Log Parser

Log parser is a powerful, versatile tool that provides universal query
access to text-based data such as log files, XML files and CSV files, as
well as key data sources on the Windows® operating system such as the
Event Log, the Registry, the file system, and Active Directory®.

You tell Log Parser what information you need and how you want it
processed. The results of your query can be custom-formatted in text
based output, or they can be persisted to more specialty targets like SQL,
SYSLOG, or a chart.

The world is your database with Log Parser.

Most software is designed to accomplish a limited number of specific
tasks. Log Parser is different... the number of ways it can be used is
limited only by the needs and imagination of the user.

If you find a creative way to use it, let us know at www.logparser.com!

Here are some samples to whet your appetite...

http://www.logparser.com

Search for Data

Search for the logons of a specific user among the events in the
Windows Event Log:

C:\>LogParser "SELECT TimeGenerated, SourceName, EventCategoryName,
Message INTO report.txt FROM Security WHERE EventID = 528 AND SID
ANIKeLRIMESSUISE RS texdstie dsrmatbed as desired:

File Edit Format Wiew Help

TimeGenerated SourceMame EventCategoryhame Messala
2004-02-05 11:11:14 security LogonsLogoff sSucce
2004-06-18 09:56:37 Security LogonsLogoff Succe
2004-06-1% 10:43:10 Security LogonsLogoff Succe
2004-06-21 0B:06:52 Security LogonsLogoff Succe
2004-06-21 17:50:06 Security LogonsLogoff Succe
2004-06-22 08:14:05 Security LogonsLogoff Succe
2004-06-22 09:42:54 sSecurity LogonsLogoff Succe
2004-06-23 08:49:35 Security LogonsLogoff Succe
2004-06-24 10:01:06 Security LogonsLogoff Succe
2004-06-25 07:37:35 sSecurity LogonsLogoff Succe
TimeGenerated SourceMame EventCategoryiame Messa
2004-06-26 10:13:46 sSecurity LogonsLogoff Succe
2004-06-26 12:58:55 sSecurity LogonsLogoff Succe
2004-06-28 08:29:08 security LogonsLogoff Succe
2004-06-28 09:43:18 security LogonsLogoff Succe
2004-06-30 07:34:23 Security LogonsLogoff Succe
2004-07-01 07:43:41 security LogonsLogoff Succe
2004-07-01 09:26:24 sSecurity LogonsLogoff Succe
2004-07-02 07:33:53 sSecurity LogonsLogoff Succe
2004-07-03 19:40:5% Security LogonsLogoff Succe
2004-07-04 10:41:18 sSecurity LogonsLogoff Succev

< ¥

Create Reports

Create custom-formatted HTML reports:

Address @ C:\Documents and SettingzhGabriglehSystemE ventLog ht j a Go | Links *
Report generated by TESTDOLMAIN gabriele on 2003-04-21
23:41:44
Application Security Systemn
Type Time Source Category Event User
WARM 4721 15:47:01 Print HNone 20 3YETEM
INFO 4721 120504 Bervice Control Manager | None T036 Hi&
IMFO 4721 12:00:00 Eventlog HNone 6013 Hr&
IMFO 4721 11:49:04 Bervice Control Manager None 036 Hi&
INFO 4721 11:49:04 | Bervice Control Manager | None T035 | gabriele
WARN 4720 23:36:22 W32Time HNone S0 HiA
WARM | 4/20 22:54:53 Print Hone 3 gabriele
INFO 4720 22:54:51 Print HNone 13 B¥STEM
1] | _'|_I

€]

I_ I_ |_| j tdy Computer i

Calculate Statistics

Calculate the distribution of the HTTP response status codes from your
IIS log files:

C:\>LogParser "SELECT sc-status, COUNT(*) AS Times INTO Chart.gif FR
OM <1> GROUP BY sc-status ORDER BY Times DESC" -chartType:PieExpl
Asdbapdisarerafarstanmatisiésas desired:

Status Codes

@ 200
W 304
0O 404
0O 302
W 207
O 403
W 205
0300
W 400
W 502
0O 406
H 411

System Requirements

Log Parser is compatible with the Windows® 2000, Windows® XP
Professional, and Windows Server ™™ 2003 operating systems.

© 2004 Microsoft Corporation. All rights reserved.

What's New in Log Parser 2.2

New Input and Output Formats:

XML Input Format
Reads XML files (requires the Microsoft® XML Parser (MSXML))

TSV Input Format
Reads tab- and space- separated values text files

ADS Input Format
Reads information from Active Directory objects

COM _Input Format
Makes it possible to plugin user-implemented custom Input Formats

REG Input Format
Reads information from the Windows Registry

NETMON Input Format
Makes it possible to parse NetMon .cap capture files

ETW Input Format
Reads Event Tracing for Windows log files and live sessions

CHART Output Format
Creates chart image files (requires Microsoft Office 2000 or later)

TSV Output Format
Writes tab- and space- separated values text files

SYSLOG Output Format
Sends information to a SYSLOG server or to a SYSLOG-formatted
text file

Improvements to the SQL Engine:

Exponential performance improvement in SELECT DISTINCT and GROUP BY
queries

"WITH ROLLUP" functionality in the GrourP BY clause

"DISTINCT" in aggregate functions
(when no GrRoupP BY clause is specified)

"PROPSUM(...) [ON <fields>]" and "PROPCOUNT(...) [ON <fields>]"
aggregate functions
(these functions calculate the ratio between the SUM or COUNT
functions on a field and the SUM or COUNT functions on the same
field in a hierarchically higher group)

New functions:
e MOD
e BIT_AND, BIT_OR, BIT_NOT, BIT_XOR, BIT_SHL, BIT_SHR
e EXP10, LOGI10
¢ ROUND, FLOOR
e ONTROUND TO_DIGIT, QNTFLOOR_TO DIGIT
e STRREPEAT
e IN. ROW_NUMBER, OUT_ROW_NUMBER
e ROT13

o EXTRACT_FILENAME, EXTRACT_EXTENSION,
EXTRACT_PATH

e HEX_TO_ASC, HEX_TO_PRINT, HEX_TO_INT

e HEX_TO HEX8, HEX_TO_HEX16, HEX_TO_HEX32
e IPV4_TO_INT, INT_TO_IPV4

e HASHSEQ, HASHMD5_FILE

e EXTRACT _PREFIX, EXTRACT SUFFIX

e STRCNT

Introduced a "usInG" clause for declaring temporary field-expressions
"BETWEEN" operator in the wHERE and HAVING clauses

"CASE" (simple-form) statement in the SeLecT clause
("SELECT CASE myField WHEN 'valuel' THEN '©' WHEN 'value2' THEN
'1' ELSE '-1' END")

New date and time formats:
e 1 (milliseconds - lower case 'L")
¢ n (nanoseconds)
o tt (AM/PM)
e 2 (any character)

Fields and Aliases are now case-insensitive

Improvements to existing Input and Output
Formats:

Added many new parameters to most of the Input and Output Formats

The ncsa input format now parses also combined and extended NCSA
log files

Added "EventCategoryName" and "pata” fields to the evT input format

The "-recurse" options of most input formats now specify a maximum
subdirectory recursion level

The csv Input and Output Formats now support CSV files with double-
guoted strings

Added "Fileversion", "ProductVersion”, "CompanyName", etc. fields to the Fs
input format

Allowed '*' and '2' wildcards in the site name specifications for all the
IIS input formats
("SELECT * FROM <mysite*.com>"

Allowed URL's as the input path of all text-based input formats
("SELECT * FROM http://www.adatum.com/table.csv")

Allowed use of environment variable names in the TpL output format
sections, and added a SYSTEM_TIMESTAMP Variable

Performance improvement in the evT input format when reading from
local and remote event logs

All the property names of the input and output format COM objects now
match the command-line names

General improvements:

Added the possibility to specify parameters in .sql files
("logparser -file:myquery.sql?param1=value1+param2=value2")

Input I/O performance improvement for text files
Added the possibility to permanently override the default values of global

options, input format options, and output format options
("logparser -e:10 -0:NAT -rtp:-1 -savedefaults")

© 2004 Microsoft Corporation. All rights reserved.

Conceptual Overview

This section provides information on the operational mechanisms of Log
Parser.

e Log Parser Architecture: Describes the internal architecture of Log
Parser.

e Records: Describes the data that Log Parser processes when working
with Input and Output Formats.

e Commands and Queries: Describes how Log Parser commands are
structured, and how you specify queries in a command.

e Errors, Parse Errors, and Warnings: Describes the run time errors that
can be generated by Log Parser when executing a command.

© 2004 Microsoft Corporation. All rights reserved.

Log Parser Architecture

Log Parser is made up of three components:

¢ Input Formats are generic record providers; records are equivalent to
rows in a SQL table, and Input Formats can be thought of as SQL
tables containing the data you want to process.
Log Parser's built-in Input Formats can retrieve data from the following
sources:

e |IS log files (W3C, IIS, NCSA, Centralized Binary Logs, HTTP Error
logs, URLScan logs, ODBC logs)
e Windows Event Log

e Generic XML, CSV, TSV and W3C - formatted text files (e.g.
Exchange Tracking log files, Personal Firewall log files, Windows
Media® Services log files, FTP log files, SMTP log files, etc.)

e Windows Registry

e Active Directory Objects

¢ File and Directory information

e NetMon .cap capture files

o Extended/Combined NCSA log files

e ETW traces

e Custom plugins (through a public COM interface)

e ASQL-Like Engine Core processes the records generated by an
Input Format, using a dialect of the SQL language that includes
common SQL clauses (SELECT, WHERE, GROUP BY, HAVING, ORDER BY),
aggregate functions (SuM, COUNT, AVG, MAX, MIN), and a rich set of
functions (e.g. SUBSTR, CASE, COALESCE, REVERSEDNS, etc.); the resulting
records are then sent to an Output Format.

e Output Formats are generic consumers of records; they can be
thought of as SQL tables that receive the results of the data
processing.

Log Parser's built-in Output Formats can:

e Write data to text files in different formats (CSV, TSV, XML, W3C,

user-defined, etc.)

Send data to a SQL database

Send data to a SYSLOG server

Create charts and save them in either GIF or JPG image files
Display data to the console or to the screen

#Note: Transmitting data through a non-secure network might pose
a serious security risk to the confidentiality of the information
transmitted.

For more information on the security risks associated with non-
secure networks, see Security Considerations.

I= Logs
Teut files i
MAEC, SV CoLles
M0, CSW L
Event Log
SaL
Database
FileSystem
SEL-Like
Engine Chartz
Registry Core
ETW Traces " 2HsLoc
[.] Screen,
Consale
Uzer-supplied
Plugins

The Log Parser tool is available as a command-line executable
(LogParser.exe) and as a set of scriptable COM objects (LogParser.dll).
The two binaries are independent from each other; if you want to use
only one, you do not need to install the other file on your computer.

© 2004 Microsoft Corporation. All rights reserved.

Records

Log Parser queries operate on records from an Input Format. Records
are equivalent to rows in a SQL table, and Input Formats are equivalent
to SQL tables containing the rows (data) you want to process.

Fields and Data Types

Each record generated by an Input Format is made up of a fixed number
of fields (the columns in a SQL table), and each field is assigned a
specific name and a specific data type; the data types supported by Log
Parser are:

e Integer
e Real

e String
e Timestamp

Fields in a record can only contain values of the data type assigned to
the field or, when the data for that field is not available, the NULL value.

For example, let's consider the EVT Input Format, which produces a
record for each event in the Windows Event Log.

Using the command-line executable, we can discover the structure of the
records provided by this Input Format by typing the following help
command:

C:\>LogParser -h -i:ETW

The output of this command gives a detailed overview of the EVT Input
Format, including a "Fields" section describing the structure of the
records produced:

Fields:

EventLog (S) RecordNumber (1) TimeGenerated (T)
Framhthweraupyrabove, pvedinoerstand thateaatrygeerd is made up of 15
fieldsnangbiNdnie($ystanaeydhe feegbnfighd of epcénteaaigbis Names)
"TwoaWetiane agid alwaysueasiams values gbthpuldMiandABP data type.

SID (S) Message (S) Data (S)

Record Structure

Some Input Formats have a fixed structure for their records (like the EVT
Input Format used in the example above, or the ES Input Format), but
others can have different structures depending on the values specified for
their parameters or on the files being parsed.

For instance, the NETMON Input Format, which parses NetMon capture
files, has a parameter ("fMode") that can be used to specify how the
records should be structured. We can see the different structures when
we add this parameter to the help command for the NETMON format.
The first example shows the fields exported by the NETMON Input
Format when its "field mode" is set to "TCPIP" (each record is a single
TCP/IP packet), and the second example shows the fields exported by
the NETMON Input Format when its "field mode" is set to "TCPConn"
(each record is a full TCP connection):

C:\>LogParser -h -i:NETMON -fMode:TCPIP

Fields:
Agéﬁ’ﬂﬂfﬁg}l‘é@@?ﬁﬂ@ t uPRTEE (Hich E@@S@Ef@&(ﬁ es
CJr'%@ﬁagggﬁgﬁes {Reture by

.n%ﬁ&l&ﬁg then:r:npatlﬂssl‘tl}§ FoheldbYersian 4R ¢
he help68rthanditHthe cs Wﬂﬂf"’lgbzrﬁ'{é} the "Fields"
sé)ca[}'ckﬂagﬁg\'ﬁé 1 infGariarsH3h thersediastficture:

Eoggggggg :h }%IEEI;MON -fMode: TCPConn

}—%ﬁ% when we supply the name of a CSV file that, for instance,
%‘&%ﬂ o)fr %ﬁ#}n&@@nﬁflﬁ file(s)
st lﬁ%’fﬁ% the recorcgiBBE %hen Pg @%

SrcPort (I)
C tes (I SrcPayload (S DstMAC (S)
(SDR][?lp arse¥ % (IJC%V ﬁﬁ

DstPayloadBytes (1)
ﬁ,l)esl[gsa:yloaa (S)

Filename (39 20@®oMivasrt Torpokatgidntéd ([INightsMessrge(d)

Commands and Queries

When using the command-line executable, Log Parser works on
commands supplied by the user.
Each command has five distinct components:

e The Input Format to use;

e Optional parameters for the Input Format;
e The Output Format to use;

e Optional parameters for the Output Format;

e The SQL query that processes the records generated by the Input
Format and produces records for the Output Format.

For example, let's consider the following simple command:

C:\>LogParser -i:EVT -fullText:OFF -0:CSV -tabs:OFF "SELECT * INTO out

put.csv FROM SYSTEM"
The command above is structured as follows:

e The EVT Input Format is selected using the -i:<Input Format nhame>
parameter;

e Its "fullText" parameter is set to the "OFF" value;

e The CSV Output Format is selected using the -0:<Output Format
name> parameter;

e |ts "tabs" parameter is set to the "OFF" value;

e The SQL query is "SELECT * INTO output.csv FROM SYSTEM",

which specifies that all records generated from the System Event Log
should be sent directly to the Output Format with no further processing.

In some cases, it might not be necessary to specify the Input Format. In
the example command above, the value of the FROM clause is
"SYSTEM", which is the name of a standard Windows Event Log; this
name is automatically recognized by Log Parser as a candidate for the
EVT Input Format, so we can avoid specifying the Input Format name
altogether:

C:\>LogParser -fullText:OFF -0:CSV -tabs:OFF "SELECT * INTO output.csv

FROM SYSTEM"
As examples of other values of FROM clauses that can be recognized by

Log Parser, the lISW3C Input Format is selected automatically when the
filename in the FROM clause starts with "ex" and has the ".log"
extension, and the XML Input Format is selected automatically when the
filename has the ".xml" extension.

The same applies to Output Formats: in the example command above,
the filename in the INTO clause has the "csv" extension, thus selecting
automatically the CSV Output Format; the same command can therefore
be typed as:

C:\>LogParser -fullText:OFF -tabs:OFF "SELECT * INTO output.csv FROM

SYSTEM"
When an Output Format is not specified, and the SQL query does not

contain an INTO clause Log Parser automatically selects the NAT Output
Format, which prints the results of the query to the console window.

These examples show the minimal Log Parser command is made up of
the SQL query alone. In most cases the Input and Output formats can be
deducted automatically from the INTO and FROM clauses of the query;
however, it is a recommended good practice to always explicitly specify
the Input and Output formats using the -i and -0 parameters.

© 2004 Microsoft Corporation. All rights reserved.

Errors, Parse Errors, and Warnings

During the execution of a command, Log Parser can encounter three
different types of run time errors: Errors, Parse Errors, and Warnings.

Errors

Errors are exceptional events occurring during the execution of a
command that cause the command to abort.

Even though Errors can occur due to a large number of reasons, the
most common causes can be categorized as follows:

Invalid query syntax: the query specified in the command is invalid.
Input Format errors: the specified Input Format has encountered an
error that prevents it from generating input records. This could happen,
for example, when the FROM clause specifies an entity (e.g. a file) that
does not exist.

Output Format errors: the specified Output Format has encountered
an error that prevents it from consuming output records. This could
happen, for example, when the INTO clause specifies an entity (e.g. a
file) that cannot be written to.

Too many Parse Errors: the specified Input Format has encountered
too many Parse Errors, as specified by the "-e" command-line global
parameter.

Catastrophic errors: for example, Log Parser ran out of memory.

When an error occurs, the Log Parser command-line executable aborts
the query execution and returns the error message and the error code.
When an error occurs while using the Log Parser scriptable COM
components, a COM exception is thrown containing the error message
and the error code.

In most cases, the error code returned is the internal system error code
that caused the error.

Parse Errors

Parse Errors are errors that occur while the selected Input Format
generates the data on which the query operates.

Most of the times, as the name suggests, these errors are generated
when a log has malformed entries (for example, when using the ISW3C
Input Format), or when a system error prevents an Input Format from
processing a specific entry in the data (for example, an "access denied"
error on a file when using the ES Input Format).

In any event, the presence of a Parse Error indicates that the Input
Format had to skip the data entry that caused the error; for example,
when a Parse Error is encountered by the IISW3C Input Format while
parsing a malformed line in the log, that line will be skipped and it will not
be processed by the SQL engine.

Parse Errors do not generally cause early termination of the currently
executing command, but rather, they are collected internally by the SQL
engine and reported when the command execution is complete.

This behavior can be controlled with the -e command-line global
parameter. The value used with this parameter specifies a maximum
number of Parse Errors to collect internally before aborting the execution
of the command.

For example, if we execute a query on an IISW3C log file specifying "-
e:10", Log Parser will collect up to 10 Parse Errors during the execution
of the command. If the ISW3C Input Format encounters 10 or less Parse
Errors, the command will complete succesfully, and the collected Parse
Errors will be reported in detail at the end of the execution. On the other
hand, if the input log file contains more than 10 malformed log lines, the

111" parse Error will cause the command to abort and return an Error.
The default value for this command-line parameter is -1, which is a
special value causing the SQL engine to ignore all Parse Errors and

report only the total number of Parse Errors encountered during the
execution of a command.

As an example, consider the following command, which parses an

lISW3C log file and writes all the input records to a CSV file:

C:\>LogParser -i:IISW3C -0:CSV "SELECT * INTO Output.csv FROM ex02

0528.1og"
Let's assume that the "ex020528.log" log file contains 3 malformed log

lines.
After executing the command above, the output will be as follows:

Task completed with parse errors.
Parse errors:

Thisagietprbie br tigidtpltie £prateasidexecuted succestully, but 3 Parse
Errors have been encountered while processing the input data. Since the

dsfaudtivalue for the "-e" command-line parameter is -1, the SQL engine

has ignored all these Parse Errors, keeping just their total count.
Elements processed: 997

IfBMavRRteapheseddarse Errors to be reported in detail, we could specify

apsaloaiter thee!'-e"opeg areeirIsdifferent than -1.:

C:\>LogParser -i:IISW3C -0:CSV "SELECT * INTO Output.csv FROM ex02

0528.1og" -e:10
In this case, the output would be:

Task completed with parse errors.

Parse errors:
Theaomnaper il exegtesd susaesti yasig thisdiuedherd ddarxksrors
has@keean(eplaatedringgeported at the end of the execution.

LogFile "C:\Logs\ex020528.log", Row number 23, Value "2b00"
lfauarwdispestiod [ide fonihe charapaidmaieiethg SRlkRNgineswatd have
abpsigmd [heceepdtionnishe lsgmRanchianseangrror would be returned:

Log row terminates unexpectedly

Thslghblertéct\[.ogs\ex020528.1og", Row number 188

Too many parse errors - aborting

Beatsecsors:

Error-while parsing field sc-status: Error parsing StatusCode "2b00": Extra
Edtarantenis) desned i99ateger

Eleogfinks 6Gtpuogs\BR020528.1og", Row number 23, Value "2b00"
Exnowti 6im dered-ofOLide sexdmascharacters detected at the end of log entry

LogFile "C:\Logs\ex020528.1og", Row number 118
Log row terminates unexpectedly
LogFile "C:\Logs\ex020528.1og", Row number 188

Statistics:

Elements processed: 182
Elements output: 181
Execution time: 0.01 seconds

Warnings

Warnings are exceptional events occurring during the execution of a
command that require attention from the user.

There are only a few situations that could cause a warning, and these are
handled differently depending on whether or not the warning arises
during the execution of a command, or when the execution has
completed.

When a warning is generated during the execution of a command, the
command-line executable shows an interactive prompt to the user asking
whether or not the execution should continue.

As an example, consider a command that writes output records to a CSV
file.

The CSV Output Format “fileMode" parameter can be used to specify
what action should be taken in case the output file already exists. The
value "2" specifies that already existing output files should not be
overwritten; when using this option, the CSV Output Format will raise a
Warning when an already existing output file will not be overwritten:

C:\>LogParser -i:EVT -0:CSV "SELECT TOP 5 Message INTO Output.csv F
ROM System" -fileMode:2

WARNING: File C:\LogSamples\Output.csv exists and it will not be overwritt
en

M&ybthwdhmmmrﬁnﬂ@awéhmmgﬁmmpppose between continuing the
execution of the command allowing additional warnings to trigger the

prompt again, aborting the execution of the command (in which case the
command terminates with an Error), or continuing the execution of the
command ignoring additional warnings.

The interactive prompt can be controlled with the global -iw command-
line parameter. This ON/OFF parameter specifies whether or not

warnings should be ignored; the default value is "OFF", meaning that run
time warnings will not be ignored and will trigger the interactive prompt.
Specifying "ON", on the other hand, disables the interactive prompt, and
run time warnings will be ignored and their total count will be reported
when the command execution has completed:

C:\>LogParser -i:EVT -0:CSV "SELECT TOP 5 Message INTO Output.csv F
ROM System" -fileMode:2 -iw:ON

Task completed with warnings.

Warnings:
=Tip: -0q P and-line executable in a non-
1 war%yiﬁga(éftcl\@gtﬁgt@éﬁ%ﬁ%&%gygas been scheduled to run

automatically at specific times), you should always use "ON" for the
Statistiiwg: parameter, otherwise in the event of a run time warning the Log

interactive prompt.
Elements processed: 5

Elements output: 5
V&grenﬁlrllté%ntﬁg}eére g'gr??esreact%%d\s/vhen a command has completed are simply
reported to the user.
For example, the "ignoreDspchErrs" parameter of the SYSLOG Output
Format can be used to specify whether or not errors occurring while
dispatching output records should be ignored and reported as warnings
at the end of the execution.

The following example command uses the SYSLOG Output Format to
send output records to a non-existing user:

C:\>LogParser -i:EVT -0:SYSLOG "SELECT TOP 5 Message INTO NonExis

tingUser FROM System" -ignoreDspchErrs:ON
Since the specified user does not exist, the SYSLOG Output Format will

encounter an error for each output record it will try to send to the user;
the "ON" value for the "ignoreDspchErrs" tells the output format to ignore
these errors and report all of them when the execution has completed:

Task completed with warnings.
Warnings:

The fouown&gg Bﬁtﬂ}?/ e}r(r)%rg Efufreod:atio . All rights erved.
The message alids could no e 1ound on tne ne K. 11mes

Statistics:

Elements processed: 5
Elements output: 5

Execution time: 0.02 seconds

Writing a Query

With Log Parser you use Queries written in a dialect of the SQL
language to specify the operations that transform input records generated

by an Input Format into output records that are delivered to an Output
Format.

In this section we will cover the eight basic building blocks of the SQL-
Like queries that you can use with Log Parser to perform different
processing tasks.

© 2004 Microsoft Corporation. All rights reserved.

Basics of a Query

The most simple query that can be written with Log Parser specifies that
all the Input Records generated by an Input Format are to be delivered to
an Output Format with no intervening processing.

For example, let's assume that we want to visualize all the fields of all the
events in the System Event Log. To perform this task, we first have to
specify the EVT Input Format as the source of our input records, and we
do so by using the "-i:EVT" command-line parameter.

Then, we can choose the NAT Output Format as the consumer of our
output records, since this Output Format is specifically designed to print
output records to the console window; we do so by using the "-0:NAT"
command-line parameter. Finally, we specify the SQL query that performs
the desired task; the complete command is as follows:

C:\>LogParser -i:EVT -0:NAT "SELECT * FROM System"

The query above contains the two basic building blocks of each possible
guery: the SELECT clause, and the FROM clause.

The SELECT clause is used to specify which input record fields we want
to appear in the output records; in this example, the special "*" wildcard
means "“all the fields".

The FROM clause is used to specify which specific data source we want
the Input Format to process. Different Input Formats interpret the value of
the FROM clause in different ways; for instance, the EVT Input Format
requires the value of the FROM clause to be the name of a Windows
Event Log, which in our example is the "System" Event Log.

To be precise, the INTO clause should appear in every query as well. The
INTO clause is used to specify the target we want the Output Format to
write data to. In our example, we want the NAT Output Format to display
results to the console window. This is accomplished by specifying
"STDOUT" for the value of the INTO clause, as in the following example:

C:\>LogParser -i:EVT -0:NAT "SELECT * INTO STDOUT FROM System"

When a query does not specify an INTO clause, the NAT Output Format
automatically selects "STDOUT" as its target, so in our example we can
eliminate the INTO clause altogether.

ETip: When you use the NAT Output Format to display results to the
console window, Log Parser prints 10 lines before pausing the
printout and prompting the user to press a key to display the next 10
lines.

To override this behavior, you can use the "-rtp" parameter of the
NAT Output Format to specify the number of lines to be printed
before pausing; if you want to disable the pause altogether and have

Log Parser display all the records in a single printout, use the "-1"
value.

Selecting Specific Fields

When you execute the basic query above, Log Parser prints all the fields
of all the events in the System Event Log to the console window.

Most of the times, a printout of all of the 14 fields of the Event Log
records might not be desired. For example, we might only want to see the
time at which each event was generated, the type of the event, and the
name of the source of the event.

To accomplish this, we have to substitute the "*" wildcard in the SELECT
clause with a comma-separated list of the names of the fields we wish to
be displayed. We can see the names of the fields in the EVT Input
Format records by typing the following help command:

C:\>LogParser -h -i:EVT

The output of this command gives a detailed overview of the EVT Input
Format, including a "Fields" section describing the structure of the
records produced:

Fields:

EventLog (S) RecordNumber (1) TimeGenerated (T)
Frammtvwerfiedds tisting, weetitergtand that thediglgsewp are interested in
argnaingpeNunr@sperataentevesidypaNamet;vantCaapoicelNames) we
CapoRYE KRWEIESPUr CONBHAINS 6S) ComputerName (S)

SID (S) Message (S) Data (S)

C:\>LogParser -i:EVT -0:NAT "SELECT TimeGenerated, EventTypeName, S
ourceName FROM System"

ETip: Field names are case-insensitive.

ETip: If a field name contains spaces, you need to enclose it in
square brackets ([' and ') for Log Parser to be able to recognize it.

The output of this command contains three columns, one for each of the
fields we have selected:

TimeGenerated EventTypeName SourceName

This-example-ilustrates-the-mest-simple-transformation that you can
azhidvesxiith1ir6d:65 Warsmg SQdntanyviagjEnteansforming an input record
n2add-0p-o4 4 4 0k irdbfieldintyan Didlut record made up of a subset
oRBdge3firddist: (2 3@ Infermatithisean§iskmation is called projection.

2004-03-14 12:00:00 Information event EventLog

2004-03-14 00:41:47 Warning event W32Time

2004-03-13 22:17:00 Information event Service Control Manager

2004-03-13 22:06:48 Information event Service Control Manager

2004-03-13 22:06:48 Information event Service Control Manager

2004-03-13 12:00:00 Information event EventLog

2004-03-12 22:30:47 Information event Service Control Manager

Using Functions

Functions are very powerful elements of the Log Parser SQL-Like
language that take values as arguments, do some processing, and return
a new value.

The Log Parser SQL-Like language supports a wide variety of functions,
including arithmetical functions (e.g. ADD, SUB, MUL, DIV, MOD,
QUANTIZE, etc.), string manipulation functions (e.g. SUBSTR, STRCAT,
STRLEN, EXTRACT_TOKEN, etc.), and timestamp manipulation
functions (e.g. TO_DATE, TO_TIME, TO_UTCTIME, etc.).

Considering the previous example, assume that for the "TimeGenerated"
field we only need to retrieve the date when an event has been
generated, ignoring all of the time elements.

To do this, we need to modify the "TimeGenerated" field with the
TO_DATE function, which takes a value of type TIMESTAMP and returns
a new value of type TIMESTAMP containing only the year, day, and
month elements:

C:\>LogParser -i:EVT -0:NAT "SELECT TO_DATE(TimeGenerated), EventT

ypeName, SourceName FROM System"
The output of this command is:

TO_DATE(TimeGenerated) EventTypeName SourceName

Frowtiopsigan alsowapaas aseatgumesnsinfeother functions.
Fooexemple, insteagrofiheayvenddypeskRame shown in the output above,
wWE) gt want the insbMeRigbaryeViaeRing”, "Information”, etc.), all in
capiiglgetiers. Information event EventLog
Thindagk can be acpampliseeshby finss2sing the EXTRACT _TOKEN
funotiops-which extragtsspesifievsubstings trerrylitimagstring, followed
byditre 07501 UPPERGAS R {tibsiQenvdtishdsansiaansamsiing into a string
witlhalbgppercase ¢hayiagh@si event Service Control Manager

2004-03-13 Information event EventLog

P004-08 Pt ser -i:E VilfoomaAdr' S¥dnE Sdivice Dévtk{[[Mar@gaerated), TO_UP

PEROAPE(HA LB erked Y FENTPHERIVRSIRER TR ADT SPHRENABG ey
B@ﬁﬁ{%, '")) SourceName

2004-03-14 WARNING W32Time

2004-03-14 INFORMATION Disk
2004-03-14 INFORMATION Disk
2004-03-14 INFORMATION EventLog
2004-03-14 WARNING W32Time
2004-03-13 INFORMATION Service Control
Manager

2004-03-13 INFORMATION Service Control
Manager

2004-03-13 INFORMATION Service Control
Manager

2004-03-13 INFORMATION EventLog
2004-03-12 INFORMATION Service Control

Manager

Specifying Constants

So far we have written SELECT clauses that specify both fields and
functions.

There is a third kind of item that we could use in our queries: constants.
Constants are special elements in the Log Parser language that
represent fixed values; just like the field values, constant values can be
one of the Log Parser types: INTEGER, REAL, STRING, TIMESTAMP,
and NULL. Constants can be specified in queries in different ways,
depending on their type.

Constant values of the INTEGER type are specified by simply typing their
value; the following query:

SELECT 242, SourceName FROM SYSTEM

would produce the following output:

242 SourceName

242 W32Time

C?o%ﬁ]fvalues of the REAL type are specified exactly like the INTEGER
,l%‘ut they are recognized as being of the REAL type by the

v
PS8 decimal point:
242 W32Time

SELECT 242.7, SourceName FROM SYSTEM

242.700000 SourceName

242.700000 W32Time

Szlﬁlmoggngfélﬁts must be enclosed within single-quote characters:
242.700000 Disk

gﬁ%@?%?&%ﬁ%ﬁ%, SourceName FROM SYSTEM

190 MGl B ame
SpgcishsharaciessTinme TRING constants can be specified by using
chayasteiffqumaskes preceded by the '\' character.
FRryesisipie, dkgle-quote character can be specified as \', while a
beskstasteharaetrl.ean be specified by \\:
MyConstant W32Time
SELECT 'Contains \' a quote', 'Contains \\ a backslash', SourceName FROM S
YSTEM

'Contains 'a quote' 'Contains \ a backslash' SourceName

ICadditien aitifoalsTpassIe 10 &kl any3NIGODE character using
tiEo X Xanpisio nc whais X¥patkihet-digik hexadecimal representation
o thiftaiiy I Q QiRfreCRSAGERE \ a backslash Disk
Fobsamplegiatspemihitankbaahiaiatish (whese bNICODE value is 0009),
WEoB@lE tPQiote Contains \ a backslash W32Time

SELECT 'Contains \u0009 a tab', SourceName FROM SYSTEM

A NULL constant can be specified with the "NULL" keyword:

SELECT NULL, SourceName FROM SYSTEM

TIMESTAMP constants are specified in the following way:

TIMESTAMP('timestamp value', 'timestamp format')

For more information regarding timestamp values, constants, and format
specifications, refer to the Timestamp Reference.

In the Log Parser SQL language, the three terms that can be specified in
a SQL query (fields, functions, and constants) are collectively referred to

as field-expressions.

Aliasing Field-Expressions

Consider again one of the examples seen in this section:

C:\>LogParser -i:EVT -0:NAT "SELECT TO_DATE(TimeGenerated), TO_UP
PERCASE(EXTRACT_TOKEN(EventTypeName, 0, '')), SourceName FRO

YOSYSTE(TimeGenerated) TO_UPPERCASE(EXTRACT_TOKEN(EventTy

peName, 0, '')) SourceName
We._can see that far each field in the output record, the NAT Qutput .

Farmat prints a column header with the name of that field.
Byodefaglt,output regaraNisids are named with the full fehd-eExpsession
texjodhatgrnerates IREORM ATIEXample, the name of thepiggt output
regorddeidiis "TO P& UHNimeEenerated)”, which mirrorggxactly the

figti-expreasion texNEORMAITEIPELECT clause. EventLog

2004-03-14 WARNING o W32Time
Weran3:hange theRaor Mg feld-expression in the SELSelicela@dserby
UsagagerAlias.

Inouday3tq alias a fiplgFervessioNin the SELECT clause, Sug,/adéserdne
Aﬁd@g@tord followed by the new name:
2004-03-13 INFORMATION Service Control
ManbggParser -i:EVT -0:NAT "SELECT TO_DATE(TimeGenerated) AS Date
PRO%:ABd 3TO_ UPHE]]KORS’E‘@E[KYNRACT TOKEN(EventTyBeNatheg0, '))

AW dsfiniiadned BaydNg Service Control

2004-03-14 WARNING W32Time

A%%%ﬂ%;é i fleldEKHR: %Qﬁ%‘as&gnlng a name to it; as we will see
HamBY: T&QN H’lé\nywhere else in the query as a

s%%?fw?f%t r%@@/{ﬁg@\% inYFREI % xpression.

2004-03-14 WARNING 32Time

2004-03-13 ATIO ervice ontro anager

l
2004-03-13 2 / Ora0ralion. Sy %é reserved.
2004-03-13 INFORMATION Service Control Manager
2004-03-13 INFORMATION EventLog

2004-03-12 INFORMATION Service Control Manager

Filtering Input Records

When retrieving data from an Input Format, it is often needed to filter out
unneeded records and only keep those that match specific criteria.

For example, consider the simple command seen in the previous section,
which returns selected fields from all of the events in the System event
log:

C:\>LogParser -i:EVT -0:NAT "SELECT TimeGenerated, EventTypeName, S
ourceName FROM System"

TimeGenerated EventTypeName SourceName

L20s4003viass8IsE 3havavei dge-@ily INteESSteaen the events generated by
the(sendice Qaties ManageloseWwaEDIsk
Toomacomplish o BEoWwRaEaA beehanasker basic building block of the
LogoRasau3Qbd-dergpgHags thedMHBREgause.

2004-03-14 00:41:47 Warning event _W32Time _
THOWHERD 5240 i H3RAMBPREGISDRYIeR EPissIgn that must be
S3HEHSSA Y 3D PYS TRESHH IR0 N IR QUR R RS AP HEal{ARYF records that
d?o@%c%%%@i*ﬁ%%ﬁﬂ%%ﬂfﬁ&&@fﬁ@é@?& Control Manager

IDGf2lo i B0 IBEA AN ERREWHIERE clause is a
rgfs{asaesion. ealleASRIERHMY: event Service Control Manager

Using the WHERE clause, we can rewrite the previous command as
follows:

C:\>LogParser -i:EVT -0:NAT "SELECT TimeGenerated, EventTypeName, S

ourceName FROM System WHERE SourceName = 'Service Control Manager'
" ETip: The WHERE clause must immediately follow the FROM

clause.

The output of this command is:

TimeGenerated EventTypeName SourceName

Legga0clyzoim dejailiheidtieREGlasss dsatbitridlismxageple.
The boolean condition that we have used is a very simple one: we only

WAMHOSSE3i AP ittrd8drdsvmlhiee égourseMameEdiietd Nasdlgerexact value
02 0841Q8e 3CarMfol 8lafagetioneepaciriiie Conditiovianssdave used the
"200dateoha P2 3erdfon{vith dhier eftanp Skama b EimyrtieM SmgrceName™
fie()4a0ist 1A Pig Bt 3xpbranc deing w8 TRING ¢onstahManager

2004-03-12 21:09:14 Information event Service Control Manager

Complex Conditions

Conditions specified in the WHERE clause can be more complex, making
use of comparison operators (such as ">", "<=", "<>", "LIKE",
"BETWEEN", etc.) and boolean operators (such as "AND", "OR", "NOT").

For example, we might only want to see two kinds of events:

e Events generated by the "Service Control Manager" source whose
EventlD is greater than or equal 7024;

e Events generated by the "W32Time" source.

To accomplish this, the query can be written as follows:

SELECT TimeGenerated, EventTypeName, SourceName FROM System
WHERE (SourceName = 'Service Control Manager' AND EventID >= 7024)
OR

As ahsErYdRTe Wt? hMiBAY want to see all the events that have been
logged in the past 24 hours.

Translated into WHERE terms, this means that we only want to see
records whose "TimeWritten" field is greater than or equal the current
local time minus 1 day:

SELECT * FROM System
WHERE TimeWritten >= SUB(TO_LOCALTIME(SYSTEM_TIMESTAMP()

ey i Of M i 1 of
)’ Tll\%gfﬁmganst a Z%ﬁn%p SS’VQ%?' M‘;@? lcc))tra1 speé)ifizgis

day 2 of month 1 of year zero, i.e. 24 hours after the origin of time.

To see security events whose "Message" field contains the word "logon”,
we can use the LIKE operator, which tests a STRING value for case-
insensitive pattern matching:

SELECT * FROM Security

WHERE Message LIKE '%logon%!'

If we want to retrieve events with an ID belonging to a specific set of
values, we can use the IN operator followed by a list of the desired
"EventID" values:

SELECT * FROM Security
WHERE EventID IN (547; 541; 540; 528)

ETip: With the IN operator, single values are separated by the
semicolon character.

On the other hand, if we want to retrieve events with an ID belonging to a
specific range of values, we can use the BETWEEN operator as follows:

SELECT * FROM Security
WHERE EventID BETWEEN 528 AND 547

© 2004 Microsoft Corporation. All rights reserved.

Sorting Output Records

A commonly used building block of SQL queries is the ORDER BY
clause.

The ORDER BY clause can be used to specify that the output records
should be sorted according to the values of selected fields.

In the following example, we are using the ES Input Format to retrieve a
listing of the files in a specific directory, sorting the listing by the file size:

C:\>LogParser -i:FS -0:NAT "SELECT Path, Size FROM C:\MyDirectory*.*
ORDER BY Size"

Path Size

C:\M);ﬁ'gpgg@ F.QQDLEcijeBr; clause IT‘bIS'[be the last clause appearing in a
C:\MyDirectory\. ' 0
C:\MyDirectory\ieexec.exe.config 140
Bg\ ?%]J{,ecotﬁf }JC[SbFéegoer' %nef}i% sorte %3 cording to ascending values. We
A 11reedt(lzlr \gorct'ecﬁFéCc%ln }?by appending the DESC (for descending) or
; ¥%119ector1¥\ SC.)s’ke.conﬁr%I ?g)
g.asce ngj emo s to tll% RDER BY clause, as in the
f AV 1ree)%or Except.nlp 8
:?Wy irectgﬁyé{cdspol.exe.conﬁg 353
C:\MyDirectory\ilasm.exe.confi

353
BRI 0 REKEC Rrjtysize FROM CiiMyDirectory.

ORDER BY Size DESC"
Path Size

“j_““f?_“'“'nt ______ andard S N e, the Log Parser
C'\M@E&%gﬁgl%é%%%gﬁ&%iomy on?ggggtegg ASC keyword for
C: My ATHRDESORY Gl 2482176
C:\MyDirectory\corperfmonsymbols.ini 2435148
C:\MyDirectory\mscorlib.dll 2088960

eV VRS [N stiFies- WE et send ik 39A9%nd then by file creation

tifreMNRiERH U\ SBSEsPaeiaN Yl both HdRB&Qpressions in the ORDER
BY-\Nhligectory\mscorcfg.dll 1564672

C:\>LogParser -i:FS -0:NAT "SELECT Name, Size, CreationTime FROM C:\

MyRirectory*.* ORDFR BY; Sige, (areationTime"

0 2004-05-24 08:14:07.221

Since the sort o(ber%\(?%hq gﬁér‘?grﬂﬁe{y&?%u ut records, the Log Parser
S]Qilf“fﬁi?éqaﬁ?& ge re]% 00A0ref2)?ﬁ 61I]IS appearing in the
FREER BV Hause nl IdOLECT clause.

IRSGHFE HBHES, the Skt 1298146 B?e%%ﬂo%g]ﬁm RDER BY clause
YRSt BE 508 et of tHES flg%)‘é%r%‘sl&gr]rs‘l 1?\6tﬁ898ELECT clause.
ThEE$REMRlowing éﬁgrﬁ:ﬁ% 9N O8o et 8L

caspol.exe.config = 353 2004 05-24 08:14:20. 920
ggﬂ%%\%l gards SR confi 4 08:14:21.21
E)%ﬁiﬁ(%? rﬁeGenerate z?zggféi{% 14‘%'25 1

On the other hand, the following example IS correct:

SELECT SourceName, EventID, TimeGenerated FROM System
ORDER BY TimeGenerated

© 2004 Microsoft Corporation. All rights reserved.

Aggregating Data Within Groups

All the query examples that we have seen so far share a common
characteristic: the values of each output record were built upon the
values of a single input record.

Sometimes, however, we might need to aggregate multiple input records
together and perform some operation on groups of input records.

To accomplish this task, the Log Parser SQL-Like language has a special
set of functions that can be used to perform basic calculations on multiple
records. These aggregate functions (also referred to as "SQL functions")
include SUM, COUNT, MAX, MIN, and AVG.

Aggregating Data

To show a classic example of the use of aggregate functions, assume
that given an IIS W3C log file, we want to calculate the total number of
bytes sent by the 1IS server during the whole period recorded in the log
file.

Considering that the number of bytes sent by the IIS server for each
HTTP request is logged in the "sc-bytes" field, our command will look like
the following example:

C:\>LogParser -i:IISW3C -0:NAT "SELECT SUM(sc-bytes) FROM ex040528
Jlog"
Since the SELECT clause of this query makes use of the SUM aggregate

function, the query will automatically aggregate all the input records, and
calculate the sum of all the values of the "sc-bytes" field across all the
input records; the output of this command will then look like the following
output:

SUM(sc-bytes)
Axtres gxaimple shows, the result of the query is a single output record,
containing a single value calculated across all the input records.

As another example, we might want to calculate how many requests
have been logged in the log file.

Considering that each log file entry represents a single HTTP request,
this task can be accomplished by simply counting how many input
records are logged in the file:

C:\>LogParser -i:[ISW3C -0:NAT "SELECT COUNT(*) FROM ex040528.1og

"

The example above makes use of the COUNT aggregate function. When
used with the special "*" argument, the COUNT function returns the total

number of input records processed by the query.

If we want to calculate how many requests satisfy a particular condition,
for example how many requests were for an ASP page, we can add a
WHERE clause to the query, and the COUNT function will only count
input records satisfying the WHERE condition:

SELECT COUNT(*) FROM ex040528.log WHERE EXTRACT_EXTENSIO
N(cs-uri-stem) LIKE 'asp'

Creating Groups

In the examples above, we have been using aggregate functions to
calculate a value across all the input records; sometimes, however, we
might want to calculate values across groups of input records.

As an example, we might want to calculate the total number of bytes sent
by the 1IS server for each URL. To perform this task, we need to divide all
the input records into groups according to the URL requested, and then
use the SUM aggregate function separately on each group.

This can be accomplished by using another building block of the Log
Parser SQL language: the GROUP BY clause.

The GROUP BY clause is used to specify which fields we want the group
subdivision to be based on; after the input records have been divided into
these groups, all the aggregate functions in the SELECT clause will be
calculated separately on each of these groups, and the query will return
an output record for each group created.

Using the GROUP BY clause, our example query and its output will look
like this:

SELECT cs-uri-stem, COUNT(*) FROM ex040528.log GROUP BY cs-uri-ste
m

Cs-uri-stem COUNT(*)

/Home/default.asp 5

TAIERABHHRHRABLABEY “assume that we want to calculate how many
Qe RN Theen Lerved for each page type (ASP, html, CSS, etc.).

FRYS AR Reed ocreate separate groups according to the extension
o/flﬂgénﬁﬁ’f'gﬂer this group subdivision has been done, we can calculate
a COUNT(*) on each group:

SELECT EXTRACT_EXTENSION(cs-uri-stem) AS PageType, COUNT(*)

FROM ex040528.1og
The output will look like:

PREKPBEIBEFIREL)
Ifhyge sortithe output above according to the number of requests for each
gredlp, we will be creating a list showing the most requested page types
figsf: 585
exe 25
SHLEQBEXTRACT_EXTENSION(cs-uri-stem) AS PageType, COUNT(*) A
SwHageTytpeHits
ThroOMmBED®WORIgakdike:
BROUBRBY PageType

RIRPBR BN geBefigHédits DESC

@f EBS

G}%ﬁsps%l% also be built on multiple fields, thus creating a hierarchy of

gPStps.
Jpgp 77

F%’?eexazaj’ple, consider the following query:
CSS

%EK}“E 1EXTRACT_EXTENSION(cs—uri—Stem) AS PageType, sc-status, CO
T(*

YOS fogroups according to the requested page type, and
' E@[@ EnobiheeperebRatisib-groups are created according to the
P status sent by the IIS server for the group page type; the
a]Q)E;%ga}e function "COUNT" will then be calculated on each sub-group.
The output will look like:

PageType sc-status PageTypeHits

htm 304 79

Itcésimpéﬂéclmt tdfote a particular language constraint derived from the

ul of & GRAUP BY clause.

VikenevilPa quety contains a GROUP BY clause, its SELECT clause can
azp(%n a gf

only co the following:
swf

e gfiggragate fynctions
o c§Seld4idpresSions appearing also in the GROUP BY clause, or deriving

hfrom th@Ofield3dxpressions used in the GROUP BY clause

o C8onstffits 3
ipg 200 17
Isi@theppords; e following example is a correct query:
ipg 304 60
Sk ECI0%ello'8 TO_UPPERCASE(cs-uri-stem), COUNT(*), SUM(sc-bytes)
hHOM4€x3040528.1og
ImRciuthed ed-lCighause in the example above contains:
odA constant (Thello™);

«afpfield¥kpression ("TO_UPPERCASE(cs-uri-stem)") whose argument
Jsappe’s in the GROUP BY clause;

« S0 aét,gg"i'egai}e functions.
js 2 4

htm 404 2

HdaseverOthe fallowing example is NOT a correct query:
nsf 304 9

BHLEGPAUate, COUNT(*), SUM(sc-bytes)

FROM ex040528.1og
TorSERLEYTslarsadm the example above contains a field-expression
("date") that does not appear in the GROUP BY clause.

The following example is also NOT a correct query:

SELECT TO_UPPERCASE(cs-uri-stem), COUNT(*), SUM(sc-bytes)

FROM ex040528.1og
ToaSELBYTSUBSER(TH SRR 8Ppuve Gsiains @ figld-expression
("TO_UPPERCASE(cs-uri-stem)") that is not derived from any field-
expression in the GROUP BY clause; in this case, it's actually the field-
expression in the GROUP BY clause that is derived from a field-
expression in the SELECT clause.
The previous example can be corrected as follows:

SELECT SUBSTR(TO_UPPERCASE(cs-uri-stem), 0, 5), COUNT(*), SUM(s
c-bytes)

FROM eXO4
GROUP BY S

Calculating Percentages

When working with groups and aggregate functions, it is often needed to
represent an aggregate value as a percentage, rather than as an
absolute value.

We might want, for example, to calculate the number of hits per page
type from a Web server log as a percentage relative to the total number
of hits, rather than as the absolute number itself.

Consider the previous example query, that calculates the count of hits per
requested page type:

SELECT EXTRACT_EXTENSION(cs-uri-stem) AS PageType, COUNT(*)
FROM ex040528.1og

PRETBEBEFEseTIREL *)
Ifhye wantgd to calculate the percentage of hits for each group, we would
negd topdivide the number of hits within each group by the total number
ofttits isgthe whole log file; however, the use of the GROUP BY clause
regkictspgach aggregate function to operate within the single groups, thus
making iimpossible to calculate at the same time the total number of hits
agkass all groups.

jpg 77

html 1
Tellvorfaround this problem, we use two special aggregate functions
a¥dllable in the Log Parser SQL language: PROPCOUNT and
PROPSUM.
VeReR used in their basic forms, these functions calculate the ratio of the
COUNT or ADD aggregate functions within a group to the COUNT or
ADD aggregate functions on all of the input records.

Using the PROPCOUNT function, we can change the query above as
follows:

SELECT EXTRACT_EXTENSION(cs-uri-stem) AS PageType, PROPCOUN
T(*)
And obtain:

g%%ﬁ:g&%@@%%@%mmm %)

BY PageType

Tatshowyeabp@ycentages, we can multiply the aggregate function values
bysd.00:0.022000

gif 0.585000

S EAIEXAWACT_EXTENSION(cs-uri-stem) AS PageType, MUL(PROP

O UNICH2000.0) AS PageTypeHits

PRIV PABEAS bosiirs

{(PROUR.BY (HAgeType
Frerl th@ 8806 ®f this query we can infer that, for example, requests to
"egs" ped@iiRPresent the 2.2% of the total number of requests in this log
filgp SBOBELED

e 00330000

algss (UORSEBBD

swf 1.100000

ipg 7.700000

html 0.100000

dll 0.100000

asp 0.500000

js 1.100000

class 0.500000

Calculating Percentages Across Multiple Group
Hierarchies

The examples above show the basic form of the PROPCOUNT and
PROPSUM functions, which calculates the percentage of an aggregate
function within a group relative to all of the input records.

However, it is also possible to use the PROPCOUNT and PROPSUM
functions to calculate percentages relative to hierarchically higher groups.
To do so, we can use the ON keyword after the PROPCOUNT or
PROPSUM function name followed by a list of the GROUP BY field-
expressions identifying which hierarchically higher group we want the
percentage to be relative to.

Consider one of the previous examples, in which we calculated the total
number of hits per page type per HTTP status code, modified to show
percentages rather than absolute numbers:

SELECT EXTRACT_EXTENSION(cs-uri-stem) AS PageType, sc-status, MU
L(PROPCOUNT(*), 100.0) AS Hits
PREV px Q4002 &M its
GROUP_BY PageType,_ sc-status
TR THIBIsNe Rt theseersentage of hits for a page type and HTTP
stadys coge relativeotthe total number of hits.

class 304 0.400000 .
Ifane wagied tq)cjgpbiate the percentage of hits for a page type and

HIJP sigils cqdsyiplgiive to the number of hits for that page type (i.e.
thedistggution phdphdd status codes within each page type), we would
haiye weien the qiggpnas follows:

exe 200 2.500000

s LEGHEXTRASHHOBX TENSION(cs-uri-stem) AS PageType, sc-status, MU

{PROIRGOUNTE (Godod(PageType), 100.0) AS Hits

T&@wmowsmbo

BOUBHY Pagedypggoc-status

PP BREHY -Bagaidggoc-status

Vligpean28dv infEXREEW0 example, about 45% of requests to "css"
pbiges ra@inedZH0BIOUNP status code of 304.

jpass 308 BOUOOOOOO
Heke wadiave g3mBdpesON keyword followed by the "PageType" GROUP

B¢ dieldpmxpreg@omabhss notation indicates that we want the
PRSP SO N Tofummmms fo calculate the ratio of the COUNT aggregate

fgpetionpawthin mengéa@ oup to the COUNT aggregate function within
thgthieragghicatwoapiagogroup identified by the "PageType" field-
eYessionm. PIY0PHESH1

A@E\noﬁ% ex € can modify the previous example query to
cRlte pS @3@9 the time the request was made at (quantized at

oB¥acq mte%@?%@ page type, and the HTTP status code:
htm 304 68.695652

%%%BS’ 20) AS Interval, EXTRACT_EXTENSION(cs-uri
-status

calculate the percentage of hits relative to the
et'ymirgtegy@hgnd page type, the percentage of
pheite withisg the time interval alone, and the

of five to the total number of hits:
90 845070

e
UA gﬁgme 20) AS Interval, EXTRACT_EXTENSION(cs-uri

SELE
Psstfm) g De, SC-status
f& N0 IO (IntepsadpPaggype), 100.0) AS Hits1,

() ON (Interval), 100.0) AS Hits2,
Foo g .,\ﬁ' STuuEaReksHiEmRamplBotTt during the
WWﬁmgvalﬁamood@% of thesrexp@migdo "htm" pages
rRaBRIR B HiTdFabtauge DoveceStan9588 0.100000
| REER R Imergue Red e tepeostis trmiron | ppgesomurning the HTTP
staes:qoder3040mde up.fooedbout. 109493 theomspeests, and these
reQuEssi® rgpreseod the 1o5ds00bthe datek msabrsoRbEguests in the log.
00:28:40 gif 404 20.000000 2.941176 0.200000
The BATRIG 2boysp shoyisifig i PRAPEE YN i ROPSUM function
Wit 2040 N keywaid is logicaly eauyalesiie ysnshiee ON keyword
fQlfpwespan esppty listsohdphiaUr B usH8!dgypEResions, meaning that
thp DErEGRge ke cajeuipirmhpuld Resrelaiysdg the highest
hify: Q@Béﬁﬂét@lfo%odemifb%ﬂb@bfdd@ HeldopiREessighde: the whole set of

input records.

D&AdidOrswt is 8166 wordh. 833388 ning7(drBtHe 11000field-expressions
spedifigd aftér the0DN keGwe6Eh6TILSIHE 1a HroReopkerix of the GROUP
BOO fesld@ AR ssidns. If, fiioet@iaii=) heDN Keldoad is followed by
tii@agieldcdxpresXions, 00 hhadizddoed@ieedions must match
td 2% 0thaee fieRD@xprd9800800GIN2GRIJP. BY@Ause, and they must
alsb28pealass the)8ames0raenRe thedl 6g2ih theOGROUP BY clause.
o0 vdeds, ezh PRIDPAMUON D.216SR0n0rl 60d01lowing query is
cotrebtP8insse thelists of4iekbekpre2dietiaftdOt®®N keyword are all a
pPOPEY. Qhefix of Bt GRQRJF BI2Jididte3qinRs8iapi3000

00:29:00 css 404 57.142857 0.867679 0.400000

8E:280G AUANPIZE (18, 00N0A8 Pr2dRAROEXTRONOOT EXTENSION(cs-uri

00:29) 0 Page TR, sc-42@LQ00000 1.952278 0.900000
HIuE 0 s RO R BRGH IVA HEORIRAPHONMO iotipwinaiguery is
COOrgptN6igdec HEie I TTHPANENR ER A TRRA A AR keyword are not a
PO EikosDi 5 RORRBY fieldeakpe 6100800

BRI BInte’R), PagtAPROsihediz3796 1.500000

882809 muANPOAE (tirfi8; 629384 B:RF34DF RBRAWE EXTENSION(cs-uri

Uiy PRgeTIR, sc-statfa727 0.216920 0.100000

00.M(JPROP@@UNT‘@%@@@@QH@F%?%@S@@QP%D 0) AS Hits2,
9@(@@@)&@4052@@(@ 50.000000 0.433839 0.200000

ORIV BY Intdbeal, PaskGYpR0GLdaaB39 0.200000
00:29:00 nsf 200 94.339623 10.845987 5.000000

00:29:00 nsf 403 5.660377 0.650759 0.300000
00:29:00 swf 200 50.000000 0.433839 0.200000
00:29:00 swf 304 50.000000 0.433839 0.200000
00:29:20 NSF 200 100.000000 2.127660 0.300000
00:29:20 asp 200 100.000000 0.709220 0.100000
00:29:20 class 304 100.000000 0.709220 0.100000
00:29:20 css 304 60.000000 2.127660 0.300000
00:29:20 css 404 40.000000 1.418440 0.200000
00:29:20 exe 200 100.000000 2.836879 0.400000
00:29:20 gif 304 97.142857 48.226950 6.800000
00:29:20 gif 404 2.857143 1.418440 0.200000
00:29:20 htm 200 15.789474 2.127660 0.300000
00:29:20 htm 304 78.947368 10.638298 1.500000

00:29:20 htm 404 5.263158 0.709220 0.100000
00:29:20 jpg 200 15.384615 1.418440 0.200000
00:29:20 jpg 304 84.615385 7.801418 1.100000
00:29:20js 200 50.000000 1.418440 0.200000
00:29:20js 304 50.000000 1.418440 0.200000
00:29:20nsf 200 61.111111 7.801418 1.100000
00:29:20 nsf 302 5.555556 0.709220 0.100000
00:29:20 nsf 304 33.333333 4.255319 0.600000
00:29:20 swf 304 100.000000 2.127660 0.300000

Filtering Groups

Consider again one of the previous examples, in which we used the
COUNT aggregate function to calculate the number of times each page
type has been requested:

SELECT EXTRACT_EXTENSION(cs-uri-stem) AS PageType, COUNT(*) A
S PageTypeHits

PREV s 043e28beglits

GROUP.BY_Page'Type

LRI R Stagel ipatiite RESONly interested in seeing page types that
hasfe bagan requested 10 times or more.

htm 115
Qrst gkance, it might seem that we could use a WHERE clause with a

cepditiopson the value of the COUNT aggregate function to filter out the
updesiresl groups.

owevgy, we have seen that the WHERE clause is used to filter input
reg@rds, ywhich means that this clause is evaluated before groups are
cregteds For this reason, use of aggregate functions is not allowed in the

W gsRESCIause.
dl 1

html 1
The task at hand can be accomplished by using the HAVING clause.

The HAVING clause works just like the WHERE clause, with the only
difference being that the HAVING clause is evaluated after groups have
been created, which makes it possible for the HAVING clause to specify
aggregate functions.

ETip: The HAVING clause must immediately follow the GROUP BY
clause.

Using the HAVING clause, we can write the example above as:

SELECT EXTRACT_EXTENSION(cs-uri-stem) AS PageType, COUNT(*) A
S PageTypeHits

APROIDIRKD40528.10g
GROUP BY Pagelype

ORDER i Forb o DESC

ﬁ;ff 51352 © 2004 Microsoft Corporation. All rights reserved.
htm 115

jpg 77

exe 25

css 22

js 11

swf 11

Eliminating Duplicate Values

When working with information from logs, it is often desired to retrieve a
list of some values where each element in the list appears only once,
regardless of the number of times the same value appears in the original
data.

As an example, consider the following query, which extracts all the
domain accounts that have logged on a computer from the "Security"
event log:

SELECT RESOLVE_SID(Sid) AS Account
FROM \WTESTMACHINE1\Security

Themrputafithis puess sphst of all the domain accounts appearing in
each "Logon" event:

Account

IfNve AreErmerested . naatrisry giist in which each account name
aNIEASTHYRITSENEE BavitkusERVEEUSTINCT keyword in the SELECT
clRuse@BHORWS:\NETWORK SERVICE

NT AUTHORITY\NETWORK SERVICE

TESEOOMISINNES RESERVE_SID(Sid) AS Account

RHOW THERIVMACAUOYH 1 HeRVI(VE
ARHAREHORITY INGGAT, SERVICE

TESTDOMAIN\TESTUSER1

AESAIMOMAIN\TESTUSER?2

NF-AUFHORITFYALOGCAL-SERVICE--
TRERISHHRITkeNyIsBRERY Icindicate that the output of a query
sNauiCPH e RITVYNE TR (PRET G863 vpeieate output records are discarded.

ALEHIH SN pﬁréWesErB%Ot want to retrieve a list of all the browsers
ugg(?f?c]))%]&{fé'&ﬂ ur IIS server, with each browser appearing

only once in the list:

SELECT DISTINCT cs(User-Agent)
FROM <1>

cs(User-Agent)

N3 BE/pOSSiIB fatiite; thedDES § INCNikaywerainsile the COUNT
anwradate fuesiapaiiblerdsEradrievevinedatalogymber of different

valées apnEsvieg]in the data.
CHPelie A LB i R 2

sers and the total number of different client IP ad%r)esses that

% mpaiRle M EE R} +Windows+NT+5
ozﬂla/4 compatlble +MSIE+6.0;+Windows+NT+5.0)

OZI @%%&g\eﬁ ubhghm +PA%V]§r 5év(sjgrcshe+Manager
C- 1p

SE@ACcess+Internet+Pubhshmg+Pr0Vider+DAV

356 _."g i the Log Parser SQL-Like language, the DISTINCT keyword
can be used inside aggregate functions only when the GROUP BY

clause is not used.

© 2004 Microsoft Corporation. All rights reserved.

Retrieving a Fixed Number of Records

One of the most common log reports is a "TOP 10" list showing the top
entries appearing in a ranking.

This is usually achieved with a query that calculates some aggregate
function within groups, orders the groups by the value of the aggregate
function, and then uses the TOP keyword in the SELECT clause to return
only a few records at the top of the ordered output.

As an example, the following query returns the TOP 10 URL's requested
from an IS log file:

SELECT TOP 10 cs-uri-stem AS Url,
COUNT(*) AS Hits

BROM <1> Hits

GROUPBY Url__
TRBIREREAYICT3HS @ perfigct candidate for the CHART Output Format;
a&%ﬂrﬂm@dh@@st@@efollowi%wery Is saved in the "querytop.sql" text file,
theoiadowiregi smetand witt@enerate an image file containing a chart of
thgotideniwsitgt above:3980

/images/address.gif 3609

SRLREET MO#10 cs-uri-stédDAS Url,

/npanews@IINT(*) AS BR65

ONE@SIHhg& i file: query#R8ql -o:chart -chartType:Bar3d -chartTitle:"TOP 10

KER@dpeii/startopen920707.htm 2502

GBIRERi Bl 2465

ORDER BY Hits DESC

TOP 10 URL

Iolicesfind Nzt

fztartopenistartopenf20707 htm

lmagestibg.gif

Inpanesy =0 htm

lmage _m jpg

Imagesfaddress oif

Iolicefrulesinfo nst

Icgi-hinfcounts exe

Iolicelaws net

23000

30000

© 2004 Microsoft Corporation. All rights reserved.

Improving Query Readability

The functions available in the Log Parser SQL language make it possible
to write complex queries operating on a very large number of possible
transformations of the input fields; however, these complex queries might
sometimes be cumbersome to write.

As an example, consider the task of writing a query that extracts from the
Security event log all the users belonging to a specific domain that
logged on this computer.

For the purpose of the example, let's also assume that we want the user
names as lowercase strings, and that we are writing the query as a SQL
file that takes a lowercase domain name as an input parameter.

At first thought, the query would look like this:

SELECT EXTRACT_TOKEN(TO_LOWERCASE(RESOLVE_SID(Sid)), 1
, "\") AS Username
Torrecutsgigigpery, we can use the "file:" command-line argument,
SPeRIREY Bvéalue Ior (the; dog)aiNime” parameter:
EXTRACT_TOKEN(TO_LOWERCASE(RESOLVE_SID(Sid)), 0, '\\")
€ HogRansmnfid®éinyquery.sql?’domainname=tstdomain -i:EVT

When typing the query above, we had to repeat twice the whole
expression that transforms the Sid input record field into a lowercase
fully-qualified account name:

TO_LOWERCASE(RESOLVE_SID(Sid))

It would be easier if we could, in a certain sense, "assign" this expression
to a "variable", and then use the variable when needed.

We could definitely do that by aliasing the expression in the SELECT
clause:

SELECT TO_LOWERCASE(RESOLVE_SID(Sid)) AS FQAccount,

EXTRACT_TOKEN(FQAccount, 1, "\\') AS Username
Hor@VEe!, he@itput of this query now contains an extraneous field - the

fully-qualified account name:

WEHERE, fventID N (540, 528) AND
T@@bmaig\@yﬁlﬁ{p{@lgmdhe Log Parser SQL Ianguage supports the
USING Glatsausr1 testusrl

ThelbldMGestasisaeaizgn-standard SQL language element, is used to
deadarealiasassis thensape way as we would in the SELECT clause, with

the difference that expressions in the USING clause will not appear in the
output records (unless explicitly referenced in the SELECT clause).

With the USING clause, the query above can be written as follows:

SELECT EXTRACT_TOKEN(FQAccount, 1, "\\') AS Username

USING TO_LOWERCASE(RESOLVE_SID(Sid)) AS FQAccount
FROM‘*”I’lpSEEﬁHE;NG clause must immediately follow the SELECT

WHERE EventID IN (540; 528) AND
The oHXTRAGRISTHIEANYEUIA taokilike, the foltedongismapéddutput:

Username

testusrl
testusrl
testusr2
testusr3

© 2004 Microsoft Corporation. All rights reserved.

Advanced Features

Log Parser offers a unique set of features that enhance its flexibility in the
most common log processing scenarios.
These features include:

e Parsing Input Incrementally: some input formats allow Log Parser to
parse incrementally logs that grow over time.

e Multiplexing Output Records: some output formats allow the output
records of a query to be written to different targets, depending on the
values of selected output record fields.

e Converting File Formats: due to its architecture, Log Parser can be
easily used to convert log files from a format to another.

e Custom Plugins: Log Parser allows users to develop their own custom
input formats, and use them with either the Log Parser command-line
executable, or with the Log Parser scriptable COM components.

© 2004 Microsoft Corporation. All rights reserved.

Parsing Input Incrementally

Log Parser is often used to parse logs that grow over time.

For example, the IIS logs and the Windows Event Log are continuously
updated with new information, and in some cases, we would like to parse
these logs periodically and only retrieve the new records that have been
logged since the last time.

This is especially true for scenarios in which, for example, we use Log
Parser to consolidate logs to a database in an almost real-time fashion,
or when we use Log Parser to build a monitoring system that periodically
scans logs for new entries of interest.

For these scenarios, Log Parser offers a feature that allows sequential
executions of the same query to only process new data that has been
logged since the last execution.

This feature can be enabled with the iCheckPoint parameter of the
following input formats:

o |[ISW3C

o NCSA

o IIS

e HTTPERR
e URLSCAN
e CSV

e ISV

e EVT

o TEXTLINE
e TEXTWORD

The "iCheckPoint" parameter is used to specify the name of a
"checkpoint” file that Log Parser uses to store and retrieve information
about the "position” of the last entry parsed from each of the logs that
appear in a command.

When we execute a command with a checkpoint file for the first time (i.e.
when the specified checkpoint file does not exist), Log Parser executes
the query normally and processes all the logs in the command, saving for

each the "position" of the last parsed entry to the checkpoint file.
If later on we execute the same command specifying the same
checkpoint file, Log Parser will parse again all the logs in the command,
but each log will be parsed starting after the entry that was last parsed by
the previous command, thus producing records for new entries only.
When the new command execution is complete, the information in the
checkpoint file is updated with the new "position" of the last entry in each
log.

[#Note: Checkpoint files are updated only when a query executes

succesfully. If an error causes the execution of a query to abort, the
checkpoint file is not updated.

To make an example, let's assume that the "MyLogs" folder contains the
following text files:

e Logl.txt, 50 lines
e Log2.txt, 100 lines
e Log3.txt, 20 lines
e Log4.txt, 30 lines

Let's also assume that we want to parse these text files incrementally
using the TEXTLINE Input Format, which returns an input record for each
line in the input text files.

In order to parse these logs incrementally, we specify the name of a
checkpoint file, making sure that the file does not exist prior to the
command execution. Our command would look like this:

logparser "SELECT * FROM MyLogs*.*" -i: TEXTLINE -iCheckPoint:myCh
eckPoint.lpc
When this command is executed for the first time, Log Parser will return
all the 200 lines from all of the four log files, and it will create the
"myCheckPoint.Ipc" checkpoint file containing the position of the last line
in each of the four log files.

ETip: When the checkpoint file is specified without a path, Log
Parser will create the checkpoint file in the folder currently set for the
%TEMP% environment variable, usually "\Documents and Settings\
<user name>\Local Settings\Temp".;

Let's now assume that the "Log3.txt" file is updated, and that ten new

lines are added to the log file.
At this moment, the log files and the information stored in the checkpoint

file will look like this:

Log Files Checkpoint file
Logl.txt, 50 lines Logl.txt, line 50
Log2.txt, 100 lines Log2.txt, line 100
Log3.txt, 30 lines Log3.txt, line 20

Log4.txt, 30 lines Log4.txt, line 30

If we execute again the same command, Log Parser will use the
"myCheckPoint.Ipc" file to determine where to start parsing each of the
log files, and it will only parse and return the ten new lines in the
"Log3.txt" file. When the command execution is complete, the
"myCheckPoint.Ipc" checkpoint file is updated to reflect the new position

of the last line in the "Log3.txt" file.

If now a new "Log5.txt" file is created containing ten lines, the log files
and the information stored in the checkpoint file will look like this:

Log Files Checkpoint file
Logl.txt, 50 lines Logl.txt, line 50
Log2.txt, 100 lines Log2.txt, line 100
Log3.txt, 30 lines Log3.txt, line 30
Log4.txt, 30 lines Log4.txt, line 30

Logb5.txt, 10 lines not recorded
If we execute again the command, Log Parser will only parse the new
"Log5.txt" file, returning its ten lines.

As another example showing how the checkpoint file is updated, let's

assume now that the "Log?2.txt" file is deleted.
The log files and the information stored in the checkpoint file will now look

like this:

Log Files Checkpoint file
Logl.txt, 50 lines Logl.txt, line 50

non-existing Log2.txt, line 100
Log3.txt, 30 lines Log3.txt, line 30
Log4.txt, 30 lines Log4.txt, line 30
Log5.txt, 10 lines Log5.txt, line 10

When we execute the command, Log Parser will detect that there are no
new entries to parse, and it will return no records. However, upon
updating the checkpoint file, it will determine that the "Log2.txt" file
doesn't exist anymore, and it will remove all the information associated
with the log file from the checkpoint file, which will now look like this:

Log Files Checkpoint file
Logl.txt, 50 lines Logl.txt, line 50
Log3.txt, 30 lines Log3.txt, line 30
Log4.txt, 30 lines Log4.txt, line 30
Log5.txt, 10 lines Log5.txt, line 10

At this moment the checkpoint file does not contain anymore information
on the "Log2.txt" file; should a new "Log2.txt" file appear again for any
reason, a subsequent command would treat the file as a new file, and all
of its entries would be parsed from the beginning of the file.

As a last example, let's now assume that the "Log1l.txt" file is updated,
but this time its size shrinks and it ends up containing ten lines only.

The log files and the information stored in the checkpoint file will now look
like this:

Log Files Checkpoint file
Logl.txt, 10 lines Logl.txt, line 50
Log3.txt, 30 lines Log3.txt, line 30
Log4.txt, 30 lines Log4.txt, line 30
Log5.txt, 10 lines Log5.txt, line 10

When we execute the command, Log Parser will detect that the size of
the "Logl.txt" file has changed, but instead of growing larger, the file is
actually smaller. In this situation, Log Parser assumes that the file has
been replaced with a new one, and it will parse it as if it was a new file,
returning all of its ten entries.

After the command execution is complete, the "myCheckPoint.Ipc"

checkpoint file is updated to reflect the new situation, and the log files
and the information stored in the checkpoint file will look like this:

Log Files Checkpoint file
Logl.txt, 10 lines Logl.txt, line 10
Log3.txt, 30 lines Log3.txt, line 30
Log4.txt, 30 lines Log4.txt, line 30
Log5.txt, 10 lines Log5.txt, line 10

Incremental Parsing and Aggregated Data

It's important to note that the checkpoint file only records information
about the files being parsed; it does not record information about the
query being executed.

In other words, when we execute a query multiple times on a set of
growing files using a checkpoint file, each time the query results are
calculated on the new entries only. This means that queries using
aggregated data need to be handled carefully when used with checkpoint
files.

As an example, consider again the four text files in the first scenario
above, and the following command:

logparser "SELECT COUNT(*) AS Total FROM MyLogs*.*" -i: TEXTLINE

-iCheckPoint:myCheckPoint.lpc
When the command is executed for the first time, the "Total" field in the

output record returned by the query will be equal to 200, that is, the total
number of lines in the four log files.

As in the first example, let's now assume that the "Log3.txt" file is
updated, and that ten new lines are added to the log file.

When we execute the command again, the "Total" field in the output
record returned by the query will be now equal to 10, the total number of
new lines in the four log files, and not to 210, as one would expect from
the total number of rows.

In cases where it is desirable to calculate aggregated data across
multiple executions of the same query when using incremental parsing, a
possible solution is to save the partial results of each query to temporary
files, and then aggregate all the partial results with an additional step.
Using the example above, we could save the result of the first query
("200") to the "FirstResults.csv" file, and the result of the second query
("10") to the "LastResults.csv" file. The two files could then be
consolidated into a single file with a command like this:

logparser "SELECT SUM(Total) FROM FirstResults.csv, LastResults.csv" -i:
CSV

© 2004 Microsoft Corporation. All rights reserved.

Multiplexing Output Records

Many Log Parser output formats allow the user to specify multiple files as
the target to which output records are written to.

This is achieved by using *' wildcard characters in the filename specified
in the INTO clause; during the execution of the query, the first fields in
each output record substitute the wildcard characters to determine the
resulting filename to which the output records with the remaining fields
are written.

In other words, this feature allows output records to be multiplexed to
different target files depending on the values of the first fields in the
output record.

To make an example, let's assume that we want to query the Windows
Event Log, and for each event source name, we want to create a CSV
text file containing all the distinct event ID's generated by that source
name.

The command would look like the following example:

LogParser "SELECT DISTINCT SourceName, EventID INTO Event_*.csv F
ROM System" -i:EVT -0:CSV
For each output record generated by this query, the "SourceName" field
will be used to substitute the wildcard in the target filename, and the
"EventID" field will be written to the CSV file with the resulting file name.
After the command execution is complete, we will have as many CSV
output files as the number of different event source names:

C:\>dir
Volume in drive C has no label.

EaguEzo ¥ dialwllebataiugrsdistget event ID's generated by the event
source:

Directory of C:
C:\>type Event_Tcpip.csv
avatiZIno4 08:56 AM <DIR> .
TomEn®is00a lmgisemttie numier of wildcard characters that can be used in

th teyoe0ilcrmsesM 13 Event_Application Popup.csv
We can modify the example above to generate a directory for each event

SOULY 10 e)&abid Advieach eveit EvgenatatddByytheldanaoe, a CSV file
contEmzag4anesritindadr of event3ddygad WEOMatshD:
07/19/2004 08:56 AM 33 Event_Dhcp.csv

0.6dP424004 I8 FEQ M ourceNamd3 EveRIINIGOPINT(*) AS Total INTO *\ID

0%/¢ 20RO NIBS3RANIGROUP BY $vieitle MyeitI0gea VD" -i:EVT -0:CSV
ANEL HHodnddiafd\dkecution id 2divglete EMPWIll.nawe as many
diredwaesdaddtis ivhber of difieré&nveryedd4iutecsnames:

07/19/2004 08:56 AM 16 Event_Kerberos.csv

07(18{2004 08:56 AM 15 Event_ NETLOGON.csv

Wéh%%@%d@&@@&b@ no label. 15 Event_NtServicePack.csv

MhnetonB Wikdvitain grssnigdigves \VPoutpesiviiles as the number of
dﬁVétéfﬁOé)AeﬂBiBBsNb@ged by th éwent doemoee Access.csv

A3y 4108:56 AM 14 Event_SCardSvr.csv
AR AR PN 56 AM 39 Event_Service Control Manager.csv

Wéh@ﬁ%ﬁﬂd@%@:m no<IabRE> 21 Event_Tepip.csv

NSS4 G186 ANy kaomR 2P tee ent g Gifrevesvts logged with the
e@@ﬁi@@@@& 08:06 AM <DIR> 14 EvagpWindkEspup
071&/2004108:a8 AM1 <DIR> 15 Evap IWerksjationessv
Q7v:6/peb3E@RIYA MO0 BDésytes DCOM

06tab/2064D09 98 M40 ZH2pt48 bytephies

Fotlawingois adisBofthe emprit formatsgagdi support the "multiplex”
feaaez2004 09:08 AM <DIR> 10 IDEMV@ERagsv
07/49/2004 09:08 AM <DIR> 10 IDGIEBIRISEY
,07/19/2004 09:08 AM <DIR> i8042prt

07/19/2004 09:08 AM <DIR> Kerberos
* 00004 09:08 AM <DIR> NETLOGON
*0WWB{2004 09:08 AM <DIR> NtServicePack
¢0189/2004 09:08 AM <DIR> Print
o« 07/2P/2004 09:08 AM <DIR> RemoteAccess

07/19/2004 09:08 AM <DIR> SCardSvr

07/19/2004 09:08 AM . <DIR> Service Control Manager
07/19/2004 BFE9AMICropgit.Corporgliag. All rights reserved
07/19/2004 09:08 AM <DIR> W32Time
07/19/2004 09:08 AM <DIR> Win32k
07/19/2004 09:08 AM <DIR> Workstation

0 File(s) 0 bytes

21 Dir(s) 34,340,712,448 bytes free

Converting File Formats

Converting a log file from one format to another can be easily
accomplished with Log Parser by executing a command with the
following characteristics:

¢ The input format chosen for the command should match the
conversion source format;

e The output format chosen for the command should match the
conversion target format;

e The query should contain a SELECT clause that performs the
necessary modifications on the input format field names and values in
order to match the requirements of the target format.

When using Log Parser to convert one log file format to another, we
should pay close attention to the order and names of the fields in the
input and output formats. Some output formats, such as the 1IS output
format, have fixed fields. When converting to IIS log format, input format
fields should be selected to match the IIS format exactly. For example,
when converting a W3C Extended log file to IIS log format, we should
select the client IP address first, the user name next, and so on.

In addition, we might want to change the name of the fields that we
extract from the input format. For example, when writing to a W3C
Extended format log file, Log Parser retrieves the names to be written to
the "#Fields" directive from the SELECT clause. If we retrieve data from
an IS log format file, these names are not the same as those used by the
W3C Extended format, so we must alias every field in order to get the
correct field name.

As an example, consider the following SELECT clause that converts IIS
log format files to [IS W3C Extended log format:

SELECT TO_DATE(TO_UTCTIME(TO_TIMESTAMP(Date, Time))) AS dat

e,
Weycamaee timatue naivig uab freldsesaveNpanateeimes pasaigiag to the
V3 icxtensad conyentipimso that the output file is fully compliant with

tHeo B WRCA S stendyg tanmatk,
IrbeniditiBA Sheipdate” and "time" fields are converted from local time,
wikiglndst Tiged Ard trsenik$SHody format, to UTC time, which is used in the
VR3(P IEAfeln deH Rid dien atu0009\u000a\u000d', '+') AS cs-uri-stem,
Parameters AS cs-uri-query,
UserName AS cs-username,

THe e i dntPline Log Parser executable can be used to run built-in

eSS D6 Snversions between the following formats:
Win32StatusCode AS sc-win32-status,

* BB $enfVBE sc-bytes,

o By§:¢BaM3@d AS cs-bytes,
o TBN KA AS time-taken

e |ISW3C to lIS

For more information, refer to the Command-Line Operation reference.

© 2004 Microsoft Corporation. All rights reserved.

Custom Plugins

Log Parser allows users to develop custom input formats and use them
with both the command-line Log Parser executable and with the Log
Parser scriptable COM components.

There is no requirement on the language that can be used to implement
a custom input format; for example, custom input formats can be
implemented using any of the following languages:

o C++

o C#

Visual Basic®

JScript® or VBScript

Custom input formats are developed as COM objects implementing the
methods of the ILogParserlnputContext COM interface. There are two
ways to write a COM object that implements the methods of this
interface: implementing the ILogParserinputContext interface directly, or
implementing the IDispatch (Automation) interface exposing the
methods of the ILogParserinputContext interface.

Implementing the ILogParserinputContext Interface Directly

With this method, a Log Parser custom input format COM object must
implement the ILogParserinputContext interface directly.
This method usually requires writing C++ or Visual Basic code.

Implementing the IDispatch Interface Exposing the
ILogParserinputContext Interface Methods

With this method, a Log Parser custom input format COM object must
implement the IDispatch interface, and support the same methods
exposed by the ILogParserinputContext interface. This method usually
requires writing scriptlets (.wsc) files in JScript or VBScript.

COM input format plugins that implement the IDispatch interface can also
support custom properties.

Custom input format COM objects must be registered with the COM
infrastructure in order to be accessible by Log Parser. This task can be
usually achieved using the regsvr32.exe tool distributed with the
Windows OS. The following command registers a custom input format
COM object implemented as a dynamic link library (dll):

C:\>regsvr32 myinputformat.dll

The following command registers a custom input format COM object
implemented as a scriptlet JScript or VBScript file:

C:\>regsvr32 myinputformat.wsc

Once developed and registered with the COM infrastructure, custom
input formats can be used with either the command-line Log Parser
executable, or with the Log Parser scriptable COM components.

Using Custom Input Formats with the
Command-Line Log Parser Executable

With the command-line Log Parser executable, custom input formats are
used through the COM input format, which allows users to specify the
ProgID of the custom COM object and eventual run-time properties.

As an example, let's assume that we have just developed a custom input
format, and that its ProgID is "MySample.MylnputFormat".

With the COM input format, the custom COM object can be used as
follows:

C:\>logparser "SELECT * FROM inputfile" -i:COM -iProgID:MySample.MyI
nputFormat
In the example above, "inputfile" stands for the specific from-entity
recognized by the custom input format.

If we implemented our COM object through an Automation interface, we
could also have our object support custom properties, and set them
through the COM input format as shown in the following example:

C:\>logparser "SELECT * FROM inputfile" -i:COM -iProgID:MySample.MyI
nputFormat -iCOMParams:ExtendedFields=on
For more information on the COM input format, refer to the COM Input
Format reference.

Using Custom Input Formats with the Log
Parser Scriptable COM Components

With the Log Parser scriptable COM components, custom input format
objects are passed as the inputFormat argument to the Execute or
ExecuteBatch methods of the LogQuery object.

The following VBScript example shows how our
"MySample.MylnputFormat" custom COM object can be used with the
Log Parser scriptable COM components:

Dim oLogQuery
Dim oMyInputFormat

FoIers nfniipaliemen the Log Parser scriptable COM components,
Seenh-egdiaiser COM API Overview, and COM API Reference.

Set oLogQuery = CreateObject("MSUtil.LogQuery")

' Create our custom Input Format object
Set oMyInputFormat = CreateObject("MySample.MyInputFormat")

' Create Output Format object

Set oCSVOutputFormat = CreateObject("MSUtil.LogQuery.CSVOutputForma
t”)

oCSVOutputFormat.tabs = TRUE

' Create query text

strQuery = "SELECT TimeGenerated, EventID INTO C:\output.csv FROM Sy
stem"

strQuery = strQuery & " WHERE SourceName = 'Application Popup™

' Execute query
oLogQuery.ExecuteBatch strQuery, oMyInputFormat, oCSVOutputFormat

Custom Input Format Samples

Log Parser comes with three custom input format samples, located in the
"Samples\COM" folder:

e Processes: this sample shows how to write a custom input format
using the C++ language,;

e BooksXML: this sample shows how to write a custom input format that
parses XML documents, using the C# language;

e QFE: this sample shows how to write a custom input format that
returns information gathered through a WMI query, using the VBScript
language.

For more information on custom input format plugins and the
ILogParserinputContext interface, refer to the COM Input Format Plugins
reference.

© 2004 Microsoft Corporation. All rights reserved.

Log Parser COM API Overview

The Log Parser scriptable COM components offer numerous advantages
and more flexibility than the command-line executable binary.

For example, with the Log Parser scriptable COM components we can
execute a query without providing an output format, retrieve the result
output records, and process the output records ourselves.

The Log Parser scriptable COM components are implemented as
Automation objects, which means that they can be used from any
programming environment supporting automation, including C++, C#,
Visual Basic, JScript and VBScript.

[ETip: Before using the Log Parser scriptable COM components on a

computer, the "LogParser.dll" binary should be registered with the

computer's COM infrastructure by executing the following command

in tha dirartnns ~ran taininn tha "l naDgrser.dll” binary:
C:\LogParser>regsvr32 LogParser.dll

The Log Parser scriptable COM components architecture is made up of
the following objects:

e MSUtil.LogQuery object: this is the main COM object in the Log
Parser scriptable COM components architecture; it exposes the main
API methods and provides access to other objects in the architecture.

¢ Input Format objects: these objects provide programmatic access to
the input formats supported by Log Parser; each input format object
exposes properties having the same name as the parameters of the
corresponding Log Parser input format.

e Output Format objects: these objects provide programmatic access to
the output formats supported by Log Parser; each output format object
exposes properties having the same name as the parameters of the
corresponding Log Parser output format.

When writing an application that uses the Log Parser scriptable COM
components, the very first step should be the instantiation of the
MSUtil.LogQuery COM object.

The following JScript example shows how the MSUtil.LogQuery object is

instantiated by a JScript application:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

The following VBScript example shows how the MSULtil.LogQuery object
is instantiated by a VBScript application:

Dim oLogQuery

Set oLogQuery = CreateObject("MSUtil.LogQuery")
Once the MSUtil.LogQuery COM object has been instantiated, an

application would usually proceed by executing a query in either batch
mode or interactive mode, depending on the task that needs to be
accomplished.

Batch Mode

A query executed in batch mode will have its output records written
directly to an output format.

Batch mode works in the same way as the commands used with the Log
Parser command-line executable, and it is useful when we want to
execute a query and have its results sent to an output format, with no
application intervention on the query output records.

A query is executed in batch mode by calling the ExecuteBatch method
of the MSUtil.LogQuery object. This method takes three arguments:

e The text of the SQL-Like query;
¢ An input format object;
¢ An output format object.

The basic steps of an application using batch mode resemble the
commands used with the Log Parser command-line executable:

1. Instantiate the MSUtil.LogQuery object;

2. Instantiate the input format object corresponding to the input
format chosen for the query;

3. If needed, set input format object properties to change the
default behavior of the input format;

4. Instantiate the output format object corresponding to the
output format chosen for the query;

5. If needed, set output format object properties to change the
default behavior of the output format;

6. Call the ExecuteBatch method of the MSUtil.LogQuery
object, specifying the query text, the input format object, and
the output format object.

The following examples show a simple application that creates a CSV file

containing selected records from the event log.

After instantiating the main MSULtil.LogQuery object, the application
instantiates the MSULil.EVTInputFormat input format object, which
implements the EVT input format, and sets its direction property to "BW",
in order to read events from the latest to the earliest.

Then, the application instantiates the MSULtil.CSVOutputFormat output
format object, which implements the CSV output format, and sets its tabs
property to "ON", in order to improve readability of the CSV file.

Finally, the application calls the ExecuteBatch method of the
MSULtil.LogQuery object, specifying the query, the input format object,
and the output format object; the method will execute the query, reading
from the event log and writing to the specified CSV file, and will return
when the query execution is complete.

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBEEsipd BRINPiRmat object
var oEVTInputFormat = new ActiveXObject("MSUtil.LogQuery.EventLogInp
Diforohaigfuery
by BhyUthprmBortirettion = "BW";
Dim oCSVOutputFormat
IDitreat€)Dertput Format object
var oCSVOutputFormat = new ActiveXObject("MSUtil.LogQuery.CSVOutput
BetmbhogQuery = CreateObject("MSUtil.LogQuery")
oCSVOutputFormat.tabs = true;
' Create Input Format object
B rdadé Ifmgnyt Fermat = CreateObject("MSUtil.LogQuery.EventLogInputFor
mat$irQuery = "SELECT TimeGenerated, EventID INTO C:\\output.csv FRO
OE S3idemitfFormat.direction = "BW"
strQuery += " WHERE SourceName = 'Application Popup™';
' Create Output Format object
B xéchidé@uipytFormat = CreateObject("MSUtil.LogQuery.CSVOutputForma
tDogQuery.ExecuteBatch(strQuery, oEVTInputFormat, oCSVOutputFormat)
pCSVOutputFormat.tabs = TRUE

' Create query text

strQuery = "SELECT TimeGenerated, EventID INTO C:\output.csv FROM Sy
stem"

strQuery = strQuery & " WHERE SourceName = 'Application Popup™

' Execute query
oLogQuery.ExecuteBatch strQuery, oEVTInputFormat, oCSVOutputFormat

Interactive Mode

Queries executed in interactive mode do not use output formats, but
rather return their output records directly to the application.

Interactive mode is useful when we want to execute a query and receive
the output records for custom processing.

A query is executed in interactive mode by calling the Execute method of
the MSUtil.LogQuery object. This method takes two arguments:

e The text of the SQL-Like query;
e An input format object.

The Execute method returns a LogRecordSet object. The
LogRecordSet object is an enumerator of LogRecord objects; it allows
an application to navigate through the query output records.

Each LogRecord object represents a single query output record, and it
exposes methods that can be used to retrieve individual field values from
the output record.

The basic steps of an application using interactive mode are:

1. Instantiate the MSUtil.LogQuery object;

2. Instantiate the input format object corresponding to the input
format chosen for the query;

3. If needed, set input format object properties to change the
default behavior of the input format;

4. Call the Execute method of the MSUtil.LogQuery object,
specifying the query text and the input format object, and
receiving a LogRecordSet object;

5. Enter a loop that uses the atEnd, getRecord, and moveNext
methods of the LogRecordSet object to enumerate the
LogRecord query result objects;

6. For each LogRecord object, access its field values using the
getValue method of the LogRecord object, and process the

field values as needed:;

7. When finished, dispose of the LogRecordSet object by
calling its close method.

The following examples show a simple application parsing an IS web
site's logs and printing the output records to the console output.

After instantiating the main MSUtil.LogQuery object, the application
instantiates the MSULil.IISW3CInputFormat input format object, which
implements the IISW3C input format.

Then, the application calls the Execute method of the MSUtil.LogQuery
object, specifying the query and the input format object, and receiving the
resulting LogRecordSet object.

The LogRecordSet object is used in a loop to enumerate the
LogRecord objects implementing the query output records; the
application retrieves the first field from each LogRecord object and prints
it to the console output.

Finally, the application disposes of the LogRecordSet object by calling
its close method.

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBEEsipd BRInPiRmat object
var olISW3CInputFormat = new ActiveXObject("MSUtil.LogQuery.lISW3CI
mpmildrog@iery
Dim oHSWBCInDutFormat
DiErettQqoey, - - S
DinswReeo vc:,i“- T ' i Iggsu?l SSeerI\I/l IKE '%hitco

DimsRecord
Dim strClientIp
// Execute query and receive a LogRecordSet

Set oRegOldSat = GremclbjydiXddGietisttQgewe i W3ClInputFormat);

/Yesitealhpetdrdsmat object
St ([SOR@Campbiet atBrad (7 CreateObject("MSUtil.LogQuery. IISW3ClInputFo

fmat")
/I Get a record
' CreaterqpiReydedt= oRecordSet.getRecord();
strQuery = "SELECT c-ip FROM <1> WHERE cs-uri-stem LIKE '%hitcount.a
sp" // Get first field value
var strClientlp = oRecord.getValue(0);
' Execute query and receive a LogRecordSet
Set oR&romd $ietl d wdlogQuery.Execute (strQuery, olISW3CInputFormat)
WScript.Echo("Client IP Address: " + strClientlp);
' Visit all records
DO WRAMANO T agieewortistaindxt record
oRecordSet.moveNext();
} ' Getarecord
Set oRecord = oRecordSet.getRecord
// Close LogRecordSet
oRecofs dirstoie(st value
strClientIp = oRecord.getValue (0)

' Print field value
WScript.Echo "Client IP Address: " & strClientlp

' Advance LogRecordSet to next record
oRecordSet.moveNext

LOOP

' Close RecordSet
oRecordSet.close

C# Example

The Log Parser scriptable COM components can be easily consumed by
.NET applications using the COM interop feature of the .NET Framework.

The COM interop feature of the .NET framework allows users to
instantiate and use COM objects through the use of Runtime Callable
Wrappers (RCW).

The RCW is a .NET class that wraps a COM object and gives a .NET
application the notion that it's interacting with a managed .NET
component.

RCW's are created by either using the Type Library Importer (tlbimp.exe)
tool, or by importing a reference to the Log Parser scriptable COM
objects through the Microsoft Visual Studio® .NET user interface.

In either case, the RCW's are generated and stored in an assembly
named "Interop.MSUtil.dll", which contains Runtime Callable Wrappers
for all of the Log Parser scriptable COM components. By referencing this
assembly, our .NET applications can use the Log Parser scriptable COM
components as if they were managed .NET components.

The following example C# application executes a Log Parser query that
returns the latest 50 events from the System event log, printing the query
results to the console output:

using System;
using LogQuery = Interop.MSUtil.LogQueryClassClass; o
ThedeiwiDcHERsdRseiabe hawrdp. MEIdHhsoRPRia@pRIEAICbntextCla

ssClassiy Byild an interop assembl:_/ggontainin the Runtime Callable
using LogRggordsets ere g Bl ?gﬁ?&ﬂ%f’é’COM components.

This step can by executed in two different ways:

?lass LOgP%rSEr%arﬁn%ﬁhin a Visual Studio .NET project, import a

public Statigg}‘g{g@fg r}f)s ttrkllgglg]ogrlggrser scriptable COM components;
{ e From a command-line shell, execute the tlbimp.exe tool

try (generally available in the "Bin" folder of the .NET
{ framework SDK), specifying the path to the LogParser.dll

// InstA&Y the LogQuery object

0;

Ve

LogQuery ofps P 0P 16 SR op. MS UL Il

/I Ittt tBedaven laag dnpbhFREmE @PiatErop. MSULLdI" is
EveptbagdgputFormat oEVTInputFormat = new EventLoglnputFormat

2. Compile the sample source file into an executable,
referencing the newly created "Interop.MSUtil.dII" assembly.

e 'é%ﬂm‘ét%rhtglll:%' step can be executed as
oE\fa“ﬁngEormat.dlrecuon = "BW";

// Create _the quer . _
st erapMSUIL AU (out-Eveis.exe samplescs -

ROM System";

rmat);

}

© 2004 Microsoft Corporation. All rights reserved.
// Execute the query
LogRecordSet oRecordSet = oLogQuery.Execute(query, oEVTInputFo

// Browse the recordset
for(; 'oRecordSet.atEnd(); oRecordSet.moveNext())

{
Console.WriteLine(oRecordSet.getRecord().toNativeString(","));

}

// Close the recordset
oRecordSet.close();

catch(System.Runtime.InteropServices. COMException exc)

{

}
}
}

Console.WriteLine("Unexpected error: " + exc.Message);

Security Considerations

When using input and output formats to retrieve and send data over
the network, users should be aware that most of the protocols utilized
for data transfer (e.g. SMB, HTTP, and SYSLOG) do not make use of
encryption, and could thus be vulnerable to interception and tampering
by malicious entities.

In order to provide a secure environment in which these network
connections are less vulnerable to interception, users should
implement the IPSec protocol on their networks, and/or use SSL HTTP
connections when retrieving data from a Web URL.

When using the Incremental Parsing feature, users should store their
checkpoint files in a secure location, and verify that checkpoint files
have proper ACL's (Access Control Lists) preventing malicious entities
from tampering with the data that the Log Parser input formats store in
the checkpoint files.

When implementing custom input format COM aobjects, users should
ensure that the objects are not accessible from local and remote low-
privileged users, in order to prevent malicious entities from instantiating
and using the custom input format objects from the local computer or
from a remote computer.

In order to deny access to low-privileged users, either set proper ACL's
on the custom input format COM objects’ binaries, or use the "DCOM
Configuration"” Management Console (available in the "Administrative
Tools" folder under the "Component Services" management console) to
explicitly allow selected users only local access to your custom input
format COM objects.

When using the SQL output format, users should be aware that the
ODBC connection properties provided through the SQL output format
parameters, which include username and password, could be
transmitted over the network in clear text. In addition, the data
transmitted through the ODBC connection could be unencrypted and
thus vulnerable to interception and tampering by malicious entities.

In order to provide a more secure environment, users should create a
Data Source Name (DSN) on the local computer specifying the
connection properties to use for the connection to the database, and

specify the name of the Data Source as a value to the dsn parameter
of the SQL output format. Using a Data Source Name for the
connection provides the following benefits:

e The username and password for the connection are stored securely
by the ODBC subsystem;

e Certain ODBC drivers, including Microsoft SQL Server'™™ oDBC
drivers and Microsoft Access ODBC drivers, provide an option that
allows users to enable encryption of the network traffic between the
ODBC connection endpoints.

For more information on securing the communication between the
ODBC connections endpoints, see the MSDN® Data Access Security
topic.

e When processing sensitive or confidential data, users should provide
proper ACL's on the files generated by the output formats or on the
directories in which the output formats generate files, in order to
prevent malicious entities from accessing and/or tampering with the
output data generated by a query.

© 2004 Microsoft Corporation. All rights reserved.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch12.asp

Frequently Asked Questions

1. How do | specify yesterday’s date?

2. How do | retrieve the event logs that have been logged in the
past 10 minutes?

3. After parsing my IS log files, | get a message saying "There
have been 4 parse errors." What causes this?

4. How do | change the column names in my output file?

5. How do | combine the [ISW3C "date" and "time" fields into a
single TIMESTAMP field?

6. How do | split a single TIMESTAMP field into a date-only field
and a time-only field?

7. When luse a "SELECT *" on an IIS W3C Extended log file, |
get many fields with NULL values. What causes this?

8. | get an error saying "Unknown field XYZ" when | execute my
query. How do | fix this?

9. lam trying to write a query that uses the IN operator, but Log
Parser keeps giving me errors. What am | doing wrong?

10. When | execute a "SELECT *" on a log file, the output records
contain 2 extra fields that | can not find in the log. What are
these fields?

11. 1 am developing an ASP or ASP.Net or Scheduled Task
application with Log Parser, and I'm having problems with
permissions. What can | do?

12. Can | use the Log Parser scriptable COM components from a
multi-threaded application?

How do | specify yesterday’s date?

You need to use the SUB function to subtract one day from the
current UTC timestamp returned by the SYSTEM_TIMESTAMP
function.

The origin for TIMESTAMP values is January 1, year 0 at 00:00:00.
This means that a time span of one day is represented by the
timestamp for January 2, year 0 at 00:00:00, i.e. 24 hours after the
origin of time.

Use the following field-expression to specify yesterday’s date:

SUB (SYSTEM_TIMESTAMP(), TIMESTAMP('01-02', 'MM-dd'))

For more information, see the TIMESTAMP Reference.

How do I retrieve the event logs that have been logged in the past
10 minutes?

You need to use the SUB function to subtract 10 minutes from the
current UTC timestamp returned by the SYSTEM_TIMESTAMP
function, and convert this timestamp to local time using the
TO_LOCALTIME function:

SELECT *
FROM System

WHERE TimeGenerated >= TO_LOCALTIME(SUB(SYSTEM_TIMES
After PRIEHY ﬁMﬂﬁRgﬁj{&f@-’l ﬂﬁﬁ"‘) iessage saying "There have

been 4 parse errors.” What causes this?

Your log files are somehow malformed. This might happen, for
example, if a client requests a URL or specifies a user name
containing spaces. Log Parser cannot process that row and skips it.
To see exactly what's going on, set the -e global switch to any value
greater than or equal to zero. This makes Log Parser stop the query
execution when that number of parse errors is encountered, and
dump all the messages of the parse errors that occurred.

For more information, see Errors, Parse Errors, and Warnings.

How do | change the column names in my output file?

Use the AS keyword in your SELECT clause to alias the field.
For example:

SELECT Field1l AS newFieldName, Field2 AS newFieldName2, ...

How do | combine the IISW3C "date" and "time" fields into a single
TIMESTAMP field?

Use the TO_TIMESTAMP function, as in the following example:

SELECT TO_TIMESTAMP(date, time), ...

How do | split a single TIMESTAMP field into a date-only field and a
time-only field?

Use the TO_DATE and TO_TIME functions, as in the following
example:

SELECT TO_DATE(myTimestamp), TO_TIME(myTimestamp), ...

For more information, see the TIMESTAMP Reference.

When | use a "SELECT *" on an IIS W3C Extended log file, | get
many fields with NULL values. What causes this?

The ISW3C input format has 32 fields, which are all the possible
fields that IIS 5.0 and 1IS 6.0 can log. If your Web Server is
configured to log only a few of these fields, the ISW3C input format
returns the other field values as NULL values.

I get an error saying "Unknown field XYZ" when | execute my query.
How do I fix this?

If you have not specified an input format for your query, Log Parser
chooses one automatically based on the <from-entity> in the EROM
clause of your query. In some cases, the input format might not be
the one you expect.

Try specifying the input format explicitly using the -i switch.

If you have specified the correct input format, make sure that you

have typed the field name correctly.

| am trying to write a query that uses the IN operator, but Log Parser
keeps giving me errors. What am | doing wrong?

Make sure you are separating the values on the right-side of the IN

operator with the correct separator.

If the IN operator is comparing a single field-expression with a list of
values, separate the values with a semicolon (;), not with a comma,
as follows:

WHERE MygField IN ("VALUE1'; 'VALUEZ2'; 'VALUE3")

Different values for the same field-expression ("value-rows") are
separated by a semicolon; comma characters are used to separate
values within a single value-row.

For more information, see the IN Operator Reference.

When | execute a "SELECT *" on a log file, the output records
contain 2 extra fields that | can not find in the log. What are these

fields?

Most of the input formats add some tracking fields to the input
records, such as the name of the file currently parsed, and the row

number currently parsed.

If you do not want these fields to appear in your output records, do
not use "SELECT *". Instead, specify only the field names that you
want, as in the following example:

SELECT Field1, Field2, Field3,

| am developing an ASP or ASP.Net or Scheduled Task application
with Log Parser, and I'm having problems with permissions. What
canl do?

The first step in troubleshooting these problems is identifying the
account under which Log Parser is running. If you are developing an

ASP or ASP.Net application, Log Parser will run as the account of
the user requesting the page. If the request is anonymous, the
account is the 1IS Anonymous account; if the request is
authenticated, the account is the authenticated user's account. If you
are developing a Scheduled Task application, the account is the
account that you have specified for the task.

Once the account has been identified, appropriate permissions must
be given for this account to access both the Log Parser binary and
the Dynamic Link Libraries that Log Parser depends to, which
include standard Windows libraries (e.g. "kernel32.dll", "user32.dll",
etc.) and a significant number of other libraries (e.g. "WinInet.dll",
"odbcint.dll", etc.).

Finally, appropriate permissions must be given for the account to
access the data that your application asks Log Parser to process.
These may include IIS log files, the Event Log, text files, and
whatever data you are processing.

Note: It is not a good security practice to change system ACL's and
permissions to grant user accounts access to protected system
resources. This is especially true if you are developing an external-
facing web application that uses Log Parser to display information to
the users. In these cases, consider instead developing a Scheduled
Task that runs under a "private" account, and that generates at
frequent intervals the web pages that your application will display to
the user.

Can | use the Log Parser scriptable COM components from a multi-
threaded application?

The Log Parser scriptable COM components are registered to run
within a single-threaded COM apartment, meaning that the objects
can be used from multiple threads, but calls to the objects' methods
will be serialized by the COM infrastructure to guarantee that only
one thread at a time can access the components.

© 2004 Microsoft Corporation. All rights reserved.

Query Syntax

<query> <select_clause> [<using_clause>]
[<into_clause> |

<from_clause>

[<where_clause>]

[<group_by_clause>]

[<having_clause>]

[<order_by_clause>]

Remarks:

e Aquery can include comments, that is, user-provided text not
evaluated by Log Parser, used to document code or temporarily
disable parts of query statements.

For more information, read the Comments Reference.

Examples:

A. Minimal query

The following example shows the minimal query that can be written
with the Log Parser SQL-Like language, making use of the SELECT
and FROM clauses only:

SELECT TimeGenerated, SourceName
FROM System
B. Complete query

The following example shows a complete query that makes use of all
the clauses in the Log Parser SQL-Like language:

SELECT TypeName, COUNT(*) AS TotalCount
USING TO_UPPERCASE(EXTRACT_TOKEN(EventTypeName, 0, '
")) AS TypeName
INTO Report.csv
Segalg® System
SgWERERE TypeName LIKE "Yoservice%!'
USOUP BY TypeName
INTEBAVING TotalCount > 5
FREMDER BY TotalCount DESC

WHERE
GROUP BY
HAVING
ORDER BY

Comments

© 2004 Microsoft Corporation. All rights reserved.

SELECT

<select_clause> ::= SELECT [TOP <integer> | [DISTINCT | ALL

] <selection_list>

<selection_list> <selection_list_el> [, <selection_list_el> ... |

<selection_list_el> <field_expr> [AS <alias>]|

%

The SELECT clause specifies the fields of the output records to be
returned by the query.

Arguments:

TOPn

Specifies that only the first n records are to be output from the query
result set. If the query includes an ORDER BY clause, the first n
records ordered by the ORDER BY clause are output. If the query
has no ORDER BY clause, the order of the records is arbitrary.

For more information, see Retrieving a Fixed Number of Records.

ALL

Specifies that duplicate records can appear in the result set. ALL is
the default.

DISTINCT

Specifies that only unique records can appear in the result set. NULL
values are considered equal for the purposes of the DISTINCT
keyword.

For more information, see Eliminating Duplicate Values.

<selection list>

The fields to be selected for the result set. The selection list is a
series of field-expressions separated by commas.

*

Specifies that all the input record fields should be returned. The
fields are returned in the order in which they are exported by the
Input Format.

AS <alias>

Specifies an alternative name to replace the field name in the query
result set. By default, output formats that display field names use the
text of a field-expression in the SELECT clause as the name of the
corresponding output record field. However, when a field-expression
in the SELECT clause has been aliased, output formats will use the
alias as the name of the output record field.

The alias of a field-expression can be also used anywhere else in
the query as a shortcut that refers to the original field-expression.

Remarks:

e When a field-expression is aliased with an alias matching an input
record field name, the aliasing will affect that field-expression only; any
other occurrence of the alias in the query will resolve to the input
record field name.

As an example, the output records of the following query are made up
of two fields with an identical name ("TimeGenerated"); the first output
record field will contain values from the aliased field-expression
("ADD(EventID, 1000)"), while the second output record field will
contain values from the "TimeGenerated" input format field:

SELECT ADD(EventID, 1000) AS TimeGenerated, TimeGenerated
FROM system
o Afield-expression in the SELECT clause can refer to aliases defined

elsewhere in the SELECT clause, as long as the definition happens

before (in a left-to-right order) its use.
The following example is a correct SELECT clause:

SELECT EventID AS MyAlias, ADD(MyAlias, 100)

On the other hand, the following example is not a correct SELECT
clause, since the "MyAlias" alias is used before being defined:

SELECT ADD(MyAlias, 100), EventID AS MyAlias

Examples:

A. Selecting specific fields

The following query selects a subset of all the fields exported by the
EVT Input Format:

SELECT TimeGenerated, SourceName
FROM System
B. Selecting specific fields and field-expressions

The following query selects a constant and a function that uses a
field exported by the EVT Input Format as argument:

SELECT 'Event Type:', EXTRACT_TOKEN(EventTypeName, 0, '")
FROM System
C. Selecting all fields with *

The following query selects all the fields exported by the EVT Input
Format:

SELECT *
FROM System
D. Using TOP

The following query returns the 10 most requested Url's in the
specified ISW3C log file:

SELECT TOP 10 cs-uri-stem, COUNT(*)
FROM ex040305.1og
EGBeing BYSTFINGTtem

TﬁeR %ﬁlgvﬁggcq%%%\ﬂgysj FhSeCREG Input Format to return all the
registry key value types that are found under the specified key:

SELECT DISTINCT ValueType
FROM \HKLM\SY STEM\CurrentControlSet
F. Aliasing field-expressions

The following query returns a breakdown of page requests per page
type from the specified ISW3C log file:

SELECT TO_UPPERCASE(EXTRACT_EXTENSION(cs-uri-stem)) AS
PageType, COUNT(*) AS TotalHits
FROM ex040305.1og
GROUP BY Pagelype
SeeAlBPR BY TotalHits DESC

Field Expressions
Field Names and Aliases
USING

Basics of a Query
Eliminating Duplicate Values
Retrieving a Fixed Number of Records

© 2004 Microsoft Corporation. All rights reserved.

USING

<using_clause> = USING <field_expr> AS <alias> [, <field_expr>
AS <alias> ... |

The USING clause declares aliased field-expressions that do not appear
in the output records but can be referenced anywhere in the query.
The USING clause is employed to improve query readability.

Remarks:

e For more information on aliasing field-expressions, see the SELECT
Clause Reference.

Examples:

A. Declaring aliased field-expressions

The following example query returns the "account name" portion of
the fully-qualified account name that appears in the resolved "SID"
field of the EVT input format:

SELECT Username
USING TO_LOWERCASE(RESOLVE_SID(Sid)) AS FQAccount,
EXTRACT_TOKEN(FQAccount, 1, "\\') AS Username

FROM Security
See also:

Field Expressions
Field Names and Aliases
SELECT

Improving Query Readability

© 2004 Microsoft Corporation. All rights reserved.

INTO

<into_clause> ::= INTO <into_entity>

The INTO clause is used to specify the output format target(s) to which
the query output records are to be written.

Remarks:

The syntax and interpretation of the <into_entity> specified in the INTO
clause depends on the output format used. For information on the
syntax and interpretation of the <into_entity> values supported by each
output format, refer to the Output Formats Reference.

Regardless of the output format used, the <into_entity> specified in the
INTO clause must comply with the following general syntax:

e The <into_entity> can not contain spaces, unless it is enclosed by
the " (single quote) or "™ (double quotes) characters, as in the
following example:

'C:\Program Files\file3.txt'

e The following characters are considered parenthesys characters,
and if they appear in an <into_entity>, they must appear as well-
formed pairs of opening and closing parenthesys:

<> [1{}

The following examples show valid into-entities containing
parenthesys characters:

entity<value>

entity[value]value
The following examples show invalid into-entities containing

parenthesys characters:

entity>value<

entity }value
Anyeghigi@atae (including illegal characters and non-printable

characters) in an <into-entity> can be entered using the \uxxxx
notation, where xxxx is the 4-digit hexadecimal representation of the
UNICODE character, as in the following example:

C:\Program\u0020Files\file3.txt

Into-entities that represent names of files or directories are not allowed
to contain the following characters, even when enclosed in quote
characters or entered using the \uxxxx notation:

tab carriage-return line-feed , ()" <>

Since the INTO clause is not a mandatory clause in the Log Parser
SQL-Like language, most output formats employ default <into_entity>
values that are implicitly used when a query does not include an INTO
clause.

For example, the NAT, CSV, and TSV output formats assume
STDOUT when an INTO clause is not specified. For more information
on the default <into_entity> values assumed by each output format,
refer to the Output Formats Reference.

The TO clause used by earlier versions of Log Parser has been
deprecated in favor of the INTO clause.

Examples:

A. Explicit <into_entity>

The following example query specifies an explicit target CSV file for
the CSV output format:

SELECT *

BNi{ph&yO<into centity>

TE%QMOWﬁ%gr%xample guery uses an implicit STDOUT target for the
NAT output format:

SELECT *
FROM System
C. Explicit <into_entity>

The following example query specifies an explicit STDOUT target for
the NAT output format:

SELECT *
INTO STDOUT
FROM System

See also:
FROM

Basics of a Query
Output Formats Reference

© 2004 Microsoft Corporation. All rights reserved.

FROM

<from_clause> ::= FROM <from_entity>

The FROM clause is used to specify the input format source(s) from
which the query input records are to be read.

Remarks:

e The syntax and interpretation of the <from_entity> specified in the
FROM clause depends on the input format used. For information on
the syntax and interpretation of the <from_entity> values supported by
each input format, refer to the Input Formats Reference.

e Regardless of the input format used, the <from_entity> specified in the
FROM clause must comply with the following general syntax:

e The <from_entity> must be a single element or a list of elements,

separated by the ',' (comma) or ';' (semicolon) characters, as in the
following examples:

filel.txt
filel.txt, file2.txt

o Emich elemenifieamxnaile’dain spaces, ',' (commay) characters, or '}’
(semicolon) characters, unless the element is enclosed by the ™

(single quote) or "™ (double quotes) characters, as in the following
example:

file2.txt, 'C:\Program Files\file3.txt', file4.txt

e The following characters are considered parenthesys characters,
and if they appear in an element, they must appear as well-formed
pairs of opening and closing parenthesys:

<> [1{}

The following examples show valid from-entities containing
parenthesys characters:

entity<value>

entity[value]value
The following examples show invalid from-entities containing
parenthesys characters:

entity>value<
entity }value
o Anyeghgi@atae (including illegal characters and non-printable
characters) in a <from-entity> can be entered using the \uxxxx
notation, where xxxx is the 4-digit hexadecimal representation of the
UNICODE character, as in the following example:

C:\Program\u0020Files\file3.txt

e From-entities that represent names of files or directories are not
allowed to contain the following characters, even when enclosed in
guote characters or entered using the \uxxxx notation:

tab carriage-return line-feed , ()" <>

Examples:

A. <from_entity> with the REG input format

The following example query reads input records from the registry
using the REG input format:

SELECT *
FROM \HKLM\SOFTWARE
B. <from_entity> with the EVT input format

The following example query reads input records from the System
and Security event logs using the EVT input format:

SELECT *
FROM System, Security

See also:
INTO

Basics of a Query
Input Formats Reference

© 2004 Microsoft Corporation. All rights reserved.

WHERE

<where_clause> := WHERE <expression>

The WHERE clause is used to specify a boolean condition that must be
satisfied by an input record for that record to be output. Input records that
do not satisfy the condition are discarded.

Remarks:

e The expression in a WHERE clause can not reference SQL

(aggregate) functions. To specify conditions on values of aggregate
functions, use the HAVING clause.

Examples:
A. Simple expression
WHERE EventID = 501

B. Complex expression

WHERE EXTRACT_TOKEN(Strings, 1, '|') LIKE "%logon&' AND
(TimeGenerated > SUB(TO_LOCALTIME(SYSTEM_TIMESTA
MP()), TIMESTAMP('10', 'mm"')) OR

SID IS NOT NULL
See al§o:

Expressions
HAVING

Filtering Input Records

© 2004 Microsoft Corporation. All rights reserved.

GROUP BY

<group_by_clause> GROUP BY <field_expr_list> [WITH

ROLLUP]

<field_expr_list> <field_expr> [, <field_expr> ...]

The GROUP BY clause specifies the groups into which output rows are
to be placed and, if aggregate functions are included in the SELECT or
HAVING clauses, calculates the aggregate functions values for each

group.

Arguments:

WITH ROLLUP

Specifies that in addition to the usual rows provided by GROUP BY,
summary rows are introduced into the result set. Groups are
summarized in a hierarchical order, from the lowest level in the group
to the highest, and the corresponding summary rows contain NULL
values for the groups that have been summarized.

The group hierarchy is determined by the order in which the
grouping field-expressions are specified. Changing the order of the
grouping field-expressions can affect the number of rows produced
in the result set.

The ROLLUP operator is often used with the GROUPING aggregate
function.

Remarks:

e When GROUP BY is specified, either each non-aggregate and non-
constant field-expression in the SELECT clause should be included in

the GROUP BY field-expression list, or the GROUP BY field-
expression list must match exactly the SELECT clause field-expression
list. For more information, see Aggregating Data Within Groups.

e Aggregate functions using the DISTINCT keyword, for example,
"COUNT(DISTINCT field-expression)", are not supported when using
the GROUP BY clause.

e |f the ORDER BY clause is not specified, groups returned using the
GROUP BY clause are not in any particular order. It is recommended
that the ORDER BY clause is always used to specify a particular
ordering of the data.

Examples:

A. Simple GROUP BY clause

The following query, on an ISW3C log file, returns the number of
requests for each page on each day:

SELECT date, cs-uri-stem, COUNT(*)
FROM LogFiles\ex040528.1og
AGROP IRVt WLlE Bm

date cs-uri-stem COUNT(ALL *)

E(lﬂéithI’DﬂfRﬂ)Il‘hUP 1
OO t le }\37\961‘1%? s the same as in the previous
SN i%t:j]r_UP argument to display additional
Lg dg m/counts exe
%l 1 ta/rulesinfo.nsf 2
2003 11 19 /data/rulesinfo.nsf 6
fa/r rllegflel%’ l?s%)y NT(*)

AQ%'?)E(;S%e Lﬁuﬂﬁgﬁéni WITH ROLLUP

003 11-20 /homel f 1
ate Cs- urlosl?eerr?g SWCOUNT(ALL *)

TheOgroLp Snmfaatidsthat have been introduced by the rollup
opedatot-dfe/style.css 1
2003-11-18 /images/address.gif 1
2003-11-18 Lcgi-bin/courgs.exe 1
32003-11-18 /data/rulesinfp.nsf 2
Vb3 Tepfesand/théesinfpbsf 6f requests on each day, regardless of
10 kg &-POqdestedrpintbthe total number of requests in the log file,
r@fabdidsaofihemdefpult.htm 1
2003-11-20 /top2.htm 1
2003-11-20 /homelog.swf 1
- - 20
Seeabsor1-18 - 6
Fiel%oﬁ%f]éégi()ns 6
SERREST11-20 - 8

Aggregating Data Within Groups

© 2004 Microsoft Corporation. All rights reserved.

HAVING

<having_clause> ::= HAVING <expression>

The HAVING clause is used to specify a boolean condition that must be
satisfied by a group for the group record to be output. Groups that do not
satisfy the condition are discarded.

Examples:

A. Simple expression
HAVING EventID = 501
B. Complex expression

HAVING SUM(sc-bytes) > 100000 AND
(COUNT(*) > 1000 OR
C. CompBIex eXpreggibNSION(cs-uri-stem) LIKE 'htm'

The fz)llowing example query retrieves all the event sources from the
System event log that generated more than 10 events:

SELECT SourceName
FROM System
GROUP BY SourceName

HAVING COUNT(*) > 10
See also:

Expressions
WHERE

Filtering Groups

© 2004 Microsoft Corporation. All rights reserved.

ORDER BY

<order_by_clause> ORDER BY <field_expr_list> [ASC | DESC]

<field_expr_list> <field_expr> [, <field_expr> ...]

The ORDER BY clause specifies which SELECT clause field-expressions
the query output records should be sorted by.

Arguments:

ASC

Specifies that the field-expression list values should be sorted in
ascending order, from lowest value to highest value. ASC is the
default.

DESC

Specifies that the field-expression list values should be sorted in
descending order, from highest value to lowest value.

Remarks:

e The Log Parser SQL-Like language requires that each field-expression
appearing in the ORDER BY clause must also appear in the SELECT
clause.

e Differently than the standard SQL language, in the Log Parser SQL-
Like language the DESC or ASC sort direction applies to all the field-
expressions in the ORDER BY clause. In other words, it is not possible
to specify different sort directions for different field-expressions.

e NULL values are treated as the lowest possible values.

Examples:
A. Sorting by a single field-expression

SELECT date, cs-uri-stem, cs-uri-query, sc-bytes
FROM LogFiles\ex040528.1og
BOBDRIEG Hycrhultiplefield-expressions

SELECT date, cs-uri-stem, cs-uri-query, sc-bytes
FROM LogFiles\ex040528.1og
ORDER BY date, sc-bytes

See also:

Field Expressions
SELECT

Sorting Output Records

© 2004 Microsoft Corporation. All rights reserved.

Expressions

<expression> =
<term1> =

<term2> =

<field_expr_list> ::=

<rel_op> =

<value_rows> =

<term1> [OR <expression>]|
<term2> [AND <term1>]

<field_expr> <rel_op> <field_expr>
<field_expr> [NOT] LIKE <like_mask>
<field_expr> [NOT] BETWEEN <field_expr>
AND <field_expr>

<field_expr> IS [NOT] NULL

<field_expr> [NOT] IN (<value_rows>)
<field_expr> <rel_op> [ALL | ANY] (
<value_rows>)

(<field_expr_list>) [NOT] IN (<value_rows>
)

(<field_expr_list>) <rel_op> [ALL | ANY] (
<value_rows>)

NOT <term2>

(<expression>)
<field_expr> [, <field_expr> ...]

<

>

<value_row> [; <value_row> ... |

<value_row> = <value> [, <value> ...]

An expression is used in the WHERE and HAVING clauses to specify
conditions that must be satisfied for input records or group records to be
output.

Operators:

<rel_op>

Standard comparison operators (less than, greather than, etc.).

[NOT] LIKE

Indicates that the subsequent character string is to be used with
pattern matching. For more information, see LIKE.

[NOT] BETWEEN
Specifies an inclusive range of values. Use AND to separate the
beginning and ending values. For more information, see BETWEEN.

IS [NOT] NULL

The IS NULL and IS NOT NULL operators determine whether or not
a given field-expression is NULL.

[NOT]IN

The IN and NOT IN operators determine whether or not a given field-
expression or list of field-expressions matches any element in a list
of values. For more information, see IN.

ALL

Used with a comparison operator and a list of values. Returns TRUE
if all values in the list satisfy the comparison operation, or FALSE if

not all values satisfy the comparison. If no ALL nor ANY is specified,
then ANY is assumed by default. For more information, see ALL.

ANY

Used with a comparison operator and a list of values. Returns TRUE
if any value in the list satisfies the comparison operation, or FALSE if
no values satisfy the comparison. If no ALL nor ANY is specified,
then ANY is assumed by default. For more information, see ANY.

Remarks:

e The expression in a WHERE clause can not reference SQL
(aggregate) functions. To specify conditions on values of aggregate
functions, use the HAVING clause.

e There is no limit to the number of operators that can be included in an
expression.

e The order of precedence for the logical operators is NOT (highest),
followed by AND, followed by OR. The order of evaluation at the same
precedence level is from left to right. Parentheses can be used to
override this order in an expression.

Examples:
A. Simple expression
sc-bytes >= 1000
B. Complex expression

EXTRACT_TOKEN(Strings, 1, '|') LIKE '%logon&' AND
(TimeGenerated > SUB(TO_LOCALTIME(SYSTEM_TIMESTAMP()
), TIMESTAMP('10', 'mm')) OR

SID IS NOT NULL

See@ also:

ALL

ANY
BETWEEN
IN

LIKE

Constant Values
Field Expressions
HAVING

WHERE

© 2004 Microsoft Corporation. All rights reserved.

ALL

<field_expr> <rel_op> ALL (<value_rows>)

(<field_expr_list>) <rel_op> ALL (<value_rows>)

The ALL operator compares a given field-expression with a list of values,
returning TRUE if all values in the list satisfy the comparison operation, or
FALSE if not all values satisfy the comparison.

Examples

A. Single field-expression

The following example expression determines whether or not the
"Year" field is greater than all the values in the specified list:

Year > ALL (1999; 2000; 2001)

B. List of field-expressions

The following example expression determines whether or not the
pair of "Year" and "Age" fields is less than all the pairs of values in
the specified list:

(Year, Age) < ALL (1999, 30; 2001, 40; 2002, 10)

See also:

ANY
Expressions
Field-Expressions

© 2004 Microsoft Corporation. All rights reserved.

ANY

<field_expr> <rel_op> ANY (<value_rows>)

(<field_expr_list>) <rel_op> ANY (<value_rows>)

The ANY operator compares a given field-expression with a list of values,
returning TRUE if any value in the list satisfies the comparison operation,
or FALSE if no values satisfy the comparison.

Examples

A. Single field-expression

The following example expression determines whether or not the
"Year" field is greater than any value in the specified list:

Year > ANY (1999; 2000; 2001)

B. List of field-expressions

The following example expression determines whether or not the
pair of "Year" and "Age" fields is less than any of the pairs of values
in the specified list:

(Year, Age) < ANY (1999, 30; 2001, 40; 2002, 10)

See also:

ALL
Expressions
Field-Expressions

© 2004 Microsoft Corporation. All rights reserved.

BETWEEN

<field_expr> [NOT | BETWEEN <field_expr> AND <field_expr>

The BETWEEN operator determines if a given field-expression belongs
to a specified interval.

Examples

A. BETWEEN

The following example expression determines if the "Year" field
belongs to the specified interval:

Year BETWEEN 1999 AND 2004
This example is equivalent to the following expression:
Year >= 1999 AND Year <= 2004

B. NOT BETWEEN

The following example expression determines if the "Year" field does
not belong to the specified interval:

Year NOT BETWEEN 1999 AND 2004

This example is equivalent to the following expression:
Year < 1999 OR Year > 2004

C. TIMESTAMP interval

The following example query uses the ES Input Format to return all
the files that have been created between 4 hours ago and 1 hour
ago:

SELECT Path

FROM C:\MyDir*.*

WHERE TO_UTCTIME(CreationTime) BETWEEN SUB(SYSTEM_TI

MESTAMP(), TIMESTAMP('4', 'h')) AND SUB(SYSTEM_TIMESTAM
SeegISOMESTAMP('1, 'h"))

Expressions
Field-Expressions

© 2004 Microsoft Corporation. All rights reserved.

IN

<field_expr> [NOT] IN (<value_rows>)
(<field_expr_list>) [NOT] IN (<value_rows>)
The IN and NOT IN operators determine whether or not a given field-

expression or list of field-expressions matches any element in a list of
values.

Remarks:

¢ Use the comma character (,) to separate values in a single list row, and
use the semicolon character (;) to separate list rows.

Examples

A. Single field-expression

The following example expression determines if the "Age" field
matches any value in the specified list:

Age IN (20; 30; 45; 60)
This example is equivalent to the following expression:
Age =20 OR Age = 30 OR Age = 45 OR Age = 60

B. List of field-expressions

The following example expression determines if the pair of
"FirstName" and "State" fields matches any pair of values in the
specified list:

(FirstName, State) IN ('Johnson', 'OR’; 'Smith', "'WA")

This example is equivalent to the following expression:

(FirstName = 'Johnson' AND State = 'OR") OR (FirstName = 'Smith' AN
D State = "WA)

See also:

Expressions
Field-Expressions

© 2004 Microsoft Corporation. All rights reserved.

LIKE

<field_expr> [NOT] LIKE <like_mask>

Determines whether or not a given character string matches a specified
pattern. A pattern can include regular characters and wildcard characters.
During pattern matching, regular characters must yield a case-insensitive
match with the characters specified in the character string. Wildcard
characters, however, can be matched with arbitrary fragments of the
character string. Using wildcard characters makes the LIKE operator
more flexible than using the = and != string comparison operators.

The wildcard characters that can be used in a LIKE pattern are:

e _ (underscore character): matches any single character
Examples:
LIKE 'ab_d': matches all the four-letter strings that start with "ab"
and end with "d" (e.g. "abcd", "AB+d")
LIKE 'a_c_': matches all the four-letter strings that have "a" in the
first position and "c" in the third position (e.g. "abcd", "Akck")

e % (percent character): matches any string of zero or more characters

Examples:
LIKE '%.asp' matches all the strings ending with ".asp" (e.g.
"/default.asp”, ".ASP")
LIKE '%error%' matches all the strings containing "error” (e.g. "an
error has been found”, "ERROR")

Remarks:

e Similarly to STRING constants, characters in a LIKE pattern can be
escaped with the '\' (backslash) character or encoded with the \uxxxx
notation.

o Wildcard pattern matching characters can be used as literal characters.
To use a wildcard character as a literal character, escape the wildcard
character with the '\' (backslash) character.

Examples:
LIKE 'ab_d': matches the "ab_d" string (e.g. "ab_d", "AB_d")
LIKE 'a\%c%': matches all the strings that start with "a%c" (e.g.
"a%cdefg", "A%c")

e When executing a Log Parser query from within a command-line batch
file, using the % wildcard character might yeld unexpected results.
For example, consider the following batch file:

@echo off
LogParser "SELECT * FROM SYSTEM WHERE Message LIKE '%ERRO
VWhgn this batch file is executed, the command-line shell interpreter will

assume that "%ERROR%" is a reference to an environment variable,
and it will try to replace this string with the value of the environment
variable. In most cases, such an environment variable will not exist,
and the actual command executed by the shell will look like:

LogParser "SELECT * FROM SYSTEM WHERE Message LIKE ""

Which would yeld the following error:

Error: Syntax Error: <term2>: no valid LIKE mask

To avoid this problem, use double %% wildcard characters when
writing a command-line batch file, as in the following example:

@echo off
LogParser "SELECT * FROM SYSTEM WHERE Message LIKE '%%ERR

OR%%""
Examples

A. LIKE

The following example WHERE clause finds all the URL's in an
[ISW3C log file that end with ".htm":

WHERE cs-uri-stem LIKE '%.htm'

B. NOT LIKE

The following example WHERE clause finds all the Event Log
messages that do not contain "error":

WHERE Message NOT LIKE "%error%'

See also:

Expressions
Field-Expressions

© 2004 Microsoft Corporation. All rights reserved.

Field-Expressions

<field_expr> := <aggregate_function> <function>
<field name>
<alias>

<value>

Field-expressions are a combination of symbols and functions that Log
Parser evaluates to obtain a single data value. These are the basic
arguments of the SELECT, USING, WHERE, GROUP BY, HAVING, and
ORDER BY clauses.

Field-expressions can be divided conceptually into two groups:

e Derived field-expressions: functions or aggregate functions having
other field-expressions as arguments;

e Basic field-expressions: constant values (including functions with no
arguments), names of input record fields, or aliases defined in the
SELECT or USING clauses.

Examples:

A. Basic field-expressions

The SELECT clause in the following example query specifies "basic"
field-expressions only:

SELECT 'Event ID:', EventID, SYSTEM_TIMESTAMP()
FROM System
B. Derived field-expressions

The SELECT clause in the following example query specifies
"derived" field-expressions only:

SELECT TO_UPPERCASE(cs-uri-stem), SUM(sc-bytes)
FROM \MyLogs\ex042805.1og
GROUP BY TO_UPPERCASE(cs-uri-stem)

See also:

Aggregate Functions
Eunctions

Constant Values

Field Names and Aliases
SELECT

USING

Basics of a Query

© 2004 Microsoft Corporation. All rights reserved.

Field Names and Aliases

<field_name> 1= [[] <string>[]]

[[]<string>[]]

<alias>

Field names are names of fields of the input records generated by an
input format.

Aliases are alternative names for field-expressions, assigned in the
SELECT or USING clauses. When a field-expression in the SELECT
clause has been aliased, output formats will use the alias as the name of
the corresponding output record field.

The alias of a field-expression can be also used anywhere else in the
guery as a shortcut that refers to the original field-expression.

Remarks:

e The following characters are not allowed in field names or aliases,
unless the field name or alias is enclosed in square brackets ([and]):

,;<>=1""@ *[] space

Field names and aliases containing spaces or illegal characters can be
enclosed in square brackets ([and]), as in the following example:

SELECT [Last Request Time], [email@address], CPUTime as [Elapsed CP
U Time]
o AryohapretRig(iReluding illegal characters and non-printable
charatrer $Eiapletdaranesnand gliases can be also entered using the

\uxxxx notation, where xxxx is the 4-digit hexadecimal representation
of the UNICODE character:

SELECT Last\u0020Request\u0020Time
FROM perflog.csv

e Field names and aliases can not match keywords or function names of
the Log Parser SQL-Like language (e.g. "FROM", "ADD").

¢ Field names and aliases are not case-sensitive.

Examples:

A. Basic field-expressions

The SELECT clause in the following example query specifies "basic"
field-expressions only:

SELECT 'Event ID:', EventID, SYSTEM_TIMESTAMP()
FROM System
B. Derived field-expressions

The SELECT clause in the following example query specifies
"derived" field-expressions only:

SELECT TO_UPPERCASE(cs-uri-stem), SUM(sc-bytes)
FROM \MyLogs\ex042805.1og
GROUP BY TO_UPPERCASE(cs-uri-stem)

See also:

SELECT
USING

Basics of a Query

© 2004 Microsoft Corporation. All rights reserved.

Aggregate Functions

<aggregate_function> ::= COUNT ([DISTINCT | ALL | *) COUNT
([DISTINCT | ALL] <field_expr_list>)
SUM ([DISTINCT | ALL] <field_expr>)
AVG ([DISTINCT | ALL] <field_expr>)
MAX ([DISTINCT | ALL] <field_expr>)
MIN ([DISTINCT | ALL] <field_expr>)
PROPCOUNT (*) [ON (
<on_field_expr_list>) |
PROPCOUNT (<field_expr_list>) [ON (
<on_field_expr_list>) |
PROPSUM (<field_expr>) [ON (
<on_field_expr_list>) |
GROUPING (<field_expr>)

Aggregate functions perform a calculation on a set of values but return a
single, summarizing value.

Aggregate functions are often used with the GROUP BY clause.

When used without a GROUP BY clause, aggregate functions perform
calculations on the entire set of input records, returning a single
summarizing value for the whole set.

When used with a GROUP BY clause, aggregate functions perform
calculations on each set of group records, returning a summarizing value
for each group.

Functions:

COUNT

Returns the number of items in a group.
For more information, see COUNT.

SUM

Returns the sum of the values of the specified field-expression.
For more information, see SUM.

AVG

Returns the average across the values of the specified field-
expression.
For more information, see AVG.

MAX

Returns the maximum value among the values of the specified field-
expression.
For more information, see MAX.

MIN

Returns the minimum value among the values of the specified field-
expression.
For more information, see MIN.

PROPCOUNT

Returns the ratio of the COUNT aggregate function calculated on a
group to the COUNT aggregate function calculated on a
hierarchically higher group.

For more information, see PROPCOUNT.

PROPSUM

Returns the ratio of the SUM aggregate function calculated on a
group to the SUM aggregate function calculated on a hierarchically
higher group.

For more information, see PROPSUM.

GROUPING

Returns a value of 1 when the row is added by the ROLLUP operator
of the GROUP BY clause, or 0 when the row is not the result of
ROLLUP.

The GROUPING aggregate function is allowed only when the
GROUP BY clause contains the ROLLUP operator.

For more information, see GROUPING.

Remarks:
e Aggregate functions are allowed as field-expressions only in the
SELECT, HAVING, and ORDER BY clauses.

e The arguments of an aggregate function can not reference other
aggregate functions.

e The arguments of an aggregate function can not reference the
following functions:

e SEQUENCE
e OUT_ROW_NUMBER

e DISTINCT is allowed in aggregate functions only when there is no
GROUP BY clause.

Examples:

A. COUNT(*)

The following query returns the total number of events in the System
event log:

SELECT COUNT(*)
FROM System
B. COUNT(DISTINCT)

The following query returns the total number of distinct event source
names in the System event log:

SELECT COUNT(DISTINCT SourceName)
FROM System
C. COUNT(*) and GROUP BY

The following query returns the total number of events generated by
each event source in the System event log:

SELECT SourceName, COUNT(*)
FROM System
DGBOVPand SRONBY

The following query returns the total number of bytes sent for each
page extension logged in the specified IS W3C log file:

SELECT TO_LOWERCASE(EXTRACT_EXTENSION(cs-uri-stem)) A
S PageType,
E. PROPCOUNT{Y), GROUP BY, and HAVING

TE%% gﬂl)%%&%lglt?) returns the pages that represent more than 10%
oPihe requeste$ R specified 11S W3C log file:

SELECT cs-uri-stem
FROM ex031118.log
GROUP BY cs-uri-stem

HAVING PROPCOUNT(*) > 0.1
See also:

COUNT

SUM

AVG

MAX

MIN
PROPCOUNT
PROPSUM
GROUPING

Functions
SELECT
HAVING

GROUP_BY

Aggregating Data Within Groups
Calculating Percentages

© 2004 Microsoft Corporation. All rights reserved.

AVG

AVG ([DISTINCT | ALL] <field_expr>)

Returns the average among all the values, or only the DISTINCT values,
of the specified field-expression.

Arguments:

DISTINCT

Specifies that AVG returns the average of unique values.
DISTINCT can only be used when the query does not make use of
the GROUP BY clause.

ALL
Applies the aggregate function to all values. ALL is the default.

<field_expr>

The field-expression whose values are to be averaged.
The field-expression data type must be INTEGER or REAL.

Return Type:

INTEGER or REAL, depending on the argument field-expression.

Remarks:

e NULL values are ignored by the AVG aggregate function.

e Aggregate functions are allowed as field-expressions only in the
SELECT, HAVING, and ORDER BY clauses.

e The arguments of an aggregate function can not reference other
aggregate functions.

e The arguments of an aggregate function can not reference the
following functions:

e SEQUENCE
e OUT_ROW_NUMBER

e DISTINCT is allowed in aggregate functions only when there is no
GROUP BY clause.

Examples:

A. AVG

The following query returns the average number of bytes for
executable files in the "system32" directory, using the ES input
format:

SELECT AVG(Size)
FROM C:\windows\system32*.*
BWANRG Iaild GROURBXSE(EXTRACT_EXTENSION(Name)) = 'exe'

The following query returns the average time spent by each page
extension logged in the specified IS W3C log file:

SELECT TO_LOWERCASE(EXTRACT_EXTENSION(cs-uri-stem)) A
S PageType,
AV G(time-taken)
FROM ex031118.log
See;@eQIP BY PageType

COUNT

SUM

MAX

MIN
PROPCOUNT
PROPSUM

GROUPING

Aggregate Functions

Aggregating Data Within Groups

© 2004 Microsoft Corporation. All rights reserved.

COUNT

COUNT ([DISTINCT | ALL | *)
COUNT ([DISTINCT | ALL] <field_expr_list>)

<field_expr_list> = <field_expr> [, <field_expr> ...]

Returns the number of items in a group.

Arguments:

DISTINCT

Specifies that COUNT returns the number of unique values.
DISTINCT can only be used when the query does not make use of
the GROUP BY clause.

ALL
Applies the aggregate function to all values. ALL is the default.

*

Specifies that all records should be counted to return the total
number of records, including records that contain NULL values.

<field_expr_list>

Specifies that only records for which at least one of the specified
field-expressions is non-NULL should be counted.

Return Type:

INTEGER

Remarks:
e Aggregate functions are allowed as field-expressions only in the
SELECT, HAVING, and ORDER BY clauses.

e The arguments of an aggregate function can not reference other
aggregate functions.

e The arguments of an aggregate function can not reference the
following functions:

e SEQUENCE
e OUT_ROW_NUMBER

e DISTINCT is allowed in aggregate functions only when there is no
GROUP BY clause.

Examples:

A. COUNT(¥)

The following query returns the total number of events in the System
event log:

SELECT COUNT(*)
FROM System
B. COUNT(DISTINCT)

The following query returns the total number of distinct event source
names in the System event log:

SELECT COUNT(DISTINCT SourceName)
FROM System
C. COUNT(*) and GROUP BY

The following query returns the total number of events generated by

each event source in the System event log:

SELECT SourceName, COUNT(*)
FROM System

DCROUNB{ field-<eXjaression)

The following query returns the total number of non-null values for
the "cs-username” field in the specified 1IS W3C log file:

SELECT COUNT(cs-username)
FROM ex040528.1og
E. COUNT(*) and WHERE

The following query returns the total number of requests to a page
logged in the specified IS W3C log file:

SELECT COUNT(*)
FROM ex040528.1og
FWO OB T GROUP BYinandpHAVING

The following query returns the pages in the specified IS W3C log
file that have been requested more than 50 times:

SELECT cs-uri-stem
FROM ex040528.1og
GROUP BY cs-uri-stem

HAVING COUNT(*) > 50
See also:

SUM

AVG

MAX

MIN
PROPCOUNT
PROPSUM
GROUPING

Aggregate Functions
Aggregating Data Within Groups

© 2004 Microsoft Corporation. All rights reserved.

GROUPING

GROUPING (<field_expr>')

Returns a value of 1 when the row is added by the ROLLUP operator of
the GROUP BY clause, or 0 when the row is not the result of ROLLUP.
GROUPING is used to distinguish the NULL values returned by ROLLUP
from standard NULL values. The NULL returned as the result of a
ROLLUP operation is a special use of NULL. It acts as a value
placeholder in the result set and means "all".

Arguments:

<field_expr>

The GROUP BY field-expression checked for null values.

Return Type:

INTEGER

Remarks:

e The GROUPING aggregate function is allowed only when the GROUP
BY clause contains the ROLLUP operator.

e Aggregate functions are allowed as field-expressions only in the
SELECT, HAVING, and ORDER BY clauses.

e The arguments of an aggregate function can not reference other
aggregate functions.

e The arguments of an aggregate function can not reference the
following functions:

e SEQUENCE
e OUT_ROW_NUMBER

Examples:

A. GROUPING

The following query, on an ISW3C log file, returns the number of
requests for each page on each day, and uses the ROLLUP operator
to also display summary rows showing the number of requests for
each day, and the total number of requests:

SELECT date, cs-uri-stem, COUNT(*), GROUPING(date) AS GDate, G
ROUPING(cs-uri-stem) AS GPage
ArganNlexoutpaigvwewld be:
GROUP BY date, cs-uri-stem WITH ROLLUP
date cs-uri-stem COUNT(ALL *) GDate GPage

Thepvalues ohdteulGate” figld are Jponly for the rows in which the
"datel-fieldgigstyléldsglue tojthe intrgdugtion of the ROLLUP summary
rQ093-11-18 /images/address.gif 1 0 O

Sy 1BecsalbrseliicexeRage” fiedd age 1 only for the rows in
wiob-the1 st aieRnfictdis NULL due do the introduction of the

RObLUE. syiramanileiio.nsf 6 0 0
2003-11-20 /data/rulesinfo.nsf 5 0 O
2003-11-20 /maindefault.htm 1 0 O
2003-11-20 /top2.htm 1 0 O
Seeghsor1 0 /homelog.swf 1 0 O
COUNT - 20 I 1
SURPO3-11-18 - 6 0 1
AV@003-11-19 - 6 0 1
MAX003-11-20 - 8 0 1
MIN
PROPCOUNT

PROPSUM

GROUP BY
Aggregate Functions

Aggregating Data Within Groups

© 2004 Microsoft Corporation. All rights reserved.

MAX

MAX ([DISTINCT | ALL] <field_expr>)

Returns the maximum value among all the values of the specified field-
expression.

Arguments:

DISTINCT

Specifies that MAX returns the maximum value of unique values.
DISTINCT is not meaningful with MAX and is available for SQL-92
compatibility only.

DISTINCT can only be used when the query does not make use of
the GROUP BY clause.

ALL
Applies the aggregate function to all values. ALL is the default.

<field_expr>

The field-expression among whose values the maximum is to be
found.
The field-expression can be of any data type.

Return Type:

The returned type is the same as the argument field-expression.

Remarks:

e NULL values are ignored by the MAX aggregate function.

e Aggregate functions are allowed as field-expressions only in the
SELECT, HAVING, and ORDER BY clauses.

e The arguments of an aggregate function can not reference other
aggregate functions.

e The arguments of an aggregate function can not reference the
following functions:

e SEQUENCE
e OUT_ROW_NUMBER

o DISTINCT is allowed in aggregate functions only when there is no
GROUP BY clause.

Examples:

A. MAX

The following query returns the size of the largest executable file in
the "system32" directory, using the ES input format:

SELECT MAX(Size)
FROM C:\windows\system32*.*
BAMARENO GROURBASE(EXTRACT_EXTENSION(Name)) = 'exe'

The following query returns the longest time spent by each page
extension logged in the specified IS W3C log file:

SELECT TO_LOWERCASE(EXTRACT_EXTENSION(cs-uri-stem)) A
S PageType,
MAX(time-taken)
FROM ex031118.log
See;@eQIP BY PageType

COUNT
SUM
AVG

MIN
PROPCOUNT
PROPSUM
GROUPING

Aggregate Functions

Aggregating Data Within Groups

© 2004 Microsoft Corporation. All rights reserved.

MIN

MIN ([DISTINCT | ALL] <field_expr>)

Returns the minimum value among all the values of the specified field-
expression.

Arguments:

DISTINCT

Specifies that MIN returns the minimum value of unique values.
DISTINCT is not meaningful with MIN and is available for SQL-92
compatibility only.

DISTINCT can only be used when the query does not make use of
the GROUP BY clause.

ALL
Applies the aggregate function to all values. ALL is the default.

<field_expr>

The field-expression among whose values the minimum is to be
found.
The field-expression can be of any data type.

Return Type:

The returned type is the same as the argument field-expression.

Remarks:

e NULL values are ignored by the MIN aggregate function.

e Aggregate functions are allowed as field-expressions only in the
SELECT, HAVING, and ORDER BY clauses.

e The arguments of an aggregate function can not reference other
aggregate functions.

e The arguments of an aggregate function can not reference the
following functions:

e SEQUENCE
e OUT_ROW_NUMBER

o DISTINCT is allowed in aggregate functions only when there is no
GROUP BY clause.

Examples:

A. MIN

The following query returns the size of the smallest executable file in
the "system32" directory, using the ES input format:

SELECT MIN(Size)
FROM C:\windows\system32*.*
BVMVIINRENIDGROVPEBN SE(EXTRACT_EXTENSION(Name)) = 'exe'

The following query returns the shortest and the longest time spent
by each page extension logged in the specified IS W3C log file:

SELECT TO_LOWERCASE(EXTRACT_EXTENSION(cs-uri-stem)) A
S PageType,
MIN(time-taken),
MAX(time-taken)
Seealg®t ex031118.1og

cOGRYUP BY PageType

SUM
AVG

MAX
PROPCOUNT
PROPSUM
GROUPING

Aggregate Functions

Aggregating Data Within Groups

© 2004 Microsoft Corporation. All rights reserved.

PROPCOUNT

PROPCOUNT (*) [ON (<on_field_expr_list>) |
PROPCOUNT (<field_expr_list>) [ON (<on_field_expr_list>)]

<field_expr_list> = <field_expr> [, <field_expr> ... |

<on_field_expr_list> <field_expr> [, <field_expr> ...]

Returns the ratio of the COUNT aggregate function calculated on a group
to the COUNT aggregate function calculated on a hierarchically higher

group.

Arguments:
*

Specifies that all records should be counted to return the total
number of records, including records that contain NULL values.

<field_expr_list>

Specifies that only records for which at least one of the specified
field-expressions is non-NULL should be counted.

<on_field_expr_list>

List of GROUP BY field-expressions identifying the hierarchically
higher group on which the denominator COUNT aggregate function
is to be calculated.

This list of field-expressions must be a proper prefix of the GROUP
BY field-expressions, that is, it must contain, in the same order, a
subset of the field-expressions specified in the GROUP BY clause,
starting with the leftmost GROUP BY field-expression.

When this list of field-expressions is not specified, the denominator
COUNT aggregate function is calculated on the whole set of input
records.

Return Type:

REAL

Remarks:

When used without a GROUP BY clause, the PROPCOUNT aggregate
function always returns 1.0. In fact, in this case the only hierarchically
higher group available is the whole set of input records, and the ratio
numerator and denominator are calculated on the same set.

To obtain a percentage, multiply the return value of the PROPCOUNT
aggregate function by 100.0, using the MUL function.

Aggregate functions are allowed as field-expressions only in the
SELECT, HAVING, and ORDER BY clauses.

The arguments of an aggregate function can not reference other
aggregate functions.

The arguments of an aggregate function can not reference the
following functions:

o SEQUENCE

e OUT_ROW_ NUMBER

Examples:

A. PROPCOUNT(*)

The following query returns the percentage of events for each source
in the System event log:

SELECT SourceName, MUL(PROPCOUNT(*), 100.0) AS Percent
FROM System _ _
AGROWERVIBHRENUTmAUeErY iS:

SourceName Percent

Theerfoiesgent” outpubrezmypdfield shows the ratio of the number of
esentzdaugaebbyaEeer@3 foothe total number of events in the event
lo%ki HotKey Poller 3.430691

Application Popup 0.108175
InwiBisraxample, the cakgdagan performed by the PROPCOUNT
apgregate function s@Ryalent to executing the following two
gNEsesiasrherlculating gsa4atio of the two aggregate functions for
engRzENeNt log soweR4525

RemoteAccess 2.194406

GEMRICSourceNam8, 309988 T(*) AS Numerator

BRAINS Bystem 0.509968

BRUEAROSNTQeAERE D enominator
ﬂ)fuléing ON 0 030907

Tﬁ%?é; gwéﬂg query¢§P§4glp ISW3C Input Format to parse IIS log
ﬁg@@@ﬁu ate the Reysssqge of hits for a page type and HTTP
sﬁtllﬁ de relat|v§ 591(59 umber of hits for that page type (i.e. the

dtggj,p gn of HTTB’ el codes within each page type):

SELECT EXTRACT_EXTENSION(cs-uri-stem) AS PageType, sc-status,

MUL(PROPCOUNT(*) ON (PageType), 100.0) AS Hits
ArsaoNlexoutmaisabthis query is:

GROUP BY PageType, sc-status

PP BR &Y -Btegad ks sc-status

Feypeachopage typeansbbi TTP status code, the "Hits" output record
fielgkshowe the yali@@dghe number of requests for that page type and
HI13E sBEgus cagledootioe total number of requests for that page type.

css 200 13.636364
Indhis eyampleyghsasisulation performed by the PROPCOUNT

aggregdtetifunctibfds0&duivalent to executing the following two
qdiriessa0d calbaladiagothe ratio of the two aggregate functions for
each patf@typeladdITP status:

gif 200 21.025641

g1 EGPEX TRALZBOEX TENSION(cs-uri-stem) AS PageType, sc-status,
SHOUNG¢+) AZ.ShiABrator

M@W@Sﬁ%ngNSION(CS -uri-stem) AS PageType, COUNT
@g@gﬁ%@gﬁ Bl Pebad status
DGR Oy e 3Qc-status
BROUPY P?ég 00000

Sedﬂmﬁoﬁy Pt Py pa 22
304 992078

COUNT 5090 36.363636
SU 304 63.636364
AV@sr 200 90.845070
f 302 0.704225
MINt 304 6338028

PROBSUMs 5 112676
GRQUPING 57972727

A P@fate unctlg%s727273

Aggregating Data Within Groups
Calculating Percentages

© 2004 Microsoft Corporation. All rights reserved.

PROPSUM

PROPSUM (<field_expr>) [ON (<on_field_expr_list>)]

<on_field_expr_list> = <field_expr> [, <field_expr> ... |

Returns the ratio of the SUM aggregate function calculated on a group to
the SUM aggregate function calculated on a hierarchically higher group.

Arguments:

<field_expr>

The field-expression whose values are to be summed.
The field-expression data type must be INTEGER or REAL.

<on_field_expr_list>

List of GROUP BY field-expressions identifying the hierarchically
higher group on which the denominator SUM aggregate function is to
be calculated.

This list of field-expressions must be a proper prefix of the GROUP
BY field-expressions, that is, it must contain, in the same order, a
subset of the field-expressions specified in the GROUP BY clause,
starting with the leftmost GROUP BY field-expression.

When this list of field-expressions is not specified, the denominator
SUM aggregate function is calculated on the whole set of input
records.

Return Type:

REAL

Remarks:

¢ When used without a GROUP BY clause, the PROPSUM aggregate
function always returns 1.0. In fact, in this case the only hierarchically
higher group available is the whole set of input records, and the ratio
numerator and denominator are calculated on the same set.

e To obtain a percentage, multiply the return value of the PROPSUM
aggregate function by 100.0, using the MUL function.

e Aggregate functions are allowed as field-expressions only in the
SELECT, HAVING, and ORDER BY clauses.

e The arguments of an aggregate function can not reference other
aggregate functions.

e The arguments of an aggregate function can not reference the
following functions:
o SEQUENCE
e OUT_ROW_ NUMBER

Examples:

A. PROPSUM

The following query uses the ISW3C Input Format to parse IIS log
files and calculate the percentage of bytes sent for each page type:

SELECT EXTRACT_EXTENSION(cs-uri-stem) AS PageType, MUL(P
ROPSUM(sc-bytes), 100.0) AS PercentBytes
ArsanNlexoutmaisabthis query is:
GROUP BY Pagelype
PageType PercentBytes

Then"PercesgBytes” output record field shows the ratio of the bytes
segyt foregsdppage type to the total number of bytes sent in the log.

gif 23.772064

Irethis ek&3AH888 the calculation performed by the PROPSUM
aggregate4o®iibn is equivalent to executing the following two
gsiefies 3h828961ating the ratio of the two aggregate functions for
efeh pajeOtAx)

html 0.104051

Sk EOPP23PRACT EXTENSION(cs-uri-stem) AS PageType, SUM(sc-

B§i[t’es) ﬂ@@@ﬂ%rator

B. Using ON

The following query uses the ISW3C Input Format to parse IIS log
files and calculate the percentage of bytes sent for each page type
and HTTP status code relative to the total bytes sent for that page
type (i.e. the distribution of HTTP status code response bytes within
each page type):

SELECT EXTRACT_EXTENSION(cs-uri-stem) AS PageType, sc-status,

MUL(PROPSUM(sc-bytes) ON (PageType), 100.0) AS PercentBytes
ArsaoNlexoutmaisabthis query is:

GROUP BY PageType, sc-status

PRPBR&sC-Bagad HercentRytes

Feypeachopage dypspensl HTTP status code, the "PercentBytes"
odipyt regord fieldsshews the ratio of the response bytes for that
pagasstypeand HLHg3status code to the total response bytes for that

page typ@d 6.039609

css 304 3.502318
Indhis epmpleyghsgmigulation performed by the PROPSUM

agyregste funaprmegeivalent to executing the following two
geleries ol calppdadpmmdipe ratio of the two aggregate functions for
eggh page typgagdi bGgT P status:
gif 304 6.935887
SHELEQUEXTRATZA4E X TENSION(cs-uri-stem) AS PageType, sc-status,
M (s2tlytes)IR D NGhfi6rator

EROM 8R8405BI0E/BX TENSION(cs-uri-stem) AS PageType, SUM(sc-
BAREIV REMY Ppafine3 Sc-status

;gf;zg i

Ser5.036087

nsf 200 99.604883 TENSION , AS PageT
ngfLE%Bf‘ T%% (cs-uri-stem) ageType

ol el
Se:‘ZIVINﬁ(SD RO%%f%gPytes) >0.1

304 0.089812

COUNT

SUM

AVG

MAX

MIN
PROPCOUNT
GROUPING

Aggregate Functions

Aggregating Data Within Groups
Calculating Percentages

© 2004 Microsoft Corporation. All rights reserved.

SUM

SUM ([DISTINCT | ALL] <field_expr>)

Returns the sum of all the values, or only the DISTINCT values, of the
specified field-expression.

Arguments:

DISTINCT

Specifies that SUM returns the sum of unique values.
DISTINCT can only be used when the query does not make use of
the GROUP BY clause.

ALL
Applies the aggregate function to all values. ALL is the default.

<field_expr>

The field-expression whose values are to be summed.
The field-expression data type must be INTEGER or REAL.

Return Type:

INTEGER or REAL, depending on the argument field-expression.

Remarks:

e NULL values are ignored by the SUM aggregate function.

e Aggregate functions are allowed as field-expressions only in the
SELECT, HAVING, and ORDER BY clauses.

e The arguments of an aggregate function can not reference other
aggregate functions.

e The arguments of an aggregate function can not reference the
following functions:

e SEQUENCE
e OUT_ROW_NUMBER

e DISTINCT is allowed in aggregate functions only when there is no
GROUP BY clause.

Examples:

A. SUM

The following query returns the total number of bytes for executable
files in the "system32" directory, using the ES input format:

SELECT SUM(Size)
FROM C:\windows\system32*.*
BVSIIRERO GROURBASE(EXTRACT_EXTENSION(Name)) = 'exe'

The following query returns the total number of bytes sent for each
page extension logged in the specified IS W3C log file:

SELECT TO_LOWERCASE(EXTRACT_EXTENSION(cs-uri-stem)) A
S PageType,
SUM(sc-bytes)
FROM ex031118.log
See;@eQIP BY PageType

COUNT

AVG

MAX

MIN
PROPCOUNT
PROPSUM
GROUPING

Aggregate Functions

Aggregating Data Within Groups

© 2004 Microsoft Corporation. All rights reserved.

Functions

<function> ::= <function_name> (<argument_list>)
<argument_list> = <field_expr> [, <field_expr> ... |
<empty>

Log Parser functions take zero or more field-expressions as arguments,
process the arguments, and return a single value.

Remarks:

e Generally, functions that take no arguments and functions whose
arguments are constant values are executed and replaced with the
return value before the query is processed.

As an example, the following query uses a function with no arguments
and a function with constant arguments:

SELECT COMPUTER_NAME(), SUM(4, 5), TimeGenerated

FROM System
Before being processed, the query is modified as follows:

SELECT 'MYSERVERQO0', 9, TimeGenerated

FROM System
The only zero-argument functions that are not replaced with their return

value before the query is processed are:
o SEQUENCE

e IN_ ROW_NUMBER

e OUT_ROW_ NUMBER

Functions:

Arithmetical

ADD
BIT_AND
BIT_NOT
BIT_OR
BIT_SHL
BIT_SHR
BIT_XOR
DIV
EXP
EXP10
FLOOR
LOG
LOG10
MOD
MUL
QNTFLOOR_TO_DIGIT

QNTROUND_TO_DIGIT
QUANTIZE

ROUND

SOR

SQRROOT

SUB

Conversion

HEX_TO_INT
INT_TO_IPV4
IPV4_TO_INT
TO_DATE
TO_HEX
TO_INT
TO_LOCALTIME

TO_REAL
TO_STRING
TO_TIME
TO_TIMESTAMP
TO_UTCTIME

String Manipulation
EXTRACT_EXTENSION

EXTRACT_FILENAME
EXTRACT_PATH
EXTRACT_PREFIX
EXTRACT_SUFFIX
EXTRACT_TOKEN
EXTRACT_VALUE
HEX_TO_ASC
HEX_TO_HEX16
HEX_TO_HEX32
HEX_TO_HEXS8
HEX_TO_PRINT
INDEX_OF
LAST_INDEX_OF
LTRIM
REPLACE_CHR
REPLACE_STR
ROT13

RTRIM

STRCAT

STRCNT

STRLEN
STRREPEAT
STRREV
SUBSTR
TO_LOWERCASE
TO_UPPERCASE
TRIM

URLESCAPE
URLUNESCAPE

System Information

COMPUTER_NAME
RESOLVE_SID
REVERSEDNS
SYSTEM_DATE
SYSTEM_TIME
SYSTEM TIMESTAMP
SYSTEM UTCOFESET

Miscellaneous

CASE

COALESCE

HASHMD5_FILE

HASHSEQ

IN_ROW_NUMBER
OUT_ROW_NUMBER
REPLACE_IF_NOT_NULL
SEQUENCE
WIN32_ERROR_DESCRIPTION

[#Note: The REPLACE_IF_NULL function has been deprecated in
favor of the COALESCE function.

See also:

Aggregate Functions

Constant Values
Field Expressions

© 2004 Microsoft Corporation. All rights reserved.

Constant Values

<value> ::= <integer_constant>
<real_constant>
<string_constant>
<timestamp_constant>

<null_constant>

<integer_constant> ::= integer

Oxhexadecimal
<real_constant> ::= integer_part.fractional_part

<string_constant> ::= 'string'

<timestamp_constant> TIMESTAMP ('timestamp', 'format')

<null_constant> = NULL

Constants are immutable field-expressions, and they are mostly used in
expressions or as arguments of functions.

Constants:

<integer_constant>

Constant values of the INTEGER type can be entered as decimal
numbers, or as hexadecimal numbers preceded by the "0x" prefix.
For more information about the Log Parser INTEGER data type, see
INTEGER Data Type.

<real constant>

Constant values of the REAL type are entered as decimal numbers
containing a decimal point.

For more information about the Log Parser REAL data type, see
REAL Data Type.

<string_constant>

Constant values of the STRING type are entered as strings enclosed
by single quote characters (').

The single quote character (') and the backslash character (\) are
considered special characters in a string constant, and they can only
be entered as escape sequences preceded by a backslash character
(\"and \\), as in the following example:

'Contains \' single quote and \\ backslash'

In addition, any character (including illegal characters and non-
printable characters) can be entered using the \uxxxx notation,
where xxxx is the 4-digit hexadecimal representation of the desired
UNICODE character, as in the following example:

'Contains\u0009tabs'

For more information about the Log Parser STRING data type, see
STRING Data Type.

<timestamp_constant>

Constant values of the TIMESTAMP type are entered with the
special TIMESTAMP keyword, followed by a string representation of
the desired timestamp, and by the format of the string representation
of the desired timestamp, using the Log Parser Timestamp Format
Specifiers.

If the timestamp format specifiers include date specifiers only, the
resulting TIMESTAMP value will be a date-only timestamp. Similarly,
if the timestamp format specifiers include time of day specifiers only,
the resulting TIMESTAMP value will be a time-only timestamp.

For more information about the Log Parser TIMESTAMP data type,

see TIMESTAMP Data Type.

<null _constant>

Constant values of the NULL type are entered with the special NULL
keyword.

For more information about the Log Parser NULL data type, see
NULL Data Type.

Remarks:

¢ Integer constants entered as hexadecimal numbers are converted
internally to decimal values. To force an output format to display an

integer field-expression as an hexadecimal value, use the TO_HEX
function.

Examples:

A. Integer constant entered as decimal nhumber
sc-bytes >= 1000

B. Integer constant entered as hexadecimal humber
BIT_AND(Flags, 0x1000)

C. Real constant
AVG(time-taken) < 75.45

D. String constant

'‘Some string'

E. String constant containing special characters
'Contains \' single quote and \\ backslash'

F. String constant containing UNICODE characters
'Contains a \u2530 UNICODE character'

G. Timestamp constant

TimeGenerated > TIMESTAMP('2004-05-28 19:12:43', 'yyyy-MM-dd h
h:mm:ss')
H. Date-only timestamp constant

date > TIMESTAMP('2004-05-28', 'yyyy-MM-dd')
I. Time-only timestamp constant

time > TIMESTAMP('19:12:43', 'hh:mm:ss')
J. NULL constant

Message <> NULL

See also:

Field Expressions
INTEGER Data Type
REAL Data Type
STRING Data Type
TIMESTAMP Data Type
NULL Data Type

Basics of a Query

© 2004 Microsoft Corporation. All rights reserved.

Comments

<comment> = /* text_of_comment */

-- text_of_comment

Comments are user-provided text not evaluated by Log Parser, used to
document code or temporarily disable parts of query statements.

Remarks:

e Use -- for single-line or nested comments. Comments inserted with --
are delimited by the newline character.

e Multiple-line comments must be indicated by /* and */.

e There is no maximum length for comments.

Examples:

A. Single-line comments

SELECT TimeGenerated, SourceName
FROM System -- We are using the SYSTEM event log
B. Multiple-line comments

SELECT TypeName, COUNT(*) AS TotalCount
USING TO_UPPERCASE(EXTRACT TOKEN(EventTypeName, 0, '

") AS Type _ _ _
INTO %@é M/crosoft Corporation. All rights reserved.

FROM System
/* We only want to retrieve event logs whose
type name contains 'service'

*/

WHERE TypeName LIKE '%service%'
GROUP BY TypeName

HAVING TotalCount > 5

ORDER BY TotalCount DESC

Data Types

In the Log Parser SQL-Like language, each field-expression has a
related data type, which is an attribute that specifies the type of data that
the field-expression can hold.

Log Parser supplies a set of system data types that define all of the types
of data that can be used with Log Parser. The set of system-supplied

data types is:

o INTEGER: integer numeric data;

REAL.: floating precision numeric data;

STRING: variable length UNICODE character string data;
TIMESTAMP: date and time data;

NULL: unknown or unavailable data.

© 2004 Microsoft Corporation. All rights reserved.

INTEGER Data Type

The INTEGER data type represents integer (whole number) numeric
data.

Value range:

INTEGER values are represented as signed 64-bit (8-byte) integer
numbers, with values ranging from -2"63
(-9,223,372,036,854,775,808) through 2"63-1
(9,223,372,036,854,775,807).

Conversion Functions:

Other data types to INTEGER data type:
e TO_INT

INTEGER data type to other data types:

e TO_REAL
e TO_STRING
e TO_TIMESTAMP

See also:
Constant Values

© 2004 Microsoft Corporation. All rights reserved.

REAL Data Type

The REAL data type represents floating point numeric data.
Floating point data is approximate; not all values in the data type range
can be precisely represented.

Value range:

REAL values are represented as signed 64-bit (8-byte) floating point
numbers, with values ranging from +5.0x10-324 through
J_rl.7><10308, with at least 15 digits of precision.

Conversion Functions:

Other data types to REAL data type:
e TO REAL

REAL data type to other data types:

e TO_INT
e TO_STRING
e TO_TIMESTAMP

See also:
Constant Values

© 2004 Microsoft Corporation. All rights reserved.

STRING Data Type

The STRING data type represents variable length UNICODE character
string data.

Conversion Functions:

Other data types to STRING data type:
e TO_STRING

STRING data type to other data types:
e TO_INT

e TO_REAL

e TO_TIMESTAMP

See also:

Constant Values

© 2004 Microsoft Corporation. All rights reserved.

TIMESTAMP Data Type

The TIMESTAMP data type represents date and time of day data.

Value range:

TIMESTAMP values range from January 1, -8192 through December
31, 8191, to an accuracy of one hundred nanoseconds (one ten-
thousandth of a millisecond).

Date-only and Time-only Timestamps

TIMESTAMP values can be restricted to represent date data only or
time of day data only.

As explained in the Remarks section below, a TIMESTAMP value
that has been restricted to represent date data only or time of day
data only will be formatted to display date elements only (year,
month, and day) or time of day elements only (hour, minute, second,
millisecond, and nanosecond).

TIMESTAMP values can be restricted to date-only or time-only
timestamps in different ways.

Some input formats return TIMESTAMP input record fields whose
values represent only dates or times of day. For example, the "date"
and "time" fields of the ISW3C input format have values
representing only dates and times of day, respectively.

TIMESTAMP constants can also be entered as date-only or time-
only timestamp values, depending on the Timestamp Format
Specifiers used.

In addition, the TO_DATE, TO_TIME, SYSTEM_DATE, and
SYSTEM_TIME functions all return TIMESTAMP values representing
dates or times of day only.

For more information, refer to the Remarks section below.

Remarks:

e TIMESTAMP values are formatted and parsed using Timestamp
Format Specifiers. Timestamp format specifiers are strings that use
special characters to describe date and/or time elements in a string
representation of a timestamp. For more information, refer to the
Timestamp Format Specifiers reference.

¢ Although the distinction between date-only or time-only TIMESTAMP
values and full TIMESTAMP values is often transparent to the user,
date-only or time-only values behave differently than full TIMESTAMP
values in the following circumstances:

e Comparison operators in expressions: When comparing a date-only
TIMESTAMP value with another TIMESTAMP value, the time of day
data of the date-only value is assumed to be time zero. Similarly,
when comparing a time-only TIMESTAMP value with another
TIMESTAMP value, the date data of the time-only value is assumed
to be January 1, year 0.

e Formatting TIMESTAMP values: whenever a date-only or time-only
TIMESTAMP value is formatted to a STRING value by either
explicitly using the TO_STRING function or as implicitly done by an
output format, the resulting STRING will only contain the date or time
of day data, and the non-applicable Timestamp Format Specifiers
will be ignored.

As an example, the following query uses the TO_STRING function
with date and time of day format specifiers to format the "time" field
of the ISW3C input format:

SELECT TO_STRING(time, 'yyyy-MM-dd hh:mm:ss")
FROM <1>
Since the values of the "time" field are time-only TIMESTAMP

values, the resulting STRING values will be formatted according to
the time of day format specifiers only, and the date format specifiers
will be ignored:

18:48:04

18:48:27
e Valygsgfxype TIMESTAMP can also be used to represent time

intergads; Jor example with the ADD and SUB functions.
Since the origin of time in the Log Parser SQL-Like language is

January 1, year 0, time intervals should be expressed as timestamps
relative to this origin of time.

For example, a time interval of one day should be specified as January
2, year 0, i.e. 24 hours after the origin of time.

The following example query selects all the event log records that have
been written in the past 2 days:

SELECT *
FROM SYSTEM
o TIMERAMRyRHasHs 1ot caayAnfovetisuBShS imezaneItETAMP

timeBtMBL TR MBI 01-03', 'yyyy-MM-dd")))
When working with TIMESTAMP fields generated by an input format,
users should be aware of the timezone these fields are relative to, and
handle their values accordingly.
For example, values of the "TimeGenerated" field of the EVT Input
Format are relative to the local timezone. If Universal Time Coordinates
(UTC) are desired, the TO_UTCTIME function should be used to
convert these local timestamps to UTC timestamps.

Conversion Functions:

Other data types to TIMESTAMP data type:
e TO_TIMESTAMP

TIMESTAMP data type to other data types:
e TO_INT

e TO_REAL

e TO_STRING

Full TIMESTAMP values to date-only TIMESTAMP values:
e TO_DATE

Full TIMESTAMP values to time-only TIMESTAMP values:

e TO_TIME

Date-only and time-only TIMESTAMP values to full TIMESTAMP
values:

e TO TIMESTAMP

Local timezone TIMESTAMP values to UTC TIMESTAMP values:
e TO _UTCTIME

UTC TIMESTAMP values to local timezone TIMESTAMP values:
e TO LOCALTIME

See also:

Constant Values
Timestamp Format Specifiers

© 2004 Microsoft Corporation. All rights reserved.

Timestamp Format Specifiers

TIMESTAMP values are formatted and parsed using Timestamp Format
Specifiers. Timestamp format specifiers are strings that use special
characters to describe date and/or time elements in a string
representation of a timestamp.

Timestamp format specifiers are used in the following circumstances:

When entering a TIMESTAMP constant with the TIMESTAMP keyword.
In this case, timestamp format specifiers are used to describe how the
string entered should be parsed in order to obtain a TIMESTAMP
value, as in the following example:

TimeGenerated > TIMESTAMP ('2004-05-28 10:23:15', 'yyyy-MM-dd hh:
mm:ss')
When converting a TIMESTAMP value to a STRING value using the
TO_STRING function. In this case, timestamp format specifiers are
used to describe how the TIMESTAMP value should be formatted in
order to obtain a STRING value, as in the following example:

TO_STRING(TimeGenerated, 'yyyy MMM, dd h:m:s")

When converting a STRING value to a TIMESTAMP value using the
TO_TIMESTAMP function. In this case, timestamp format specifiers
are used to describe how the STRING value should be parsed in order
to obtain a TIMESTAMP value, as in the following example:

TO_TIMESTAMP(Text, MMM ddd yyyy")

When specifying how an input format should parse TIMESTAMP fields,
using the "iTsFormat" parameter. In this case, timestamp format
specifiers are used to describe how timestamp values are represented
by the selected data source, so that the input format is capable to
parse these fields and represent them as values of type TIMESTAMP.
The following example sets a specific value for the "iTsFormat”

parameter of the CSV Input Format:

C:\>logparser "SELECT MyField FROM file.csv" -i:CSV -iTsFormat:"yyyy
-MM-dd"

e When specifying how an output format should format and display
TIMESTAMP fields, using the "oTsFormat" parameter. In this case,
timestamp format specifiers are used to describe how TIMESTAMP
values should be formatted by the output format, as in the following
example using the TSV Output Format:

C:\>logparser "SELECT TimeGenerated INTO file.txt FROM System" -i:E
VT -0:TSV -oTsFormat:"yyyy-MM-dd"

The following table describes the timestamp format specifiers supported
by the Log Parser SQL-Like language:

Example

specifier
Specifier Description strings Example formats
y year, last digit y MM dd 4 05 28

(when parsing,
assumed to be relative
to year 2000)
yy year, last 2 digits yy MM dd 04 05 28
(when parsing,
assumed to be relative
to year 2000)
yyy year, last 3 digits yyy MM dd 004 05 28
(when parsing,
assumed to be relative

to year 2000)
yyyy year, 4 digits yyyy MM dd 2004 05 28
M month, no leading zero yyyy-M-dd 2004-5-28
2004-12-01
MM month, leading zero yyyy-MM-dd 2004-05-28

2004-12-01

MP month, leading space yyyy-MP-dd 2004- 5-28

2004-12-01
MX month, with or without yyyy-MX-dd 2004-05-28 (when
leading zero (when parsing)
parsing) 2004-5-28
month, without leading 2004-12-01
zero (when formatting)
MMM month, 3-character MMM d, yyyy Dec 1, 2004
abbreviation of name
(1)
MMMM month, full name (1) MMMM d, December 1, 2004
yyyy
d day, no leading zero yyyy-MM-d 2004-12-1
2004-05-28
dd day, leading zero yyyy-MM-dd 2004-12-01
2004-05-28
dp day, leading space yyyy-MM-dp 2004-12- 1
2004-05-28
dx day, with or without yyyy-MM-dx 2004-12-01 (when
leading zero (when parsing)
parsing) 2004-12-1
day, without leading 2004-05-28
zero (when formatting)
ddd week day, 3-character ddd MMMM d, Wed December 1, 2004
abbreviation of name yyyy
(1)
dddd week day, fullname dddd MMMM Wednesday December
(1) d, yyyy 1, 2004
h, H hour, no leading zero h:mm:ss 3:12:05
21:04:15
hh, HH hour, leading zero hh:mm:ss 03:12:05
21:04:15
hp, HP hour, leading space hp:mm:ss 3:12:05

21:04:15

hx, HX

mm

mp

mx

SS

sp

SX

11

1p

hour, with or without hx:mm:ss
leading zero (when

parsing)

hour, without leading

zero (when formatting)

minute, no leading hh:m:ss
zero
minute, leading zero hh:mm:ss

minute, leading space hh:mp:ss

minute, with or without hh:mx:ss
leading zero (when

parsing)

minute, without

leading zero (when

formatting)

second, no leading
zero

second, leading zero hh:mm:ss

hh:mm:ss

second, leading space hh:mm:sp

second, with or without hh:mm:ss
leading zero (when

parsing)

second, without

leading zero (when

formatting)

millisecond, no leading hh:mm:ss.|
zeroes

millisecond, leading hh:mm:ss.lI
Zeroes
millisecond, leading hh:mm:ss.lp

spaces

03:12:05 (when
parsing)
3:12:05
21:04:15

21:4:15
03:12:05
21:04:15
03:12:05

21: 4:15
03:12:05
21:04:15 (when
parsing)
21:4:15
3:12:05

03:12:5
21:04:15
03:12:05
21:04:15

03:12: 5
21:04:15
03:12:05 (when
parsing)
03:12:5
21:04:15

21:4:15.5
03:12:05.395
21:04:15.005
03:12:05.395
21:04:15. 5
03:12:05.395

1x

nn

np

nx

tt

millisecond, with or
without leading zero
(when parsing)
millisecond, without
leading zero (when
formatting)

nanosecond, no
leading zeroes

nanosecond, leading
zeroes

nanosecond, leading
spaces

nanosecond, with or
without leading zero
(when parsing)
nanosecond, without
leading zero (when
formatting)

AM/PM notation

any character (when
parsing)

space (when
formatting)

any other yerbatim character

character

Notes:
(1): element names are obtained from the current system locale.

21:04:15.005 (when
parsing)

21:04:15.5
3:12:05.395

hh:mm:ss.Ix

hh:mm:ss.ll.n 21:4:15.005.400
03:12:05.395.1900

hh:mm:ss.ll.nn 21:04:15.005.00000400
03:12:05.395.001900

hh:mm:ss.ll.np 21:04:15.005. 400
03:12:05.395. 1900

hh:mm:ss.ll.nx 21:04:15.005.00000400
(when parsing)
21:04:15.005.400
3:12:05.395.1900

09:04:15 PM
03:12.05 AM
yyyy-MM-dd? 2004-05-28T21:04:15
hh:mm:ss (when parsing)
2004-05-28 21:04:15
(when formatting)

hh:mm:ss --- 09:04:15 ---
yyyy.MM+dd 2004.05+28

hh:mm:ss tt

Date-only and Time-only Timestamps

When parsing a timestamp string, the following assumptions are made:

e If the timestamp format specifiers include date elements only, the
resulting TIMESTAMP value will be a date-only timestamp; for
example, the following statement creates a date-only TIMESTAMP
constant value:

TIMESTAMP('2004-05-28', 'yyyy-MM-dd')

e If the timestamp format specifiers include time of day elements only,
the resulting TIMESTAMP value will be a time-only timestamp; for
example, the following statement creates a time-only TIMESTAMP
constant value:

TIMESTAMP('21:04:15', 'hh:mm:ss")

e Unspecified date elements are replaced with the corresponding
elements of the Log Parser origin date (January 1, year 0), unless the
timestamp is a time-only timestamp value; for example, the following
statement creates a date-only timestamp representing the date
February 1, year O:

TIMESTAMP(2', 'M)

Similarly, unspecified time elements are replaced with zero values,
unless the timestamp is a date-only timestamp value; for example, the
following statement creates a time-only timestamp representing the
time 10:00:00.0.0:

TIMESTAMP('10', 'h")

As another example, the following statement creates a full timestamp
value representing the time 10:00:00.0.0 on February 1, year O:

TIMESTAMP(2 10, 'M h')

For more information on date-only and time-only timestamp values, refer
to the Timestamp Data Type reference.

See also:

Constant Values
Timestamp Data Type

© 2004 Microsoft Corporation. All rights reserved.

NULL Data Type

The NULL data type represents unknown or unavailable data.

Remarks:

¢ Input formats often return NULL values for input record fields to
indicate that the field data is not available in the current log.

e Avalue of NULL is different from a zero value. In the Log Parser SQL-
Like language, comparison operators in expressions treat NULL values
as the minimum possible values. In other words, all non-NULL values,
even negative numeric values, are always greater than a NULL value.
On the other hand, the MIN and MAX aggregate functions treat NULL
values as respectively the maximum and minimum possible values. In
other words, the MIN or MAX value between a non-NULL value and a
NULL value is always the non-NULL value.

e To test for NULL values in a query use IS NULL or IS NOT NULL in the
WHERE or HAVING clauses.

See also:

Constant Values
Expressions

© 2004 Microsoft Corporation. All rights reserved.

Input Formats

IIS Log File Input Formats

e |ISW3C: parses IIS log files in the W3C Extended Log File Format.
e |IS: parses IIS log files in the Microsoft IIS Log File Format.
e BIN: parses IIS log files in the Centralized Binary Log File Format.

¢ |ISODBC: returns database records from the tables logged to by IIS
when configured to log in the ODBC Log Format.

e HTTPERR: parses HTTP error log files generated by Http.sys.
o URLSCAN: parses log files generated by the URLScan IIS filter.

Generic Text File Input Formats

e CSV: parses comma-separated values text files.
e TSV: parses tab-separated and space-separated values text files.
L: parses XML text files.

e W3C: parses text files in the W3C Extended Log File Format.

o NCSA: parses web server log files in the NCSA Common, Combined,
and Extended Log File Formats.

o TEXTLINE: returns lines from generic text files.
e TEXTWORD: returns words from generic text files.

X

System Information Input Formats

e EVT: returns events from the Windows Event Log and from Event Log
backup files (.evt files).

e ES: returns information on files and directories.

e REG: returns information on registry values.

e ADS: returns information on Active Directory objects.

Special-purpose Input Formats

e NETMON: parses network capture files created by NetMon.

e ETW: parses Enterprise Tracing for Windows trace log files and live
sessions.

e COM: provides an interface to Custom Input Format COM Plugins.

© 2004 Microsoft Corporation. All rights reserved.

ADS Input Format

The ADS input format returns properties of Active Directory objects.

The ADS input format enumerates the Active Directory objects in the
Active Directory Container whose LDAP path is specified in the from-
entity, eventually recursing into additional Container objects found during
the enumeration.

The information returned for each object depends on the value specified
for the objClass parameter.

When the objClass parameter is left unspecified, the ADS input format
works in "property mode", returning a record for each property of each
object visited during the enumeration.

In this case, input records have a fixed number of fields whose values
describe the properties being returned, including a "PropertyName" field
and a "PropertyValue" field containing the name and the value of the
property being processed.

Queries operating in "property mode" can work on Active Directory
objects of different types, and since each input record represents a single
object property, they can only reference a single property at a time.

For example, the following command returns the values of all the
properties named "comment"” from all the objects in the specified path:

LogParser "SELECT PropertyValue FROM LDAP://mydomain.mycompany.c

om WHERE PropertyName = 'comment™ -i:ADS
The output would look like the following example:

Property Value

Builtin

WAYHBhe name of an Active Directory object class is specified for the
ogl@f%{g AR, the ADS input format works in "object mode”,
GFRMY BREEREF for each object visited during the enumeration that is

:
N YRRNERYFthe specified class.
I W3LB Yere is an input record field for each of the properties of the

oBpettupdipgnatusned.
Bretkep Operating) in "object mode" can only work on Active Directory

objects of a single type, and since each input record represents a single
object, they can reference multiple properties of the same object at the
same time.

For example, the following command returns the specified properties
from all the objects of type "Computer":

LogParser "SELECT cn, operatingSystem, operatingSystemServicePack FRO
M LDAP://mydomain.mycompany.com/CN=Computers, DC=mydomain,DC=

Thig @itk yyouEcaak like e sojowing oxasmple:

cn operatingSystem operatingSystemServicePack
SERVERO1 Windows XP Professional Service Pack 1
EERVERYS s Wfipdows XP Professional Service Pack 2

|_:PI d indows Server 2003 -

P S[IM@&HINE2 Windows XP Professional Service Pack 2
ET(rSI | CHINE3 Windows XP Professional Service Pack 1
~TEST CHINE4 Windows 2000 Server Service Pack 4

© 2004 Microsoft Corporation. All rights reserved.

ADS Input Format From-Entity Syntax

<from- ::= [[<provider>:]//[<username>:<password>@]
entity> <domain>J/<path> [; ...]

The <from-entity> specified in queries using the ADS input format is a
semicolon-separated list of LDAP paths.

Each LDAP path begins with an optional provider name (e.g. "lIS",
"LDAP"), followed by an optional domain or computer name. If a provider
name is not specified, then "lIS" is assumed by default. If a domain nhame
or computer name is not specified, then "localhost” is assumed by
default.

The from-entity can optionally include a username and a password to be
used for the connection to the Active Directory provider. When these are
not specified, the ADS input format uses the current user's credentials.

[#Note: LDAP paths containing comma (,) characters should be
enclosed within single-quote () characters.

Examples:
FROM IIS://COMPUTERO01/W3SVC(C/1
FROM IIS://MyUsername:MyPassword@ COMPUTERO01/W3SVC/1
FROM 'LDAP://MyDomain/CN=Users,DC=MyDomain,DC=com’
FROM 'LDAP://MyUsername:MyPassword@MyDomain/CN=Users,DC=My

Domain,DC=com'
FROM /W3SVC/1;,/W3SVC/2;//COMPUTER02/W3SVC/1

© 2004 Microsoft Corporation. All rights reserved.

ADS Input Format Fields

The structure of the input records generated by the ADS input format
depends on the value specified for the objClass parameter.

Property Mode

When the abjClass parameter is left unspecified, the ADS input format
works in "property mode", returning a record for each property of each
object visited during the enumeration.

In this case, input records have the following fixed structure:

Name Type Description

ObjectPath STRING | Full Active Directory path of the object
containing this property

ObjectName STRING | Name of the object containing this
property

ObjectClass STRING | Class name of the object containing this
property

PropertyName || STRING | Name of the property being processed

Property Value STRING || Value of the property being processed

PropertyType STRING | Type of the property being processed

Queries operating in "property mode" can work on Active Directory
objects of different types, and since each input record represents a single
object property, they can only reference a single property at a time.

Object Mode

When the name of an Active Directory object class is specified for the
objClass parameter, the ADS input format works in "object mode",
returning a record for each object visited during the enumeration that is
an instance of the specified class.

In this case, the first input record field is fixed, and it is described in the
following table:

Name Type Description

ObjectPath | STRING || Full Active Directory path of the object
being processed

This field is followed by fields representing all the properties of the
specified object class. Each field is named after the corresponding
property name, and its data type is determined by the property type
declared by the Active Directory schema object for the specified class.

Queries operating in "object mode" can only work on Active Directory
objects of a single type, and since each input record represents a single
object, they can reference multiple properties of the same object at the
same time.

© 2004 Microsoft Corporation. All rights reserved.

ADS Input Format Parameters

The ADS input format supports the following parameters:

objClass

Values:

Default:

Description:

Details:

Example:

username

Values:

Default:

Description:

Details:

Active Directory object class name
not specified
Object class name for "object mode" operation.

When this parameter is left unspecified, the ADS input fc
"property mode", returning a record for each property of
visited during the enumeration.

On the other hand, when the name of an Active Directon
specified for this parameter, the ADS input format works
mode", returning a record for each object visited during t
that is an instance of the specified class.

For more information on the different modes of operatior
Format Fields.

-objClass:User

username
not specified
Username for the Active Directory connection.

When a username is not specified for this parameter, the
format uses the username specified in the from-entity of
from-entity does not include a username, the ADS input
the current user's credentials.

#Note: For security reasons, values specified for this parameter a
not persisted when using the Log Parser command-line Defaults
Override Mode.

Example:

password

Values:
Default:
Description:

Details:

Example:

recurse

Values:
Default:
Description:
Details:

Example:

multiValuedSep

Values:
Default:
Description:

Details:

Example:

-username:MyUser

password
not specified
Password for the Active Directory connection.

Password for the username specified with the "usernamt

[#Note: For security reasons, values specified for this parameter a
not persisted when using the Log Parser command-line Defaults
Override Mode.

-password:MyPassword

recursion level (number)

-1

Max ADS container recursion level.

0 disables container recursion; -1 enables unlimited recu

-recurse:2

any string
|
Separator between values of multi-valued types.

Multi-valued property values are returned as a single stri
concatenating the multiple values one after the other usi
this parameter as a separator between the elements.

-multiValuedSep:,

ignoreDSErrors

Values:
Default:
Description:

Details:

Example:

parseBinary

Values:
Default:
Description:

Details:

Example:

binaryFormat

Values:
Default:

Description:

ON | OFF
ON
Ignore Directory Service errors.

When this parameter is set to "OFF", Directory Service €
during the enumeration of objects and properties are rett
Errors.

When this parameter is set to "ON", Directory Service er
ignored, and input record fields corresponding to unretrie
properties are returned as NULL values.

-ignoreDSErrors:OFF

ON | OFF
OFF
Return value of binary properties.

This parameter specifies whether properties containing t
returned or not.

When this parameter is set to "ON", binary values are re
STRING values formatted according to the value specifie
"binaryFormat" parameter.

-parseBinary:ON

ASC | PRINT | HEX
HEX

Format of binary properties.

Details:

Example:

When the "parseBinary" property is set to "ON", the ADS
returns properties containing binary values. In this case,
are returned as STRING values formatted according to t|
specified for this parameter.

When this parameter is set to "ASC", data bytes belongi
Ox7F range are returned as ASCII characters, while data
the range are returned as period (.) characters, as showi
example:

Bucket: 02096553..rundll32.exe

When this parameter is set to "PRINT", data bytes repre:
ASCII characters are returned as ASCII characters, whils
do not represent printable ASCII characters are returned
characters, as shown in the following example:

Bucket: 02096553

rundll32.exe
When this parameter is set to "HEX", all data bytes are r

digit hexadecimal values, as shown in the following exan

4275636B65743A2030323039363535330D0A72756E646C¢

-binaryFormat:PRINT

© 2004 Microsoft Corporation. All rights reserved.

ADS Input Format Examples

Users' Job Titles

Retrieve users' job title breakdown from Active Directory:

LogParser "SELECT title, MUL(PROPCOUNT(*), 100.0) AS Percentage INT
O DATAGRID FROM 'LDAP://MyUsername:MyPassword@mydomain/CN=
Users,DC=mydomain,DC=com' WHERE title IS NOT NULL GROUP BY titl

e ORDER BY Percentage DESC" -objClass:User
IIS AccessFlags MetaBase Properties

Retrieve all the AccessFlags properties from IIS metabase objects:

LogParser "SELECT ObjectPath, Property Value FROM I1IS://localhost WHER
E PropertyName = 'AccessFlags"™

© 2004 Microsoft Corporation. All rights reserved.

BIN Input Format

The BIN input format parses IIS log files in the Centralized Binary Log
File Format.

When an 1IS 6.0 web server is configured to log in the Centralized Binary
Log File Format, all the 1IS virtual sites hosted by the server log in a
single, server-wide log file. Log files in this format are binary files, and the
information contained in these logs can not be visualized by standard text
file processors.

From-Entity Syntax
Fields

Examples

© 2004 Microsoft Corporation. All rights reserved.

BIN Input Format From-Entity Syntax

<from-entity> <filename> | <SiteID> [, <filename> | <SiteID> ...]

<SiteID>

< site_number > < server_comment >

< site_metabase_path >

The <from-entity> specified in queries using the BIN input format is a
comma-separated list of:

¢ Paths of IS Centralized Binary log files;
¢ |IS Virtual Site "identifiers".

"Site identifiers" must be enclosed within angle brackets (< and >), and
can have one of the following values:

e The numeric site ID (e.g. "<1>", "<28163489>");

e The text value of the "ServerComment" property of the site (e.g. "<My
External Site>", "<www.margiestravel.com>"),

e The fully-qualified ADSI metabase path to the site (e.g. "
</IMYSERVER/W3SVC/1>"), using either the numeric site ID or the
text value of the "ServerComment" property of the site.

When a "site identifier" is used, the BIN input format connects to the
specified machine's metabase, gathers information on the server's
current logging properties, and parses all the log files in the server's
current log file directory, returning only the entries corresponding to
requests to the specified virtual site.

Filenames and "Site identifiers" can also include wildcards (e.g.
"LogFiles\ra04*.ibl", "<www.*.com>").

Examples:

FROM LogFiles\ra04*.ibl, LogFiles\ra03*.ibl, \MyServer\LoggingShare\W3S
VC\ra04*.ibl

FROM <1>, <2>, <My External Site>, raw9.ibl

FROM <www.net*home.com>, <//MyServer2/W3SVC/www.net*home.com>,
<>

© 2004 Microsoft Corporation. All rights reserved.

BIN Input Format Fields

The input records generated by the BIN input format contain the following

fields:

Name Type Description

LogFilename STRING Full path of the log file containing
this entry

LogRow INTEGER Line in the log file containing this
entry

ComputerName STRING The name of the server that
served the request

SiteID INTEGER The IIS virtual site instance
number that served the request

DateTime TIMESTAMP | The date and time at which the
request was served (Universal
Time Coordinates (UTC) time)

ClientIpAddress STRING The IP address of the client that
made the request

ServerlpAddress | STRING The IP address of the server that
served the request

ServerPort INTEGER The server port number that
received the request

Method STRING The HTTP request verb

| | |

Protocol Version STRING The HTTP version of the client
request

ProtocolStatus INTEGER The response HTTP status code

SubStatus INTEGER The response HTTP sub-status
code

TimeTaken INTEGER The number of milliseconds
elapsed since the moment the
server received the request to
the moment the server sent the
last response chunk to the client

BytesSent INTEGER The number of bytes in the
response sent by the server

BytesReceived INTEGER The number of bytes in the
request sent by the client

Win32Status INTEGER The Windows status code
associated with the response
HTTP status code

UriStem STRING The HTTP request uri-stem

UriQuery STRING The HTTP request uri-query, or
NULL if the requested URI did
not include a uri-query

UserName STRING The name of the authenticated

user that made the request, or
NULL if the request was from an
anonymous user

© 2004 Microsoft Corporation. All rights reserved.

BIN Input Format Examples

Top 20 URL's for a Site

Create a chart containing the TOP 20 URL's in the
"www.margiestravel.com" web site (assumed to be logging in the
Centralized Binary log format):

LogParser "SELECT TOP 20 UriStem, COUNT(*) AS Hits INTO MyChart.gi
f FROM <www.margiestravel.com> GROUP BY UriStem ORDER BY Hits D
ESC" -chartType:Column3D -groupSize:1024x768

© 2004 Microsoft Corporation. All rights reserved.

COM Input Format

The COM input format provides an interface to Custom Input Format
COM Plugins.

With the Log Parser command-line executable, Custom Input Format
COM Plugins are used through the COM input format. This input format
takes the ProgID of the plugin COM object as a value of the iProgID
parameter, and it provides an interface for command-line operations to
use the custom input format.

With the Log Parser scriptable COM components, Custom Input Format
COM Plugin objects can be used directly as arguments to the Execute or
ExecuteBatch methods of the LogQuery object.

For this reason, the COM input format is not provided as a Log Parser
scriptable COM component.

From-Entity Syntax
Fields
Parameters

Examples

See also:

Custom Plugins
COM Input Format Plugins Reference

© 2004 Microsoft Corporation. All rights reserved.

COM Input Format From-Entity Syntax

The <from-entity> specified in queries using the COM input format is
delivered as-is to the custom input format COM object as an argument to
the Openinput method of the ILogParserinputContext interface, and its
syntax and interpretation is provided by the custom input format selected.
The <from-entity> specified in queries using the COM input format must
however obey the general syntax for <from-entity> language elements.

© 2004 Microsoft Corporation. All rights reserved.

COM Input Format Fields

The input records generated by the COM input format contain the fields
provided by the currently selected Custom Input Format COM plugin.

The number of fields, their names, and their data types are retrieved
through the GetFieldCount, GetFieldName, and GetFieldType methods of
the ILogParserinputContext interface.

© 2004 Microsoft Corporation. All rights reserved.

COM Input Format Parameters

The COM input format supports the following parameters:

iProgID
Values:

Default:

Description:

Details:

Example:

iCOMParams

Values:

Default:

Description:

Details:

Example:

COM ProgID
not specified
ProgID of the Custom Input Format COM Plugin.

This parameter is used to specify the version-
independent ProgID of the custom input format COM
object selected for the current query.

-iProgID:MSUtil.LogQuery.Sample.QFE

name=value[,name=value ...]
not specified
Parameters for the Custom Input Format COM Plugin.

The value of this parameter is a comma-separated list
of name-value pairs specifying property names and
values for Custom Input Format COM Plugins
implemented through the IDispatch COM interface.

If property names or their values contain space
characters, the value of this parameter should be
surrounded by double-quote (") characters.

For more information on custom properties exposed by
COM plugins, see Custom Properties in the COM Input
Format Plugins reference.

-iICOMParams:TargetMachine=localhost,ExtendedFields=on

iCOMServer
Values: computer name
Default: localhost

Description: Computer name on which the Custom Input Format
COM Plugin is to be instantiated.

Details: Plugin COM objects supporting Distributed COM
(DCOM) can be instantiated on a remote computer,
thus providing a means for the custom input format to
process data on a computer different than the computer
running the Log Parser query.

Example: -iCOMServer:MYSERVERO1

© 2004 Microsoft Corporation. All rights reserved.

COM Input Format Examples

QFE Information

Return QFE information from the local machine, using the "QFE" sample
Custom Input Format COM Plugin:

LogParser "SELECT * FROM ." -i:COM -iProgID:MSUtil.LogQuery.Sample.
QFE -iCOMParams:ExtendedFields=on

© 2004 Microsoft Corporation. All rights reserved.

CSV Input Format

The CSV input format parses comma-separated values text files.

CSV text files are generated and handled by a large number of
applications and tools, including:

e Microsoft Excel
e PerfMon
o Generic spreadsheet applications

In a CSV text file, each line consists of one record, and fields in a record
are separated by commas.

Depending on the application, the first line in a CSV file might be a
"header", containing the labels of the record fields.

The following example shows a CSV file beginning with a header:

DateTime, PID, Comment
5/28/2004 13:56:12, 2956, Application started
Mpreoed fisldoeluesssdiahels pighpie enclosed within double-quote
('5/ebaeniars,1 asshavea by ppedelawingderfMon CSV log file example:
5/28/2004 15:24:42, 1048, Application started
"\GAB1\Processor(_Total)\% Processor Time","\\GAB1\System\Processes"
"99.999993086289507","33"
"2.0000000000000018","33"
Fr0RRRg8gRAp09", 33"
Fidlga333333333332993","33"
P 3iiesd3333332993","33"
EfBmis
0000000000036","33"

"4.3333333333333339","33"

See also:

TSV Input Format
CSV Output Format

© 2004 Microsoft Corporation. All rights reserved.

CSV Input Format From-Entity Syntax

<from-entity> ::= <filename> [, <filename> ...] |
http://<url> |
STDIN

The <from-entity> specified in queries using the CSV input format is
either:

e A comma-separated list of paths of CSV files, eventually including
wildcards;

e The URL of a file in the CSV format;

e The "STDIN" keyword, which specifies that the input data is available
from the input stream (commonly used when piping command
executions).

Examples:
FROM LogFiles1*.csv, LogFiles2*.csv, \\MyServer\FileShare*.csv
FROM http://www.microsoft.adatum.com/MyCSVFiles/example.csv

type data.csv | LogParser "SELECT * FROM STDIN" -i:CSV

© 2004 Microsoft Corporation. All rights reserved.

CSV Input Format Fields

The structure of the input records generated by the CSV input format is
determined at run time, depending on the data being parsed, and on the
values specified for the input format parameters.

The first two input record fields are fixed, and they are described in the
following table:

Name Type Description

Filename STRING Full path of the file containing this entry

RowNumber | INTEGER | Line in the file containing this entry

These two fields are then followed by the fields detected by the CSV
input format in the CSV file(s) being parsed. The number, names, and
data types of the fields are determined by examining initially the CSV
data according to the values specified for the input format parameters.

The number of fields detected by the CSV input format during the initial
inspection phase dictates how the CSV record fields will be extracted
from the input data during the subsequent parsing stage.

If a CSV line contains less fields than the number of fields established,
the missing fields are returned as NULL values.

On the other hand, if a CSV line contains more fields than the number of
fields established, the extra fields are parsed as if they were part of the
value of the last field expected by the CSV input format.

Number of Fields

The number of fields in an input record is determined by the input CSV
data and by the values of the nFields and fixedFields parameters.

When the "nFields" parameter is set to -1, the CSV input format
determines the number of fields by inspecting the input CSV data.

If the "fixedFields" parameter is set to "ON", indicating that all the rows in
the CSV file have the same fixed number of fields, then the number of
fields is determined by parsing either the first line of the CSV input data,
or the first line of the header file specified with the "iHeaderFile"
parameter.

On the other hand, if the "fixedFields" parameter is set to "OFF",
indicating that the rows in the CSV file have a variable number of fields,
then the number of fields is assumed to be the largest number of fields
found among the first n lines of the CSV input data (eventually including
the first line of the header file specified with the "iHeaderFile" parameter),
where n is the value of the "dtLines" parameter.

As an example, the following CSV file contains a variable number of
fields:

Name, City, AreaCode

Jeff, Redmond, 425
Vé¥har suagd Wib, e (nFields" parameter set to -1 and the "fixedFields"

PRERARIEOBEhEP, QBY', this CSV file would yield three fields ("Name”,
"City", and "AreaCode").

In this case, the extra fourth field in the second record would be parsed
as part of the third "AreaCode" field, whose value would then be "206,
98101".

On the other hand, if the "fixedFields" parameter is set to "OFF", and the
"dtLines" parameter is set to any value greater than 2, then the same
CSV file would yield four fields ("Name", "City", "AreaCode", and an
additional fourth field detected in the second CSV record).

In this case, the first and third records would have a NULL value for the
fourth field, and the second record would have a "98101" value for the
fourth field.

When the "nFields" parameter is set to a value greater than zero, the
CSV input format uses the specified value as the number of fields in the
input data.

However, if the "fixedFields" parameter is set to "OFF", indicating that the
rows in the CSV file have a variable number of fields, then the CSV input
format uses the value of the "nFields" parameter as a "suggested
minimum" number of fields, and it examines the first n lines of the CSV

input data (eventually including the first line of the header file specified

with the "iHeaderFile" parameter), where n is the value of the "dtLines"

parameter, to determine the number of fields among these lines.

If lines are found containing more fields than the value specified for the
"nFields" parameter, then the number of fields is adjusted to the largest
number of fields found among the first n lines.

Considering again the previous CSV example file, parsing the file with the
"nFields" parameter set to 3 and the "fixedFields" parameter set to "ON"
would yield three fields.

However, setting the “fixedFields" parameter to "OFF" and the "dtLines"
parameter to any value greater than 2 would yield four fields, detecting
the extra field in the second record.

Field Names

The names of the fields in an input record is determined by the input CSV
data and by the values of the headerRow and iHeaderFile parameters.

When the "headerRow" parameter is set to "ON", the CSV input format
assumes that the first line in the CSV file being parsed is a header
containing the field names.

In this case, if the "iHeaderFile" parameter is left unspecified, the CSV
input format extracts the field names from the header line.

On the other hand, if the "iHeaderFile" parameter is set to the path of a
CSV file containing at least one line, then the CSV input format assumes
that the specified file contains a header, parses its first line only, and
extracts the field names from this line, ignoring the first line of the CSV
file being parsed.

If the number of field names extracted is less than the number of fields
detected, the additional fields are automatically named "FieldN", with N
being a progressive index indicating the field position in the input record.

Considering the previous example CSV file, setting the "headerRow"
parameter to "ON" would cause the CSV input format to use the first line
of the CSV file as a header containing the field names.

With the "fixedFields" parameter set to "ON", the CSV input format would
detect three fields, whose names would be "Name", "City", and

"AreaCode".

On the other hand, with the "fixedFields" parameter set to "OFF", the
CSV input format would detect four fields, named "Name", "City",
"AreaCode", and "Field4".

When the "headerRow" parameter is set to "OFF", the CSV input format
assumes that the CSV file being parsed does not contain a header, and
that its first line is the first data record in the file.

In this case, if the "iHeaderFile" parameter is set to the path of a CSV file
containing at least one line, then the CSV input format assumes that the
specified file contains a header, parses its first line only, and extracts the
field names from this line.

On the other hand, if the "iHeaderFile" parameter is left unspecified, the
fields are automatically named "FieldN", with N being a progressive
number indicating the field position in the input record.

As an example, the following CSV file does not contain a header line:

Jeff, Redmond, 425

Steve, Seattle, 206
VidevaRRIGBaNYil) 38e "headerRow" parameter to "OFF", the CSV input

format assumes that the first line of the CSV file is the first data record in
the file. In this case, the three fields would be named "Field1", "Field2",
and "Field3".

Field Types

The data type of each field extracted from the input data is determined by
examining the first n CSV data lines, where n is the value specified for
the dtLines parameter, in the following way:

o If all the non-empty field values in the first n lines are formatted as
decimal numbers, then the field is assumed to be of the REAL type.

o If all the non-empty field values in the first n lines are formatted as
integer numbers, then the field is assumed to be of the INTEGER type.

e If all the non-empty field values in the first n lines are formatted as
timestamps in the format specified by the iTsFormat parameter, then
the field is assumed to be of the TIMESTAMP type.

e Otherwise, the field is assumed to be of the STRING type.

Empty field values are returned as NULL values.

© 2004 Microsoft Corporation. All rights reserved.

CSV Input Format Parameters

The CSV input format supports the following parameters:

headerRow

Values:

Default:

Description:

Details:

Example:

iHeaderFile

Values:

Default:

Description:

Details:

ON | OFF
ON

Specifies whether or not the input CSV file(s) begin with
a header line.

When this parameter is set to "ON", the CSV input
format assumes that each file being parsed begins with
a header line, containing the labels of the fields in the
file. If the "iHeaderFile" parameter is left unspecified,
the CSV input format will use the field names in the first
file's header as the names of the input record fields. If a
value is specified for the "iHeaderFile" parameter, the
CSV input format will ignore the header line in each file
being parsed.

When this parameter is set to "OFF", the CSV input
format assumes that the file(s) being parsed do not
contain a header, and parses their first line as data
records.

For more information on headers and field names, see
CSV Input Format Fields.

-headerRow:OFF

path to a CSV file
not specified
File containing field names.

When parsing CSV files that do not contain a header

Example:

fixedFields

Values:
Default:

Description:

Details:

Example:

line, the fields of the input records produced by the CSV
input format are named "Field1", "Field2", ...

To override this behavior and use meaningful field
names, this parameter can be set to to the path of a
CSV file containing a header line, causing the CSV
input format to use the field names in the specified CSV
file's header line as the names of the input record fields.
Only the first line of the specified CSV file is parsed,
and eventual additional lines are ignored.

For more information on headers and field names, see
CSV Input Format Fields.

-iHeaderFile:"C:\My Folder\header.csv"

ON | OFF
ON

Specifies whether or not all the records in the input
CSV file(s) have a fixed number of fields.

When this parameter is set to "ON", the CSV input
format assumes that the number of fields in all the input
CSV records equals the number of fields found in the
first CSV line parsed, or the number of fields specified
for the "nFields" parameter.

When this parameter is set to "OFF", the CSV input
format assumes that the input CSV records have a
variable number of fields, and it parses the first n lines
of the input CSV data to determine the maximum
number of fields in the records, where n is the value
specified for the "dtLines" parameter.

For more information on how the number of fields is
determined, see CSV Input Format Fields.

-fixedFields:OFF

nFields

Values:

Default:

Description:

Details:

Example:

dtLines

Values:

Default:

Description:

Details:

number of fields (number)
-1
Number of fields in the CSV data records.

When the "fixedFields" parameter is set to "ON", this
parameter specifies the number of fields in the input
CSV data.

When the "fixedFields" parameter is set to "OFF", this
parameter specifies the minimum number of fields in
the input CSV data. If the first n lines of input data
contain more fields than the specified number of fields,
where n is the value of the "dtLines" parameter, then
the number of fields is assumed to be the maximum
number of fields found within the n lines of data.

The special "-1" value specifies that the number of
fields is to be deducted by inspecting the first n lines of
input data, where n is the value of the "dtLines"
parameter.

For more information on how the number of fields is
determined, see CSV Input Format Fields.

-nFields:3

number of lines (number)
10

Number of lines examined to determine number of
fields and field types at run time.

This parameter specifies the number of initial lines that
the CSV input format examines to determine the
number of the input record fields and the data type of
each field.

Example:

iDQuotes

Values:

Default:

Description:

Details:

Example:

nSkipLines

Values:

Default:

Description:

Details:

If the value is 0, all fields will be assumed to be of the
STRING data type.

For more information on how the number of fields and
their data types are determined, see CSV Input Format
Fields.

-dtLines:50

Auto | Ignore
Auto
Behavior with double-quoted fields.

When this parameter is set to "Auto” and a field value is
enclosed within double-quote characters ("), the CSV
input format parses the field ignoring comma characters
(,) within the double-quotes, and returns the enclosed
value stripping off the surrounding double-quote
characters.

When set to "Ignore", the CSV input format does not
perform any double-quote processing, and field values
are returned verbatim, including double-quote
characters.

-iDQuotes:Ignore

number of lines (number)
0
Number of initial lines to skip.

When this parameter is set to a value greater than zero,
the CSV input format skips the first n lines of each input
file before parsing its header line, where n is the value
specified for this parameter.

Example:

comment

Values:

Default:

Description:

Details:

Example:

iCodepage

Values:

Default:

Description:

Details:

Example:

iTsFormat

Values:

Default:

Description:

Details:

-nSkipLines:5

any string
not specified
Skip lines beginning with this string.

When this parameter is set to a hon-empty string, the
CSV input format skips all the input CSV lines that
begin with this string.

-comment:"'Meta Data:"

codepage ID (number)

0

Codepage of the CSV file.

0 is the system codepage, -1 is UNICODE.
-iCodepage: 1245

timestamp format
yyyy-MM-dd hh:mm:ss
Format of timestamp values in the input CSV data.

This parameter specifies the date and/or time format
used in the CSV data being parsed. Values of fields
matching the specified format are returned as values of
the TIMESTAMP data type. For more information on
date and time formats, see Timestamp Format

Specifiers.

Example: -iTsFormat:"MMM dd, yyyy"
iCheckpoint

Values: checkpoint filename

Default: not specified

Description: Load and save checkpoint information to this file.

Details: This parameter enables the "Incremental Parsing"
feature that allows sequential executions of the same
guery to only process new events that have been
logged since the last execution. For more information,
see Parsing Input Incrementally.

Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc

© 2004 Microsoft Corporation. All rights reserved.

CSV Input Format Examples

Average Processor Usage per Minute

Parse a PerfMon CSV log file and calculate the average processor usage
per minute:

LogParser "SELECT QUANTIZE([(PDH-CSV 4.0) (Pacific Daylight Time)(4
20)], 60) AS Minute, AVG([\\GAB1\Processor(_Total)\% Processor Time]) AS

AV GProcessor FROM PerfMon_000001.csv GROUP BY Minute" -i:CSV -iT
qF'nrmnt'"MM/rH/yyyy hh:mm:ss. 11"

© 2004 Microsoft Corporation. All rights reserved.

ETW Input Format

The ETW input format parses Enterprise Tracing for Windows trace log
files (.etl files) and live ETW trace sessions.

Enterprise Tracing for Windows (ETW) is a framework for implementing
tracing providers that can be used for debugging and capacity planning.
An ETW trace log or live session consists of a stream of "Events", each
published by a "Provider". Windows event providers include the Kernel,
1S, COM+, and many other Windows components.

Each event has its own set of named properties, or fields, containing the
event data. The structure of each event is described by a WMI class
derived from the "EventTrace" class and registered with the WMI
repository during the setup of the provider component. The ETW input
format queries the WMI repository for these classes in order to retrieve
information about the structure of each event.

ETW trace log files and live sessions can be controlled through either the
PerfMon utility, or through the tracelog.exe or logman.exe command-line
tools.

From-Entity Syntax
Fields
Parameters

Examples

© 2004 Microsoft Corporation. All rights reserved.

ETW Input Format From-Entity Syntax

<from-entity> = <etl_file_name> [, <etl_file_name> ...] |

<live_session_name>

The <from-entity> specified in queries using the ETW input format can
assume one of the following values:

e A comma-separated list of paths to .etl ETW trace log files;
e The name of an ETW live tracing session.

Examples:
FROM MyTracel.etl, MyTrace2.etl, MyTrace3.etl

FROM \\COMPUTERO1\TraceFiles\MyTrace.etl, \COMPUTERO02\TraceFiles
\MyTrace.etl

FROM MyLiveSession

© 2004 Microsoft Corporation. All rights reserved.

ETW Input Format Fields

The structure of the input records generated by the ETW input format is
determined at run time, depending on the ETW trace being parsed, and
on the value specified for the fMaode ("field mode") parameter, which can
be set to "Compact”, "FNames", "Full", or "Meta".

Compact Field Mode

When the "fMode" parameter is set to "Compact", the ETW input format
generates an input record for each event in the trace being parsed.

In this mode, input records contain four fields common to all the events,
plus an additional "UserData" field containing the values of all the
properties specific to the event being processed, concatenated into a
single string value using the character specified for the compactModeSep
parameter as a separator between the values.

The following table shows the fields of the input records generated in the
"Compact" field mode:

Name Type Description

EventNumber INTEGER Index of this event in the trace
being parsed

EventName STRING Name of the event

EventTypeName | STRING Name of the event type

Timestamp TIMESTAMP | Date and time at which the event
was traced

UserData STRING Event-specific property values

The following example shows some sample "UserData" field values

generated in the "Compact" field mode:

UserData

Thefalenadol®ldpiodeanioyideg@neasily readable way to display the
eyerss cuYILB0ETL 006 10N essodugoatieries operating in this mode can
nDlefeigEpSRIRIRINR 8 ek theResnfide M BNEtm|GET

FNames Field Mode

The "FNames" field mode operates similar to the "Compact"” field mode,
but each property value in the "UserData" field is preceded by the name
of the property for better readability.

The following example shows some sample "UserData" field values
generated in the "FNames" field mode:

UserData
AppPoolld=DefaultAppPool|RawConnld=0|RequestURL=http://localhost:80/|
RequestVerb=GET
Fabdnkield M o0®0000-0000-0000-1200-0060000000fc } [RequestURL=/
i nphipotisiaRabud ARRRop R amScRnBldn At Ree st smptioralnet fY d
etlen EVERBAGHS tYRHE g parsed.
In this mode, input records contain a field for each property of each event
generated by the providers in the trace being parsed.

When operating in "Full" field mode, the ETW input format works with a
two-stage approach.

During the first stage, the ETW input format examines the input trace to
determine which providers have logged events in the trace being parsed.
When the providers parameter is left unspecified, the ETW input format
pre-processes a number of events equal to the value specified for the
dtEventsLog or dtEventsLive parameters, depending on whether or not
the trace being parsed is a trace log file or a live trace session. After
parsing these initial events, the ETW input format assumes that the trace

being parsed contains all the events that can be logged by the providers
found among these initial events.

On the other hand, when the "providers" parameter is set to either a
comma-separated list of provider names or GUIDs or to the path to a text
file containing a list of provider names or GUIDs, the ETW input format
assumes that the trace being parsed contains all the events that can be
logged by the specified providers.

Once the set of providers logging in the input trace has been identified,
the ETW input format "constructs” the input record structure.

The first 20 input record fields are common to all the events, and they are
described in the following table:

Name Type Description

TraceName STRING Trace file or session name
containing this event

EventNumber INTEGER Index of this event in the
trace being parsed

Timestamp TIMESTAMP | Date and time at which the
event was traced

InstancelD INTEGER InstancelD field of this
event

ParentInstancelD INTEGER ParentinstancelD field of
this event

ParentGUID STRING ParentGUID field of this
event

ProviderDescription STRING Name of the provider of this

event

ProviderGUID STRING GUID of the provider of this
event

EventName STRING Name of this event

EventDescription STRING Description of this event

EventVersion INTEGER Version of this event

EventGUID STRING GUID of this event

EventType INTEGER Type of this event

EventTypeName STRING Name of this event type

EventTypeDescription | STRING Description of this event
type

EventTypeLevel INTEGER Level of this event type

ThreadID INTEGER ID of the thread that logged
this event

ProcessID INTEGER ID of the process that
logged this event

KernelTime INTEGER Elapsed execution time for
kernel mode instructions, in
CPU ticks

UserTime INTEGER Elapsed execution time for

user mode instructions, in
CPU ticks

These 20 fields are then followed by the union of all the properties of all

the events that can be logged by the providers identified during this
stage.

During the second stage, the ETW input format parses the trace events
from beginning to end, generating an input record for each event.

For any given event, only the first 20 input record fields and the fields
corresponding to the event properties are populated with a value; all the
other input record fields corresponding to properties of other events are
set to NULL values.

The following sample output shows selected fields from the input records
generated when parsing the previous example in "Full” field mode:

AppPoolld RawConnld Contextld RequestURL
RequestVerb
Queries_operating in-“Eull made_can refer to_individual properties.of ___
events,_but the input records generated contain too many fields for the
rgxafiialia pspesily redable. http://localhost:80/ GE
T
- - {00000000-0000-0000-1200-0060000000fc} /

Meta Field Mode
DefaultAppPool 0 - http://localhost:80/default.htm

In¢Meta” field mode, the ETW input format returns meta-information
about events, generating an input record for each property of each event
that can be logged by each provider in the trace(s) being parsed. Input
records contain meta-data about the event properties, including
information about the property type, information about the event
containing the property, and information about the provider generating
the event.

The "Meta" field mode employs a two-stage parsing schema similar to
the "Full" field mode. During the first stage, the ETW input format pre-
processes the input trace to determine the set of providers that generated
events in the trace.

In this mode, however, once the set of providers has been identified, the
ETW input format does not process the trace, but rather returns the event
meta-information populating the input record fields described in the
following table:

Name Type Description
ProviderDescription STRING Description of the provider
ProviderClassName STRING WMI class name of the
provider
ProviderGUID STRING GUID of the provider
EventName STRING Name of the event
EventDescription STRING Description of the event
EventVersion INTEGER || Version of the event
EventClassName STRING WMI class name of the event
EventGUID STRING GUID of the Event
EventType INTEGER || Type of the event
EventTypeName STRING Name of the event type
EventTypeDescription | STRING Description of the event type
EventTypeClassName | STRING WMI class name of the event
type
EventTypeLevel INTEGER || Level of the event type
FieldName STRING Name of this event field
FieldDescription STRING Description of this event field
FieldIndex INTEGER || Index of this field among the

event's fields

H FieldType

H STRING H WM type of this field

© 2004 Microsoft Corporation. All rights reserved.

ETW Input Format Parameters

The EVT input format supports the following parameters:

fMode

Values:

Default:

Description:

Details:

Example:

providers

Values:

Default:

Description:

Details:

Full | Compact | FNames | Meta
FNames
Operation mode.

This parameter specifies how the ETW input format
should return the information contained in the trace(s)
being parsed.

For more information on the different field modes, see
ETW Input Format Fields.

-fMode:Full

filename or comma-separated list of provider names or
GUIDs

not specified
List of providers for the "Full" or "Meta" field modes.

This parameter specifies the set of providers logging to
the input trace(s) to allow the "Full" or "Meta" field
modes to early detect the providers to process. The
value of this parameter can either by the path to a text
file containing the providers' GUIDs (in the same format
accepted by the "pf" argument of the logman.exe tool),
or a comma-separated list of provider names or GUIDs.
If this parameter is not specified when the ETW input
format operates in "Full" or "Meta" field mode, then the
set of providers will be detected by pre-processing the
first n events, where n is the value specified for the

Examples:

dtEventsLog

Values:

Default:

Description:

Details:

Example:

dtEventsLive

Values:

Default:

Description:

Details:

"dtEventsLog" or "dtEventsLive" parameters.
For more information about the different field modes,
see ETW Input Format Fields.

-providers:MyProviders.guid

-providers:"IIS: WWW Server,IIS: Active Server Pages
(ASP)"

number of events (number)
3000

Number of trace log file events examined to detect the
set of providers in "Full" or "Meta" field modes.

This parameter specifies the number of initial events
that the ETW input format examines to detect the set of
providers logging in an input trace log file when
operating in the "Full" or "Meta" field modes.

The value of this parameter is only used when the
"providers" parameter is left unspecified.

For more information about the different field modes,
see ETW Input Format Fields.

-dtEventsLog:100

number of events (number)
20

Number of live trace session events examined to detect
the set of providers in "Full" or "Meta" field modes.

This parameter specifies the number of initial events
that the ETW input format examines to detect the set of
providers logging in an input live trace session when

operating in the "Full" or "Meta" field modes.

The value of this parameter is only used when the
"providers" parameter is left unspecified.

For more information about the different field modes,
see ETW Input Format Fields.

Example: -dtEventsLive:100

flushPeriod

Values: milliseconds

Default: 500

Description: Number of milliseconds between live trace session
flushes.

Details: When processing a live trace session, the internal
buffering mechanisms of the ETW infrastructure might
cause events to appear with a noticeable delay. This
parameter specifies how often the ETW input format
should force a buffer flush to retrieve real-time events.

Example: -flushPeriod:2000

ignoreEventTrace

Values: ON | OFF

Default: ON

Description: Ignore EventTrace events.

Details: The very first event in any trace session is the
"EventTrace" event, which contains meta-data about
the trace session.

This parameter specifies whether or not this event
should be processed and returned by the ETW input
format.

Example: -ignoreEventTrace:OFF

compactModeSep

Values: any string

Default: |

Description: Separator between the values of the "UserData" field in
the "Compact" or "FNames" field modes.

Details: When operating in the "Compact" or "FNames" field
modes, the "UserData" field contains all the properties
of the event being processed concatenated one after
the other, using the value of this parameter as a
separator between the elements.

Example: _compactModeSep:,

expandEnums

Values: ON | OFF

Default: ON

Description: Expand enumeration event properties.

Details: Many ETW events contain humeric properties whose
values describe enumerations.

This parameter specifies whether or not the numeric
values of properties of this type should be expanded to
return the text representation of the enumeration
values.

Example: _expandEnums:OFF

ignoreLostEvents
Values: ON | OFF
Default: ON

Description: Ignore lost events.

Details:

Example:

schemaServer

Values:

Default:

Description:

Details:

Example:

ETW traces contain information about events that might
have been lost during the tracing session.

If this parameter is set to "OFF" and the input trace
indicates the presence of lost events, the ETW input
format generates a warning when the trace has been
completely processed showing the number of events
that have been lost.

-ignoreLostEvents:OFF

computer name
not specified
Name of computer with event schema information.

This parameter specifies the name of the computer
whose WMI repository contains the schema information
for the events being parsed.

When this parameter is not specified, the ETW input
format connects to the computer specified in the from-
entity if parsing a trace file from a remote computer, or
to the local computer if parsing a local trace file or live
tracing session.

-schemaServer:-MYCOMPUTERO02

© 2004 Microsoft Corporation. All rights reserved.

ETW Input Format Examples

Parsing an IIS 6.0 ETW Trace Log File

This example shows how to start a trace session containing events from
the IIS 6.0 providers, how to stop the session, and how to parse the

resulting trace log file.
The example commands shown here apply to Windows Server 2003.

1. List the GUIDs of the providers registered with the system
using the following command from a command-line window:

C:\>logman query providers

The output of this command will look like the following
sample:

Provider GUID

exasapbacidig trace session will be enabled for the "lIS: WWW
Sgoverbandr iiicAdiiyei&erver PagegabdHiid-paagidersd-b1c3
3. GdEmtWeetdfblile containing the GUID of each selected
pratise Doreetdirye Keatlmnesd by the falzafgdii2gs 2t thcargb-5
| Aeblo@@llgR-49r the provider. For more information on the
all§iiside Hdgs and levels for élbevidercO6tstdl ¢Hale-0dbd61
coddipabent documentation.
THS:fBkquasgMoinople shows a t3ti/filebdarmbdl-44b4-a95e-3c
"Myd®4delefs.guid” containing the "IlIS: WWW Server" and
"[I5S: MW Server Pages (ASP)"{Braitket4:4c21-4981-ae10-31
da0d9bof83}

TBu0Agtye- ServendRgesifSHNa0dobafhOddiubrtoe-456e-adef
{9OBTPABE-456e-adef-37c984a2cbab} OxfEFFFFff 5
4. Staxtaihgetnatingsdsgion (USAJ the provadied2abrbfille dsl2he24
afiglvhens29abel}-pf* logman command-line parameter:
11S: [ISADMIN Global {DC1271C2-A0AF-400£-850

E'@éﬁgﬁﬁ%@ampleﬁace pr Providers.guid -ets

Windows Kernel Trace e814aad-3204-11d2-9a82-0

5. TOROH%R4RY3Ession has now started, and the selected
pfovidekshViNenés logging events ¥ IEEEH FEqUATtH e NI E-

VWEbISENdPA3S}
6. WheliSsrelOhEdAahg session Eantser athpeltirtheE
ol WQWS%: .
Isapi Extension {alc2040e-8840-4c31-ball
(A9 031311195%0& leTrace -ets
fivaeDan Siob. BxRpp {8€598056-8993-11d2-819e-0

7. A?f@fﬁ?éat?éérh session has been stopped, the ETW trace log
Vlﬁ?(i MpfeTrace.etl" is %ﬂgpgﬁ%sgﬂ ad34-4d

T?Fé%flo%ﬁ% Log_Parser command parses the ETW trace log

fur%%‘{a Big Eﬁf%g{gtﬁg%ﬁ{jgg% events: { [33050b4-dbec-11d2-895b-
00c04{79ab6

f;%;% E%S& QHECT * FROM Exanila riace et i iergyets

The output of this command will look like the following
SZHﬁﬁgmmand completed successfully.

EventNumber EventName EventTypeName Timestamp
UserData
Parsing a live HS-6:0 ETW-Trace-Session-—-------— - i

shows the e\ge'ﬁ'té"l'ﬁ" tlme %Eﬁ\xio €. $e85ion,
e cxampe om SPHTINS e }O‘% e e A
1. EQQ@QE@@ écﬂ%ltﬁ%ﬂm]ﬂﬁé’%% eliavisAppPool/Connld=-2
s‘?éif’?g%ﬁ gfﬁ%‘ﬁv GOy IR B TR s AQ oSt

g € clg,anand lin ﬁr,’i\ Eeﬁ
%C'fz%@%oad oﬁngxﬂf R e
? %ﬂig erName=C:\WINNT\Microsoft. NET\Framework\v1.1.4322
\asp>1?et filter.dll

& oS XAPRIE ThRGe pRIOYY R X R 81K AR T 004-
10-14 20:27:26.624.399000 Contextld={00000000-0000-0000-12

5. To@escingosession has now started, and the selected
pboviderdlatilize [BYJiRGR ePBMBRO(CACRABFHRS ENIDe 2[H4-1
Vet 20rkeér26.624.399000 Contextld={00000000-0000-0000-120

6. FOAGYAAUNMIAke command-line shell window, execute the

féllowing! 100! arEE: ek AR to parse tREAfrdQratiA;27:26.
s624i379PP G psiereld={00000000-0000-0000-1200-0060000000

fc}

C>LogPaRUiers EHHER TN Fxamplem30d LOplhg0:27:26

.624.399000 ContextId={00000000-0000-0000-1200-0060000000

TiaEiggrNameTcobipgars WiledGgmmer Kilpsd\bigepnaft Share
it efabieeyyeinkKipes o ptabia D exadildlly aborted, or until
tfe tracidbbEdtgioR | ERpPREPROC_HEADERS_START 2004-

7. Wﬂén4&(93%7636%4&389%0é%%%’ﬁ@aﬁ%@%%%@&%ﬂ%12

Sl 81
ISFilter FILTER_PREPROC_HEADERS_END 2004-1
-14.20:27:26.62 3990(? ontextId={00000000-0000-0000-120
“GoeliobpnsheR) = xampleTrace -ets
— 10— 1ISFilter FILTER_END — 2004-10-14 20:27:26
@ 24399006 Gt ibdp HEAH00H0 GV 0 08t 28ad-0060000000
fc}
11 [ISCache URL_CACHE_ACCESS_START 2004-10
-14 20:27:26.624.399000 ContextIld={00000000-0000-0000-1200
-0060000000fc }|RequestURL=/

EVT Input Format

The EVT input format returns events from the Windows Event Log and
from Event Log backup files (.evt files).

This input format reads event information from the Windows Event Log,
including local and remote System, Application, Security, and custom
event logs, as well as from Event Log backup files.

From-Entity Syntax
Fields
Parameters

Examples

© 2004 Microsoft Corporation. All rights reserved.

EVT Input Format From-Entity Syntax

<from-entity> <event_log> [, <event_log> ... |

<event_log> ::= [\\<computer_name>\/<event_log_name>

<event_log_backup_filename>

The <from-entity> specified in queries using the EVT input format is a
comma-separated list of:

e Names of Event Logs ("System", "Application”, "Security", or a custom
event log), optionally preceded by the name of a remote computer in
the UNC notation;

o Paths of Event Log backup files (.evt files), optionally including
wildcards.

Names of custom event logs that include space characters must be
specified within single-quote characters.

Examples:
FROM System, Application, \SERVER2\System, \SERVER2\Application
FROM System, Application, 'My Custom Event Log'
FROM D:\MyEVTLogs*.evt, \SERVER2\D$\MyEVTLogs*.evt

FROM System, D:\MyEVTLogs\System.evt

© 2004 Microsoft Corporation. All rights reserved.

EVT Input Format Fields

The input records generated by the EVT input format contain the

following fields:

Name Type Description

EventLog STRING Name of the Event Log or
Event Log backup file
containing this event

RecordNumber INTEGER Index of this event in the
Event Log or Event Log
backup file containing this
event

TimeGenerated TIMESTAMP | The date and time at which
the event was generated
(local time)

TimeWritten TIMESTAMP | The date and time at which
the event was logged (local
time)

EventID INTEGER The ID of the event

EventType INTEGER The numeric type of the
event

EventTypeName STRING The descriptive type of the
event

EventCategory INTEGER The numeric category of the

event

EventCategoryName | STRING The descriptive category of
the event

SourceName STRING The source that generated
the event

Strings STRING The textual data associated
with the event

ComputerName STRING The name of the computer
on which the event was
generated

SID STRING The Security Identifier
associated with the event

Message STRING The full event message

Data STRING The binary data associated

with the event

© 2004 Microsoft Corporation. All rights reserved.

EVT Input Format Parameters

The EVT input format supports the following parameters:

full Text

Values: ON | OFF

Default: ON

Description: Retrieve the full text message.

Details: This parameter enables/disables the retrieval of Event L
messages.

Example: -full Text:OFF

resolveSIDs

Values: ON | OFF

Default: OFF

Description: Resolve SID values into full account names.

Details: When set to "ON", this parameter causes the EVT input
perform an account name lookup for each SID value in tl
parsed, and return the account name instead of the SID
value.

Example: -resolveSIDs:ON

formatMsg

Values: ON | OFF

Default: ON

Description: Format the text message as a single line.

Details: Event text messages often span multiple lines. When thi:

Example:

msgErrorMode

Values:
Default:

Description:

Details:

Example:

fullEventCode

Values:

Default:

set to "ON", the EVT input format preserves readability o
by removing carriage-return, line-feed, and multiple spac
from the message text.

When this parameter is set to "OFF", the EVT input form
original message text with no intervening post-processin

-formatMsg:OFF

NULL | ERROR | MSG
MSG

Behavior when event messages or event category name
resolved.

The text of an event log message and the textual name ¢
are stored in binary files installed with the application tha
event log. In some cases, uninstalling the application or |
the application might cause the loss of the necessary bir
making it impossible to retrieve the text data for those ev
been logged prior to the reconfiguration.

This parameter specifies the desired behavior for the EV
when an event log message text or its category hame ca
retrieved.

When this parameter is set to "NULL", the "Message" or
"EventCategoryName" field value is returned as a NULL
to "ERROR", a parse error is returned. When set to "MS!
message is returned for the field, specifying that the text
or the category name could not be found.

-msgErrorMode:NULL

ON | OFF
OFF

Description:

Details:

Example:

direction

Values:

Default:

Description:

Details:

Example:

stringsSep
Values:

Default:

Description:

Details:

Example:

iCheckpoint

Return the full event ID code instead of the friendly code

When this parameter is set to "ON", the EVT input forma
32-bit value of the event ID code. When set to "OFF", the
format returns the lower 16-bit value of the code (as disg
Event Viewer).

-fullEventCode:ON

FW | BW
FW
Chronological direction in which events are retrieved.

When set to "FW", events are retrieved from the oldest
When set to "BW", events are retrieved from the newest
This parameter is especially useful with queries that use
keyword to retrieve the last n logged events.

-direction:BW

any string

Separator between values of the "Strings" field.

The "Strings" field contains an array of text data associa
event. The value of this field is built by concatenating the
one after the other, using the value of this parameter as .
between the elements.

-stringsSep:,

Values:

Default:

Description:

Details:

Example:

binaryFormat

Values:

Default:

Description:

Details:

checkpoint filename
not specified
Load and save checkpoint information to this file.

This parameter enables the "Incremental Parsing" featur
sequential executions of the same query to only process
have been logged since the last execution. For more infc
Parsing Input Incrementally.

-iCheckpoint:C:\Temp\myCheckpoint.lpc

ASC | PRINT | HEX
HEX
Format of the "Data" binary field.

The "Data" field contains binary data that is often not sui
textually represented.

When this parameter is set to "ASC", data bytes belongi
Ox7F range are returned as ASCII characters, while data
the range are returned as period (.) characters, as showi
example:

Bucket: 02096553..rundll32.exe

When this parameter is set to "PRINT", data bytes repre:
ASCII characters are returned as ASCII characters, whils
do not represent printable ASCII characters are returned
characters, as shown in the following example:

Bucket: 02096553

rundll32.exe
When this parameter is set to "HEX", all data bytes are r

digit hexadecimal values, as shown in the following exan

4275636B65743A2030323039363535330D0A72756E646C¢

Example: -binaryFormat:PRINT

© 2004 Microsoft Corporation. All rights reserved.

EVT Input Format Examples

Logons

Create an XML report file containing logon account names and dates
from the Security Event Log:

LogParser "SELECT TimeGenerated AS LogonDate, EXTRACT_TOKEN(Str
ings, 0, '') AS Account INTO Report.xml FROM Security WHERE EventID N
OT IN (541;542;543) AND EventType = 8 AND EventCategory = 2"

Event Distribution
Retrieve the distribution of EventID values for each Event Source:

LogParser "SELECT SourceName, EventID, MUL(PROPCOUNT(*) ON (So
urceName), 100.0) AS Percent FROM System GROUP BY SourceName, Eve
ntID ORDER BY SourceName, Percent DESC"

Event Message Report

Create TSV files containing Event Messages for each Source in the
Application Event Log:

LogParser "SELECT SourceName, Message INTO myFile_*.tsv FROM \\MY
SERVER1\Application, \MYSERVER2\Application"

© 2004 Microsoft Corporation. All rights reserved.

FS Input Format

The FS input format returns information on files and directories.

The FS input format enumerates the files and directories matching the
search path(s) specified in the from-entity, much like the Windows shell
"dir" command, returning an input record for each file and directory in the
enumeration.

From-Entity Syntax
Fields
Parameters

Examples

See also:
REG Input Format

© 2004 Microsoft Corporation. All rights reserved.

FS Input Format From-Entity Syntax
<from-entity> = <path> [, <path>...]

The <from-entity> specified in queries using the FS input format is a
comma-separated list of paths, eventually containing wildcards.

Examples:
FROM C:\Windows*.dll, \MYSERVER\C$\Windows*.dll
FROM * *
FROM C:*.*, D:*.*

FROM C:\Windows\Explorer.exe

© 2004 Microsoft Corporation. All rights reserved.

FS Input Format Fields

The input records generated by the FS input format contain the following
fields:

Name Type Description

Path STRING Full path of the file or directory
Name STRING Name of the file or directory
Size INTEGER Size of the file, in bytes
Attributes STRING Attributes of the file or directory
CreationTime TIMESTAMP | Date and time at which the file

or directory has been created
(local or UTC time, depending
on the value of the
uselLocalTime parameter)

LastAccessTime TIMESTAMP | Date and time at which the file
or directory has been last
accessed (local or UTC time,
depending on the value of the
uselLocalTime parameter)

LastWriteTime TIMESTAMP | Date and time at which the file
or directory has been last
modified (local or UTC time,
depending on the value of the
uselLocalTime parameter)

FileVersion STRING Version of the file

ProductVersion STRING Version of the product the file is
distributed with

InternalName STRING Internal name of the file

ProductName STRING Name of the product the file is
distributed with

CompanyName STRING Name of the vendor company
that produced the file

LegalCopyright STRING Copyright notices that apply to
the file

LegalTrademarks || STRING Trademarks and registered
trademarks that apply to the file

PrivateBuild STRING Private version information of
the file

SpecialBuild STRING Special file build notes

Comments STRING Comments associated with the
file

FileDescription STRING Description of the file

OriginalFilename || STRING Original name of the file

© 2004 Microsoft Corporation. All rights reserved.

FS Input Format Parameters

The FS input format supports the following parameters:

recurse
Values: recursion level (number)
Default: -1

Description: Max subdirectory recursion level.

Details: 0 disables subdirectory recursion; -1 enables unlimited
recursion.
Example: -recurse:2
preserveLastAccTime
Values: ON | OFF

Default: OFF
Description: Preserve the last access time of visited files.

Details: Enumerating files and directories causes their last
access time to be updated. Setting this parameter to
"ON" causes the FS input format to restore the last
access time of the files being visited.

Example: -preserveLastAccTime:ON
useLocalTime
Values: ON | OFF

Default: ON
Description: Use local time for timestamp fields.

Details: When set to "ON", the values of the "CreationTime",

"LastAccessTime", and "LastWriteTime" fields are
expressed in local time. When set to "OFF", the values
of these fields are expressed in Universal Time
Coordinates (UTC) time.

Example: -useLocalTime:OFF

© 2004 Microsoft Corporation. All rights reserved.

FS Input Format Examples

Ten Largest Files
Print the 10 largest files on the C: drive:

LogParser "SELECT TOP 10 Path, Name, Size FROM C:*.* ORDER BY Siz
e DESC" -i:FS

MD5 Hashes of System Files
Return the MD5 hash of system executable files:

LogParser "SELECT Path, HASHMD5_FILE(Path) FROM C:\Windows\Syste
m32*.exe" -i:FS -recurse:0

Identical Files
Find out if there are identical copies of the same file on the C: drive:

LogParser "SELECT HASHMDS5_FILE(Path) AS Hash, COUNT(*) AS Num
berOfCopies FROM C:*.* GROUP BY Hash HAVING NumberOfCopies > 1
"-1:FS

© 2004 Microsoft Corporation. All rights reserved.

HTTPERR Input Format

The HTTPERR input format parses HTTP Error log files created by the
Http.sys driver.

HTTP Error log files are server-wide text log files containing log entries
for Http.sys-initiated error responses to malformed client requests or to
valid requests that are aborted due to abnormal circumstances.

Depending on the version of Http.sys, HTTP Error log files can be logged
in two different formats.

Earlier versions of Http.sys log HTTP Error log entries as raw lines
consisting of space-separated values. The following example shows a
portion of an HTTP Error log file generated by earlier versions of
Http.sys:

2002-06-27 19:11:28 172.30.92.88 3405 172.30.162.213 80 HTTP/1.0 GET /m

sadc/..%255c../..%255c../..%255¢/..%c1%]1c../..%c1%]1c../..%c1%]1c../winnt/sy
Lateh yEtsiensxed dtprsysolow R TP Error log files in the W3C Extended
low fitediermaty Lo §leslindus. 5y Rat/OETIBWItE2SPIBSI TRV GET /s
heastersbdiveriivasnhtbpsiash it drew of qunigh istipg."#Fields”
diestive.- 2esoriting wmcknfeles ar Joggedoat 6vich SOSItarpin.a (ET /s

r@¥pts/..%%35%63../winnt/system32/cmd.exe?/c+dir 400 - URL
After the directives, the log entries follow. Each log entry is a space-

separated list of field values.
The following example shows a portion of an HTTP Error log file
generated by later versions of Http.sys:

#Software: Microsoft HTTP API 1.0

#Version: 1.0

#Date: 2003-08-08 03:12:41
F?g}ﬁlﬁshﬁﬂ}%g(ip c-port s-ip s-port cs-version cs-method cs-uri sc-status s
F'Ils—‘lltﬁéd s-reason s-queuename
%1%%1%% (08 03:12:41 10.193.50.9 3544 10.193.50.9 80 HTTP/1.1 GET /ISAPI
Exa I@APIEXtTest.dll?Action=Crash&Action;=Print&Data;=Req17769_0 -
1 Connection_Abandoned_By_AppPool DefaultAppPool

2003-08-08 8354 00 3PS B0 A0 AR LB b CE T M15AP

_OOP/ISAPIExtTest.dll? Action=Crash&Action;=Print&Data;=Req17769_1 -
1 Connection_Abandoned_By_AppPool DefaultAppPool
2003-08-08 03:12:43 10.193.50.9 3546 10.193.50.9 80 HTTP/1.1 GET /ISAPI
_OOP/ISAPIExtTest.dll? Action=Crash&Action;=Print&Data;=Req17769_2 -
1 Connection_Abandoned_By_AppPool DefaultAppPool

HTTPERR Input Format From-Entity
Syntax

<from-entity> ::= HTTPERR |

<filename> [, <filename> ... |

The <from-entity> specified in queries using the HTTERR input format is
either the "HTTPERR" keyword or a comma-separated list of paths of
HTTP Error log files.

When the "HTTPERR" keyword is used, the HTTPERR input format
reads the HTTP Error log configuration from the registry and parses all
the HTTP Error log files currently available in the HTTP Error log file
directory.

Filenames can include wildcards (e.g. "LogFiles\HTTPERR\httperr*.log").

Examples:
FROM LogFiles\HTTPERR\httperr1.log, LogFiles HTTPERR\httperr2.log
FROM \\MYMACHINE\LogFiles\HTTPERR\httperr*.log

FROM HTTPERR

© 2004 Microsoft Corporation. All rights reserved.

HTTPERR Input Format Fields

The input records generated by the HTTPERR input format contain the
following fields:

Name Type Description

LogFilename STRING Full path of the log file containing
this entry

LogRow INTEGER Line in the log file containing this
entry

date TIMESTAMP | The date on which the request was
served (Universal Time
Coordinates (UTC) time)

time TIMESTAMP | The time at which the request was
served (Universal Time
Coordinates (UTC) time)

S- STRING The name of the server that served

computername the request (this field is logged by
later versions of Http.sys only)

c-ip STRING The IP address of the client that
made the request

c-port INTEGER The client port number that sent
the request

s-ip STRING The IP address of the server that
served the request

s-port INTEGER The server port number that
received the request

cs-version STRING The HTTP version of the client
request

cs-method STRING The HTTP request verb

cs-uri STRING The HTTP request uri

cs(User- STRING The client request User-Agent

Agent) header (this field is logged by later
versions of Http.sys only)

cs(Cookie) STRING The client request Cookie header
(this field is logged by later
versions of Http.sys only)

cs(Referer) STRING The client request Referer header
(this field is logged by later
versions of Http.sys only)

cs-host STRING The client request Host header
(this field is logged by later
versions of Http.sys only)

sc-status INTEGER The response HTTP status code

sc-bytes INTEGER The number of bytes in the
response sent by the server (this
field is logged by later versions of
Http.sys only)

cs-bytes INTEGER The number of bytes in the request

sent by the client (this field is
logged by later versions of Http.sys

only)

time-taken

INTEGER

The number of milliseconds
elapsed since the moment the
server received the request to the
moment the server sent the
response to the client (this field is
logged by later versions of Http.sys

only)

s-siteid

INTEGER

The IS site instance number that
served the request

S-reason

STRING

Information about why the error
occurred

S-queuename STRING

The name of the application pool
hosting the 11S worker process that
processed the request (this field is
logged by later versions of Http.sys

only)

© 2004 Microsoft Corporation. All rights reserved.

HTTPERR Input Format Parameters

The HTTPERR input format supports the following parameters:

iCodepage

Values: codepage ID (number)

Default: 0

Description: Codepage of the log file.

Details: 0 is the system codepage, -1 is UNICODE.

Example: -iCodepage: 1245

minDateMod

Values: date/time (in "yyyy-MM-dd hh:mm:ss" format)

Default: not specified

Description: Minimum file last modified date, in local time
coordinates.

Details: When this parameter is specified, the HTTPERR input
format processes only log files that have been modified
after the specified date.

Example: -minDateMod:"2004-05-28 22:05:10"

dirTime

Values: ON | OFF

Default: OFF

Description: Use the value of the "#Date" directive for the "date"

and/or "time" field values when these fields are not
logged.

Details: When a log file is configured to not log the "date" and/or
"time" fields, specifying "ON" for this parameters causes
the HTTPERR input format to generate "date" and
"time" values using the value of the last seen "#Date"

directive.
Example: -dirTime:ON
iCheckpoint
Values: checkpoint filename
Default: not specified

Description: Load and save checkpoint information to this file.

Details: This parameter enables the "Incremental Parsing"
feature that allows sequential executions of the same
guery to only process new log entries that have been
logged since the last execution. For more information,
see Parsing Input Incrementally.

Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc

© 2004 Microsoft Corporation. All rights reserved.

HTTPERR Input Format Examples

Errors Distribution Chart

Create a pie chart containing the distribution of errors in the HTTP Error
logs:

LogParser "SELECT sc-status, PROPCOUNT(*) AS Percentage INTO Pie.gif
FROM HTTPERR GROUP BY sc-status ORDER BY Percentage DESC" -cha
rtType:PieExploded -chartTitle:"Errors Distribution" -categories:off

© 2004 Microsoft Corporation. All rights reserved.

lIS Input Format

The 1IS input format parses IIS log files in the Microsoft 1S Log File
Format.

The Microsoft IIS Log File Format is a text-based, fixed-field format. Log
entries are logged on a single line, consisting of a comma-separated list
of field values.

The following example shows a portion of a Microsoft IIS Log File Format
log file:

192.168.114.201, -, 03/20/01, 7:55:20, W3SVC2, SERVER, 172.21.13.45, 450
2, 163, 3223, 200, 0, GET, /DeptLogo.gif, -,
192.168.110.54, -, 03/20/01, 7:57:20, W3SVC2, SERVER, 172.21.13.45, 411,
F10in-En 2 8laEE T /style.css, -

Fields
Parameters

Examples

See also:
IS Output Format

© 2004 Microsoft Corporation. All rights reserved.

IIS Input Format From-Entity Syntax

<from-entity> <filename> | <SiteID> [, <filename> | <SiteID> ...]

<SiteID>

< site_number > < server_comment >

< site_metabase_path >

The <from-entity> specified in queries using the IIS input format is a
comma-separated list of:

e Paths of Microsoft 1S Log File Format log files;
¢ |IS Virtual Site "identifiers".

"Site identifiers" must be enclosed within angle brackets (< and >), and
can have one of the following values:

e The numeric site ID (e.g. "<1>", "<28163489>");
e The text value of the "ServerComment" property of the site (e.g. "<My

External Site>", "<www.margiestravel.com>"),
e The fully-qualified ADSI metabase path to the site (e.g. "

</IMYSERVER/W3SVC/1>"), using either the numeric site ID or the
text value of the "ServerComment" property of the site.

When a "site identifier" is used, the IIS input format connects to the
specified machine's metabase, gathers information on the site's current
logging properties, and parses all the log files in the site's current log file
directory.

Filenames and "Site identifiers" can also include wildcards (e.g.

"LogFiles\in04*.log", "<www.*.com>").
Examples:

FROM LogFiles\in04*log, LogFiles\in03*.log, \\MyServer\LoggingShare\W3
SVC2\in04*.1og

FROM <1>, <2>, <My External Site>, inetsv9.log

FROM <www.net*home.com>, <//MyServer2/W3SVC/www.net*home.com>,
<//MyServer2/MSFTPSV(C/*>, <*>

© 2004 Microsoft Corporation. All rights reserved.

IIS Input Format Fields

The input records generated by the IIS input format contain the following
fields:

Name Type Description

LogFilename STRING Full path of the log file
containing this entry

LogRow INTEGER Line in the log file containing
this entry
UserIP STRING The IP address of the client that

made the request

UserName STRING The name of the authenticated
user that made the request, or
NULL if the request was from
an anonymous user

Date TIMESTAMP | The date on which the request
was served (local time)

Time TIMESTAMP | The time at which the request
was served (local time)

Servicelnstance STRING The IIS service name and site
instance number that served
the request

HostName STRING The name of the server that
served the request

ServerIP

STRING

The IP address of the server
that served the request

TimeTaken

INTEGER

The number of milliseconds
elapsed since the moment the
server received the request to
the moment the server sent the
last response chunk to the
client

BytesSent

INTEGER

The number of bytes in the
request sent by the client

BytesReceived

INTEGER

The number of bytes in the
response sent by the server

StatusCode

INTEGER

The response HTTP or FTP
status code

Win32StatusCode

INTEGER

The Windows status code
associated with the response
HTTP or FTP status code

RequestType

STRING

The HTTP request verb or FTP
operation

Target

STRING

The HTTP request uri-stem or
FTP operation target

Parameters

STRING

The HTTP request uri-query, or
NULL if the requested URI did
not include a uri-query

© 2004 Microsoft Corporation. All rights reserved.

lIS Input Format Parameters

The 1IS input format supports the following parameters:

iCodepage
Values:

Default:

Description:

Details:

Example:

recurse

Values:

Default:

Description:

Details:

Example:

minDateMod

Values:

Default:

Description:

Details:

codepage ID (number)
-2
Codepage of the log file.

0 is the system codepage; -2 specifies that the
codepage is automatically determined by inspecting the
filename and/or the site's "LogInUTF8" property.

-iCodepage: 1245

recursion level (hnumber)
0
Max subdirectory recursion level.

0 disables subdirectory recursion; -1 enables unlimited
recursion.

-recurse:-1

date/time (in "yyyy-MM-dd hh:mm:ss" format)
not specified

Minimum file last modified date, in local time
coordinates.

When this parameter is specified, the IIS input format

Example:

locale

Values:

Default:

Description:

Details:

Example:

iCheckpoint
Values:

Default:

Description:

Details:

processes only log files that have been modified after
the specified date.

-minDateMod:"2004-05-28 22:05:10"

3-character locale 1D
DEF
ID of the locale in which the log file was generated.

lIS versions earlier than 6.0 log the "Date" and "Time"
fields using the current system locale date and time
formats. IIS 6.0 and later versions use the ENU locale
instead, regardless of the system locale settings.

For these reasons, when parsing Microsoft IS Log File
Format log files on a locale whose date and time
formats do not match the formats of the locale of the
computer where the log file has been created, users
need to specify the ID of the system locale of the
computer that created the log file.

The special "DEF" value means the current system
locale.

-locale:JPN

checkpoint filename
not specified
Load and save checkpoint information to this file.

This parameter enables the "Incremental Parsing"
feature that allows sequential executions of the same
guery to only process new log entries that have been
logged since the last execution. For more information,
see Parsing Input Incrementally.

Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc

© 2004 Microsoft Corporation. All rights reserved.

IIS Input Format Examples

Top 20 URL's for a Site

Create a chart containing the TOP 20 URL's in the
"www.margiestravel.com" web site (assumed to be logging in the IIS log
format):

LogParser "SELECT TOP 20 Target, COUNT(*) AS Hits INTO MyChart.gif
FROM <www.margiestravel.com> GROUP BY Target ORDER BY Hits DES
C" -chartType:Column3D -groupSize:1024x768

Export Errors to SYSLOG

Send error entries in the IIS log to a SYSLOG server:

LogParser "SELECT TO_TIMESTAMP(Date, Time), CASE StatusCode WHE
N 500 THEN 'emerg' ELSE 'err' END AS MySeverity, HostName AS MyHost
name, Target INTO @myserver FROM <1> WHERE StatusCode >= 400" -o:

SYSLOG -severity:$MySeverity -hostName:$MyHostname
Bytes by Extension Chart

Create a pie chart with the total number of bytes generated by each
extension:

LogParser "SELECT EXTRACT_EXTENSION(Target) AS Extension, MUL(
PROPSUM(BytesReceived),100.0) AS Bytes INTO Pie.gif FROM <1> GRO
UP BY Extension ORDER BY Bytes DESC" -chartType:PieExploded -chartTi

ﬂp'"Ryqu per extension" -rnfpgnriPQ'nff

© 2004 Microsoft Corporation. All rights reserved.

ISODBC Input Format

The 1ISODBC input format returns database records from the tables
logged to by 1IS when configured to log in the ODBC Log Format.

From-Entity Syntax
Fields

Examples

© 2004 Microsoft Corporation. All rights reserved.

IISODBC Input Format From-Entity
Syntax
<from- = <SiteID> [, <SiteID> ...] |

entity> table:<tablename>;username:<username>;password:

<password>;dsn:<dsn>

<Site]D> < site_number >
< server_comment >

< site_metabase_path >

The <from-entity> specified in queries using the ISODBC input format is
either a comma-separated list of 1S Virtual Site "identifiers", or a single
specification of the ODBC parameters needed to access the table.

"Site identifiers" must be enclosed within angle brackets (< and >), and
can have one of the following values:

e The numeric site ID (e.g. "<1>", "<28163489>");
e The text value of the "ServerComment" property of the site (e.g. "<My

External Site>", "<www.margiestravel.com>");

e The fully-qualified ADSI metabase path to the site (e.g. "
</IMYSERVER/W3SVC/1>"), using either the numeric site ID or the
text value of the "ServerComment" property of the site.

When a "site identifier" is used, the ISODBC input format connects to the
specified machine's metabase, gathers information on the site's current
ODBC logging properties, and uses this information to connect to the
database table.

"Site identifiers" can also include wildcards (e.g. "<www.*.com>").

Examples:

FROM <1>, <2> <My External Site>

FROM table:MYLOGTABLE;username:IISLOGUSER;password:IISLOGUS
ERPW:;dsn:IISLOGDSN

© 2004 Microsoft Corporation. All rights reserved.

IISODBC Input Format Fields

The input records generated by the IISODBC input format contain the

following fields:

Name

Type

Description

ClientHost

STRING

The IP address of the client that
made the request

Username

STRING

The name of the authenticated
user that made the request, or
NULL if the request was from an
anonymous user

LogTime

TIMESTAMP

The date and time at which the
request was served (local time)

Service

INTEGER

The IIS service name and site
instance number that served the
request

Machine

STRING

The name of the server that
served the request

ServerIP

STRING

The IP address of the server that
served the request

ProcessingTime

INTEGER

The number of milliseconds
elapsed since the moment the
server received the request to the
moment the server sent the last

response chunk to the client

BytesRecvd INTEGER The number of bytes in the
request sent by the client

BytesSent INTEGER The number of bytes in the
response sent by the server

ServiceStatus INTEGER The response HTTP or FTP
status code

Win32Status INTEGER The Windows status code
associated with the response
HTTP or FTP status code

Operation STRING The HTTP request verb or FTP
operation

Target STRING The HTTP request uri-stem or
FTP operation target

Parameters STRING The HTTP request uri-query, or

NULL if the requested URI did not
include a uri-query

© 2004 Microsoft Corporation. All rights reserved.

IISODBC Input Format Examples

Top 20 URL's for a Site

Create a chart containing the TOP 20 URL's in the
"www.margiestravel.com" web site (assumed to be logging in the ODBC
log format):

LogParser "SELECT TOP 20 Target, COUNT(*) AS Hits INTO MyChart.gif
FROM <www.margiestravel.com> GROUP BY Target ORDER BY Hits DES
C" -chartType:Column3D -groupSize:1024x768

© 2004 Microsoft Corporation. All rights reserved.

ISW3C Input Format

The ISW3C input format parses IIS log files in the W3C Extended Log
File Format.

IIS web sites logging in the W3C Extended format can be configured to
log only a specific subset of the available fields.

Log files in this format begin with some informative headers ("directives"),
the most important of which is the "#Fields" directive, describing which
fields are logged at which position in a log row.

After the directives, the log entries follow. Each log entry is a space-
separated list of field values.

If the logging configuration of an IIS virtual site is updated, the structure
of the fields in the file that is currently logged to might change according
to the new configuration. In this case, a new "#Fields" directive is logged
describing the new fields structure, and the [ISW3C input format keeps
track of the structure change and parses the new log entries accordingly.

The following example shows a portion of a W3C Extended Log File
Format log file:

#Software: Microsoft Internet Information Services 5.0
#Version: 1.0
#Date: 2003-11-18 00:28:33
G ipldsy, ;R &s-uri-stem cs-bytes
O 11- .168.1.101 /Default.htm 100
pAI03-Lt=18 192.168.1.104 /hitcount.asp 200
= %bll‘lj—sw 192.168.1.102 /images/address.gif
2003-11-18 192.168.1.102 /cgi-bin/counts.exe 400

See also:

W3C Input Format
W3C Output Format

© 2004 Microsoft Corporation. All rights reserved.

IISW3C Input Format From-Entity Syntax

<from-entity> <filename> | <SiteID> [, <filename> | <SiteID> ...]

<SiteID>

< site_number > < server_comment >

< site_metabase_path >

The <from-entity> specified in queries using the IISW3C input format is a
comma-separated list of:

e Paths of IIS W3C Extended log files;
¢ |IS Virtual Site "identifiers".

"Site identifiers" must be enclosed within angle brackets (< and >), and
can have one of the following values:

e The numeric site ID (e.g. "<1>", "<28163489>");
e The text value of the "ServerComment" property of the site (e.g. "<My

External Site>", "<www.margiestravel.com>"),
e The fully-qualified ADSI metabase path to the site (e.g. "

</IMYSERVER/W3SVC/1>"), using either the numeric site ID or the
text value of the "ServerComment" property of the site.

When a "site identifier" is used, the IISW3C input format connects to the
specified machine's metabase, gathers information on the site's current
logging properties, and parses all the log files in the site's current log file
directory.

Filenames and "Site identifiers" can also include wildcards (e.g.

"LogFiles\ex04*.log", "<www.*.com>").

Examples:

FROM LogFiles\ex04*log, LogFiles\ex03*.log, \MyServer\LoggingShare\W 3
SVC2\ex04*.log

FROM <1>, <2> <My External Site>, extend9.log

FROM <www.net*home.com>, <//MyServer2/W3SVC/www.net*home.com>,
<//MyServer2/MSFTPSV(C/*>, <*>

© 2004 Microsoft Corporation. All rights reserved.

IISW3C Input Format Fields

The input records generated by the ISW3C input format contain the
following fields:

Name Type Description

LogFilename STRING Full path of the log file containing
this entry

LogRow INTEGER Line in the log file containing this
entry

date TIMESTAMP | The date on which the request was

served (Universal Time
Coordinates (UTC) time)

time TIMESTAMP | The time at which the request was
served (Universal Time
Coordinates (UTC) time)

c-ip STRING The IP address of the client that
made the request

cs-username STRING The name of the authenticated
user that made the request, or
NULL if the request was from an
anonymous user

s-sitename STRING The IIS service name and site
instance number that served the
request

S_

STRING

The name of the server that served

computername the request

s-ip STRING The IP address of the server that
served the request

s-port INTEGER The server port number that
received the request

cs-method STRING The HTTP request verb or FTP
operation

cs-uri-stem STRING The HTTP request uri-stem or FTP
operation target

cs-uri-query STRING The HTTP request uri-query, or
NULL if the requested URI did not
include a uri-query

sc-status INTEGER The response HTTP or FTP status
code

sc-substatus INTEGER The response HTTP sub-status
code (this field is logged by IIS
version 6.0 and later only)

sc-win32- INTEGER The Windows status code

status associated with the response
HTTP or FTP status code

sc-bytes INTEGER The number of bytes in the
response sent by the server

cs-bytes INTEGER The number of bytes in the request

sent by the client

time-taken INTEGER The number of milliseconds
elapsed since the moment the
server received the request to the
moment the server sent the last
response chunk to the client

cs-version STRING The HTTP version of the client
request

cs-host STRING The client request Host header

cs(User- STRING The client request User-Agent

Agent) header

cs(Cookie) STRING The client request Cookie header

cs(Referer) STRING The client request Referer header

s-event STRING The type of log event (this field is
logged by 1IS version 5.0 only
when the "Process Accounting
Logging" feature is enabled)

s-process-type STRING The type of process that triggered
the log event (this field is logged
by IIS version 5.0 only when the
"Process Accounting Logging”
feature is enabled)

s-user-time REAL The total accumulated User Mode

processor time, in percentage, that

the site used during the current
interval (this field is logged by 1S
version 5.0 only when the
"Process Accounting Logging”
feature is enabled)

s-kernel-time

REAL

The total accumulated Kernel
Mode processor time, in
percentage, that the site used
during the current interval (this
field is logged by 1IS version 5.0
only when the "Process
Accounting Logging" feature is
enabled)

s-page-faults

INTEGER

The total number of memory
references that resulted in memory
page faults during the current
interval (this field is logged by IS
version 5.0 only when the
"Process Accounting Logging”
feature is enabled)

s-total-procs

INTEGER

The total number of applications
created during the current interval
(this field is logged by 1IS version
5.0 only when the "Process
Accounting Logging" feature is
enabled)

s-active-procs

INTEGER

The total number of applications

running when the log event was
triggered (this field is logged by 1I1S
version 5.0 only when the
"Process Accounting Logging”
feature is enabled)

s-stopped-

procs

INTEGER

The total number of applications
stopped due to process throttling
during the current interval (this
field is logged by 1IS version 5.0
only when the "Process
Accounting Logging" feature is
enabled)

© 2004 Microsoft Corporation. All rights reserved.

ISW3C Input Format Parameters

The 1ISW3C input format supports the following parameters:

iCodepage
Values:

Default:

Description:

Details:

Example:

recurse

Values:

Default:

Description:

Details:

Example:

minDateMod

Values:

Default:

Description:

Details:

codepage ID (number)
-2
Codepage of the log file.

0 is the system codepage; -2 specifies that the
codepage is automatically determined by inspecting the
filename and/or the site's "LogInUTF8" property.

-iCodepage: 1245

recursion level (hnumber)
0
Max subdirectory recursion level.

0 disables subdirectory recursion; -1 enables unlimited
recursion.

-recurse:-1

date/time (in "yyyy-MM-dd hh:mm:ss" format)
not specified

Minimum file last modified date, in local time
coordinates.

When this parameter is specified, the ISW3C input

Example:

dQuotes

Values:
Default:

Description:

Details:

Example:

dirTime
Values:

Default:

Description:

Details:

Example:

consolidateL.ogs

Values:

format processes only log files that have been modified
after the specified date.

-minDateMod:"2004-05-28 22:05:10"

ON | OFF
OFF

Specifies that string values in the log are double-
guoted.

Log processors might generate W3C logs whose string
values are enclosed in double-quotes.

-dQuotes:ON

ON | OFF
OFF

Use the value of the "#Date" directive for the "date"
and/or "time" field values when these fields are not
logged.

When a log file is configured to not log the "date" and/or
"time" fields, specifying "ON" for this parameters causes
the IISW3C input format to generate "date" and "time"
values using the value of the last seen "#Date"
directive.

-dirTime:ON

ON | OFF

Default:

Description:

Details:

Example:

iCheckpoint
Values:
Default:
Description:

Details:

Example:

OFF

Return entries from all the input log files ordering by
date and time.

When a from-entity refers to log files from multiple IIS
virtual sites, specifying ON for this parameter causes
the IISW3C input format to parse all the input log files in
parallel, returning entries ordered by the values of the
"date" and "time" fields in the log files; the input records
returned will thus appear as if a single ISW3C log file
was being parsed.

Enabling this feature is equivalent to executing a query
with an "ORDER BY date, time" clause on all the log
files. However, the implementation of this feature
leverages the pre-existing chronological order of entries
in each log file, and it does not require the extensive
memory resources otherwise required by the ORDER
BY query clause.

-consolidateLogs:ON

checkpoint filename
not specified
Load and save checkpoint information to this file.

This parameter enables the "Incremental Parsing"
feature that allows sequential executions of the same
guery to only process new log entries that have been
logged since the last execution. For more information,
see Parsing Input Incrementally.

-iCheckpoint:C:\Temp\myCheckpoint.lpc

© 2004 Microsoft Corporation. All rights reserved.

IISW3C Input Format Examples

Top 20 URL's for a Site

Create a chart containing the TOP 20 URL's in the
"www.margiestravel.com" web site (assumed to be logging in the W3C
log format):

LogParser "SELECT TOP 20 cs-uri-stem, COUNT(*) AS Hits INTO MyChart
.gif FROM <www.margiestravel.com> GROUP BY cs-uri-stem ORDER BY
Hits DESC" -chartType:Column3D -groupSize:1024x768

Export Errors to SYSLOG
Send error entries in the W3C log to a SYSLOG server:

LogParser "SELECT TO_TIMESTAMP(date,time), CASE sc-status WHEN 5
00 THEN 'emerg' ELSE 'err' END AS MySeverity, s-computername AS MyHo
stname, cs-uri-stem INTO @myserver FROM <1> WHERE sc-status >= 400"

-0:SYSLOG -severity:$MySeverity -hostName:$MyHostname
Bytes by Extension Chart

Create a pie chart with the total number of bytes generated by each
extension:

LogParser "SELECT EXTRACT_EXTENSION(cs-uri-stem) AS Extension, M
UL(PROPSUM(sc-bytes),100.0) AS Bytes INTO Pie.gif FROM <1> GROUP
BY Extension ORDER BY Bytes DESC" -chartType:PieExploded -chartTitle:"

Rytpq per extension" -rnfpgnriPQ'nff

© 2004 Microsoft Corporation. All rights reserved.

NCSA Input Format

The NCSA input format parses log files in the NCSA Common,
Combined, and Extended Log File Formats.

The NCSA Log File Format is a text-based, fixed-field format. Log entries
are logged on a single line, consisting of a space-separated list of field
values.

There are three versions of the NCSA Log File Format: "Common",
"Combined", and "Extended". The three versions differ by the number of
fields that are logged for each request.

IIS can log NCSA Common Log File Format log files, while other web
servers can be configured to log with the Combined and Extended
formats.

The following example shows a portion of an NCSA Common Log File
Format log file:

172.21.13.45 - Microsoft\User [08/Apr/2001:17:39:04 -0800] "GET /scripts/iis
admin/ism.dll?http/serv HTTP/1.0" 200 3401
Thefollowing exameeasiiows Baestiorny o) goo NCIA Goymbisedrreg /Fife
Faooaddag file:

172.21.13.45 - Microsoft\User [08/Apr/2001:17:39:04 -0800] "GET /scripts/iis
admin/ism.dll?http/serv HTTP/1.0" 200 3401 "http://www.microsoft.com/" "M
ozilla/4.05 [en] (WinNT; I)" "USERID=CustomerA"

= VPRI 1+5,L08/Apr/2001:21:01:19 -0800] "GET /style.css HTTP/1.0"
I_:% ttp://www.microsoft.com/" "Mozilla/4.05 [en] (WinNT; I)" "USER
amtigrgerA”

Examples

© 2004 Microsoft Corporation. All rights reserved.

NCSA Input Format From-Entity Syntax

<from-entity> <filename> | <SiteID> [, <filename> | <SiteID> ...]

<SiteID>

< site_number > < server_comment >

< site_metabase_path >

The <from-entity> specified in queries using the NCSA input format is a
comma-separated list of:

e Paths of NCSA Log File Format log files;
¢ |IS Virtual Site "identifiers".

"Site identifiers" must be enclosed within angle brackets (< and >), and
can have one of the following values:

e The numeric site ID (e.g. "<1>", "<28163489>");
e The text value of the "ServerComment" property of the site (e.g. "<My

External Site>", "<www.margiestravel.com>"),
e The fully-qualified ADSI metabase path to the site (e.g. "

</IMYSERVER/W3SVC/1>"), using either the numeric site ID or the
text value of the "ServerComment" property of the site.

When a "site identifier" is used, the NCSA input format connects to the
specified machine's metabase, gathers information on the site's current
logging properties, and parses all the log files in the site's current log file
directory.

Filenames and "Site identifiers" can also include wildcards (e.g.

"LogFiles\nc04*.log", "<www.*.com>").

Examples:

FROM LogFiles\nc04*log, LogFiles\nc03*.1og, \MyServer\LoggingShare\W 3
SVC2\nc04*.log

FROM <1>, <2> <My External Site>, ncsa9.log

FROM <www.net*home.com>, <//MyServer2/W3SVC/www.net*home.com>,
<>

© 2004 Microsoft Corporation. All rights reserved.

NCSA Input Format Fields

The input records generated by the NCSA input format contain the

following fields:

Name

Type

Description

LogFilename

STRING

Full path of the log file
containing this entry

LogRow

INTEGER

Line in the log file containing
this entry

RemoteHostName

STRING

The IP address of the client that
made the request

RemoteLogName

STRING

The identifier used to identify
the client making the HTTP
request, or NULL if no identifier
is used (always NULL in NCSA
log files generated by 11S)

UserName

STRING

The name of the authenticated
user that made the request, or
NULL if the request was from
an anonymous user

DateTime

TIMESTAMP

The date and time at which the
request was served (Universal
Time Coordinates (UTC) time)

Request

STRING

The HTTP request line (verb,

URI, and HTTP version)

StatusCode

INTEGER

The response HTTP status
code

BytesSent

INTEGER

The number of bytes in the
response sent by the server

Referer

STRING

The client request Referer
header (not logged in NCSA
Common Log File Format log
files)

User-Agent

STRING

The client request User-Agent
header (not logged in NCSA
Common Log File Format log
files)

Cookie

STRING

The client request Cookie
header (not logged in NCSA
Common Log File Format log
files)

© 2004 Microsoft Corporation. All rights reserved.

NCSA Input Format Parameters

The NCSA input format supports the following parameters:

iCodepage
Values:

Default:

Description:

Details:

Example:

recurse

Values:

Default:

Description:

Details:

Example:

minDateMod

Values:

Default:

Description:

Details:

codepage ID (number)
-2
Codepage of the log file.

0 is the system codepage; -2 specifies that the
codepage is automatically determined by inspecting the
filename and/or the site's "LogInUTF8" property.

-iCodepage: 1245

recursion level (hnumber)
0
Max subdirectory recursion level.

0 disables subdirectory recursion; -1 enables unlimited
recursion.

-recurse:-1

date/time (in "yyyy-MM-dd hh:mm:ss" format)
not specified

Minimum file last modified date, in local time
coordinates.

When this parameter is specified, the NCSA input

format processes only log files that have been modified
after the specified date.

Example: -minDateMod:"2004-05-28 22:05:10"
iCheckpoint

Values: checkpoint filename

Default: not specified

Description: Load and save checkpoint information to this file.

Details: This parameter enables the "Incremental Parsing"
feature that allows sequential executions of the same
guery to only process new log entries that have been
logged since the last execution. For more information,
see Parsing Input Incrementally.

Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc

© 2004 Microsoft Corporation. All rights reserved.

NCSA Input Format Examples

Slice Request field into components
Return the verb, URI, and HTTP version for each request:

LogParser "SELECT EXTRACT_TOKEN(Request, 0, ') AS Verb, EXTRAC
T_TOKEN(Request, 1,"'") AS URIL, EXTRACT_TOKEN(Request, 2,'") AS V
ersion FROM ncsa9.log"

Top 20 URL's for a Site

Create a chart containing the TOP 20 URL's in the
"www.margiestravel.com" web site (assumed to be logging in the NCSA
log format):

LogParser "SELECT TOP 20 EXTRACT_TOKEN(Request, 1,"'") AS URI, C
OUNT(*) AS Hits INTO MyChart.gif FROM <www.margiestravel.com> GR
OUP BY URI ORDER BY Hits DESC" -chartType:Column3D -groupSize:102
4x768

© 2004 Microsoft Corporation. All rights reserved.

NETMON Input Format

The NETMON input format parses network capture files (.cap files)
created by the NetMon Network Monitor application.

The NETMON input format works in two different modes, selectable
through the fMode parameter.

When the "fMode" parameter is set to "TCPIP", the NETMON input
format returns an input record for each TCP/IP packet found in the
capture file.

In this case, input records contain fields from the TCP and IP packet
headers, together with the payload of each packet.

For example, the following command returns the specified fields from the
TCP/IP packets in the capture file:

LogParser "SELECT SrcPort, TCPFlags, PayloadBytes FROM MyCapture.cap

" -fMode:TCPIP
The output of this command would look like the following sample:

SrcPort TCPFlags PayloadBytes

When the "fMpde" parameter is set to "TCPConn", the NETMON input
farmet raturnspan input record for each TCP connection found in the
captare §le. o
Igohis gase, imput records contain fields calculated by aggregating all the
TCRgagkets ip the connection, including the reconstructed payload sent
by3zeth apdpoipgs.
Foszsxample, thgfollowing command returns the specified fields from the
TEYP cqunectipns in the capture file:

1336 A 1431

LagParseP "SERELT SrcPort, TimeTaken, SrcPayloadBytes, DstPayloadBytes

FROM MyCapture.cap" -fMode:TCPConn
The output of this command would look like the following sample:

SrcPort TimeTaken SrcPayloadBytes DstPayloadBytes

1336 150.216000 3694 3673
1284 _ 450.648000 312 1362
Fram-E
- . 0 0
5 001.440000 0 0
T 224000 0 0
120.240000 0 0

1283 66619.388000 1886

1291 1 36@ g%édé@@so t Cgéggrat/on All rights reserved.
1285 47883.357000 312 708

1290 21203.946000 312 1362

NETMON Input Format From-Entity
Syntax

<from-entity> ::= <filename> [, <filename> ... |

The <from-entity> specified in queries using the NETMON input format is
a comma-separated list of NetMon capture files (.cap files).

Examples:
FROM MyCapturel.cap

FROM MyCapturel.cap, MyCapture2.cap

© 2004 Microsoft Corporation. All rights reserved.

NETMON Input Format Fields

The structure of the input records generated by the NETMON input
format depends on the value specified for the fMode parameter.

TCPIP Mode

When the fMode parameter is set to "TCPIP", the NETMON input format
returns an input record for each TCP/IP packet found in the capture file.
In this mode, input records contain the following fields:

Name Type Description

CaptureFilename | STRING The full path of the capture file
containing this packet

Frame INTEGER The frame number containing
this packet
DateTime TIMESTAMP | Date and time at which the

packet was sent

FrameBytes INTEGER Total number of bytes in the
frame

SrcMAC STRING MAC address of the sender of
this packet

SrcIP STRING IP address of the sender of this
packet

SrcPort INTEGER TCP port number of the sender

of this packet

DstMAC STRING MAC address of the destination
of this packet

DstIP STRING IP address of the destination of
this packet

DstPort INTEGER TCP port number of the
destination of this packet

IPVersion INTEGER IP version of this packet

TTL INTEGER Time-To-Live field of the IP
header of this packet

TCPFlags STRING TCP flags field of the TCP
header of this packet

Seq INTEGER TCP sequence number of this
packet

Ack INTEGER TCP acknowledge number of
this packet

WindowSize INTEGER Window size field of the TCP
header of this packet

PayloadBytes INTEGER Number of bytes in the TCP
payload of this packet

Payload STRING TCP payload of this packet

Connection INTEGER Unique identifier of the TCP

connection to which this packet
belongs

TCPConn Mode

When the fMode parameter is set to "TCPConn", the NETMON input
format returns an input record for each TCP connection found in the
capture file.

In this mode, input records contain the following fields:

Name Type Description

CaptureFilename | STRING The full path of the capture file
containing this connection

StartFrame INTEGER Frame number containing the
first packet of this connection

EndFrame INTEGER Frame number containing the
last packet of this connection

Frames INTEGER Total number of frames
containing packets belonging to
this connection

DateTime TIMESTAMP Date and time of at which the
first packet of this connection
was sent

TimeTaken INTEGER Total number of milliseconds

elapsed since the first packet of
this connection to the last packet

SrcMAC STRING MAC address of the initiator of
this connection

SrcIP

STRING

IP address of the initiator of this
connection

SrcPort

INTEGER

TCP port number of the initiator
of this connection

SrcPayloadBytes

INTEGER

Total number of bytes in the
reconstructed TCP payload sent
by the initiator of this connection

SrcPayload

STRING

Reconstructed TCP payload
sent by the initiator of this
connection

DstMAC

STRING

MAC address of the receiver of
this connection

DstIP

STRING

IP address of the receiver of this
connection

DstPort

INTEGER

TCP port number of the receiver
of this connection

DstPayloadBytes

INTEGER

Total number of bytes in the
reconstructed TCP payload sent
by the receiver of this
connection

DstPayload

STRING

Reconstructed TCP payload
sent by the receiver of this
connection

© 2004 Microsoft Corporation. All rights reserved.

NETMON Input Format Parameters

The NETMON input format supports the following parameters:

fMode

Values:

Default:

Description:

Details:

Example:

binaryFormat

Values:

Default:

Description:

Details:

TCPIP | TCPConn
TCPIP
Operation mode.

When this parameter is set to "TCPIP", the NETMON ing
record for each TCP/IP packet found in the capture file. |
contain fields from the TCP and IP packet headers, toge
each packet.

When this parameter is set to "TCPConn", the NETMON
input record for each TCP connection found in the captul
records contain fields calculated by aggregating all the T
connection, including the reconstructed payload sent by
For more information on the different modes of operatior
Format Fields.

-fMode: TCPConn

ASC | PRINT | HEX
ASC
Format of binary fields.

TCP packet payloads are returned as STRING values fo
value specified for this parameter.

When this parameter is set to "ASC", data bytes belongi
are returned as ASCII characters, while data bytes outsit
as period (.) characters, as shown in the following examj

POST /test_system/request HTTP/1.1..Content-Length: 3411

When this parameter is set to "PRINT", data bytes repre:
characters are returned as ASCII characters, while data
printable ASCII characters are returned as period (.) cha
following example:

POST /test_system/request HTTP/1.1

Content-Length: 3411
Vihendhin pakaepeielive set to "HEX", all data bytes are r
hexadecimal values, as shown in the following example:

504F5354202F63636D5F73797374656D2F7265717565737+

Example: -binaryFormat:PRINT

© 2004 Microsoft Corporation. All rights reserved.

NETMON Input Format Examples

Network Traffic per Second

Display total network traffic bytes per second:

LogParser "SELECT QUANTIZE(DateTime, 1) AS Second, SUM(FrameByte
s) INTO DATAGRID FROM MyCapture.cap GROUP BY Second"

© 2004 Microsoft Corporation. All rights reserved.

REG Input Format

The REG input format returns information on registry values.

The REG input format enumerates local or remote registry keys and
values, returning an input record for each registry value found in the
enumeration.

From-Entity Syntax
Fields
Parameters

Examples

See also:

ES Input Format

© 2004 Microsoft Corporation. All rights reserved.

REG Input Format From-Entity Syntax

<from-entity> <registry_key> [, <registry_key> ... |

<registry_key> [\<computer_name>]\[<root_name>/|\
gistry_key p

<subkey_path>]]

<root_name> HKCR |
HKCU |
HKLM |
HKCC |

HKU

The <from-entity> specified in queries using the REG input format is a
comma-separated list of registry keys. Valid registry keys are:

e The registry root (e.g. "\");
e A system registry root (e.g. "\HKLM");

e Any key below a system registry root (e.qg.
"\HKLM\Software\Microsoft").

Registry keys can be optionally preceded by a remote computer name in
the UNC notation.

Examples:
FROM \
FROM \HKLM, \HKCU

FROM \SERVER1\HKLM\Software, \SERVER2\HKLM\Software

© 2004 Microsoft Corporation. All rights reserved.

REG Input Format Fields

The input records generated by the REG input format contain the

following fields:

Name Type Description

ComputerName || STRING Name of the computer hosting the
registry containing this value

Path STRING Path of the registry key containing
this value

KeyName STRING Name of the registry key
containing this value

ValueName STRING Name of the registry value

ValueType STRING Name of the type of the registry
value

Value STRING Text representation of the content
of the registry value

LastWriteTime TIMESTAMP | Date and time at which the
registry value has been last
modified (Universal Time
Coordinates (UTC) time)

© 2004 Microsoft Corporation. All rights reserved.

REG Input Format Parameters

The REG input format supports the following parameters:

recurse
Values: recursion level (number)
Default: -1
Description: Max subkey recursion level.
Details: 0 disables subkey recursion; -1 enables unlimited recurs
Example: -recurse:2
multiSZSep
Values: any string
Default: |
Description: Separator between elements of MULTI_SZ registry value
Details: Registry values of the MULTI_SZ type contain arrays of
cases, the content of the "Value" field is built by concatel
elements one after the other, using the value of this para
separator between the elements.
Example: -multiSZSep:,
binaryFormat
Values: ASC | PRINT | HEX
Default: ASC
Description: Format of REG_BINARY registry values.
Details: Registry values of the REG_BINARY type contain binary

often not suitable to be textually represented. This paran

Example:

how binary data is formatted to a STRING when returnes
the "Value" field.

When this parameter is set to "ASC", data bytes belongii
Ox7F range are returned as ASCII characters, while data
the range are returned as period (.) characters, as showi
example:

Bucket: 02096553..rundll32.exe

When this parameter is set to "PRINT", data bytes repre:
ASCII characters are returned as ASCII characters, whils
do not represent printable ASCII characters are returned
characters, as shown in the following example:

Bucket: 02096553

rundll32.exe
When this parameter is set to "HEX", all data bytes are r

digit hexadecimal values, as shown in the following exan

4275636B65743A2030323039363535330D0A72756E646C¢

-binaryFormat:PRINT

© 2004 Microsoft Corporation. All rights reserved.

REG Input Format Examples

Upload Registry to SQL Table
Load a portion of the registry into a SQL table:

LogParser "SELECT * INTO MyTable FROM \HKLM" -i:REG -0:SQL -serve
r:MyServer -database:MyDatabase -driver:"SQL Server" -username:TestSQLU
ser -password: TestSQLPassword -createTable:ON

Registry Type Distribution

Display the distribution of registry value types:

LogParser "SELECT ValueType, COUNT(*) INTO DATAGRID FROM \HKL
M GROUP BY ValueType"

© 2004 Microsoft Corporation. All rights reserved.

TEXTLINE Input Format

The TEXTLINE input format returns lines from generic text files.

The TEXTLINE input format makes it possible to parse text files in any
format not supported natively by Log Parser, and retrieve entire lines of
text as a single field.

The field can then be processed by the SQL-like query by making use of
string manipulation functions, such as the EXTRACT_TOKEN function.

From-Entity Syntax
Fields
Parameters

Examples

See also:

TEXTWORD Input Format
TSV Input Format

© 2004 Microsoft Corporation. All rights reserved.

TEXTLINE Input Format From-Entity
Syntax

<from-entity> ::= <filename> [, <filename> ...] |
http://<url> |
STDIN

The <from-entity> specified in queries using the TEXTLINE input format
is either:

e A comma-separated list of paths to text files, eventually including
wildcards;

e The URL of a text file;

e The "STDIN" keyword, which specifies that the input data is available
from the input stream (commonly used when piping command
executions).

Examples:
FROM *.txt, \\MyServer\FileShare*.tsv
FROM http://www.microsoft.adatum.com/example.tsv

type data.txt | LogParser "SELECT * FROM STDIN" -i: TEXTLINE

© 2004 Microsoft Corporation. All rights reserved.

TEXTLINE Input Format Fields

The input records generated by the TEXTLINE input format contain the

following fields:

Name Type Description

LogFilename | STRING Full path of the file containing this line
Index INTEGER || Line number

Text STRING Text line content

© 2004 Microsoft Corporation. All rights reserved.

TEXTLINE Input Format Parameters

The TEXTLINE input format supports the following parameters:

iCodepage
Values: codepage ID (number)
Default: 0
Description: Codepage of the text file.
Details: 0 is the system codepage, -1 is UNICODE.
Example: -iCodepage:1245
recurse
Values: recursion level (humber)
Default: 0
Description: Max subdirectory recursion level.
Details: 0 disables subdirectory recursion; -1 enables unlimited
recursion.
Example: -recurse:-1
splitLongLines
Values: ON | OFF
Default: OFF
Description: Split lines when longer than maximum allowed.
Details: When a text line is longer than 128K characters, the

TEXTLINE input format truncates the line and either
discards the remaining of the line (when this parameter
is set to "OFF"), or processes the remainder of the line

as a new line (when this parameter is set to "ON").

Example: -dQuotes:ON
iCheckpoint

Values: checkpoint filename

Default: not specified

Description: Load and save checkpoint information to this file.

Details: This parameter enables the "Incremental Parsing"
feature that allows sequential executions of the same
guery to only process new log entries that have been
logged since the last execution. For more information,
see Parsing Input Incrementally.

Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc

© 2004 Microsoft Corporation. All rights reserved.

TEXTLINE Input Format Examples

HTML Links

Return the lines in an HTML document that contain links to other pages:

LogParser "SELECT Text FROM http://www.microsoft.adatum.com WHERE
Text LIKE "%href%" -i: TEXTLINE

© 2004 Microsoft Corporation. All rights reserved.

TEXTWORD Input Format

The TEXTWORD input format returns words from generic text files.

The TEXTWORD input format makes it possible to parse text files in any
format not supported natively by Log Parser, and retrieve each word (i.e.
each string delimited by whitespace characters) as a single field.

From-Entity Syntax
Fields
Parameters

Examples

See also:

TEXTLINE Input Format
TSV Input Format

© 2004 Microsoft Corporation. All rights reserved.

TEXTWORD Input Format From-Entity
Syntax

<from-entity> ::= <filename> [, <filename> ...] |
http://<url> |
STDIN

The <from-entity> specified in queries using the TEXTWORD input
format is either:

e A comma-separated list of paths to text files, eventually including
wildcards;

e The URL of a text file;

e The "STDIN" keyword, which specifies that the input data is available
from the input stream (commonly used when piping command
executions).

Examples:
FROM *.txt, \\MyServer\FileShare*.tsv
FROM http://www.microsoft.adatum.com/example.tsv

type data.txt | LogParser "SELECT * FROM STDIN" -i: TEXTWORD

© 2004 Microsoft Corporation. All rights reserved.

TEXTWORD Input Format Fields

The input records generated by the TEXTWORD input format contain the
following fields:

Name Type Description

LogFilename | STRING Full path of the file containing this word

Index INTEGER Word number

Text STRING Word

© 2004 Microsoft Corporation. All rights reserved.

TEXTWORD Input Format Parameters

The TEXTWORD input format supports the following parameters:

iCodepage
Values: codepage ID (number)
Default: 0

Description: Codepage of the text file.

Details: 0 is the system codepage, -1 is UNICODE.
Example: -iCodepage:1245
recurse
Values: recursion level (humber)
Default: 0

Description: Max subdirectory recursion level.

Details: 0 disables subdirectory recursion; -1 enables unlimited
recursion.
Example: -recurse:-1
iCheckpoint
Values: checkpoint filename
Default: not specified

Description: Load and save checkpoint information to this file.

Details: This parameter enables the "Incremental Parsing"
feature that allows sequential executions of the same
query to only process new log entries that have been
logged since the last execution. For more information,

see Parsing Input Incrementally.

Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc

© 2004 Microsoft Corporation. All rights reserved.

TEXTWORD Input Format Examples

Word Distribution

Return the distribution of words in the specified text file:

LogParser "SELECT Text, COUNT(*) FROM MygFile.txt GROUP BY Text O
RDER BY COUNT(*) DESC" -i: TEXTWORD

© 2004 Microsoft Corporation. All rights reserved.

TSV Input Format

The TSV input format parses tab-separated and space-separated values
text files.

TSV text files, usually called "tabular" files, are generic text files
containing values separated by either spaces or tabs.

This it also the format of the output of many command-line tools. For
example, the output of the "netstat" tool is a series of lines, each line
consisting of values separated by spaces:

Active Connections

DensnrdingcanAlagrapplicatignyéhe fixgdtias in aJi&¥ file might be a
"heggter'ceoprap@mpNhepaiagls ofdharermd felddmond. corp.microsoft.co
Theofadimwpyex@mple shows a TSV file beginning with a header:
TCP GABRIEGI-M:microsoft-ds GABRIEGI-M.redmond.corp.microsoft.
YearDID.ISHTRNING
200P G2AFSBIEGIAYplii2bion stGifeBRIEGI-M.redmond.corp.microsoft.com
AWAISTENINMWaiting for input

Ty SiAmRATE ARGy W@E {rks M SSAMBRA- oA giggoft-com
Al gﬁ%% POGHERRY oAt

Rl anARIEA8R S meters play a crucial role in

'p{g T CAERIGEI 27 Tob ARG M SRRt Ter e ieam

I G
Tr(I?P6 GABRIEGI-M:5000 GABRIEGI-M.redmond.corp.microsoft.com
Thelssperag;parameter specifies the character used as a separator

betweendrediaids inviefiles beiog BRIFETE-M.redmond.corp.microsoft.com
SomasarNies; like the previous netstat example, use simple space
ChRIete S AISFIERALAMRR GDRIACIA & AMBHREFTNaVI IRxdniibes. dikp R sseand
exanplssaboveNise tab characters.

Th[eI %ﬁﬁ%‘l‘ﬁ\édﬂlﬂﬂ?g%m many separator characters must
|gn|f¥< a field separator.
negt%{gg}gﬁi M&nge erTdS are separated by at least two space
ace character is allowed to appear in the

HBB efs AR
vaHB%f gféﬁi&ﬁs%é @é;e with the "Local Address" field name).

OB off IM\/{ngprewous tab-separated example file, fields are

p—c

seHErBted}A)BRHEﬂdWB%araCtET

ABRIE I-
G %Bemfles*vghether or not the fields in the input

f|I ER g\g F)Be n#mbquf separator characters.
E\lt)t(é“aal are separated by at least two space
Chﬁlﬁlﬁteré ?{?[E %g spa,pg characters still signify a single field
separator.

On the other hand, in the previous tab-separated example file, fields are

separated by exactly a single tab character, and the presence of two
consecutive tab characters signifies an empty field.

From-Entity Syntax
Fields
Parameters

Examples

See also:

CSV Input Format
TSV Output Format

© 2004 Microsoft Corporation. All rights reserved.

TSV Input Format From-Entity Syntax

<from-entity> ::= <filename> [, <filename> ...] |
http://<url> |
STDIN

The <from-entity> specified in queries using the TSV input format is
either:

e A comma-separated list of paths of TSV files, eventually including
wildcards;

e The URL of a file in the TSV format;

e The "STDIN" keyword, which specifies that the input data is available
from the input stream (commonly used when piping command
executions).

Examples:
FROM LogFiles1*.txt, LogFiles2*.txt, \MyServer\FileShare*.txt
FROM http://www.microsoft.adatum.com/MyTSVFiles/example.tsv

type data.tsv | LogParser "SELECT * FROM STDIN" -i:TSV

© 2004 Microsoft Corporation. All rights reserved.

TSV Input Format Fields

The structure of the input records generated by the TSV input format is
determined at run time, depending on the data being parsed, and on the
values specified for the input format parameters.

The first two input record fields are fixed, and they are described in the
following table:

Name Type Description

Filename STRING Full path of the file containing this entry

RowNumber | INTEGER | Line in the file containing this entry

These two fields are then followed by the fields detected by the TSV input
format in the file(s) being parsed. The number, names, and data types of
the fields are determined by examining initially the input data according to
the values specified for the input format parameters.

The number of fields detected by the TSV input format during the initial
inspection phase dictates how the record fields will be extracted from the
input data during the subsequent parsing stage.

If a line contains less fields than the number of fields established, the
missing fields are returned as NULL values.

On the other hand, if a line contains more fields than the number of fields
established, the extra fields are parsed as if they were part of the value of
the last field expected by the TSV input format.

Number of Fields

The number of fields in an input record is determined by the input data
and by the value of the nFields parameter.

When the "nFields" parameter is set to -1, the TSV input format
determines the number of fields by inspecting the first line of the input

data, or the first line of the header file specified with the "iHeaderFile"
parameter.

As an example, the following TSV file contains a variable number of
fields:

Name City AreaCode

Jeff Redmond 425
Véhenr sars@dwilhghe'nFields” parameter set to -1, this TSV file would
yiedevthaeel{igigm Gobame”, "City", and "AreaCode").
In this case, the extra fourth field in the second record would be parsed
as part of the third "AreaCode" field, whose value would then be "206
98101".

When the "nFields" parameter is set to a value greater than zero, the
TSV input format uses the specified value as the number of fields in the
input data. Considering again the previous example file, parsing the file
with the "nFields" parameter set to 4 would yield four fields.

Field Names

The names of the fields in an input record is determined by the input data
and by the values of the headerRow and iHeaderFile parameters.

When the "headerRow" parameter is set to "ON", the TSV input format
assumes that the first line in the file being parsed is a header containing
the field names.

In this case, if the "iHeaderFile" parameter is left unspecified, the TSV
input format extracts the field names from the header line.

On the other hand, if the "iHeaderFile" parameter is set to the path of a
TSV file containing at least one line, then the TSV input format assumes
that the specified file contains a header, parses its first line only, and
extracts the field names from this line, ignoring the first line of the file
being parsed.

If the number of field names extracted is less than the number of fields
detected, the additional fields are automatically named "FieldN", with N
being a progressive index indicating the field position in the input record.

Considering the previous example file, setting the "headerRow"

parameter to "ON" would cause the TSV input format to use the first line
of the file as a header containing the field names.

With the "nFields" parameter set to -1, the TSV input format would detect
three fields, whose names would be "Name", "City", and "AreaCode".

On the other hand, with the "nFields" parameter set to 4, the TSV input
format would detect four fields, named "Name", "City", "AreaCode", and
"Field4".

When the "headerRow" parameter is set to "OFF", the TSV input format
assumes that the file being parsed does not contain a header, and that its
first line is the first data record in the file.

In this case, if the "iHeaderFile" parameter is set to the path of a TSV file
containing at least one line, then the TSV input format assumes that the
specified file contains a header, parses its first line only, and extracts the
field names from this line.

On the other hand, if the "iHeaderFile" parameter is left unspecified, the
fields are automatically named "FieldN", with N being a progressive
number indicating the field position in the input record.

As an example, the following TSV file does not contain a header line:

Jeff Redmond 425

Steve Seattle 206
Witernrecigshwitizgoe "headerRow" parameter to "OFF", the TSV input

format assumes that the first line of the TSV file is the first data record in
the file. In this case, the three fields would be named "Field1", "Field2",
and "Field3".

Field Types

The data type of each field extracted from the input data is determined by

examining the first n data lines, where n is the value specified for the

diLines parameter, in the following way:

o If all the non-empty field values in the first n lines are formatted as
decimal numbers, then the field is assumed to be of the REAL type.

o If all the non-empty field values in the first n lines are formatted as
integer numbers, then the field is assumed to be of the INTEGER type.

e If all the non-empty field values in the first n lines are formatted as

timestamps in the format specified by the iTsFormat parameter, then
the field is assumed to be of the TIMESTAMP type.

e Otherwise, the field is assumed to be of the STRING type.

Empty field values are returned as NULL values.

© 2004 Microsoft Corporation. All rights reserved.

TSV Input Format Parameters

The TSV input format supports the following parameters:

iSeparator

Values:

Default:

Description:

Details:

Example:

nSep

Values:

Default:

Description:

Details:

a single character | spaces | space | tab
tab
Separator character between fields.

The "spaces" value instructs the TSV input format to
consider any spacing character (space and tab) as a
separator character.

-iSeparator:space

number of separators (number)
1

Number of separator characters between fields in the
data records.

This parameter specifies how many separator
characters must appear for the characters to signify a
field separator.

This parameter is usually set to a value greater than
one when parsing space-separated text files in which
field values can contain a single space character. In
these cases, fields are usually separated by more than
a single space character.

When the "fixedSep" parameter is set to "OFF", the
value of the "nSep" parameter is assumed to be the
minimum number of separator characters signifying a
field separator.

Example:

fixedSep

Values:

Default:

Description:

Details:

Example:

headerRow

Values:

Default:

Description:

-nSep:2

ON | OFF
OFF

Specifies whether or not the fields in the input TSV
file(s) are separated by a fixed number of separator
characters.

When this parameter is set to "ON", the TSV input
format assumes that the number of separator
characters between the fields in the input data equals
exactly the value specified for the "nSep" parameter. In
this case, the presence of more separator characters
signifies an empty value, which is returned as a NULL
value.

When this parameter is set to "OFF", the TSV input
format assumes that the fields in the input data are
separated by a variable number of separator
characters, and the value of the "nSep" parameter is
assumed to be the minimum number of separator
characters signifying a field separator. In this case,
additional separator characters are ignored and parsed
as a single field separator, thus making it impossible for
a value to be interpreted as a NULL value.

-fixedSep:ON

ON | OFF
ON

Specifies whether or not the input file(s) begin with a
header line.

Details:

Example:

iHeaderFile

Values:
Default:
Description:

Details:

When this parameter is set to "ON", the TSV input
format assumes that each file being parsed begins with
a header line, containing the labels of the fields in the
file. If the "iHeaderFile" parameter is left unspecified,
the TSV input format will use the field names in the first
file's header as the names of the input record fields. If a
value is specified for the "iHeaderFile" parameter, the
TSV input format will ignore the header line in each file
being parsed.

When this parameter is set to "OFF", the TSV input
format assumes that the file(s) being parsed do not
contain a header, and parses their first line as data
records.

For more information on headers and field names, see
TSV Input Format Fields.

-headerRow:OFF

path to a TSV file
not specified
File containing field names.

When parsing TSV files that do not contain a header
line, the fields of the input records produced by the TSV
input format are named "Field1", "Field2", ...

To override this behavior and use meaningful field
names, this parameter can be set to to the path of a
TSV file containing a header line, causing the TSV input
format to use the field names in the specified TSV file's
header line as the names of the input record fields.
Only the first line of the specified TSV file is parsed,
and eventual additional lines are ignored.

For more information on headers and field names, see
TSV Input Format Fields.

Example: -iHeaderFile:"C:\My Folder\header.tsv"

nFields
Values: number of fields (number)
Default: -1

Description: Number of fields in the data records.

Details: This parameter specifies the number of fields in the
input data.
The special "-1" value specifies that the number of
fields is to be deducted by inspecting the first line of
input data.
For more information on how the number of fields is
determined, see TSV Input Format Fields.

Example: -nFields:3
dtLines
Values: number of lines (number)

Default: 100

Description: Number of lines examined to determine field types at
run time.

Details: This parameter specifies the number of initial lines that
the TSV input format examines to determine the data
type of each input field.

If the value is 0, all fields will be assumed to be of the
STRING data type.

For more information on how field data types are
determined, see TSV Input Format Fields.

Example: -dtLines:10

nSkipLines

Values:

Default:

Description:

Details:

Example:

lineFilter

Values:

Default:

Description:

Details:

Example:

iCodepage

number of lines (number)

0
Number of initial lines to skip.

When this parameter is set to a value greater than zero,
the TSV input format skips the first n lines of each input
file before parsing its header line, where n is the value
specified for this parameter.

-nSkipLines:5

+|-<any_string>[,<any_string>...]
not specified
Skip or consider only lines beginning with these strings.

When the value of this parameter begins with a "+"
character, the TSV input format will only parse those
lines beginning with one of the strings following the "+"
character in the specified value. For example, the value
"+Data:,Summary:" causes the TSV input format to
parse only lines beginning with either "Data:" or
"Summary:".

When the value of this parameter begins with a "-"
character, the TSV input format will ignore those lines
beginning with one of the strings that follow the "-"
character in the specified value. For example, the value
"-Comment, Marker" causes the TSV input format to
ignore lines beginning with either "Comment" or

" Marker".

-lineFilter:"-Meta Data:, Summary:"

Values:

Default:

Description:

Details:

Example:

iTsFormat

Values:

Default:

Description:

Details:

Example:

iCheckpoint

Values:

Default:

Description:

Details:

Example:

codepage ID (number)

0

Codepage of the TSV file.

0 is the system codepage, -1 is UNICODE.
-iCodepage: 1245

timestamp format
yyyy-MM-dd hh:mm:ss
Format of timestamp values in the input data.

This parameter specifies the date and/or time format
used in the input data being parsed. Values of fields
matching the specified format are returned as values of
the TIMESTAMP data type. For more information on
date and time formats, see Timestamp Format

Specifiers.
-iTsFormat:"MMM dd, yyyy"

checkpoint filename
not specified
Load and save checkpoint information to this file.

This parameter enables the "Incremental Parsing"
feature that allows sequential executions of the same
guery to only process new events that have been
logged since the last execution. For more information,
see Parsing Input Incrementally.

-iCheckpoint:C:\Temp\myCheckpoint.lpc

© 2004 Microsoft Corporation. All rights reserved.

TSV Input Format Examples

NetStat output

Parse the output of a 'netstat’' command:

netstat -a | LogParser "SELECT * FROM STDIN" -i:TSV -iSeparator:space -n
Sep:2 -fixedSep:OFF -nSkipLines:3

© 2004 Microsoft Corporation. All rights reserved.

URLSCAN Input Format

The URLSCAN input format parses log files created by the URLScan 1S
filter.

URLScan is an ISAPI filter that allows administrators of web servers to
restrict the kind of HTTP requests that the server will process. By
blocking specific HTTP requests, the URLScan filter prevents potentially
harmful requests from reaching the server and causing damage.

The URLScan filter maintains a log file describing the actions taken when
HTTP requests match the administrator-specified filters.

Log files created by the URLScan filter look like the following example:

[04-30-2002 - 17:09:48] Initializing UrlScan.log ----------------
[04-30-2002 - 17:09:48] -- Filter initialization time: [04-30-2002 - 17:09:48] -
=38, SR:48] UrlScan.dll Initializing ----------------

:09:49] UrlScan will return the following URL for rejected re
%ﬁéfé§§ej ected-By-UrlScan>"

E[;leﬁ:ﬁgr%%m - 17:09:49] URLs will be normalized before analysis.
-30-2002 - 17:09:49] URL normalization will be verified.

[04—30—2002©— 4 URLﬁ Elust con}ain og]ly ANSI characters.
orporation. Al rights reserved. :
[04-30-2002- : STmust not contain any dot except tor the file ext

ension.

[04-30-2002 - 17:09:49] URLs will be logged up to 128K bytes.

[04-30-2002 - 17:09:49] Requests with Content-Length exceeding 30000000
will be rejected.

[04-30-2002 - 17:09:49] Requests with URL length exceeding 260 will be reje
cted.

[04-30-2002 - 17:09:49] Requests with Query String length exceeding 4096 wi
11 be rejected.

[04-30-2002 - 17:09:49] Only the following verbs will be allowed (case sensiti
ve):

[04-30-2002 - 17:09:49] 'GET"

[04-30-2002 - 17:09:49] Requests containing the following character sequence
s will be rejected:

[04-30-2002 - 17:09:49] 'jj'

[04-30-2002 - 17:10:08] Client at 192.168.1.81: URL contains sequence 'jj', w

hich is disallowed. Request will be rejected. Site Instance='1", Raw URL="jj/L
ogLongUrlsTest_2_124 aa

aa’

[04-30-2002 - 17:10:08] Client at 192.168.1.81: URL length exceeded maximu
m allowed. Request will be rejected. Site Instance='1", Raw URL="/jj/LogLong
UrlsTest_2_800_aaa

aa’

[04-30-2002 - 17:10:09] Client at 192.168.1.81: URL length exceeded maximu
m allowed. Request will be rejected. Site Instance='1', Raw URL="/jj/LogLong
UrlsTest 2 1000_aa

aa’

URLSCAN Input Format From-Entity
Syntax

<from-entity> ::= URLSCAN |

<filename> [, <filename> ... |

The <from-entity> specified in queries using the URLSCAN input format
is either the "URLSCAN" keyword or a comma-separated list of paths of
URLScan log files.

When the "URLSCAN" keyword is used, the URLSCAN input format
extracts the URLScan log configuration parameters from the UrlScan.ini
configuration file and parses all the URLScan log files currently available
in the URLScan log file directory.

Filenames can include wildcards (e.g. "URLSCAN\UrlScan*.log").

Examples:
FROM URLSCAN\UrlScanl.log, URLSCAN\UrlScan2.log
FROM \\MYMACHINE\URLSCAN\UrlScan*.log

FROM URLSCAN

© 2004 Microsoft Corporation. All rights reserved.

URLSCAN Input Format Fields

The input records generated by the URLSCAN input format contain the

following fields:

Name Type Description

LogFilename | STRING Full path of the log file containing
this entry

LogRow INTEGER Line in the log file containing this
entry

Date TIMESTAMP | The date and time at which the
request was served (local time)

ClientIP STRING The IP address of the client that
made the request

Comment STRING The filter that matched the request
and the action executed by
URLScan

SiteInstance INTEGER The IIS virtual site instance number
that served the request

Url STRING The HTTP request url

© 2004 Microsoft Corporation. All rights reserved.

URLSCAN Input Format Parameters

The URLSCAN input format supports the following parameters:

iCheckpoint
Values: checkpoint filename
Default: not specified

Description: Load and save checkpoint information to this file.

Details: This parameter enables the "Incremental Parsing"
feature that allows sequential executions of the same
guery to only process new log entries that have been
logged since the last execution. For more information,
see Parsing Input Incrementally.

Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc

© 2004 Microsoft Corporation. All rights reserved.

URLSCAN Input Format Examples

Clients sending suspicious requests

Retrieve the DNS names of the clients that sent requests matching the
URLScan filters:

LogParser "SELECT DISTINCT REVERSEDNS(ClientIP) FROM URLSCA
N"

© 2004 Microsoft Corporation. All rights reserved.

W3C Input Format

The W3C input format parses log files in the W3C Extended Log File
Format.

Examples of log files in this format include:

e Personal Firewall log files

e Microsoft Internet Security and Acceleration Server (ISA Server) log
files

e Windows Media Services log files
e Exchange Tracking log files
e Simple Mail Transfer Protocol (SMTP) log files

Log files in this format begin with some informative headers ("directives"),
the most important of which is the "#Fields" directive, describing which
fields are logged at which position in a log row.

After the directives, the log entries follow. Each log entry is a space-
separated list of field values.

The following example shows a portion of a Personal Firewall W3C
Extended Log File Format log file:

#Verson: 1.0
#Software: Microsoft Internet Connection Firewall
#TlmE"lN(?ltﬁl iffer than the IISW3C input format, the W3C input
oées not support log files with varyi gETf number and/or. position
bl

at
#Fleldéf Hf«@e {HRGACHORDHHE PASTg P SECrRaTEslstnpeut size tepflags tc
psyn téqueekriepwal tergy fipe inusprode¢hfied identically as

declared by the first "#Fields" directive encountered in the first log

file.
2004-09-03 07:11:54 OPEN UDP 192.168.1.103 192.168.1.108 1026 53 - - - -

004 9- q % :54 OPEN TCP 192.168.1.101 192.168.1.108 3005 80 - - - -
nt yntax

é%gf % -03 07:11:55 OPEN TCP 192.168.1.103 192.168.1.108 1104 139 - - - -
arameters

EXAMNIES)3 07:11:55 OPEN TCP 192.168.1.104 192.168.1.108 1103 445 - - - -

See also:

ISW3C Input Format
W3C Output Format

© 2004 Microsoft Corporation. All rights reserved.

W3C Input Format From-Entity Syntax

<from-entity> ::= <filename> [, <filename> ...] |
http://<url> |
STDIN

The <from-entity> specified in queries using the W3C input format is
either:

e A comma-separated list of paths of W3C Extended log files, eventually
including wildcards;

e The URL of a file in the W3C Extended Log File Format;

e The "STDIN" keyword, which specifies that the input data is available
from the input stream (commonly used when piping command
executions).

Examples:

FROM LogFiles1\pf*.log, LogFiles2\pf*.log, \MyServer\LoggingShare\pf*.lo
8
FROM http://www.microsoft.adatum.com/MyLogFiles/example.log

type mylog.log | LogParser "SELECT * FROM STDIN" -i:W3C

© 2004 Microsoft Corporation. All rights reserved.

W3C Input Format Fields

The structure of the input records generated by the W3C input format is
determined at run time, depending on the input data.

The first two input record fields are fixed, and they are described in the
following table:

Name Type Description

LogFilename | STRING Full path of the log file containing this
entry

RowNumber | INTEGER | Line in the log file containing this entry

Following these two fields are all the fields declared by the first "#Fields"
directive encountered in the input data.

The data type of each field extracted from the input data is determined by
examining the first n log entries, where n is the value specified for the
diLines parameter, in the following way:

If all the non-empty field values in the first n log entries are formatted
as decimal numbers, then the field is assumed to be of the REAL type.

If all the non-empty field values in the first n log entries are formatted
as integer numbers, then the field is assumed to be of the INTEGER
type.

If all the non-empty field values in the first n log entries are formatted
as timestamps in the "yyyy-MM-dd hh:mm:ss" format, then the field is
assumed to be of the TIMESTAMP type. In particular, if a field value is
formatted as a date in the "yyyy-MM-dd" format, then the value is
returned as a date-only TIMESTAMP value. If the field value is
formatted as a time of day in the "hh:mm:ss" format, then the value is
returned as a time-only TIMESTAMP value.

Otherwise, the field is assumed to be of the STRING type.

Empty values, represented by a hyphen (-) in the W3C Extended Log File
Format, are returned as NULL values.

As an example, the following help command displays the input record
structure determined by the W3C input format when parsing the specified
Personal Firewall log file:

C:\>LogParser -h -i:W3C pfirewall.log

The structure displayed by this help command will be:

Fields:

(o) 200 ISR ITEST S0t Al anis (88 el
action (S) Protoco IC-1p -1p

src-port (I) dst-port (I) size (I) tcpflags (S)
tcpsyn (1) tcpack (I) tcpwin (I) icmptype (S)
icmpcode (S) info (S)

W3C Input Format Parameters

The W3C input format supports the following parameters:

iCodepage
Values: codepage ID (number)
Default: 0

Description: Codepage of the log file.

Details: 0 is the system codepage, -1 is UNICODE.
Example: _jCodepage:1245
dtLines
Values: number of lines (number)
Default: 10
Description: Number of lines examined to determine field types at
run time.
Details: This parameter specifies the number of initial log lines

that the W3C input format examines to determine the
data type of the input record fields.

If the value is zero, all fields will be assumed to be of
the STRING data type.

For more information on how field data types are
determined, see W3C Input Format Fields.

Example: -dtLines:50
dQuotes
Values: ON | OFF

Default: OFF

Description:

Details:

Example:

separator

Values:

Default:

Description:

Details:

Example:

Specifies that string values in the log are double-
guoted.

Some W3C log files enclose string values within
double-quote characters ().

-dQuotes:ON

a single character | space | tab | auto
auto
Separator character between fields.

Different W3C log files can use different separator
characters between the fields; for example, Exchange
Tracking log files use tab characters, while Personal
Firewall log files use space characters.

The "auto" value instructs the W3C input format to
detect automatically the separator character used in the
input log(s).

-separator:tab

© 2004 Microsoft Corporation. All rights reserved.

W3C Input Format Examples

Clients Sending Dropped Packets

Return all the clients that sent a packet dropped by Personal Firewall:

LogParser "SELECT DISTINCT src-ip FROM pfirewall.log WHERE action="'
DROP™ -i:-W3C

© 2004 Microsoft Corporation. All rights reserved.

XML Input Format

The XML input format parses XML text files.

XML files (also called "XML documents") are hierarchies of nodes. Nodes
can include other nodes, and each node can have a node value and a set
of attributes.

For example, the following XML node has a value (in this instance,
"Rome"), and a single attribute ("Population”, whose value is, in this
example, "3350000"):

<CITY Population='3350000">Rome</CITY>

XML documents can be parsed in different ways, and the XML input
format offers three distinct usages whose applicability depends on the
structure of the documents, and on the structure of the information that
needs to be extracted.

[#Note: The XML input format requires the Microsoft XML parser
(MSXML) to be installed on the computer running Log Parser.

From-Entity Syntax
Fields
Parameters

Examples

See also:
XML Output Format

© 2004 Microsoft Corporation. All rights reserved.

XML Input Format From-Entity Syntax

<from- <document>[#<XPath>] [, <document>[#<XPath>]

entity> v]

<document> <filename> | <url>

The <from-entity> specified in queries using the XML input format is a
comma-separated list of paths or URLs of XML files.

Filenames or URLs can be optionally followed by an XPath that specifies
which node(s) in the document are to be considered root node(s).

Filenames can include wildcards (e.g. "LogFiles\doc*.xml").

Examples:
FROM Document1.xml, http://blogs.msdn.com/MainFeed.aspx

FROM Document1.xml#/rss/channel/item, http://blogs.msdn.com/MainFeed.a
spx#/rss/channel/item

© 2004 Microsoft Corporation. All rights reserved.

XML Input Format Fields

The structure of the input records generated by the XML input format is
determined at run time, depending on the document being parsed, and
on the values specified for the input format parameters.

The XML input format parses an XML document by "visiting" the nodes in
the document, and the input record fields are the attributes and values
of the nodes that are visited by the XML input format.

By default, nodes are visited from the document root, that is, the single
top-level node in an XML document that contains all the other nodes in
the document.

However, by supplying an XPath in either the from-entity or as a value of
the rootXPath parameter, users can specify that the document nodes are
to be visited starting from the node(s) selected by the XPath.

Before parsing the XML document and return the input records, the XML
input format initially examines the nodes found along the paths from the
root node or from the node(s) selected by the user-supplied root XPath to
the first n leaf nodes, where n is the value of the dtNodes parameter.
During this phase, the XML input format creates a representation of the
tree structure ("schema" tree) by merging nodes with the same name and
hierarchical position. When completed, the schema tree contains one
single instance of each node type, and each node contains an attribute
set equal to the union of all the attributes found in the nodes of that type.
At this moment, an input record field is created for each attribute
belonging to a node type and for each node type having a value.

Once the schema tree has been determined and the input record
structure has been created, the XML input format parses the XML
document and generates input records, visiting the document nodes and
extracting their values and attributes.

The XML input format implements three different algorithms to decide
how document nodes will be visited. The three algorithms represent three
different ways in which the information contained in an XML document
can be retrieved, and the choice of an algorithm depends on the structure
of the document and on the structure of the information that needs to be

extracted.

Since different algorithms visit different sets of nodes, the choice of an
algorithm affects which fields (i.e. which node attributes and values) will
be contained in the input records.

Users can specify the algorithm to use through the fMode (“field mode")
parameter, which can be set to "Branch”, "Tree", or "Node".

Branch Field Mode

In this mode, input records contain the attributes and values of the nodes
that are visited along all the possible paths from the document root or
from the node(s) selected by the user-supplied root XPath to all the leaf
nodes.

This mode is appropriate for documents in which each hierarchical level
consists of nodes of the same type, as depicted in the following diagram:

(RooT)
® @ ®»

® ®EE ®

In this structure, the root node contains only nodes of type "A", and each
"A" node contains only nodes of type "B".

For example, the root of the following XML document contains
"Continent" nodes only; each "Continent" node contains "Country" nodes
only, and each "Country" node contains "City" nodes only:

<?xml version="1.0" ?>
<World>
This document can be thought of as containing six "entries"”, the leaf

"City onates, @thiHeacniesmationnaseairied with each entry being
contained in the nodes that are encountered along a path from the root

nodedeuifteyl€RuRag®lame="USA">

In this@¥anmanibedirforimation about "Roma” includes the attributes and
valuegftipesityranedeo(theitiRoma” node value and the "3350000" value
of its/(Baptation” attribute), the attributes and value of its parent

"Country” node (the "ltalia" value of the "CountryName" attribute), and the
attrivlces @y Coany Nhiteganddarent "Continent” node (the "Europe”
valueoftire V@ontimentizitge" attribute).

<City> Toronto </City>
The<gcbemag tree extracted from this example document specifies that the
document root node contains nodes of the "Continent" type, and that
nodeoafithigtype have a "ContinentName" attribute. "Continent" nodes,
in turn, contain nodes of the "Country" type, with a "CountryName"
atteguigindnatlynERdntrymesdasopentain nodes of the "City" type, and
nodes of this type have a value, and a "Population” attribute.
The<inputigaosdatgenarrtettafier the schema tree would thus contain
four telds PépaniingrtBesnelo Cruptiydiame, "City", and "Population”.

Wheﬁq}gﬁg“ﬁq@“%%ﬁbtﬁkfield mode, the XML input format generates an
inptft/?é’(’:l&tayﬁ)r each path from the document root node or from the
nodfés) selected by the user-supplied root XPath to all the leaf nodes.
Ead P&Cord contains the attributes and values of the nodes
egcounte>red along the path:

/World

(RooT) (RooT)
® ® ® ® ® ®
® ®&E®E & ® ®@®E® @&

Record 1 Record 2

(RooT) (RooT)
®m @& ® A ® ®
® EE® & ® ®&®® ®

Record 3 Record 4

(RoOT)
» ® O

® ®EE E©

Record 5

If a node does not specify an attribute that is contained in the attribute
superset of the corresponding schema tree node, or if a node does not
supply a value while the corresponding schema tree node specifies that
at least one node of that type has a value, then the corresponding field
value is set to NULL.

For example, parsing the above example XML document in "Branch" field
mode would produce the following output:

ContinentName CountryName City Population

North America USA Redmond -

North America USA San Francisco -
TregihigldeMed€anada Vancouver -

IRV B ChpaPRERord SX6AIN the attributes and values of the nodes
fGURARR subtrdléd th&aMAude alIO988 of distinct types.

Europe Italia Milano -
This mode is appropriate for documents in which a specific hierarchical
level contains child nodes all having different types, as depicted in the
following diagram:

In this structure, the root node contains only nodes of type "A"; each "A"
node however contains nodes all having different types (a single "B"

node, a single "C" node, and a single "D" node).

For example, the root of the following XML document contains "Message"
nodes; each "Message" node contains a single "From" node, a single
"To" node, and a single "Body" node:

<?xml version="1.0" ?>

<Messages>
This document can be thought of as containing two "entries", the

"Mesrageeulieeesowits therdarmegion associated with each entry
beirgreantameasdineat/thenmeodes in the subtree and in the nodes that are
encaugteveshal®rgra-path from the root node to the subtree root.

In thig ®Kabey$heinsormptap-about a message includes the attributes
and/valsgof all the nodes included in the subtree ("From", "To", and
"Body" nodes), and the attributes and values of all the nodes

enepridtaredRlerY tha-psthdramading glecument root to the subtree root
("Date'oattrivseiaf theroMessage” node).
<To> Gabriele </To>

ThQW@H@ﬁ%@p@ﬁJ@@ this example document specifies that the
dogmggﬁgpt node contains nodes of the "Message" type, and that

nodes of this type have a "Date" attribute. "Message" nodes, in turn,
cgm@ggggggggs of the "From", "To", and "Body" types, each type having a
node value.

The input records generated after the schema tree would thus contain
four fields: "Date", "From", "To", and "Body".

When using the "Tree" field mode, the XML input format generates an
input record for each subtree that includes all nodes of distinct types.
Each input record contains the attributes and values of the nodes found
in the subtrees, together with the attributes and values of the nodes
encountered along the paths from the document root node or from the
node(s) selected by the user-supplied root XPath to the subtree root
nodes:

Record 1 Record 2

For example, parsing the above example XML document in "Tree" field
mode would produce the following output:

Date From To Body

2004-05-28 12:24:05 Gabriele Monica How's going?

whitd-Bardthirat Rk milMaBldmEabRrie Fdme f138Ks i a subtree is found

containing multiple instances of the same node type, that subtree is
"replicated" combinatorially to generate all the possible subtrees
containing one single instance of each node type.

The following diagram depicts an XML document in which a subtree
contains multiple instances of the same node type:

In this diagram, the "A" node contains one instance of the "B" node type,
two instances of the "C" node type, and two instances of the "D" note
type.

For example, the "Message" node in the following XML document
contains a single "From" node, two "To" nodes, and two "Body" nodes:

<?xml version="1.0" ?>

<Messages>
This document can be thought of as a "compact" representation of four

diffévensape Sxagea004-05-28T12:24:05'>
o FrofeNGdbrfulietes/ e in the "ENU" language;
o FrdfTEHOHAR to "Jeff" in the "ITA” language:

J F<TO>"§§ e'<{TQ? ; " in.the "ENU" :
L%Qy anré%ae eQEﬁ{?\éeRelgieV\? reacgt’.} J%\%gge,

* Fromdiahileisgeloriaeve’ g i vilanauaassy>
</Message

>
When using the "Tree" field mode, these "Message" subtrees are
r%&tsede%gmbinatorially to generate all the possible subtrees containing
one smﬁl% Instance of each of the "From", "To", and "Body" node types:

Record 3 Record 4

For example, parsing the above example XML document in "Tree" field
mode would produce the following output:

Date From To Body Language

2004-05-28 12:24:05 Gabriele Jeff Review ready? ENU

2004-05-28 12:24:05 Gabriele Jeff E' pronta la review? ITA
Node-Bietd Morleos Gabriele Steve Review ready? ~ ENU

I 99 BRotlt L indtiP rebahiie oriexim oriyoma 1aitekiss Hil values of the

document root node or of the node(s) selected by the user-supplied root

XPath.

This mode is appropriate for situations in which the information to be
retrieved is associated with a specific node type only.

For example, the relevant information in the document depicted by the
following diagram might be associated with "B" node types only:

When using the "Node" field mode, the XML input format generates an
input record for each root node, either the document root or the node(s)
selected by the user-supplied root XPath. Each input record contains the
attributes and values of that node only:

Record 1 Record 2

For example, parsing the previous "Cities" example XML document in
"Node" field mode specifying "/World/Continent/Country” as the root
XPath would produce the following output:

CountryName

USA
(_Zanada
Figleh Types

The data type of each field extracted from the schema tree is determined

in the following way:

If all the non-empty field values (node values or attribute values)
encountered while constructing the schema tree are formatted as
decimal numbers, then the field is assumed to be of the REAL type.

If all the non-empty field values (node values or attribute values)
encountered while constructing the schema tree are formatted as
integer numbers, then the field is assumed to be of the INTEGER type.
If all the non-empty field values (node values or attribute values)
encountered while constructing the schema tree are formatted as
timestamps in the format specified by the iTsFormat parameter, then
the field is assumed to be of the TIMESTAMP type.

Otherwise, the field is assumed to be of the STRING type.

As an example, the following help command displays the input record
structure determined by the XML input format when parsing the previous
"Cities" example XML document:

C:\>LogParser -h -i: XML Cities.xml

The structure displayed by this help command will be:

Fields:

Continentha 63 viicr8SBH CEIBS Stion A fights FoBERAY! ()

XML Input Format Parameters

The XML input format supports the following parameters:

rootXPath

Values:

Default:

Description:

Details:

Example:

fMode

Values:

Default:

Description:

Details:

XPath query
not specified

XPath query of document node(s) to be considered root
node(s).

The node(s) selected by the specified XPath replace
the document root node as the starting node(s) from
which all the document nodes are visited.

[#Note: This parameter is ignored for XML
documents whose filename or URL has been
specified together with an optional XPath in the

from-entity.

[#Note: The XPath specified for this parameter is
case-sensitive. If an XPath is specified containing
non-existing node or attribute names, or containing
node or attribute names with the wrong
capitalization, no root node is selected and an error
is returned.

-rootXPath:/World/Continent/Country

Branch | Tree | Node | Auto
Auto
Algorithm to use when visiting the document nodes.

For information on the "Branch"”, "Tree", and "Node"
visit algorithms see XML Input Format Fields.
The "Auto” value instructs the XML input format to

Example:

iTsFormat

Values:

Default:

Description:

Details:

Example:

dtNodes

Values:

Default:

Description:

Details:

Example:

determine automatically the best algorithm after
inspecting the structure of the input document(s).

-fMode:Tree

timestamp format
yyyy-MM-dd?hh:mm:ss
Format of timestamp values in the document.

This parameter specifies the date and/or time format
used in the document being parsed. Values of nodes or
attributes matching the specified format are returned as
values of the TIMESTAMP data type. For more
information on date and time formats, see Timestamp
Format Specifiers.

-iTsFormat:"MMM dd, yyyy"

number of leaf nodes (number)
-1

Number of leaf nodes to be examined when
determining the document structure.

In order to determine the input document structure, the
XML input format initially examines the nodes found
along the paths from the root node or from the node(s)
selected by the user-supplied root XPath to the first n
leaf nodes, where n is the value specified for this
parameter.

Specifying -1 causes the XML input format to examine
all the nodes in the input document.

-dtNodes:50

fNames

Values:

Default:

Description:

Details:

Example:

Compact | XPath
Compact
Field naming schema.

Specifying "Compact" causes the XML input format to
create field names using the names of the
corresponding nodes or attributes. If a field name is not
unique, a sequential number is appended to the name
to render it unique.

Example field names in the "Compact" mode are:

ContinentName

CountryName
Sprgifying "XPath" causes the XML input format to

crepigdigld names using the XPath queries for the
corresponding nodes or attributes.
Example field names in the "XPath" mode are:

/World/Continent/@ContinentName
/World/Continent/Country/@CountryName
orld/ t1 ent/ Country/City
onar onﬁnent/Country/Clty/@Populatlon

© 2004 Microsoft Corporation. All rights reserved.

XML Input Format Examples

MSDN BLogs Channel Titles

Display titles of current channels on MSDN BLogs:

LogParser "SELECT title FROM http://blogs.msdn.com/MainFeed.aspx#/rss/c
hannel/item" -i: XML -fMode:Tree

Check Names from MBSA report
Display the checks in an MBSA report:

LogParser "SELECT Name FROM MY MACHINE.xml#/SecScan/Check" -fM
ode:Node

© 2004 Microsoft Corporation. All rights reserved.

Output Formats

Generic Text File Output Formats

NAT: formats output records as readable tabulated columns.
CSV: formats output records as comma-separated values text.

TSV: formats output records as tab-separated or space-separated
values text.

XML: formats output records as XML documents.

W3C: formats output records in the W3C Extended Log File Format.
TPL: formats output records following user-defined templates.

1IS: formats output records in the Microsoft IIS Log File Format.

Special-purpose Output Formats

SQL: uploads output records to a table in a SQL database.
SYSLOG: sends output records to a Syslog server.

DATAGRID: displays output records in a graphical user interface.
CHART: creates image files containing charts.

© 2004 Microsoft Corporation. All rights reserved.

CHART Output Format

The CHART output format creates image files containing charts of the
output record field values.

When using the CHART output format, output record fields must be of the
INTEGER or REAL data types, in order for their values to be plotted in a
chart.

The first field only can optionally be of the STRING or TIMESTAMP data
types, in which case its values are used as the names of the categories
on the X-axis of the chart.

The following example command creates a chart plotting the number of
events logged in the System Event Log by each event source. The first
field in the output records of this query is the name of the event source,
and the CHART output format will use its values to label the categories
along the X-axis of the chart. The second field in the output records is the
number of events, which will be plotted on the chart:

LogParser "SELECT SourceName, COUNT(*) AS [Number of Events] INTO
Events.gif FROM System GROUP BY SourceName ORDER BY [Number of
TheetgsubingChayovlh DK diker e dationvingaexample:

Number of Events

Mumber of Everts

Wia32Time
EwertLog

Dn=Api

Service Contral Manager
Afi Hotkey Poller
METLOGOM
Remaotebocess

Charts can also contain multiple series plotted from the values of different
output record fields.

For example, the following command calculates the average, minimum,
and maximum number of bytes served for each web page type:

LogParser "SELECT TO_UPPERCASE(EXTRACT_EXTENSION(cs-uri-ste

m)) AS PageType, MIN(sc-bytes) AS Minimum, AVG(sc-bytes) AS Average,
TRRANRGHYgeehAS WithipalnliKer e BeHeWiRgHEXAREBM <1> GROUP BY

PageType ORDER BY Average ASC" -0:CHART -chartType:Column3D

1:3000

12500 4

10000 4

7500 1+ @ Minimuim

W Average

5000 O Maximum

2300 4

ASP
DLL
EXE
CE5
GIF
HThL
ole]]
JPG

The CHART output format requires the Microsoft Office Web
Components, which are generally installed with Microsoft Office 2000,
Microsoft Office XP, and Microsoft Office 2003.

In order to use the CHART output format, users must have a valid license
of Microsoft Office for the computer executing the Log Parser query.

Configuration Scripts
Into-Entity Syntax
Parameters

Examples

© 2004 Microsoft Corporation. All rights reserved.

CHART Output Format Configuration
Scripts

Charts created by the CHART output format can be customized by user-
provided scripts in the JScript or VBScript languages that are executed
by the CHART output format prior to generating the output image file.

These scripts can refer to two global objects which expose methods and
properties that can be used to modify parameters such as the chart
colors, the chart fonts, and many other attributes.

The two global objects available to configuration scripts are instances of
the chartSpace and chart objects of the Microsoft Office Web
Components ChartSpace object model, and they are named "chartSpace”
and "chart", respectively.

For information on the Office Web Components ChartSpace object
model, and on the chartSpace and chart objects, visit the MSDN
ChartSpace Object Model documentation.

The following example script in the JScript language manipulates the
chartSpace and chart objects to add a caption to the chart and to set the
background color to the transparent color:

// Add a caption

chartSpace.HasChartSpaceTitle = true;
ContigprRéanhsarsptreralusespmith-the SIRART Bping fomeathy';
speaifypagditinmsphcasiadabig. §he gonfig parameter, as shown in the
fellQyBi@@naplSpaceTitle.Position = chartSpace.Constants.chTitlePositionB

ottom,

LogParser "SELECT SourceName, COUNT(*) AS [Number of Events] INTO

EvehangeftAR bk Systemd CalRDUP BY SourceName ORDER BY [Number of

Thesigsldinea@ NasraMiiaRkdiieiReate\TnRey BB IMPSaript. js

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/owcvba10/html/octocChartWorkspaceObjectModel.asp?frame=true

Number of Events

gaon

GO0

4000

2000

F;J’

Number of Event=

W32Time

Service Contral Manager
Afi Hotkey Poller
METLOGOM
Remaotedocess

Ge e raed by Log Parser 22

© 2004 Microsoft Corporation. All rights reserved.

CHART Output Format Into-Entity Syntax

<into-entity> 1= <filename>

The <into-entity> specified in queries using the CHART output format is
the path to the output image file.

Examples:
INTO MyChart.gif

INTO W\COMPUTERO1\Charts\Chart02.jpg

© 2004 Microsoft Corporation. All rights reserved.

CHART Output Format Parameters

The CHART output format supports the following parameters:

chartType

Values:

Default:

Description:

Details:

Example:

categories

Values:

Default:

Description:

Details:

name of chart type
Line
Chart type.

The set of available chart types depends on the version «
the Microsoft Office Web Components installed on the lo
computer.

For a list of the available chart types, type the following I
command from the command-line shell:

LogParser -h -0:CHART

-chartType:Pie3D

ON | OFF | AUTO
AUTO
Display category labels along the category axis.

When this parameter is set to "ON", the CHART output
format uses the values of the first output record field to
display category labels along the category axis.

Setting this parameter to "AUTO" causes the CHART ou
format to display category labels only when the first outp
record field is of the STRING or TIMESTAMP data types
Setting this parameter to "OFF" prevents the CHART oul
format from displaying category labels.

Example:

-categories:ON

maxCategoryLabels

Values:

Default:

Description:

Details:

Example:

legend

Values:

Default:

Description:

Details:

Example:

number
0

Maximum number of category labels displayed along the
category axis.

This parameter is used to limit the number of category
labels displayed along the category axis, in order to prev
clutter in the output image.

When this parameter is set to "0", the CHART output fori
calculates the maximum number of category labels to
display as a function of the dimensions of the target ima
Setting this parameter to "-1" causes the number of
category labels displayed along the category axis to be
unlimited.

-maxCategoryLabels:20

ON | OFF | AUTO
AUTO
Display a legend describing the series.

When this parameter is set to "ON", the CHART output
format displays a legend on the chart that describes the
series being plotted.

Setting this parameter to "AUTO" causes the CHART ou
format to display a legend only when 2 or more series ar
being plotted.

Setting this parameter to "OFF" prevents the CHART oul
format from displaying a legend.

values

Values:

Default:

Description:

Details:

Example:

groupSize
Values:

Default:

Description:

Details:

Example:

fileType

Values:

Default:

Description:

-legend:ON

ON | OFF | AUTO
AUTO
Display value labels.

When this parameter is set to "ON", the CHART output
format displays a label along each value being plotted,
showing its numeric value.

Setting this parameter to "AUTO" causes the CHART ou
format to display value labels depending on the type of
chart selected.

Setting this parameter to "OFF" prevents the CHART oul
format from displaying value labels.

-values:ON

widthxheight
640x480
Dimensions of the target image, in pixels.

This parameter specifies the width and height of the targ
image, in pixels.

-groupSize:400x260

GIF | JPG | AUTO
AUTO

Format of the output image file.

Details:

Example:

config

Values:

Default:

Description:

Details:

Example:

chartTitle

Values:

Default:

Description:

Details:

Example:

oITsFormat

Values:

When this parameter is set to "AUTO", the CHART outpt
format determines the output image file format by inspec
the extension of the file specified for the into-entity.

-fileType:JPG

comma-separated list of file paths
not specified
Configuration scripts to use for chart customization.

This parameter specifies a comma-separated list of scrif
in the JScript or VBScript languages that can be used to
further customize the chart generated by the CHART oult
format.

For more information on configuration scripts, see CHAF
Output Format Configuration Scripts.

config:C:\MyScripts\MyConfig1.js,C:\MyScripts\MyConfig2

chart title
Auto
Title of the chart.

When this parameter is set to "Auto" and the output reco
contain 1 series only, the CHART output format uses the
series' field name as the title of the chart.

-chartTitle:"Bytes Per Page"

timestamp format

Default:

Description:

Details:

Example:

view
Values:

Default:

Description:

Details:

Example:

yyyy-MM-dd hh:mm:ss
Format of timestamp values in the category labels.

This parameter specifies the date and/or time format to t
when formatting values of the TIMESTAMP data type to
generate category labels.

For more information on date and time formats, see
Timestamp Format Specifiers.

-oTsFormat:"MMM dd, yyyy"

ON | OFF
OFF
Display chart image.

Setting this parameter to "ON" causes the CHART outpu
format to open a window displaying the generated outpu
image file.

-view:ON

© 2004 Microsoft Corporation. All rights reserved.

CHART Output Format Examples

Top 20 URL's

Create a chart containing the TOP 20 URL's in the
"www.margiestravel.com" web site:

LogParser "SELECT TOP 20 cs-uri-stem, COUNT(*) AS Hits INTO MyChart
.gif FROM <www.margiestravel.com> GROUP BY cs-uri-stem ORDER BY
Hits DESC" -chartType:Column3D -groupSize:1024x768

Bytes per Page Type

Create a pie chart with the distribution of bytes served for each page
type:

LogParser "SELECT TO_UPPERCASE(EXTRACT_EXTENSION(cs-uri-ste
m)) AS PageType, MUL(PROPSUM(sc-bytes),100. 0) AS Bytes INTO Pie.gif

FROM <1> G ZF Lo S o an oAl ILrr sDrEggr" sgartType:Pie
Exploded -char €S per page type —ca e

CSV Output Format

The CSV output format writes output records as comma-separated
values text.

The output of the CSV output format consists of multiple lines of text, one
line for each output record.

Each line contains the values of the output record fields, separated by a
comma (,) character. Depending on the value of the oDQuotes
parameter, field values can be enclosed within double-quote characters
().

If enabled through the headers parameter, the first line in the output is a
"header" that contains the names of the fields.

The following sample shows the output of the CSV output format when
using the default values for its parameters:

EventID,SourceName,EventType, TimeGenerated
6009,EventLog,4,2004-04-18 18:48:04
Filessoreateronithen O3 ®ugpus:frmat are suitable to be consumed by
ajergssawiberophappigaiiang Peihends (B5M:ext files, including
MigrossdtExceoandiogngiiespreesisheatgampligations.
7035,Service Control Manager,4,2004-04-18 18:48:27
7036,Service Control Manager,4,2004-04-18 18:48:27
IriERE, Sty iSy Ti@Krol Manager,4,2004-04-18 18:48:27
Payam&igfge Control Manager,4,2004-04-18 18:48:27
Ex@amplessice Control Manager,4,2004-04-18 18:48:27
7035,Service Control Manager,4,2004-04-18 18:48:27
7036,Service Control Manager,4,2004-04-18 18:48:27
S%(@g,égyice Control Manager,4,2004-04-18 18:48:27
7036,Service Control Manager,4,2004-04-18 18:48:27
TREOMRLEFOFRRY] Manager,4,2004-04-18 18:48:27
CHMd RRE:EOIB o] Manager,4,2004-04-18 18:48:27

7035, Servicg Cmyvrp hWkapagss 620Poradid 8 Wﬂ%ﬁs reserved.
7036,Service Control Manager,4,2004-04-18 18:51:26

7036,Service Control Manager,4,2004-04-18 18:51:29

6006,EventLog,4,2004-04-18 18:51:37

CSV Output Format Into-Entity Syntax

<into-entity> 1= <filename> |
STDOUT

The <into-entity> specified in queries using the CSV output format is
either:

e Afilename;

e The "STDOUT" keyword, which specifies that the output data is to be
written to the output stream (the console output).

The default into-entity for queries that do not specify an INTO clause is
"STDOUT".

The CSV output format supports the multiplex feature, which can be
enabled by specifying ** wildcards in the into-entity filename. This feature
allows output records to be written to different files depending on the
values of their fields. For more information on the multiplex feature, see
Multiplexing Output Records.

Examples:
INTO report.csv
INTO W\COMPUTERO1\Reports\report.csv
INTO STDOUT

INTO Reports_*_*\Report*.csv

© 2004 Microsoft Corporation. All rights reserved.

CSV Output Format Parameters

The CSV output format supports the following parameters:

headers

Values:

Default:

Description:

Details:

Example:

oDQuotes

Values:

Default:

Description:

Details:

ON | OFF | AUTO
AUTO
Write a header line containing the field names.

This parameter controls the CSV header line that is
output at the beginning of each file.
The possible values for this parameter are:

e ON: always write the header;
e OFF: never write the header;

e AUTO: write the header only when not appending to
an existing file.

-headers:OFF

ON | OFF | AUTO
AUTO
Enclose field values within double-quote characters (*).

This parameter controls whether or not the CSV output
format should enclose field values within double-quote
characters (").

The possible values for this parameter are:

e ON: always enclose field values within double-quote
characters;

e OFF: never enclose field values within double-quote
characters;

Example:

tabs

Values:

Default:

Description:

Details:

Example:

oITsFormat

Values:

Default:

Description:

Details:

Example:

e AUTO: enclose within double-quote characters only
those field values that contain comma (,) characters.

-0DQuotes:ON

ON | OFF
OFF
Write a tab character after each comma separator.

Setting this parameter to "ON" causes the CSV output
format to write a tab character after each comma field
separator, in order to improve readability of the CSV
output.

Note that using tabs between field values might
generate output that is not compatible with certain
spreadsheet applications.

-tabs:ON

timestamp format
yyyy-MM-dd hh:mm:ss
Format of timestamp values in the output CSV data.

This parameter specifies the date and/or time format to
use when formatting values of the TIMESTAMP data
type.

For more information on date and time formats, see
Timestamp Format Specifiers.

-oTsFormat:"MMM dd, yyyy"

oCodepage
Values:

Default:

Description:

Details:

Example:

fileMode

Values:

Default:

Description:

Details:

Example:

codepage ID (number)

0

Codepage of the output text.

0 is the system codepage, -1 is UNICODE.
-oCodepage:1245

0|1]|2
1
Action to perform when an output file already exists.

This parameter controls the behavior of the CSV output
format when the into-entity specifies directly or
indirectly through the "multiplex" feature the name of a
file that already exists.

The possible values for this parameter are:

e 0: existing files are appended with the output;
o 1: existing files are overwritten with the output;
e 2: existing files are left intact, discarding the output.

-fileMode:0

© 2004 Microsoft Corporation. All rights reserved.

CSV Output Format Examples

File Information

Create a CSV file containing information on the files contained in the
specified directory:

LogParser "SELECT Path, Name, Size, Attributes INTO Files.csv FROM C:\T
est*.*" -i:FS -0:CSV -recurse:0

Security Events

Retrieve the 10 latest events from the Security event log and write their
information to a CSV file for each event ID:

LogParser "SELECT TOP 10 EventID, EventTypeName, Message INTO Even
ts_*.csv FROM Security" -i:EVT -direction:BW -0:CSV

© 2004 Microsoft Corporation. All rights reserved.

DATAGRID Output Format

The DATAGRID output format displays output records in a graphical user
interface.

Output records are displayed in a scrollable grid that allows users to
browse through the query results. Individual output records can be
selected and copied to the clipboard as CSV-formatted data that can be
pasted into another application.

The following screenshot shows the DATAGRID window displaying the
results of a query:

EE Log Parser =] B
Edit “iew Format
EventlD | TimelGenerated | EventCateqomyM ame =
4156 2004-02-02 09:49:.45 Eventz
4156 2004-02-02 09:49:.45 Eventz
100 2004-02-02 05:50.05 MHone
1500 2004-02-02 05:54:.58 MHone
11406 2004-02-02 09:55:37 MHone
11708 2004-02-02 09:55:38 MHone
1mv 2004-02-02 05:56:00 Setup
1000 2004-02-02 09:56:07 MHone -
1 | »
Auto Besize | [Elmse | All rowwz | Mext 10 rows I

Controls in the DATAGRID user interface allow users to resize the
window and the individual output record columns, and to change the
properties of the font used to display the data.

Into-Entity Syntax
Parameters

Examples

See also:
NAT Output Format

© 2004 Microsoft Corporation. All rights reserved.

DATAGRID Output Format Into-Entity
Syntax

<into-entity> := DATAGRID

Queries using the DATAGRID output format are not required to specify an
INTO clause. If an INTO clause is used, its <into-entity> must be
specified as "DATAGRID".

Using the "DATAGRID" keyword in the <into-entity> allows Log Parser to
select the DATAGRID output format automatically when no output format
Is explicitly specified.

Examples:

INTO DATAGRID

© 2004 Microsoft Corporation. All rights reserved.

DATAGRID Output Format Parameters

The DATAGRID output format supports the following parameters:

rtp
Values:
Default:
Description:

Details:

Example:

autoScroll

Values:
Default:
Description:

Details:

number of rows
10
Rows to print before pausing.

The DATAGRID output format displays output records
in batches made up of a number of rows equal to the
value specified for this parameter. Once a batch of rows
has been displayed, the "Next n rows" button is
enabled, and the DATAGRID output format waits for the
user to press the button before displaying the next
batch of rows.

Specifying "-1" for this parameter disables batching
altogether.

-rtp:-1

ON | OFF
ON
Automatically scroll window when new rows are output.

When this parameter is set to "ON", the DATAGRID
window scrolls down automatically whenever new
output records are displayed, in order to position the
display grid over the latest output records.

Setting this parameter to "OFF" causes the grid position
to remain unaltered when new output records are
displayed.

This parameter is also accessible from the View menu

in the DATAGRID window.

Example: -autoScroll: OFF

© 2004 Microsoft Corporation. All rights reserved.

DATAGRID Output Format Examples

Users' Job Titles

Retrieve users' job title breakdown from Active Directory:

LogParser "SELECT title, MUL(PROPCOUNT(*), 100.0) AS Percentage INT
O DATAGRID FROM 'LDAP://MyUsername:MyPassword@mydomain/CN=
Users,DC=mydomain,DC=com' WHERE title IS NOT NULL GROUP BY titl
e ORDER BY Percentage DESC" -objClass:User

Registry Type Distribution

Display the distribution of registry value types:

LogParser "SELECT ValueType, COUNT(*) FROM \HKLM GROUP BY Val
ueType" -0:DATAGRID

© 2004 Microsoft Corporation. All rights reserved.

IS Output Format

The IS output format writes output records in the Microsoft 1IS Log File
Format.

The following example shows a sample output file generated by the IIS
output format:

192.168.1.1, -, 11/18/2003, 0:28:33, -, -, 192.168.1.100, 15, 194, 345, 304, -, G
ET, /Default.htm, -,
Intep HBkty Synter18/2003, 0:28:33, -, -, 192.168.1.100, 0, 139, 323, 304, -, G
ISss, -,
Exempigs .1, -, 11/18/2003, 0:28:33, -, -, 192.168.1.100, 0, 139, 334, 304, -, G
ET, /images/address.gif, -,
192.168.1.1, -, 11/18/2003, 0:28:33, -, -, 192.168.1.100, 31, 2285, 273, 200, -,
@cg@—bin/counts.exe, test=npa&style;=14,
II192.168.1.2, -, 11/18/2003, 0:28:42, -, -, 192.168.1.100, 1828, 666, 442, 200, -,
IS PUL SRR s him, -,

192.168.1.2, -, 11718/2003, 0:28:42, -, -, 192.168.1.100, 47, 2018, 463, 200, -,
GET, /home@u280dtdvlicrosoft Corporation. All rights reserved.

192.168.1.2, -, 11/18/2003, 0:28:42, -, -, 192.168.1.100, 62, 8903, 308, 200, -,
GET, /home/rules.htm, -,

IIS Output Format Into-Entity Syntax

<into-entity> 1= <filename> |
STDOUT

The <into-entity> specified in queries using the 1S output format is either:

e Afilename;

e The "STDOUT" keyword, which specifies that the output data is to be
written to the output stream (the console output).

The default into-entity for queries that do not specify an INTO clause is
"STDOUT".

The 1IS output format supports the multiplex feature, which can be
enabled by specifying ** wildcards in the into-entity filename. This feature
allows output records to be written to different files depending on the
values of their fields. For more information on the multiplex feature, see
Multiplexing Output Records.

Examples:
INTO inetsvl.log
INTO W\COMPUTERO1\Logs\in040528.1og
INTO STDOUT

INTO Logs_*_*\in*.log

© 2004 Microsoft Corporation. All rights reserved.

IIS Output Format Parameters

The 1IS output format supports the following parameters:

rtp
Values:

Default:

Description:

Details:

Example:

oCodepage
Values:

Default:

Description:

Details:

Example:

fileMode

Values:

Default:

number of rows
10
Rows to print before pausing.

When writing to STDOUT, the IS output format displays
output records in batches made up of a number of rows
equal to the value specified for this parameter. Once a
batch of rows has been displayed, the IIS output format
prompts the user to press a key to display the next
batch of rows.

Specifying "-1" for this parameter disables batching
altogether.

-rtp:-1

codepage ID (number)

0

Codepage of the output text.

0 is the system codepage, -1 is UNICODE.
-oCodepage:1245

0]1]2
1

Description: Action to perform when an output file already exists.

Details: This parameter controls the behavior of the 1S output
format when the into-entity specifies directly or
indirectly through the "multiplex" feature the name of a
file that already exists.
The possible values for this parameter are:

e O: existing files are appended with the output;
e 1: existing files are overwritten with the output;
e 2: existing files are left intact, discarding the output.

Example: -fileMode:0

© 2004 Microsoft Corporation. All rights reserved.

IIS Output Format Examples

W3C to IIS Conversion
Convert the specified W3C log file to an IIS log file:

LogParser "SELECT c-ip, cs-username, TO_DATE(TO_LOCALTIME(TO_TI
MESTAMP(date, time))), TO_TIME(TO_LOCALTIME(TO_TIMESTAMP(d
ate, time))), s-sitename, s-computername, s-ip, time-taken, sc-bytes, cs-bytes, s

g FROM exigndddagyidbs¥¥eEsmhbiion. Al rights reserved.

NAT Output Format

The NAT output format writes output records in a readable tabulated
column format.

The primary intended use of the NAT output format is to display output
records to the console output.

This is the default output format selected by Log Parser when a
command does not explicitly specify an output format and the query does
not specify an INTO clause.

The following example shows a sample output generated by the NAT
output format:

TimeGenerated SourceName EventID

2004-04-18 18:48:04 EventLog 6009
I%Oé—%\}%%ﬁtgcm EventLog 6005
pA104- 04218 18:48:27 Service Control Manager 7024
040418 18:48:27 Service Control Manager 7035

20u4l 4-18 18:48:27 Service Control Manager 7035

2004-04-18 18:48:27 Service Control Manager 7036

2004-04-18 18:48:27 Service Control Manager 7036
Se®alee:18 18:48:27 Service Control Manager 7035
DRPASEES Riflid FSRhvAge Control Manager 7036

2004-04-18 18:48:27 Service Control Manager 7035

© 2004 Microsoft Corporation. All rights reserved.

NAT Output Format Into-Entity Syntax

<into-entity> 1= <filename> |
STDOUT

The <into-entity> specified in queries using the NAT output format is
either:

e Afilename;

e The "STDOUT" keyword, which specifies that the output data is to be
written to the output stream (the console output).

The default into-entity for queries that do not specify an INTO clause is
"STDOUT".

The NAT output format supports the multiplex feature, which can be
enabled by specifying ** wildcards in the into-entity filename. This feature
allows output records to be written to different files depending on the
values of their fields. For more information on the multiplex feature, see
Multiplexing Output Records.

Examples:
INTO report.txt
INTO \COMPUTERO1\Reports\report.txt
INTO STDOUT

INTO Reports_*_*\Report*.txt

© 2004 Microsoft Corporation. All rights reserved.

NAT Output Format Parameters

The NAT output format supports the following parameters:

rtp
Values:

Default:

Description:

Details:

Example:

headers

Values:

Default:

Description:

Details:

Example:

spaceCol

Values:

Default:

number of rows
10
Rows to print before pausing.

When writing to STDOUT, the NAT output format
displays output records in batches made up of a
number of rows equal to the value specified for this
parameter. Once a batch of rows has been displayed,
the NAT output format prompts the user to press a key
to display the next batch of rows.

Specifying "-1" for this parameter disables batching
altogether.

-rtp:-1

ON | OFF
ON
Print column headers.

This parameter enables or disables the column headers
displayed before each batch of output rows.

-headers:OFF

ON | OFF
ON

Description:

Details:

Example:

rAlign
Values:

Default:

Description:

Details:

Example:

colSep

Values:

Default:

Description:

Details:

Example:

Space columns uniformly.

When this parameter is set to "ON", the NAT output
format pads values with enough space characters to
create columns having a uniform width within each
batch of output rows.

When this parameter is set to "OFF", the NAT output
format displays unaligned values separated by a single
space character.

-spaceCol:OFF

ON | OFF
OFF
Align columns to the right.

When this parameter is set to "ON", the NAT output
format aligns values to the right side of each column.
When this parameter is set to "OFF", values are aligned
to the left side of each column.

-rAlign:ON

any string
single space character
Column separator.

This parameter specifies the separator to be used
between the columns.

m"mon

-colSep:",

direct

Values:

Default:

Description:

Details:

Example:

oCodepage

Values:

Default:

Description:

Details:

Example:

fileMode

Values:

Default:

Description:

Details:

ON | OFF
OFF
Enable "direct mode".

When "direct mode" is enabled, the NAT output format
displays output records as they are made available,
disabling the internal buffering mechanism used for
column spacing and output row batching.

In "direct mode" columns are not uniformly spaced,
headers are printed only at the beginning of the output,
and output records are displayed without interruption.

-direct:ON

codepage ID (number)

0

Codepage of the output text.

0 is the system codepage, -1 is UNICODE.
-oCodepage:1245

0|1]|2
1
Action to perform when an output file already exists.

This parameter controls the behavior of the NAT output
format when the into-entity specifies directly or
indirectly through the "multiplex"” feature the name of a
file that already exists.

The possible values for this parameter are:

¢ 0: existing files are appended with the output;

o 1: existing files are overwritten with the output;

e 2: existing files are left intact, discarding the output.

Example: -fileMode:0

© 2004 Microsoft Corporation. All rights reserved.

NAT Output Format Examples

Ten Largest Files

Print the 10 largest files on the C: drive:

LogParser "SELECT TOP 10 * FROM C:*.* ORDER BY Size DESC" -i:FS

© 2004 Microsoft Corporation. All rights reserved.

SQL Output Format

The SQL output format uploads output records to a table in a SQL
database.

This output format can upload records to a table in any ODBC-compliant
database, including Microsoft SQL Server and Microsoft Access
databases.

When the target table does not already exist in the specified database,
the SQL output format creates a table with as many columns as the
number of fields in the SELECT clause of the query. In this case, the SQL
type of each column is determined by the data type of the corresponding
output record field, as described in Column Type Mappings.

If the target table already exists, the number of columns in the table must
match exactly the number of fields in the SELECT clause of the query,
and the SQL type of each column must be compatible with the data type
of the output record field in the same position, as described in Column

Type Mappings.

Column Type Mappings
Into-Entity Syntax
Parameters

Examples

© 2004 Microsoft Corporation. All rights reserved.

SQL Output Format Column Type
Mappings

The following table shows the mappings between the data types of the
guery output record fields and the SQL types of the columns in the target
table.

The column labeled "New Table" shows the SQL types declared for the
table columns when the SQL output format creates the table.

The column labeled "Existing Table" shows the SQL types that are
compatible with the corresponding Log Parser data type when the SQL
output format uploads records to an existing table.

Log Parser Data Type New Table Existing Table

INTEGER int int, bigint, smallint, tinyint, bit!
REAL real real, decimal, float

STRING varchar(nz) varchar(n), nvarchar(n), char
TIMESTAMP datetime datetime, smalldatetime, date, time
NULL varchar any type

Notes:

(1): when uploading to a field of the bit type, the target value is set to
true when the INTEGER value is different than zero, and to false
when the value is NULL or zero.

(2): the maximum length of new fields of the varchar type can be
controlled through the maxStrFieldLen parameter.

© 2004 Microsoft Corporation. All rights reserved.

SQL Output Format Into-Entity Syntax

<into-entity> ::= <table_name>

The <into-entity> specified in queries using the SQL output format is the
name of the table where the results are to be uploaded to.

If the specified table does not already exist, the SQL output format
creates a table with as many columns as the number of fields in the
SELECT clause of the query. In this case, the SQL type of each column
is determined by the data type of the corresponding output record field,
as described in Column Type Mappings.

If the specified table already exists, the number of columns in the table
must match exactly the number of fields in the SELECT clause of the
guery, and the SQL type of each column must be compatible with the
data type of the output record field in the same position, as described in
Column Type Mappings.

Examples:

INTO ReportTable

© 2004 Microsoft Corporation. All rights reserved.

SQL Output Format Parameters

The SQL output format supports the following parameters:

server
Values: server name
Default:
Description: Name of the database server.
Details: Setting a value for the "oConnString" parameter causes
this parameter to be ignored.
Example: -server:SQLREPORTS
database
Values: database name
Default: not specified
Description: Name of the target database.
Details: Setting a value for the "oConnString" parameter causes
this parameter to be ignored.
Example: _database:LogParserLogs
driver
Values: ODBC driver name
Default: SQL Server
Description: Name of the ODBC driver to use.
Details: Setting a value for the "oConnString" parameter causes
this parameter to be ignored.
Example: -driver:"Microsoft Access Driver (*.mdb)"

dsn

Values:

Default:

Description:

Details:

Example:

username

Values:

Default:

Description:

Details:

Example:

password

Values:

Default:

DSN name
not specified
Name of the DSN to use.

This parameter can be used to specify a Data Source
Name that contains information about the connection to
the target database.

Setting a value for the "oConnString" parameter causes
this parameter to be ignored.

-dsn:"My DSN"

SQL username
not specified
Database username.

When this parameter is not specified, the SQL output
format uses the current user's credentials through
Windows Integrated Authentication.
Setting a value for the "oConnString" parameter causes
this parameter to be ignored.

#Note: For security reasons, values specified for this

parameter are not persisted when using the Log
Parser command-line Defaults Override Mode.

-username:MyDBUser

SQL password

not specified

Description:

Details:

Example:

oConnString

Values:

Default:

Description:

Details:

Example:

createTable

Values:

Default:

Database user password.

Setting a value for the "oConnString" parameter causes
this parameter to be ignored.
#Note: For security reasons, values specified for this

parameter are not persisted when using the Log
Parser command-line Defaults Override Mode.

-password:MyPassword

connection string
not specified

ODBC connection string containing the parameters for tt
connection to the database.

Setting a value for this parameter causes the SQL outpu

format to ignore any value set for the "server", "database
"driver”, "dsn", "username”, and "password" parameters.
The SQL output format does not enforce any syntax on
the connection string. The value specified for this
parameter is handed directly to the ODBC subsystem

when initiating the connection to the database.

#Note: For security reasons, values specified for this
parameter that contain a username and/or a password
are not persisted when using the Log Parser
command-line Defaults Override Mode.

-oConnString:"Driver={SQL
Server};Server=MyServer;db=pubs;uid=sa;pwd=MyPasswort

ON | OFF
OFF

Description:

Details:

Example:

clearTable

Values:

Default:

Description:

Details:

Example:

fixColNames

Values:

Default:

Description:

Details:

Create a new table when the table specified in the into-
entity does not exist.

When this parameter is set to "ON" and the target table
does not already exist in the specified database, the SQI
output format creates a table with as many columns as
the number of fields in the SELECT clause of the query.
this case, the SQL type of each column is determined by
the data type of the corresponding output record field, as
described in Column Type Mappings.

When this parameter is set to "OFF" and the target table
does not already exist in the specified database, the SQ!I
output format generates an error, causing the currently
executing query to abort.

-createTable:ON

ON | OFF
OFF
Clear existing table before inserting new rows.

Setting this parameter to "ON" causes the SQL output
format to delete existing rows in the target table before
inserting the query output records.

-clearTable:ON

ON | OFF
ON

Automatically remove invalid characters from column
names when creating the target table.

When the "createTable" parameter is set to "ON" and the

target table does not already exist in the specified
database, the SQL output format creates the table namir
its columns with the names of the query output record
fields. When this parameter is set to "ON", the SQL outp!
format processes the field names and removes or
substitutes those characters that are considered illegal b
most databases, including space characters, parenthesy
characters, and dash (-) characters.

Example: -fixColNames:OFF

maxStrFieldLen

Values: number of characters

Default: 255

Description: Maximum number of characters declared for string
columns when creating a table.

Details: When the "createTable" parameter is set to "ON" and the
target table does not already exist in the specified
database, the SQL output format creates the table
determining the SQL type of each column from the data
type of the corresponding output record field, as
described in Column Type Mappings. Columns
corresponding to output record fields of the STRING dat:
type are declared as SQL strings having a maximum
length equal to the value specified for this parameter.

Example: -maxStrFieldLen:511

transactionRowCount
Values: number of rows
Default: 0

Description:

Number of rows enclosed in a SQL transaction.

Details:

When this parameter is set to "0", the SQL output format
works in "auto commit" mode, where each single output
record uploaded to the target table is automatically
committed.

When this parameter is set to "-1", the SQL output forma
initiates a SQL transaction when uploading the first outpi
record, and commits or rollbacks the transaction after
uploading the last record or when an error causes the
guery execution to abort.

Setting this parameter to any other value causes the SQ
output format to create multiple SQL transactions, each
containing a number of records equal to the specified
value.

Example: -transactionRowCount:200

ignoreMinWarns

Values: ON | OFF

Default: ON

Description: Ignore minor warnings.

Details: When this parameter is set to "ON", the SQL output
format ignores minor warnings that might occur while
uploading records to the target table, including data
truncation warnings and invalid escape character errors.
When this parameter is set to "OFF", all minor warnings
are reported as warnings when the query execution is
complete.

Example: -ignoreMinWarns:OFF

ignoreldCols
Values: ON | OFF
Default: OFF

Description: Ignore "identity" columns in the target table.

Details: When this parameter is set to "OFF" and the target table
specified in the into-entity already exists, the SQL output
format expects a 1-to-1 match between the columns in tt
target table and the fields in the query output records,
regardless of whether or not any column in the target
table is an "identity" column. In this case, the values of tt
output record fields will be uploaded to all the columns ir
the table, including eventual "identity" columns.

When this parameter is set to "ON" and the target table
specified in the into-entity already exists, the SQL output
format ignores "identity" columns in the target table,
checking for a 1-to-1 match only between the non-identit
columns and the fields in the query output records, and
uploading output record field values to non-identity
columns only.

Example: -ignoreldCols:ON

© 2004 Microsoft Corporation. All rights reserved.

SQL Output Format Examples

Upload Registry Values to a SQL table

Upload a portion of the registry into a newly-created SQL table:

LogParser "SELECT Path, KeyName, ValuleName INTO MyTable FROM \H
KLM" -i:REG -0:SQL -server:MyServer -database:MyDatabase -driver:"SQL
Server" -username: TestSQLUser -password: TestSQLPassword -createTable:O
N

Upload IIS W3C log files to an Access database

Upload selected fields of an [IS W3C log file into an existing table in
Microsoft Access:

LogParser "SELECT TO_TIMESTAMP(date, time), c-ip, cs-uri-stem, sc-statu
s INTO MyTable FROM extendl.log" -i:IISW3C -0:SQL -oConnString:"Drive

r=(Microsofy AR AY YD RB g Uid=My Us
ername;Pwd=

SYSLOG Output Format

The SYSLOG output format can be used to send messages to a Syslog
server, to create text files containing Syslog messages, and to send
Syslog messages to users.

The SYSLOG output format generates messages formatted according to
the Syslog specifications described in RFC 3164,

Syslog messages consist of six parts, and the SYSLOG output format
provides parameters that allow users to assign constants or output record
fields to the different parts of a message.

The following example shows Syslog messages containing information
gathered from the System event log:

<46>Apr 18 18:48:04 MYSERVER-M LogParser:EventLog: The Event log se
rvice was started.
TheoSX LG Suip? avsH AR/ PRHSPa oA Edivit) RMSVEeg T
SReVEY gshfigudation fdeeyedi ah deseriisesatiee rules used to forward
Mepsayas]® i) Sy MDOSTRVER - I UsErerser:EventLog: The Event log se
rvice was stopped.
<134>Apr 18 19:20:23 MYSERVER-M LogParser:Ati HotKey Poller: The ser
Message sirugiure
Cardignpatign &498807 MY SERVER-M LogParser:EventLog: The Event log se
MGk RERY spyiax
Pagareters 19:20:47 MYSERVER-M LogParser:Service Control Manager: T
El%@ﬂ@i@ﬁony service entered the runmng state.

rvice was st@ﬁ_ﬂm Microsoft Cornorat/on All rlahts reserved

<134>Apr 19 07:01:57 MYSERVER-M LogParser:Ati HotKey Poller: The ser
vice was started.

<46>Apr 19 07:01:41 MYSERVER-M LogParser:EventLog: The Event log se
rvice was started.

<30>Apr 19 07:02:07 MYSERVER-M LogParser:Service Control Manager: T
he Telephony service entered the running state.

SYSLOG Output Format Message
Structure

The SYSLOG output format generates messages formatted according to
the Syslog specifications described in RFC 3164.

Syslog messages consist of six parts, and the SYSLOG output format
provides parameters that allow users to assign constants or output record
fields to the different parts of a message.

A sample Syslog message is formatted as follows:

<14>Nov 11 16:05:33 MYSERVER-M LogParser:The service was started.

This message consists of the following parts:

e PRI <14>

The PRI part is bound with angle brackets and contains a decimal
Priority value, which in turn is built as follows:

e The first 7 bits contain the facility value, describing the origin of the
message;

e The last 3 bits contain the severity value, describing the importance
of the message.

e HEADER: Nov 11 16:05:33 MYSERVER-M
The HEADER part consists of the following two elements:

e Atimestamp value, indicating the local time at which the message
was generated;

¢ A hostname value, indicating the host on which the message
originated.

e MSG: LogParser:The service was started.

The MSG part consists of the following two elements:

e Atag value, indicating the name of the program or process that
generated the message, followed by a colon character (":");

e A content value, containing the details of the message.

Facility

The facility value is represented by the upper 7 bits of the priority value in
the PRI part of the message, and it describes the application or operating
system component that originated the message. For a detailed list of the
numeric values designated for well-known operating system components,
refer to RFC 3164.

The following table shows the names assigned to the most common
facility values:

Numerical Value Facility Name
0 kern

1 user

2 mail

3 daemon
4 auth

5 mark

6 lpr

7 news

8 uucp

9 cron

10 auth?
11 ftp

12 ntp

13 logaudit
14 logalert
15 clock
16 localO
17 locall
18 local2
19 local3
20 local4
21 local5
22 local6
23 local7

In the previous example message, the priority value "14" indicates a
facility value of 1 ("user").

The

facility parameter of the SYSLOG output format allows users to control
the value of the facility field in the output messages.
This parameter can be set to any of the following values:

e A numeric value, such as "1" or "23";
e The name of a facility value, such as "user" or "local7";

e The name or the 1-based index of an output record field prepended
with a dollar character ("$"), such as "$MyFacility" or "$2". The
specified output record field must be of either the INTEGER data type -
in which case its values are assumed to be numerical facility values, or
of the STRING data type - in which case its values are assumed to be
facility names among those described in the previous table.

When an output record field value does not contain a recognized
facility name or it contains a facility value greater than 23, the SYSLOG
output format uses a default facility value of 1 ("user").

The following example query returns event messages from the System
event log together with a "MyFacility” field that maps each event source
to a Syslog facility name:

SELECT CASE SourceName
WHEN 'EventLog' THEN 'mark'’
This queREsars &g iexenies] Widhtaerfatiemingd &anvmand, which specifies
that theviagiltypyaiueREeaghroutput message is to be retrieved from the
"My Fapitify! N KprBeiesoTd fieidauth’
WHEN 'NETLOGON' THEN 'logaudit’

Log P WSHIFN € AppQretips fepup Y BHER: 'tocaf7Myconfig.conf -facility:$MyFa

cility ELSE "local0'
The Sysioa B Rsgegestgenerated by this command will look like the
follovingsamples:

INTO SYSLOG

EREIMN\BystEdn1 8:17:25 MYSERVER-M LogParser:The service was started.

<46>Nov 13 18:17:46 MYSERVER-M LogParser:The Event log service was s
Theapper 7 bits of the priority field of each of these messages contain
thgyfaciiy vahe pravided Syrhe RMyRagirsauipetTaeprdtickdrvice ente

red the running state.

<46>Nov 13 18:17:46 MYSERVER-M LogParser:The Event log service was s

topped.
SeVert oy 13 18:17:46 MYSERVER-M LogParser:The service was started.
THREGIN @ity V81 E: #ordpYSsddR by thedbavear T hitd vénh g senige alaes
ifatiedPR/ part of the message, and it describes the importance of the
nie¥sdyey Fod 8: etk dHYIESM bibYIof o8 atifferEmt Velepmny teavies ety
fiedd thefemmRREE8164.

ThécfaNowiliy taiie 4h BINSSThR VAR 8% lcogiareeryl hedigamd dg they didfermest

sty values:
134>Nov 13-18:17:46 MYSERVER-M) LogParser:The service was started.

Naygnevical YVabie7:46SevesERNameV 1.ogParser:The Event log service was s

aié:)e:l.\lov 13 18:17:46°M8ERVER-M ILogParser:The Telephony service ente
ied the running state et

2 crit

3 err

4 warning

5 notice

6 info

7 debug

For example, a priority value of "14" indicates a severity value of 6
("info™).

The

severity parameter of the SYSLOG output format allows users to control
the value of the severity field in the output messages.
This parameter can be set to any of the following values:

e A numeric value, such as "1" or "7";
e The name of a severity value, such as "alert" or "debug";

e The name or the 1-based index of an output record field prepended
with a dollar character ("$"), such as "$MySeverity" or "$2". The
specified output record field must be of either the INTEGER data type -
in which case its values are assumed to be numerical severity values,
or of the STRING data type - in which case its values are assumed to
be severity names among those described in the previous table.

When an output record field value does not contain a recognized

severity name or it contains a severity value greater than 7, the
SYSLOG output format uses a default severity value of 6 ("info").

The following example query returns event messages from the System
event log together with a "MySeverity" field that maps each event type to
a Syslog severity name:

SELECT CASE EventTypeName
WHEN 'Error event' THEN 'err’
This quenEsambenexeevisad TR hevfeawing command, which specifies
that theysgvRniyfyalueioh eash oUmN mgssage is to be retrieved from the
"MySeneRY iptdtput record field:
END AS MySeverity,

LogMessagde:MyQuery.sql -0:SYSLOG -conf:Myconfig.conf -severity:$MyS

ENrfdyS Y SLOG
ThrAYsHgEessages generated by this command will look like the
following examples:

<14>Nov 13 21:42:15 MYSERVER-M LogParser:The Event log service was s
tarted.
Thellowr B3its 4 isevpwsHBN KL 0f EGebagfelTERe MiaFRaseB i@ Berv
theegenarita@ivELavided i the eivbrIswerxkomsput record field.
<14>Nov 13 21:42:15 MYSERVER-M LogParser:The Terminal Services servi
ce was successfully sent a start control.
<12>Nov 13 21:42:15 MYSERVER-M LogParser:A request to suspend power
TW&EﬂIEWby winlogon.exe.
TREANesthindl fldd MMIYRERYHERIdd . ogRersenilfie i teatingssaagisevaias S
otigipetted, and it is usually formatted as follows:

Nov 11 16:05:33

If the first field in the query output records is of the

TIMESTAMP data type, the SYSLOG output format will use the field
values to populate the timestamp field in the output messages.

On the other hand, if the first field is not of the TIMESTAMP data type,
the SYSLOG output format will use the current local time.

The following example query returns event messages from the System

event log together with the date and time at which the events have been
generated:

SELECT TimeGenerated,
Message
Therdysipgimessages generated by this query will look like the following
EKRIDPESy stem
WHERE SourceName = 'EventLog'
<14>Apr 18 18:48:04 MYSERVER-M LogParser:The Event log service was st
arted.
<14>Apr 18 18:51:37 MYSERVER-M LogParser:The Event log service was st
opped.
Hostnapae s 19:20:07 MYSERVER-M LogParser:Microsoft (R) Windows (R)
THE haSMhRfEVRESP At dBUIRe &ssAldi®h which the message
Oﬁbﬁaﬁga 18 19:20:07 MYSERVER-M LogParser:The Event log service was st
arted.
ThE4>Apr 18 19:33:17 MYSERVER-M LogParser:The Event log service was st

Q—f‘@gﬁl@%ﬁ@ﬂﬁr W@%ﬁyﬁ%%‘&&ﬂ’ﬁ LIONNAIRURYR RN (R)

%’EHOE alve-obihg 195 € output messages.

i%%iﬁ%ft?f 684 &%E&@Eﬁ%ﬁ%é@ﬂ?‘é’ﬂ“ﬁﬂ%%&r 10% service was st
o .A&e "localhost" keyword, specifying that the field should be populated
AithAPE 1967 SOMPMSIITANER-M LogParser: The Event log service was st

eoppgeneric string indicating the desired host name, such as
"MYCOMPUTER";

e The name or the 1-based index of an output record field prepended
with a dollar character ("$"), such as "$MyHostname" or "$2". The
specified output record field must be of the STRING data type, and its
values will be used to populate the hostname field in the output
messages.

When no value is specified for the "hostName" parameter, the hostname
field is automatically populated with the local computer name.

The following example query returns event messages from the System
event log of different computers, together with the computer name on
which the event originated:

SELECT Message,

ComputerName
TINgguenstape executed with the following command, which specifies

thattha hesirsrRe figlo108 pash, QMY S ERETISROR 54 he YIS KR/ fTRIDB\S
thgtegcond output record field:

LogParser file:MyQuery.sql -0:SYSLOG -conf:Myconfig.conf -hostName:$2

The Syslog messages generated by this command will look like the
following examples:

<14>Nov 13 22:07:11 MYSERVERO03 LogParser:Microsoft (R) Windows (R)
5.01. 2600 Service Pack 1 Uniprocessor Free.
<14>Nov 13 22:07:11 MYSERVERO03 LogParser:The Event log service was st
arted.
Tags>Nov 13 22:07:11 MYSERVERO1 LogParser:The Terminal Services servi
THEWAR RS TNEN RS RERRIGOMhe program or process that
gé?‘ﬁlﬁ QY]fﬁ@%h%ééd\gYSERVEROZ LogParser:The Network Connections s
ervice was successfully sent a start control.

THRE4>Nov 13 22:07:11 MYSERVERO1 LogParser:The Terminal Services servi

ce entered the running state.
L & PRANSRY OL HPFRYS E‘B%Qﬂé&?%ﬁ@ﬁ%%éﬂ?&’én%%%{%ﬁ? s
C%thfcoelé Fe%%gﬁeqhmﬁzn gtgj[g!d In the oUtput messages.
T 1%91%@‘1%@5 %é}nllf éﬁ(@%@&tgfﬁgﬂl@@p%g %@B%Discovery Servic
* cADGRERESUiRAdRGIgRIIag the drsiteréag field value, such as
<IMYR&P@HS%:07:11 MYSERVERO03 LogParser:The SSDP Discovery Servic
* e The itamesautiesifiidpeehindsexrotammoutput record field prepended
with a dollar character ("$"), such as "$MyProgram" or "$2". The
specified output record field must be of the STRING data type, and its

values will be used to populate the tag field in the output messages.

When no value is specified for the "processName" parameter, the tag
field is automatically populated with "LogParser:".

Content

The content field contains the details of the message, and its value is
built by the SYSLOG output format by concatenating the values of all the

output record fields, excluding those fields that are used for the values of
the

facility, severity, timestamp, hostname, and tag message fields.

The following example query returns information from the System event
log:

SELECT SourceName,
EventTypeName,
The Sy&ipCessgdRmeenerated by this query will look like the following
exampliesage
INTO SYSLOG
EROMByiteR:27:17 MYSERVER-M LogParser:EventLog Information even
t None Microsoft (R) Windows (R) 5.01. 2600 Service Pack 1 Uniprocessor Fr

ee.)
© 4 Mic /o All rights r. serv d.
<14>Nov 1 27 - arser-rven ntormation even

t None The Event log service was started.

<14>Nov 13 22:27:17 MYSERVER-M LogParser:Service Control Manager Er
ror event None The Computer Browser service terminated with service-specifi
c error 2550 (Ox9F6).

<14>Nov 13 22:27:17 MYSERVER-M LogParser:EventLog Information even
t None The Event log service was stopped.

<14>Nov 13 22:27:17 MYSERVER-M LogParser:Ati HotKey Poller Informat
ion event None The service was started.

<14>Nov 13 22:27:17 MYSERVER-M LogParser:EventLog Information even
t None Microsoft (R) Windows (R) 5.01. 2600 Service Pack 1 Uniprocessor Fr
ee.

<14>Nov 13 22:27:17 MYSERVER-M LogParser:EventLog Information even
t None The Event log service was started.

<14>Nov 13 22:27:17 MYSERVER-M LogParser:EventLog Information even
t None The Event log service was stopped.

SYSLOG Output Format Configuration
Files

Messages generated by the SYSLOG output format can be forwarded to
any of the following three possible destinations:

e A Syslog server;
o Atextfile;
e A user, through the Windows alerter and messenger services.

The conf parameter of the SYSLOG output format allows users to specify
a configuration file resembling the standard "syslog.conf" file that
describes the rules used to forward messages to different destinations.
These rules associate values of the facility and severity message fields
with specific Syslog servers, text files, or users.

Each line in a configuration file is either a comment beginning with the
pound character ("#"), or a configuration entry.
Configuration entries have the following syntax:

<selector> <action>

<config_entry>

<selector> = <facilities>.<severity>
<facilities> = <facility>[,<facility> ...]
<facility> ::= kern | user | mail | daemon | auth | mark | Ipr | news

| uucp | cron | auth2 | ftp | ntp | logaudit | logalert |
clock | localO | locall | local2 | local3 | local4 |
local5 | local6 | local7 | *

<severity> ::= emerg | alert | crit | err | warning | notice | info |
debug
<action> = <send_server> |

<send_file> |

<send_user>

<send_server> = @<server_name>[:<port>]
<send_file> = <filepath> |

STDOUT
<send_user> :»= <user_name>

A configuration entry is composed of a selector and an action, separated
by spaces or tab characters.

A selector is a comma-separated list of facility names followed by a dot
(".") and followed by a severity name. The special "*" wildcard means "all
facilities".

Messages whose facility is included in the selector's set of facilities and
whose severity is greater than or equal to the selector's severity are
forwarded to the destination specified in the action.

An action can specify any of the following destinations:

e The name or address of a Syslog server, preceded by an at character
("@") and optionally followed by a port number; when no port number
is specified, the SYSLOG output format will use port 514;

e The path of an output filename;

e The STDOUT keyword, which specifies that the output data is to be
written to the output stream (the console output);

e The name of a user.

The following example shows a SYSLOG output format configuration file:

#
Sample SYSLOG output format configuration file

This configuration file defines the following rules:

eallessages from@heY ARV ERNMity with a severity greater than or equal
*tdetarg" are forwaideQt'the "MYSERVERO1" Syslog server on port
*5idy C:\MyLogs\Infos.txt

o kédheresgnges hawhygldSsdRverity greater than or equal to "debug" are
|disifldyedliritteegcongd!e2oLbdult;100:515
¢ All messages having a severity greater than or equal to "info" are
written to the "C:\MyLogs\Infos.txt" text file;

e Messages from the "kern" facility with a severity greater than or equal
to "emerg" are sent to the "MYUSER" user;

e Messages from the "local0" or "locall” facilities with a severity greater
than or equal to "emerg" are forwarded to the Syslog server with
address 192.168.1.100 on port 515.

Messages matching more than one rule are forwarded to all the specified
destinations. For example, with the above configuration file, messages
having a severity greater than or equal to "debug" are both displayed in
the console output and written to the "C:\MyLogs\Infos.txt" text file.

Actions can also be specified in the into-entity of the query.
These actions are processed as rules having a selector that matches all
messages, with a ™" facility value and an "emerg" severity value.

© 2004 Microsoft Corporation. All rights reserved.

SYSLOG Output Format Into-Entity
Syntax

<into-entity> ::= <action> [, <action> ...] |
SYSLOG
<action> = <send_server> |

<send_file> |

<send_user>

<send_server> @<server_name>[:<port>]

<send_file> = <filepath> |
STDOUT

<send_user> <user_name>

The <into-entity> specified in queries using the SYSLOG output format is
either the "SYSLOG" keyword, which specifies that messages should be
forwarded according to the rules in the configuration file specified for the
conf parameter, or a comma-separated list of actions, where each action
IS either:

e The name or address of a Syslog server, preceded by an at character
("@") and optionally followed by a port number; when no port number
is specified, the SYSLOG output format will use port 514;

e The path of an output filename;

e The STDOUT keyword, which specifies that the output data is to be
written to the output stream (the console output);

e The name of a user, to which Syslog messages will be sent through the
Windows alerter and messenger services.

When a configuration file has been specified through the "conf"
parameter, queries are allowed to not provide an INTO clause at all; if an
INTO clause is used, its into-entity must be specified as "SYSLOG".

When a configuration file has not been specified, the INTO clause is
mandatory and it must contain at least one valid action.

Actions specified in the into-entity are processed as configuration rules
having a selector that matches all messages, with a "*" facility value and
an "emerg" severity value.

Examples:
INTO SYSLOG
INTO @MYSERVERO02:515
INTO W\COMPUTERO1\Reports\report.txt

INTO MYUSER

INTO @MYSERVERO1, C:\MyLogs\Infos.txt, STDOUT, MYUSER, @192.1
68.1.100:515

© 2004 Microsoft Corporation. All rights reserved.

SYSLOG Output Format Parameters

The SYSLOG output format supports the following parameters:

conf

Values:

Default:

Description:

Details:

Example:

severity

Values:

Default:

Description:

Details:

file path
not specified
Syslog configuration file.

This parameter specifies the path to a configuration file
that describes the rules used to forward messages to
different destinations.

When this parameter is used, queries are allowed to not
provide an INTO clause at all; if an INTO clause is
used, its into-entity must be specified as "SYSLOG".
For more information on configuration files, see
SYSLOG Output Format Configuration Files.

-conf:C:\mysyslog.conf

<numeric_value> | <name> | $<field_name> |
$<field_index>

info
Message severity level.

This parameter controls the value of the severity field of
the output messages.
The possible values for this parameter are:

e A numeric value, such as "1" or "7";

e The name of a severity value, such as "alert" or
"debug";
e The name or the 1-based index of an output record

Examples:

facility

Values:

Default:
Description:

Details:

field prepended with a dollar character ("$"), such as
"$MySeverity" or "$2". The specified output record
field must be of either the INTEGER data type - in
which case its values are assumed to be numerical
severity values, or of the STRING data type - in
which case its values are assumed to be severity
names among those described in the previous table.
When an output record field value does not contain a
recognized severity name or it contains a severity
value greater than 7, the SYSLOG output format
uses a default severity value of 6 ("info").

For more information on the severity field of the output
messages, see SYSLOG Output Format Message
Structure.

-severity:1
-severity:alert
-severity:$MySeverity
-severity:$2

<numeric_value> | <name> | $<field_name> |
$<field_index>

user
Message facility.

This parameter controls the value of the facility field of

the output messages.

The possible values for this parameter are:

e A numeric value, such as "1" or "23";

e The name of a facility value, such as "user" or
"local7";

e The name or the 1-based index of an output record
field prepended with a dollar character ("$"), such as

Examples:

oIsFormat

Values:
Default:
Description:

Details:

Example:

"$MyFacility" or "$2". The specified output record field
must be of either the INTEGER data type - in which
case its values are assumed to be numerical facility
values, or of the STRING data type - in which case its
values are assumed to be facility names among
those described in the previous table.

When an output record field value does not contain a
recognized facility name or it contains a facility value
greater than 23, the SYSLOG output format uses a
default facility value of 1 ("user").

For more information on the facility field of the output
messages, see SYSLOG Output Format Message
Structure.

-facility:23
-facility:local7
-facility:$MyFacility
-facility:$2

timestamp format
MMM dp hh:mm:ss
Format of the timestamp field.

This parameter specifies the format of the timestamp
field of the output messages.

For more information on date and time formats, see
Timestamp Format Specifiers.

For more information on the timestamp field of the
output messages, see SYSLOG Output Format
Message Structure.

-oTsFormat:"MMM dd, yyyy"

hostName

Values:

Default:

Description:

Details:

Examples:

processName

Values:

Default:

Description:

Details:

localhost | <name> | $<field_name> | $<field_index>
localhost
Value of the hostname field.

This parameter controls the value of the hostname field
of the output messages.
The possible values for this parameter are:

e The "localhost" keyword, specifying that the field
should be populated with the local computer name;

¢ A generic string indicating the desired host name,
such as "MYCOMPUTER";

e The name or the 1-based index of an output record
field prepended with a dollar character ("$"), such as
"$MyHostname" or "$2". The specified output record
field must be of the STRING data type, and its values
will be used to populate the hostname field in the
output messages.

For more information on the hostname field of the
output messages, see SYSLOG Output Format
Message Structure.

-hostName:MYCOMPUTER
-hostName:$MyHostname
-hostName:$2

<name> | $<field_name> | $<field_index>
LogParser:
Value of the tag field.

This parameter controls the value of the tag field of the

Examples:

separator

Values:

Default:

Description:

Details:

Example:

maxPacketSize

Values:

output messages.
The possible values for this parameter are:

e A generic string indicating the desired tag field value,
such as "MyReports";

e The name or the 1-based index of an output record
field prepended with a dollar character ("$"), such as
"$MyProgram” or "$2". The specified output record
field must be of the STRING data type, and its values
will be used to populate the tag field in the output
messages.

For more information on the tag field of the output
messages, see SYSLOG Output Format Message
Structure.

-processName:MyReports
-processName:$MyProgram

-processName:$2

any string | space | tab
space
Separator between fields.

This parameter controls the separator to be used
between the message fields.

The "tab" keyword causes the SYSLOG output format
to use a single tab character between the fields, while
the "space" keyword causes the SYSLOG output format
to use a single space character.

-separator:tab

number of bytes

Default:

1024

Description: Maximum message size.

Details: This parameter controls the maximum size of the
messages generated by the SYSLOG output format.
Messages whose size exceeds the value specified for
this parameter are either truncated or discarded,
depending on the value of the "discardOversized"
parameter.

Example: -maxPacketSize:8192

discardOversized

Values: ON | OFF

Default: OFF

Description: Discard oversized messages.

Details: When this parameter is set to "ON", the SYSLOG
output format discards messages whose size exceeds
the value specified for the "maxPacketSize" parameter.
When this parameter is set to "OFF", the SYSLOG
output format truncates oversized messages to the size
specified with the "maxPacketSize" parameter.

Example: -discardOversized:ON

protocol

Values: UDP | TCP

Default: UDP

Description: Protocol used for transmission.

Details: This parameter specifies the protocol to use when

sending messages to Syslog servers.

Example:

-protocol: TCP

sourcePort

Values: port number | *

Default: *

Description: Source port to use for transmission.

Details: This parameter specifies the source port to use when
sending messages to Syslog servers.

Specifying "*" causes the SYSLOG output format to
choose any available port number.

Example: -sourcePort:514

ignoreDspchErrs

Values: ON | OFF

Default: OFF

Description: Ignore dispatch errors.

Details: Setting this parameter to "ON" causes the SYSLOG
output format to buffer errors occurring while
transmitting messages to Syslog servers or users,
reporting all the errors as warnings when the query
execution has completed.

Setting this parameter to "OFF" causes the SYSLOG
output format to report errors as they occur, aborting
the execution of the query.

Example: -ignoreDspchErrs:ON

oCodepage
Values: codepage ID (number)

Default: 0

Description: Codepage of the output message text.

Details: 0 is the system codepage, -1 is UNICODE.

Example: -oCodepage:1245

© 2004 Microsoft Corporation. All rights reserved.

SYSLOG Output Format Examples

Export System Event Log

Export events from the System event log to a Syslog server and to a local
file:

SELECT TimeGenerated,
CASE SourceName
This queREsaEben@cutek Withdfie following command:

WHEN 'Service Control Manager' THEN 'daemon’
LogPMWSHIFIN e VU3 llpn: SY SLOG -facility:$MyFacility -severity:$MyS
everitWAHENNKeh $oshiid NN anth'

The ouigEWIINBTK tikeoRe Tollowingsample:

WHEN 'Application Popup' THEN 'local7'
<46>KpiSE8'T8a18:04 MYSERVER-M LogParser:EventLog: The Event log se
rvicdEWd3 gx&-fetl;Facility,
<305 H &Ev8mBybe NiifeERVER-M LogParser:Service Control Manager: T
he TelfH&RY 'SamoiceventerédH N rarming state.

1S4 o QS $YBEEIS\ESE RVIERF Wy drogRgrser: EventLog: The Event log se
Sifes M ERRITAA matiRn I?S%@H%%%gfg server:

<134A5E18nf0:20:23 MYSERVER-M LogParser:Ati HotKey Poller: The ser

§EEW%E%MP date time)t
<46§1§£§E1%g§%g2%186,7 MYSERVER-M T.ogParser:EventLog: The Event log se
e

. o1 .

e e e ueekveith the following command:
<30 M\gmsd$el9;2 SERVER-M LogParser:Service Control Manager: T

R :iﬁ. S qg%]?{’gﬂj@% —S%%gflityz.lé)galelr} —s.e\rﬁlrit%ﬁMty]Severi
SR /MY SL pﬂgna%a%:ﬁ@:er' ventLog: The Event log se
The! F"@&éﬁé@@'ﬂ look like the following samples:
<13%€_A5Part 907:01:57 MYSERVER-M LogParser:Ati HotKey Poller: The ser

us

B R ¥y aR0a Y SERVER04 11Sy/imagestibe gif 404 1

ERESMUE 8 00 D8 MMy SERVERY A 178 AR el xspt-08: The Eventlog se
98 0o8-5000 Y SERVERO4 1S /images/tibg, gif 404

DS
S30= 519D 59 LAY SRR B 98 aisglSfgyice Control Manager: T

g .

0 B LS h BRI Snpesshias elcafy

<115>Nov 18 00:29:02 MYSERVERO04 IIS:/images/tibg.gif 404

<115>Nov 18 00:29:04 MY SERVERO04 IIS:/gorice/rulesinfo.nsf 403
<115>Nov 18 00:29:05 MYSERVERO04 IIS:/_vti_inf.html 404
<112>Nov 18 00:29:05 MYSERVERO04 IIS:/ _vti_bin/shtml.dll 500
<115>Nov 18 00:31:51 MYSERVERO04 IIS:/na/index.html 404

TPL Output Format

The TPL output format writes output records formatted according to user-
defined templates.

Templates are text files divided into three sections - a header, a body,
and a footer - containing variables that refer to the values and names of
the output record fields.

During the output generation stage, the TPL output format substitutes the
variables with the values of the output record fields, generating text files
formatted according to the user specifications.

The flexibility of the TPL output format allows users to generate HTML
files, XML files, and generic text files in almost any format.

Template Files
Into-Entity Syntax
Parameters

Examples

© 2004 Microsoft Corporation. All rights reserved.

TPL Output Format Template Files

Template files are divided into three sections: an optional header section
that is written once at the beginning of the output, a body section that is
written repeatedly for each output record, and an optional footer section
that is written once at the end of the output.

The body section can contain special variables that are substituted at run
time with values computed during the execution of the query, such as
values and names of output record fields, and the number of fields in the
output records.

The header and footer sections can contain the same variables available
to the body section, except for those that refer to values of output record
fields.

Template files can be specified in two different ways: as raw format
templates, or as structured format templates.

Raw Format Templates

In the raw format, the three template sections are specified as three
different files.

The template file containing the body section is specified using the tpl
parameter, while the optional header and footer sections are specified
with the tplHeader and tplFooter parameters, respectively.

The following is a sample raw format template file containing the body
section:

The Url %cs-uri-stem%, requested by %c-ip%, took %time-taken% millisecon
ds to execute.

ThevigllRyirRg cd M mrintepassesan I1S log file and creates a text file
formatted according to the template file:

LogParser "SELECT * INTO out.txt FROM extend1.log" -0:TPL -tpl:mytempl

ate.tpl
The resulting output will look like the following example:

The Url /default.htm, requested by 192.168.1.102, took 24 milliseconds to exe
cute.
Smrwetueqdeﬂedmalm&ﬂﬂafek)ck

fi5ed ﬁ%?&r%cdl%erfr‘ﬁsé “%esrnEjPe1 (SHHARIRY L3hhRd R noRkel B au)!
& ?ogf’epseg % d within special <LPHEADER>,

este
'S/mydocuments/s .CS Sr(teaﬁgstme };[q%f %Ig qalrbelst?)t)ﬁ%%hm
S?FL?C? %S'Igrﬁégﬁémaig (f)l]g]% éalge specified using the tpl parameter.

t was request
The following is a sample structured format template file:

<LPHEADER>This is my template, for a query containing %FIELDS_NUM
% fields, executed by %USERNAME%.</LPHEADER>
THentellewingl commanchparses an IIS log file and creates a text file
fornratte veqoiding tectheriamepesertiliested by %c-ip%, took %time-taken
% milliseconds to execute.
[tog&arseueSted BCT i @mlockt FROM extend1.log" -0:TPL -tpl:mytempl
ad.fBODY>
TREFEOATERSERUbIMEPeRK like the following example:
</LPFOOTER>
This is my template, for a query containing 32 fields, executed by TestUser.
The Url /default.htm, requested by 192.168.1.102, took 24 milliseconds to exe

[#Note: The TPL output format assumes that the character
" immediately following the opening tag for a section, such as

It was eapesied, abRfad RaPseeask.
The Url /mydocuments/mdex.html, requested by 192.168.1.104, took 134 milli

seconds to execute.
It was requested at 04:23:47 o’clock.
TemnlateMariaiesics/styles/style.css, requested by 192.168.1.101, took 49 m

Tiksespodarig eapfatists the variables that are available to template files:

End of report.

Variable Description Example Template

%FIELD n% Value of the First field value:
output %FIELD 1%

record field
with the
specified 1-
based index

%field_name%

Value of the
specified
output
record field

First field value:
%SourceName%

%FIELDNAME_n%

Name of the
output
record field
with the
specified 1-
based index

%FIELDNAME_ 1% value
%FIELD_ 1%

%FIELDS_NUM%

Number of
output
record fields

There are
%FIELDS NUM% fields.

%SYSTEM_TIMESTAMP%

Current
system date
and time, in
UTC
coordinates

Generated at
%SYSTEM_TIMESTAMP

%environment_variable%

Value of the
specified
environment

variablel

Generated by
%USERNAME%

Notes:
(1): When a variable matches both a field name and an environment
variable, the field value is substituted.

© 2004 Microsoft Corporation. All rights reserved.

TPL Output Format Into-Entity Syntax

<into-entity> 1= <filename> |
STDOUT

The <into-entity> specified in queries using the TPL output format is
either:

e Afilename;

e The "STDOUT" keyword, which specifies that the output data is to be
written to the output stream (the console output).

The default into-entity for queries that do not specify an INTO clause is
"STDOUT".

The TPL output format supports the multiplex feature, which can be
enabled by specifying ** wildcards in the into-entity filename. This feature
allows output records to be written to different files depending on the
values of their fields. For more information on the multiplex feature, see
Multiplexing Output Records.

Examples:
INTO MyPage.html
INTO \COMPUTERO1\Reports\report.txt
INTO STDOUT

INTO Reports_*_*\Report*.txt

© 2004 Microsoft Corporation. All rights reserved.

TPL Output Format Parameters

The TPL output format supports the following parameters:

tpl
Values:

Default:

Description:

Details:

Example:

tplHeader

Values:

Default:

Description:

Details:

file path
not specified
Template file.

When using raw format template files, this parameter
specifies the template file containing the body section.
When using structured format template files, this
parameter specifies the single template file that
contains the header, body, and footer sections.

For more information on template files, see Template
Files.

-tpl:MyTemplate.tpl

file path
not specified
Template header file.

When using raw format template files, this parameter
specifies the template file containing the header
section.

When using structured format template files, this
parameter specifies a raw format template file that
overrides the <LPHEADER> section of the structured
format template file specified with the "tpl" parameter.
For more information on template files, see Template
Eiles.

Example:

tplFooter

Values:

Default:

Description:

Details:

Example:

noEmptyFile
Values:

Default:

Description:

Details:

Example:

oCodepage

Values:

-tplHeader:MyTemplateHeader.tpl

file path
not specified
Template footer file.

When using raw format template files, this parameter
specifies the template file containing the footer section.
When using structured format template files, this
parameter specifies a raw format template file that
overrides the <LPFOOTER> section of the structured
format template file specified with the "tpl" parameter.
For more information on template files, see Template
Eiles.

-tplFooter:MyTemplateFooter.tpl

ON | OFF
ON
Do not generate empty files.

When a query does not produce output records, the
TPL output format does not write a body section, and
the resulting output file could be empty.

Setting this parameter to "ON" causes the TPL output
format to avoid generating an empty file in these
situations.

-noEmptyFile:OFF

codepage ID (number)

Default:

Description:

Details:

Example:

fileMode

Values:

Default:

Description:

Details:

Example:

0

Codepage of the output text.

0 is the system codepage, -1 is UNICODE.
-oCodepage:1245

0|1]|2
1
Action to perform when an output file already exists.

This parameter controls the behavior of the TPL output
format when the into-entity specifies directly or
indirectly through the "multiplex" feature the name of a
file that already exists.

The possible values for this parameter are:

e 0: existing files are appended with the output;
o 1: existing files are overwritten with the output;
o 2: existing files are left intact, discarding the output.

-fileMode:0

© 2004 Microsoft Corporation. All rights reserved.

TPL Output Format Examples

Last 50 Security Events

Create an HTML page containing the most recent 50 events from the
Security event log:

LogParser "SELECT TOP 50 TimeGenerated, SourceName, EventID, Messag
e INTO Events.html FROM Security" -i:EVT -direction:BW -0:TPL -tpl:HTM
LBody.txt -tplHeader:HTMLHeader.txt -tplFooter:HTMLFooter.txt

MSDN BLogs Channel Titles

Display titles of current channels on MSDN BLogs:

LogParser "SELECT title INTO channels.txt FROM http://blogs.msdn.com/M
ainFeed.aspx#/rss/channel/item" -i: XML -fMode:Tree -o:TPL -tpl:mytemplate.
tpl

© 2004 Microsoft Corporation. All rights reserved.

TSV Output Format

The TSV output format writes output records as tab-separated or space-
separated values text.

The output of the TSV output format consists of multiple lines of text, one
line for each output record.

Each line contains the values of the output record fields, separated by
either a tab character or a space character, depending on the value of the
oSeparator parameter.

If enabled through the headers parameter, the first line in the output is a
"header" that contains the names of the fields.

The following sample shows the output of the TSV output format when
using the default values for its parameters:

EventID SourceName EventType TimeGenerated
6009 EventLog4 2004-04-18 18:48:04
6005 EventLog4 2004-04-18 18:48:04

|r?t9)2éntlt Y]i%‘XControl Manager 1 2004-04-18 18:48:27
IMmeteraervice Control Manager 2004-04-18 18:48:27

4
E dn les Service Control Manager 4 2004-04-18 18:48:27
W_Gp— Service Control Manager 4 2004-04-18 18:48:27
7036 Service Control Manager 4 2004-04-18 18:48:27
7035 Service Control Manager 4 2004-04-18 18:48:27
SE®@Iso: Service Control Manager 4 2004-04-18 18:48:27
A O utpaE iR fapntrol Manager 4 2004-04-18 18:48:27
Tg;\;“;qnoutffféyﬁqg@ontrol Manager 4 2004-04-18 18:48:27
7035 Service Control Manager 4 2004-04-18 18:48:27

7036 Service Control Mana 4 2004 04 18 18 48 27
7035 ..-_, £\ a Aatage 9. aQ
7036 Service Control Manager 4 2004 04 18 18 48 27
7036 Service Control Manager 4 2004-04-18 18:48:27
7035 Service Control Manager 4 2004-04-18 18:48:36
7036 Service Control Manager 4 2004-04-18 18:51:26
7036 Service Control Manager 4 2004-04-18 18:51:29
6006 EventLog4 2004-04-18 18:51:37

TSV Output Format Into-Entity Syntax

<into-entity> 1= <filename> |
STDOUT

The <into-entity> specified in queries using the TSV output format is
either:

e Afilename;

e The "STDOUT" keyword, which specifies that the output data is to be
written to the output stream (the console output).

The default into-entity for queries that do not specify an INTO clause is
"STDOUT".

The TSV output format supports the multiplex feature, which can be
enabled by specifying ** wildcards in the into-entity filename. This feature
allows output records to be written to different files depending on the
values of their fields. For more information on the multiplex feature, see
Multiplexing Output Records.

Examples:
INTO report.tsv
INTO W\COMPUTERO1\Reports\report.tsv
INTO STDOUT

INTO Reports_*_*\Report*.tsv

© 2004 Microsoft Corporation. All rights reserved.

TSV Output Format Parameters

The TSV output format supports the following parameters:

headers

Values: ON | OFF | AUTO
Default: AUTO
Description: Write a header line containing the field names.

Details: This parameter controls the header line that is output at
the beginning of each file.
The possible values for this parameter are:

e ON: always write the header;
e OFF: never write the header;

e AUTO: write the header only when not appending to
an existing file.

Example: -headers:OFF
oSeparator

Values: any string | space | tab

Default: tab

Description: Separator between fields.

Details: This parameter controls the separator to be used
between field values.
The "tab" keyword causes the TSV output format to use
a single tab character between the fields, while the
"space" keyword causes the TSV output format to use a
single space character.

Example: -oSeparator:space

oIsFormat

Values:

Default:

Description:

Details:

Example:

oCodepage

Values:

Default:

Description:

Details:

Example:

fileMode

Values:

Default:

Description:

Details:

timestamp format
yyyy-MM-dd hh:mm:ss
Format of timestamp values in the output TSV data.

This parameter specifies the date and/or time format to
use when formatting values of the TIMESTAMP data
type.

For more information on date and time formats, see
Timestamp Format Specifiers.

-oTsFormat:"MMM dd, yyyy"

codepage ID (number)

0

Codepage of the output text.

0 is the system codepage, -1 is UNICODE.
-oCodepage:1245

0|1]|2
1
Action to perform when an output file already exists.

This parameter controls the behavior of the TSV output
format when the into-entity specifies directly or
indirectly through the "multiplex"” feature the name of a
file that already exists.

The possible values for this parameter are:

e 0: existing files are appended with the output;

e 1: existing files are overwritten with the output;
e 2: existing files are left intact, discarding the output.

Example: -fileMode:0

© 2004 Microsoft Corporation. All rights reserved.

TSV Output Format Examples

File Information

Create a TSV file containing information on the files contained in the
specified directory:

LogParser "SELECT Path, Name, Size, Attributes INTO Files.tsv FROM C:\T
est* *" -i:FS -0:TSV -recurse:0

Security Events

Retrieve the 10 latest events from the Security event log and write their
information to a TSV file for each event ID:

LogParser "SELECT TOP 10 EventID, EventTypeName, Message INTO Even
ts_*.tsv FROM Security" -i:EVT -direction:BW -0:TSV

© 2004 Microsoft Corporation. All rights reserved.

W3C Output Format

The W3C output format writes output records in the W3C Extended Log
File Format.

The following example shows a sample output generated by the W3C
output format:

#Software: Microsoft Log Parser
#Version: 1.0
IRDANIYOAYIIEDS 14:20:40
ParanaeleXse time s-id s-type s-category
Ex@maas| 8 18:48:04 6009 4 0
2004-04-18 18:48:04 6005 4 0
2004-04-18 18:48:27 70241 0
Q4,18 18:48:27 70354 0

2004-04-18 18:48:27 7035 4 0
WaBalpputd-aropab7 7036 4 0

-2004-04-18 18:48:27 7036 4 0

2004-04-18 EBxnd /M0 <o% Corporation. All rights reserved.
2004-04-18 18:48:27 7036 4 0

W3C Output Format Into-Entity Syntax

<into-entity> 1= <filename> |
STDOUT

The <into-entity> specified in queries using the W3C output format is
either:

e Afilename;

e The "STDOUT" keyword, which specifies that the output data is to be
written to the output stream (the console output).

The default into-entity for queries that do not specify an INTO clause is
"STDOUT".

The W3C output format supports the multiplex feature, which can be
enabled by specifying ** wildcards in the into-entity filename. This feature
allows output records to be written to different files depending on the
values of their fields. For more information on the multiplex feature, see
Multiplexing Output Records.

Examples:
INTO report.log
INTO WCOMPUTERO1\Reports\report.log
INTO STDOUT

INTO Reports_*_*\Report*.log

© 2004 Microsoft Corporation. All rights reserved.

W3C Output Format Parameters

The W3C output format supports the following parameters:

rtp
Values:

Default:

Description:

Details:

Example:

oDQuotes

Values:

Default:

Description:

Details:

Example:

oDirTime

Values:

number of rows
10
Rows to print before pausing.

When writing to STDOUT, the W3C output format
displays output records in batches made up of a
number of rows equal to the value specified for this
parameter. Once a batch of rows has been displayed,
the W3C output format prompts the user to press a key
to display the next batch of rows.

Specifying "-1" for this parameter disables batching
altogether.

-rtp:-1

ON | OFF
OFF
Enclose string values in double-quote characters.

When this parameter is set to "ON", the W3C output
format writes string values with double-quote (")
characters around them.

-0DQuotes:ON

any string

Default:

Description:

Details:

Example:

encodeDelim

Values:

Default:

Description:

Details:

Example:

oCodepage
Values:

Default:

Description:

Details:

Example:

not specified
Content of the "#Date" directive header.

The W3C output format uses the value specified for this
parameter as the content of the "#Date" directive
written to the header of the output file. When a value is
not specified, the W3C output format uses the current
date and time.

-oDirTime:"1973-05-28 03:02:42"

ON | OFF
OFF

Substitute space characters within field values with plus
characters.

When this parameter is set to "ON", the W3C output
format substitutes space characters found in string
values with plus (+) characters, in order to generate
W3C output that is formatted correctly.

When this parameter is set to "OFF", space characters
within field values are preserved, potentially generating
invalid W3C output.

-encodeDelim:ON

codepage ID (number)

0

Codepage of the output text.

0 is the system codepage, -1 is UNICODE.
-oCodepage:1245

fileMode
Values: 0|12
Default: 1
Description: Action to perform when an output file already exists.

Details: This parameter controls the behavior of the W3C output
format when the into-entity specifies directly or
indirectly through the "multiplex" feature the name of a
file that already exists.
The possible values for this parameter are:

e O: existing files are appended with the output;
e 1: existing files are overwritten with the output;
e 2: existing files are left intact, discarding the output.

Example: -fileMode:0

© 2004 Microsoft Corporation. All rights reserved.

W3C Output Format Examples

Event Log Report

Create a W3C file with information from the System event log:

LogParser "SELECT TO_DATE(TimeGenerated) AS date, TO_TIME(TimeGe
nerated) AS time, SourceName AS s-source, EventID AS s-event-id, EventCat

egory AS s-event-category INTO report.log FROM System" -i:EVT -0:W3C -
encodeDelim:ON

© 2004 Microsoft Corporation. All rights reserved.

XML Output Format

The XML output format writes output records as XML document nodes.

Users can choose between four different structures for the output XML
document.

Different structures format the output record fields in different ways,
giving users the ability to fine-tune the generated XML for their
applications.

The following example command generates an XML document
containing fields from the System event log:

LogParser "SELECT TimeGenerated, SourceName, EventID, Message INTO

Events.xml FROM System"
The output XML will look like the following example:

<?xml version="1.0" encoding="1SO-10646-UCS-2" standalone="yes" ?>
<IDOCTYPE ROOT]
<IATTLIST ROOT DATE_CREATED CDATA #REQUIRED>
D 6 éﬁTTT Qgtﬁ}efa’rf (;REATED BY CDATA #REQUIRED>
IntotEfith [{LineGenerated (#PCDATA)>
Pér'%@t ENT SourceName (#?CDATA)>
Exafi®dENT EventID (#PCDATA)>
<IELEMENT Message (#PCDATA)>
<IELEMENT ROW (TimeGenerated, SourceName, EventID, Message)>
<IELEMENT ROOT (ROW*)>
See also:
XIMROR P A ERGREATED="2004-11-08 16:26:54" CREATED_BY="Micros

oft Log Parser V2.2">

<ROW>

<TimeGen&2004 Microsoft Corporation. All rights reserved.
2004-04-18 18:48:04

</TimeGenerated>

<SourceName>

EventLog

</SourceName>

<EventID>
6009
</EventID>
<Message>
Microsoft (R) Windows (R) 5.01. 2600 Service Pack 1 Uniprocessor Free.
</Message>

</ROW>

<ROW>
<TimeGenerated>
2004-04-18 18:48:04
</TimeGenerated>
<SourceName>
EventLog
</SourceName>
<EventID>
6005
</EventID>
<Message>

The Event log service was started.
</Message>

</ROW>

<ROW>
<TimeGenerated>
2004-04-18 18:48:27
</TimeGenerated>
<SourceName>
Service Control Manager
</SourceName>
<EventID>
7035
</EventID>
<Message>

The Network Connections service was successfully sent a start control.
</Message>

</ROW>

</ROOT>

XML Output Format Document
Structures

The XML output format generates XML documents that can be structured
in four different ways, depending on the value specified for the structure
parameter.

Structure 1

When the "structure" parameter is set to "1", the XML output format
creates a node named "ROW" for each output record.

This node in turn contains nodes for each field in the output record,
named after the field names and with node values containing the field
values.

The following example shows an XML document created with structure
lllll:

<?xml version="1.0" encoding="1SO-10646-UCS-2" standalone="yes" ?>
<IDOCTYPE ROOT]
SH’LREEWE&&F ROOT DATE_CREATED CDATA #REQUIRED>

T o 08T REé‘%E%L%‘%f %;aAu%%g%Ulm output format to
g r;ﬁ %)Délﬁ e r?tr§'l Q éEEQ F ed according to structure "1",
anq ﬁﬂ

attribute that specifies the data

on | ulfAecord field.
essage A)>
TﬁéErIa Mﬁ@@%@r SigSara AP yEeeNaEH: Ereetd P MiRssag oture
2<'ELE T ROOT (ROW*)>

q{fe]%ségrllz Q%Eérr{c% 1n'g2 0%6118%4167 é%§42 Stan ”Ji]grllDe_B}SI(eslll\gcros
Qfﬂd POSEREATT
Skl s;rRo T DATE CREATED CDATA #REQUIRED>

1 @E@%R&%E %FTAE.#Rtﬁgy(ﬁEoutput format
N %tE

ource dme

Ll

Qg E%Qﬁ.rjp) ﬁéﬁ'ﬁ or 2ach field in the

outptitRa8dS eaciaNENS DY Pib dOHaAH#REGEURIGB =qual to the field
vattBhaiviIMThEMEI A RUERANR)>specifies the field name.
<{AMentSY EventID TYPE CDATA #REQUIRED>
T@H@M@W@QQ@ sHRWIS AWML document created with structure
3<4M’EM$)PMessage TYPE CDATA #REQUIRED>
<|Klek¥BeNT ROW (TimeGenerated, SourceName, EventID, Message)>
<NEdvER S R AT R G 5:0' TS D0 0 6 6+iHE Pt ks fahiia e iyes Free.

PDAGTBPE ROOT][
SRR S TROCHIATD € RENTFE0E DABA: BRECREREED_BY="Micros

R @c r% o B\{ R caAu%%g%Ulm%utput format to

[@% cordlng to structure "3",
ﬂ %

B PE" attribute that
Ro g)correSpon ing ou put record field.

Héﬁc% 1n1§:>ISO 10646-UCS-2" standalone="yes" ?>

BaﬂlmeGenerated"

PRI BATE CR EATED CDATA #REQUIRED>

7188 ’l"/] \Vﬂyﬁi

felgin %ﬁd

3;600 Serv1ce Pac 1 Uniprocessor Free.

.W%QI}FIELD NAME CDATA #REQUIRED>
. T FIELD TYPE CDATA #REQUIRED>
SHE v\?ﬁﬁ FIELD JFIELD, FIELD)>
Simerenciaee by kowiylESTA

| 20PE0D8 18:48:04

<§%W PRI 300411 11:08.17:35:04" CREATED_BY="Micros
ﬁﬁg ﬁ?éﬂ%geﬁl w5 RBBNE1.2600 Service Pack 1 Uniprocessor Free.

<

F= "TlmeGGenle{ated" TYPE="TIMESTAMP">

PRV N
SO 8 Yalkig. AN LE

%@%L% AME "TimeGenerated">

é@%ﬁ%&;ﬁﬁc&\gme" TYPE="STRING">
TRERLIOM e SouvaeNamtd:

A

PYRPS986 A ME="EventID" TYPE="INTEGER">

SRRV D>
RPN AME="EventID">
S8BOELD NAME="Message" TYPE="STRING">
Midiokd¥t(R) Windows (R) 5.01. 2600 Service Pack 1 Uniprocessor Free.
<HHIIDNAME="Message">
JREOBMWent log service was started.
<RETRLD>
<RIBWD NAME="TimeGenerated" TYPE="TIMESTAMP">
<ZROMO(4~18 18:48:04
</FIELD>
<FIELD NAME="SourceName" TYPE="STRING">
EventLog
</FIELD>
<FIELD NAME="EventID" TYPE="INTEGER">
6005
</FIELD>
<FIELD NAME="Message" TYPE="STRING">
The Event log service was started.
</FIELD>
</ROW>
</ROOT>

o

XML Output Format Into-Entity Syntax

<into-entity> 1= <filename> |
STDOUT

The <into-entity> specified in queries using the XML output format is
either:

e Afilename;

e The "STDOUT" keyword, which specifies that the output data is to be
written to the output stream (the console output).

The default into-entity for queries that do not specify an INTO clause is
"STDOUT".

The XML output format supports the multiplex feature, which can be
enabled by specifying ** wildcards in the into-entity filename. This feature
allows output records to be written to different files depending on the
values of their fields. For more information on the multiplex feature, see
Multiplexing Output Records.

Examples:
INTO report.xml
INTO WCOMPUTERO1\Reports\report.xml
INTO STDOUT

INTO Reports_*_*\Report*.xml

© 2004 Microsoft Corporation. All rights reserved.

XML Output Format Parameters

The XML output format supports the following parameters:

structure

Values: 112|3|4

Default: 1

Description: Structure of the output document.

Details: For a description of the different structures available, se¢
Document Structures.

Example: -structure:4

rootName

Values: string

Default: ROOT

Description: Name of the document root node.

Details: This parameter allows users to customize the name of tr
single root node that contains all the other nodes in the
output document.

Example: -rootName:REPORT

rowName

Values: string

Default: ROW

Description: Name of the node containing the output record fields.

Details: This parameter allows users to customize the name of tr

node that is generated for each output record.

Example:

fieldName

Values:

Default:

Description:

Details:

Example:

xslLink

Values:

Default:

Description:

Details:

Example:

schemaType

Values:

-rowName:ENTRY

string
FIELD
Name of the node containing the output record field valu

This parameter allows users to customize the name of tr
node that is generated for each output record field when
the "structure" parameter is set to "3" or "4".

-fieldName:DATA

path to XSL document
not specified

XSL document to be referenced by the output XML
document.

Specifying a value for this parameter causes the XML
output format to place a link to the specified XSL stylesh
in the header of the output XML document. XSL-enabled
XML browsers will follow the specified link and format the
output XML document accordingly.

The link placed in the document header is formatted as
follows:

<?xml-stylesheet type="text/xsl" href="C:\XSL\MyXSL.xsl"

-xslLink:C:\XSL\MyXSL.xsl

0|1

Default:

Description:

Details:

Example:

compact

Values:

Default:

Description:

Details:

Example:

noEmptyField

Values:

Default:

Description:

Details:

1
Type of inline schema.

When this parameter is set to "1", the output XML
document contains an inline DTD schema.

Setting this parameter to "0" prevents the XML output
format from generating an inline schema.

-schemaType:0

ON | OFF
OFF
Suppress indentations and extra lines in output.

When this parameter is set to "OFF", the XML output
format generates XML documents that are optimized for
human readability, indenting nodes according to their
depth, and writing nodes on multiple lines.

Setting this parameter to "ON" causes the XML output
format to write each "ROW" node on a single line withou
indentation.

-compact:ON

ON | OFF
OFF
Avoid writing empty nodes for NULL field values.

When this parameter is set to "OFF", output record fields
having NULL values are rendered as empty nodes.
Setting this parameter to "ON" prevents the XML output
format from generating a node when the corresponding

Example:

standAlone

Values:

Default:

Description:

Details:

Example:

oCodepage
Values:

Default:

Description:

Details:

Example:

fileMode

Values:

Default:

Description:

output record field has a NULL value.

-noEmptyField:ON

ON | OFF
ON
Create a well-formed, stand-alone XML document.

When this parameter is set to "ON", the XML output forn
generates well-formed XML documents having an XML
header and a single document root node.

When this parameter is set to "OFF", the XML output
format generates XML text that only contains the output
record nodes, with no XML header and no document rog
node.

-standAlone:OFF

codepage ID (number)

0

Codepage of the output text.

0 is the system codepage, -1 is UNICODE.
-oCodepage:1245

0]1]2
1

Action to perform when an output file already exists.

Details: This parameter controls the behavior of the XML output
format when the into-entity specifies directly or indirectly
through the "multiplex"” feature the name of a file that
already exists.

The possible values for this parameter are:

e 0: existing files are appended with the output;
e 1: existing files are overwritten with the output;
e 2: existing files are left intact, discarding the output.

Example: -fileMode:0

© 2004 Microsoft Corporation. All rights reserved.

XML Output Format Examples

Account Logons

Create an XML document containing logon account names and dates
from the Security Event Log messages:

LogParser "SELECT TimeGenerated AS LogonDate, EXTRACT_TOKEN(Str
ings, 0, '') AS Account INTO Report.xml FROM Security WHERE EventID N
OT IN (541;542;543) AND EventType = 8 AND EventCategory = 2"

© 2004 Microsoft Corporation. All rights reserved.

Command-Line Operation

The Log Parser command-line executable is a single, standalone binary

file ("LogParser.exe") that can be used from the Windows command-line

shell to execute queries and perform other Log Parser tasks.

The executable binary does not require any installation; once copied to a
computer, it is ready to use.

ETip: If you want to run LogParser.exe from any directory without
having to specify the absolute or relative path, you can add the Log
Parser directory location to the "PATH" environment variable.

The Log Parser command-line executable works on commands supplied
by the user. Commands are combinations of switches, or arguments, that
specify parameters for the task that needs to be executed.

The switches used with the Log Parser command-line executable must
be entered with a dash character (-) followed by the switch name, as in
the following example:

C:\>LogParser -h

Most switches require a user-supplied value; in these cases, the switch
name must be followed by a colon character (;) and by the user-supplied
value with no intervening spaces, as in the following example:

C:\>LogParser -iCodepage:931

If the user-supplied value contains spaces, the value can be surround by
double-quote characters ("), as in the following example:

C:\>LogParser -chartTitle:"Top 20 Pages"

Depending on the switches used in a command, the Log Parser
command-line executable can be used in four different modes of
operation:

e Query Execution Mode: this is the default mode of operation; in this

mode, Log Parser is used to execute queries reading input records
from an input format and writing output records to an output format.

e Conversion Mode: in this mode, activated by the "-¢" switch, Log
Parser is used to execute built-in queries that convert log files between
supported log file formats.

e Defaults Override Mode: in this mode, activated by the "-
saveDefaults" switch, users can override the default behavior of Log
Parser by specifying custom default values for the execution
parameters.

e Help Mode: in this mode, activated by the "-h" switch, the command-
line executable can be used to display to the console window a "quick
reference" help on selected topics, such as information on input and
output formats, syntax of functions, and syntax of the Log Parser SQL-
Like query language.

See also:

Global Switches Reference
Commands and Queries

© 2004 Microsoft Corporation. All rights reserved.

Query Execution Mode

"Query Execution Mode" is the default operational mode of the Log
Parser command-line executable.

In this mode, Log Parser is used to execute queries reading input records
from an input format and writing output records to an output format.

The general syntax of commands in query execution mode is:

LogParser [-i:<input_format>] [<input_format_options>]
[-o:<output_format> | [<output_format_options>]
<SQL query> | file:<query_filename>[?param1=valuel+...J

[<global_switches> | [-queryInfo |

-i:<input_format>

Specifies the input format for the query.
The "-i:" switch is followed by the name of the selected input format,
as in the following example:

C:\>LogParser -i:IISW3C "SELECT * FROM extend1.log"

When an input format is not specified, Log Parser will attempt to
select automatically an input format upon inspection of the <from-
entity> in the FROM clause. For example, "System" suggests the
use of the EVT Input Format, while "ex040302.log" suggests the use
of the ISW3C Input Format.

If the <from-entity> does not suggest a specific input format, the
TextLine Input Format will be selected by default.

<input_format_options>

Specify values for input format parameters.
These are entered as switches with names matching the input
format's parameter names, followed by a colon and by the value for

the parameter, as in the following examples:

C:\>LogParser -i:IISW3C -iCodepage:932 -iCheckpoint:MyCheckpoint.]
pc "SELECT * FROM extendl1.log"
C:\>LogParser -i:EVT -binaryFormat: ASC "SELECT * FROM System"

Parameter values containing spaces must be enclosed within
double-quote characters ("), as in the following example:

C:\>LogParser -i:EVT -stringsSep:"MY SEPARATOR" "SELECT * FRO
M System"
For more information on input format parameters, refer to the Input
Format Reference.

-0:<output_format>

Specifies the output format for the query.
The "-0:" switch is followed by the name of the selected output
format, as in the following example:

C:\>LogParser -0:CSV "SELECT * FROM System"

When an output format is not specified, Log Parser will attempt to
select automatically an output format upon inspection of the <into-
entity> in the INTO clause. For example, "chart.gif" suggests the use
of the CHART Output Format, while "MyFile.csv" suggests the use of
the CSV Output Format.

If the <into-entity> does not suggest a specific output format, or the
guery does not specify an INTO clause, the NAT Output Format will
be selected by default.

<output_format_options>

Specify values for output format parameters.
These are entered as switches with names matching the output
format's parameter names, followed by a colon and by the value for

the parameter, as in the following examples:
C:\>LogParser -0:NAT -rtp:-1 -fileMode:1 "SELECT * FROM System"

C:\>LogParser -0:CSV -tabs:ON "SELECT * FROM System"

Parameter values containing spaces must be enclosed within
double-quote characters ("), as in the following example:

C:\>LogParser -0:CHART -chartTitle:"Page Hits per Day" "SELECT date

, COUNT(*) FROM extend1.log GROUP BY date"
For more information on output format parameters, refer to the

Output Format Reference.

<SQL query>

Specifies the text of the Log Parser SQL-Like query.

Since a query always contains spaces, the text of the query must be
enclosed within double-quote characters ("), as in the following
example:

C:\>LogParser "SELECT * FROM System"

Alternatively, a query can be specified through a text file with the
“file:" switch, as shown in the next section.

Commands containing both a query text argument and a "file:"
switch are considered illegal and return an error.

file:<query_filename>[?param1=valuel+...]

Specifies the name of a text file containing a Log Parser SQL-Like
query.

The text file specified must contain a valid query in the Log Parser
SQL-Like language. Multiple spaces, comments, and new-line
characters in the text file are ignored, allowing the query text to be
formatted as desired for readability.

The following example shows an example content of a query text file:

SELECT TimeGenerated,

EXTRACT_TOKEN(ResolvedSid, 1, "\\') AS Username -- only the '
Thefedlewipgresample shows how the query is executed, assuming
thatthe quety fextdvasHeemn sameshifea file named "MyQuery.sql™:

*/
USHUGePRESOENET ST (S vesyRedolvedSid

FROM Security
Query text files can include parameters, which are substituted at

runtime with user-supplied text or environment variable values.
Parameters are user-defined names in the query text enclosed within
percent characters (%), such as "%MyParameter%".

When issuing a Log Parser command to execute a query text file
containing parameters, users can specify the values of the
parameters by appending the question-mark character (?) to the
query filename, followed by a list of pairs in the form of
"parameter_name=parameter_value", separated by the plus
character (+).

For example, the following query contains two parameters:

SELECT EventID

FROM %lInputEventLog%
Thaetewig example o musharetwasye query substituting
user-supplied values for the parameters:

C:\>LogParser -i:EVT file:Myquery.sql?InputEventLog=System+InputSo
urceName=EventLog
If a parameter name or value contains spaces, the name or value
must be enclosed within double-quote characters ("), as in the
following example:

C:\>LogParser -i:EVT file:Myquery.sql?InputEventLog=System+InputSo
urceName="Service Control Manager"
If the value of a query text file parameter is not supplied by the user,
Log Parser will search for the parameter name in the current
environment variable set. If an environment variable is found

matching the parameter name, its value will be substituted for the
parameter; otherwise, the parameter name is left as-is in the query
text.

The text of the query can also be specified directly as a command-
line argument, as shown in the previous section.

Commands containing both a query text argument and a "file:"
switch are considered illegal and return an error.

<global_switches>

Global switches control overall behaviors of the command, such as
error handling and command statistics verbosity.

For more information on global switches, refer to the Global
Switches Reference.

-queryInfo

Displays diagnostic information about the command.

When "-queryInfo" is specified, the command is not executed, and
the following diagnostic information is displayed to the console
window:

e The text of the provided query, after being parsed and interpreted
by the Log Parser SQL-Like engine core;
e Names of the input and output formats selected,;

e Structure of the query output records, including field names and
field data types.

This information can be used to troubleshoot a variety of problems,
including unexpected query execution results, and query parameter
subtitution.

The following example uses the "-queryInfo” switch to display
diagnostic information about the specified command:

C:\>LogParser "SELECT TO_UTCTIME(TimeGenerated) AS UTCTime
Generated, SourceName FROM System WHERE EventID > 20" -querylIn

The output of this command is:

Query:
SELECT TO_UTCTIME([TimeGenerated]) AS UTCTimeGenerated, [S
ourceName|
FROM System
See algQ{ERE [EventID] > ANY (20)

Command-Line Operation Reference

Global SiRER e rence

CommniAREs IR ENd<(Windows Event Log)
Output format: NAT (Native Format)

Query §:2Q04 Microsoft Corporation. All rights reserved.

ITUTULD

UTCTimeGenerated (T) SourceName (S)

Conversion Mode

In "Conversion Mode", Log Parser is used to execute built-in queries to
convert log files between the following formats:

BIN to W3C
1IS to W3C
BIN to IIS
[ISW3C to IIS

Conversion mode is activated by the "-c" switch.

The general syntax of commands in conversion mode is:

LogParser -c -i:<input_format> -o:<output_format> <from_entity>
<into_entity> [<where_clause> | [<input_format_options>]
[<output_format_options> | [-multiSite[:ON|OFF] |
[<global_switches> | [-queryInfo]

For more information on log file format conversions, refer to Converting
File Formats.

-i:<input_format>

Specifies the input format for the conversion.
The "-i:" switch is followed by the name of the selected input format,
as in the following example:

C:\>LogParser -c -i:IISW3C -o:1IS extendl.log inetsv1.log

Differently than Query Execution Mode, the input format specification
is a mandatory argument for commands in conversion mode.

The specified input format name must be one of the input formats in
the table above for which a conversion is supported.

-0:<output_format>

Specifies the output format for the conversion.
The "-0:" switch is followed by the name of the selected output
format, as in the following example:

C:\>LogParser -c -i:IISW3C -o:1IS extendl.log inetsv1.log

Differently than Query Execution Mode, the output format
specification is a mandatory argument for commands in conversion
mode.

The specified output format name must be one of the output formats
in the table above for which a conversion is supported.

<from_entity>

Specifies the input file(s) to be converted.

This argument must conform to the <from_entity> syntax of the
selected input format. For information on the syntax and
interpretation of the <from_entity> values supported by each input
format, refer to the Input Formats Reference.

If the argument contains spaces, it must be enclosed within double-
guote characters ("), as in the following example:

C:\>LogParser -c -i:IISW3C -o:1IS "extend1.log;, <1>" inetsv1.log

<into_entity>

Specifies the conversion target output file.

This argument must conform to the <into_entity> syntax of the
selected output format. For information on the syntax and
interpretation of the <into_entity> values supported by each output
format, refer to the Output Formats Reference.

If the argument contains spaces, it must be enclosed within double-
guote characters ("), as in the following example:

C:\>LogParser -c -i:IISW3C -o:1IS extend1.log "C:\My Folder\inetsv1.lo
gll

<where_clause>

Specifies an optional WHERE clause to perform filtering on the input
format entries.

The following example converts only the 1ISW3C log file entries that
represent successful requests:

C:\>LogParser -c -i:IISW3C -o:1IS extend1.log inetsvl.log "WHERE sc-s
tatus BETWEEN 200 AND 399"

<input_format_options>

Specify values for input format parameters.

These are entered as switches with names matching the input
format's parameter names, followed by a colon and by the value for
the parameter, as in the following example:

C:\>LogParser -c -i:IISW3C -o:IIS extend1.log inetsv1.log -iCodepage:9

32
For more information on input format parameters, refer to the Input

Format Reference.

<output_format_options>

Specify values for output format parameters.

These are entered as switches with names matching the output
format's parameter names, followed by a colon and by the value for
the parameter, as in the following example:

C:\>LogParser -c -i:IISW3C -o:1IS extendl1.log inetsv1.log -fileMode:1

For more information on output format parameters, refer to the
Qutput Format Reference.

-multiSite[:ON|OFF]

Specifies that an IS Central Binary log file is to be converted to
multiple log files, one for each IIS Virtual Site.

This option is only available when the conversion is from the BIN
input format, and when the specified <into-entity> contains one "*"
wildcard enabling the Multiplex Ouput Mode. The wildcard will be
replaced with the numeric identifiers of the IS Virtual Sites that
served the requests logged in the central binary log file.

The following example converts a single IIS Central Binary log file to
different W3C log files, one for each IS Virtual Site that served a
request logged in the central binary log:

C:\>LogParser -c -i:BIN -0:W3C raw1.ibl C:\NewLogs\W3SVC*\extend
1.log -multiSite:ON

<global_switches>

Global switches control overall behaviors of the command, such as
error handling and command statistics verbosity.

For more information on global switches, refer to the Global
Switches Reference.

-querylInfo

Displays diagnostic information about the conversion command.

When "-queryInfo" is specified, the command is not executed, and

the following diagnostic information is displayed to the console

window:

e The text of the conversion query, after being parsed and
interpreted by the Log Parser SQL-Like engine core;

e Names of the input and output formats selected;

e Structure of the query output records, including field names and
field data types.

This information can be used to troubleshoot unexpected conversion

results.

The following example uses the "-queryInfo” switch to display
diagnostic information about the specified conversion command:

C:\>LogParser -c -i:IISW3C -o:1IS extendl.log inetsv1.log -queryInfo

The output of this command is:

Query:

SELECT [c-ip], [cs-username], TO_DATE(TO_LOCALTIME(TO_TIM

ESTAMP([date],

[time]))), TO_TIME(TO_LOCALTIME(TO_TIMESTAMP([date], [time
See ajpy:

CommArfSnAReDJererBRULEsTamRALds-ip], [time-taken], [sc-bytes],
G|oba{§qhyéﬁ°és[p@e—ﬁg{éﬁéﬁ[sc—winﬂ—status], [cs-method], [cs-uri-stem],
Conve[r?ﬁi%fi:ﬂéeﬁﬂ mats

INTO inetsvl.log

FRO%%Bgll\}f?@rosoft Corporation. All rights reserved.

Formats selected:
Input format: IISW3C (IIS W3C Extended Log Format)
Output format: IIS (IIS Log Format)

Query fields:

c-ip (S)

cs-username (S)
TO_DATE(TO_LOCALTIME(TO_TIMESTAMP(date, time))) (T)
TO_TIME(TO_LOCALTIME(TO_TIMESTAMP(date, time))) (T)
s-sitename (S)

s-computername (S)

s-ip (S)

time-taken (I)

sc-bytes (I)

cs-bytes (I)

sc-status (I)

sc-win32-status (I)

cs-method (S)
cs-uri-stem (S)
cs-uri-query (S)

Defaults Override Mode

In "Defaults Override Mode" users can specify new default values to
replace the factory default values of global switches, input format
parameters, and output format parameters.

Values are overridden on the computer on which the "saveDefaults"
command is executed, and the new values are in effect until they are
overridden by a new override command, or until the factory defaults are
restored with the "restoreDefaults” command. The new default values
also affect the Log Parser scriptable COM components.

[#Note: For security reasons, properties that are used to specify
confidential or sensitive information, such as usernames and
passwords, can not be overriden by the "Defaults Override Mode"
feature.

The general syntax of commands in defaults override mode is:

LogParser -saveDefaults [-i:<input_format> <input_format_options>]
[-o:<output_format> <output_format_options> |
[<global_switches> |

LogParser -restoreDefaults

-i:<input_format> <input_format_options>

Specifies the input format whose parameters' default values are to
be overridden, and the new default values for the selected
parameters.

The "-i:" switch is followed by the name of the selected input format,
and the new default values are entered as switches with names
matching the input format's parameter names, followed by a colon
and by the value for the new default, as in the following example:

C:\>LogParser -saveDefaults -i:EVT -binaryFormat: ASC -resolveSIDs:O

N
For more information on input format parameters, refer to the Input

Format Reference.

-0:<output_format> <output_format_options>

Specifies the output format whose parameters' default values are to
be overridden, and the new default values for the selected
parameters.

The "-0:" switch is followed by the name of the selected output
format, and the new default values are entered as switches with
names matching the output format's parameter names, followed by a
colon and by the value for the new default, as in the following
example:

C:\>LogParser -saveDefaults -0:NAT -rtp:-1

For more information on output format parameters, refer to the
Qutput Format Reference.

<global_switches>

Specify new default values for global switches.

The following example command overrides the default value of the "-
stats;" global switch, together with the "rtp" parameter of the NAT
output format:

C:\>LogParser -saveDefaults -0:NAT -rtp:-1 -stats:OFF

For more information on global switches, refer to the Global
Switches Reference.

-restoreDefaults

Restores the factory defaults of global switches, input format
parameters, and output format parameters.
When specified, the "-restoreDefaults" switch must be the only

argument of the command, as in the following example:

C:\>LogParser -restoreDefaults

See also:

Command-Line Operation Reference
Global Switches Reference

© 2004 Microsoft Corporation. All rights reserved.

Help Mode

"Help Mode", activated with the "-h" switch, offers users the possibility to
access "quick reference" help topics displayed to the console output.
The help topics, selectable through additional command-line arguments,
are:

e General Usage

e Query Language Syntax
e Functions Syntax

¢ Input and Output Formats
e Conversion Mode

e Query Examples

General Usage Help

The Log Parser command-line executable usage help is accessed with
the following command:

C:\>LogParser -h

Query Language Syntax Help

The Log Parser SQL-Like language syntax help is accessed with the
following command:

C:\>LogParser -h GRAMMAR

Functions Syntax Help

The Log Parser SQL-Like language functions syntax help is accessed

with commands having the following syntax:

LogParser -h FUNC[TIONS] [<function>]

Typing the following command will display the syntax for all the functions
available in the Log Parser SQL-Like language:

C:\>LogParser -h FUNCTIONS

Typing a function name following the help command displays the syntax
of the selected function only:

C:\>LogParser -h FUNCTIONS SUBSTR

Typing the first few letters of a function name displays the syntax of all
the functions whose name starts with the specified letters:

C:\>LogParser -h FUNCTIONS STR

Input and Output Formats Help

Input and output formats help is displayed with commands having the
following syntax:

LogParser -h -i:<input_format> [<from_entity> |

[<input_format_options> |

LogParser -h -o:<output_format>

For example, the following command displays help on the IISW3C input
format:

C:\>LogParser -h -i:IISW3C

The output of this command gives a detailed overview of the ISW3C

input format, including the syntax of the

<from_entity>, a list of all the supported properties together with their
default values, the structure of the records produced by the input format
(field names and types), and examples of queries using the input format.

When an input format retrieves field information from the data that needs
to be parsed, the help command can include the from-entity from which
the field information is to be gathered.

For example, the CSV input format examines the input files to retrieve the
names and types of the input record fields that will be exported. A help
command aimed at displaying the input record fields exported by the
CSV input format when parsing a specific file should include the filename
from-entity, as shown in the following example:

C:\>LogParser -h -i:CSV TestLogFile.csv

In addition, since the parameters of some input formats can affect the
structure of the input records, help commands can include these
parameters to display the varying input record structures.

For example, the NETMON input format has a "fMode" parameter that
can be used to specify how the input records should be structured. A help
command aimed at displaying the input record fields exported by the
NETMON input format when the "fMode" parameter is set to "TCPConn"
should include this parameter, as shown in the following example:

C:\>LogParser -h -i:NETMON -fMode:TCPConn

Conversion Mode Help

Conversion mode help is accessed with commands having the following
syntax:

LogParser -h -c [-i:<input_format> -o:<output_format> |

The following command displays general conversion mode help,

including the list of available built-in conversion queries:

C:\>LogParser -h -c
The following command displays help on the conversion between the

specified log file formats, including the full text of the built-in query that
performs the conversion:

C:\>LogParser -h -c -i:BIN -0:W3C

Query Examples Help

Examples of queries and commands can be displayed with the following
command:

C:\>LogParser -h EXAMPLES

See also:

Command-Line Operation Reference

© 2004 Microsoft Corporation. All rights reserved.

Global Switches

Global switches control overall behaviors of a command, and they are
used with most of the Log Parser command-line executable operational
modes.

The global switches are:

-e:<max_errors>
-iw[:ON|OFF]
-stats[:ON|OFF]

-q[:ON|OFF]

-e:<max_errors>

Specifies a maximum number of parse errors to collect internally
before aborting the execution of the command.

The default value for this global switch is -1, which is a special value
causing the SQL engine to ignore all parse errors and report only the
total number of parse errors encountered during the execution of the
command.

The following example command sets the maximum number of
parse errors to 100:

C:\>LogParser "SELECT Message FROM System" -e:100

For more information on parse errors and the "-e" switch, see Errors
Parse Errors, and Warnings.

-iw[:ON|OFF]

Specifies whether or not warnings should be ignored.

The default value is "OFF", meaning that run time warnings will not
be ignored and will trigger an interactive prompt to the user.
Specifying "ON", on the other hand, disables the interactive prompt,
and run time warnings will be ignored and their total count will be
reported when the command execution has completed.

The following example command executes a query ignoring run time
warnings:

C:\>LogParser "SELECT Message FROM System" -iw:ON

For more information on warnings and the "-iw" switch, see Errors
Parse Errors, and Warnings.

-stats[:ON|OFF]

Specifies whether or not command execution statistics should be
displayed when the command execution has completed.

The default value is "ON", causing command execution statistics to
be always displayed. Specifying "OFF" prevents the statistics from
being displayed.

The following example command executes a query preventing the
statistics from being displayed:

C:\>LogParser "SELECT COUNT(*) FROM System" -stats:OFF

-q[:ON|OFF]

Enables or disables "quiet mode".

When "quiet mode" is enabled, the console output of a command
contains only the output records, suppressing any additional
information. For this reason, the console output of a command
executed in "quiet mode" is suitable to be redirected to a text file.
Enabling "quiet mode" disables the display of parse errors, warnings,
and statistics. In addition, if the selected output format is the NAT
output format, its "rtp" and "headers" parameters are automatically
set as follows:

o -rtp:-1
e -headers:OFF

As an example, the output of following command shows the extra
information and the NAT output format headers that are normally
displayed to the console:

C:\>LogParser "SELECT COUNT(*) FROM System"

COUNT(ALL *)
In_this. example, enabling "quiet mode" suppresses the headers

digplayed by the NAT output format and the query execution
statistics, and the output would look like the following:
Statistics:
Gv>LogParser "SELECT COUNT(*) FROM System" -q:ON
B9didents processed: 6913
Elements output: 1

Execution time: 0.13 seconds
See also:

Command-Line Operation Reference
Errors, Parse Errors, and Warnings

© 2004 Microsoft Corporation. All rights reserved.

COM API

The Log Parser scriptable COM components architecture is made up of
the following objects:

LogQuery object: this object is the main COM object in the Log Parser
scriptable COM components architecture; it exposes methods to
execute SQL-Like queries and provides access to global parameters
controlling the execution of a query.

LogRecordSet object: this object is an enumerator of LogRecord
objects; it allows an application to navigate through the output records
of a query.

LogRecord object: this object represents a single query output record,
and it exposes methods that can be used to retrieve individual field
values from the output record.

Input Format objects: these objects provide programmatic access to
the input formats supported by Log Parser; each input format object
exposes properties having the same name as the parameters of the
corresponding Log Parser input format.

Output Format objects: these objects provide programmatic access to
the output formats supported by Log Parser; each output format object
exposes properties having the same name as the parameters of the
corresponding Log Parser output format.

See also:
Log Parser COM API Overview

C# Example

© 2004 Microsoft Corporation. All rights reserved.

LogQuery Object

The LogQuery object exposes the main APl methods that execute a
SQL-Like query and provides access to global parameters controlling the
execution of a query.

The object is instantiated with the "MSUtil.LogQuery" Progld.
The class name of the .NET COM wrapper for this object is
“Interop.MSUtil.LogQueryClassClass".

Methods

Execute Executes a query and returns a LogRecordSet
object that can be used to navigate through the
query output records.

ExecuteBatch | Executes a query and writes the query output
records to an output format.

Properties
errorMessages Returns a collection of the error, parse

error, and warning messages that
occurred during the execution of a query.

inputUnitsProcessed Returns the total number of input
records processed during the execution
of a query.

lastError Returns -1 if errors, parse errors, or
warnings occurred during the execution

of the query; 0 otherwise.

maxParseErrors Sets and gets the maximum number of
parse errors that can occur during the
execution of a query before aborting the
guery execution.

outputUnitsProcessed | Returns the total number of output
records sent to an output format during
the execution of a query.

versionMaj Returns the "major" component of the
version of the Log Parser scriptable
COM components.

versionMin Returns the "minor" component of the
version of the Log Parser scriptable
COM components.

Examples
JScript example:
var oLogQuery = new ActiveXObject("MSUTtil.LogQuery");
VBScript example:

Dim oLogQuery
Set oLogQuery = CreateObject("MSUtil.LogQuery")

See also:

LogRecordSet Object

Input Format Objects

Output Format Objects

Log Parser COM API Overview
C# Example

© 2004 Microsoft Corporation. All rights reserved.

Execute Method

Executes a query and returns a LogRecordSet object that can be used to
navigate through the query output records.

Script Syntax

objRecordSet = objLogQuery.Execute(strQuery [, objlnputFormat J[);

Parameters

strQuery
A string containing the text of the SQL-Like query to be executed.

objInputFormat
Either an Input Format object or a Custom Input Format Plugin
object.
If this parameter is not specified, or is null, Log Parser will attempt to
select automatically an input format upon inspection of the <from-
entity> in the FROM clause of the specified query.

Return Value

A LogRecordSet object, which can be used to navigate through the query
output records.

Remarks

¢ |f the query execution encounters errors, an exception is thrown
containing the error message and code, and the query execution is
aborted.
In this case, the lastError property of the LogQuery object is set to -1,

and the collection of strings returned by the errorMessages property
contains the error message.

If the query execution encounters parse errors or warnings, the query
executes successfully, and the method returns a LogRecordSet object.
In this case, the lastError property of the LogQuery object is set to -1,
and the collection of strings returned by the errorMessages property
contains the parse error messages and/or warning messages.

A successful execution of the Execute method does not necessarily
mean that the query execution has completed.

Depending on the query structure, navigating the query output records
with the LogRecordSet object can cause the query to further process
new input records, which could in turn generate additional errors, parse
errors, or warnings. See the LogRecordSet Object Reference for more

information.
e The specified query can not contain an INTO clause.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcriptleparmplemnat object
var olISW3ClInputFormat = new ActiveXObject("MSUtil.LogQuery.IIS

PiRCHREEIERA");

Dim olISW3ClInputFormat

Dipiepte)dasyy text

pins s RBEesYdSeSELECT c-ip FROM <1> WHERE cs-uri-stem LIKE %

SedntpaRricasd;

LogdiTesi elispep .

Ex éé Llj_t)ée uie JuGRRpy receive a LogRecordSet

Loghek el e QFQEEDBR eI TAuesiet iy W3CInputFormat);
Input Format Objects

Lod’ ! W

1 8CN) reateObject("MSUtil.LogQuery.IISW3CInp

C# tiXample')

/] (1ot n

d
1§ 5

YaVala¥ 2l
7Ottt ada 1ICTCUL

' Createrq@idexmod 7 plyecyft Sebgetragend Al rights reserved.
strQuery = "SELECT c-ip FROM <1> WHERE cs-uri-stem LIKE '%hitc

ount.&s@yét first field value
var strClientlp = oRecord.getValue(0);
' Execute query and receive a LogRecordSet
Set oR&romd $ietl d wdlogQuery.Execute (strQuery, olISW3CInputFormat)
WScript.Echo("Client IP Address: " + strClientlp);
' Visit all records
DO WRAIMANO T agieewortistaindxt record
oRecordSet.moveNext();
} ' Getarecord
Set oRecord = oRecordSet.getRecord
/I Close LogRecordSet
oRecofs dirstoie(st value
strClientIp = oRecord.getValue (0)

' Print field value
WScript.Echo "Client IP Address: " & strClientlp

' Advance LogRecordSet to next record
oRecordSet.moveNext

LOOP

' Close RecordSet
oRecordSet.close

ExecuteBatch Method

Executes a query and writes the output records to an output format.

Script Syntax

bResult = objLogQuery.ExecuteBatch(strQuery [, objInputFormat [, objOutput

Format |]);

Parameters

strQuery
A string containing the text of the SQL-Like query to be executed.

objInputFormat
Either an Input Format object or a Custom Input Format Plugin
object.
If this parameter is not specified, or is null, Log Parser will attempt to
select automatically an input format upon inspection of the <from-
entity> in the FROM clause of the specified query.

objOutputFormat
An Output Format object.
If this parameter is not specified, or is null, Log Parser will attempt to
select automatically an output format upon inspection of the <into-
entity> in the INTO clause of the specified query.

Return Value

A boolean value. Returns TRUE if the query executed with parse errors
or warnings; FALSE if the query executed without any parse error nor
warning.

Remarks

¢ |f the query execution encounters errors, an exception is thrown
containing the error message and code, and the query execution is
aborted.
In this case, the lastError property of the LogQuery object is set to -1,
and the collection of strings returned by the errorMessages property
contains the error message.

e If the query execution encounters parse errors or warnings, the query
executes successfully, and the method returns TRUE.
In this case, the lastError property of the LogQuery object is set to -1,
and the collection of strings returned by the errorMessages property
contains the parse error messages and/or warning messages.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBGSgcriptiexarhplerat object
var oEVTInputFormat = new ActiveXObject("MSUtil.LogQuery.EventL
PERBILESNRLY);
P bnputhgrmebigetion = "BW";
Dim oCSVOutputFormat

Pareate)yput Format object
Seeval®6:SVOutputFormat = new ActiveXObject("MSUtil.LogQuery.CSVO

Loﬁ}é gﬁ%éx = CreateObject("MSUtil.LogQuery")

Exeuite Matdh ormat.tabs = true;

InpL Inpsikosmat object

Ou t = CreateObject("MSUtil.LogQuery.EventLogInput
Lo DEAM (\;éfr\’;llev\(;Generated EventID INTO C:\\output.csv

C SR ®dmat.direction = "BW"
strQuery += " WHERE SourceName = 'Application Popup";

' Create Quipw PORMAL OIS Corporation. All rights reserved.

/ Executequery

SkogQuvi@litpacHaBwEt H Sne@tetdhj ed V' VIS piti Ehogadn ety S VidmupiioF
orangds')
oCSVOutputFormat.tabs = TRUE

' Create query text

strQuery = "SELECT TimeGenerated, EventID INTO C:\output.csv FRO
M System"

strQuery = strQuery & " WHERE SourceName = 'Application Popup™

' Execute query
oLogQuery.ExecuteBatch strQuery, oEVTInputFormat, oCSVOutputFor
mat

errorMessages Property

Returns a collection of strings containing the messages of errors, parse
errors, or warnings encountered while executing a query with the Execute
or ExecuteBatch methods.

Read-only property.

Script Syntax

value = objLogQuery.errorMessages;

Return Value

A collection of Strings containing error messages.

Remarks

e The object returned by the errorMessages property implements a
single read-only _NewEnum property. The _NewEnum property
retrieves an IEnumVARIANT interface on an object that can be used
to enumerate the collection.

The _NewEnum property is hidden within scripting languages (JScript
and VBScript). Applications written in the JScript language handle
objects implementing the _NewEnum property as Enumerator objects
or with the for...in statement, while applications written in the VBScript
language handle objects implementing the _NewEnum property with
the For Each...Next statement.

e If you want to retrieve parse error messages, make sure that the
maxParseErrors property of the LogQuery object is set to a value
different than -1. If the value of this property is -1 (the default value),
the parse error messages will be discarded, and the errorMessages
collection will contain a single message stating the total number of
parse errors occurred.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBBekiptiexamylerse error messages are collected
oLogQuery.maxParseErrors = 100;

Dim oLogQuery

IHiareateyiaeyy text
var strQuery = "SELECT sc-bytes INTO C:\\output.csv FROM ex040528.

Bg'6LogQuery = CreateObject("MSUtil.LogQuery")
See also:

ﬁ%ﬁﬂeﬁwq&txcurred

stQLhegRuesEBHET @ byRel INTO C:\output.csv FROM ex040528.Iog"
{ © 2004 Microsoft Corporation. All rights reserved.

' EXéSatiRidegho("Errors occurred!");

oLogQuery.ExecuteBatch strQuery
var oMessages = new Enumerator(oLogQuery.errorMessages);

' Chgk 'ioMesragnecaifiad(); oMessages.moveNext())

If dLogQuery.lastError <> 0 Then
WScript.Echo("Error message: " + oMessages.item());

WScript.Echo "Errors occurred!"

} For Each strMessage In oLogQuery.errorMessages
else WScript.Echo "Error Message: " + strMessage
{ Next

WScript.Echo("Executed successfully!™);

Flse

WScript.Echo "Executed succesfully!"

End If

InputUnitsProcessed Property

Returns the total number of input records processed by a query executed
with the ExecuteBatch method.

Read-only property.

Script Syntax

value = objLogQuery.inputUnitsProcessed;

Return Value

An integer value containing the total number of input records processed
by the last query executed with the ExecuteBatch method.

Remarks

e When a query is executed with the Execute method, this property
returns zero. In these cases, use the inputUnitsProcessed property of
the LogRecordSet object.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT TimeGenerated, EventID INTO C:\\output.csv

PR speieaty;

RiuerQuery " WHERE SourceName = 'Application Popup';

Seddlsbmng€)geeyy= CreateObject("MSUtil.LogQuery")
19§r UShyY e éecuteBatch(strQuery);

Lo

t

EXx W8

ou te % 5] %I@Hésgmaig %ﬁe@wthGddEPmnéDséNTO C:\output.csv FRO
Lo r 'U A{E’R Processed: " + oLogQuery.inputUnitsProc
Cit B o strQuery RE SourceName = 'Application Popup™

" Execute quer) , .
oLogQuery- 004 Microsof Lougpyorat/on. All rights reserved.

' Display total number of input records processed

WScript.Echo "Input Records Processed: " & oLogQuery.inputUnitsProce
ssed

lastError Property

Returns -1 if the Execute or ExecuteBatch methods encountered errors,
parse errors, or warnings; 0 otherwise.

Read-only property.

Script Syntax

value = objLogQuery.lastError;

Return Value

An integer value containing -1 if the Execute or ExecuteBatch methods
encountered errors, parse errors, or warnings; 0 otherwise.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT TimeGenerated, EventID INTO C:\\output.csv

PREOM oyeierty;
miRugrntery ' WHERE SourceName = 'Application Popup™;

Bdexgduedeeyy= CreateObject("MSUtil.LogQuery")
SeaohlgH)uery.ExecuteBatch(strQuery);

LogOuetis @pfaetext
%W%‘H@fgﬂ?@ﬁpera&d, EventID INTO C:\output.csv FRO

I{:;%%@uery.lastbrror 1=0)

" J— | 3 3 m

WScript.Echo("Errors occurred!");

} © 2004 Microsoft Corporation. All rights reserved.
eBeecute query
®LogQuery.ExecuteBatch strQuery
WScript.Echo("Executed successfully!™);
TCheck if errors occurred
If oLogQuery.lastError <> 0 Then
WScript.Echo "Errors occurred!"
Else
WScript.Echo "Executed succesfully!"
End If

maxParseErrors Property

Sets or gets the maximum number of parse errors that can occur during
the execution of a query before aborting the query execution.

Read/write property.

Script Syntax

objLogQuery.maxParseErrors = value;

value = objLogQuery.maxParseErrors;

Argument/Return Value

An integer value specifying the maximum number of parse errors that can
occur during the execution of a query before aborting the query
execution.

A value of -1 specifies that all parse errors should be ignored.

Default Value
-1

Remarks

e This property is analogous to the "-e" global switch available with the
Log Parser command-line executable.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");
VB S¢fiptrgxampleseErrors = 10;

Dim oLogQuery
Set oLogQuery = CreateObject("MSUtil.LogQuery")

oLogQuery.maxParseErrors = 10
See also:

LogQuery Object
Log Parser COM API Overview
C# Example

© 2004 Microsoft Corporation. All rights reserved.

outputUnitsProcessed Property

Returns the total number of output records sent to an output format by a
guery executed with the ExecuteBatch method.

Read-only property.

Script Syntax

value = objLogQuery.outputUnitsProcessed;

Return Value

An integer value containing the total number of output records sent to an
output format by the last query executed with the ExecuteBatch method.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUTtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT TimeGenerated, EventID INTO C:\\output.csv
PRV oyeierty;
piRugtery - WHERE SourceName = 'Application Popup™’;

Bdexgauedeeyy= CreateObject("MSUtil.LogQuery")
SeehlgH)uery.ExecuteBatch(strQuery);

LogOuietie @faefext
Exc?]éé S RheCmitriecar dsvEAMEIRATO C:\output.csv FRO

i 1 A . on .
inp M 'c(r:lé)és é)dnig%geeﬁg}rds Written: " + oLogQuery.outputUnitsProc

Loge&¥arkky €DARY &vEWHERRE SourceName = 'Application Popup™
C# Example

E~xvociito -ciioary
LIATTCULC _-lucl)’

oLogQuewy. BrecpeirsSait @erporation. All rights reserved.

' Display total number of output records generated
WScript.Echo "Output Records Written: " & oLogQuery.outputUnitsProc
essed

versionMaj Property
versionMin Property

Return the major and minor components of the version of the Log Parser
scriptable COM components currently being used.

Read-only properties.

Script Syntax

value = objLogQuery.versionMaj;

value = objLogQuery.versionMin;

Return Values

Integer values containing the major and minor components of the version
of the Log Parser scriptable COM components currently being used.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSciipttekaMplez Parser Version " + oLogQuery.versionMaj + "." + oL
ogQuery.versionMin);

Dim oLogQuery
Set oLogQuery = CreateObject("MSUtil.LogQuery")

WScript.Echo "Log Parser Version " & oLogQuery.versionMaj & "." & o

Sed.a@iery.versionMin

LogQuery Object
Log Parser COM API Overview
C# Example

© 2004 Microsoft Corporation. All rights reserved.

LogRecordSet Object

The LogRecordSet object is returned by the Execute method of the
LogQuery object, and it exposes methods that can be used to navigate
through the output records of a query.

The LogRecordSet object is an enumerator of LogRecord objects.

The interface name of the .NET COM wrapper for this object is
“Interop.MSUtil.ILogRecordset".

Methods
atEnd Returns a Boolean value indicating if the
enumerator is at the end of the collection.
close Releases the enumeration and all the

associated resources.

getColumnCount || Returns the number of fields in the query
output records.

getColumnName || Returns the name of a field in the query
output records.

getColumnType Returns the data type of a field in the query
output records.

getRecord Returns the current LogRecord object in the
enumeration.
moveNext Advances the enumerator to the next

LogRecord in the enumeration.

Properties

errorMessages

Returns a collection of the error, parse
error, and warning messages that
occurred during the last invocation of the
moveNext method.

inputUnitsProcessed

Returns the total number of input records
processed during the execution of a

query.

lastError

Returns -1 if errors, parse errors, or
warnings occurred during the last
invocation of the moveNext method; 0
otherwise.

INTEGER_TYPE

Returns the value of the constant
representing the INTEGER data type.

NULL_TYPE Returns the value of the constant
representing the NULL data type.
REAL_TYPE Returns the value of the constant

representing the REAL data type.

STRING_TYPE

Returns the value of the constant
representing the STRING data type.

TIMESTAMP_TYPE

Returns the value of the constant
representing the TIMESTAMP data type.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");
var oLogRecordSet = oLogQuery.Execute("SELECT * FROM System")
ViBScript example:

Dim oLogQuery
Dim oLogRecordSet

Set oLogQuery = CreateObject("MSUtil.LogQuery")
SeesalsPogRecordSet = oLogQuery.Execute("SELECT * FROM System")
LogQuery Object
LogRecord Object

Log Parser COM API Overview
C# Example

© 2004 Microsoft Corporation. All rights reserved.

atEnd Method

Returns a Boolean value indicating if the enumerator is at the end of the
collection.

Script Syntax

value = objRecordSet.atEnd();

Return Value

A Boolean value set to TRUE if there are no more LogRecord objects to
enumerate; FALSE otherwise.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBGgxiptleparhpletat object
var olISW3ClInputFormat = new ActiveXObject("MSUtil.LogQuery.IIS

PiRCHREEIERA");
Dim olISW3ClInputFormat

Dipiepte)dasyy text

pinseRuesYdSeSELECT c-ip FROM <1> WHERE cs-uri-stem LIKE "%

See}mﬁs@w&

jec
: RES ?8 o ugr , anEl receive a LogRecordSet

406! ~OEQERNRREx eSS TQpeyept$ W3CInputFormat);

Ep@ﬁ@éﬁmat ij ect
S SReaRReEARII0: asaeOhlect MBS LI L ogQuers ISW3CInp

fitFormat™)
/I Get a record
' CreaterqpiReydedt= oRecordSet.getRecord();
strQuery = "SELECT c-ip FROM <1> WHERE cs-uri-stem LIKE '%hitc
ount.&s@yét first field value
var strClientlp = oRecord.getValue(0);
' Execute query and receive a LogRecordSet
Set oR&romd $ietl d wdlogQuery.Execute (strQuery, olISW3CInputFormat)
WScript.Echo("Client IP Address: " + strClientlp);
' Visit all records
DO WKAMANO T agieewortistaindxt record
oRecordSet.moveNext();
} ' Getarecord
Set oRecord = oRecordSet.getRecord
// Close LogRecordSet
oRecofs dirstoie(st value
strClientIp = oRecord.getValue (0)

' Print field value
WScript.Echo "Client IP Address: " & strClientlp

' Advance LogRecordSet to next record
oRecordSet.moveNext

LOOP

' Close RecordSet
oRecordSet.close

close Method

Releases the enumeration and all the associated resources.

Script Syntax

objRecordSet.close();

Return Value

None.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcriptleparmplemnat object
var olISW3ClInputFormat = new ActiveXObject("MSUtil.LogQuery.IIS

pizConpEdeenat”);
Dim olISW3ClInputFormat

DimeatQaeeyy text
D eRuesYdISeSELECT c-ip FROM <1> WHERE cs-uri-stem LIKE "%

CCHieS ey ggé receive a LogRecordSet
8E0TAGS Elﬂk@%%gﬂﬁxmmﬂaggﬁeﬁi§5W3CInputFormat);

ct ’/% &ﬁ&l &p@ﬁ@dﬁmat object

sl SoRecReAlI0: aeaeOhlect MBS LI L ogQuers I SW3CInp

1{1tF0rmat")
// Get a record

' CreaterqpiReydedt= oRecordSet.getRecord();
strQuery = "SELECT c-ip FROM <1> WHERE cs-uri-stem LIKE '%hitc
ount.&s@yét first field value
var strClientlp = oRecord.getValue(0);
' Execute query and receive a LogRecordSet
Set oR&romd $ietl d wdlogQuery.Execute (strQuery, olISW3CInputFormat)
WScript.Echo("Client IP Address: " + strClientlp);
' Visit all records
DO WKAMANO T agieewortstairndxt record
oRecordSet.moveNext();
} ' Getarecord
Set oRecord = oRecordSet.getRecord
// Close LogRecordSet
oRecofS dirstoie(st value
strClientIp = oRecord.getValue (0)

' Print field value
WScript.Echo "Client IP Address: " & strClientlp

' Advance LogRecordSet to next record
oRecordSet.moveNext

LOOP

' Close RecordSet
oRecordSet.close

getColumnCount Method

Returns the number of fields in the query output records.

Script Syntax

value = objRecordSet.getColumnCount();

Return Value

An integer value containing the number of fields in the query output
records.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptaexamgle:
var strQuery = "SELECT * FROM System";
Dim oLogQuery

Hixeprbe srdgyt and receive a LogRecordSet
yanpRecordSet = oLogQuery.Execute(strQuery);

SedjddspipQiely BamesEOBReEE MSUtil. LogQuery")

Logﬁgre(cord%gt &%Ie%fordse'[getColumnCount(); f++)

8 GEeBY AP | Overview
u]'lz}:{':' NEEE.ECT * FROM System"

WScript.Echo("Field Name: " + oRecordSet.getColumnName(f));

Execute guepyangrersive At 98 SHIR el rights reserved.
Set/diield = oLogQuery.Execute (strQuery)

switch(oRecordSet.getColumnType(f))

' Display field names and types
For fcase bReRmctSdSHEN §#GAIRMNBENt()-1{
WScript.Echo("Field Type: INTEGER");
' Field Name break;
WScript.Echo "Field Nanhe: " & oRecordSet.getColumnName(f)

' FdsbtgBecordSet. REAL_TYPE: {
Select Case oRecordSet.get@unptIipe(f) 'Field Type: REAL");
break;

Case oRecordSet.INTBGER_TYPE WScript.Echo "Field Type:
INTEGER"

e aReEmd St RI-ANGIYRIPE: W Script.Echo "Field Type: R
EAL" WScript.Echo("Field Type: STRING");

Case oRecordSet. STRINbi€dR; PE WScript.Echo "Field Type: S
TRING" }

Case oRecordSet. TIMESTAMP_TYPE WScript.Echo "Field Typ
e: TIMESORM®'dSet. TIMESTAMP_TYPE: {

Case oRecordSet. NULL_WS&ipt. EchoW $ieipt Fghe THNIEIYAMN'
YLL"

break;
End Select }
Nextcase oRecordSet. NULL_TYPE: {
WScript.Echo("Field Type: NULL");
' Close LogRecordSet break;
oRecordSet.close() }
}
}
/I Close LogRecordSet

oRecordSet.close();

getColumnName Method

Returns the name of a field in the query output records.

Script Syntax

value = objRecordSet.getColumnName(index);

Parameters

index
The 0-based index of the field in the query output records. The index
must be less than the number of fields returned by the
getColumnCount method.

Return Value

A string value containing the name of the output record field at the
specified position.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptaexamgle:
var strQuery = "SELECT * FROM System";
Dim oLogQuery

Hixepbe srdgy and receive a LogRecordSet
yanpRecordSet = oLogQuery.Execute(strQuery);

See/dbsaplay field names and types
LodRUehiSHBiRerorebB CtMARIEI ot ery)

Log Parser COM API Overview

C#

%uumr

StriMarypt. E&Eh@(E’TeIﬂHMM SysteRé'cordSet.getColumnName(f));

SeSWReh()KIEMGfdﬂﬂIth@DjZLEIXBTyIE(fStDQuery)
{
' Displase fof davadfestdddltgpdsR_TYPE: {
For f = 0 To oRecordSet.getCOMfunigohnt(gf1"Field Type: INTEGER");
break;

' Field Name }
WScript.Echo "Field Name: " & oRecordSet.getColumnName(f)
case oRecordSet. REAL_TYPE: {
' Field type WScript.Echo("Field Type: REAL");
Select Case oRecordSet.gethiehknnType(f)
}
Case oRecordSet. INTEGER_TYPE WScript.Echo "Field Type:
INTE@dRIRecordSet. STRING _TYPE: {
Case oRecordSet. REAL_W¥&tpt. EchoW Stirilut Fgher 'FIRENIYPE: R
EAL" break;
Case oRecordSet. STRING_TYPE WScript.Echo "Field Type: S
TRING"
Camre iR St IS TAAWIP TYWHPH: (W Script.Echo "Field Typ

e: TIMESTAMP" WScript.Echo("Field Type: TIMESTAMP"
); Case oRecordSet. NULL_TYPE WScript.Echo "Field Type: N
ULL" break;
}
End Select
case oRecordSet. NULL_TYPE: {
Next WScript.Echo("Field Type: NULL");
break;
' Close LogRecordSet }
oRkcordSet.close()

}

/I Close LogRecordSet
oRecordSet.close();

getColumnType Method

Returns the type of a field in the query output records.

Script Syntax

value = objRecordSet.getColumnType(index);

Parameters

index
The 0-based index of the field in the query output records. The index
must be less than the number of fields returned by the
getColumnCount method.

Return Value

An integer value containing the type of the output record field at the
specified position.

This value is one of the constants returned by the INTEGER_TYPE,
REAL_TYPE, STRING_TYPE, TIMESTAMP_TYPE, and NULL_TYPE
properties.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT * FROM System";

ﬁﬂfﬁ(%q%% LRy and receive a LogRecordSet
FnLPBReerigeei oLogQuery.Execute(strQuery);

Dim f
// Display field names and types

Sed@96h sty Recerish el eBiOHBE

Lo | [ect

I(‘:(; e It J.EE‘E%TIC@ %: §y+st(a§le‘cord8et.getColumnName(f));
' E’éée%fl]éi ut:
Seﬁ{%’ﬁﬁ@

' DissEsF AREGARC N ER_TYPE: |

Forf=0To oRecordSet.getCébT{ﬁﬁE@BE‘ﬁm-(luField Type: INTEGER");
reak;

' Field Name }

WScript.Echo "Field Name: " & oRecordSet.getColumnName(f)
case oRecordSet. REAL_TYPE: {

' Field type WScript.Echo("Field Type: REAL");
Select Case oRecordSet.g}et@(?ﬁhhnType(f)

Case oRecordSet.INTEGER _TYPE WScript.Echo "Field Type:
INTE@§EeRecordSet. STRING_TYPE: {

Case oRecordSet. REAL W§gﬁptEChO&V§&ﬂ]ﬁ£@% %&Mpk R
EAL" “break;

Case oRecordSet.STRl}NG_TYPE WScript.Echo "Field Type: S
TRING"

%WMHM%%{%% {WSCript.Echo "Field T

e: TIMESTAMP" WScript.Echo("Field Type: TIMESTAMP"
), Case oRecordSet.NULL_TYPE WScript.Echo "Field Type: N

" “break;
ULL

}
End Select

case oRecordSet. NULL_TYPE: {

Next WScript.Echo("Field Type: NULL");
break;

' Close LogRecordSet }

oRkcordSet.close()

}

/I Close LogRecordSet
oRecordSet.close();

getRecord Method

Returns the current LogRecord object in the enumeration.

Script Syntax

objRecord = objRecordSet.getRecord();

Return Value
The current LogRecord object in the enumeration.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcriptleparmplemnat object
var olISW3ClInputFormat = new ActiveXObject("MSUtil.LogQuery.IIS

pizConpEdeenat”);
Dim olISW3ClInputFormat

DimeatQaeeyy text
D eRuesYdISeSELECT c-ip FROM <1> WHERE cs-uri-stem LIKE "%

SISy ggé receive a LogRecordSet
SEQENG A ESERNRREx MBI T dpeies}ty W3CInputFormat);

ct ’/% &ﬁ&l &p@ﬁ@dﬁmat object

sl SoRecReAlI0: aeaeOhlect MBS LI L ogQuers I SW3CInp

1{1tF0rmat")
// Get a record

' CreaterqpiReydedt= oRecordSet.getRecord();
strQuery = "SELECT c-ip FROM <1> WHERE cs-uri-stem LIKE '%hitc
ount.&s@yét first field value
var strClientlp = oRecord.getValue(0);
' Execute query and receive a LogRecordSet
Set oR&romd $ietl d wdlogQuery.Execute (strQuery, olISW3CInputFormat)
WScript.Echo("Client IP Address: " + strClientlp);
' Visit all records
DO WKAMANO T agieewortstairndxt record
oRecordSet.moveNext();
} ' Getarecord
Set oRecord = oRecordSet.getRecord
// Close LogRecordSet
oRecofS dirstoie(st value
strClientIp = oRecord.getValue (0)

' Print field value
WScript.Echo "Client IP Address: " & strClientlp

' Advance LogRecordSet to next record
oRecordSet.moveNext

LOOP

' Close RecordSet
oRecordSet.close

moveNext Method

Advances the enumerator to the next LogRecord in the enumeration.

Script Syntax

objRecordSet.moveNext();

Return Value

None.

Remarks

Depending on the query structure, calling the moveNext method can
cause the query to further process new input records, which could in
turn generate additional errors, parse errors, or warnings.

If the moveNext method encounters errors, an exception is thrown
containing the error message and code, and further processing is
aborted.

In this case, the lastError property of the LogRecordSet object is set to
-1, and the collection of strings returned by the errorMessages property
contains the error message.

If the moveNext method encounters parse errors or warnings, the
enumerator is advanced successfully, and the lastError property of the
LogRecordSet object is set to -1. In this case, the collection of strings
returned by the errorMessages property contains the parse error
messages and/or warning messages.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcriptleparmplemnat object
var olISW3CInputFormat = new ActiveXObject("MSUtil.LogQuery.IIS

pizConpEdeenat”);
Dim olISW3ClInputFormat

DimeatQaeeyy text
Db RuesydSeS ELECT c-ip FROM <1> WHERE cs-uri-stem LIKE "%

CCHieS ey ggé receive a LogRecordSet
8E0TAGS Elﬂk@%@ﬁgﬂﬁxm@mq@ggﬁe@ﬁiWSCInputFormat);

ct ’/% &ﬁ&l Ep@ﬁ@dﬁmat object

sl SoRecRealI0: LasaeOhlect MBS LIH L ogQuers ISW3CInp

1{1tF0rmat")
/! Get a record
' CreMer qukegqesk oRecordSet.getRecord();

strQuery = "SELECT c-ip FROM <1> WHERE cs-uri-stem LIKE '%hitc
ount.4sret first field value

var strClientlp = oRecord.getValue(0);

' Execute query and receive a LogRecordSet

Set oft abpé §ield valegQuery.Execute (strQuery, o[ISW3CInputFormat)
WScript.Echo("Client IP Address: " + strClientlp);

' Visit all records

DO WHAMRINOTegheerakwtdgnaxt record

oRecordSet.moveNext();

} ' Get a record

Set oRecord = oRecordSet.getRecord
// Close LogRecordSet

oRecoggly ischose(d value
strClientIp = oRecord.getValue (0)

' Print field value
WScript.Echo "Client IP Address: " & strClientlp

' Advance LogRecordSet to next record

oRecordSet.moveNext

LOOP

' Close RecordSet
oRecordSet.close

errorMessages Property

Returns a collection of strings containing the messages of errors, parse
errors, or warnings that occurred during the last invocation of the
moveNext method.

Read-only property.

Script Syntax

value = objLogRecordSet.errorMessages;

Return Value

A collection of Strings containing error messages.

Remarks

e The object returned by the errorMessages property implements a
single read-only _NewEnum property. The _NewEnum property
retrieves an IEnumVARIANT interface on an object that can be used
to enumerate the collection.

The _NewEnum property is hidden within scripting languages (JScript
and VBScript). Applications written in the JScript language handle
objects implementing the _NewEnum property as Enumerator objects
or with the for...in statement, while applications written in the VBScript
language handle objects implementing the _NewEnum property with
the For Each...Next statement.

e If you want to retrieve parse error messages, make sure that the
maxParseErrors property of the LogQuery object is set to a value
different than -1. If the value of this property is -1 (the default value),
the parse error messages will be discarded, and the errorMessages
collection will contain a single message stating the total number of
parse errors occurred.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBBekiptiexamylerse error messages are collected
oLogQuery.maxParseErrors = 100;

Dim oLogQuery

DipeaEshBe iR ghigct
panpsiEWnputFormat = new ActiveXObject("MSUtil.LogQuery.IIS
Pidtbruddiageat”);

Seq}i‘ﬂl‘-ﬁ@Record

VIS hekTHRITPRSrREAUSHct
HeobngWwsoHasitrsemt 8)CreateObject("MSUtil.LogQuery.IISW3ClInp

@tFormat")
WScript.Echo("Errors occurred!");

' Create query text

strQuéyeMeEpges T agly Hnomerarori il peRues R rordvhepIageS dhitc
ount.BQH; 'oMessages.atEnd(); oMessages.moveNext())

{
' ExecutW §eEipt dehpdcEiron mesreeoras @Messages.item());

Set oRecordSet = oLogQuery.Execute (strQuery, olISW3ClInputFormat)
}

" Check if errors occurred

1 ¥istlo@heg§aEdsError <> 0 Then
while('oRecordSet.atEnd())

{ WScript.Echo "Errors occurred!"

/I Get a record
Fovd&auR etnvilesse@e tnmlSeg @rt@yamdi)ylessages
WScript.Echo "Error Message: " + strMessage
NextGet first field value
var strClientlp = oRecord.getValue(0);
End If
// Print field value
WScript.Echo("Client IP Address: " + strClientlp);
' Visit all records
DO WKAMANO T agieewortistaindxt record
oRecordSet.moveNext();
' Get a record
B b&dcifrdrrooRecouditet. getRecord
if(oRecordSet.lastError != 0)
{Get first field value

stridl feartilp . E dReCbrdogetdadueréd)));

' Priat 6l dssaes = new Enumerator(oRecordSet.errorMessages);
W SariptdMlessagéentH R)] doddkess dg estnfitieaN pxt())

{
" AdviserippdRiboif dSeotamessagecord oMessages.item());
oRpcordSet.moveNext

}
} ' Check if errors occurred

If oRecordSet.lastError <> 0 Then
/I Close LogRecordSet

oRecord¥8iccipsé{gho "Errors occurred!"

For Each strMessage In oRecordSet.errorMessages
WScript.Echo "Error Message: " + strMessage
Next

End If
LOOP

' Close RecordSet
oRecordSet.close

InputUnitsProcessed Property

Returns the total number of input records processed so far by a query
executed with the Execute method.

Read-only property.

Script Syntax

value = objLogRecordSet.inputUnitsProcessed,;

Return Value

An integer value containing the total number of input records processed
so far by the query that returned the LogRecordSet object.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUTtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT * FROM System";
Dim oLogQuery
Hixepbe srdgy and receive a LogRecordSet
panpitequigi§et = oLogQuery.Execute(strQuery);

Se@@i.’@‘@é@g@@rds CreateObject("MSUtil.LogQuery")
LogRUE s ey atEndO))

Log‘ﬁ%ﬁ@éﬁ@@M%PI_Ovewiew
C# HQUSHESPIBE DETTEF HRUML ggeesgp processed so far

WScpt Echo("Input ltiecords Processed: " + oRecordSet.inputUnits

Q ,m_ ation. All rights reserved.

Set oRecordSet = oLogQuery Execute(strQuery)
// Get a record

' VisivatlaRecrdsl = oRecordSet.getRecord();

DO WHILE NOT oRecordSet.atEnd
/I Advance LogRecordSet to next record
bRisplaySenmiberediexg)it records processed so far

} WScript.Echo "Input Records Processed: " & oRecordSet.inputUnits

Processed

// Display total number of input records processed

WSctigeEahle(ditbtal Input Records Processed: " + oRecordSet.inputUnit

sProc@sseREcord = oRecordSet.getRecord

/I ClosddvagRedovdRetcordSet to next record
oRecoREserdisempveNext

LOOP

' Display total number of input records processed
WScript.Echo "Total Input Records Processed: " & oRecordSet.inputUnit
sProcessed

' Close RecordSet
oRecordSet.close

lastError Property

Returns -1 if errors, parse errors, or warnings occurred during the last
invocation of the moveNext method; 0 otherwise.

Read-only property.

Script Syntax

value = objRecordSet.lastError;

Return Value

An integer value containing -1 if the last moveNext method invocation
encountered errors, parse errors, or warnings; 0 otherwise.

Examples
JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBBekiptiexamylerse error messages are collected
oLogQuery.maxParseErrors = 100;

Dim oLogQuery

DipeEshwBe kiR ghigct
panpsEWinputFormat = new ActiveXObject("MSUtil.LogQuery.IIS
Pidtbrusdiageat”);

Seq}iﬁ'l‘-i@Record

VErvi
C# Eégg%%t@ﬁery CreateObject("MSUtil.LogQuery")

éSI\/I SE 'EBCT Cr é[\)NFROM <1> WHERE cs-uri-stem LIKE '%

// Execute query and receive a LogRecordSet

VM aReni@iSe0s ddio gidaTiy@EsprriiemQiiéaediis WSelnpd Format);

oLogQuery.maxParseErrors = 100

/I Check if errors occurred

1o atg Qupny. FstiiatooH je €))

$et olISW3ClInputFormat = CreateObject("MSUtil.LogQuery.IISW3ClInp
utFortwi8eipt. Echo("Errors occurred!");

' Createrqiigssages = new Enumerator(oLogQuery.errorMessages);
strQuieny; 2 OSIEEdAEAS atipnd RO WMdss Agad FiibE et axticprem LIKE '%hitc
ount.gsp™

WScript.Echo("Error message: " + oMessages.item());
' Exe¢ute query and receive a LogRecordSet
$et oRecordSet = oLogQuery.Execute (strQuery, olISW3CInputFormat)

7 Visckalfl eecansdeccurred

WhilefgQRerpldSéraoErd(D) Then
{
WdGpt &odmof@Errors occurred!”

var oRecord = oRecordSet.getRecord();
For Each strMessage In oLogQuery.errorMessages
WGetifirdt dhel d Kaloe Message: " + strMessage
Nexdr strClientlp = oRecord.getValue(0);

End W Print field value
WScript.Echo("Client IP Address: " + strClientlp);

' Visit/aNdeancds.ogRecordSet to next record
DO WRHtdzdSeXFmivedded§es.atEnd

1 &eheckedoedrors occurred
HéoBReuniSet. laB#ttood et FrtRecord
{
' G $msipfiklchwedtarors occurred!™);
strClientIp = oRecord.getValue (0)
var oMessages = new Enumerator(oRecordSet.errorMessages);
' Pfon(flelMeatages.atEnd(); oMessages.moveNext())
WScript.Echo "Client IP Address: " & strClientlp

WScript.Echo("Error message: " + oMessages.item());
' AHvance LogRecordSet to next record
JoRecordSet.moveNext
}
' Check if errors occurred
/I ClddeoBegBetoedBestError <> 0 Then
oRecordSet.close();
WScript.Echo "Errors occurred!"

For Each strMessage In oRecordSet.errorMessages
WScript.Echo "Error Message: " + strMessage
Next

End If
LOOP

' Close RecordSet
oRecordSet.close

INTEGER_TYPE Property

The constant value returned by the getColumnType method to indicate
that an output record field contains values of the INTEGER data type.

Read-only property.

Script Syntax

value = objRecordSet.INTEGER_TYPE;

Return Value

An integer value containing the constant that represents the INTEGER
data type.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT * FROM System";

Dim oLogQuery

Hixeprbe spdgyt and receive a LogRecordSet
yanpRecordSet = oLogQuery.Execute(strQuery);

SedjddsppQiely BamesOB)REE MSUtil. LogQuery")
NUE?_F('Y‘}II;EOPFS le% cordSet.getColumnCount(); f++)

REALTCREIHeDY SRty
fy FROM System"

?IMEW HOBE Pll% & [pe: " + oRecordSet.getColumnName(f));

Logﬁmhﬁmmﬂﬂﬂ@l@ehﬁwnTm(ﬁtbQuery)
C# Ex{amnle

For f 0 @MW@@MMMW]F@M§Y@96¥D@EGER")

break;
' Field Name }
WScript.Echo "Field Name: " & oRecordSet.getColumnName(f)
case oRecordSet. REAL_TYPE: {
' Field type WScript.Echo("Field Type: REAL");
Select Case oRecordSet.gethiehknnType(f)
}
Case oRecordSet. INTEGER_TYPE WScript.Echo "Field Type:
INTE@GdRIRecordSet. STRING _TYPE: {
Case oRecordSet. REAL_W¥&tpt. EchoW Stirilpt Fgher 'FIRENIyPE: R
EAL" break;
Case oRecordSet. STRING_TYPE WScript.Echo "Field Type: S
TRING"
Care iR S IS TAAWIP WP~ (W Script.Echo "Field Typ

e: TIMESTAMP" WScript.Echo("Field Type: TIMESTAMP"
); Case oRecordSet. NULL_TYPE WScript.Echo "Field Type: N
ULL" break;
}
End Select
case oRecordSet. NULL_TYPE: {
Next WScript.Echo("Field Type: NULL");
break;
' Close LogRecordSet }
oRkcordSet.close()
}
// Close LogRecordSet

oRecordSet.close();

NULL_TYPE Property

The constant value returned by the getColumnType method to indicate
that an output record field contains values of the NULL data type.

Read-only property.

Script Syntax

value = objRecordSet. NULL_TYPE;

Return Value

An integer value containing the constant that represents the NULL data
type.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT * FROM System";

Dim oLogQuery
Hixeprbe spdgyt and receive a LogRecordSet
yanpRecordSet = oLogQuery.Execute(strQuery);

Seadsmiucield BamRsETJREE MS Uil LogQuery")
”\'-ﬂC Egé[f;‘f ff@iaféq%%cgé%et.getColumnCount(); f++)

REALTepeHHany (et
STRIREE { FROM System"
TIMEW EIC\PB(E Pll%%é\]r \I/IIEZ " + oRecordSet.getColumnName(f));

Logﬁmhﬁmmﬂﬂﬂ@l@ehﬁwnTm(ﬁtbQuery)
C# Ex{amnle

For f 0 @MW@@MMMW]F@M§Y@96¥D@EGER")

break;
' Field Name }
WScript.Echo "Field Name: " & oRecordSet.getColumnName(f)
case oRecordSet. REAL_TYPE: {
' Field type WScript.Echo("Field Type: REAL");
Select Case oRecordSet.gethiehknnType(f)
}
Case oRecordSet. INTEGER_TYPE WScript.Echo "Field Type:
INTE@GdRIRecordSet. STRING _TYPE: {
Case oRecordSet. REAL_W¥&tpt. EchoW Stirilpt Fgher 'FIRENIyPE: R
EAL" break;
Case oRecordSet. STRING_TYPE WScript.Echo "Field Type: S
TRING"
Care iR S IS TAAWIP WP~ (W Script.Echo "Field Typ

e: TIMESTAMP" WScript.Echo("Field Type: TIMESTAMP"
); Case oRecordSet. NULL_TYPE WScript.Echo "Field Type: N
ULL" break;
}
End Select
case oRecordSet. NULL_TYPE: {
Next WScript.Echo("Field Type: NULL");
break;
' Close LogRecordSet }
oRkcordSet.close()
}
// Close LogRecordSet

oRecordSet.close();

REAL_TYPE Property

The constant value returned by the getColumnType method to indicate
that an output record field contains values of the REAL data type.

Read-only property.

Script Syntax

value = objRecordSet. REAL_TYPE,;

Return Value

An integer value containing the constant that represents the REAL data
type.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT * FROM System";

Dim oLogQuery
Hixeprbe spdgyt and receive a LogRecordSet
yanpRecordSet = oLogQuery.Execute(strQuery);

Seadsmiucield BamRsETJREE MS Uil LogQuery")
”\'-ﬂC Egé[f;‘f ff@iaféq%%cgé%et.getColumnCount(); f++)

NULET Ydpet
STRIHEE { FROM System"
TIMEW EIC\PB(E Pll%%é\]r \I/IIEZ " + oRecordSet.getColumnName(f));

Logﬁmhﬁmmﬂﬂﬂ@l@ehﬁwnTm(ﬁtbQuery)
C# Ex{amnle

For f 0 @MW@@MMMW]F@M§Y@96¥D@EGER")

break;
' Field Name }
WScript.Echo "Field Name: " & oRecordSet.getColumnName(f)
case oRecordSet. REAL_TYPE: {
' Field type WScript.Echo("Field Type: REAL");
Select Case oRecordSet.gethiehknnType(f)
}
Case oRecordSet. INTEGER_TYPE WScript.Echo "Field Type:
INTE@GdRIRecordSet. STRING _TYPE: {
Case oRecordSet. REAL_W¥&tpt. EchoW Stirilpt Fgher 'FIRENIyPE: R
EAL" break;
Case oRecordSet. STRING_TYPE WScript.Echo "Field Type: S
TRING"
Care iR S IS TAAWIP WP~ (W Script.Echo "Field Typ

e: TIMESTAMP" WScript.Echo("Field Type: TIMESTAMP"
); Case oRecordSet. NULL_TYPE WScript.Echo "Field Type: N
ULL" break;
}
End Select
case oRecordSet. NULL_TYPE: {
Next WScript.Echo("Field Type: NULL");
break;
' Close LogRecordSet }
oRkcordSet.close()
}
// Close LogRecordSet

oRecordSet.close();

STRING_TYPE Property

The constant value returned by the getColumnType method to indicate
that an output record field contains values of the STRING data type.

Read-only property.

Script Syntax

value = objRecordSet. STRING_TYPE;

Return Value

An integer value containing the constant that represents the STRING
data type.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT * FROM System";
Dim oLogQuery

Hixeprbe spdgyt and receive a LogRecordSet
yanpRecordSet = oLogQuery.Execute(strQuery);

SedddspinQiely ramRREOB)REE MSULLLogQuery")
INTf Eglgﬁ f_fQ;Pféqgreo%)é%et.getColumnCount(); f++)
NUR Erepiastanydggit, ;FROM <
* ystem"
'IF'QIIi/IAItEEmCI{AB%%(E Pllgcl)%é\]r ne: " + oRecordSet.getColumnName(f));

Logﬁmhﬁmmﬂﬂﬂ@l@ehﬁwnTm(ﬁtbQuery)
C# Ex{amnle

For f 0 @MW@@MMMW]F@M§Y@96¥D@EGER")

break;
' Field Name }
WScript.Echo "Field Name: " & oRecordSet.getColumnName(f)
case oRecordSet. REAL_TYPE: {
' Field type WScript.Echo("Field Type: REAL");
Select Case oRecordSet.gethiehknnType(f)
}
Case oRecordSet. INTEGER_TYPE WScript.Echo "Field Type:
INTE@GdRIRecordSet. STRING _TYPE: {
Case oRecordSet. REAL_W¥&tpt. EchoW Stirilpt Fgher 'FIRENIyPE: R
EAL" break;
Case oRecordSet. STRING_TYPE WScript.Echo "Field Type: S
TRING"
Care iR S IS TAAWIP WP~ (W Script.Echo "Field Typ

e: TIMESTAMP" WScript.Echo("Field Type: TIMESTAMP"
); Case oRecordSet. NULL_TYPE WScript.Echo "Field Type: N
ULL" break;
}
End Select
case oRecordSet. NULL_TYPE: {
Next WScript.Echo("Field Type: NULL");
break;
' Close LogRecordSet }
oRkcordSet.close()
}
// Close LogRecordSet

oRecordSet.close();

TIMESTAMP_TYPE Property

The constant value returned by the getColumnType method to indicate
that an output record field contains values of the TIMESTAMP data type.

Read-only property.

Script Syntax

value = objRecordSet. TIMESTAMP_TYPE;

Return Value

An integer value containing the constant that represents the TIMESTAMP
data type.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT * FROM System";
Dim oLogQuery
Hixeprbe spdgyt and receive a LogRecordSet
yanpRecordSet = oLogQuery.Execute(strQuery);

Seadsmiucield BamRsETJREE MS Uil LogQuery")
”\'-ﬂC Egé[f;‘f ff@iaféq%%cgé%et.getColumnCount(); f++)

NULE BOEROBI s
ystem"
SEQ%E'CW %-%prbn belﬁl\g Name: " + oRecordSet.getColumnName(f));

Logﬁmhﬁmmﬂﬂﬂ@l@ehﬁwnTm(ﬁtbQuery)
C# Ex{amnle

For f 0 @MW@@MMMW]F@M§Y@96¥D@EGER")

break;
' Field Name }
WScript.Echo "Field Name: " & oRecordSet.getColumnName(f)
case oRecordSet. REAL_TYPE: {
' Field type WScript.Echo("Field Type: REAL");
Select Case oRecordSet.gethiehknnType(f)
}
Case oRecordSet. INTEGER_TYPE WScript.Echo "Field Type:
INTE@GdRIRecordSet. STRING _TYPE: {
Case oRecordSet. REAL_W¥&tpt. EchoW Stirilpt Fgher 'FIRENIyPE: R
EAL" break;
Case oRecordSet. STRING_TYPE WScript.Echo "Field Type: S
TRING"
Care iR S IS TAAWIP WP~ (W Script.Echo "Field Typ

e: TIMESTAMP" WScript.Echo("Field Type: TIMESTAMP"
); Case oRecordSet. NULL_TYPE WScript.Echo "Field Type: N
ULL" break;
}
End Select
case oRecordSet. NULL_TYPE: {
Next WScript.Echo("Field Type: NULL");
break;
' Close LogRecordSet }
oRkcordSet.close()
}
// Close LogRecordSet

oRecordSet.close();

LogRecord Object

The LogRecord object represents a single query output record, and it
exposes methods that can be used to retrieve individual field values from
the output record.

The LogRecord object is returned by the getRecord method of the
LogRecordSet object.

The interface name of the .NET COM wrapper for this object is
"Interop.MSuUtil.ILogRecord".

Methods

getValue Returns the value of a field in the output
record.

getValueEx Returns the value of a field in the output
record.

isNull Returns a Boolean value indicating if an output
record field is NULL.

toNativeString | Returns a field or the whole output record as a
string value.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcriptleparmplemnat object
var olISW3ClInputFormat = new ActiveXObject("MSUtil.LogQuery.IIS

pizConpEdeenat”);
Dim olISW3ClInputFormat

Diaieateaeeyy text
Db RuesYdFSeSELECT c-ip FROM <1> WHERE cs-uri-stem LIKE "%

Sedmﬁs@me@wﬂ'

é%’é@flétb ec
Lo ae C5 Cerl\\/zle a LogRecordSet
C# a FOYGeIs) = By MMSeG3 T QueNe 8/t W3CInputFormat);

1{1tF0rmat")
/! Get a record
' CreMer qukegqesk= oRecordSet.getRecord();

strQuery = "SELECT c-ip FROM <1> WHERE cs-uri-stem LIKE '%hitc
ount.4spret first field value

var strClientlp = oRecord.getValue(0);

' Execute query and receive a LogRecordSet
Set oft abpé §ield valegQuery.Execute (strQuery, o[ISW3CInputFormat)
WScript.Echo("Client IP Address: " + strClientlp);

" Visit all records

DO WHARINOTegheerakwtdgnaxt record

oRecordSet.moveNext();

} ' Get a record

Set oRecord = oRecordSet.getRecord
/I Close LogRecordSet

oRecoggly ischose(d value
strClientIp = oRecord.getValue (0)

' Print field value
WScript.Echo "Client IP Address: " & strClientlp

' Advance LogRecordSet to next record
oRecordSet.moveNext

LOOP

' Close RecordSet
oRecordSet.close

getValue Method

Returns the value of the field at the specified position in the record.

Script Syntax

value = objRecord.getValue(index);

value = objRecord.getValue(fieldName);

Parameters

index
An integer containing the 0-based index of the field in the query
output records. The index must be less than the number of fields
returned by the getColumnCount method of the LogRecordSet
object.

fieldName
A string containing the name of the field in the query output records.

Return Value

The value of the specified field.

The value is returned as a VARIANT (i.e. a scripting variable) whose type
depends on the data type of the field. The following table shows the
VARIANT type returned and the corresponding scripting types for each of
the Log Parser data types:

VARIANT VBScript
Field Type Type JScript Type Type
INTEGER H VT_l4 number ‘ Long

REAL VT _RS8 number Double
STRING VT_BSTR string String
TIMESTAMP | VT_DATE date (VB Date
date)
NULL VT _NULL null object Null
Remarks

e Some scripting languages might not handle correctly the null value
returned by the getValue method when the field at the specified
location is NULL. In these cases, call the isNull method before the
getValue method to test the field for NULL values.

e Although the Log Parser INTEGER Data Type is a 64-bit value, the
getValue method returns INTEGER values as 32-bit integers, since
scripting languages do not handle correctly 64-bit integer values. This
means that truncation might occur when values are larger than the
maximum 32-bit value.

In these cases, if a low-level programming language is being used (e.g.
C++), applications can call the getValueEx method to retrieve
INTEGER values as 64-bit values.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptoexamgle:
var strQuery = "SELECT TimeGenerated, SourceName, EventID, Messag

IR O SysieR ;

Dim oRecordSet
Diixesaeenery and receive a LogRecordSet

ROM System"
// Display record information
' ExeMtecqiperl dml reeneGehaghecordSeRecord.getValue("TimeGenera
feet"9RecordSet = oLogQuery.Execute(strQuery)
WScript.Echo("SourceName : " + oRecord.getValue(1));
' VisiaHarepakdsho("EventID : " + oRecord.getValue(2));
DO WHdReNDIisRetd¢3dJet.atEnd
{
' G¢f Qaepakicho("Message : " + oRecord.getValue(3));
$et oRecord = oRecordSet.getRecord
else
{Display record information
W S¥¢ptipicEoid(ifidessagated:: '<BullREJord.get Value("TimeGenera
ted")}
WScript.Echo "SourceName :" & oRecord.getValue(1)
WAdnipnéxrhogReentfSet ta HektoRematd.get Value(2)

bReRecdBetisdouéNextHalse Then
} WScript.Echo "Message : " & oRecord.getValue(3)
Else
/I CloseW.6gRptdidfet Message : <null>"
oRecBribH.close();

' Advance LogRecordSet to next record
oRecordSet.moveNext

LOOP

' Close RecordSet

oRecordSet.close

getValueEx Method

Returns the value of the field at the specified position in the record.

The value returned by the getValueEx method is intended for low-level
programming languages and is not suitable for consumption by scripting
languages.

C++ Syntax

HRESULT getValueEx(IN VARIANT *pindexOrName, OUT VARIANT *pVa

1);

Parameters

pindexOrName
AVT 14 or VT_BSTR VARIANT containing either the 0-based index
of the field in the query output records, or the name of the field in the
query output records.
The index must be less than the number of fields returned by the
getColumnCount method of the LogRecordSet object.

Return Value

The value of the specified field.

The value is returned as a VARIANT whose type depends on the data
type of the field. The following table shows the VARIANT type returned
for each of the Log Parser data types:

VARIANT
Field Type Type Description

INTEGER VT_I8 64-bit integer

REAL VT_RS

64-bit floating-point number

STRING VT_BSTR

String

TIMESTAMP VT_I8

64-bit integer representing the
number of 100-nanosecond intervals

since January 1, year 0

NULL VT_NULL

VT_NULL VARIANT

Remarks

e The getValueEx method returns 64-bit integer values that are not
handled correctly by scripting languages, For this reason, the method
is intended for use by low-level, non-scripting languages, such as C++.
If you are developing an application using scripting languages,
consider using the getValue method instead.

See also:

LogRecord Object

getValue Method

Log Parser COM API Overview
C# Example

© 2004 Microsoft Corporation. All rights reserved.

iIsNull Method

Returns a Boolean value indicating if an output record field is NULL.

Script Syntax

value = objRecord.isNull(index);

value = objRecord.isNull(fieldName);

Parameters

index
An integer containing the 0-based index of the field in the query
output records. The index must be less than the number of fields
returned by the getColumnCount method of the LogRecordSet
object.

fieldName
A string containing the name of the field in the query output records.

Return Value
A Boolean value indicating if the specified output record field is NULL.

Examples

JScript example:
var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptoexamgle:

LSS u?rgELECT TimeGenerated, SourceName, EventID, Messag
BilAREEP M erystem”;

Dim strQuery .
thfixgcute query and receive a LogRecordSet

SedgqilgbgcordSet = oLogQuery.Execute(strQuery);

iect("MSUtiL.LogQuery")

Create query text

strQub’FEL 2S£59

S & 2008 Ml A TG s TRk B ess2ee

'Exeé/u]%iifﬁl rgﬁarl%&%ngH%iggRecordSet

ts%()ﬁ?fe%g?@g @%@'&E@f&§;§§gaﬂ‘e(Str@ﬁl%(r‘g)rjigetValue("TimeGenera
ed"));

. Visi%ﬁ%%ﬁcﬁho("SourceName :" + oRecord.getValue(1));

DO WHPHPNESHURENGIHSR atFing ™ 0Record.getValue(2));

if('oRecord.isNull(3))

'{Get a record

?e%%&eréa}@%SMF&&%%%eme'&&&Record-8etValue(3));

eﬁfsplay record information

Script.Echo "TimeGenerated: " & oRecord.getValue("TimeGenera
ted") WScript.Echo("Message : <null>");

WSCript.Echo "SourceName :" & oRecord.getValue(1)

WS'cript.Echp "EventID :" & oRecord.getValue(2)
HORBESAI S M) P3ai9e) Then

{ WScript.Echo "Message :" & oRecord.getValueSB)
F1¥ Script.Echo("Data : " + oRecord.getValue(4));
} WScript.Echo "Message : <null>"

%lﬁa If

1f SRRCHRERAN(BAA") = Far ™ hen’

} WScript.Echo "Data : " & oRecord.getValue(4)
Else

/I Rdeanes BogRepppdSet to.next fecord
pRagerd et.moveNext();

}

' Advance LogRecordSet to next record
// ClasR doogReeontSet Next
oRecordSet.close();
LOOP

' Close RecordSet
oRecordSet.close

toNativeString Method

Returns a field or the whole output record as a string value.

Script Syntax

value = objRecord.toNativeString(index);

value = objRecord.toNativeString(separator);

Parameters

index
An integer containing the 0-based index of a field in the query output
records. The index must be less than the number of fields returned
by the getColumnCount method of the LogRecordSet object.

separator
A string containing the separator to be used between the fields of the
record.

Return Value

If a field index is used as argument, the method returns the specified field
formatted to a string according to the input format string representation of
the data type. For example, if the input format used parses timestamps
formatted as 'yyyy-MM-dd hh:mm:ss', then the method formats
TIMESTAMP values using the same format.

If a string separator is used as argument, the method returns the
concatenation of all the record fields formatted to a string, separated by
the specified separator.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSgcxiptaexamgle:
var strQuery = "SELECT TimeGenerated, SourceName, EventID, Messag
IR O Syt ;
Dim oRecordSet

PHixeettparery and receive a LogRecordSet
yanpRecordSet = oLogQuery.Execute(strQuery);

ple
"Creat&aflidyaexid

St QU S T oA BBl Nag s YR Message F

ROM System™

// Display record information
' ExeMRcEiié i rebenpGengygregordgeRecord.toNativeString(0));
Set oREGiPS&che ovlhaleReCeEdte(dueRagyry.toNativeString(", "));

' Visit/ 2N deenegd.ogRecordSet to next record
DO WREEEASeTHNeNgK . atEnd
}

' Get a record

/1 Closet lopaitec@rd 3ecordSet.getRecord
oRecordSet.close();

' Display record information
WScript.Echo "TimeGenerated: " & oRecord.toNativeString(0)
WScript.Echo "Whole Record: " & oRecord.toNativeString(", ")

' Advance LogRecordSet to next record
oRecordSet.moveNext

LOOP

' Close RecordSet
oRecordSet.close

Input Format Objects

Input Format objects provide programmatic access to the input formats
supported by Log Parser.

Input Format objects are instantiated with the Progld and the .NET COM
wrapper class names specified in the following table:

Input

Format Progld .NET COM
ADS MSUtil.LogQuery.ADSInputFormat COMADSI
BIN MSUtil.LogQuery.IISBINInputFormat COMIISBIT
CSV MSUtil.LogQuery.CSVInputFormat COMCSVIr
ETW MSUtil.LogQuery. ETWInputFormat COMETWI
EVT MSUtil.LogQuery.EventLogInputFormat COMEventl
ES MSUtil.LogQuery.FileSystemInputFormat COMFileSy
HTTPERR MSUtil.LogQuery.HttpErrorInputFormat COMHLttpE1
IIS MSUtil.LogQuery.IISIISInputFormat COMIISIIS]
IISODBC MSUtil.LogQuery.IISODBCInputFormat COMIISOD
IISW3C MSUtil.LogQuery.IISW3ClInputFormat COMIISW3
NCSA MSUtil.LogQuery.IISNCSAInputFormat COMIISNC
NETMON MSUtil.LogQuery.NetMonInputFormat COMNetMc
REG MSUtil.LogQuery.RegistryInputFormat COMRegist

| I I

TEXTLINE MSUtil.LogQuery.TextLinelnputFormat COMTextLi
TEXTWORD MSUtil.LogQuery.TextWordInputFormat COMTextW
TSV MSUtil.LogQuery. TSVInputFormat COMTSVIr
URLSCAN MSUtil.LogQuery.URLScanLoglnputFormat | COMURLS
W3C MSUtil.LogQuery.W3ClInputFormat COMW3CI
XML MSUtil.LogQuery. XMLInputFormat COMXMLI

After instantiating an input format object, an application can set the input
format parameters and use the object as an argument to the Execute or
ExecuteBatch methods of the LogQuery object.

Methods

The Input Format objects do not expose methods.

Properties

The Input Format objects expose read/write properties with the same
names and capitalization as the parameters accepted by the
corresponding Log Parser input format.

For example, the MSUtil.LogQuery.EventLoglnputFormat input format
object exposes a "resolveSIDs" property that controls the resolveSIDs
parameter of the EVT input format.

The value type accepted and returned by an input format object property
depends on the nature of the values that can be specified for the input
format parameter, as described by the following table:

Property
value
Parameter values type JScript Example

"ON"/"OFF" values Boolean oEVTInputFormat.resolveSIDs
= true;

Enumeration values (e.g. String oEVTInputFormat.binaryFormat

"ASC"/"PRINT"/"HEX") = "PRINT";

String values String oEVTInputFormat.stringsSep =

Numeric values Number olISW3ClInputFormat.recurse =
10;

For more information on Input Format Parameters, see the Input Formats
Reference.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBSexiptiExanmple:Format object
var oEVTInputFormat = new ActiveXObject("MSUtil.LogQuery.EventL.
PERPBILESNRLY);
Dim oEVTInputFormat
]ﬁﬁﬁtﬁp@@ef@rmat parameters

PEM bimgesFegmat.resolveSIDs = true;
SeeBMbInputFormat.binaryFormat = "PRINT";

va A !,ﬂ‘_;@s l!:f Ere mmmw#MSUtll LOgQuery")
Ou% inpurtesmatjCheckpoint = "MyCheckpoint.Ipc”;

Log PrrieFVaNNR FormaieRiect
C PsEER tEFmat = CreateObject("MSUtil.LogQuery.EventLogInput

FeirgiERyery = "SELECT * FROM System";

1/ Sex eopedip@Repdrarociof ChaeReradSe/ rights reserved.
vhNORepuidsenrmaoiesgYasiDE xediutef strQuery, oEVTInputFormat);
oEVTInputFormat.binaryFormat = "PRINT"
oEVTInputFormat.stringsSep = ", "

b

oEVTInputFormat.iCheckpoint = "MyCheckpoint.lpc”

' Create query text
strQuery = "SELECT * FROM System"

' Execute query and receive a LogRecordSet
Set oRecordSet = oLogQuery.Execute (strQuery, oEVTInputFormat)

Output Format Objects

Output Format objects provide programmatic access to the output
formats supported by Log Parser.

Output Format objects are instantiated with the Progld and the .NET

COM wrapper class names specified in the following table:

Output

Format Progld .NET COM Wit
CHART MSUtil.LogQuery.ChartOutputFormat COMChartOutp
CSV MSUtil.LogQuery.CSVOutputFormat COMCSVOutpt
DATAGRID | MSUtil.LogQuery.DataGridOutputFormat COMDataGridC
1IS MSUtil.LogQuery.IISOutputFormat COMIISOutput(
NAT MSUtil.LogQuery.NativeOutputFormat COMNativeOut
SQL MSUtil.LogQuery.SQLOutputFormat COMSQLOutpt
SYSLOG MSUtil.LogQuery.SYSLOGOutputFormat || COMSYSLOG(
TPL MSUtil.LogQuery.TemplateOutputFormat COMTemplateC
TSV MSUtil.LogQuery. TSVOutputFormat COMTSVOutpt
W3C MSUtil.LogQuery.W3COutputFormat COMW3COutp
XML MSUtil.LogQuery. XMLOutputFormat COMXMLOutp

After instantiating an output format object, an application can set the
output format parameters and use the object as an argument to the

ExecuteBatch method of the LogQuery object.

Methods

The Output Format objects do not expose methods.

Properties

The Output Format objects expose read/write properties with the same
names and capitalization as the parameters accepted by the
corresponding Log Parser output format.

For example, the MSUtil.LogQuery.CSVOutputFormat output format
object exposes a "headers" property that controls the headers parameter
of the CSV output format.

The value type accepted and returned by an output format object
property depends on the nature of the values that can be specified for the
output format parameter, as described by the following table:

Property
value
Parameter values type JScript Example
"ON"/"OFF" values Boolean oCSVOutputFormat.tabs = true;
Enumeration values (e.g. String 0CSVOutputFormat.oDQuotes
llON"/"OFFH/HAUTOH) — HOFF";
String values String 0CSVOutputFormat.oTsFormat
="yyyy-MM-dd";
Numeric values Number oCSVOutputFormat.oCodepage
= _]_;

For more information on Output Format Parameters, see the Output
Formats Reference.

Examples

JScript example:

var oLogQuery = new ActiveXObject("MSUtil.LogQuery");

VBScriptiéxanmple:Format object

var oEVTInputFormat = new ActiveXObject("MSUtil.LogQuery.EventL
pERRItEeIRLY);
Dim oEVTInputFormat

DSV fputPEEHermat object
panpsiYifdnpputFormat = new ActiveXObject("MSUtil.LogQuery.CSVO

SeaupigdREBI B et

Lo

INnp e

ery Object
1 eﬂg@ﬂéﬁﬁémﬁ}@&("MSUtil.LogQuery")

Log’ SE@P PP E0S vittues

C#

Evaiapnarelhdieisfect OFF";
S pubheFBtaha B KomRat Obj ¥y YMEV D ogQuery. EventLogInput

Pomy#dytputk ormat.oCodepage = -1;

© 2004 Microsoft Corporation. All rights reserved.
VICppaaéeBRTDIRBUt Format object
Bt seQurny ppuiiokR et = neteensiated NYSTtAgE dDCHE) @ BM Osphily
GiMapyptem’’;

ISk et lGiat parameters

@@gg@mgp;@c@ﬁﬁ@ﬁgm struery, oEVTInputFormat, oCSVOutputFor
BES ¥ OutputFormat.oDQuotes = "OFF"

oCSVOutputFormat.oTsFormat = "yyyy-MM-dd"
oCSVOutputFormat.oCodepage = -1

' Create query text
strQuery = "SELECT TimeGenerated, Message INTO Output.csv FROM
System"

' Execute query

oLogQuery.ExecuteBatch strQuery, oEVTInputFormat, oCSVOutputFor
mat

COM Input Format Plugins

COM Input Format Plugins are user-developed input formats that can be
used with Log Parser to provide custom parsing capabilities.

Custom input formats are developed as COM objects implementing the
methods of the ILogParserinputContext COM interface.

Once developed and registered with the COM infrastructure, custom
input formats can be used with either the Log Parser scriptable COM
components through the Execute and ExecuteBatch methods of the
LogQuery object, or with the Log Parser command-line executable
through the COM input format.

¢ |LogParserinputContext Interface: describes the methods that must be
implemented by custom input format COM objects.

e Run Time Interaction: describes how Log Parser interacts with custom
input format COM objects at run time.

See also:

Custom Plugins
COM Input Format

© 2004 Microsoft Corporation. All rights reserved.

ILogParserinputContext Interface

Custom input formats are developed as COM objects implementing the
methods of the ILogParserinputContext COM interface.

A custom input format implements the methods of this interface by
implementing the ILogParserinputContext interface directly, or by
implementing the IDispatch (Automation) interface exposing the methods
of the ILogParserinputContext interface.

Interface

//
// Interface GUID
//

Methodsss7-48 AB-433c-9AFD-9D78D8B1CFC7 */

XA, 0% 4 e AN TR D T D, 0xB 1, 0xCF

, xC7); performs any necessary initialization.

GetFieldCount | Returns the number of input record fields.

/
/ I@&B@éﬁ&ﬂamgcon‘ﬁéiﬁﬁ‘%r@fé iraplenemied g b Rareer dpgut pluging an

/| GetFieldType Returns the type of an input record field.

claredbBgParserinputReni@stthewidie Ibnknmeord.

{
pidtNajue Returns the value of a field in the current input
record.
enum FieldType
Closelnput Releases all the resources and performs any
Integer =L, necessary cleanup
Real =2, '

String =3,

Timestamp =4,

Null =5
Properties
@E%?ﬁ@%gﬁgsﬂ')%gﬁ @tﬁ%gﬁgg developed as

IDispatch C%?\/I objects can support custom

virtual HRESULT STDWVEEs tiagt lary pentrolled at runtime as
GetFieldCount(OUT DigOiRbyipadielrshaters.

virtual HRESULT STDMETHODCALLTYPE
GetFieldName(IN DWORD fIndex,
OUT BSTR *pbszFieldName) = 0;
See also:
virtual HRESULT STDMETHODCALLTYPE
RugzimedmeaciiomwORD fIndex,
Custom Plugiit® DWORD *pnFieldType) = 0;

virtual HRE ST HildPA4EA TE R elohY BE rights reserved.
ReadRecord(OUT VARIANT_BOOL *pbDataAvailable) =0;

virtual HRESULT STDMETHODCALLTYPE
GetValue(IN DWORD fIndex,
OUT VARIANT *pvarValue) =0;

virtual HRESULT STDMETHODCALLTYPE
Closelnput(IN VARIANT_BOOL bAbort) =0;

Closelnput Method

Releases all the resources and performs any necessary cleanup.

C++ Syntax

HRESULT STDMETHODCALLTYPE Closelnput(IN VARIANT_BOOL bAb

ort);
Script Syntax

Closelnput(bAbort);

Parameters

bAbort
A Boolean value set to TRUE if the query execution has been
aborted, or FALSE if the query execution has completed
successfully.

Return Value

None.

Remarks

e This is the last method invoked by Log Parser before releasing the
custom input format COM object.

Examples

C++ example:

HRESULT CProcessesInputContext::Closelnput(IN VARIANT_BOOL b
Abort)

VBScript example:
// Close the snapshot handle

Ful¢tianhSrapahptttb RPYAT.ID_HANDLE_VALUE)
{

m_elogHRnd ey ™ Apngpyhot);
m_hSnapshot = INVALID_HANDLE_VALUE;

SeaalsPunction

|LogParseripputContext Interface
Op nifpUE Methiod
Rur Time Interaction
Custom Plugins

© 2004 Microsoft Corporation. All rights reserved.

GetFieldCount Method

Returns the number of fields in the input records.

C++ Syntax

HRESULT STDMETHODCALLTYPE GetFieldCount(OUT DWORD *pnFiel

ds);
Script Syntax

nFields = GetFieldCount();

Return Value

An integer value containing the number of fields in the input records.

Examples

C++ example:

HRESULT CProcessesInputContext::GetFieldCount(OUT DWORD *pn
Fields)
VBScript example:

// This Input Context exports 4 fields

Function GetFieldCount()
*pnFields = 4;
' This Input Format returns 4 or 6 fields
e hE x¢dKdedFields = True Then

Seéalso: GetFieldCount = 6

ILogPar§&§nputContext Interface
Run Time Infepdidigd{-ount = 4

customBfdins

End Function]))
© 2004 Microsoft Corporation. All rights reserved.

GetFieldName Method

Returns the name of an input record field.

C++ Syntax

HRESULT STDMETHODCALLTYPE GetFieldName(IN DWORD fIndex, O

UT BSTR *pbszFieldName);
Script Syntax

fieldName = GetFieldName(fIndex);

Parameters

fIndex
The 0-based index of the input record field. The index value is
guaranteed to be smaller than the number of fields returned by the
GetFieldCount method.

Return Value

A string value containing the name of the input record field at the
specified position.

Examples

C++ example:

HRESULT CProcessesInputContext::GetFieldName(IN DWORD fIndex,
OUT BSTR *pbszFieldName)
VBScript example:

FU%W%H@@@@dName(nFieldIndex)

g%ﬁ@cq:(]aée nFieldIndex . | .\
Case (PbszFieldName = SysAllocString(L"ImageName");
See also: Bi&aKeldName = "QFE"

|ILog Parserlr%’iﬁ@ontext Interface

GetFiel MetHahieldName = "Description”
Run Time In%i‘é&é@ﬁ - _ - S——
Cqsebo‘reak’

J GetFieldName = "InstalledBy"
® 2004 Microsoft Corporation. All rights reserved.

case 2: {GetFiel_dName = "Comments"
Case"épbstleldName = SysAllocString(L"ParentPID");

gﬁkfeldName ="SP"

End Seiect

End Filfitedon {
*pbszFieldName = SysAllocString(L"Threads");

break;
}
}

return S_OK;
}

GetFieldType Method

Returns the type of an input record field.

C++ Syntax

HRESULT STDMETHODCALLTYPE GetFieldType(IN DWORD fIndex, OU

T DWORD *pnFieldType);
Script Syntax

fieldType = GetFieldType(fIndex);

Parameters

fIndex
The 0-based index of the input record field. The index value is
guaranteed to be smaller than the number of fields returned by the
GetFieldCount method.

Return Value

An integer value from the FieldType enumeration containing the Log
Parser data type of the input record field at the specified position.

Examples

C++ example:

HRESULT CProcessesInputContext::GetFieldType(IN DWORD fIndex,
OUT DWORD *pnFieldType)
VBScript example:

FU?W%H@@@@dType(nFieldIndex)

§46:Cade nFieldindex
Case’() ImageName

See also: .*g{}}fﬂ%ldType = ILogParserInputContext::String;

ILog Parserlnnut%ﬁﬁﬁ@ﬁiﬁ
GetFieldNanté¥dthod

Run Ti ra 't§)tﬁif}8
Custom Plugins , etFieldType = 3

» PID

i
Case

* ;; pe = ogParserInputContext::Intege
© 20 : Carporation. All rights reserved.
Cdse 3

' String

case 2: {GetFieldT]y]Be =3

Case’4 ParentP

.*g{}}fﬂ%ldType = ILogParserInputContext::Integer;

Ef@ﬁkfeldType =3
Czlse 5
' String

case 3: {GetFieldType =3
// Threads

End Select PRFieldType = ILogParserInputContext::Integer;
break;

Enii Functio}l

return S_OK;
}

GetValue Method

Returns the value of an input record field.

C++ Syntax

HRESULT STDMETHODCALLTYPE GetValue(IN DWORD fIndex, OUT V

ARIANT *pvarValue);
Script Syntax

value = GetValue(fIndex);

Parameters

fIndex
The 0-based index of the input record field. The index value is
guaranteed to be smaller than the number of fields returned by the
GetFieldCount method.

Return Value

A VARIANT containing the value of the specified field.
The VARIANT type must match the Log Parser data type declared by the
GetFieldType method, as shown in the following table:

Declared VBScript

Field Type C++ VARIANT Type Type

INTEGER VT_I8 (also compatible: VT_I4) Long
(VT_14)

REAL VT _RS8 Double

(VT_RS)

STRING VT_BSTR String
(VT_BSTR)
TIMESTAMP | VT_DATE (also compatible: Date
VT_I8, VT_I4 containing the (VT_DATE)

number of 100-nanosecond

intervals since January 1, year 0)

NULL VT_NULL (also compatible: Null
VT_EMPTY) (VT_NULL)

Remarks

e Any value can be returned as a VT_NULL or VT_EMPTY VARIANT (a
Null VBScript variable) to indicate a NULL value, regardless of the field
type declared by the GetFieldType method.

e Due to query execution optimizations, there is no guarantee that the
GetValue method will be called for all the fields of an input record. In
fact, the GetValue method will only be called for those fields that are
referred to by the currently executing query.

For example, if a query refers to two fields only out of an input record
made up of ten fields, then the GetValue method will be called for
those two fields only.

If a query does not refer to any input record field (e.g. "SELECT
COUNT(*®)"), then the GetValue method will never be called.

Examples

C++ example:

HRESULT CProcessesInputContext::GetValue(IN DWORD fIndex, OUT
VARIANT *pvarValue)

VBScript example:
// Initialize return value

FuNetieRtEntypNa Y18 dindex)

Select Case nFieldIndex
switch(fIndex)

See alsQise 0

ILogParS& Context Interface
ReadRecdrd VARSI SBQFE Array (m_nIndex).HotFixID

: Al lue) = VT_BSTR;
Run TinfeARterictiont PVar v — ;
Czst Pl ¢ gf%%)hR(pvarValue) = SysAllocString(m_processEntry32.
SzZEXe

alue = m_objQFEArray(m_nIndex).Description

Case 2 break;
12084 Microsoft Corporation. All rights reserved.
GetValue = m_objQFEArray(m_nIndex).InstallDate
casee B {
' InstdRHBy

GetV¥u¥ ¥ RVEbYAIE A rra¥ dm4Index).InstalledBy
Case 4 V_I4(pvarValue) = m_processEntry32.th32ProcessID;

' Conb¥ifatsts

GetValue = m_objQFEArray(m_nIndex).FixComments
Case 5
casgp: {

GetVAIRa:RPEBiQFE Array(m_nIndex).ServicePackInEffect
V_VT(pvarValue) = VT _I4;

End SelecV_I4(pvarValue) = m_processEntry32.th32ParentProcessID

End FunctioRreak;
}

case 3: {
// Threads
V_VT(pvarValue) = VT _I4;
V_I4(pvarValue) = m_processEntry32.cntThreads;
break;

}

return S_OK;
}

Openinput Method

Processes the specified from-entity and performs any necessary
initialization.

C++ Syntax

HRESULT STDMETHODCALLTYPE Openlnput(IN BSTR bszFromEntity);

Script Syntax

OpenlInput(bszFromEntity);

Parameters

bszFromEntity
The from-entity specified in the EROM clause of the currently
executing query, or an empty string if Log Parser is executed in Help
Mode to display the quick-reference help on the custom input format.

Return Value

None.

Remarks

e The Openinput method is the first method called by Log Parser after
the custom input format COM object has been instantiated. An
implementation of this method would usually perform any necessary
object initialization, prepare the from-entity for input record retrieval
(e.g. opening an input file), and eventually pre-process the input to
gather the input record fields meta-information that will be returned by

the GetFieldCount, GetFieldName, and GetFieldType methods.

e Users can execute the Log Parser command-line executable in Help
Mode to display a quick-reference help on a custom input format. The
quick-reference help displays the input record field names and types,
which are retrieved through calls to the GetFieldCount, GetFieldName,
and GetFieldType methods.

If the user-supplied help mode command does not include a from-
entity, the bszFromEntity argument wil be an empty string. In these
cases, a custom input format COM object can behave in two ways:

e If the input record fields do not depend on the from-entity specified in
the query (i.e. if the input record structure is fixed), then the custom
input format COM object should accept the empty from-entity without
returning an error, allowing Log Parser to subsequently call the
GetFieldCount, GetFieldName, and GetFieldType methods to
retrieve the input record structure;

e If the input record fields depend on the from-entity specified in the
guery (i.e. if the input record structure is extracted from the input
data), then the custom input format COM object should reject the
empty from-entity returning an error, which will in turn cause the help
command to display a warning message to the user in place of the
input record structure.

Examples

C++ example:

HRESULT CProcessesInputContext::Openlnput(IN BSTR bszFromEntit

y)
VBScript example:
// Initialize object

Function OpenlInput(strComputerName)

Pithistpwa fgeratdoes not require a from-entity, so
Piwe obihyiuss ignore the argument
See alsgim nlLength

|LogParssnmpbitOdntext Interface
Closelnpekethomnputer name is local machine
Run Tindé Is¥ed(sticiomputerName) Or Len(strComputerName) = 0 Then

mnmn

Custom Plugin§€omputerName = ".

EndIf

n
LU I

© 2004 Microsoft Corporation. All rights reserved.
' Query for all the QFE's on the specified machine

Set objWMIService = GetObject("winmgmts:" & "{impersonationL
evel=impersonate}'\\" & strComputerName & "\root\cimv2")

Set objQFEs = objWMIService.ExecQuery ("Select * from Win32_
QuickFixEngineering")

' Store in array
m_objQFEArray = Array()
For Each objQFE In objQFEs
ReDim Preserve m_objQFEArray(UBound(m_objQFEArray)
+1)
Set m_objQFEArray(UBound(m_objQFEArray)) = objQFE
Next

m_nIndex = LBound(m_objQFEArray)

End Function

ReadRecord Method

Reads the next input record.

C++ Syntax

HRESULT STDMETHODCALLTYPE ReadRecord(OUT VARIANT_BOOL

*pbDataAvailable);
Script Syntax

bDataAvailable = ReadRecord();

Return Value

A Boolean value set to TRUE if a new input record has been read and is
available for consumption, or FALSE if there are no more input records to
return.

Remarks

¢ An implementation of the ReadRecord method would usually read a
new data item from the input and store it internally, waiting for Log
Parser to subsequently call the GetValue method multiple times to
retrieve the input record field values.

e The Boolean value returned by the ReadRecord method is used by
Log Parser to determine which custom input format methods will be
called next.

If the method returns TRUE, signaling availability of an input record,
Log Parser will call the GetValue method multiple times to retrieve the
input record field values, followed by a new call to the ReadRecord
method to read the next input record.

If the method returns FALSE, signaling the end of the input data, Log
Parser will call the Closelnput method and release the custom input
format COM object.

Examples

C++ example:

HRESULT CProcessesInputContext::ReadRecord(OUT VARIANT_BOO
L *pbDataAvailable)
VBScript example:
if(m_hSnapshot == INVALID_HANDLE_VALUE)
Fuhction ReadRecord()
// 'This is the first time we have been called
If m_nIndex >= UBound(m_objQFEArray) Then

I Haahseshapshet-afi fgegurrent processes
See alsaehfivepshvtTgkeateToolhelp32Snapshot(TH32CS_SNAPPROC

ILoEég InputCo ext In
Getvalut POt ==

Run TinfBptedskfom_nindex + 1
Custom]#{ brd = True

Fnd peturn HRESULT_FROM_WIN32(GetLastError());

ID_HANDLE_VALUE)

J © 2004 Microsoft Corporation. All rights reserved.
End Function

/I Get the first entry
if('Process32First(m_hSnapshot, &m;_processEntry32))
{
DWORD dwLastError = GetLastError();
if(dwLastError == ERROR_NO_MORE_FILES)
{
/I No processes
*pbDataAvailable = VARIANT_FALSE;
return S_OK;
}
else
{
/I Error
return HRESULT_FROM_WIN32(GetLastError());
}

}
else
{
// There is data available
*pbDataAvailable = VARIANT_TRUE;
return S_OK;
}
}
else
{
//' We have already been called before, and we have already taken a s
napshot

// Get the next entry
if('Process32Next(m_hSnapshot, &m;_processEntry32))
{
DWORD dwLastError = GetLastError();
if(dwLastError == ERROR_NO_MORE_FILES)
{
// No more processes
*pbDataAvailable = VARIANT_FALSE;
return S_OK;
}

else
{
// Error
return HRESULT_FROM_WIN32(GetLastError());
}
}
else
{
// There is data available
*pbDataAvailable = VARIANT_TRUE;
return S_OK;
}
}
}

Custom Properties

Provide parameters for the custom input format.

C++ Syntax

HRESULT STDMETHODCALLTYPE put_propertyName(IN VARIANT *val

ue);
Script Syntax

put_propertyName(value);

Parameters

value
AVT_BSTR VARIANT containing the string parameter value
specified with the -ICOMParams parameter of the COM input format.

Return Value

None.

Remarks

e Custom properties can only be exposed by custom input formats that
implement the IDispatch (Automation) interface. These are usually
custom input formats developed as scriptlets (.wsc files) written in
JScript or VBScript.

e Custom properties exposed by a custom input format can be set in two
different ways:
e With the Log Parser command-line executable, custom properties
can be set through the -iCOMParams parameter of the COM input

format, as shown in the following example:

C:\>LogParser "SELECT * FROM file.txt" -i:COM -iProgID:MySample.C
-iICOMParams:property1=valuel,property2=value?2
e With the Log Parser scriptable COM components, custom properties
can be set directly on the custom input format object before
specifying the object as an argument to the Execute or
ExecuteBatch methods of the LogQuery object, as shown in the
following JScript example:

var objLogQuery = new ActiveXObject("MSUtil.LogQuery");

// Create custom input format object

var objCustomInputFormat = new ActiveXObject("MySample.CustomIn
Exampl@®rmat");

VB3aiptexampleit format parameters
objCustomInputFormat.propertyl = "valuel";
Fuabj{cnsparn lemetidndhaeosgpevalie) "value?";

/| Eketieseseryalue) = "ON" Then
var objRecbFd$endedbjblas@uérydixecute("SELECT * FROM file.txt", o
See als@isecomInputFormat);

ILogParser HEH@ESF%‘;&%%@#%@F alse
Run Timf&fhieraction

Custom Plugins
colthbtR e at

© 2004 Microsoft Corporation. All rights reserved.

Run Time Interaction

Custom input format COM objects are used by Log Parser in two different
scenarios: when executing a query, and when displaying a quick-
reference help on the custom input format when the Log Parser
command-line executable is used in Help Mode.

Query Execution Scenario

In this scenario, a custom input format COM object is used to retrieve
input records from the specified from-entity.

To make an example of the sequence of the method calls invoked by Log
Parser on the custom input format COM object in this scenario, we will
assume that the custom input format generates input records containing
the following four fields:

"FirstField", STRING type;
"SecondField", INTEGER type;
"ThirdField", TIMESTAMP type;
"FourthField", STRING type.

In addition, we will assume that the query being executed references only
three fields out of the four fields exported by the custom input format, as
in the following example:

SELECT FourthField, ThirdField
FROM InputFile.txt

WHERE FirstField LIKE "%test%'
The following table shows the sequence of method calls under these

assumptions:

Returned value

Method call Returned value description

Object is instantiated

Openlnput("InputFile.txt") | None

GetFieldCount() 4

GetFieldName(0) "FirstField"

GetFieldType(0) 3 FieldType.String

GetFieldName(1) "SecondField"

GetFieldType(1) 1 FieldType.Integer

GetFieldName(2) "ThirdField"

GetFieldType(2) 4 FieldType.Timestamp

GetFieldName(3) "FourthField"

GetFieldType(3) 3 FieldType.String

I | |
ReadRecord() TRUE an input record is
available

GetValue(0) VT_BSTR first field value
VARIANT

GetValue(2) VT_DATE third field value
VARIANT

GetValue(3) VT_BSTR fourth field value
VARIANT

I | |
ReadRecord() TRUE an input record is
available

GetValue(0) VT_BSTR first field value
VARIANT

GetValue(2) VT_DATE third field value
VARIANT

GetValue(3) VT_BSTR fourth field value
VARIANT
| I
I | I
ReadRecord() TRUE an input record is
available
GetValue(0) VT_BSTR first field value
VARIANT
GetValue(2) VT_DATE third field value
VARIANT
GetValue(3) VT_BSTR fourth field value
VARIANT
I | I
ReadRecord() FALSE no more input records
available
Closelnput(FALSE) None
Object is released

Help Mode Scenario

When the Log Parser command-line executable is used in Help Mode to
display a quick-reference help on the custom input format, the custom
input format COM object is only used to retrieve the field information that
is displayed to the user.

The user-supplied help mode command may or may be not include a
from-entity, as shown in the following examples:

C:\>LogParser -h -i:COM -iProgID:MySample.CustomInputFormat file.txt

C:\>LogParser -h -i:COM -iProgID:MySample.CustomInputFormat

If the user-supplied help mode command does not include a from-entity,
then the bszFromEntity argument of the Openinput method will be an
empty string. See the Remarks section of the Openinput Method
Reference for more information on how custom input format COM objects
should behave in this case.

To make an example of the sequence of the method calls invoked by Log
Parser on the custom input format COM object in this scenario, we will
assume that the custom input format generates input records containing
the following four fields:

o "FirstField", STRING type;

e "SecondField", INTEGER type;
e "ThirdField", TIMESTAMP type;
e "FourthField", STRING type.

In addition, we will assume that the help command does not include a
from-entity.

The following table shows the sequence of method calls under these
assumptions:

Method call

Returned value

Returned value description

Object is instantiated

OpenInput(") None

GetFieldCount() 4

GetFieldName(0) "FirstField"

GetFieldType(0) 3 FieldType.String
GetFieldName(1) "SecondField"

GetFieldType(1) 1 FieldType.Integer
GetFieldName(2) "ThirdField"

GetFieldType(2) 4 FieldType.Timestamp
GetFieldName(3) "FourthField"

GetFieldType(3) 3 FieldType.String
Closelnput(FALSE) None

Object is released

See also:

ILogParserlnputContext Interface

Custom Plugins

© 2004 Microsoft Corporation. All rights reserved.

Legal Information

Microsoft Documentation

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted,
the example companies, organizations, products, domain names, e-malil
addresses, logos, people, places and events depicted herein are
fictitious, and no association with any real company, organization,
product, domain name, e-mail address, logo, person, place or event is
intended or should be inferred. Complying with all applicable copyright
laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any
means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights,
or other intellectual property rights covering subject matter in this
document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other
intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

Active Directory, JScript, Microsoft, MSDN, Visual Basic, Visual Studio,
Windows, Windows Media, and Windows Server are either registered
trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

The names of actual companies and products mentioned herein may be
the trademarks of their respective owners.

	Log Parser
	What's New in Log Parser 2.2
	Conceptual Overview
	Log Parser Architecture
	Records
	Commands and Queries
	Errors, Parse Errors, and Warnings

	Writing a Query
	Basics of a Query
	Filtering Input Records
	Sorting Output Records
	Aggregating Data Within Groups
	Calculating Percentages

	Filtering Groups

	Advanced Features
	Parsing Input Incrementally
	Multiplexing Output Records
	Converting File Formats
	Custom Plugins

	Log Parser COM API Overview
	C# Example

	Security Considerations
	Frequently Asked Questions

