[alo

												123"]]

						(4)			[[

												alo

												123"]]

Numerical	constants	may	be	written	with	an	optional	decimal	part	and	an
optional	decimal	exponent.	Examples	of	valid	numerical	constants	are

							3					3.0					3.1416		314.16e-2			0.31416E1

Comments	start	anywhere	outside	a	string	with	a	double	hyphen	(--).	If
the	text	immediately	after	--	is	different	from	[[,	the	comment	is	a	short
comment,	which	runs	until	the	end	of	the	line.	Otherwise,	it	is	a	long
comment,	which	runs	until	the	corresponding]].	Long	comments	may
run	for	several	lines	and	may	contain	nested	[[·	·	·]]	pairs.

For	convenience,	the	first	line	of	a	chunk	is	skipped	if	it	starts	with	#.	This
facility	allows	the	use	of	Lua	as	a	script	interpreter	in	Unix	systems	(see
6).

2.2	-	Values	and	Types

Lua	is	a	dynamically	typed	language.	That	means	that	variables	do	not
have	types;	only	values	do.	There	are	no	type	definitions	in	the	language.
All	values	carry	their	own	type.

There	are	eight	basic	types	in	Lua:	nil,	boolean,	number,	string,	function,
userdata,	thread,	and	table.	Nil	is	the	type	of	the	value	nil,	whose	main
property	is	to	be	different	from	any	other	value;	usually	it	represents	the
absence	of	a	useful	value.	Boolean	is	the	type	of	the	values	false	and
true.	In	Lua,	both	nil	and	false	make	a	condition	false;	any	other	value
makes	it	true.	Number	represents	real	(double-precision	floating-point)
numbers.	(It	is	easy	to	build	Lua	interpreters	that	use	other	internal
representations	for	numbers,	such	as	single-precision	float	or	long
integers.)	String	represents	arrays	of	characters.	Lua	is	8-bit	clean:
Strings	may	contain	any	8-bit	character,	including	embedded	zeros	('\0')
(see	2.1).

Functions	are	first-class	values	in	Lua.	That	means	that	functions	can	be
stored	in	variables,	passed	as	arguments	to	other	functions,	and	returned
as	results.	Lua	can	call	(and	manipulate)	functions	written	in	Lua	and
functions	written	in	C	(see	2.5.7).

The	type	userdata	is	provided	to	allow	arbitrary	C	data	to	be	stored	in
Lua	variables.	This	type	corresponds	to	a	block	of	raw	memory	and	has
no	pre-defined	operations	in	Lua,	except	assignment	and	identity	test.
However,	by	using	metatables,	the	programmer	can	define	operations	for
userdata	values	(see	2.8).	Userdata	values	cannot	be	created	or
modified	in	Lua,	only	through	the	C	API.	This	guarantees	the	integrity	of
data	owned	by	the	host	program.

The	type	thread	represents	independent	threads	of	execution	and	it	is
used	to	implement	coroutines.

The	type	table	implements	associative	arrays,	that	is,	arrays	that	can	be
indexed	not	only	with	numbers,	but	with	any	value	(except	nil).	Moreover,

tables	can	be	heterogeneous,	that	is,	they	can	contain	values	of	all	types
(except	nil).	Tables	are	the	sole	data	structuring	mechanism	in	Lua;	they
may	be	used	to	represent	ordinary	arrays,	symbol	tables,	sets,	records,
graphs,	trees,	etc.	To	represent	records,	Lua	uses	the	field	name	as	an
index.	The	language	supports	this	representation	by	providing	a.name	as
syntactic	sugar	for	a["name"].	There	are	several	convenient	ways	to
create	tables	in	Lua	(see	2.5.6).

Like	indices,	the	value	of	a	table	field	can	be	of	any	type	(except	nil).	In
particular,	because	functions	are	first	class	values,	table	fields	may
contain	functions.	Thus	tables	may	also	carry	methods	(see	2.5.8).

Tables,	functions,	and	userdata	values	are	objects:	variables	do	not
actually	contain	these	values,	only	references	to	them.	Assignment,
parameter	passing,	and	function	returns	always	manipulate	references	to
such	values;	these	operations	do	not	imply	any	kind	of	copy.

The	library	function	type	returns	a	string	describing	the	type	of	a	given
value	(see	5.1).

2.2.1	-	Coercion

Lua	provides	automatic	conversion	between	string	and	number	values	at
run	time.	Any	arithmetic	operation	applied	to	a	string	tries	to	convert	that
string	to	a	number,	following	the	usual	rules.	Conversely,	whenever	a
number	is	used	where	a	string	is	expected,	the	number	is	converted	to	a
string,	in	a	reasonable	format.	For	complete	control	of	how	numbers	are
converted	to	strings,	use	the	format	function	from	the	string	library	(see
5.3).

2.3	-	Variables

Variables	are	places	that	store	values.	There	are	three	kinds	of	variables
in	Lua:	global	variables,	local	variables,	and	table	fields.

A	single	name	can	denote	a	global	variable	or	a	local	variable	(or	a
formal	parameter	of	a	function,	which	is	a	particular	form	of	local
variable):

	 var	::=	Name

Variables	are	assumed	to	be	global	unless	explicitly	declared	local	(see
2.4.7).	Local	variables	are	lexically	scoped:	Local	variables	can	be	freely
accessed	by	functions	defined	inside	their	scope	(see	2.6).

Before	the	first	assignment	to	a	variable,	its	value	is	nil.

Square	brackets	are	used	to	index	a	table:

	 var	::=	prefixexp	`[´	exp	`]´

The	first	expression	(prefixexp)should	result	in	a	table	value;	the	second
expression	(exp)	identifies	a	specific	entry	inside	that	table.	The
expression	denoting	the	table	to	be	indexed	has	a	restricted	syntax;	see
2.5	for	details.

The	syntax	var.NAME	is	just	syntactic	sugar	for	var["NAME"]:

	 var	::=	prefixexp	`.´	Name

The	meaning	of	accesses	to	global	variables	and	table	fields	can	be
changed	via	metatables.	An	access	to	an	indexed	variable	t[i]	is
equivalent	to	a	call	gettable_event(t,i).	(See	2.8	for	a	complete
description	of	the	gettable_event	function.	This	function	is	not	defined	or
callable	in	Lua.	We	use	it	here	only	for	explanatory	purposes.)

All	global	variables	live	as	fields	in	ordinary	Lua	tables,	called
environment	tables	or	simply	environments.	Functions	written	in	C	and

exported	to	Lua	(C	functions)	all	share	a	common	global	environment.
Each	function	written	in	Lua	(a	Lua	function)	has	its	own	reference	to	an
environment,	so	that	all	global	variables	in	that	function	will	refer	to	that
environment	table.	When	a	function	is	created,	it	inherits	the	environment
from	the	function	that	created	it.	To	change	or	get	the	environment	table
of	a	Lua	function,	you	call	setfenv	or	getfenv	(see	5.1).

An	access	to	a	global	variable	x	is	equivalent	to	_env.x,	which	in	turn	is
equivalent	to

							gettable_event(_env,	"x")

where	_env	is	the	environment	of	the	running	function.	(The	_env	variable
is	not	defined	in	Lua.	We	use	it	here	only	for	explanatory	purposes.)

2.4	-	Statements

Lua	supports	an	almost	conventional	set	of	statements,	similar	to	those	in
Pascal	or	C.	This	set	includes	assignment,	control	structures,	procedure
calls,	table	constructors,	and	variable	declarations.

2.4.1	-	Chunks

The	unit	of	execution	of	Lua	is	called	a	chunk.	A	chunk	is	simply	a
sequence	of	statements,	which	are	executed	sequentially.	Each
statement	can	be	optionally	followed	by	a	semicolon:

	 chunk	::=	{stat	[`;´]}

Lua	handles	a	chunk	as	the	body	of	an	anonymous	function	(see	2.5.8).
As	such,	chunks	can	define	local	variables	and	return	values.

A	chunk	may	be	stored	in	a	file	or	in	a	string	inside	the	host	program.
When	a	chunk	is	executed,	first	it	is	pre-compiled	into	opcodes	for	a
virtual	machine,	and	then	the	compiled	code	is	executed	by	an	interpreter
for	the	virtual	machine.

Chunks	may	also	be	pre-compiled	into	binary	form;	see	program	luac	for
details.	Programs	in	source	and	compiled	forms	are	interchangeable;	Lua
automatically	detects	the	file	type	and	acts	accordingly.

2.4.2	-	Blocks

A	block	is	a	list	of	statements;	syntactically,	a	block	is	equal	to	a	chunk:

	 block	::=	chunk

A	block	may	be	explicitly	delimited	to	produce	a	single	statement:

	 stat	::=	do	block	end

Explicit	blocks	are	useful	to	control	the	scope	of	variable	declarations.
Explicit	blocks	are	also	sometimes	used	to	add	a	return	or	break

statement	in	the	middle	of	another	block	(see	2.4.4).

2.4.3	-	Assignment

Lua	allows	multiple	assignment.	Therefore,	the	syntax	for	assignment
defines	a	list	of	variables	on	the	left	side	and	a	list	of	expressions	on	the
right	side.	The	elements	in	both	lists	are	separated	by	commas:

	 stat	::=	varlist1	`=´	explist1

	 varlist1	::=	var	{`,´	var}

	 explist1	::=	exp	{`,´	exp}

Expressions	are	discussed	in	2.5.

Before	the	assignment,	the	list	of	values	is	adjusted	to	the	length	of	the
list	of	variables.	If	there	are	more	values	than	needed,	the	excess	values
are	thrown	away.	If	there	are	fewer	values	than	needed,	the	list	is
extended	with	as	many	nil's	as	needed.	If	the	list	of	expressions	ends
with	a	function	call,	then	all	values	returned	by	that	function	call	enter	in
the	list	of	values,	before	the	adjustment	(except	when	the	call	is	enclosed
in	parentheses;	see	2.5).

The	assignment	statement	first	evaluates	all	its	expressions	and	only
then	are	the	assignments	performed.	Thus	the	code

							i	=	3

							i,	a[i]	=	i+1,	20

sets	a[3]	to	20,	without	affecting	a[4]	because	the	i	in	a[i]	is	evaluated
(to	3)	before	it	is	assigned	4.	Similarly,	the	line

							x,	y	=	y,	x

exchanges	the	values	of	x	and	y.

The	meaning	of	assignments	to	global	variables	and	table	fields	can	be
changed	via	metatables.	An	assignment	to	an	indexed	variable	t[i]	=
val	is	equivalent	to	settable_event(t,i,val).	(See	2.8	for	a	complete
description	of	the	settable_event	function.	This	function	is	not	defined	or
callable	in	Lua.	We	use	it	here	only	for	explanatory	purposes.)

An	assignment	to	a	global	variable	x	=	val	is	equivalent	to	the
assignment	_env.x	=	val,	which	in	turn	is	equivalent	to

							settable_event(_env,	"x",	val)

where	_env	is	the	environment	of	the	running	function.	(The	_env	variable
is	not	defined	in	Lua.	We	use	it	here	only	for	explanatory	purposes.)

2.4.4	-	Control	Structures

The	control	structures	if,	while,	and	repeat	have	the	usual	meaning	and
familiar	syntax:

	 stat	::=	while	exp	do	block	end

	 stat	::=	repeat	block	until	exp

	 stat	::=	if	exp	then	block	{elseif	exp	then	block}	[else	block]	

Lua	also	has	a	for	statement,	in	two	flavors	(see	2.4.5).

The	condition	expression	exp	of	a	control	structure	may	return	any	value.
Both	false	and	nil	are	considered	false.	All	values	different	from	nil	and
false	are	considered	true	(in	particular,	the	number	0	and	the	empty
string	are	also	true).

The	return	statement	is	used	to	return	values	from	a	function	or	from	a
chunk.	Functions	and	chunks	may	return	more	than	one	value,	so	the
syntax	for	the	return	statement	is

	 stat	::=	return	[explist1]

The	break	statement	can	be	used	to	terminate	the	execution	of	a	while,
repeat,	or	for	loop,	skipping	to	the	next	statement	after	the	loop:

	 stat	::=	break

A	break	ends	the	innermost	enclosing	loop.

For	syntactic	reasons,	return	and	break	statements	can	only	be	written
as	the	last	statement	of	a	block.	If	it	is	really	necessary	to	return	or
break	in	the	middle	of	a	block,	then	an	explicit	inner	block	can	be	used,
as	in	the	idioms	`do	return	end´	and	`do	break	end´,	because	now	return

and	break	are	the	last	statements	in	their	(inner)	blocks.	In	practice,
those	idioms	are	only	used	during	debugging.

2.4.5	-	For	Statement

The	for	statement	has	two	forms:	one	numeric	and	one	generic.

The	numeric	for	loop	repeats	a	block	of	code	while	a	control	variable
runs	through	an	arithmetic	progression.	It	has	the	following	syntax:

	 stat	::=	for	Name	`=´	exp	`,´	exp	[`,´	exp]	do	block	end

The	block	is	repeated	for	name	starting	at	the	value	of	the	first	exp,	until	it
passes	the	second	exp	by	steps	of	the	third	exp.	More	precisely,	a	for
statement	like

							for	var	=	e1,	e2,	e3	do	block	end

is	equivalent	to	the	code:

							do

									local	var,	_limit,	_step	=	tonumber(e1),	tonumber(e2),	tonumber(e3)

									if	not	(var	and	_limit	and	_step)	then	error()	end

									while	(_step>0	and	var<=_limit)	or	(_step<=0	and	var>=_limit)	do

											block

											var	=	var	+	_step

									end

							end

Note	the	following:

All	three	control	expressions	are	evaluated	only	once,	before	the
loop	starts.	They	must	all	result	in	numbers.
_limit	and	_step	are	invisible	variables.	The	names	are	here	for
explanatory	purposes	only.
The	behavior	is	undefined	if	you	assign	to	var	inside	the	block.
If	the	third	expression	(the	step)	is	absent,	then	a	step	of	1	is	used.
You	can	use	break	to	exit	a	for	loop.
The	loop	variable	var	is	local	to	the	statement;	you	cannot	use	its
value	after	the	for	ends	or	is	broken.	If	you	need	the	value	of	the
loop	variable	var,	then	assign	it	to	another	variable	before	breaking

or	exiting	the	loop.

The	generic	for	statement	works	over	functions,	called	iterators.	For	each
iteration,	it	calls	its	iterator	function	to	produce	a	new	value,	stopping
when	the	new	value	is	nil.	The	generic	for	loop	has	the	following	syntax:

	 stat	::=	for	Name	{`,´	Name}	in	explist1	do	block	end

A	for	statement	like

							for	var_1,	...,	var_n	in	explist	do	block	end

is	equivalent	to	the	code:

							do

									local	_f,	_s,	var_1	=	explist

									local	var_2,	...	,	var_n

									while	true	do

											var_1,	...,	var_n	=	_f(_s,	var_1)

											if	var_1	==	nil	then	break	end

											block

									end

							end

Note	the	following:

explist	is	evaluated	only	once.	Its	results	are	an	iterator	function,	a
state,	and	an	initial	value	for	the	first	iterator	variable.
_f	and	_s	are	invisible	variables.	The	names	are	here	for	explanatory
purposes	only.
The	behavior	is	undefined	if	you	assign	to	var_1	inside	the	block.
You	can	use	break	to	exit	a	for	loop.
The	loop	variables	var_i	are	local	to	the	statement;	you	cannot	use
their	values	after	the	for	ends.	If	you	need	these	values,	then	assign
them	to	other	variables	before	breaking	or	exiting	the	loop.

2.4.6	-	Function	Calls	as	Statements

To	allow	possible	side-effects,	function	calls	can	be	executed	as
statements:

	 stat	::=	functioncall

In	this	case,	all	returned	values	are	thrown	away.	Function	calls	are
explained	in	2.5.7.

2.4.7	-	Local	Declarations

Local	variables	may	be	declared	anywhere	inside	a	block.	The
declaration	may	include	an	initial	assignment:

	 stat	::=	local	namelist	[`=´	explist1]

	 namelist	::=	Name	{`,´	Name}

If	present,	an	initial	assignment	has	the	same	semantics	of	a	multiple
assignment	(see	2.4.3).	Otherwise,	all	variables	are	initialized	with	nil.

A	chunk	is	also	a	block	(see	2.4.1),	so	local	variables	can	be	declared	in
a	chunk	outside	any	explicit	block.	Such	local	variables	die	when	the
chunk	ends.

The	visibility	rules	for	local	variables	are	explained	in	2.6.

2.5	-	Expressions

The	basic	expressions	in	Lua	are	the	following:

	 exp	::=	prefixexp

	 exp	::=	nil	|	false	|	true

	 exp	::=	Number

	 exp	::=	Literal

	 exp	::=	function

	 exp	::=	tableconstructor

	 prefixexp	::=	var	|	functioncall	|	`(´	exp	`)´

Numbers	and	literal	strings	are	explained	in	2.1;	variables	are	explained
in	2.3;	function	definitions	are	explained	in	2.5.8;	function	calls	are
explained	in	2.5.7;	table	constructors	are	explained	in	2.5.6.

An	expression	enclosed	in	parentheses	always	results	in	only	one	value.
Thus,	(f(x,y,z))	is	always	a	single	value,	even	if	f	returns	several
values.	(The	value	of	(f(x,y,z))	is	the	first	value	returned	by	f	or	nil	if	f
does	not	return	any	values.)

Expressions	can	also	be	built	with	arithmetic	operators,	relational
operators,	and	logical	operators,	all	of	which	are	explained	below.

2.5.1	-	Arithmetic	Operators

Lua	supports	the	usual	arithmetic	operators:	the	binary	+	(addition),	-
(subtraction),	*	(multiplication),	/	(division),	and	^	(exponentiation);	and
unary	-	(negation).	If	the	operands	are	numbers,	or	strings	that	can	be
converted	to	numbers	(see	2.2.1),	then	all	operations	except
exponentiation	have	the	usual	meaning.	Exponentiation	calls	a	global
function	__pow;	otherwise,	an	appropriate	metamethod	is	called	(see	2.8).
The	standard	mathematical	library	defines	function	__pow,	giving	the
expected	meaning	to	exponentiation	(see	5.5).

2.5.2	-	Relational	Operators

The	relational	operators	in	Lua	are

							==				~=				<					>					<=				>=

These	operators	always	result	in	false	or	true.

Equality	(==)	first	compares	the	type	of	its	operands.	If	the	types	are
different,	then	the	result	is	false.	Otherwise,	the	values	of	the	operands
are	compared.	Numbers	and	strings	are	compared	in	the	usual	way.
Objects	(tables,	userdata,	threads,	and	functions)	are	compared	by
reference:	Two	objects	are	considered	equal	only	if	they	are	the	same
object.	Every	time	you	create	a	new	object	(a	table,	userdata,	or
function),	this	new	object	is	different	from	any	previously	existing	object.

You	can	change	the	way	that	Lua	compares	tables	and	userdata	using
the	"eq"	metamethod	(see	2.8).

The	conversion	rules	of	2.2.1	do	not	apply	to	equality	comparisons.	Thus,
"0"==0	evaluates	to	false,	and	t[0]	and	t["0"]	denote	different	entries	in
a	table.

The	operator	~=	is	exactly	the	negation	of	equality	(==).

The	order	operators	work	as	follows.	If	both	arguments	are	numbers,
then	they	are	compared	as	such.	Otherwise,	if	both	arguments	are
strings,	then	their	values	are	compared	according	to	the	current	locale.
Otherwise,	Lua	tries	to	call	the	"lt"	or	the	"le"	metamethod	(see	2.8).

2.5.3	-	Logical	Operators

The	logical	operators	in	Lua	are

							and			or				not

Like	the	control	structures	(see	2.4.4),	all	logical	operators	consider	both
false	and	nil	as	false	and	anything	else	as	true.

The	operator	not	always	returns	false	or	true.

The	conjunction	operator	and	returns	its	first	argument	if	this	value	is
false	or	nil;	otherwise,	and	returns	its	second	argument.	The	disjunction
operator	or	returns	its	first	argument	if	this	value	is	different	from	nil	and

false;	otherwise,	or	returns	its	second	argument.	Both	and	and	or	use
short-cut	evaluation,	that	is,	the	second	operand	is	evaluated	only	if
necessary.	For	example,

							10	or	error()							->	10

							nil	or	"a"										->	"a"

							nil	and	10										->	nil

							false	and	error()			->	false

							false	and	nil							->	false

							false	or	nil								->	nil

							10	and	20											->	20

2.5.4	-	Concatenation

The	string	concatenation	operator	in	Lua	is	denoted	by	two	dots	(`..´).	If
both	operands	are	strings	or	numbers,	then	they	are	converted	to	strings
according	to	the	rules	mentioned	in	2.2.1.	Otherwise,	the	"concat"
metamethod	is	called	(see	2.8).

2.5.5	-	Precedence

Operator	precedence	in	Lua	follows	the	table	below,	from	lower	to	higher
priority:

							or

							and

							<					>					<=				>=				~=				==

							..

							+					-

							*					/

							not			-	(unary)

							^

You	can	use	parentheses	to	change	the	precedences	in	an	expression.
The	concatenation	(`..´)	and	exponentiation	(`^´)	operators	are	right
associative.	All	other	binary	operators	are	left	associative.

2.5.6	-	Table	Constructors

Table	constructors	are	expressions	that	create	tables.	Every	time	a
constructor	is	evaluated,	a	new	table	is	created.	Constructors	can	be

used	to	create	empty	tables,	or	to	create	a	table	and	initialize	some	of	its
fields.	The	general	syntax	for	constructors	is

	 tableconstructor	::=	`{´	[fieldlist]	`}´

	 fieldlist	::=	field	{fieldsep	field}	[fieldsep]

	 field	::=	`[´	exp	`]´	`=´	exp	|	Name	`=´	exp	|	exp

	 fieldsep	::=	`,´	|	`;´

Each	field	of	the	form	[exp1]	=	exp2	adds	to	the	new	table	an	entry	with
key	exp1	and	value	exp2.	A	field	of	the	form	name	=	exp	is	equivalent	to
["name"]	=	exp.	Finally,	fields	of	the	form	exp	are	equivalent	to	[i]	=	exp,
where	i	are	consecutive	numerical	integers,	starting	with	1.	Fields	in	the
other	formats	do	not	affect	this	counting.	For	example,

							a	=	{[f(1)]	=	g;	"x",	"y";	x	=	1,	f(x),	[30]	=	23;	45}

is	equivalent	to

							do

									local	temp	=	{}

									temp[f(1)]	=	g

									temp[1]	=	"x"									--	1st	exp

									temp[2]	=	"y"									--	2nd	exp

									temp.x	=	1												--	temp["x"]	=	1

									temp[3]	=	f(x)								--	3rd	exp

									temp[30]	=	23

									temp[4]	=	45										--	4th	exp

									a	=	temp

							end

If	the	last	field	in	the	list	has	the	form	exp	and	the	expression	is	a	function
call,	then	all	values	returned	by	the	call	enter	the	list	consecutively	(see
2.5.7).	To	avoid	this,	enclose	the	function	call	in	parentheses	(see	2.5).

The	field	list	may	have	an	optional	trailing	separator,	as	a	convenience
for	machine-generated	code.

2.5.7	-	Function	Calls

A	function	call	in	Lua	has	the	following	syntax:

	 functioncall	::=	prefixexp	args

In	a	function	call,	first	prefixexp	and	args	are	evaluated.	If	the	value	of
prefixexp	has	type	function,	then	that	function	is	called	with	the	given
arguments.	Otherwise,	its	"call"	metamethod	is	called,	having	as	first
parameter	the	value	of	prefixexp,	followed	by	the	original	call	arguments
(see	2.8).

The	form

	 functioncall	::=	prefixexp	`:´	Name	args

can	be	used	to	call	"methods".	A	call	v:name(...)	is	syntactic	sugar	for
v.name(v,...),	except	that	v	is	evaluated	only	once.

Arguments	have	the	following	syntax:

	 args	::=	`(´	[explist1]	`)´

	 args	::=	tableconstructor

	 args	::=	Literal

All	argument	expressions	are	evaluated	before	the	call.	A	call	of	the	form
f{...}	is	syntactic	sugar	for	f({...}),	that	is,	the	argument	list	is	a	single
new	table.	A	call	of	the	form	f'...'	(or	f"..."	or	f[[...]])	is	syntactic
sugar	for	f('...'),	that	is,	the	argument	list	is	a	single	literal	string.

Because	a	function	can	return	any	number	of	results	(see	2.4.4),	the
number	of	results	must	be	adjusted	before	they	are	used.	If	the	function
is	called	as	a	statement	(see	2.4.6),	then	its	return	list	is	adjusted	to	zero
elements,	thus	discarding	all	returned	values.	If	the	function	is	called
inside	another	expression	or	in	the	middle	of	a	list	of	expressions,	then	its
return	list	is	adjusted	to	one	element,	thus	discarding	all	returned	values
except	the	first	one.	If	the	function	is	called	as	the	last	element	of	a	list	of
expressions,	then	no	adjustment	is	made	(unless	the	call	is	enclosed	in
parentheses).

Here	are	some	examples:

							f()																--	adjusted	to	0	results

							g(f(),	x)										--	f()	is	adjusted	to	1	result

							g(x,	f())										--	g	gets	x	plus	all	values	returned	by	f()

							a,b,c	=	f(),	x					--	f()	is	adjusted	to	1	result	(and	c	gets	nil)

							a,b,c	=	x,	f()					--	f()	is	adjusted	to	2	results

							a,b,c	=	f()								--	f()	is	adjusted	to	3	results

							return	f()									--	returns	all	values	returned	by	f()

							return	x,y,f()					--	returns	x,	y,	and	all	values	returned	by	f()

							{f()}														--	creates	a	list	with	all	values	returned	by	f()

							{f(),	nil}									--	f()	is	adjusted	to	1	result

If	you	enclose	a	function	call	in	parentheses,	then	it	is	adjusted	to	return
exactly	one	value:

							return	x,y,(f())			--	returns	x,	y,	and	the	first	value	from	f()

							{(f())}												--	creates	a	table	with	exactly	one	element

As	an	exception	to	the	free-format	syntax	of	Lua,	you	cannot	put	a	line
break	before	the	`(´	in	a	function	call.	That	restriction	avoids	some
ambiguities	in	the	language.	If	you	write

							a	=	f

							(g).x(a)

Lua	would	read	that	as	a	=	f(g).x(a).	So,	if	you	want	two	statements,
you	must	add	a	semi-colon	between	them.	If	you	actually	want	to	call	f,
you	must	remove	the	line	break	before	(g).

A	call	of	the	form	return	functioncall	is	called	a	tail	call.	Lua	implements
proper	tail	calls	(or	proper	tail	recursion):	In	a	tail	call,	the	called	function
reuses	the	stack	entry	of	the	calling	function.	Therefore,	there	is	no	limit
on	the	number	of	nested	tail	calls	that	a	program	can	execute.	However,
a	tail	call	erases	any	debug	information	about	the	calling	function.	Note
that	a	tail	call	only	happens	with	a	particular	syntax,	where	the	return	has
one	single	function	call	as	argument;	this	syntax	makes	the	calling
function	returns	exactly	the	returns	of	the	called	function.	So,	all	the
following	examples	are	not	tail	calls:

		return	(f(x))								--	results	adjusted	to	1

		return	2	*	f(x)

		return	x,	f(x)							--	additional	results

		f(x);	return									--	results	discarded

		return	x	or	f(x)					--	results	adjusted	to	1

2.5.8	-	Function	Definitions

The	syntax	for	function	definition	is

	 function	::=	function	funcbody

	 funcbody	::=	`(´	[parlist1]	`)´	block	end

The	following	syntactic	sugar	simplifies	function	definitions:

	 stat	::=	function	funcname	funcbody

	 stat	::=	local	function	Name	funcbody

	 funcname	::=	Name	{`.´	Name}	[`:´	Name]

The	statement

							function	f	()	...	end

translates	to

							f	=	function	()	...	end

The	statement

							function	t.a.b.c.f	()	...	end

translates	to

							t.a.b.c.f	=	function	()	...	end

The	statement

							local	function	f	()	...	end

translates	to

							local	f;	f	=	function	()	...	end

A	function	definition	is	an	executable	expression,	whose	value	has	type
function.	When	Lua	pre-compiles	a	chunk,	all	its	function	bodies	are	pre-
compiled	too.	Then,	whenever	Lua	executes	the	function	definition,	the
function	is	instantiated	(or	closed).	This	function	instance	(or	closure)	is
the	final	value	of	the	expression.	Different	instances	of	the	same	function
may	refer	to	different	external	local	variables	and	may	have	different
environment	tables.

Parameters	act	as	local	variables	that	are	initialized	with	the	argument

values:

	 parlist1	::=	namelist	[`,´	`...´]

	 parlist1	::=	`...´

When	a	function	is	called,	the	list	of	arguments	is	adjusted	to	the	length
of	the	list	of	parameters,	unless	the	function	is	a	variadic	or	vararg
function,	which	is	indicated	by	three	dots	(`...´)	at	the	end	of	its
parameter	list.	A	vararg	function	does	not	adjust	its	argument	list;	instead,
it	collects	all	extra	arguments	into	an	implicit	parameter,	called	arg.	The
value	of	arg	is	a	table,	with	a	field	`n´	that	holds	the	number	of	extra
arguments	and	with	the	extra	arguments	at	positions	1,	2,	...,	n.

As	an	example,	consider	the	following	definitions:

							function	f(a,	b)	end

							function	g(a,	b,	...)	end

							function	r()	return	1,2,3	end

Then,	we	have	the	following	mapping	from	arguments	to	parameters:

							CALL												PARAMETERS

							f(3)													a=3,	b=nil

							f(3,	4)										a=3,	b=4

							f(3,	4,	5)							a=3,	b=4

							f(r(),	10)							a=1,	b=10

							f(r())											a=1,	b=2

							g(3)													a=3,	b=nil,	arg={n=0}

							g(3,	4)										a=3,	b=4,			arg={n=0}

							g(3,	4,	5,	8)				a=3,	b=4,			arg={5,	8;	n=2}

							g(5,	r())								a=5,	b=1,			arg={2,	3;	n=2}

Results	are	returned	using	the	return	statement	(see	2.4.4).	If	control
reaches	the	end	of	a	function	without	encountering	a	return	statement,
then	the	function	returns	with	no	results.

The	colon	syntax	is	used	for	defining	methods,	that	is,	functions	that	have
an	implicit	extra	parameter	self.	Thus,	the	statement

							function	t.a.b.c:f	(...)	...	end

is	syntactic	sugar	for

							t.a.b.c.f	=	function	(self,	...)	...	end

2.6	-	Visibility	Rules

Lua	is	a	lexically	scoped	language.	The	scope	of	variables	begins	at	the
first	statement	after	their	declaration	and	lasts	until	the	end	of	the
innermost	block	that	includes	the	declaration.	For	instance:

		x	=	10																--	global	variable

		do																				--	new	block

				local	x	=	x									--	new	`x',	with	value	10

				print(x)												-->	10

				x	=	x+1

				do																		--	another	block

						local	x	=	x+1					--	another	`x'

						print(x)										-->	12

				end

				print(x)												-->	11

		end

		print(x)														-->	10		(the	global	one)

Notice	that,	in	a	declaration	like	local	x	=	x,	the	new	x	being	declared	is
not	in	scope	yet,	and	so	the	second	x	refers	to	the	outside	variable.

Because	of	the	lexical	scoping	rules,	local	variables	can	be	freely
accessed	by	functions	defined	inside	their	scope.	For	instance:

		local	counter	=	0

		function	inc	(x)

				counter	=	counter	+	x

				return	counter

		end

A	local	variable	used	by	an	inner	function	is	called	an	upvalue,	or	external
local	variable,	inside	the	inner	function.

Notice	that	each	execution	of	a	local	statement	defines	new	local
variables.	Consider	the	following	example:

		a	=	{}

		local	x	=	20

		for	i=1,10	do

				local	y	=	0

				a[i]	=	function	()	y=y+1;	return	x+y	end

		end

The	loop	creates	ten	closures	(that	is,	ten	instances	of	the	anonymous
function).	Each	of	these	closures	uses	a	different	y	variable,	while	all	of
them	share	the	same	x.

2.7	-	Error	Handling

Because	Lua	is	an	extension	language,	all	Lua	actions	start	from	C	code
in	the	host	program	calling	a	function	from	the	Lua	library	(see	3.15).
Whenever	an	error	occurs	during	Lua	compilation	or	execution,	control
returns	to	C,	which	can	take	appropriate	measures	(such	as	print	an	error
message).

Lua	code	can	explicitly	generate	an	error	by	calling	the	error	function
(see	5.1).	If	you	need	to	catch	errors	in	Lua,	you	can	use	the	pcall
function	(see	5.1).

2.8	-	Metatables

Every	table	and	userdata	object	in	Lua	may	have	a	metatable.	This
metatable	is	an	ordinary	Lua	table	that	defines	the	behavior	of	the
original	table	and	userdata	under	certain	special	operations.	You	can
change	several	aspects	of	the	behavior	of	an	object	by	setting	specific
fields	in	its	metatable.	For	instance,	when	an	object	is	the	operand	of	an
addition,	Lua	checks	for	a	function	in	the	field	"__add"	in	its	metatable.	If
it	finds	one,	Lua	calls	that	function	to	perform	the	addition.

We	call	the	keys	in	a	metatable	events	and	the	values	metamethods.	In
the	previous	example,	the	event	is	"add"	and	the	metamethod	is	the
function	that	performs	the	addition.

You	can	query	and	change	the	metatable	of	an	object	through	the
set/getmetatable	functions	(see	5.1).

A	metatable	may	control	how	an	object	behaves	in	arithmetic	operations,
order	comparisons,	concatenation,	and	indexing.	A	metatable	can	also
define	a	function	to	be	called	when	a	userdata	is	garbage	collected.	For
each	of	those	operations	Lua	associates	a	specific	key	called	an	event.
When	Lua	performs	one	of	those	operations	over	a	table	or	a	userdata,	it
checks	whether	that	object	has	a	metatable	with	the	corresponding
event.	If	so,	the	value	associated	with	that	key	(the	metamethod)	controls
how	Lua	will	perform	the	operation.

Metatables	control	the	operations	listed	next.	Each	operation	is	identified
by	its	corresponding	name.	The	key	for	each	operation	is	a	string	with	its
name	prefixed	by	two	underscores;	for	instance,	the	key	for	operation
"add"	is	the	string	"__add".	The	semantics	of	these	operations	is	better
explained	by	a	Lua	function	describing	how	the	interpreter	executes	that
operation.

The	code	shown	here	in	Lua	is	only	illustrative;	the	real	behavior	is	hard
coded	in	the	interpreter	and	it	is	much	more	efficient	than	this	simulation.
All	functions	used	in	these	descriptions	(rawget,	tonumber,	etc.)	are

described	in	5.1.	In	particular,	to	retrieve	the	metamethod	of	a	given
object,	we	use	the	expression

		metatable(obj)[event]

This	should	be	read	as

		rawget(metatable(obj)	or	{},	event)

That	is,	the	access	to	a	metamethod	does	not	invoke	other
metamethods,	and	the	access	to	objects	with	no	metatables	does	not	fail
(it	simply	results	in	nil).

"add":	the	+	operation.

The	function	getbinhandler	below	defines	how	Lua	chooses	a
handler	for	a	binary	operation.	First,	Lua	tries	the	first	operand.	If	its
type	does	not	define	a	handler	for	the	operation,	then	Lua	tries	the
second	operand.

	function	getbinhandler	(op1,	op2,	event)

			return	metatable(op1)[event]	or	metatable(op2)[event]

	end

Using	that	function,	the	behavior	of	the	op1	+	op2	is

	function	add_event	(op1,	op2)

			local	o1,	o2	=	tonumber(op1),	tonumber(op2)

			if	o1	and	o2	then		--	both	operands	are	numeric?

					return	o1	+	o2			--	`+'	here	is	the	primitive	`add'

			else		--	at	least	one	of	the	operands	is	not	numeric

					local	h	=	getbinhandler(op1,	op2,	"__add")

					if	h	then

							--	call	the	handler	with	both	operands

							return	h(op1,	op2)

					else		--	no	handler	available:	default	behavior

							error("...")

					end

			end

	end

"sub":	the	-	operation.	Behavior	similar	to	the	"add"	operation.

"mul":	the	*	operation.	Behavior	similar	to	the	"add"	operation.

"div":	the	/	operation.	Behavior	similar	to	the	"add"	operation.

"pow":	the	^	(exponentiation)	operation.

	function	pow_event	(op1,	op2)

			local	o1,	o2	=	tonumber(op1),	tonumber(op2)

			if	o1	and	o2	then		--	both	operands	are	numeric?

					return	__pow(o1,	o2)			--	call	global	`__pow'

			else		--	at	least	one	of	the	operands	is	not	numeric

					local	h	=	getbinhandler(op1,	op2,	"__pow")

					if	h	then

							--	call	the	handler	with	both	operands

							return	h(op1,	op2)

					else		--	no	handler	available:	default	behavior

							error("...")

					end

			end

		end

"unm":	the	unary	-	operation.

	function	unm_event	(op)

			local	o	=	tonumber(op)

			if	o	then		--	operand	is	numeric?

					return	-o		--	`-'	here	is	the	primitive	`unm'

			else		--	the	operand	is	not	numeric.

					--	Try	to	get	a	handler	from	the	operand

					local	h	=	metatable(op).__unm

					if	h	then

							--	call	the	handler	with	the	operand	and	nil

							return	h(op,	nil)

					else		--	no	handler	available:	default	behavior

							error("...")

					end

			end

	end

"concat":	the	..	(concatenation)	operation.

	function	concat_event	(op1,	op2)

			if	(type(op1)	==	"string"	or	type(op1)	==	"number")	and

						(type(op2)	==	"string"	or	type(op2)	==	"number")	then

					return	op1	..	op2		--	primitive	string	concatenation

			else

					local	h	=	getbinhandler(op1,	op2,	"__concat")

					if	h	then

							return	h(op1,	op2)

					else

							error("...")

					end

			end

	end

"eq":	the	==	operation.	The	function	getcomphandler	defines	how	Lua
chooses	a	metamethod	for	comparison	operators.	A	metamethod
only	is	selected	when	both	objects	being	compared	have	the	same
type	and	the	same	metamethod	for	the	selected	operation.

	function	getcomphandler	(op1,	op2,	event)

			if	type(op1)	~=	type(op2)	then	return	nil	end

			local	mm1	=	metatable(op1)[event]

			local	mm2	=	metatable(op2)[event]

			if	mm1	==	mm2	then	return	mm1	else	return	nil	end

	end

The	"eq"	event	is	defined	as	follows:

	function	eq_event	(op1,	op2)

			if	type(op1)	~=	type(op2)	then		--	different	types?

					return	false			--	different	objects

			end

			if	op1	==	op2	then			--	primitive	equal?

					return	true			--	objects	are	equal

			end

			--	try	metamethod

			local	h	=	getcomphandler(op1,	op2,	"__eq")

			if	h	then

					return	h(op1,	op2)

			else

					return	false

			end

	end

a	~=	b	is	equivalent	to	not	(a	==	b).

"lt":	the	<	operation.

	function	lt_event	(op1,	op2)

			if	type(op1)	==	"number"	and	type(op2)	==	"number"	then

					return	op1	<	op2			--	numeric	comparison

			elseif	type(op1)	==	"string"	and	type(op2)	==	"string"	then

					return	op1	<	op2			--	lexicographic	comparison

			else

					local	h	=	getcomphandler(op1,	op2,	"__lt")

					if	h	then

							return	h(op1,	op2)

					else

							error("...");

					end

			end

	end

a	>	b	is	equivalent	to	b	<	a.

"le":	the	<=	operation.

	function	le_event	(op1,	op2)

			if	type(op1)	==	"number"	and	type(op2)	==	"number"	then

					return	op1	<=	op2			--	numeric	comparison

			elseif	type(op1)	==	"string"	and	type(op2)	==	"string"	then

					return	op1	<=	op2			--	lexicographic	comparison

			else

					local	h	=	getcomphandler(op1,	op2,	"__le")

					if	h	then

							return	h(op1,	op2)

					else

							h	=	getcomphandler(op1,	op2,	"__lt")

							if	h	then

									return	not	h(op2,	op1)

							else

									error("...");

							end

					end

			end

	end

a	>=	b	is	equivalent	to	b	<=	a.	Note	that,	in	the	absence	of	a	"le"
metamethod,	Lua	tries	the	"lt",	assuming	that	a	<=	b	is	equivalent	to
not	(b	<	a).

"index":	The	indexing	access	table[key].

	function	gettable_event	(table,	key)

			local	h

			if	type(table)	==	"table"	then

					local	v	=	rawget(table,	key)

					if	v	~=	nil	then	return	v	end

					h	=	metatable(table).__index

					if	h	==	nil	then	return	nil	end

			else

					h	=	metatable(table).__index

					if	h	==	nil	then

							error("...");

					end

			end

			if	type(h)	==	"function"	then

					return	h(table,	key)						--	call	the	handler

			else	return	h[key]										--	or	repeat	operation	on	it

	end

"newindex":	The	indexing	assignment	table[key]	=	value.

	function	settable_event	(table,	key,	value)

			local	h

			if	type(table)	==	"table"	then

					local	v	=	rawget(table,	key)

					if	v	~=	nil	then	rawset(table,	key,	value);	return	end

					h	=	metatable(table).__newindex

					if	h	==	nil	then	rawset(table,	key,	value);	return	end

			else

					h	=	metatable(table).__newindex

					if	h	==	nil	then

							error("...");

					end

			end

			if	type(h)	==	"function"	then

					return	h(table,	key,value)				--	call	the	handler

			else	h[key]	=	value													--	or	repeat	operation	on	it

	end

"call":	called	when	Lua	calls	a	value.

	function	function_event	(func,	...)

			if	type(func)	==	"function"	then

					return	func(unpack(arg))			--	primitive	call

			else

					local	h	=	metatable(func).__call

					if	h	then

							return	h(func,	unpack(arg))

					else

							error("...")

					end

			end

	end

2.9	-	Garbage	Collection

Lua	does	automatic	memory	management.	That	means	that	you	do	not
have	to	worry	about	allocating	memory	for	new	objects	and	freeing	it
when	the	objects	are	no	longer	needed.	Lua	manages	memory
automatically	by	running	a	garbage	collector	from	time	to	time	to	collect
all	dead	objects	(that	is,	those	objects	that	are	no	longer	accessible	from
Lua).	All	objects	in	Lua	are	subject	to	automatic	management:	tables,
userdata,	functions,	threads,	and	strings.

Lua	uses	two	numbers	to	control	its	garbage-collection	cycles.	One
number	counts	how	many	bytes	of	dynamic	memory	Lua	is	using;	the
other	is	a	threshold.	When	the	number	of	bytes	crosses	the	threshold,
Lua	runs	the	garbage	collector,	which	reclaims	the	memory	of	all	dead
objects.	The	byte	counter	is	adjusted,	and	then	the	threshold	is	reset	to
twice	the	new	value	of	the	byte	counter.

Through	the	C	API,	you	can	query	those	numbers	and	change	the
threshold	(see	3.7).	Setting	the	threshold	to	zero	actually	forces	an
immediate	garbage-collection	cycle,	while	setting	it	to	a	huge	number
effectively	stops	the	garbage	collector.	Using	Lua	code	you	have	a	more
limited	control	over	garbage-collection	cycles,	through	the	gcinfo	and
collectgarbage	functions	(see	5.1).

2.9.1	-	Garbage-Collection	Metamethods

Using	the	C	API,	you	can	set	garbage-collector	metamethods	for
userdata	(see	2.8).	These	metamethods	are	also	called	finalizers.
Finalizers	allow	you	to	coordinate	Lua's	garbage	collection	with	external
resource	management	(such	as	closing	files,	network	or	database
connections,	or	freeing	your	own	memory).

Free	userdata	with	a	field	__gc	in	their	metatables	are	not	collected
immediately	by	the	garbage	collector.	Instead,	Lua	puts	them	in	a	list.
After	the	collection,	Lua	does	the	equivalent	of	the	following	function	for
each	userdata	in	that	list:

	function	gc_event	(udata)

			local	h	=	metatable(udata).__gc

			if	h	then

					h(udata)

			end

	end

At	the	end	of	each	garbage-collection	cycle,	the	finalizers	for	userdata
are	called	in	reverse	order	of	their	creation,	among	those	collected	in	that
cycle.	That	is,	the	first	finalizer	to	be	called	is	the	one	associated	with	the
userdata	created	last	in	the	program.

2.9.2	-	Weak	Tables

A	weak	table	is	a	table	whose	elements	are	weak	references.	A	weak
reference	is	ignored	by	the	garbage	collector.	In	other	words,	if	the	only
references	to	an	object	are	weak	references,	then	the	garbage	collector
will	collect	that	object.

A	weak	table	can	have	weak	keys,	weak	values,	or	both.	A	table	with
weak	keys	allows	the	collection	of	its	keys,	but	prevents	the	collection	of
its	values.	A	table	with	both	weak	keys	and	weak	values	allows	the
collection	of	both	keys	and	values.	In	any	case,	if	either	the	key	or	the
value	is	collected,	the	whole	pair	is	removed	from	the	table.	The
weakness	of	a	table	is	controlled	by	the	value	of	the	__mode	field	of	its
metatable.	If	the	__mode	field	is	a	string	containing	the	character	`k´,	the
keys	in	the	table	are	weak.	If	__mode	contains	`v´,	the	values	in	the	table
are	weak.

After	you	use	a	table	as	a	metatable,	you	should	not	change	the	value	of
its	field	__mode.	Otherwise,	the	weak	behavior	of	the	tables	controlled	by
this	metatable	is	undefined.

2.10	-	Coroutines

Lua	supports	coroutines,	also	called	semi-coroutines	or	collaborative
multithreading.	A	coroutine	in	Lua	represents	an	independent	thread	of
execution.	Unlike	threads	in	multithread	systems,	however,	a	coroutine
only	suspends	its	execution	by	explicitly	calling	a	yield	function.

You	create	a	coroutine	with	a	call	to	coroutine.create.	Its	sole	argument
is	a	function	that	is	the	main	function	of	the	coroutine.	The	create
function	only	creates	a	new	coroutine	and	returns	a	handle	to	it	(an	object
of	type	thread);	it	does	not	start	the	coroutine	execution.

When	you	first	call	coroutine.resume,	passing	as	its	first	argument	the
thread	returned	by	coroutine.create,	the	coroutine	starts	its	execution,	at
the	first	line	of	its	main	function.	Extra	arguments	passed	to
coroutine.resume	are	given	as	parameters	for	the	coroutine	main
function.	After	the	coroutine	starts	running,	it	runs	until	it	terminates	or
yields.

A	coroutine	can	terminate	its	execution	in	two	ways:	Normally,	when	its
main	function	returns	(explicitly	or	implicitly,	after	the	last	instruction);	and
abnormally,	if	there	is	an	unprotected	error.	In	the	first	case,
coroutine.resume	returns	true,	plus	any	values	returned	by	the	coroutine
main	function.	In	case	of	errors,	coroutine.resume	returns	false	plus	an
error	message.

A	coroutine	yields	by	calling	coroutine.yield.	When	a	coroutine	yields,
the	corresponding	coroutine.resume	returns	immediately,	even	if	the	yield
happens	inside	nested	function	calls	(that	is,	not	in	the	main	function,	but
in	a	function	directly	or	indirectly	called	by	the	main	function).	In	the	case
of	a	yield,	coroutine.resume	also	returns	true,	plus	any	values	passed	to
coroutine.yield.	The	next	time	you	resume	the	same	coroutine,	it
continues	its	execution	from	the	point	where	it	yielded,	with	the	call	to
coroutine.yield	returning	any	extra	arguments	passed	to
coroutine.resume.

The	coroutine.wrap	function	creates	a	coroutine	like	coroutine.create,
but	instead	of	returning	the	coroutine	itself,	it	returns	a	function	that,
when	called,	resumes	the	coroutine.	Any	arguments	passed	to	that
function	go	as	extra	arguments	to	resume.	The	function	returns	all	the
values	returned	by	resume,	except	the	first	one	(the	boolean	error	code).
Unlike	coroutine.resume,	this	function	does	not	catch	errors;	any	error	is
propagated	to	the	caller.

As	an	example,	consider	the	next	code:

function	foo1	(a)

		print("foo",	a)

		return	coroutine.yield(2*a)

end

co	=	coroutine.create(function	(a,b)

						print("co-body",	a,	b)

						local	r	=	foo1(a+1)

						print("co-body",	r)

						local	r,	s	=	coroutine.yield(a+b,	a-b)

						print("co-body",	r,	s)

						return	b,	"end"

end)

							

a,	b	=	coroutine.resume(co,	1,	10)

print("main",	a,	b)

a,	b,	c	=	coroutine.resume(co,	"r")

print("main",	a,	b,	c)

a,	b,	c	=	coroutine.resume(co,	"x",	"y")

print("main",	a,	b,	c)

a,	b	=	coroutine.resume(co,	"x",	"y")

print("main",	a,	b)

When	you	run	it,	it	produces	the	following	output:

co-body	1							10

foo					2

main				true				4

co-body	r

main				true				11						-9

co-body	x							y

main				true				10						end

main				false			cannot	resume	dead	coroutine

3	-	The	Application	Program
Interface
This	section	describes	the	C	API	for	Lua,	that	is,	the	set	of	C	functions
available	to	the	host	program	to	communicate	with	Lua.	All	API	functions
and	related	types	and	constants	are	declared	in	the	header	file	lua.h.

Even	when	we	use	the	term	"function",	any	facility	in	the	API	may	be
provided	as	a	macro	instead.	All	such	macros	use	each	of	its	arguments
exactly	once	(except	for	the	first	argument,	which	is	always	a	Lua	state),
and	so	do	not	generate	hidden	side-effects.

3.1	-	States

The	Lua	library	is	fully	reentrant:	it	has	no	global	variables.	The	whole
state	of	the	Lua	interpreter	(global	variables,	stack,	etc.)	is	stored	in	a
dynamically	allocated	structure	of	type	lua_State.	A	pointer	to	this	state
must	be	passed	as	the	first	argument	to	every	function	in	the	library,
except	to	lua_open,	which	creates	a	Lua	state	from	scratch.

Before	calling	any	API	function,	you	must	create	a	state	by	calling
lua_open:

							lua_State	*lua_open	(void);

To	release	a	state	created	with	lua_open,	call	lua_close:

							void	lua_close	(lua_State	*L);

This	function	destroys	all	objects	in	the	given	Lua	state	(calling	the
corresponding	garbage-collection	metamethods,	if	any)	and	frees	all
dynamic	memory	used	by	that	state.	On	several	platforms,	you	may	not
need	to	call	this	function,	because	all	resources	are	naturally	released
when	the	host	program	ends.	On	the	other	hand,	long-running	programs,
such	as	a	daemon	or	a	web	server,	might	need	to	release	states	as	soon
as	they	are	not	needed,	to	avoid	growing	too	large.

3.2	-	The	Stack	and	Indices

Lua	uses	a	virtual	stack	to	pass	values	to	and	from	C.	Each	element	in
this	stack	represents	a	Lua	value	(nil,	number,	string,	etc.).

Whenever	Lua	calls	C,	the	called	function	gets	a	new	stack,	which	is
independent	of	previous	stacks	and	of	stacks	of	C	functions	that	are	still
active.	That	stack	initially	contains	any	arguments	to	the	C	function,	and	it
is	where	the	C	function	pushes	its	results	to	be	returned	to	the	caller	(see
3.16).

For	convenience,	most	query	operations	in	the	API	do	not	follow	a	strict
stack	discipline.	Instead,	they	can	refer	to	any	element	in	the	stack	by
using	an	index:	A	positive	index	represents	an	absolute	stack	position
(starting	at	1);	a	negative	index	represents	an	offset	from	the	top	of	the
stack.	More	specifically,	if	the	stack	has	n	elements,	then	index	1
represents	the	first	element	(that	is,	the	element	that	was	pushed	onto
the	stack	first)	and	index	n	represents	the	last	element;	index	-1	also
represents	the	last	element	(that	is,	the	element	at	the	top)	and	index	-n
represents	the	first	element.	We	say	that	an	index	is	valid	if	it	lies
between	1	and	the	stack	top	(that	is,	if	1	<=	abs(index)	<=	top).

At	any	time,	you	can	get	the	index	of	the	top	element	by	calling
lua_gettop:

							int	lua_gettop	(lua_State	*L);

Because	indices	start	at	1,	the	result	of	lua_gettop	is	equal	to	the	number
of	elements	in	the	stack	(and	so	0	means	an	empty	stack).

When	you	interact	with	Lua	API,	you	are	responsible	for	controlling	stack
overflow.	The	function

							int	lua_checkstack	(lua_State	*L,	int	extra);

grows	the	stack	size	to	top	+	extra	elements;	it	returns	false	if	it	cannot
grow	the	stack	to	that	size.	This	function	never	shrinks	the	stack;	if	the
stack	is	already	larger	than	the	new	size,	it	is	left	unchanged.

Whenever	Lua	calls	C,	it	ensures	that	at	least	LUA_MINSTACK	stack
positions	are	available.	LUA_MINSTACK	is	defined	in	lua.h	as	20,	so	that
usually	you	do	not	have	to	worry	about	stack	space	unless	your	code	has
loops	pushing	elements	onto	the	stack.

Most	query	functions	accept	as	indices	any	value	inside	the	available
stack	space,	that	is,	indices	up	to	the	maximum	stack	size	you	have	set
through	lua_checkstack.	Such	indices	are	called	acceptable	indices.
More	formally,	we	define	an	acceptable	index	as	follows:

					(index	<	0	&&	abs(index)	<=	top)	||	(index	>	0	&&	index	<=	stackspace)

Note	that	0	is	never	an	acceptable	index.

Unless	otherwise	noted,	any	function	that	accepts	valid	indices	can	also
be	called	with	pseudo-indices,	which	represent	some	Lua	values	that	are
accessible	to	the	C	code	but	are	not	in	the	stack.	Pseudo-indices	are
used	to	access	the	global	environment,	the	registry,	and	the	upvalues	of
a	C	function	(see	3.17).

3.3	-	Stack	Manipulation

The	API	offers	the	following	functions	for	basic	stack	manipulation:

							void	lua_settop				(lua_State	*L,	int	index);

							void	lua_pushvalue	(lua_State	*L,	int	index);

							void	lua_remove				(lua_State	*L,	int	index);

							void	lua_insert				(lua_State	*L,	int	index);

							void	lua_replace			(lua_State	*L,	int	index);

lua_settop	accepts	any	acceptable	index,	or	0,	and	sets	the	stack	top	to
that	index.	If	the	new	top	is	larger	than	the	old	one,	then	the	new
elements	are	filled	with	nil.	If	index	is	0,	then	all	stack	elements	are
removed.	A	useful	macro	defined	in	the	lua.h	is

							#define	lua_pop(L,n)			lua_settop(L,	-(n)-1)

which	pops	n	elements	from	the	stack.

lua_pushvalue	pushes	onto	the	stack	a	copy	of	the	element	at	the	given
index.	lua_remove	removes	the	element	at	the	given	position,	shifting
down	the	elements	above	that	position	to	fill	the	gap.	lua_insert	moves
the	top	element	into	the	given	position,	shifting	up	the	elements	above
that	position	to	open	space.	lua_replace	moves	the	top	element	into	the
given	position,	without	shifting	any	element	(therefore	replacing	the	value
at	the	given	position).	All	these	functions	accept	only	valid	indices.	(You
cannot	call	lua_remove	or	lua_insert	with	pseudo-indices,	as	they	do	not
represent	a	stack	position.)

As	an	example,	if	the	stack	starts	as	10	20	30	40	50*	(from	bottom	to	top;
the	`*´	marks	the	top),	then

							lua_pushvalue(L,	3)				-->	10	20	30	40	50	30*

							lua_pushvalue(L,	-1)			-->	10	20	30	40	50	30	30*

							lua_remove(L,	-3)						-->	10	20	30	40	30	30*

							lua_remove(L,		6)						-->	10	20	30	40	30*

							lua_insert(L,		1)						-->	30	10	20	30	40*

							lua_insert(L,	-1)						-->	30	10	20	30	40*		(no	effect)

							lua_replace(L,	2)						-->	30	40	20	30*

							lua_settop(L,	-3)						-->	30	40*

							lua_settop(L,		6)						-->	30	40	nil	nil	nil	nil*

3.4	-	Querying	the	Stack

To	check	the	type	of	a	stack	element,	the	following	functions	are
available:

							int	lua_type												(lua_State	*L,	int	index);

							int	lua_isnil											(lua_State	*L,	int	index);

							int	lua_isboolean							(lua_State	*L,	int	index);

							int	lua_isnumber								(lua_State	*L,	int	index);

							int	lua_isstring								(lua_State	*L,	int	index);

							int	lua_istable									(lua_State	*L,	int	index);

							int	lua_isfunction						(lua_State	*L,	int	index);

							int	lua_iscfunction					(lua_State	*L,	int	index);

							int	lua_isuserdata						(lua_State	*L,	int	index);

							int	lua_islightuserdata	(lua_State	*L,	int	index);

These	functions	can	be	called	with	any	acceptable	index.

lua_type	returns	the	type	of	a	value	in	the	stack,	or	LUA_TNONE	for	a	non-
valid	index	(that	is,	if	that	stack	position	is	"empty").	The	types	returned
by	lua_type	are	coded	by	the	following	constants	defined	in	lua.h:
LUA_TNIL,	LUA_TNUMBER,	LUA_TBOOLEAN,	LUA_TSTRING,	LUA_TTABLE,
LUA_TFUNCTION,	LUA_TUSERDATA,	LUA_TTHREAD,	LUA_TLIGHTUSERDATA.	The
following	function	translates	these	constants	to	strings:

							const	char	*lua_typename		(lua_State	*L,	int	type);

The	lua_is*	functions	return	1	if	the	object	is	compatible	with	the	given
type,	and	0	otherwise.	lua_isboolean	is	an	exception	to	this	rule:	It
succeeds	only	for	boolean	values	(otherwise	it	would	be	useless,	as	any
value	has	a	boolean	value).	They	always	return	0	for	a	non-valid	index.
lua_isnumber	accepts	numbers	and	numerical	strings;	lua_isstring
accepts	strings	and	numbers	(see	2.2.1);	lua_isfunction	accepts	both
Lua	functions	and	C	functions;	and	lua_isuserdata	accepts	both	full	and
light	userdata.	To	distinguish	between	Lua	functions	and	C	functions,	you
can	use	lua_iscfunction.	To	distinguish	between	full	and	light	userdata,
you	can	use	lua_islightuserdata.	To	distinguish	between	numbers	and
numerical	strings,	you	can	use	lua_type.

The	API	also	contains	functions	to	compare	two	values	in	the	stack:

							int	lua_equal				(lua_State	*L,	int	index1,	int	index2);

							int	lua_rawequal	(lua_State	*L,	int	index1,	int	index2);

							int	lua_lessthan	(lua_State	*L,	int	index1,	int	index2);

lua_equal	and	lua_lessthan	are	equivalent	to	their	counterparts	in	Lua
(see	2.5.2).	lua_rawequal	compares	the	values	for	primitive	equality,
without	metamethods.	These	functions	return	0	(false)	if	any	of	the
indices	are	non-valid.

3.5	-	Getting	Values	from	the	Stack

To	translate	a	value	in	the	stack	to	a	specific	C	type,	you	can	use	the
following	conversion	functions:

							int												lua_toboolean			(lua_State	*L,	int	index);

							lua_Number					lua_tonumber				(lua_State	*L,	int	index);

							const	char				*lua_tostring				(lua_State	*L,	int	index);

							size_t									lua_strlen						(lua_State	*L,	int	index);

							lua_CFunction		lua_tocfunction	(lua_State	*L,	int	index);

							void										*lua_touserdata		(lua_State	*L,	int	index);

							lua_State					*lua_tothread				(lua_State	*L,	int	index);

							void										*lua_topointer			(lua_State	*L,	int	index);

These	functions	can	be	called	with	any	acceptable	index.	When	called
with	a	non-valid	index,	they	act	as	if	the	given	value	had	an	incorrect
type.

lua_toboolean	converts	the	Lua	value	at	the	given	index	to	a	C	"boolean"
value	(0	or	1).	Like	all	tests	in	Lua,	lua_toboolean	returns	1	for	any	Lua
value	different	from	false	and	nil;	otherwise	it	returns	0.	It	also	returns	0
when	called	with	a	non-valid	index.	(If	you	want	to	accept	only	real
boolean	values,	use	lua_isboolean	to	test	the	type	of	the	value.)

lua_tonumber	converts	the	Lua	value	at	the	given	index	to	a	number	(by
default,	lua_Number	is	double).	The	Lua	value	must	be	a	number	or	a
string	convertible	to	number	(see	2.2.1);	otherwise,	lua_tonumber
returns	0.

lua_tostring	converts	the	Lua	value	at	the	given	index	to	a	string	(const
char*).	The	Lua	value	must	be	a	string	or	a	number;	otherwise,	the
function	returns	NULL.	If	the	value	is	a	number,	then	lua_tostring	also
changes	the	actual	value	in	the	stack	to	a	string.	(This	change	confuses
lua_next	when	lua_tostring	is	applied	to	keys.)	lua_tostring	returns	a
fully	aligned	pointer	to	a	string	inside	the	Lua	state.	This	string	always
has	a	zero	('\0')	after	its	last	character	(as	in	C),	but	may	contain	other
zeros	in	its	body.	If	you	do	not	know	whether	a	string	may	contain	zeros,
you	can	use	lua_strlen	to	get	its	actual	length.	Because	Lua	has

garbage	collection,	there	is	no	guarantee	that	the	pointer	returned	by
lua_tostring	will	be	valid	after	the	corresponding	value	is	removed	from
the	stack.	If	you	need	the	string	after	the	current	function	returns,	then
you	should	duplicate	it	or	put	it	into	the	registry	(see	3.18).

lua_tocfunction	converts	a	value	in	the	stack	to	a	C	function.	This	value
must	be	a	C	function;	otherwise,	lua_tocfunction	returns	NULL.	The	type
lua_CFunction	is	explained	in	3.16.

lua_tothread	converts	a	value	in	the	stack	to	a	Lua	thread	(represented
as	lua_State	*).	This	value	must	be	a	thread;	otherwise,	lua_tothread
returns	NULL.

lua_topointer	converts	a	value	in	the	stack	to	a	generic	C	pointer	(void
*).	The	value	may	be	a	userdata,	a	table,	a	thread,	or	a	function;
otherwise,	lua_topointer	returns	NULL.	Lua	ensures	that	different	objects
of	the	same	type	return	different	pointers.	There	is	no	direct	way	to
convert	the	pointer	back	to	its	original	value.	Typically	this	function	is
used	for	debug	information.

lua_touserdata	is	explained	in	3.8.

3.6	-	Pushing	Values	onto	the	Stack

The	API	has	the	following	functions	to	push	C	values	onto	the	stack:

							void	lua_pushboolean							(lua_State	*L,	int	b);

							void	lua_pushnumber								(lua_State	*L,	lua_Number	n);

							void	lua_pushlstring							(lua_State	*L,	const	char	*s,	size_t	len);

							void	lua_pushstring								(lua_State	*L,	const	char	*s);

							void	lua_pushnil											(lua_State	*L);

							void	lua_pushcfunction					(lua_State	*L,	lua_CFunction	f);

							void	lua_pushlightuserdata	(lua_State	*L,	void	*p);

These	functions	receive	a	C	value,	convert	it	to	a	corresponding	Lua
value,	and	push	the	result	onto	the	stack.	In	particular,	lua_pushlstring
and	lua_pushstring	make	an	internal	copy	of	the	given	string.
lua_pushstring	can	only	be	used	to	push	proper	C	strings	(that	is,	strings
that	end	with	a	zero	and	do	not	contain	embedded	zeros);	otherwise,	you
should	use	the	more	general	lua_pushlstring,	which	accepts	an	explicit
size.

You	can	also	push	"formatted"	strings:

							const	char	*lua_pushfstring		(lua_State	*L,	const	char	*fmt,	...);

							const	char	*lua_pushvfstring	(lua_State	*L,	const	char	*fmt,	va_list	argp);

These	functions	push	onto	the	stack	a	formatted	string	and	return	a
pointer	to	that	string.	They	are	similar	to	sprintf	and	vsprintf,	but	with
some	important	differences:

You	do	not	have	to	allocate	the	space	for	the	result:	The	result	is	a
Lua	string	and	Lua	takes	care	of	memory	allocation	(and
deallocation,	through	garbage	collection).
The	conversion	specifiers	are	quite	restricted.	There	are	no	flags,
widths,	or	precisions.	The	conversion	specifiers	can	be	simply	`%%´
(inserts	a	`%´	in	the	string),	`%s´	(inserts	a	zero-terminated	string,	with
no	size	restrictions),	`%f´	(inserts	a	lua_Number),	`%d´	(inserts	an	int),
and	`%c´	(inserts	an	int	as	a	character).

The	function

							void	lua_concat	(lua_State	*L,	int	n);

concatenates	the	n	values	at	the	top	of	the	stack,	pops	them,	and	leaves
the	result	at	the	top.	If	n	is	1,	the	result	is	that	single	string	(that	is,	the
function	does	nothing);	if	n	is	0,	the	result	is	the	empty	string.
Concatenation	is	done	following	the	usual	semantics	of	Lua	(see	2.5.4).

3.7	-	Controlling	Garbage	Collection

Lua	uses	two	numbers	to	control	its	garbage	collection:	the	count	and	the
threshold	(see	2.9).	The	first	counts	the	amount	of	memory	in	use	by	Lua;
when	the	count	reaches	the	threshold,	Lua	runs	its	garbage	collector.
After	the	collection,	the	count	is	updated	and	the	threshold	is	set	to	twice
the	count	value.

You	can	access	the	current	values	of	these	two	numbers	through	the
following	functions:

							int		lua_getgccount					(lua_State	*L);

							int		lua_getgcthreshold	(lua_State	*L);

Both	return	their	respective	values	in	Kbytes.	You	can	change	the
threshold	value	with

							void		lua_setgcthreshold	(lua_State	*L,	int	newthreshold);

Again,	the	newthreshold	value	is	given	in	Kbytes.	When	you	call	this
function,	Lua	sets	the	new	threshold	and	checks	it	against	the	byte
counter.	If	the	new	threshold	is	less	than	the	byte	counter,	then	Lua
immediately	runs	the	garbage	collector.	In	particular
lua_setgcthreshold(L,0)	forces	a	garbage	collection.	After	the	collection,
a	new	threshold	is	set	according	to	the	previous	rule.

3.8	-	Userdata

Userdata	represents	C	values	in	Lua.	Lua	supports	two	types	of
userdata:	full	userdata	and	light	userdata.

A	full	userdata	represents	a	block	of	memory.	It	is	an	object	(like	a	table):
You	must	create	it,	it	can	have	its	own	metatable,	and	you	can	detect
when	it	is	being	collected.	A	full	userdata	is	only	equal	to	itself	(under	raw
equality).

A	light	userdata	represents	a	pointer.	It	is	a	value	(like	a	number):	You	do
not	create	it,	it	has	no	metatables,	it	is	not	collected	(as	it	was	never
created).	A	light	userdata	is	equal	to	"any"	light	userdata	with	the	same	C
address.

In	Lua	code,	there	is	no	way	to	test	whether	a	userdata	is	full	or	light;
both	have	type	userdata.	In	C	code,	lua_type	returns	LUA_TUSERDATA	for
full	userdata,	and	LUA_TLIGHTUSERDATA	for	light	userdata.

You	can	create	a	new	full	userdata	with	the	following	function:

							void	*lua_newuserdata	(lua_State	*L,	size_t	size);

This	function	allocates	a	new	block	of	memory	with	the	given	size,
pushes	on	the	stack	a	new	userdata	with	the	block	address,	and	returns
this	address.

To	push	a	light	userdata	into	the	stack	you	use	lua_pushlightuserdata
(see	3.6).

lua_touserdata	(see	3.5)	retrieves	the	value	of	a	userdata.	When	applied
on	a	full	userdata,	it	returns	the	address	of	its	block;	when	applied	on	a
light	userdata,	it	returns	its	pointer;	when	applied	on	a	non-userdata
value,	it	returns	NULL.

When	Lua	collects	a	full	userdata,	it	calls	the	userdata's	gc	metamethod,
if	any,	and	then	it	frees	the	userdata's	corresponding	memory.

3.9	-	Metatables

The	following	functions	allow	you	to	manipulate	the	metatables	of	an
object:

							int	lua_getmetatable	(lua_State	*L,	int	index);

							int	lua_setmetatable	(lua_State	*L,	int	index);

lua_getmetatable	pushes	on	the	stack	the	metatable	of	a	given	object.	If
the	index	is	not	valid,	or	if	the	object	does	not	have	a	metatable,
lua_getmetatable	returns	0	and	pushes	nothing	on	the	stack.

lua_setmetatable	pops	a	table	from	the	stack	and	sets	it	as	the	new
metatable	for	the	given	object.	lua_setmetatable	returns	0	when	it	cannot
set	the	metatable	of	the	given	object	(that	is,	when	the	object	is	neither	a
userdata	nor	a	table);	even	then	it	pops	the	table	from	the	stack.

3.10	-	Loading	Lua	Chunks

You	can	load	a	Lua	chunk	with	lua_load:

							typedef	const	char	*	(*lua_Chunkreader)

																																(lua_State	*L,	void	*data,	size_t	*size);

							int	lua_load	(lua_State	*L,	lua_Chunkreader	reader,	void	*data,

																																			const	char	*chunkname);

The	return	values	of	lua_load	are:

0	---	no	errors;
LUA_ERRSYNTAX	---	syntax	error	during	pre-compilation.
LUA_ERRMEM	---	memory	allocation	error.

If	there	are	no	errors,	lua_load	pushes	the	compiled	chunk	as	a	Lua
function	on	top	of	the	stack.	Otherwise,	it	pushes	an	error	message.

lua_load	automatically	detects	whether	the	chunk	is	text	or	binary,	and
loads	it	accordingly	(see	program	luac).

lua_load	uses	a	user-supplied	reader	function	to	read	the	chunk.
Everytime	it	needs	another	piece	of	the	chunk,	lua_load	calls	the	reader,
passing	along	its	data	parameter.	The	reader	must	return	a	pointer	to	a
block	of	memory	with	a	new	piece	of	the	chunk	and	set	size	to	the	block
size.	To	signal	the	end	of	the	chunk,	the	reader	returns	NULL.	The	reader
function	may	return	pieces	of	any	size	greater	than	zero.

In	the	current	implementation,	the	reader	function	cannot	call	any	Lua
function;	to	ensure	that,	it	always	receives	NULL	as	the	Lua	state.

The	chunkname	is	used	for	error	messages	and	debug	information	(see
4).

See	the	auxiliary	library	(lauxlib.c)	for	examples	of	how	to	use	lua_load
and	for	some	ready-to-use	functions	to	load	chunks	from	files	and	strings.

3.11	-	Manipulating	Tables

Tables	are	created	by	calling	the	function

							void	lua_newtable	(lua_State	*L);

This	function	creates	a	new,	empty	table	and	pushes	it	onto	the	stack.

To	read	a	value	from	a	table	that	resides	somewhere	in	the	stack,	call

							void	lua_gettable	(lua_State	*L,	int	index);

where	index	points	to	the	table.	lua_gettable	pops	a	key	from	the	stack
and	returns	(on	the	stack)	the	contents	of	the	table	at	that	key.	The	table
is	left	where	it	was	in	the	stack.	As	in	Lua,	this	function	may	trigger	a
metamethod	for	the	"index"	event	(see	2.8).	To	get	the	real	value	of	any
table	key,	without	invoking	any	metamethod,	use	the	raw	version:

							void	lua_rawget	(lua_State	*L,	int	index);

To	store	a	value	into	a	table	that	resides	somewhere	in	the	stack,	you
push	the	key	and	then	the	value	onto	the	stack,	and	call

							void	lua_settable	(lua_State	*L,	int	index);

where	index	points	to	the	table.	lua_settable	pops	from	the	stack	both
the	key	and	the	value.	The	table	is	left	where	it	was	in	the	stack.	As	in
Lua,	this	operation	may	trigger	a	metamethod	for	the	"settable"	or
"newindex"	events.	To	set	the	real	value	of	any	table	index,	without
invoking	any	metamethod,	use	the	raw	version:

							void	lua_rawset	(lua_State	*L,	int	index);

You	can	traverse	a	table	with	the	function

							int	lua_next	(lua_State	*L,	int	index);

where	index	points	to	the	table	to	be	traversed.	The	function	pops	a	key
from	the	stack,	and	pushes	a	key-value	pair	from	the	table	(the	"next"
pair	after	the	given	key).	If	there	are	no	more	elements,	then	lua_next

returns	0	(and	pushes	nothing).	Use	a	nil	key	to	signal	the	start	of	a
traversal.

A	typical	traversal	looks	like	this:

							/*	table	is	in	the	stack	at	index	`t'	*/

							lua_pushnil(L);		/*	first	key	*/

							while	(lua_next(L,	t)	!=	0)	{

									/*	`key'	is	at	index	-2	and	`value'	at	index	-1	*/

									printf("%s	-	%s\n",

											lua_typename(L,	lua_type(L,	-2)),	lua_typename(L,	lua_type(L,	-1)));

									lua_pop(L,	1);		/*	removes	`value';	keeps	`key'	for	next	iteration	*/

							}

While	traversing	a	table,	do	not	call	lua_tostring	directly	on	a	key,	unless
you	know	that	the	key	is	actually	a	string.	Recall	that	lua_tostring
changes	the	value	at	the	given	index;	this	confuses	the	next	call	to
lua_next.

3.12	-	Manipulating	Environments

All	global	variables	are	kept	in	ordinary	Lua	tables,	called	environments.
The	initial	environment	is	called	the	global	environment.	This	table	is
always	at	pseudo-index	LUA_GLOBALSINDEX.

To	access	and	change	the	value	of	global	variables,	you	can	use	regular
table	operations	over	an	environment	table.	For	instance,	to	access	the
value	of	a	global	variable,	do

							lua_pushstring(L,	varname);

							lua_gettable(L,	LUA_GLOBALSINDEX);

You	can	change	the	global	environment	of	a	Lua	thread	using
lua_replace.

The	following	functions	get	and	set	the	environment	of	Lua	functions:

							void	lua_getfenv	(lua_State	*L,	int	index);

							int		lua_setfenv	(lua_State	*L,	int	index);

lua_getfenv	pushes	on	the	stack	the	environment	table	of	the	function	at
index	index	in	the	stack.	If	the	function	is	a	C	function,	lua_getfenv
pushes	the	global	environment.	lua_setfenv	pops	a	table	from	the	stack
and	sets	it	as	the	new	environment	for	the	function	at	index	index	in	the
stack.	If	the	object	at	the	given	index	is	not	a	Lua	function,	lua_setfenv
returns	0.

3.13	-	Using	Tables	as	Arrays

The	API	has	functions	that	help	to	use	Lua	tables	as	arrays,	that	is,
tables	indexed	by	numbers	only:

							void	lua_rawgeti	(lua_State	*L,	int	index,	int	n);

							void	lua_rawseti	(lua_State	*L,	int	index,	int	n);

lua_rawgeti	pushes	the	value	of	the	n-th	element	of	the	table	at	stack
position	index.	lua_rawseti	sets	the	value	of	the	n-th	element	of	the	table
at	stack	position	index	to	the	value	at	the	top	of	the	stack,	removing	this
value	from	the	stack.

3.14	-	Calling	Functions

Functions	defined	in	Lua	and	C	functions	registered	in	Lua	can	be	called
from	the	host	program.	This	is	done	using	the	following	protocol:	First,
the	function	to	be	called	is	pushed	onto	the	stack;	then,	the	arguments	to
the	function	are	pushed	in	direct	order,	that	is,	the	first	argument	is
pushed	first.	Finally,	the	function	is	called	using

							void	lua_call	(lua_State	*L,	int	nargs,	int	nresults);

nargs	is	the	number	of	arguments	that	you	pushed	onto	the	stack.	All
arguments	and	the	function	value	are	popped	from	the	stack,	and	the
function	results	are	pushed.	The	number	of	results	are	adjusted	to
nresults,	unless	nresults	is	LUA_MULTRET.	In	that	case,	all	results	from	the
function	are	pushed.	Lua	takes	care	that	the	returned	values	fit	into	the
stack	space.	The	function	results	are	pushed	onto	the	stack	in	direct
order	(the	first	result	is	pushed	first),	so	that	after	the	call	the	last	result	is
on	the	top.

The	following	example	shows	how	the	host	program	may	do	the
equivalent	to	this	Lua	code:

							a	=	f("how",	t.x,	14)

Here	it	is	in	C:

				lua_pushstring(L,	"t");

				lua_gettable(L,	LUA_GLOBALSINDEX);										/*	global	`t'	(for	later	use)	*/

				lua_pushstring(L,	"a");																																							/*	var	name	*/

				lua_pushstring(L,	"f");																																		/*	function	name	*/

				lua_gettable(L,	LUA_GLOBALSINDEX);															/*	function	to	be	called	*/

				lua_pushstring(L,	"how");																																	/*	1st	argument	*/

				lua_pushstring(L,	"x");																												/*	push	the	string	"x"	*/

				lua_gettable(L,	-5);																						/*	push	result	of	t.x	(2nd	arg)	*/

				lua_pushnumber(L,	14);																																				/*	3rd	argument	*/

				lua_call(L,	3,	1);									/*	call	function	with	3	arguments	and	1	result	*/

				lua_settable(L,	LUA_GLOBALSINDEX);													/*	set	global	variable	`a'	*/

				lua_pop(L,	1);																															/*	remove	`t'	from	the	stack	*/

Note	that	the	code	above	is	"balanced":	at	its	end,	the	stack	is	back	to	its

original	configuration.	This	is	considered	good	programming	practice.

(We	did	this	example	using	only	the	raw	functions	provided	by	Lua's	API,
to	show	all	the	details.	Usually	programmers	define	and	use	several
macros	and	auxiliary	functions	that	provide	higher	level	access	to	Lua.
See	the	source	code	of	the	standard	libraries	for	examples.)

3.15	-	Protected	Calls

When	you	call	a	function	with	lua_call,	any	error	inside	the	called
function	is	propagated	upwards	(with	a	longjmp).	If	you	need	to	handle
errors,	then	you	should	use	lua_pcall:

							int	lua_pcall	(lua_State	*L,	int	nargs,	int	nresults,	int	errfunc);

Both	nargs	and	nresults	have	the	same	meaning	as	in	lua_call.	If	there
are	no	errors	during	the	call,	lua_pcall	behaves	exactly	like	lua_call.
However,	if	there	is	any	error,	lua_pcall	catches	it,	pushes	a	single	value
at	the	stack	(the	error	message),	and	returns	an	error	code.	Like
lua_call,	lua_pcall	always	removes	the	function	and	its	arguments	from
the	stack.

If	errfunc	is	0,	then	the	error	message	returned	is	exactly	the	original
error	message.	Otherwise,	errfunc	gives	the	stack	index	for	an	error
handler	function.	(In	the	current	implementation,	that	index	cannot	be	a
pseudo-index.)	In	case	of	runtime	errors,	that	function	will	be	called	with
the	error	message	and	its	return	value	will	be	the	message	returned	by
lua_pcall.

Typically,	the	error	handler	function	is	used	to	add	more	debug
information	to	the	error	message,	such	as	a	stack	traceback.	Such
information	cannot	be	gathered	after	the	return	of	lua_pcall,	since	by
then	the	stack	has	unwound.

The	lua_pcall	function	returns	0	in	case	of	success	or	one	of	the
following	error	codes	(defined	in	lua.h):

LUA_ERRRUN	---	a	runtime	error.
LUA_ERRMEM	---	memory	allocation	error.	For	such	errors,	Lua	does	not
call	the	error	handler	function.
LUA_ERRERR	---	error	while	running	the	error	handler	function.

3.16	-	Defining	C	Functions

Lua	can	be	extended	with	functions	written	in	C.	These	functions	must	be
of	type	lua_CFunction,	which	is	defined	as

							typedef	int	(*lua_CFunction)	(lua_State	*L);

A	C	function	receives	a	Lua	state	and	returns	an	integer,	the	number	of
values	it	wants	to	return	to	Lua.

In	order	to	communicate	properly	with	Lua,	a	C	function	must	follow	the
following	protocol,	which	defines	the	way	parameters	and	results	are
passed:	A	C	function	receives	its	arguments	from	Lua	in	its	stack	in	direct
order	(the	first	argument	is	pushed	first).	So,	when	the	function	starts,	its
first	argument	(if	any)	is	at	index	1.	To	return	values	to	Lua,	a	C	function
just	pushes	them	onto	the	stack,	in	direct	order	(the	first	result	is	pushed
first),	and	returns	the	number	of	results.	Any	other	value	in	the	stack
below	the	results	will	be	properly	discharged	by	Lua.	Like	a	Lua	function,
a	C	function	called	by	Lua	can	also	return	many	results.

As	an	example,	the	following	function	receives	a	variable	number	of
numerical	arguments	and	returns	their	average	and	sum:

							static	int	foo	(lua_State	*L)	{

									int	n	=	lua_gettop(L);				/*	number	of	arguments	*/

									lua_Number	sum	=	0;

									int	i;

									for	(i	=	1;	i	<=	n;	i++)	{

											if	(!lua_isnumber(L,	i))	{

													lua_pushstring(L,	"incorrect	argument	to	function	`average'");

													lua_error(L);

											}

											sum	+=	lua_tonumber(L,	i);

									}

									lua_pushnumber(L,	sum/n);								/*	first	result	*/

									lua_pushnumber(L,	sum);									/*	second	result	*/

									return	2;																			/*	number	of	results	*/

							}

To	register	a	C	function	to	Lua,	there	is	the	following	convenience	macro:

							#define	lua_register(L,n,f)	\

															(lua_pushstring(L,	n),	\

																lua_pushcfunction(L,	f),	\

																lua_settable(L,	LUA_GLOBALSINDEX))

					/*	lua_State	*L;				*/

					/*	const	char	*n;			*/

					/*	lua_CFunction	f;	*/

which	receives	the	name	the	function	will	have	in	Lua	and	a	pointer	to	the
function.	Thus,	the	C	function	foo	above	may	be	registered	in	Lua	as
average	by	calling

							lua_register(L,	"average",	foo);

3.17	-	Defining	C	Closures

When	a	C	function	is	created,	it	is	possible	to	associate	some	values	with
it,	thus	creating	a	C	closure;	these	values	are	then	accessible	to	the
function	whenever	it	is	called.	To	associate	values	with	a	C	function,	first
these	values	should	be	pushed	onto	the	stack	(when	there	are	multiple
values,	the	first	value	is	pushed	first).	Then	the	function

							void	lua_pushcclosure	(lua_State	*L,	lua_CFunction	fn,	int	n);

is	used	to	push	the	C	function	onto	the	stack,	with	the	argument	n	telling
how	many	values	should	be	associated	with	the	function
(lua_pushcclosure	also	pops	these	values	from	the	stack);	in	fact,	the
macro	lua_pushcfunction	is	defined	as	lua_pushcclosure	with	n	set	to	0.

Then,	whenever	the	C	function	is	called,	those	values	are	located	at
specific	pseudo-indices.	Those	pseudo-indices	are	produced	by	a	macro
lua_upvalueindex.	The	first	value	associated	with	a	function	is	at	position
lua_upvalueindex(1),	and	so	on.	Any	access	to	lua_upvalueindex(n),
where	n	is	greater	than	the	number	of	upvalues	of	the	current	function,
produces	an	acceptable	(but	invalid)	index.

For	examples	of	C	functions	and	closures,	see	the	standard	libraries	in
the	official	Lua	distribution	(src/lib/*.c).

3.18	-	Registry

Lua	provides	a	registry,	a	pre-defined	table	that	can	be	used	by	any
C	code	to	store	whatever	Lua	value	it	needs	to	store,	specially	if	the
C	code	needs	to	keep	that	Lua	value	outside	the	life	span	of	a	C	function.
This	table	is	always	located	at	pseudo-index	LUA_REGISTRYINDEX.	Any
C	library	can	store	data	into	this	table,	as	long	as	it	chooses	keys
different	from	other	libraries.	Typically,	you	should	use	as	key	a	string
containing	your	library	name	or	a	light	userdata	with	the	address	of	a	C
object	in	your	code.

The	integer	keys	in	the	registry	are	used	by	the	reference	mechanism,
implemented	by	the	auxiliary	library,	and	therefore	should	not	be	used	by
other	purposes.

3.19	-	Error	Handling	in	C

Internally,	Lua	uses	the	C	longjmp	facility	to	handle	errors.	When	Lua
faces	any	error	(such	as	memory	allocation	errors,	type	errors,	syntax
errors)	it	raises	an	error,	that	is,	it	does	a	long	jump.	A	protected
environment	uses	setjmp	to	set	a	recover	point;	any	error	jumps	to	the
most	recent	active	recover	point.

If	an	error	happens	outside	any	protected	environment,	Lua	calls	a	panic
function	and	then	calls	exit(EXIT_FAILURE).	You	can	change	the	panic
function	with

							lua_CFunction	lua_atpanic	(lua_State	*L,	lua_CFunction	panicf);

Your	new	panic	function	may	avoid	the	application	exit	by	never	returning
(e.g.,	by	doing	a	long	jump).	Nevertheless,	the	corresponding	Lua	state
will	not	be	consistent;	the	only	safe	operation	with	it	is	to	close	it.

Almost	any	function	in	the	API	may	raise	an	error,	for	instance	due	to	a
memory	allocation	error.	The	following	functions	run	in	protected	mode
(that	is,	they	create	a	protected	environment	to	run),	so	they	never	raise
an	error:	lua_open,	lua_close,	lua_load,	and	lua_pcall.

There	is	yet	another	function	that	runs	a	given	C	function	in	protected
mode:

							int	lua_cpcall	(lua_State	*L,	lua_CFunction	func,	void	*ud);

lua_cpcall	calls	func	in	protected	mode.	func	starts	with	only	one
element	in	its	stack,	a	light	userdata	containing	ud.	In	case	of	errors,
lua_cpcall	returns	the	same	error	codes	as	lua_pcall	(see	3.15),	plus
the	error	object	on	the	top	of	the	stack;	otherwise,	it	returns	zero,	and
does	not	change	the	stack.	Any	value	returned	by	func	is	discarded.

C	code	can	generate	a	Lua	error	calling	the	function

							void	lua_error	(lua_State	*L);

The	error	message	(which	actually	can	be	any	type	of	object)	must	be	on
the	stack	top.	This	function	does	a	long	jump,	and	therefore	never
returns.

3.20	-	Threads

Lua	offers	partial	support	for	multiple	threads	of	execution.	If	you	have	a
C	library	that	offers	multi-threading,	then	Lua	can	cooperate	with	it	to
implement	the	equivalent	facility	in	Lua.	Also,	Lua	implements	its	own
coroutine	system	on	top	of	threads.	The	following	function	creates	a	new
thread	in	Lua:

							lua_State	*lua_newthread	(lua_State	*L);

This	function	pushes	the	thread	on	the	stack	and	returns	a	pointer	to	a
lua_State	that	represents	this	new	thread.	The	new	state	returned	by	this
function	shares	with	the	original	state	all	global	objects	(such	as	tables),
but	has	an	independent	run-time	stack.

Each	thread	has	an	independent	global	environment	table.	When	you
create	a	thread,	this	table	is	the	same	as	that	of	the	given	state,	but	you
can	change	each	one	independently.

There	is	no	explicit	function	to	close	or	to	destroy	a	thread.	Threads	are
subject	to	garbage	collection,	like	any	Lua	object.

To	manipulate	threads	as	coroutines,	Lua	offers	the	following	functions:

							int	lua_resume	(lua_State	*L,	int	narg);

							int	lua_yield		(lua_State	*L,	int	nresults);

To	start	a	coroutine,	you	first	create	a	new	thread;	then	you	push	on	its
stack	the	body	function	plus	any	eventual	arguments;	then	you	call
lua_resume,	with	narg	being	the	number	of	arguments.	This	call	returns
when	the	coroutine	suspends	or	finishes	its	execution.	When	it	returns,
the	stack	contains	all	values	passed	to	lua_yield,	or	all	values	returned
by	the	body	function.	lua_resume	returns	0	if	there	are	no	errors	running
the	coroutine,	or	an	error	code	(see	3.15).	In	case	of	errors,	the	stack
contains	only	the	error	message.	To	restart	a	coroutine,	you	put	on	its
stack	only	the	values	to	be	passed	as	results	from	yield,	and	then	call
lua_resume.

The	lua_yield	function	can	only	be	called	as	the	return	expression	of	a	C
function,	as	follows:

							return	lua_yield	(L,	nresults);

When	a	C	function	calls	lua_yield	in	that	way,	the	running	coroutine
suspends	its	execution,	and	the	call	to	lua_resume	that	started	this
coroutine	returns.	The	parameter	nresults	is	the	number	of	values	from
the	stack	that	are	passed	as	results	to	lua_resume.

To	exchange	values	between	different	threads,	you	may	use	lua_xmove:

							void	lua_xmove	(lua_State	*from,	lua_State	*to,	int	n);

It	pops	n	values	from	the	stack	from,	and	puhses	them	into	the	stack	to.

4	-	The	Debug	Interface
Lua	has	no	built-in	debugging	facilities.	Instead,	it	offers	a	special
interface	by	means	of	functions	and	hooks.	This	interface	allows	the
construction	of	different	kinds	of	debuggers,	profilers,	and	other	tools	that
need	"inside	information"	from	the	interpreter.

4.1	-	Stack	and	Function	Information

The	main	function	to	get	information	about	the	interpreter	runtime	stack	is

							int	lua_getstack	(lua_State	*L,	int	level,	lua_Debug	*ar);

This	function	fills	parts	of	a	lua_Debug	structure	with	an	identification	of
the	activation	record	of	the	function	executing	at	a	given	level.	Level	0	is
the	current	running	function,	whereas	level	n+1	is	the	function	that	has
called	level	n.	When	there	are	no	errors,	lua_getstack	returns	1;	when
called	with	a	level	greater	than	the	stack	depth,	it	returns	0.

The	structure	lua_Debug	is	used	to	carry	different	pieces	of	information
about	an	active	function:

						typedef	struct	lua_Debug	{

								int	event;

								const	char	*name;						/*	(n)	*/

								const	char	*namewhat;		/*	(n)	`global',	`local',	`field',	`method'	*/

								const	char	*what;						/*	(S)	`Lua'	function,	`C'	function,	Lua	`main'	*/

								const	char	*source;				/*	(S)	*/

								int	currentline;							/*	(l)	*/

								int	nups;														/*	(u)	number	of	upvalues	*/

								int	linedefined;							/*	(S)	*/

								char	short_src[LUA_IDSIZE];	/*	(S)	*/

								/*	private	part	*/

								...

						}	lua_Debug;

lua_getstack	fills	only	the	private	part	of	this	structure,	for	later	use.	To	fill
the	other	fields	of	lua_Debug	with	useful	information,	call

							int	lua_getinfo	(lua_State	*L,	const	char	*what,	lua_Debug	*ar);

This	function	returns	0	on	error	(for	instance,	an	invalid	option	in	what).
Each	character	in	the	string	what	selects	some	fields	of	the	structure	ar	to
be	filled,	as	indicated	by	the	letter	in	parentheses	in	the	definition	of
lua_Debug	above:	`S´	fills	in	the	fields	source,	linedefined,	and	what;	`l´
fills	in	the	field	currentline,	etc.	Moreover,	`f´	pushes	onto	the	stack	the
function	that	is	running	at	the	given	level.

To	get	information	about	a	function	that	is	not	active	(that	is,	not	in	the
stack),	you	push	it	onto	the	stack	and	start	the	what	string	with	the
character	`>´.	For	instance,	to	know	in	which	line	a	function	f	was
defined,	you	can	write

							lua_Debug	ar;

							lua_pushstring(L,	"f");

							lua_gettable(L,	LUA_GLOBALSINDEX);		/*	get	global	`f'	*/

							lua_getinfo(L,	">S",	&ar);

							printf("%d\n",	ar.linedefined);

The	fields	of	lua_Debug	have	the	following	meaning:

source	If	the	function	was	defined	in	a	string,	then	source	is	that
string.	If	the	function	was	defined	in	a	file,	then	source	starts	with	a	`@
´	followed	by	the	file	name.

short_src	A	"printable"	version	of	source,	to	be	used	in	error
messages.

linedefined	the	line	number	where	the	definition	of	the	function
starts.

what	the	string	"Lua"	if	this	is	a	Lua	function,	"C"	if	this	is	a
C	function,	"main"	if	this	is	the	main	part	of	a	chunk,	and	"tail"	if
this	was	a	function	that	did	a	tail	call.	In	the	latter	case,	Lua	has	no
other	information	about	this	function.

currentline	the	current	line	where	the	given	function	is	executing.
When	no	line	information	is	available,	currentline	is	set	to	-1.

name	a	reasonable	name	for	the	given	function.	Because	functions	in
Lua	are	first	class	values,	they	do	not	have	a	fixed	name:	Some
functions	may	be	the	value	of	multiple	global	variables,	while	others
may	be	stored	only	in	a	table	field.	The	lua_getinfo	function	checks
how	the	function	was	called	or	whether	it	is	the	value	of	a	global
variable	to	find	a	suitable	name.	If	it	cannot	find	a	name,	then	name	is
set	to	NULL.

namewhat	Explains	the	name	field.	The	value	of	namewhat	can	be

"global",	"local",	"method",	"field",	or	""	(the	empty	string),
according	to	how	the	function	was	called.	(Lua	uses	the	empty	string
when	no	other	option	seems	to	apply.)

nups	The	number	of	upvalues	of	the	function.

4.2	-	Manipulating	Local	Variables	and	Upvalues

For	the	manipulation	of	local	variables	and	upvalues,	the	debug	interface
uses	indices:	The	first	parameter	or	local	variable	has	index	1,	and	so	on,
until	the	last	active	local	variable.	Upvalues	have	no	particular	order,	as
they	are	active	through	the	whole	function.

The	following	functions	allow	the	manipulation	of	the	local	variables	of	a
given	activation	record:

							const	char	*lua_getlocal	(lua_State	*L,	const	lua_Debug	*ar,	int	n);

							const	char	*lua_setlocal	(lua_State	*L,	const	lua_Debug	*ar,	int	n);

The	parameter	ar	must	be	a	valid	activation	record	that	was	filled	by	a
previous	call	to	lua_getstack	or	given	as	argument	to	a	hook	(see	4.3).
lua_getlocal	gets	the	index	n	of	a	local	variable,	pushes	the	variable's
value	onto	the	stack,	and	returns	its	name.	lua_setlocal	assigns	the
value	at	the	top	of	the	stack	to	the	variable	and	returns	its	name.	Both
functions	return	NULL	when	the	index	is	greater	than	the	number	of	active
local	variables.

The	following	functions	allow	the	manipulation	of	the	upvalues	of	a	given
function	(unlike	local	variables,	the	upvalues	of	a	function	are	accessible
even	when	the	function	is	not	active):

							const	char	*lua_getupvalue	(lua_State	*L,	int	funcindex,	int	n);

							const	char	*lua_setupvalue	(lua_State	*L,	int	funcindex,	int	n);

These	functions	operate	both	on	Lua	functions	and	on	C	functions.	(For
Lua	functions,	upvalues	are	the	external	local	variables	that	the	function
uses,	and	that	consequently	are	included	in	its	closure.)	funcindex	points
to	a	function	in	the	stack.	lua_getupvalue	gets	the	index	n	of	an	upvalue,
pushes	the	upvalue's	value	onto	the	stack,	and	returns	its	name.
lua_setupvalue	assigns	the	value	at	the	top	of	the	stack	to	the	upvalue
and	returns	its	name.	Both	functions	return	NULL	when	the	index	is
greater	than	the	number	of	upvalues.	For	C	functions,	these	functions
use	the	empty	string	""	as	a	name	for	all	upvalues.

As	an	example,	the	following	function	lists	the	names	of	all	local	variables
and	upvalues	for	a	function	at	a	given	level	of	the	stack:

							int	listvars	(lua_State	*L,	int	level)	{

									lua_Debug	ar;

									int	i;

									const	char	*name;

									if	(lua_getstack(L,	level,	&ar)	==	0)

											return	0;		/*	failure:	no	such	level	in	the	stack	*/

									i	=	1;

									while	((name	=	lua_getlocal(L,	&ar,	i++))	!=	NULL)	{

											printf("local	%d	%s\n",	i-1,	name);

											lua_pop(L,	1);		/*	remove	variable	value	*/

									}

									lua_getinfo(L,	"f",	&ar);		/*	retrieves	function	*/

									i	=	1;

									while	((name	=	lua_getupvalue(L,	-1,	i++))	!=	NULL)	{

											printf("upvalue	%d	%s\n",	i-1,	name);

											lua_pop(L,	1);		/*	remove	upvalue	value	*/

									}

									return	1;

							}

4.3	-	Hooks

Lua	offers	a	mechanism	of	hooks,	which	are	user-defined	C	functions
that	are	called	during	the	program	execution.	A	hook	may	be	called	in
four	different	events:	a	call	event,	when	Lua	calls	a	function;	a	return
event,	when	Lua	returns	from	a	function;	a	line	event,	when	Lua	starts
executing	a	new	line	of	code;	and	a	count	event,	which	happens	every
"count"	instructions.	Lua	identifies	these	events	with	the	following
constants:	LUA_HOOKCALL,	LUA_HOOKRET	(or	LUA_HOOKTAILRET,	see	below),
LUA_HOOKLINE,	and	LUA_HOOKCOUNT.

A	hook	has	type	lua_Hook,	defined	as	follows:

							typedef	void	(*lua_Hook)	(lua_State	*L,	lua_Debug	*ar);

You	can	set	the	hook	with	the	following	function:

							int	lua_sethook	(lua_State	*L,	lua_Hook	func,	int	mask,	int	count);

func	is	the	hook.	mask	specifies	on	which	events	the	hook	will	be	called:	It
is	formed	by	a	disjunction	of	the	constants	LUA_MASKCALL,	LUA_MASKRET,
LUA_MASKLINE,	and	LUA_MASKCOUNT.	The	count	argument	is	only	meaningful
when	the	mask	includes	LUA_MASKCOUNT.	For	each	event,	the	hook	is
called	as	explained	below:

The	call	hook	is	called	when	the	interpreter	calls	a	function.	The
hook	is	called	just	after	Lua	enters	the	new	function.
The	return	hook	is	called	when	the	interpreter	returns	from	a
function.	The	hook	is	called	just	before	Lua	leaves	the	function.
The	line	hook	is	called	when	the	interpreter	is	about	to	start	the
execution	of	a	new	line	of	code,	or	when	it	jumps	back	in	the	code
(even	to	the	same	line).	(This	event	only	happens	while	Lua	is
executing	a	Lua	function.)
The	count	hook	is	called	after	the	interpreter	executes	every	count
instructions.	(This	event	only	happens	while	Lua	is	executing	a	Lua
function.)

A	hook	is	disabled	by	setting	mask	to	zero.

You	can	get	the	current	hook,	the	current	mask,	and	the	current	count
with	the	following	functions:

							lua_Hook	lua_gethook						(lua_State	*L);

							int						lua_gethookmask		(lua_State	*L);

							int						lua_gethookcount	(lua_State	*L);

Whenever	a	hook	is	called,	its	ar	argument	has	its	field	event	set	to	the
specific	event	that	triggered	the	hook.	Moreover,	for	line	events,	the	field
currentline	is	also	set.	To	get	the	value	of	any	other	field	in	ar,	the	hook
must	call	lua_getinfo.	For	return	events,	event	may	be	LUA_HOOKRET,	the
normal	value,	or	LUA_HOOKTAILRET.	In	the	latter	case,	Lua	is	simulating	a
return	from	a	function	that	did	a	tail	call;	in	this	case,	it	is	useless	to	call
lua_getinfo.

While	Lua	is	running	a	hook,	it	disables	other	calls	to	hooks.	Therefore,	if
a	hook	calls	back	Lua	to	execute	a	function	or	a	chunk,	that	execution
occurs	without	any	calls	to	hooks.

5	-	Standard	Libraries
The	standard	libraries	provide	useful	functions	that	are	implemented
directly	through	the	C	API.	Some	of	these	functions	provide	essential
services	to	the	language	(e.g.,	type	and	getmetatable);	others	provide
access	to	"outside"	services	(e.g.,	I/O);	and	others	could	be	implemented
in	Lua	itself,	but	are	quite	useful	or	have	critical	performance	to	deserve
an	implementation	in	C	(e.g.,	sort).

All	libraries	are	implemented	through	the	official	C	API	and	are	provided
as	separate	C	modules.	Currently,	Lua	has	the	following	standard
libraries:

basic	library;
string	manipulation;
table	manipulation;
mathematical	functions	(sin,	log,	etc.);
input	and	output;
operating	system	facilities;
debug	facilities.

Except	for	the	basic	library,	each	library	provides	all	its	functions	as	fields
of	a	global	table	or	as	methods	of	its	objects.

To	have	access	to	these	libraries,	the	C	host	program	must	first	call	the
functions	luaopen_base	(for	the	basic	library),	luaopen_string	(for	the
string	library),	luaopen_table	(for	the	table	library),	luaopen_math	(for	the
mathematical	library),	luaopen_io	(for	the	I/O	and	the	Operating	System
libraries),	and	luaopen_debug	(for	the	debug	library).	These	functions	are
declared	in	lualib.h.

5.1	-	Basic	Functions

The	basic	library	provides	some	core	functions	to	Lua.	If	you	do	not
include	this	library	in	your	application,	you	should	check	carefully	whether
you	need	to	provide	some	alternative	implementation	for	some	of	its
facilities.

assert	(v	[,	message])

Issues	an	error	when	the	value	of	its	argument	v	is	nil	or	false;
otherwise,	returns	this	value.	message	is	an	error	message;	when	absent,
it	defaults	to	"assertion	failed!"

collectgarbage	([limit])

Sets	the	garbage-collection	threshold	to	the	given	limit	(in	Kbytes)	and
checks	it	against	the	byte	counter.	If	the	new	threshold	is	smaller	than	the
byte	counter,	then	Lua	immediately	runs	the	garbage	collector	(see	2.9).
If	limit	is	absent,	it	defaults	to	zero	(thus	forcing	a	garbage-collection
cycle).

dofile	(filename)

Opens	the	named	file	and	executes	its	contents	as	a	Lua	chunk.	When
called	without	arguments,	dofile	executes	the	contents	of	the	standard
input	(stdin).	Returns	any	value	returned	by	the	chunk.	In	case	of	errors,
dofile	propagates	the	error	to	its	caller	(that	is,	it	does	not	run	in
protected	mode).

error	(message	[,	level])

Terminates	the	last	protected	function	called	and	returns	message	as	the
error	message.	Function	error	never	returns.

The	level	argument	specifies	where	the	error	message	points	the	error.
With	level	1	(the	default),	the	error	position	is	where	the	error	function
was	called.	Level	2	points	the	error	to	where	the	function	that	called	error

was	called;	and	so	on.

_G

A	global	variable	(not	a	function)	that	holds	the	global	environment	(that
is,	_G._G	=	_G).	Lua	itself	does	not	use	this	variable;	changing	its	value
does	not	affect	any	environment.	(Use	setfenv	to	change	environments.)

getfenv	(f)

Returns	the	current	environment	in	use	by	the	function.	f	can	be	a	Lua
function	or	a	number,	which	specifies	the	function	at	that	stack	level:
Level	1	is	the	function	calling	getfenv.	If	the	given	function	is	not	a	Lua
function,	or	if	f	is	0,	getfenv	returns	the	global	environment.	The	default
for	f	is	1.

If	the	environment	has	a	"__fenv"	field,	returns	the	associated	value,
instead	of	the	environment.

getmetatable	(object)

If	the	object	does	not	have	a	metatable,	returns	nil.	Otherwise,	if	the
object's	metatable	has	a	"__metatable"	field,	returns	the	associated
value.	Otherwise,	returns	the	metatable	of	the	given	object.

gcinfo	()

Returns	two	results:	the	number	of	Kbytes	of	dynamic	memory	that	Lua	is
using	and	the	current	garbage	collector	threshold	(also	in	Kbytes).

ipairs	(t)

Returns	an	iterator	function,	the	table	t,	and	0,	so	that	the	construction

							for	i,v	in	ipairs(t)	do	...	end

will	iterate	over	the	pairs	(1,t[1]),	(2,t[2]),	...,	up	to	the	first	integer	key
with	a	nil	value	in	the	table.

loadfile	(filename)

Loads	a	file	as	a	Lua	chunk	(without	running	it).	If	there	are	no	errors,
returns	the	compiled	chunk	as	a	function;	otherwise,	returns	nil	plus	the
error	message.	The	environment	of	the	returned	function	is	the	global
environment.

loadlib	(libname,	funcname)

Links	the	program	with	the	dynamic	C	library	libname.	Inside	this	library,
looks	for	a	function	funcname	and	returns	this	function	as	a	C	function.

libname	must	be	the	complete	file	name	of	the	C	library,	including	any
eventual	path	and	extension.

This	function	is	not	supported	by	ANSI	C.	As	such,	it	is	only	available	on
some	platforms	(Windows,	Linux,	Solaris,	BSD,	plus	other	Unix	systems
that	support	the	dlfcn	standard).

loadstring	(string	[,	chunkname])

Loads	a	string	as	a	Lua	chunk	(without	running	it).	If	there	are	no	errors,
returns	the	compiled	chunk	as	a	function;	otherwise,	returns	nil	plus	the
error	message.	The	environment	of	the	returned	function	is	the	global
environment.

The	optional	parameter	chunkname	is	the	name	to	be	used	in	error
messages	and	debug	information.

To	load	and	run	a	given	string,	use	the	idiom

						assert(loadstring(s))()

next	(table	[,	index])

Allows	a	program	to	traverse	all	fields	of	a	table.	Its	first	argument	is	a
table	and	its	second	argument	is	an	index	in	this	table.	next	returns	the
next	index	of	the	table	and	the	value	associated	with	the	index.	When
called	with	nil	as	its	second	argument,	next	returns	the	first	index	of	the

table	and	its	associated	value.	When	called	with	the	last	index,	or	with	nil
in	an	empty	table,	next	returns	nil.	If	the	second	argument	is	absent,	then
it	is	interpreted	as	nil.

Lua	has	no	declaration	of	fields;	There	is	no	difference	between	a	field
not	present	in	a	table	or	a	field	with	value	nil.	Therefore,	next	only
considers	fields	with	non-nil	values.	The	order	in	which	the	indices	are
enumerated	is	not	specified,	even	for	numeric	indices.	(To	traverse	a
table	in	numeric	order,	use	a	numerical	for	or	the	ipairs	function.)

The	behavior	of	next	is	undefined	if,	during	the	traversal,	you	assign	any
value	to	a	non-existent	field	in	the	table.

pairs	(t)

Returns	the	next	function	and	the	table	t	(plus	a	nil),	so	that	the
construction

							for	k,v	in	pairs(t)	do	...	end

will	iterate	over	all	key-value	pairs	of	table	t.

pcall	(f,	arg1,	arg2,	...)

Calls	function	f	with	the	given	arguments	in	protected	mode.	That	means
that	any	error	inside	f	is	not	propagated;	instead,	pcall	catches	the	error
and	returns	a	status	code.	Its	first	result	is	the	status	code	(a	boolean),
which	is	true	if	the	call	succeeds	without	errors.	In	such	case,	pcall	also
returns	all	results	from	the	call,	after	this	first	result.	In	case	of	any	error,
pcall	returns	false	plus	the	error	message.

print	(e1,	e2,	...)

Receives	any	number	of	arguments,	and	prints	their	values	in	stdout,
using	the	tostring	function	to	convert	them	to	strings.	This	function	is	not
intended	for	formatted	output,	but	only	as	a	quick	way	to	show	a	value,
typically	for	debugging.	For	formatted	output,	use	format	(see	5.3).

rawequal	(v1,	v2)

Checks	whether	v1	is	equal	to	v2,	without	invoking	any	metamethod.
Returns	a	boolean.

rawget	(table,	index)

Gets	the	real	value	of	table[index],	without	invoking	any	metamethod.
table	must	be	a	table;	index	is	any	value	different	from	nil.

rawset	(table,	index,	value)

Sets	the	real	value	of	table[index]	to	value,	without	invoking	any
metamethod.	table	must	be	a	table,	index	is	any	value	different	from	nil,
and	value	is	any	Lua	value.

require	(packagename)

Loads	the	given	package.	The	function	starts	by	looking	into	the	table
_LOADED	to	determine	whether	packagename	is	already	loaded.	If	it	is,	then
require	returns	the	value	that	the	package	returned	when	it	was	first
loaded.	Otherwise,	it	searches	a	path	looking	for	a	file	to	load.

If	the	global	variable	LUA_PATH	is	a	string,	this	string	is	the	path.
Otherwise,	require	tries	the	environment	variable	LUA_PATH.	As	a	last
resort,	it	uses	the	predefined	path	"?;?.lua".

The	path	is	a	sequence	of	templates	separated	by	semicolons.	For	each
template,	require	will	change	each	interrogation	mark	in	the	template	to
packagename,	and	then	will	try	to	load	the	resulting	file	name.	So,	for
instance,	if	the	path	is

		"./?.lua;./?.lc;/usr/local/?/?.lua;/lasttry"

a	require	"mod"	will	try	to	load	the	files	./mod.lua,	./mod.lc,
/usr/local/mod/mod.lua,	and	/lasttry,	in	that	order.

The	function	stops	the	search	as	soon	as	it	can	load	a	file,	and	then	it
runs	the	file.	After	that,	it	associates,	in	table	_LOADED,	the	package	name
with	the	value	that	the	package	returned,	and	returns	that	value.	If	the
package	returns	nil	(or	no	value),	require	converts	this	value	to	true.	If

the	package	returns	false,	require	also	returns	false.	However,	as	the
mark	in	table	_LOADED	is	false,	any	new	attempt	to	reload	the	file	will
happen	as	if	the	package	was	not	loaded	(that	is,	the	package	will	be
loaded	again).

If	there	is	any	error	loading	or	running	the	file,	or	if	it	cannot	find	any	file
in	the	path,	then	require	signals	an	error.

While	running	a	file,	require	defines	the	global	variable	_REQUIREDNAME
with	the	package	name.	The	package	being	loaded	always	runs	within
the	global	environment.

setfenv	(f,	table)

Sets	the	current	environment	to	be	used	by	the	given	function.	f	can	be	a
Lua	function	or	a	number,	which	specifies	the	function	at	that	stack	level:
Level	1	is	the	function	calling	setfenv.

As	a	special	case,	when	f	is	0	setfenv	changes	the	global	environment	of
the	running	thread.

If	the	original	environment	has	a	"__fenv"	field,	setfenv	raises	an	error.

setmetatable	(table,	metatable)

Sets	the	metatable	for	the	given	table.	(You	cannot	change	the	metatable
of	a	userdata	from	Lua.)	If	metatable	is	nil,	removes	the	metatable	of	the
given	table.	If	the	original	metatable	has	a	"__metatable"	field,	raises	an
error.

tonumber	(e	[,	base])

Tries	to	convert	its	argument	to	a	number.	If	the	argument	is	already	a
number	or	a	string	convertible	to	a	number,	then	tonumber	returns	that
number;	otherwise,	it	returns	nil.

An	optional	argument	specifies	the	base	to	interpret	the	numeral.	The
base	may	be	any	integer	between	2	and	36,	inclusive.	In	bases
above	10,	the	letter	`A´	(in	either	upper	or	lower	case)	represents	10,	`B´

represents	11,	and	so	forth,	with	`Z´	representing	35.	In	base	10	(the
default),	the	number	may	have	a	decimal	part,	as	well	as	an	optional
exponent	part	(see	2.2.1).	In	other	bases,	only	unsigned	integers	are
accepted.

tostring	(e)

Receives	an	argument	of	any	type	and	converts	it	to	a	string	in	a
reasonable	format.	For	complete	control	of	how	numbers	are	converted,
use	format	(see	5.3).

If	the	metatable	of	e	has	a	"__tostring"	field,	tostring	calls	the
corresponding	value	with	e	as	argument,	and	uses	the	result	of	the	call
as	its	result.

type	(v)

Returns	the	type	of	its	only	argument,	coded	as	a	string.	The	possible
results	of	this	function	are	"nil"	(a	string,	not	the	value	nil),	"number",
"string",	"boolean,	"table",	"function",	"thread",	and	"userdata".

unpack	(list)

Returns	all	elements	from	the	given	list.	This	function	is	equivalent	to

		return	list[1],	list[2],	...,	list[n]

except	that	the	above	code	can	be	written	only	for	a	fixed	n.	The	number
n	is	the	size	of	the	list,	as	defined	for	the	table.getn	function.

_VERSION

A	global	variable	(not	a	function)	that	holds	a	string	containing	the	current
interpreter	version.	The	current	content	of	this	string	is	"Lua	5.0".

xpcall	(f,	err)

This	function	is	similar	to	pcall,	except	that	you	can	set	a	new	error
handler.

xpcall	calls	function	f	in	protected	mode,	using	err	as	the	error	handler.
Any	error	inside	f	is	not	propagated;	instead,	xpcall	catches	the	error,
calls	the	err	function	with	the	original	error	object,	and	returns	a	status
code.	Its	first	result	is	the	status	code	(a	boolean),	which	is	true	if	the	call
succeeds	without	errors.	In	such	case,	xpcall	also	returns	all	results	from
the	call,	after	this	first	result.	In	case	of	any	error,	xpcall	returns	false
plus	the	result	from	err.

5.2	-	Coroutine	Manipulation

The	operations	related	to	coroutines	comprise	a	sub-library	of	the	basic
library	and	come	inside	the	table	coroutine.	See	2.10	for	a	general
description	of	coroutines.

coroutine.create	(f)

Creates	a	new	coroutine,	with	body	f.	f	must	be	a	Lua	function.	Returns
this	new	coroutine,	an	object	with	type	"thread".

coroutine.resume	(co,	val1,	...)

Starts	or	continues	the	execution	of	coroutine	co.	The	first	time	you
resume	a	coroutine,	it	starts	running	its	body.	The	arguments	val1,	...	go
as	the	arguments	to	the	body	function.	If	the	coroutine	has	yielded,
resume	restarts	it;	the	arguments	val1,	...	go	as	the	results	from	the	yield.

If	the	coroutine	runs	without	any	errors,	resume	returns	true	plus	any
values	passed	to	yield	(if	the	coroutine	yields)	or	any	values	returned	by
the	body	function	(if	the	coroutine	terminates).	If	there	is	any	error,	resume
returns	false	plus	the	error	message.

coroutine.status	(co)

Returns	the	status	of	coroutine	co,	as	a	string:	"running",	if	the	coroutine
is	running	(that	is,	it	called	status);	"suspended",	if	the	coroutine	is
suspended	in	a	call	to	yield,	or	if	it	has	not	started	running	yet;	and
"dead"	if	the	coroutine	has	finished	its	body	function,	or	if	it	has	stopped
with	an	error.

coroutine.wrap	(f)

Creates	a	new	coroutine,	with	body	f.	f	must	be	a	Lua	function.	Returns
a	function	that	resumes	the	coroutine	each	time	it	is	called.	Any
arguments	passed	to	the	function	behave	as	the	extra	arguments	to
resume.	Returns	the	same	values	returned	by	resume,	except	the	first

boolean.	In	case	of	error,	propagates	the	error.

coroutine.yield	(val1,	...)

Suspends	the	execution	of	the	calling	coroutine.	The	coroutine	cannot	be
running	neither	a	C	function,	nor	a	metamethod,	nor	an	iterator.	Any
arguments	to	yield	go	as	extra	results	to	resume.

5.3	-	String	Manipulation

This	library	provides	generic	functions	for	string	manipulation,	such	as
finding	and	extracting	substrings,	and	pattern	matching.	When	indexing	a
string	in	Lua,	the	first	character	is	at	position	1	(not	at	0,	as	in	C).	Indices
are	allowed	to	be	negative	and	are	interpreted	as	indexing	backwards,
from	the	end	of	the	string.	Thus,	the	last	character	is	at	position	-1,	and
so	on.

The	string	library	provides	all	its	functions	inside	the	table	string.

string.byte	(s	[,	i])

Returns	the	internal	numerical	code	of	the	i-th	character	of	s,	or	nil	if	the
index	is	out	of	range.	If	i	is	absent,	then	it	is	assumed	to	be	1.	i	may	be
negative.

Note	that	numerical	codes	are	not	necessarily	portable	across	platforms.

string.char	(i1,	i2,	...)

Receives	0	or	more	integers.	Returns	a	string	with	length	equal	to	the
number	of	arguments,	in	which	each	character	has	the	internal	numerical
code	equal	to	its	correspondent	argument.

Note	that	numerical	codes	are	not	necessarily	portable	across	platforms.

string.dump	(function)

Returns	a	binary	representation	of	the	given	function,	so	that	a	later
loadstring	on	that	string	returns	a	copy	of	the	function.	function	must	be
a	Lua	function	without	upvalues.

string.find	(s,	pattern	[,	init	[,	plain]])

Looks	for	the	first	match	of	pattern	in	the	string	s.	If	it	finds	one,	then
find	returns	the	indices	of	s	where	this	occurrence	starts	and	ends;

otherwise,	it	returns	nil.	If	the	pattern	specifies	captures	(see	string.gsub
below),	the	captured	strings	are	returned	as	extra	results.	A	third,	optional
numerical	argument	init	specifies	where	to	start	the	search;	it	may	be
negative	and	its	default	value	is	1.	A	value	of	true	as	a	fourth,	optional
argument	plain	turns	off	the	pattern	matching	facilities,	so	the	function
does	a	plain	"find	substring"	operation,	with	no	characters	in	pattern
being	considered	"magic".	Note	that	if	plain	is	given,	then	init	must	be
given	too.

string.len	(s)

Receives	a	string	and	returns	its	length.	The	empty	string	""	has	length	0.
Embedded	zeros	are	counted,	so	"a\000b\000c"	has	length	5.

string.lower	(s)

Receives	a	string	and	returns	a	copy	of	that	string	with	all	uppercase
letters	changed	to	lowercase.	All	other	characters	are	left	unchanged.
The	definition	of	what	is	an	uppercase	letter	depends	on	the	current
locale.

string.rep	(s,	n)

Returns	a	string	that	is	the	concatenation	of	n	copies	of	the	string	s.

string.sub	(s,	i	[,	j])

Returns	the	substring	of	s	that	starts	at	i	and	continues	until	j;	i	and	j
may	be	negative.	If	j	is	absent,	then	it	is	assumed	to	be	equal	to	-1
(which	is	the	same	as	the	string	length).	In	particular,	the	call
string.sub(s,1,j)	returns	a	prefix	of	s	with	length	j,	and	string.sub(s,	-
i)	returns	a	suffix	of	s	with	length	i.

string.upper	(s)

Receives	a	string	and	returns	a	copy	of	that	string	with	all	lowercase
letters	changed	to	uppercase.	All	other	characters	are	left	unchanged.
The	definition	of	what	is	a	lowercase	letter	depends	on	the	current	locale.

string.format	(formatstring,	e1,	e2,	...)

Returns	a	formatted	version	of	its	variable	number	of	arguments	following
the	description	given	in	its	first	argument	(which	must	be	a	string).	The
format	string	follows	the	same	rules	as	the	printf	family	of	standard
C	functions.	The	only	differences	are	that	the	options/modifiers	*,	l,	L,	n,
p,	and	h	are	not	supported,	and	there	is	an	extra	option,	q.	The	q	option
formats	a	string	in	a	form	suitable	to	be	safely	read	back	by	the	Lua
interpreter:	The	string	is	written	between	double	quotes,	and	all	double
quotes,	newlines,	and	backslashes	in	the	string	are	correctly	escaped
when	written.	For	instance,	the	call

							string.format('%q',	'a	string	with	"quotes"	and	\n	new	line')

will	produce	the	string:

"a	string	with	\"quotes\"	and	\

	new	line"

The	options	c,	d,	E,	e,	f,	g,	G,	i,	o,	u,	X,	and	x	all	expect	a	number	as
argument,	whereas	q	and	s	expect	a	string.	The	*	modifier	can	be
simulated	by	building	the	appropriate	format	string.	For	example,	"%*g"
can	be	simulated	with	"%"..width.."g".

String	values	to	be	formatted	with	%s	cannot	contain	embedded	zeros.

string.gfind	(s,	pat)

Returns	an	iterator	function	that,	each	time	it	is	called,	returns	the	next
captures	from	pattern	pat	over	string	s.

If	pat	specifies	no	captures,	then	the	whole	match	is	produced	in	each
call.

As	an	example,	the	following	loop

		s	=	"hello	world	from	Lua"

		for	w	in	string.gfind(s,	"%a+")	do

				print(w)

		end

will	iterate	over	all	the	words	from	string	s,	printing	one	per	line.	The	next
example	collects	all	pairs	key=value	from	the	given	string	into	a	table:

		t	=	{}

		s	=	"from=world,	to=Lua"

		for	k,	v	in	string.gfind(s,	"(%w+)=(%w+)")	do

				t[k]	=	v

		end

string.gsub	(s,	pat,	repl	[,	n])

Returns	a	copy	of	s	in	which	all	occurrences	of	the	pattern	pat	have	been
replaced	by	a	replacement	string	specified	by	repl.	gsub	also	returns,	as
a	second	value,	the	total	number	of	substitutions	made.

If	repl	is	a	string,	then	its	value	is	used	for	replacement.	Any	sequence	in
repl	of	the	form	%n,	with	n	between	1	and	9,	stands	for	the	value	of	the	n-
th	captured	substring	(see	below).

If	repl	is	a	function,	then	this	function	is	called	every	time	a	match
occurs,	with	all	captured	substrings	passed	as	arguments,	in	order;	if	the
pattern	specifies	no	captures,	then	the	whole	match	is	passed	as	a	sole
argument.	If	the	value	returned	by	this	function	is	a	string,	then	it	is	used
as	the	replacement	string;	otherwise,	the	replacement	string	is	the	empty
string.

The	optional	last	parameter	n	limits	the	maximum	number	of	substitutions
to	occur.	For	instance,	when	n	is	1	only	the	first	occurrence	of	pat	is
replaced.

Here	are	some	examples:

			x	=	string.gsub("hello	world",	"(%w+)",	"%1	%1")

			-->	x="hello	hello	world	world"

			x	=	string.gsub("hello	world",	"(%w+)",	"%1	%1",	1)

			-->	x="hello	hello	world"

			x	=	string.gsub("hello	world	from	Lua",	"(%w+)%s*(%w+)",	"%2	%1")

			-->	x="world	hello	Lua	from"

			x	=	string.gsub("home	=	$HOME,	user	=	$USER",	"%$(%w+)",	os.getenv)

			-->	x="home	=	/home/roberto,	user	=	roberto"

			x	=	string.gsub("4+5	=	$return	4+5$",	"%$(.-)%$",	function	(s)

									return	loadstring(s)()

							end)

			-->	x="4+5	=	9"

			local	t	=	{name="lua",	version="5.0"}

			x	=	string.gsub("$name_$version.tar.gz",	"%$(%w+)",	function	(v)

									return	t[v]

							end)

			-->	x="lua_5.0.tar.gz"

Patterns

A	character	class	is	used	to	represent	a	set	of	characters.	The	following
combinations	are	allowed	in	describing	a	character	class:

x	(where	x	is	not	one	of	the	magic	characters	^$()%.[]*+-?)	---
represents	the	character	x	itself.
.	---	(a	dot)	represents	all	characters.
%a	---	represents	all	letters.
%c	---	represents	all	control	characters.
%d	---	represents	all	digits.
%l	---	represents	all	lowercase	letters.
%p	---	represents	all	punctuation	characters.
%s	---	represents	all	space	characters.
%u	---	represents	all	uppercase	letters.
%w	---	represents	all	alphanumeric	characters.
%x	---	represents	all	hexadecimal	digits.
%z	---	represents	the	character	with	representation	0.
%x	(where	x	is	any	non-alphanumeric	character)	---	represents	the
character	x.	This	is	the	standard	way	to	escape	the	magic
characters.	Any	punctuation	character	(even	the	non	magic)	can	be
preceded	by	a	`%´	when	used	to	represent	itself	in	a	pattern.

[set]	---	represents	the	class	which	is	the	union	of	all	characters	in
set.	A	range	of	characters	may	be	specified	by	separating	the	end
characters	of	the	range	with	a	`-´.	All	classes	%x	described	above
may	also	be	used	as	components	in	set.	All	other	characters	in	set

represent	themselves.	For	example,	[%w_]	(or	[_%w])	represents	all
alphanumeric	characters	plus	the	underscore,	[0-7]	represents	the
octal	digits,	and	[0-7%l%-]	represents	the	octal	digits	plus	the
lowercase	letters	plus	the	`-´	character.

The	interaction	between	ranges	and	classes	is	not	defined.
Therefore,	patterns	like	[%a-z]	or	[a-%%]	have	no	meaning.

[^set]	---	represents	the	complement	of	set,	where	set	is	interpreted
as	above.

For	all	classes	represented	by	single	letters	(%a,	%c,	etc.),	the
corresponding	uppercase	letter	represents	the	complement	of	the	class.
For	instance,	%S	represents	all	non-space	characters.

The	definitions	of	letter,	space,	and	other	character	groups	depend	on	the
current	locale.	In	particular,	the	class	[a-z]	may	not	be	equivalent	to	%l.
The	second	form	should	be	preferred	for	portability.

A	pattern	item	may	be

a	single	character	class,	which	matches	any	single	character	in	the
class;
a	single	character	class	followed	by	`*´,	which	matches	0	or	more
repetitions	of	characters	in	the	class.	These	repetition	items	will
always	match	the	longest	possible	sequence;
a	single	character	class	followed	by	`+´,	which	matches	1	or	more
repetitions	of	characters	in	the	class.	These	repetition	items	will
always	match	the	longest	possible	sequence;
a	single	character	class	followed	by	`-´,	which	also	matches	0	or
more	repetitions	of	characters	in	the	class.	Unlike	`*´,	these
repetition	items	will	always	match	the	shortest	possible	sequence;
a	single	character	class	followed	by	`?´,	which	matches	0	or	1
occurrence	of	a	character	in	the	class;
%n,	for	n	between	1	and	9;	such	item	matches	a	substring	equal	to
the	n-th	captured	string	(see	below);
%bxy,	where	x	and	y	are	two	distinct	characters;	such	item	matches
strings	that	start	with	x,	end	with	y,	and	where	the	x	and	y	are

balanced.	This	means	that,	if	one	reads	the	string	from	left	to	right,
counting	+1	for	an	x	and	-1	for	a	y,	the	ending	y	is	the	first	y	where
the	count	reaches	0.	For	instance,	the	item	%b()	matches
expressions	with	balanced	parentheses.

A	pattern	is	a	sequence	of	pattern	items.	A	`^´	at	the	beginning	of	a
pattern	anchors	the	match	at	the	beginning	of	the	subject	string.	A	`$´	at
the	end	of	a	pattern	anchors	the	match	at	the	end	of	the	subject	string.	At
other	positions,	`^´	and	`$´	have	no	special	meaning	and	represent
themselves.

A	pattern	may	contain	sub-patterns	enclosed	in	parentheses;	they
describe	captures.	When	a	match	succeeds,	the	substrings	of	the	subject
string	that	match	captures	are	stored	(captured)	for	future	use.	Captures
are	numbered	according	to	their	left	parentheses.	For	instance,	in	the
pattern	"(a*(.)%w(%s*))",	the	part	of	the	string	matching	"a*(.)%w(%s*)"
is	stored	as	the	first	capture	(and	therefore	has	number	1);	the	character
matching	.	is	captured	with	number	2,	and	the	part	matching	%s*	has
number	3.

As	a	special	case,	the	empty	capture	()	captures	the	current	string
position	(a	number).	For	instance,	if	we	apply	the	pattern	"()aa()"	on	the
string	"flaaap",	there	will	be	two	captures:	3	and	5.

A	pattern	cannot	contain	embedded	zeros.	Use	%z	instead.

5.4	-	Table	Manipulation

This	library	provides	generic	functions	for	table	manipulation.	It	provides
all	its	functions	inside	the	table	table.

Most	functions	in	the	table	library	assume	that	the	table	represents	an
array	or	a	list.	For	those	functions,	an	important	concept	is	the	size	of	the
array.	There	are	three	ways	to	specify	that	size:

the	field	"n"	---	When	the	table	has	a	field	"n"	with	a	numerical	value,
that	value	is	assumed	as	its	size.
setn	---	You	can	call	the	table.setn	function	to	explicitly	set	the	size
of	a	table.
implicit	size	---	Otherwise,	the	size	of	the	object	is	one	less	the	first
integer	index	with	a	nil	value.

For	more	details,	see	the	descriptions	of	the	table.getn	and	table.setn
functions.

table.concat	(table	[,	sep	[,	i	[,	j]]])

Returns	table[i]..sep..table[i+1]	...	sep..table[j].	The	default
value	for	sep	is	the	empty	string,	the	default	for	i	is	1,	and	the	default	for
j	is	the	size	of	the	table.	If	i	is	greater	than	j,	returns	the	empty	string.

table.foreach	(table,	f)

Executes	the	given	f	over	all	elements	of	table.	For	each	element,	f	is
called	with	the	index	and	respective	value	as	arguments.	If	f	returns	a
non-nil	value,	then	the	loop	is	broken,	and	this	value	is	returned	as	the
final	value	of	foreach.

See	the	next	function	for	extra	information	about	table	traversals.

table.foreachi	(table,	f)

Executes	the	given	f	over	the	numerical	indices	of	table.	For	each	index,

f	is	called	with	the	index	and	respective	value	as	arguments.	Indices	are
visited	in	sequential	order,	from	1	to	n,	where	n	is	the	size	of	the	table
(see	5.4).	If	f	returns	a	non-nil	value,	then	the	loop	is	broken	and	this
value	is	returned	as	the	result	of	foreachi.

table.getn	(table)

Returns	the	size	of	a	table,	when	seen	as	a	list.	If	the	table	has	an	n	field
with	a	numeric	value,	this	value	is	the	size	of	the	table.	Otherwise,	if	there
was	a	previous	call	to	table.setn	over	this	table,	the	respective	value	is
returned.	Otherwise,	the	size	is	one	less	the	first	integer	index	with	a	nil
value.

table.sort	(table	[,	comp])

Sorts	table	elements	in	a	given	order,	in-place,	from	table[1]	to	table[n],
where	n	is	the	size	of	the	table	(see	5.4).	If	comp	is	given,	then	it	must	be
a	function	that	receives	two	table	elements,	and	returns	true	when	the
first	is	less	than	the	second	(so	that	not	comp(a[i+1],a[i])	will	be	true
after	the	sort).	If	comp	is	not	given,	then	the	standard	Lua	operator	<	is
used	instead.

The	sort	algorithm	is	not	stable,	that	is,	elements	considered	equal	by	the
given	order	may	have	their	relative	positions	changed	by	the	sort.

table.insert	(table,	[pos,]	value)

Inserts	element	value	at	position	pos	in	table,	shifting	up	other	elements
to	open	space,	if	necessary.	The	default	value	for	pos	is	n+1,	where	n	is
the	size	of	the	table	(see	5.4),	so	that	a	call	table.insert(t,x)	inserts	x
at	the	end	of	table	t.	This	function	also	updates	the	size	of	the	table	by
calling	table.setn(table,	n+1).

table.remove	(table	[,	pos])

Removes	from	table	the	element	at	position	pos,	shifting	down	other
elements	to	close	the	space,	if	necessary.	Returns	the	value	of	the
removed	element.	The	default	value	for	pos	is	n,	where	n	is	the	size	of	the

table	(see	5.4),	so	that	a	call	table.remove(t)	removes	the	last	element
of	table	t.	This	function	also	updates	the	size	of	the	table	by	calling
table.setn(table,	n-1).

table.setn	(table,	n)

Updates	the	size	of	a	table.	If	the	table	has	a	field	"n"	with	a	numerical
value,	that	value	is	changed	to	the	given	n.	Otherwise,	it	updates	an
internal	state	so	that	subsequent	calls	to	table.getn(table)	return	n.

5.5	-	Mathematical	Functions

This	library	is	an	interface	to	most	of	the	functions	of	the	standard	C	math
library.	(Some	have	slightly	different	names.)	It	provides	all	its	functions
inside	the	table	math.	In	addition,	it	registers	the	global	__pow	for	the
binary	exponentiation	operator	^,	so	that	x^y	returns	xy.	The	library
provides	the	following	functions:

							math.abs					math.acos				math.asin				math.atan				math.atan2

							math.ceil				math.cos					math.deg					math.exp					math.floor

							math.log					math.log10			math.max					math.min					math.mod

							math.pow					math.rad					math.sin					math.sqrt				math.tan

							math.frexp			math.ldexp			math.random		math.randomseed

plus	a	variable	math.pi.	Most	of	them	are	only	interfaces	to	the
corresponding	functions	in	the	C	library.	All	trigonometric	functions	work
in	radians	(previous	versions	of	Lua	used	degrees).	The	functions
math.deg	and	math.rad	convert	between	radians	and	degrees.

The	function	math.max	returns	the	maximum	value	of	its	numeric
arguments.	Similarly,	math.min	computes	the	minimum.	Both	can	be	used
with	1,	2,	or	more	arguments.

The	functions	math.random	and	math.randomseed	are	interfaces	to	the
simple	random	generator	functions	rand	and	srand	that	are	provided	by
ANSI	C.	(No	guarantees	can	be	given	for	their	statistical	properties.)
When	called	without	arguments,	math.random	returns	a	pseudo-random
real	number	in	the	range	[0,1).	When	called	with	a	number	n,	math.random
returns	a	pseudo-random	integer	in	the	range	[1,n].	When	called	with	two
arguments,	l	and	u,	math.random	returns	a	pseudo-random	integer	in	the
range	[l,u].	The	math.randomseed	function	sets	a	"seed"	for	the	pseudo-
random	generator:	Equal	seeds	produce	equal	sequences	of	numbers.

5.6	-	Input	and	Output	Facilities

The	I/O	library	provides	two	different	styles	for	file	manipulation.	The	first
one	uses	implicit	file	descriptors,	that	is,	there	are	operations	to	set	a
default	input	file	and	a	default	output	file,	and	all	input/output	operations
are	over	those	default	files.	The	second	style	uses	explicit	file
descriptors.

When	using	implicit	file	descriptors,	all	operations	are	supplied	by	table
io.	When	using	explicit	file	descriptors,	the	operation	io.open	returns	a
file	descriptor	and	then	all	operations	are	supplied	as	methods	by	the	file
descriptor.

The	table	io	also	provides	three	predefined	file	descriptors	with	their
usual	meanings	from	C:	io.stdin,	io.stdout,	and	io.stderr.

A	file	handle	is	a	userdata	containing	the	file	stream	(FILE*),	with	a
distinctive	metatable	created	by	the	I/O	library.

Unless	otherwise	stated,	all	I/O	functions	return	nil	on	failure	(plus	an
error	message	as	a	second	result)	and	some	value	different	from	nil	on
success.

io.close	([file])

Equivalent	to	file:close.	Without	a	file,	closes	the	default	output	file.

io.flush	()

Equivalent	to	file:flush	over	the	default	output	file.

io.input	([file])

When	called	with	a	file	name,	it	opens	the	named	file	(in	text	mode),	and
sets	its	handle	as	the	default	input	file.	When	called	with	a	file	handle,	it
simply	sets	that	file	handle	as	the	default	input	file.	When	called	without
parameters,	it	returns	the	current	default	input	file.

In	case	of	errors	this	function	raises	the	error,	instead	of	returning	an
error	code.

io.lines	([filename])

Opens	the	given	file	name	in	read	mode	and	returns	an	iterator	function
that,	each	time	it	is	called,	returns	a	new	line	from	the	file.	Therefore,	the
construction

							for	line	in	io.lines(filename)	do	...	end

will	iterate	over	all	lines	of	the	file.	When	the	iterator	function	detects	the
end	of	file,	it	returns	nil	(to	finish	the	loop)	and	automatically	closes	the
file.

The	call	io.lines()	(without	a	file	name)	is	equivalent	to
io.input():lines(),	that	is,	it	iterates	over	the	lines	of	the	default	input
file.

io.open	(filename	[,	mode])

This	function	opens	a	file,	in	the	mode	specified	in	the	string	mode.	It
returns	a	new	file	handle,	or,	in	case	of	errors,	nil	plus	an	error	message.

The	mode	string	can	be	any	of	the	following:

"r"	read	mode	(the	default);
"w"	write	mode;
"a"	append	mode;
"r+"	update	mode,	all	previous	data	is	preserved;
"w+"	update	mode,	all	previous	data	is	erased;
"a+"	append	update	mode,	previous	data	is	preserved,	writing	is
only	allowed	at	the	end	of	file.

The	mode	string	may	also	have	a	b	at	the	end,	which	is	needed	in	some
systems	to	open	the	file	in	binary	mode.	This	string	is	exactly	what	is
used	in	the	standard	C	function	fopen.

io.output	([file])

Similar	to	io.input,	but	operates	over	the	default	output	file.

io.read	(format1,	...)

Equivalent	to	io.input():read.

io.tmpfile	()

Returns	a	handle	for	a	temporary	file.	This	file	is	open	in	update	mode
and	it	is	automatically	removed	when	the	program	ends.

io.type	(obj)

Checks	whether	obj	is	a	valid	file	handle.	Returns	the	string	"file"	if	obj
is	an	open	file	handle,	"closed	file"	if	obj	is	a	closed	file	handle,	and	nil
if	obj	is	not	a	file	handle.

io.write	(value1,	...)

Equivalent	to	io.output():write.

file:close	()

Closes	file.

file:flush	()

Saves	any	written	data	to	file.

file:lines	()

Returns	an	iterator	function	that,	each	time	it	is	called,	returns	a	new	line
from	the	file.	Therefore,	the	construction

							for	line	in	file:lines()	do	...	end

will	iterate	over	all	lines	of	the	file.	(Unlike	io.lines,	this	function	does	not
close	the	file	when	the	loop	ends.)

file:read	(format1,	...)

Reads	the	file	file,	according	to	the	given	formats,	which	specify	what	to
read.	For	each	format,	the	function	returns	a	string	(or	a	number)	with	the
characters	read,	or	nil	if	it	cannot	read	data	with	the	specified	format.
When	called	without	formats,	it	uses	a	default	format	that	reads	the	entire
next	line	(see	below).

The	available	formats	are

"*n"	reads	a	number;	this	is	the	only	format	that	returns	a	number
instead	of	a	string.
"*a"	reads	the	whole	file,	starting	at	the	current	position.	On	end	of
file,	it	returns	the	empty	string.
"*l"	reads	the	next	line	(skipping	the	end	of	line),	returning	nil	on	end
of	file.	This	is	the	default	format.
number	reads	a	string	with	up	to	that	number	of	characters,
returning	nil	on	end	of	file.	If	number	is	zero,	it	reads	nothing	and
returns	an	empty	string,	or	nil	on	end	of	file.

file:seek	([whence]	[,	offset])

Sets	and	gets	the	file	position,	measured	from	the	beginning	of	the	file,	to
the	position	given	by	offset	plus	a	base	specified	by	the	string	whence,	as
follows:

"set"	base	is	position	0	(beginning	of	the	file);
"cur"	base	is	current	position;
"end"	base	is	end	of	file;

In	case	of	success,	function	seek	returns	the	final	file	position,	measured
in	bytes	from	the	beginning	of	the	file.	If	this	function	fails,	it	returns	nil,
plus	a	string	describing	the	error.

The	default	value	for	whence	is	"cur",	and	for	offset	is	0.	Therefore,	the
call	file:seek()	returns	the	current	file	position,	without	changing	it;	the
call	file:seek("set")	sets	the	position	to	the	beginning	of	the	file	(and
returns	0);	and	the	call	file:seek("end")	sets	the	position	to	the	end	of
the	file,	and	returns	its	size.

file:write	(value1,	...)

Writes	the	value	of	each	of	its	arguments	to	the	filehandle	file.	The
arguments	must	be	strings	or	numbers.	To	write	other	values,	use
tostring	or	string.format	before	write.

5.7	-	Operating	System	Facilities

This	library	is	implemented	through	table	os.

os.clock	()

Returns	an	approximation	of	the	amount	of	CPU	time	used	by	the
program,	in	seconds.

os.date	([format	[,	time]])

Returns	a	string	or	a	table	containing	date	and	time,	formatted	according
to	the	given	string	format.

If	the	time	argument	is	present,	this	is	the	time	to	be	formatted	(see	the
os.time	function	for	a	description	of	this	value).	Otherwise,	date	formats
the	current	time.

If	format	starts	with	`!´,	then	the	date	is	formatted	in	Coordinated
Universal	Time.	After	that	optional	character,	if	format	is	*t,	then	date
returns	a	table	with	the	following	fields:	year	(four	digits),	month	(1--12),
day	(1--31),	hour	(0--23),	min	(0--59),	sec	(0--61),	wday	(weekday,	Sunday
is	1),	yday	(day	of	the	year),	and	isdst	(daylight	saving	flag,	a	boolean).

If	format	is	not	*t,	then	date	returns	the	date	as	a	string,	formatted
according	to	the	same	rules	as	the	C	function	strftime.

When	called	without	arguments,	date	returns	a	reasonable	date	and	time
representation	that	depends	on	the	host	system	and	on	the	current	locale
(that	is,	os.date()	is	equivalent	to	os.date("%c")).

os.difftime	(t2,	t1)

Returns	the	number	of	seconds	from	time	t1	to	time	t2.	In	Posix,
Windows,	and	some	other	systems,	this	value	is	exactly	t2-t1.

os.execute	(command)

This	function	is	equivalent	to	the	C	function	system.	It	passes	command	to
be	executed	by	an	operating	system	shell.	It	returns	a	status	code,	which
is	system-dependent.

os.exit	([code])

Calls	the	C	function	exit,	with	an	optional	code,	to	terminate	the	host
program.	The	default	value	for	code	is	the	success	code.

os.getenv	(varname)

Returns	the	value	of	the	process	environment	variable	varname,	or	nil	if
the	variable	is	not	defined.

os.remove	(filename)

Deletes	the	file	with	the	given	name.	If	this	function	fails,	it	returns	nil,
plus	a	string	describing	the	error.

os.rename	(oldname,	newname)

Renames	file	named	oldname	to	newname.	If	this	function	fails,	it	returns	nil,
plus	a	string	describing	the	error.

os.setlocale	(locale	[,	category])

Sets	the	current	locale	of	the	program.	locale	is	a	string	specifying	a
locale;	category	is	an	optional	string	describing	which	category	to
change:	"all",	"collate",	"ctype",	"monetary",	"numeric",	or	"time";	the
default	category	is	"all".	The	function	returns	the	name	of	the	new
locale,	or	nil	if	the	request	cannot	be	honored.

os.time	([table])

Returns	the	current	time	when	called	without	arguments,	or	a	time
representing	the	date	and	time	specified	by	the	given	table.	This	table
must	have	fields	year,	month,	and	day,	and	may	have	fields	hour,	min,	sec,
and	isdst	(for	a	description	of	these	fields,	see	the	os.date	function).

The	returned	value	is	a	number,	whose	meaning	depends	on	your
system.	In	Posix,	Windows,	and	some	other	systems,	this	number	counts
the	number	of	seconds	since	some	given	start	time	(the	"epoch").	In
other	systems,	the	meaning	is	not	specified,	and	the	number	returned	by
time	can	be	used	only	as	an	argument	to	date	and	difftime.

os.tmpname	()

Returns	a	string	with	a	file	name	that	can	be	used	for	a	temporary	file.
The	file	must	be	explicitly	opened	before	its	use	and	removed	when	no
longer	needed.

This	function	is	equivalent	to	the	tmpnam	C	function,	and	many	people
(and	even	some	compilers!)	advise	against	its	use,	because	between	the
time	you	call	this	function	and	the	time	you	open	the	file,	it	is	possible	for
another	process	to	create	a	file	with	the	same	name.

5.8	-	The	Reflexive	Debug	Interface

The	debug	library	provides	the	functionality	of	the	debug	interface	to	Lua
programs.	You	should	exert	care	when	using	this	library.	The	functions
provided	here	should	be	used	exclusively	for	debugging	and	similar
tasks,	such	as	profiling.	Please	resist	the	temptation	to	use	them	as	a
usual	programming	tool:	They	can	be	very	slow.	Moreover,	setlocal	and
getlocal	violate	the	privacy	of	local	variables	and	therefore	can
compromise	some	otherwise	secure	code.

All	functions	in	this	library	are	provided	inside	a	debug	table.

debug.debug	()

Enters	an	interactive	mode	with	the	user,	running	each	string	that	the
user	enters.	Using	simple	commands	and	other	debug	facilities,	the	user
can	inspect	global	and	local	variables,	change	their	values,	evaluate
expressions,	and	so	on.	A	line	containing	only	the	word	cont	finishes	this
function,	so	that	the	caller	continues	its	execution.

Note	that	commands	for	debug.debug	are	not	lexically	nested	with	any
function,	so	they	have	no	direct	access	to	local	variables.

debug.gethook	()

Returns	the	current	hook	settings,	as	three	values:	the	current	hook
function,	the	current	hook	mask,	and	the	current	hook	count	(as	set	by
the	debug.sethook	function).

debug.getinfo	(function	[,	what])

This	function	returns	a	table	with	information	about	a	function.	You	can
give	the	function	directly,	or	you	can	give	a	number	as	the	value	of
function,	which	means	the	function	running	at	level	function	of	the	call
stack:	Level	0	is	the	current	function	(getinfo	itself);	level	1	is	the	function
that	called	getinfo;	and	so	on.	If	function	is	a	number	larger	than	the
number	of	active	functions,	then	getinfo	returns	nil.

The	returned	table	contains	all	the	fields	returned	by	lua_getinfo,	with
the	string	what	describing	which	fields	to	fill	in.	The	default	for	what	is	to
get	all	information	available.	If	present,	the	option	`f´	adds	a	field	named
func	with	the	function	itself.

For	instance,	the	expression	debug.getinfo(1,"n").name	returns	the
name	of	the	current	function,	if	a	reasonable	name	can	be	found,	and
debug.getinfo(print)	returns	a	table	with	all	available	information	about
the	print	function.

debug.getlocal	(level,	local)

This	function	returns	the	name	and	the	value	of	the	local	variable	with
index	local	of	the	function	at	level	level	of	the	stack.	(The	first	parameter
or	local	variable	has	index	1,	and	so	on,	until	the	last	active	local
variable.)	The	function	returns	nil	if	there	is	no	local	variable	with	the
given	index,	and	raises	an	error	when	called	with	a	level	out	of	range.
(You	can	call	debug.getinfo	to	check	whether	the	level	is	valid.)

debug.getupvalue	(func,	up)

This	function	returns	the	name	and	the	value	of	the	upvalue	with	index	up
of	the	function	func.	The	function	returns	nil	if	there	is	no	upvalue	with
the	given	index.

debug.setlocal	(level,	local,	value)

This	function	assigns	the	value	value	to	the	local	variable	with	index
local	of	the	function	at	level	level	of	the	stack.	The	function	returns	nil	if
there	is	no	local	variable	with	the	given	index,	and	raises	an	error	when
called	with	a	level	out	of	range.	(You	can	call	getinfo	to	check	whether
the	level	is	valid.)

debug.setupvalue	(func,	up,	value)

This	function	assigns	the	value	value	to	the	upvalue	with	index	up	of	the
function	func.	The	function	returns	nil	if	there	is	no	upvalue	with	the	given
index.

debug.sethook	(hook,	mask	[,	count])

Sets	the	given	function	as	a	hook.	The	string	mask	and	the	number	count
describe	when	the	hook	will	be	called.	The	string	mask	may	have	the
following	characters,	with	the	given	meaning:

"c"	The	hook	is	called	every	time	Lua	calls	a	function;
"r"	The	hook	is	called	every	time	Lua	returns	from	a	function;
"l"	The	hook	is	called	every	time	Lua	enters	a	new	line	of	code.

With	a	count	different	from	zero,	the	hook	is	called	after	every	count
instructions.

When	called	without	arguments,	the	debug.sethook	function	turns	off	the
hook.

When	the	hook	is	called,	its	first	parameter	is	always	a	string	describing
the	event	that	triggered	its	call:	"call",	"return"	(or	"tail	return"),
"line",	and	"count".	Moreover,	for	line	events,	it	also	gets	as	its	second
parameter	the	new	line	number.	Inside	a	hook,	you	can	call	getinfo	with
level	2	to	get	more	information	about	the	running	function	(level	0	is	the
getinfo	function,	and	level	1	is	the	hook	function),	unless	the	event	is
"tail	return".	In	this	case,	Lua	is	only	simulating	the	return,	and	a	call	to
getinfo	will	return	invalid	data.

debug.traceback	([message])

Returns	a	string	with	a	traceback	of	the	call	stack.	An	optional	message
string	is	appended	at	the	beginning	of	the	traceback.	This	function	is
typically	used	with	xpcall	to	produce	better	error	messages.

6	-	Lua	Stand-alone
Although	Lua	has	been	designed	as	an	extension	language,	to	be
embedded	in	a	host	C	program,	it	is	also	frequently	used	as	a	stand-
alone	language.	An	interpreter	for	Lua	as	a	stand-alone	language,	called
simply	lua,	is	provided	with	the	standard	distribution.	The	stand-alone
interpreter	includes	all	standard	libraries	plus	the	reflexive	debug
interface.	Its	usage	is:

						lua	[options]	[script	[args]]

The	options	are:

-	executes	stdin	as	a	file;
-e	stat	executes	string	stat;
-l	file	"requires"	file;
-i	enters	interactive	mode	after	running	script;
-v	prints	version	information;
--	stop	handling	options.

After	handling	its	options,	lua	runs	the	given	script,	passing	to	it	the	given
args.	When	called	without	arguments,	lua	behaves	as	lua	-v	-i	when
stdin	is	a	terminal,	and	as	lua	-	otherwise.

Before	running	any	argument,	the	interpreter	checks	for	an	environment
variable	LUA_INIT.	If	its	format	is	@filename,	then	lua	executes	the	file.
Otherwise,	lua	executes	the	string	itself.

All	options	are	handled	in	order,	except	-i.	For	instance,	an	invocation
like

							$	lua	-e'a=1'	-e	'print(a)'	script.lua

will	first	set	a	to	1,	then	print	a,	and	finally	run	the	file	script.lua.	(Here,	$
is	the	shell	prompt.	Your	prompt	may	be	different.)

Before	starting	to	run	the	script,	lua	collects	all	arguments	in	the

command	line	in	a	global	table	called	arg.	The	script	name	is	stored	in
index	0,	the	first	argument	after	the	script	name	goes	to	index	1,	and	so
on.	The	field	n	gets	the	number	of	arguments	after	the	script	name.	Any
arguments	before	the	script	name	(that	is,	the	interpreter	name	plus	the
options)	go	to	negative	indices.	For	instance,	in	the	call

							$	lua	-la.lua	b.lua	t1	t2

the	interpreter	first	runs	the	file	a.lua,	then	creates	a	table

							arg	=	{	[-2]	=	"lua",	[-1]	=	"-la.lua",	[0]	=	"b.lua",

															[1]	=	"t1",	[2]	=	"t2";	n	=	2	}

and	finally	runs	the	file	b.lua.

In	interactive	mode,	if	you	write	an	incomplete	statement,	the	interpreter
waits	for	its	completion.

If	the	global	variable	_PROMPT	is	defined	as	a	string,	then	its	value	is	used
as	the	prompt.	Therefore,	the	prompt	can	be	changed	directly	on	the
command	line:

							$	lua	-e"_PROMPT='myprompt>	'"	-i

(the	outer	pair	of	quotes	is	for	the	shell,	the	inner	is	for	Lua),	or	in	any
Lua	programs	by	assigning	to	_PROMPT.	Note	the	use	of	-i	to	enter
interactive	mode;	otherwise,	the	program	would	end	just	after	the
assignment	to	_PROMPT.

In	Unix	systems,	Lua	scripts	can	be	made	into	executable	programs	by
using	chmod	+x	and	the	#!	form,	as	in

#!/usr/local/bin/lua

(Of	course,	the	location	of	the	Lua	interpreter	may	be	different	in	your
machine.	If	lua	is	in	your	PATH,	then

#!/usr/bin/env	lua

is	a	more	portable	solution.)

Acknowledgments
The	Lua	team	is	grateful	to	Tecgraf	for	its	continued	support	to	Lua.	We
thank	everyone	at	Tecgraf,	specially	the	head	of	the	group,	Marcelo
Gattass.	At	the	risk	of	omitting	several	names,	we	also	thank	the
following	individuals	for	supporting,	contributing	to,	and	spreading	the
word	about	Lua:	Alan	Watson.	André	Clinio,	André	Costa,	Antonio	Scuri,
Asko	Kauppi,	Bret	Mogilefsky,	Cameron	Laird,	Carlos	Cassino,	Carlos
Henrique	Levy,	Claudio	Terra,	David	Jeske,	Ed	Ferguson,	Edgar	Toernig,
Erik	Hougaard,	Jim	Mathies,	John	Belmonte,	John	Passaniti,	John	Roll,
Jon	Erickson,	Jon	Kleiser,	Mark	Ian	Barlow,	Nick	Trout,	Noemi	Rodriguez,
Norman	Ramsey,	Philippe	Lhoste,	Renata	Ratton,	Renato	Borges,
Renato	Cerqueira,	Reuben	Thomas,	Stephan	Herrmann,	Steve	Dekorte,
Thatcher	Ulrich,	Tomás	Gorham,	Vincent	Penquerc'h.	Thank	you!

http://www.tecgraf.puc-rio.br
http://www.tecgraf.puc-rio.br

Incompatibilities	with	Previous
Versions
Lua	5.0	is	a	major	release.	There	are	several	incompatibilities	with	its
previous	version,	Lua	4.0.

Incompatibilities	with	version	4.0

Changes	in	the	Language

The	whole	tag-method	scheme	was	replaced	by	metatables.

Function	calls	written	between	parentheses	result	in	exactly	one
value.

A	function	call	as	the	last	expression	in	a	list	constructor	(like
{a,b,f()})	has	all	its	return	values	inserted	in	the	list.

The	precedence	of	or	is	smaller	than	the	precedence	of	and.

in,	false,	and	true	are	reserved	words.

The	old	construction	for	k,v	in	t,	where	t	is	a	table,	is	deprecated
(although	it	is	still	supported).	Use	for	k,v	in	pairs(t)	instead.

When	a	literal	string	of	the	form	[[...]]	starts	with	a	newline,	this
newline	is	ignored.

Upvalues	in	the	form	%var	are	obsolete;	use	external	local	variables
instead.

Changes	in	the	Libraries

Most	library	functions	now	are	defined	inside	tables.	There	is	a
compatibility	script	(compat.lua)	that	redefines	most	of	them	as
global	names.

In	the	math	library,	angles	are	expressed	in	radians.	With	the
compatibility	script	(compat.lua),	functions	still	work	in	degrees.

The	call	function	is	deprecated.	Use	f(unpack(tab))	instead	of
call(f,	tab)	for	unprotected	calls,	or	the	new	pcall	function	for
protected	calls.

dofile	does	not	handle	errors,	but	simply	propagates	them.

dostring	is	deprecated.	Use	loadstring	instead.

The	read	option	*w	is	obsolete.

The	format	option	%n$	is	obsolete.

Changes	in	the	API

lua_open	does	not	have	a	stack	size	as	its	argument	(stacks	are
dynamic).

lua_pushuserdata	is	deprecated.	Use	lua_newuserdata	or
lua_pushlightuserdata	instead.

The	Complete	Syntax	of	Lua

	 chunk	::=	{stat	[`;´]}

	 block	::=	chunk

	 stat	::=		varlist1	`=´	explist1	|	functioncall	|	do	block	end

	 funcname	::=	Name	{`.´	Name}	[`:´	Name]

	 varlist1	::=	var	{`,´	var}

	 var	::=		Name	|	prefixexp	`[´	exp	`]´	|	prefixexp	`.´	Name	

	 namelist	::=	Name	{`,´	Name}

	 init	::=	`=´	explist1

	 explist1	::=	{exp	`,´}	exp

	 exp	::=		nil	|	false	|	true	|	Number	|	Literal	|	function	|	prefixexp	|	tableconstructor	|	exp	binop	exp	|	unop	exp	

	 prefixexp	::=	var	|	functioncall	|	`(´	exp	`)´

	 functioncall	::=		prefixexp	args	|	prefixexp	`:´	Name	args	

	 args	::=		`(´	[explist1]	`)´	|	tableconstructor	|	Literal	

	 function	::=	function	funcbody

	 funcbody	::=	`(´	[parlist1]	`)´	block	end

	 parlist1	::=		Name	{`,´	Name}	[`,´	`...´]	|	`...´	

	 tableconstructor	::=	`{´	[fieldlist]	`}´

	 fieldlist	::=	field	{fieldsep	field}	[fieldsep]

	 field	::=	`[´	exp	`]´	`=´	exp	|	name	`=´	exp	|	exp

	 fieldsep	::=	`,´	|	`;´

	 binop	::=	`+´	|	`-´	|	`*´	|	`/´	|	`^´	|	`..´	|	`<´	|	`<=´	|	`

	 unop	::=	`-´	|	not

Last	update:	Tue	Jan	4	15:56:15	BRST	2005

Topic	Group	(Programming	with	LuaEdit) Lua	homepage

Integrated	Development	Environment	(IDE)
Working	with	Projects
Basics
Editor	Settings
Editing	Code
Debugging	Scripts

http://luaedit.luaforge.net	
©	Copyright	2004-2005	LuaEdit	

LuaEdit	v	2.0	for	Lua	5.0

http://www.lua.org
http://luaedit.luaforge.net

	LuaEdit References
	What's New?
	Minimum Requirements
	Legal Aspect
	Programming With LuaEdit
	Integrated Development Environement
	Working With Projects
	Basics
	Editor Settings
	Editing Code
	Debugging Scripts

	Lua 5.0 References
	Lua 5.0 Manual

