
Log	Parser
Log	parser	is	a	powerful,	versatile	tool	that	provides	universal	query
access	to	text-based	data	such	as	log	files,	XML	files	and	CSV	files,	as
well	as	key	data	sources	on	the	Windows®	operating	system	such	as	the
Event	Log,	the	Registry,	the	file	system,	and	Active	Directory®.
You	tell	Log	Parser	what	information	you	need	and	how	you	want	it
processed.	The	results	of	your	query	can	be	custom-formatted	in	text
based	output,	or	they	can	be	persisted	to	more	specialty	targets	like	SQL,
SYSLOG,	or	a	chart.
The	world	is	your	database	with	Log	Parser.

Most	software	is	designed	to	accomplish	a	limited	number	of	specific
tasks.	Log	Parser	is	different...	the	number	of	ways	it	can	be	used	is
limited	only	by	the	needs	and	imagination	of	the	user.
If	you	find	a	creative	way	to	use	it,	let	us	know	at	www.logparser.com!

Here	are	some	samples	to	whet	your	appetite...

http://www.logparser.com

Search	for	Data
Search	for	the	logons	of	a	specific	user	among	the	events	in	the
Windows	Event	Log:

C:\>LogParser	"SELECT	TimeGenerated,	SourceName,	EventCategoryName,	
Message	INTO	report.txt	FROM	Security	WHERE	EventID	=	528	AND	SID	
LIKE	'%TESTUSER%'"	-resolveSIDs:ONAnd	obtain	results	in	a	text	file	formatted	as	desired:

Create	Reports
Create	custom-formatted	HTML	reports:

Calculate	Statistics
Calculate	the	distribution	of	the	HTTP	response	status	codes	from	your
IIS	log	files:

C:\>LogParser	"SELECT	sc-status,	COUNT(*)	AS	Times	INTO	Chart.gif	FR
OM	<1>	GROUP	BY	sc-status	ORDER	BY	Times	DESC"	-chartType:PieExpl
oded3D	-chartTitle:"Status	Codes"And	produce	a	chart	formatted	as	desired:

System	Requirements
Log	Parser	is	compatible	with	the	Windows®	2000,	Windows®	XP
Professional,	and	Windows	ServerTM	2003	operating	systems.

©	2004	Microsoft	Corporation.	All	rights	reserved.

What's	New	in	Log	Parser	2.2

New	Input	and	Output	Formats:

XML	Input	Format
Reads	XML	files	(requires	the	Microsoft®	XML	Parser	(MSXML))

TSV	Input	Format
Reads	tab-	and	space-	separated	values	text	files

ADS	Input	Format
Reads	information	from	Active	Directory	objects

COM	Input	Format
Makes	it	possible	to	plugin	user-implemented	custom	Input	Formats

REG	Input	Format
Reads	information	from	the	Windows	Registry

NETMON	Input	Format
Makes	it	possible	to	parse	NetMon	.cap	capture	files

ETW	Input	Format
Reads	Event	Tracing	for	Windows	log	files	and	live	sessions

CHART	Output	Format
Creates	chart	image	files	(requires	Microsoft	Office	2000	or	later)

TSV	Output	Format
Writes	tab-	and	space-	separated	values	text	files

SYSLOG	Output	Format
Sends	information	to	a	SYSLOG	server	or	to	a	SYSLOG-formatted
text	file

Improvements	to	the	SQL	Engine:

Exponential	performance	improvement	in	SELECT	DISTINCT	and	GROUP	BY
queries

"WITH	ROLLUP"	functionality	in	the	GROUP	BY	clause

"DISTINCT"	in	aggregate	functions
(when	no	GROUP	BY	clause	is	specified)

"PROPSUM(...)	[ON	<fields>]"	and	"PROPCOUNT(...)	[ON	<fields>]"
aggregate	functions

(these	functions	calculate	the	ratio	between	the	SUM	or	COUNT
functions	on	a	field	and	the	SUM	or	COUNT	functions	on	the	same
field	in	a	hierarchically	higher	group)

New	functions:
MOD
BIT_AND,	BIT_OR,	BIT_NOT,	BIT_XOR,	BIT_SHL,	BIT_SHR
EXP10,	LOG10
ROUND,	FLOOR
QNTROUND_TO_DIGIT,	QNTFLOOR_TO_DIGIT
STRREPEAT
IN_ROW_NUMBER,	OUT_ROW_NUMBER
ROT13
EXTRACT_FILENAME,	EXTRACT_EXTENSION,
EXTRACT_PATH
HEX_TO_ASC,	HEX_TO_PRINT,	HEX_TO_INT
HEX_TO_HEX8,	HEX_TO_HEX16,	HEX_TO_HEX32
IPV4_TO_INT,	INT_TO_IPV4
HASHSEQ,	HASHMD5_FILE
EXTRACT_PREFIX,	EXTRACT_SUFFIX

STRCNT

Introduced	a	"USING"	clause	for	declaring	temporary	field-expressions

"BETWEEN"	operator	in	the	WHERE	and	HAVING	clauses

"CASE"	(simple-form)	statement	in	the	SELECT	clause
("SELECT	CASE	myField	WHEN	'value1'	THEN	'0'	WHEN	'value2'	THEN
'1'	ELSE	'-1'	END")

New	date	and	time	formats:
l	(milliseconds	-	lower	case	'L')
n	(nanoseconds)
tt	(AM/PM)
?	(any	character)

Fields	and	Aliases	are	now	case-insensitive

Improvements	to	existing	Input	and	Output
Formats:

Added	many	new	parameters	to	most	of	the	Input	and	Output	Formats

The	NCSA	input	format	now	parses	also	combined	and	extended	NCSA
log	files

Added	"EventCategoryName"	and	"Data"	fields	to	the	EVT	input	format

The	"-recurse"	options	of	most	input	formats	now	specify	a	maximum
subdirectory	recursion	level

The	CSV	Input	and	Output	Formats	now	support	CSV	files	with	double-
quoted	strings

Added	"FileVersion",	"ProductVersion",	"CompanyName",	etc.	fields	to	the	FS
input	format

Allowed	'*'	and	'?'	wildcards	in	the	site	name	specifications	for	all	the
IIS	input	formats

("SELECT	*	FROM	<mysite*.com>")

Allowed	URL's	as	the	input	path	of	all	text-based	input	formats
("SELECT	*	FROM	http://www.adatum.com/table.csv")

Allowed	use	of	environment	variable	names	in	the	TPL	output	format
sections,	and	added	a	SYSTEM_TIMESTAMP	variable

Performance	improvement	in	the	EVT	input	format	when	reading	from
local	and	remote	event	logs

All	the	property	names	of	the	input	and	output	format	COM	objects	now
match	the	command-line	names

General	improvements:

Added	the	possibility	to	specify	parameters	in	.sql	files
("logparser	-file:myquery.sql?param1=value1+param2=value2")

Input	I/O	performance	improvement	for	text	files

Added	the	possibility	to	permanently	override	the	default	values	of	global
options,	input	format	options,	and	output	format	options

("logparser	-e:10	-o:NAT	-rtp:-1	-savedefaults")

©	2004	Microsoft	Corporation.	All	rights	reserved.

Conceptual	Overview
This	section	provides	information	on	the	operational	mechanisms	of	Log
Parser.

Log	Parser	Architecture:	Describes	the	internal	architecture	of	Log
Parser.
Records:	Describes	the	data	that	Log	Parser	processes	when	working
with	Input	and	Output	Formats.
Commands	and	Queries:	Describes	how	Log	Parser	commands	are
structured,	and	how	you	specify	queries	in	a	command.
Errors,	Parse	Errors,	and	Warnings:	Describes	the	run	time	errors	that
can	be	generated	by	Log	Parser	when	executing	a	command.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Log	Parser	Architecture
Log	Parser	is	made	up	of	three	components:

Input	Formats	are	generic	record	providers;	records	are	equivalent	to
rows	in	a	SQL	table,	and	Input	Formats	can	be	thought	of	as	SQL
tables	containing	the	data	you	want	to	process.
Log	Parser's	built-in	Input	Formats	can	retrieve	data	from	the	following
sources:

IIS	log	files	(W3C,	IIS,	NCSA,	Centralized	Binary	Logs,	HTTP	Error
logs,	URLScan	logs,	ODBC	logs)
Windows	Event	Log
Generic	XML,	CSV,	TSV	and	W3C	-	formatted	text	files	(e.g.
Exchange	Tracking	log	files,	Personal	Firewall	log	files,	Windows
Media®	Services	log	files,	FTP	log	files,	SMTP	log	files,	etc.)
Windows	Registry
Active	Directory	Objects
File	and	Directory	information
NetMon	.cap	capture	files
Extended/Combined	NCSA	log	files
ETW	traces
Custom	plugins	(through	a	public	COM	interface)

A	SQL-Like	Engine	Core	processes	the	records	generated	by	an
Input	Format,	using	a	dialect	of	the	SQL	language	that	includes
common	SQL	clauses	(SELECT,	WHERE,	GROUP	BY,	HAVING,	ORDER	BY),
aggregate	functions	(SUM,	COUNT,	AVG,	MAX,	MIN),	and	a	rich	set	of
functions	(e.g.	SUBSTR,	CASE,	COALESCE,	REVERSEDNS,	etc.);	the	resulting
records	are	then	sent	to	an	Output	Format.

Output	Formats	are	generic	consumers	of	records;	they	can	be
thought	of	as	SQL	tables	that	receive	the	results	of	the	data
processing.
Log	Parser's	built-in	Output	Formats	can:

Write	data	to	text	files	in	different	formats	(CSV,	TSV,	XML,	W3C,

user-defined,	etc.)
Send	data	to	a	SQL	database
Send	data	to	a	SYSLOG	server
Create	charts	and	save	them	in	either	GIF	or	JPG	image	files
Display	data	to	the	console	or	to	the	screen

Note:	Transmitting	data	through	a	non-secure	network	might	pose
a	serious	security	risk	to	the	confidentiality	of	the	information
transmitted.
For	more	information	on	the	security	risks	associated	with	non-
secure	networks,	see	Security	Considerations.

The	Log	Parser	tool	is	available	as	a	command-line	executable
(LogParser.exe)	and	as	a	set	of	scriptable	COM	objects	(LogParser.dll).
The	two	binaries	are	independent	from	each	other;	if	you	want	to	use
only	one,	you	do	not	need	to	install	the	other	file	on	your	computer.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Records
Log	Parser	queries	operate	on	records	from	an	Input	Format.	Records
are	equivalent	to	rows	in	a	SQL	table,	and	Input	Formats	are	equivalent
to	SQL	tables	containing	the	rows	(data)	you	want	to	process.

Fields	and	Data	Types
Each	record	generated	by	an	Input	Format	is	made	up	of	a	fixed	number
of	fields	(the	columns	in	a	SQL	table),	and	each	field	is	assigned	a
specific	name	and	a	specific	data	type;	the	data	types	supported	by	Log
Parser	are:
Integer
Real
String
Timestamp

Fields	in	a	record	can	only	contain	values	of	the	data	type	assigned	to
the	field	or,	when	the	data	for	that	field	is	not	available,	the	NULL	value.

For	example,	let's	consider	the	EVT	Input	Format,	which	produces	a
record	for	each	event	in	the	Windows	Event	Log.
Using	the	command-line	executable,	we	can	discover	the	structure	of	the
records	provided	by	this	Input	Format	by	typing	the	following	help
command:

C:\>LogParser	-h	-i:ETW

The	output	of	this	command	gives	a	detailed	overview	of	the	EVT	Input
Format,	including	a	"Fields"	section	describing	the	structure	of	the
records	produced:

Fields:
		EventLog	(S)														RecordNumber	(I)										TimeGenerated	(T)
		TimeWritten	(T)											EventID	(I)															EventType	(I)
		EventTypeName	(S)									EventCategory	(I)									EventCategoryName	(S)
		SourceName	(S)												Strings	(S)															ComputerName	(S)
		SID	(S)																			Message	(S)															Data	(S)

From	the	output	above,	we	understand	that	each	record	is	made	up	of	15
fields,	and	that,	for	instance,	the	fourth	field	of	each	record	is	named
"TimeWritten"	and	always	contains	values	of	the	TIMESTAMP	data	type.

Record	Structure
Some	Input	Formats	have	a	fixed	structure	for	their	records	(like	the	EVT
Input	Format	used	in	the	example	above,	or	the	FS	Input	Format),	but
others	can	have	different	structures	depending	on	the	values	specified	for
their	parameters	or	on	the	files	being	parsed.

For	instance,	the	NETMON	Input	Format,	which	parses	NetMon	capture
files,	has	a	parameter	("fMode")	that	can	be	used	to	specify	how	the
records	should	be	structured.	We	can	see	the	different	structures	when
we	add	this	parameter	to	the	help	command	for	the	NETMON	format.
The	first	example	shows	the	fields	exported	by	the	NETMON	Input
Format	when	its	"field	mode"	is	set	to	"TCPIP"	(each	record	is	a	single
TCP/IP	packet),	and	the	second	example	shows	the	fields	exported	by
the	NETMON	Input	Format	when	its	"field	mode"	is	set	to	"TCPConn"
(each	record	is	a	full	TCP	connection):

C:\>LogParser	-h	-i:NETMON	-fMode:TCPIP

Fields:
	CaptureFilename	(S)				Frame	(I)						DateTime	(T)						FrameBytes	(I)
	SrcMAC	(S)													SrcIP	(S)						SrcPort	(I)							DstMAC	(S)
	DstIP	(S)														DstPort	(I)				IPVersion	(I)					TTL	(I)
	TCPFlags	(S)											Seq	(I)								Ack	(I)											WindowSize	(I)
	PayloadBytes	(I)							Payload	(S)				Connection	(I)

C:\>LogParser	-h	-i:NETMON	-fMode:TCPConn

Fields:
	CaptureFilename	(S)										StartFrame	(I)										EndFrame	(I)
	Frames	(I)																			DateTime	(T)												TimeTaken	(I)
	SrcMAC	(S)																			SrcIP	(S)															SrcPort	(I)
	SrcPayloadBytes	(I)										SrcPayload	(S)										DstMAC	(S)
	DstIP	(S)																				DstPort	(I)													DstPayloadBytes	(I)
	DstPayload	(S)

As	another	example,	the	CSV	Input	Format,	which	parses	text	files
containing	comma-separated	values,	creates	its	own	structure	by
inspecting	the	input	file	for	field	names	and	types.
When	using	the	help	command	with	the	CSV	Input	Format,	the	"Fields"
section	shows	no	information	on	the	record	structure:

C:\>LogParser	-h	-i:CSV

Fields:
	Field	names	and	types	are	retrieved	at	runtime	from	the	specified	input	file(s)
However,	when	we	supply	the	name	of	a	CSV	file	that,	for	instance,
contains	2	fields	("LogDate"	and	"Message"),	then	we	can	see	the
structure	of	the	records	produced	when	parsing	that	file:

C:\>LogParser	-h	-i:CSV	log.csv

Fields:

	Filename	(S)							RowNumber	(I)							LogDate	(T)							Message	(S)©	2004	Microsoft	Corporation.	All	rights	reserved.

Commands	and	Queries
When	using	the	command-line	executable,	Log	Parser	works	on
commands	supplied	by	the	user.
Each	command	has	five	distinct	components:

The	Input	Format	to	use;
Optional	parameters	for	the	Input	Format;
The	Output	Format	to	use;
Optional	parameters	for	the	Output	Format;
The	SQL	query	that	processes	the	records	generated	by	the	Input
Format	and	produces	records	for	the	Output	Format.

For	example,	let's	consider	the	following	simple	command:

C:\>LogParser	-i:EVT	-fullText:OFF	-o:CSV	-tabs:OFF	"SELECT	*	INTO	out
put.csv	FROM	SYSTEM"
The	command	above	is	structured	as	follows:
The	EVT	Input	Format	is	selected	using	the	-i:<Input	Format	name>
parameter;
Its	"fullText"	parameter	is	set	to	the	"OFF"	value;
The	CSV	Output	Format	is	selected	using	the	-o:<Output	Format
name>	parameter;
Its	"tabs"	parameter	is	set	to	the	"OFF"	value;
The	SQL	query	is	"SELECT	*	INTO	output.csv	FROM	SYSTEM",
which	specifies	that	all	records	generated	from	the	System	Event	Log
should	be	sent	directly	to	the	Output	Format	with	no	further	processing.

In	some	cases,	it	might	not	be	necessary	to	specify	the	Input	Format.	In
the	example	command	above,	the	value	of	the	FROM	clause	is
"SYSTEM",	which	is	the	name	of	a	standard	Windows	Event	Log;	this
name	is	automatically	recognized	by	Log	Parser	as	a	candidate	for	the
EVT	Input	Format,	so	we	can	avoid	specifying	the	Input	Format	name
altogether:

C:\>LogParser	-fullText:OFF	-o:CSV	-tabs:OFF	"SELECT	*	INTO	output.csv	
FROM	SYSTEM"
As	examples	of	other	values	of	FROM	clauses	that	can	be	recognized	by
Log	Parser,	the	IISW3C	Input	Format	is	selected	automatically	when	the
filename	in	the	FROM	clause	starts	with	"ex"	and	has	the	".log"
extension,	and	the	XML	Input	Format	is	selected	automatically	when	the
filename	has	the	".xml"	extension.

The	same	applies	to	Output	Formats:	in	the	example	command	above,
the	filename	in	the	INTO	clause	has	the	"csv"	extension,	thus	selecting
automatically	the	CSV	Output	Format;	the	same	command	can	therefore
be	typed	as:

C:\>LogParser	-fullText:OFF	-tabs:OFF	"SELECT	*	INTO	output.csv	FROM	
SYSTEM"
When	an	Output	Format	is	not	specified,	and	the	SQL	query	does	not
contain	an	INTO	clause	Log	Parser	automatically	selects	the	NAT	Output
Format,	which	prints	the	results	of	the	query	to	the	console	window.

These	examples	show	the	minimal	Log	Parser	command	is	made	up	of
the	SQL	query	alone.	In	most	cases	the	Input	and	Output	formats	can	be
deducted	automatically	from	the	INTO	and	FROM	clauses	of	the	query;
however,	it	is	a	recommended	good	practice	to	always	explicitly	specify
the	Input	and	Output	formats	using	the	-i	and	-o	parameters.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Errors,	Parse	Errors,	and	Warnings
During	the	execution	of	a	command,	Log	Parser	can	encounter	three
different	types	of	run	time	errors:	Errors,	Parse	Errors,	and	Warnings.

Errors
Errors	are	exceptional	events	occurring	during	the	execution	of	a
command	that	cause	the	command	to	abort.

Even	though	Errors	can	occur	due	to	a	large	number	of	reasons,	the
most	common	causes	can	be	categorized	as	follows:

Invalid	query	syntax:	the	query	specified	in	the	command	is	invalid.
Input	Format	errors:	the	specified	Input	Format	has	encountered	an
error	that	prevents	it	from	generating	input	records.	This	could	happen,
for	example,	when	the	FROM	clause	specifies	an	entity	(e.g.	a	file)	that
does	not	exist.
Output	Format	errors:	the	specified	Output	Format	has	encountered
an	error	that	prevents	it	from	consuming	output	records.	This	could
happen,	for	example,	when	the	INTO	clause	specifies	an	entity	(e.g.	a
file)	that	cannot	be	written	to.
Too	many	Parse	Errors:	the	specified	Input	Format	has	encountered
too	many	Parse	Errors,	as	specified	by	the	"-e"	command-line	global
parameter.
Catastrophic	errors:	for	example,	Log	Parser	ran	out	of	memory.

When	an	error	occurs,	the	Log	Parser	command-line	executable	aborts
the	query	execution	and	returns	the	error	message	and	the	error	code.
When	an	error	occurs	while	using	the	Log	Parser	scriptable	COM
components,	a	COM	exception	is	thrown	containing	the	error	message
and	the	error	code.
In	most	cases,	the	error	code	returned	is	the	internal	system	error	code
that	caused	the	error.

Parse	Errors
Parse	Errors	are	errors	that	occur	while	the	selected	Input	Format
generates	the	data	on	which	the	query	operates.
Most	of	the	times,	as	the	name	suggests,	these	errors	are	generated
when	a	log	has	malformed	entries	(for	example,	when	using	the	IISW3C
Input	Format),	or	when	a	system	error	prevents	an	Input	Format	from
processing	a	specific	entry	in	the	data	(for	example,	an	"access	denied"
error	on	a	file	when	using	the	FS	Input	Format).
In	any	event,	the	presence	of	a	Parse	Error	indicates	that	the	Input
Format	had	to	skip	the	data	entry	that	caused	the	error;	for	example,
when	a	Parse	Error	is	encountered	by	the	IISW3C	Input	Format	while
parsing	a	malformed	line	in	the	log,	that	line	will	be	skipped	and	it	will	not
be	processed	by	the	SQL	engine.

Parse	Errors	do	not	generally	cause	early	termination	of	the	currently
executing	command,	but	rather,	they	are	collected	internally	by	the	SQL
engine	and	reported	when	the	command	execution	is	complete.
This	behavior	can	be	controlled	with	the	-e	command-line	global
parameter.	The	value	used	with	this	parameter	specifies	a	maximum
number	of	Parse	Errors	to	collect	internally	before	aborting	the	execution
of	the	command.
For	example,	if	we	execute	a	query	on	an	IISW3C	log	file	specifying	"-
e:10",	Log	Parser	will	collect	up	to	10	Parse	Errors	during	the	execution
of	the	command.	If	the	IISW3C	Input	Format	encounters	10	or	less	Parse
Errors,	the	command	will	complete	succesfully,	and	the	collected	Parse
Errors	will	be	reported	in	detail	at	the	end	of	the	execution.	On	the	other
hand,	if	the	input	log	file	contains	more	than	10	malformed	log	lines,	the
11th	Parse	Error	will	cause	the	command	to	abort	and	return	an	Error.

The	default	value	for	this	command-line	parameter	is	-1,	which	is	a
special	value	causing	the	SQL	engine	to	ignore	all	Parse	Errors	and
report	only	the	total	number	of	Parse	Errors	encountered	during	the
execution	of	a	command.

As	an	example,	consider	the	following	command,	which	parses	an

IISW3C	log	file	and	writes	all	the	input	records	to	a	CSV	file:

C:\>LogParser	-i:IISW3C	-o:CSV	"SELECT	*	INTO	Output.csv	FROM	ex02
0528.log"
Let's	assume	that	the	"ex020528.log"	log	file	contains	3	malformed	log
lines.
After	executing	the	command	above,	the	output	will	be	as	follows:

Task	completed	with	parse	errors.
Parse	errors:
3	parse	errors	occurred	during	processing

Statistics:

Elements	processed:	997
Elements	output:				997
Execution	time:					0.03	seconds

This	output	tells	us	that	the	command	executed	succesfully,	but	3	Parse
Errors	have	been	encountered	while	processing	the	input	data.	Since	the
default	value	for	the	"-e"	command-line	parameter	is	-1,	the	SQL	engine
has	ignored	all	these	Parse	Errors,	keeping	just	their	total	count.

If	we	wanted	these	Parse	Errors	to	be	reported	in	detail,	we	could	specify
a	value	for	the	"-e"	parameter	different	than	-1:

C:\>LogParser	-i:IISW3C	-o:CSV	"SELECT	*	INTO	Output.csv	FROM	ex02
0528.log"	-e:10
In	this	case,	the	output	would	be:

Task	completed	with	parse	errors.
Parse	errors:
Error	while	parsing	field	sc-status:	Error	parsing	StatusCode	"2b00":	Extra
		character(s)	found	in	integer
		LogFile	"C:\Logs\ex020528.log",	Row	number	23,	Value	"2b00"
Cannot	find	end-of-line	-	extra	characters	detected	at	the	end	of	log	entry
		LogFile	"C:\Logs\ex020528.log",	Row	number	118
Log	row	terminates	unexpectedly
		LogFile	"C:\Logs\ex020528.log",	Row	number	188

Statistics:

Elements	processed:	997
Elements	output:				997
Execution	time:					0.03	seconds

The	command	still	executed	succesfully,	and	this	time	the	3	Parse	Errors
have	been	collected	and	reported	at	the	end	of	the	execution.

If	we	had	specified	"2"	for	the	"-e"	parameter,	the	SQL	engine	would	have
aborted	the	execution	of	the	command,	and	an	Error	would	be	returned:

Task	aborted.
Too	many	parse	errors	-	aborting
Parse	errors:
Error	while	parsing	field	sc-status:	Error	parsing	StatusCode	"2b00":	Extra
		character(s)	found	in	integer
		LogFile	"C:\Logs\ex020528.log",	Row	number	23,	Value	"2b00"
Cannot	find	end-of-line	-	extra	characters	detected	at	the	end	of	log	entry

		LogFile	"C:\Logs\ex020528.log",	Row	number	118
Log	row	terminates	unexpectedly
		LogFile	"C:\Logs\ex020528.log",	Row	number	188

Statistics:

Elements	processed:	182
Elements	output:				181
Execution	time:					0.01	seconds

Warnings
Warnings	are	exceptional	events	occurring	during	the	execution	of	a
command	that	require	attention	from	the	user.
There	are	only	a	few	situations	that	could	cause	a	warning,	and	these	are
handled	differently	depending	on	whether	or	not	the	warning	arises
during	the	execution	of	a	command,	or	when	the	execution	has
completed.

When	a	warning	is	generated	during	the	execution	of	a	command,	the
command-line	executable	shows	an	interactive	prompt	to	the	user	asking
whether	or	not	the	execution	should	continue.

As	an	example,	consider	a	command	that	writes	output	records	to	a	CSV
file.
The	CSV	Output	Format	"fileMode"	parameter	can	be	used	to	specify
what	action	should	be	taken	in	case	the	output	file	already	exists.	The
value	"2"	specifies	that	already	existing	output	files	should	not	be
overwritten;	when	using	this	option,	the	CSV	Output	Format	will	raise	a
Warning	when	an	already	existing	output	file	will	not	be	overwritten:

C:\>LogParser	-i:EVT	-o:CSV	"SELECT	TOP	5	Message	INTO	Output.csv	F
ROM	System"	-fileMode:2
WARNING:	File	C:\LogSamples\Output.csv	exists	and	it	will	not	be	overwritt
en.
Do	you	want	to	continue?	[Yes/No/Ignore	all]	:When	this	prompt	appears,	the	user	can	choose	between	continuing	the
execution	of	the	command	allowing	additional	warnings	to	trigger	the
prompt	again,	aborting	the	execution	of	the	command	(in	which	case	the
command	terminates	with	an	Error),	or	continuing	the	execution	of	the
command	ignoring	additional	warnings.

The	interactive	prompt	can	be	controlled	with	the	global	-iw	command-
line	parameter.	This	ON/OFF	parameter	specifies	whether	or	not

warnings	should	be	ignored;	the	default	value	is	"OFF",	meaning	that	run
time	warnings	will	not	be	ignored	and	will	trigger	the	interactive	prompt.
Specifying	"ON",	on	the	other	hand,	disables	the	interactive	prompt,	and
run	time	warnings	will	be	ignored	and	their	total	count	will	be	reported
when	the	command	execution	has	completed:

C:\>LogParser	-i:EVT	-o:CSV	"SELECT	TOP	5	Message	INTO	Output.csv	F
ROM	System"	-fileMode:2	-iw:ON
Task	completed	with	warnings.
Warnings:
1	warning	occurred	during	processing

Statistics:

Elements	processed:	5
Elements	output:				5
Execution	time:					0.03	seconds

Tip:	If	you	use	the	Log	Parser	command-line	executable	in	a	non-
interactive	script	(e.g.	in	a	script	that	has	been	scheduled	to	run
automatically	at	specific	times),	you	should	always	use	"ON"	for	the
"iw"	parameter,	otherwise	in	the	event	of	a	run	time	warning	the	Log
Parser	command	will	stall	waiting	for	a	user	to	press	a	key	in	the
interactive	prompt.

Warnings	that	are	generated	when	a	command	has	completed	are	simply
reported	to	the	user.

For	example,	the	"ignoreDspchErrs"	parameter	of	the	SYSLOG	Output
Format	can	be	used	to	specify	whether	or	not	errors	occurring	while
dispatching	output	records	should	be	ignored	and	reported	as	warnings
at	the	end	of	the	execution.
The	following	example	command	uses	the	SYSLOG	Output	Format	to
send	output	records	to	a	non-existing	user:

C:\>LogParser	-i:EVT	-o:SYSLOG	"SELECT	TOP	5	Message	INTO	NonExis
tingUser	FROM	System"	-ignoreDspchErrs:ON
Since	the	specified	user	does	not	exist,	the	SYSLOG	Output	Format	will
encounter	an	error	for	each	output	record	it	will	try	to	send	to	the	user;
the	"ON"	value	for	the	"ignoreDspchErrs"	tells	the	output	format	to	ignore
these	errors	and	report	all	of	them	when	the	execution	has	completed:

Task	completed	with	warnings.
Warnings:
The	following	dispatch	errors	occurred:
		The	message	alias	could	not	be	found	on	the	network.	(5	times)©	2004	Microsoft	Corporation.	All	rights	reserved.

Statistics:

Elements	processed:	5
Elements	output:				5
Execution	time:					0.02	seconds

Writing	a	Query
With	Log	Parser	you	use	Queries	written	in	a	dialect	of	the	SQL
language	to	specify	the	operations	that	transform	input	records	generated
by	an	Input	Format	into	output	records	that	are	delivered	to	an	Output
Format.

In	this	section	we	will	cover	the	eight	basic	building	blocks	of	the	SQL-
Like	queries	that	you	can	use	with	Log	Parser	to	perform	different
processing	tasks.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Basics	of	a	Query
The	most	simple	query	that	can	be	written	with	Log	Parser	specifies	that
all	the	Input	Records	generated	by	an	Input	Format	are	to	be	delivered	to
an	Output	Format	with	no	intervening	processing.

For	example,	let's	assume	that	we	want	to	visualize	all	the	fields	of	all	the
events	in	the	System	Event	Log.	To	perform	this	task,	we	first	have	to
specify	the	EVT	Input	Format	as	the	source	of	our	input	records,	and	we
do	so	by	using	the	"-i:EVT"	command-line	parameter.
Then,	we	can	choose	the	NAT	Output	Format	as	the	consumer	of	our
output	records,	since	this	Output	Format	is	specifically	designed	to	print
output	records	to	the	console	window;	we	do	so	by	using	the	"-o:NAT"
command-line	parameter.	Finally,	we	specify	the	SQL	query	that	performs
the	desired	task;	the	complete	command	is	as	follows:

C:\>LogParser	-i:EVT	-o:NAT	"SELECT	*	FROM	System"

The	query	above	contains	the	two	basic	building	blocks	of	each	possible
query:	the	SELECT	clause,	and	the	FROM	clause.

The	SELECT	clause	is	used	to	specify	which	input	record	fields	we	want
to	appear	in	the	output	records;	in	this	example,	the	special	"*"	wildcard
means	"all	the	fields".

The	FROM	clause	is	used	to	specify	which	specific	data	source	we	want
the	Input	Format	to	process.	Different	Input	Formats	interpret	the	value	of
the	FROM	clause	in	different	ways;	for	instance,	the	EVT	Input	Format
requires	the	value	of	the	FROM	clause	to	be	the	name	of	a	Windows
Event	Log,	which	in	our	example	is	the	"System"	Event	Log.

To	be	precise,	the	INTO	clause	should	appear	in	every	query	as	well.	The
INTO	clause	is	used	to	specify	the	target	we	want	the	Output	Format	to
write	data	to.	In	our	example,	we	want	the	NAT	Output	Format	to	display
results	to	the	console	window.	This	is	accomplished	by	specifying
"STDOUT"	for	the	value	of	the	INTO	clause,	as	in	the	following	example:

C:\>LogParser	-i:EVT	-o:NAT	"SELECT	*	INTO	STDOUT	FROM	System"

When	a	query	does	not	specify	an	INTO	clause,	the	NAT	Output	Format
automatically	selects	"STDOUT"	as	its	target,	so	in	our	example	we	can
eliminate	the	INTO	clause	altogether.

Tip:	When	you	use	the	NAT	Output	Format	to	display	results	to	the
console	window,	Log	Parser	prints	10	lines	before	pausing	the
printout	and	prompting	the	user	to	press	a	key	to	display	the	next	10
lines.
To	override	this	behavior,	you	can	use	the	"-rtp"	parameter	of	the
NAT	Output	Format	to	specify	the	number	of	lines	to	be	printed
before	pausing;	if	you	want	to	disable	the	pause	altogether	and	have
Log	Parser	display	all	the	records	in	a	single	printout,	use	the	"-1"
value.

Selecting	Specific	Fields
When	you	execute	the	basic	query	above,	Log	Parser	prints	all	the	fields
of	all	the	events	in	the	System	Event	Log	to	the	console	window.
Most	of	the	times,	a	printout	of	all	of	the	14	fields	of	the	Event	Log
records	might	not	be	desired.	For	example,	we	might	only	want	to	see	the
time	at	which	each	event	was	generated,	the	type	of	the	event,	and	the
name	of	the	source	of	the	event.
To	accomplish	this,	we	have	to	substitute	the	"*"	wildcard	in	the	SELECT
clause	with	a	comma-separated	list	of	the	names	of	the	fields	we	wish	to
be	displayed.	We	can	see	the	names	of	the	fields	in	the	EVT	Input
Format	records	by	typing	the	following	help	command:

C:\>LogParser	-h	-i:EVT

The	output	of	this	command	gives	a	detailed	overview	of	the	EVT	Input
Format,	including	a	"Fields"	section	describing	the	structure	of	the
records	produced:

Fields:
		EventLog	(S)														RecordNumber	(I)										TimeGenerated	(T)
		TimeWritten	(T)											EventID	(I)															EventType	(I)
		EventTypeName	(S)									EventCategory	(I)									EventCategoryName	(S)
		SourceName	(S)												Strings	(S)															ComputerName	(S)
		SID	(S)																			Message	(S)															Data	(S)

From	the	fields	listing,	we	understand	that	the	fields	we	are	interested	in
are	named	"TimeGenerated",	"EventTypeName",	and	"SourceName";	we
can	now	rewrite	our	command	as:

C:\>LogParser	-i:EVT	-o:NAT	"SELECT	TimeGenerated,	EventTypeName,	S
ourceName	FROM	System"

Tip:	Field	names	are	case-insensitive.

Tip:	If	a	field	name	contains	spaces,	you	need	to	enclose	it	in
square	brackets	('['	and	']')	for	Log	Parser	to	be	able	to	recognize	it.

The	output	of	this	command	contains	three	columns,	one	for	each	of	the
fields	we	have	selected:

TimeGenerated							EventTypeName					SourceName

-------------------	-----------------	-----------------------
2004-03-14	18:56:55	Warning	event					W32Time
2004-03-14	14:02:23	Information	event	Disk
2004-03-14	14:02:23	Information	event	Disk
2004-03-14	12:00:00	Information	event	EventLog
2004-03-14	00:41:47	Warning	event					W32Time
2004-03-13	22:17:00	Information	event	Service	Control	Manager
2004-03-13	22:06:48	Information	event	Service	Control	Manager
2004-03-13	22:06:48	Information	event	Service	Control	Manager
2004-03-13	12:00:00	Information	event	EventLog
2004-03-12	22:30:47	Information	event	Service	Control	Manager

This	example	illustrates	the	most	simple	transformation	that	you	can
achieve	with	the	Log	Parser	SQL	language:	transforming	an	input	record
made	up	of	a	number	of	fields	into	an	output	record	made	up	of	a	subset
of	these	fields;	in	SQL	terms,	this	transformation	is	called	projection.

Using	Functions
Functions	are	very	powerful	elements	of	the	Log	Parser	SQL-Like
language	that	take	values	as	arguments,	do	some	processing,	and	return
a	new	value.
The	Log	Parser	SQL-Like	language	supports	a	wide	variety	of	functions,
including	arithmetical	functions	(e.g.	ADD,	SUB,	MUL,	DIV,	MOD,
QUANTIZE,	etc.),	string	manipulation	functions	(e.g.	SUBSTR,	STRCAT,
STRLEN,	EXTRACT_TOKEN,	etc.),	and	timestamp	manipulation
functions	(e.g.	TO_DATE,	TO_TIME,	TO_UTCTIME,	etc.).

Considering	the	previous	example,	assume	that	for	the	"TimeGenerated"
field	we	only	need	to	retrieve	the	date	when	an	event	has	been
generated,	ignoring	all	of	the	time	elements.
To	do	this,	we	need	to	modify	the	"TimeGenerated"	field	with	the
TO_DATE	function,	which	takes	a	value	of	type	TIMESTAMP	and	returns
a	new	value	of	type	TIMESTAMP	containing	only	the	year,	day,	and
month	elements:

C:\>LogParser	-i:EVT	-o:NAT	"SELECT	TO_DATE(TimeGenerated),	EventT
ypeName,	SourceName	FROM	System"
The	output	of	this	command	is:

TO_DATE(TimeGenerated)	EventTypeName					SourceName
----------------------	-----------------	-----------------------
2004-03-14													Warning	event					W32Time
2004-03-14													Information	event	Disk
2004-03-14													Information	event	Disk
2004-03-14													Information	event	EventLog
2004-03-14													Warning	event					W32Time
2004-03-13													Information	event	Service	Control	Manager
2004-03-13													Information	event	Service	Control	Manager
2004-03-13													Information	event	Service	Control	Manager
2004-03-13													Information	event	EventLog
2004-03-12													Information	event	Service	Control	Manager

Functions	can	also	appear	as	arguments	of	other	functions.
For	example,	instead	of	the	event	type	name	shown	in	the	output	above,
we	might	want	the	first	word	only	("Warning",	"Information",	etc.),	all	in
capital	letters.
This	task	can	be	accomplished	by	first	using	the	EXTRACT_TOKEN
function,	which	extracts	specific	substrings	from	within	a	string,	followed
by	the	TO_UPPERCASE	function,	which	transforms	a	string	into	a	string
with	all	uppercase	characters:

C:\>LogParser	-i:EVT	-o:NAT	"SELECT	TO_DATE(TimeGenerated),	TO_UP

PERCASE(EXTRACT_TOKEN(EventTypeName,	0,	'	')),	SourceName	FRO
M	System"
TO_DATE(TimeGenerated)	TO_UPPERCASE(EXTRACT_TOKEN(EventTy
peName,	0,	'	'))	SourceName
----------------------	--	---------------------
--
2004-03-14													WARNING																																												W32Time
2004-03-14													INFORMATION																																								Disk
2004-03-14													INFORMATION																																								Disk
2004-03-14													INFORMATION																																								EventLog
2004-03-14													WARNING																																												W32Time
2004-03-13													INFORMATION																																								Service	Control	
Manager
2004-03-13													INFORMATION																																								Service	Control	
Manager
2004-03-13													INFORMATION																																								Service	Control	
Manager
2004-03-13													INFORMATION																																								EventLog
2004-03-12													INFORMATION																																								Service	Control	
Manager

Specifying	Constants
So	far	we	have	written	SELECT	clauses	that	specify	both	fields	and
functions.
There	is	a	third	kind	of	item	that	we	could	use	in	our	queries:	constants.
Constants	are	special	elements	in	the	Log	Parser	language	that
represent	fixed	values;	just	like	the	field	values,	constant	values	can	be
one	of	the	Log	Parser	types:	INTEGER,	REAL,	STRING,	TIMESTAMP,
and	NULL.	Constants	can	be	specified	in	queries	in	different	ways,
depending	on	their	type.

Constant	values	of	the	INTEGER	type	are	specified	by	simply	typing	their
value;	the	following	query:

SELECT	242,	SourceName	FROM	SYSTEM

would	produce	the	following	output:

242	SourceName
---	----------
242	W32Time
242	Disk
242	Disk
242	EventLog
242	W32Time

Constant	values	of	the	REAL	type	are	specified	exactly	like	the	INTEGER
values,	but	they	are	recognized	as	being	of	the	REAL	type	by	the
presence	of	a	decimal	point:

SELECT	242.7,	SourceName	FROM	SYSTEM

242.700000	SourceName
----------	----------
242.700000	W32Time
242.700000	Disk
242.700000	Disk
242.700000	EventLog

STRING	constants	must	be	enclosed	within	single-quote	characters:

SELECT	'MyConstant',	SourceName	FROM	SYSTEM

242.700000	W32Time'MyConstant'	SourceName
------------	----------
MyConstant			W32Time
MyConstant			Disk
MyConstant			Disk
MyConstant			EventLog
MyConstant			W32Time

Special	characters	in	STRING	constants	can	be	specified	by	using
character	sequences	preceded	by	the	'\'	character.
For	example,	a	single-quote	character	can	be	specified	as	\',	while	a
backslash	character	can	be	specified	by	\\:

SELECT	'Contains	\'	a	quote',	'Contains	\\	a	backslash',	SourceName	FROM	S
YSTEM
'Contains	'a	quote'	'Contains	\	a	backslash'	SourceName
-------------------	------------------------	----------
Contains	'	a	quote			Contains	\	a	backslash			W32Time
Contains	'	a	quote			Contains	\	a	backslash			Disk
Contains	'	a	quote			Contains	\	a	backslash			Disk
Contains	'	a	quote			Contains	\	a	backslash			EventLog
Contains	'	a	quote			Contains	\	a	backslash			W32Time

In	addition,	it	is	also	possible	to	specify	any	UNICODE	character	using
the	\uxxxx	notation,	where	xxxx	is	the	4-digit	hexadecimal	representation
of	the	UNICODE	character.
For	example,	to	specify	a	tab	character	(whose	UNICODE	value	is	0009),
we	could	type:

SELECT	'Contains	\u0009	a	tab',	SourceName	FROM	SYSTEM

A	NULL	constant	can	be	specified	with	the	"NULL"	keyword:

SELECT	NULL,	SourceName	FROM	SYSTEM

TIMESTAMP	constants	are	specified	in	the	following	way:

TIMESTAMP('timestamp	value',	'timestamp	format')

For	more	information	regarding	timestamp	values,	constants,	and	format
specifications,	refer	to	the	Timestamp	Reference.

In	the	Log	Parser	SQL	language,	the	three	terms	that	can	be	specified	in
a	SQL	query	(fields,	functions,	and	constants)	are	collectively	referred	to

as	field-expressions.

Aliasing	Field-Expressions
Consider	again	one	of	the	examples	seen	in	this	section:

C:\>LogParser	-i:EVT	-o:NAT	"SELECT	TO_DATE(TimeGenerated),	TO_UP
PERCASE(EXTRACT_TOKEN(EventTypeName,	0,	'	')),	SourceName	FRO
M	System"TO_DATE(TimeGenerated)	TO_UPPERCASE(EXTRACT_TOKEN(EventTy
peName,	0,	'	'))	SourceName
----------------------	--	---------------------
--
2004-03-14													WARNING																																												W32Time
2004-03-14													INFORMATION																																								Disk
2004-03-14													INFORMATION																																								Disk
2004-03-14													INFORMATION																																								EventLog
2004-03-14													WARNING																																												W32Time
2004-03-13													INFORMATION																																								Service	Control	
Manager
2004-03-13													INFORMATION																																								Service	Control	
Manager
2004-03-13													INFORMATION																																								Service	Control	
Manager
2004-03-13													INFORMATION																																								EventLog
2004-03-12													INFORMATION																																								Service	Control	
Manager

We	can	see	that	for	each	field	in	the	output	record,	the	NAT	Output
Format	prints	a	column	header	with	the	name	of	that	field.
By	default,	output	record	fields	are	named	with	the	full	field-expression
text	that	generates	them;	in	our	example,	the	name	of	the	first	output
record	field	is	"TO_DATE(TimeGenerated)",	which	mirrors	exactly	the
field-expression	text	used	in	the	SELECT	clause.

We	can	change	the	name	of	a	field-expression	in	the	SELECT	clause	by
using	an	Alias.
In	order	to	alias	a	field-expression	in	the	SELECT	clause,	we	can	use	the
AS	keyword	followed	by	the	new	name:

C:\>LogParser	-i:EVT	-o:NAT	"SELECT	TO_DATE(TimeGenerated)	AS	Date
Generated,	TO_UPPERCASE(EXTRACT_TOKEN(EventTypeName,	0,	'	'))	
AS	TypeName,	SourceName	FROM	System"DateGenerated	TypeName				SourceName
-------------	-----------	-----------------------
2004-03-14				WARNING					W32Time
2004-03-14				INFORMATION	Disk
2004-03-14				INFORMATION	Disk
2004-03-14				INFORMATION	EventLog
2004-03-14				WARNING					W32Time
2004-03-13				INFORMATION	Service	Control	Manager
2004-03-13				INFORMATION	Service	Control	Manager
2004-03-13				INFORMATION	Service	Control	Manager
2004-03-13				INFORMATION	EventLog
2004-03-12				INFORMATION	Service	Control	Manager

Aliasing	a	field-expression	means	assigning	a	name	to	it;	as	we	will	see
later,	this	name	can	also	be	used	anywhere	else	in	the	query	as	a
shortcut	that	refers	to	the	original	field-expression.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Filtering	Input	Records
When	retrieving	data	from	an	Input	Format,	it	is	often	needed	to	filter	out
unneeded	records	and	only	keep	those	that	match	specific	criteria.

For	example,	consider	the	simple	command	seen	in	the	previous	section,
which	returns	selected	fields	from	all	of	the	events	in	the	System	event
log:

C:\>LogParser	-i:EVT	-o:NAT	"SELECT	TimeGenerated,	EventTypeName,	S
ourceName	FROM	System"
TimeGenerated							EventTypeName					SourceName
-------------------	-----------------	-----------------------
2004-03-14	18:56:55	Warning	event					W32Time
2004-03-14	14:02:23	Information	event	Disk
2004-03-14	14:02:23	Information	event	Disk
2004-03-14	12:00:00	Information	event	EventLog
2004-03-14	00:41:47	Warning	event					W32Time
2004-03-13	22:17:00	Information	event	Service	Control	Manager
2004-03-13	22:06:48	Information	event	Service	Control	Manager
2004-03-13	22:06:48	Information	event	Service	Control	Manager
2004-03-13	12:00:00	Information	event	EventLog
2004-03-12	22:30:47	Information	event	Service	Control	Manager

Let's	now	assume	that	we	are	only	interested	in	the	events	generated	by
the	"Service	Control	Manager"	source.
To	accomplish	this	task,	we	can	use	another	basic	building	block	of	the
Log	Parser	SQL-Like	language:	the	WHERE	clause.

The	WHERE	clause	is	used	to	specify	a	boolean	expression	that	must	be
satisfied	by	an	input	record	for	that	record	to	be	output.	Input	records	that
do	not	satisfy	the	condition	will	be	discarded.	
In	SQL	terms,	filtering	records	with	the	WHERE	clause	is	a
transformation	called	selection.

Using	the	WHERE	clause,	we	can	rewrite	the	previous	command	as
follows:

C:\>LogParser	-i:EVT	-o:NAT	"SELECT	TimeGenerated,	EventTypeName,	S
ourceName	FROM	System	WHERE	SourceName	=	'Service	Control	Manager'
" Tip:	The	WHERE	clause	must	immediately	follow	the	FROM

clause.

The	output	of	this	command	is:

TimeGenerated							EventTypeName					SourceName
-------------------	-----------------	-----------------------
2004-03-13	22:17:00	Information	event	Service	Control	ManagerLet's	analyze	in	detail	the	WHERE	clause	used	in	this	example.
The	boolean	condition	that	we	have	used	is	a	very	simple	one:	we	only

2004-03-13	22:06:48	Information	event	Service	Control	Manager
2004-03-13	22:06:48	Information	event	Service	Control	Manager
2004-03-12	22:30:47	Information	event	Service	Control	Manager
2004-03-12	22:12:32	Information	event	Service	Control	Manager
2004-03-12	21:09:14	Information	event	Service	Control	Manager

want	those	input	records	whose	"SourceName"	field	has	the	exact	value
of	"Service	Control	Manager".	To	specify	this	condition,	we	have	used	the
"="	relational	operator,	with	the	left	operand	being	the	"SourceName"
field,	and	the	right	operand	being	a	STRING	constant.

Complex	Conditions
Conditions	specified	in	the	WHERE	clause	can	be	more	complex,	making
use	of	comparison	operators	(such	as	">",	"<=",	"<>",	"LIKE",
"BETWEEN",	etc.)	and	boolean	operators	(such	as	"AND",	"OR",	"NOT").

For	example,	we	might	only	want	to	see	two	kinds	of	events:

Events	generated	by	the	"Service	Control	Manager"	source	whose
EventID	is	greater	than	or	equal	7024;
Events	generated	by	the	"W32Time"	source.

To	accomplish	this,	the	query	can	be	written	as	follows:

SELECT	TimeGenerated,	EventTypeName,	SourceName	FROM	System
WHERE	(SourceName	=	'Service	Control	Manager'	AND	EventID	>=	7024)	
OR
						(SourceName	=	'W32Time')As	another	example,	we	might	want	to	see	all	the	events	that	have	been
logged	in	the	past	24	hours.
Translated	into	WHERE	terms,	this	means	that	we	only	want	to	see
records	whose	"TimeWritten"	field	is	greater	than	or	equal	the	current
local	time	minus	1	day:

SELECT	*	FROM	System
WHERE	TimeWritten	>=	SUB(TO_LOCALTIME(SYSTEM_TIMESTAMP()
),	TIMESTAMP('0000-01-02',	'yyyy-MM-dd'))Tip:	In	Log	Parser	the	origin	of	time	is	day	1	of	month	1	of	year

zero.	This	means	that	a	time	span	of	one	day	can	be	specified	as
day	2	of	month	1	of	year	zero,	i.e.	24	hours	after	the	origin	of	time.

To	see	security	events	whose	"Message"	field	contains	the	word	"logon",
we	can	use	the	LIKE	operator,	which	tests	a	STRING	value	for	case-
insensitive	pattern	matching:

SELECT	*	FROM	Security

WHERE	Message	LIKE	'%logon%'

If	we	want	to	retrieve	events	with	an	ID	belonging	to	a	specific	set	of
values,	we	can	use	the	IN	operator	followed	by	a	list	of	the	desired
"EventID"	values:

SELECT	*	FROM	Security
WHERE	EventID	IN	(547;	541;	540;	528)

Tip:	With	the	IN	operator,	single	values	are	separated	by	the
semicolon	character.

On	the	other	hand,	if	we	want	to	retrieve	events	with	an	ID	belonging	to	a
specific	range	of	values,	we	can	use	the	BETWEEN	operator	as	follows:

SELECT	*	FROM	Security
WHERE	EventID	BETWEEN	528	AND	547

©	2004	Microsoft	Corporation.	All	rights	reserved.

Sorting	Output	Records
A	commonly	used	building	block	of	SQL	queries	is	the	ORDER	BY
clause.
The	ORDER	BY	clause	can	be	used	to	specify	that	the	output	records
should	be	sorted	according	to	the	values	of	selected	fields.

In	the	following	example,	we	are	using	the	FS	Input	Format	to	retrieve	a
listing	of	the	files	in	a	specific	directory,	sorting	the	listing	by	the	file	size:

C:\>LogParser	-i:FS	-o:NAT	"SELECT	Path,	Size	FROM	C:\MyDirectory*.*	
ORDER	BY	Size"
Path																																				Size
---------------------------------------	----
C:\MyDirectory\..																							0
C:\MyDirectory\.																								0
C:\MyDirectory\ieexec.exe.config								140
C:\MyDirectory\csc.exe.config											163
C:\MyDirectory\vbc.exe.config											163
C:\MyDirectory\jsc.exe.config											163
C:\MyDirectory\l_except.nlp													168
C:\MyDirectory\caspol.exe.config								353
C:\MyDirectory\ilasm.exe.config									353
C:\MyDirectory\ConfigWizards.exe.config	353

Tip:	The	ORDER	BY	clause	must	be	the	last	clause	appearing	in	a
Log	Parser	SQL	query.

By	default,	output	records	are	sorted	according	to	ascending	values.	We
can	change	the	sort	direction	by	appending	the	DESC	(for	descending)	or
ASC	(for	ascending)	keywords	to	the	ORDER	BY	clause,	as	in	the
following	example:

C:\>LogParser	-i:FS	-o:NAT	"SELECT	Path,	Size	FROM	C:\MyDirectory*.*	
ORDER	BY	Size	DESC"
Path																																				Size
---------------------------------------	-------
C:\MyDirectory\mscorsvr.dll													2494464
C:\MyDirectory\mscorwks.dll													2482176
C:\MyDirectory\corperfmonsymbols.ini				2435148
C:\MyDirectory\mscorlib.dll													2088960
C:\MyDirectory\System.Windows.Forms.dll	2039808
C:\MyDirectory\System.Design.dll								1699840
C:\MyDirectory\mscorcfg.dll													1564672

Tip:	Differently	than	the	standard	SQL	language,	the	Log	Parser
SQL-Like	language	supports	only	one	DESC	or	ASC	keyword	for
the	whole	ORDER	BY	clause.

If	we	want	our	listing	to	be	sorted	first	by	file	size	and	then	by	file	creation
time,	we	can	do	so	by	specifying	both	field-expressions	in	the	ORDER
BY	clause:

C:\>LogParser	-i:FS	-o:NAT	"SELECT	Name,	Size,	CreationTime	FROM	C:\

MyDirectory*.*	ORDER	BY	Size,	CreationTime"Name																					Size	CreationTime
------------------------	----	-----------------------
..																							0				2004-05-24	08:14:07.221
.																								0				2004-05-24	08:14:07.221
ieexec.exe.config								140		2004-05-24	08:14:21.441
csc.exe.config											163		2004-05-24	08:14:21.191
jsc.exe.config											163		2004-05-24	08:14:21.762
vbc.exe.config											163		2004-05-24	08:14:26.599
l_except.nlp													168		2004-05-24	08:14:21.812
caspol.exe.config								353		2004-05-24	08:14:20.920
ConfigWizards.exe.config	353		2004-05-24	08:14:21.21
cvtres.exe.config								353		2004-05-24	08:14:21.251

Since	the	sort	operation	is	performed	on	output	records,	the	Log	Parser
SQL-Like	language	requires	that	field-expressions	appearing	in	the
ORDER	BY	clause	must	also	appear	in	the	SELECT	clause.
In	other	words,	the	set	of	field-expressions	in	the	ORDER	BY	clause
must	be	a	subset	of	the	field-expressions	in	the	SELECT	clause.
Thus,	the	following	example	is	NOT	correct:

SELECT	SourceName,	EventID	FROM	System
ORDER	BY	TimeGenerated
On	the	other	hand,	the	following	example	IS	correct:

SELECT	SourceName,	EventID,	TimeGenerated	FROM	System
ORDER	BY	TimeGenerated

©	2004	Microsoft	Corporation.	All	rights	reserved.

Aggregating	Data	Within	Groups
All	the	query	examples	that	we	have	seen	so	far	share	a	common
characteristic:	the	values	of	each	output	record	were	built	upon	the
values	of	a	single	input	record.
Sometimes,	however,	we	might	need	to	aggregate	multiple	input	records
together	and	perform	some	operation	on	groups	of	input	records.
To	accomplish	this	task,	the	Log	Parser	SQL-Like	language	has	a	special
set	of	functions	that	can	be	used	to	perform	basic	calculations	on	multiple
records.	These	aggregate	functions	(also	referred	to	as	"SQL	functions")
include	SUM,	COUNT,	MAX,	MIN,	and	AVG.

Aggregating	Data
To	show	a	classic	example	of	the	use	of	aggregate	functions,	assume
that	given	an	IIS	W3C	log	file,	we	want	to	calculate	the	total	number	of
bytes	sent	by	the	IIS	server	during	the	whole	period	recorded	in	the	log
file.
Considering	that	the	number	of	bytes	sent	by	the	IIS	server	for	each
HTTP	request	is	logged	in	the	"sc-bytes"	field,	our	command	will	look	like
the	following	example:

C:\>LogParser	-i:IISW3C	-o:NAT	"SELECT	SUM(sc-bytes)	FROM	ex040528
.log"
Since	the	SELECT	clause	of	this	query	makes	use	of	the	SUM	aggregate
function,	the	query	will	automatically	aggregate	all	the	input	records,	and
calculate	the	sum	of	all	the	values	of	the	"sc-bytes"	field	across	all	the
input	records;	the	output	of	this	command	will	then	look	like	the	following
output:

SUM(sc-bytes)

242834732As	the	example	shows,	the	result	of	the	query	is	a	single	output	record,
containing	a	single	value	calculated	across	all	the	input	records.

As	another	example,	we	might	want	to	calculate	how	many	requests
have	been	logged	in	the	log	file.
Considering	that	each	log	file	entry	represents	a	single	HTTP	request,
this	task	can	be	accomplished	by	simply	counting	how	many	input
records	are	logged	in	the	file:

C:\>LogParser	-i:IISW3C	-o:NAT	"SELECT	COUNT(*)	FROM	ex040528.log
"
The	example	above	makes	use	of	the	COUNT	aggregate	function.	When
used	with	the	special	"*"	argument,	the	COUNT	function	returns	the	total

number	of	input	records	processed	by	the	query.

If	we	want	to	calculate	how	many	requests	satisfy	a	particular	condition,
for	example	how	many	requests	were	for	an	ASP	page,	we	can	add	a
WHERE	clause	to	the	query,	and	the	COUNT	function	will	only	count
input	records	satisfying	the	WHERE	condition:

SELECT	COUNT(*)	FROM	ex040528.log	WHERE	EXTRACT_EXTENSIO
N(cs-uri-stem)	LIKE	'asp'

Creating	Groups
In	the	examples	above,	we	have	been	using	aggregate	functions	to
calculate	a	value	across	all	the	input	records;	sometimes,	however,	we
might	want	to	calculate	values	across	groups	of	input	records.

As	an	example,	we	might	want	to	calculate	the	total	number	of	bytes	sent
by	the	IIS	server	for	each	URL.	To	perform	this	task,	we	need	to	divide	all
the	input	records	into	groups	according	to	the	URL	requested,	and	then
use	the	SUM	aggregate	function	separately	on	each	group.

This	can	be	accomplished	by	using	another	building	block	of	the	Log
Parser	SQL	language:	the	GROUP	BY	clause.
The	GROUP	BY	clause	is	used	to	specify	which	fields	we	want	the	group
subdivision	to	be	based	on;	after	the	input	records	have	been	divided	into
these	groups,	all	the	aggregate	functions	in	the	SELECT	clause	will	be
calculated	separately	on	each	of	these	groups,	and	the	query	will	return
an	output	record	for	each	group	created.

Using	the	GROUP	BY	clause,	our	example	query	and	its	output	will	look
like	this:

SELECT	cs-uri-stem,	COUNT(*)	FROM	ex040528.log	GROUP	BY	cs-uri-ste
m
cs-uri-stem												COUNT(*)
----------------------	--------
/Home/default.asp						5
/Home/images/bckgd.gif	419
/Docs/expl.htm									12
/Docs/main.htm									26
/login/frmx.dll								1

To	make	another	example,	assume	that	we	want	to	calculate	how	many
requests	have	been	served	for	each	page	type	(ASP,	html,	CSS,	etc.).
First	of	all,	we	need	to	create	separate	groups	according	to	the	extension
of	the	URL;	after	this	group	subdivision	has	been	done,	we	can	calculate
a	COUNT(*)	on	each	group:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	COUNT(*)	
FROM	ex040528.log	
The	output	will	look	like:

GROUP	BY	PageTypePageType	COUNT(ALL	*)
--------	------------
htm						115
css						22
gif						585
exe						25
nsf						142
swf						11
jpg						77
html					1
dll						1
asp						5
js							11
class				5

If	we	sort	the	output	above	according	to	the	number	of	requests	for	each
group,	we	will	be	creating	a	list	showing	the	most	requested	page	types
first:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	COUNT(*)	A
S	PageTypeHits
FROM	ex040528.log	
GROUP	BY	PageType
ORDER	BY	PageTypeHits	DESC

The	output	will	look	like:

PageType	PageTypeHits
--------	------------
gif						585
nsf						142
htm						115
jpg						77
exe						25
css						22
js							11
swf						11
asp						5
class				5
dll						1
html					1

Groups	can	also	be	built	on	multiple	fields,	thus	creating	a	hierarchy	of
groups.

For	example,	consider	the	following	query:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	sc-status,	CO
UNT(*)	
FROM	ex040528.log	
GROUP	BY	PageType,	sc-status
This	query	creates	groups	according	to	the	requested	page	type,	and
within	each	of	these	groups,	sub-groups	are	created	according	to	the
HTTP	status	sent	by	the	IIS	server	for	the	group	page	type;	the
aggregate	function	"COUNT"	will	then	be	calculated	on	each	sub-group.
The	output	will	look	like:

PageType	sc-status	PageTypeHits
--------	---------	------------
htm						304							79
css						304							10
gif						304							450
exe						200							25
nsf						200							129
swf						200							3
gif						404							12
css						404							9

It's	important	to	note	a	particular	language	constraint	derived	from	the
use	of	the	GROUP	BY	clause.
Whenever	a	query	contains	a	GROUP	BY	clause,	its	SELECT	clause	can
only	contain	any	of	the	following:

Aggregate	functions
Field-expressions	appearing	also	in	the	GROUP	BY	clause,	or	deriving

htm						200							34
css						200							3
jpg						200							17
gif						200							123
jpg						304							60
swf						304							8
nsf						403							3
html					404							1
dll						500							1
asp						200							5
js							304							7
class				304							4
js							200							4
htm						404							2
class				200							1
nsf						304							9
nsf						302							1

from	the	field-expressions	used	in	the	GROUP	BY	clause
Constants

In	other	words,	the	following	example	is	a	correct	query:

SELECT	'hello',	TO_UPPERCASE(cs-uri-stem),	COUNT(*),	SUM(sc-bytes)
FROM	ex040528.log	
GROUP	BY	cs-uri-stemIn	fact,	the	SELECT	clause	in	the	example	above	contains:
A	constant	("'hello'");
A	field-expression	("TO_UPPERCASE(cs-uri-stem)")	whose	argument
appears	in	the	GROUP	BY	clause;
Two	aggregate	functions.

However,	the	following	example	is	NOT	a	correct	query:

SELECT	date,	COUNT(*),	SUM(sc-bytes)
FROM	ex040528.log	
GROUP	BY	cs-uri-stemThe	SELECT	clause	in	the	example	above	contains	a	field-expression
("date")	that	does	not	appear	in	the	GROUP	BY	clause.

The	following	example	is	also	NOT	a	correct	query:

SELECT	TO_UPPERCASE(cs-uri-stem),	COUNT(*),	SUM(sc-bytes)
FROM	ex040528.log	
GROUP	BY	SUBSTR(TO_UPPERCASE(cs-uri-stem),	0,	5)The	SELECT	clause	in	the	example	above	contains	a	field-expression
("TO_UPPERCASE(cs-uri-stem)")	that	is	not	derived	from	any	field-
expression	in	the	GROUP	BY	clause;	in	this	case,	it's	actually	the	field-
expression	in	the	GROUP	BY	clause	that	is	derived	from	a	field-
expression	in	the	SELECT	clause.
The	previous	example	can	be	corrected	as	follows:

SELECT	SUBSTR(TO_UPPERCASE(cs-uri-stem),	0,	5),	COUNT(*),	SUM(s
c-bytes)
FROM	ex040528.log	
GROUP	BY	SUBSTR(TO_UPPERCASE(cs-uri-stem),	0,	5)©	2004	Microsoft	Corporation.	All	rights	reserved.

Calculating	Percentages
When	working	with	groups	and	aggregate	functions,	it	is	often	needed	to
represent	an	aggregate	value	as	a	percentage,	rather	than	as	an
absolute	value.
We	might	want,	for	example,	to	calculate	the	number	of	hits	per	page
type	from	a	Web	server	log	as	a	percentage	relative	to	the	total	number
of	hits,	rather	than	as	the	absolute	number	itself.

Consider	the	previous	example	query,	that	calculates	the	count	of	hits	per
requested	page	type:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	COUNT(*)	
FROM	ex040528.log	
GROUP	BY	PageTypePageType	COUNT(ALL	*)
--------	------------
htm						115
css						22
gif						585
exe						25
nsf						142
swf						11
jpg						77
html					1
dll						1
asp						5
js							11
class				5

If	we	wanted	to	calculate	the	percentage	of	hits	for	each	group,	we	would
need	to	divide	the	number	of	hits	within	each	group	by	the	total	number
of	hits	in	the	whole	log	file;	however,	the	use	of	the	GROUP	BY	clause
restricts	each	aggregate	function	to	operate	within	the	single	groups,	thus
making	it	impossible	to	calculate	at	the	same	time	the	total	number	of	hits
across	all	groups.

To	workaround	this	problem,	we	use	two	special	aggregate	functions
available	in	the	Log	Parser	SQL	language:	PROPCOUNT	and
PROPSUM.
When	used	in	their	basic	forms,	these	functions	calculate	the	ratio	of	the
COUNT	or	ADD	aggregate	functions	within	a	group	to	the	COUNT	or
ADD	aggregate	functions	on	all	of	the	input	records.

Using	the	PROPCOUNT	function,	we	can	change	the	query	above	as
follows:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	PROPCOUN
T(*)	
And	obtain:

FROM	ex040528.log	
GROUP	BY	PageType
PageType	PROPCOUNT(ALL	*)
--------	----------------
htm						0.115000
css						0.022000
gif						0.585000
exe						0.025000
nsf						0.142000
swf						0.011000
jpg						0.077000
html					0.001000
dll						0.001000
asp						0.005000
js							0.011000
class				0.005000

To	show	real	percentages,	we	can	multiply	the	aggregate	function	values
by	100:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	MUL(PROP
COUNT(*),	100.0)	AS	PageTypeHits
FROM	ex040528.log	
GROUP	BY	PageType
PageType	PageTypeHits
--------	------------
htm						11.500000
css						2.200000
gif						58.500000
exe						2.500000
nsf						14.200000
swf						1.100000
jpg						7.700000
html					0.100000
dll						0.100000
asp						0.500000
js							1.100000
class				0.500000

From	the	results	of	this	query	we	can	infer	that,	for	example,	requests	to
"css"	pages	represent	the	2.2%	of	the	total	number	of	requests	in	this	log
file.

Calculating	Percentages	Across	Multiple	Group
Hierarchies
The	examples	above	show	the	basic	form	of	the	PROPCOUNT	and
PROPSUM	functions,	which	calculates	the	percentage	of	an	aggregate
function	within	a	group	relative	to	all	of	the	input	records.
However,	it	is	also	possible	to	use	the	PROPCOUNT	and	PROPSUM
functions	to	calculate	percentages	relative	to	hierarchically	higher	groups.
To	do	so,	we	can	use	the	ON	keyword	after	the	PROPCOUNT	or
PROPSUM	function	name	followed	by	a	list	of	the	GROUP	BY	field-
expressions	identifying	which	hierarchically	higher	group	we	want	the
percentage	to	be	relative	to.

Consider	one	of	the	previous	examples,	in	which	we	calculated	the	total
number	of	hits	per	page	type	per	HTTP	status	code,	modified	to	show
percentages	rather	than	absolute	numbers:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	sc-status,	MU
L(PROPCOUNT(*),	100.0)	AS	Hits
FROM	ex040528.log	
GROUP	BY	PageType,	sc-status
ORDER	BY	PageType,	sc-status

PageType	sc-status	Hits
--------	---------	------------
asp						200							0.500000
class				200							0.100000
class				304							0.400000
css						200							0.300000
css						304							1.000000
css						404							0.900000
dll						500							0.100000
exe						200							2.500000
gif						200							12.300000
gif						304							45.000000
gif						404							1.200000
htm						200							3.400000
htm						304							7.900000

The	"Hits"	field	shows	the	percentage	of	hits	for	a	page	type	and	HTTP
status	code	relative	to	the	total	number	of	hits.

If	we	wanted	to	calculate	the	percentage	of	hits	for	a	page	type	and
HTTP	status	code	relative	to	the	number	of	hits	for	that	page	type	(i.e.
the	distribution	of	HTTP	status	codes	within	each	page	type),	we	would
have	written	the	query	as	follows:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	sc-status,	MU
L(PROPCOUNT(*)	ON	(PageType),	100.0)	AS	Hits
FROM	ex040528.log	
GROUP	BY	PageType,	sc-status
ORDER	BY	PageType,	sc-status

The	output	would	be:

PageType	sc-status	Hits
--------	---------	----------

htm						404							0.200000
html					404							0.100000
jpg						200							1.700000
jpg						304							6.000000
js							200							0.400000
js							304							0.700000
nsf						200							12.900000
nsf						302							0.100000
nsf						304							0.900000
nsf						403							0.300000
swf						200							0.300000
swf						304							0.800000

asp						200							100.000000
class				200							20.000000
class				304							80.000000
css						200							13.636364
css						304							45.454545
css						404							40.909091
dll						500							100.000000
exe						200							100.000000
gif						200							21.025641
gif						304							76.923077
gif						404							2.051282
htm						200							29.565217
htm						304							68.695652
htm						404							1.739130
html					404							100.000000
jpg						200							22.077922
jpg						304							77.922078
js							200							36.363636
js							304							63.636364
nsf						200							90.845070
nsf						302							0.704225
nsf						304							6.338028
nsf						403							2.112676
swf						200							27.272727
swf						304							72.727273

We	can	now	infer	that,	for	example,	about	45%	of	requests	to	"css"
pages	returned	an	HTTP	status	code	of	304.

Here	we	have	used	the	ON	keyword	followed	by	the	"PageType"	GROUP
BY	field-expression.	This	notation	indicates	that	we	want	the
PROPCOUNT	function	to	calculate	the	ratio	of	the	COUNT	aggregate
function	within	a	single	group	to	the	COUNT	aggregate	function	within
the	hierarchically	higher	group	identified	by	the	"PageType"	field-
expression.

As	another	example,	we	can	modify	the	previous	example	query	to
create	groups	based	on	the	time	the	request	was	made	at	(quantized	at
20-second	intervals),	the	page	type,	and	the	HTTP	status	code:

SELECT	QUANTIZE(time,	20)	AS	Interval,	EXTRACT_EXTENSION(cs-uri
-stem)	AS	PageType,	sc-status
FROM	ex040528.log	
GROUP	BY	Interval,	PageType,	sc-status
ORDER	BY	Interval,	PageType,	sc-status

For	each	group,	we	can	calculate	the	percentage	of	hits	relative	to	the
number	of	hits	within	the	time	interval	and	page	type,	the	percentage	of
hits	relative	to	the	number	of	hits	within	the	time	interval	alone,	and	the
percentage	of	hits	relative	to	the	total	number	of	hits:

SELECT	QUANTIZE(time,	20)	AS	Interval,	EXTRACT_EXTENSION(cs-uri
-stem)	AS	PageType,	sc-status,
					MUL(PROPCOUNT(*)	ON	(Interval,	PageType),	100.0)	AS	Hits1,
					MUL(PROPCOUNT(*)	ON	(Interval),	100.0)	AS	Hits2,
					MUL(PROPCOUNT(*),	100.0)	AS	Hits3	
FROM	ex040528.log	
GROUP	BY	Interval,	PageType,	sc-status
ORDER	BY	Interval,	PageType,	sc-status

Interval	PageType	sc-status	Hits1						Hits2					Hits3
--------	--------	---------	----------	---------	---------
00:28:40	css						200							20.000000		1.470588		0.100000
00:28:40	css						304							60.000000		4.411765		0.300000
00:28:40	css						404							20.000000		1.470588		0.100000
00:28:40	exe						200							100.000000	7.352941		0.500000
00:28:40	gif						200							10.000000		1.470588		0.100000
00:28:40	gif						304							70.000000		10.294118	0.700000
00:28:40	gif						404							20.000000		2.941176		0.200000
00:28:40	htm						200							11.764706		2.941176		0.200000
00:28:40	htm						304							88.235294		22.058824	1.500000
00:28:40	jpg						200							25.000000		1.470588		0.100000
00:28:40	jpg						304							75.000000		4.411765		0.300000
00:28:40	nsf						200							100.000000	35.294118	2.400000

From	the	query	results	we	can	infer,	for	example,	that	during	the
"00:29:20"	time	interval,	about	78%	of	the	requests	to	"htm"	pages
returned	the	HTTP	status	code	304.
In	the	same	time	interval,	requests	to	"htm"	pages	returning	the	HTTP
status	code	304	made	up	for	about	10%	of	the	requests,	and	these
requests	represent	the	1.5%	of	the	total	number	of	requests	in	the	log.

The	example	above	shows	that	a	PROPCOUNT	or	PROPSUM	function
with	no	ON	keyword	is	logically	equivalent	to	using	the	ON	keyword
followed	by	an	empty	list	of	GROUP	BY	field-expressions,	meaning	that
the	percentage	to	be	calculated	should	be	relative	to	the	highest
hierarchical	group	identified	by	no	field-expression,	i.e.	the	whole	set	of
input	records.

00:28:40	swf						200							33.333333		1.470588		0.100000
00:28:40	swf						304							66.666667		2.941176		0.200000
00:29:00	ASP						200							100.000000	0.216920		0.100000
00:29:00	GIF						200							100.000000	0.433839		0.200000
00:29:00	asp						200							100.000000	0.216920		0.100000
00:29:00	class				200							50.000000		0.216920		0.100000
00:29:00	class				304							50.000000		0.216920		0.100000
00:29:00	css						200							14.285714		0.216920		0.100000
00:29:00	css						304							28.571429		0.433839		0.200000
00:29:00	css						404							57.142857		0.867679		0.400000
00:29:00	dll						500							100.000000	0.216920		0.100000
00:29:00	exe						200							100.000000	1.952278		0.900000
00:29:00	gif						200							21.794872		14.750542	6.800000
00:29:00	gif						304							76.923077		52.060738	24.000000
00:29:00	gif						404							1.282051			0.867679		0.400000
00:29:00	htm						200							34.090909		3.253796		1.500000
00:29:00	htm						304							63.636364		6.073753		2.800000
00:29:00	htm						404							2.272727			0.216920		0.100000
00:29:00	html					404							100.000000	0.216920		0.100000
00:29:00	jpg						200							35.000000		1.518438		0.700000
00:29:00	jpg						304							65.000000		2.819957		1.300000
00:29:00	js							200							50.000000		0.433839		0.200000
00:29:00	js							304							50.000000		0.433839		0.200000
00:29:00	nsf						200							94.339623		10.845987	5.000000
00:29:00	nsf						403							5.660377			0.650759		0.300000
00:29:00	swf						200							50.000000		0.433839		0.200000
00:29:00	swf						304							50.000000		0.433839		0.200000
00:29:20	NSF						200							100.000000	2.127660		0.300000
00:29:20	asp						200							100.000000	0.709220		0.100000
00:29:20	class				304							100.000000	0.709220		0.100000
00:29:20	css						304							60.000000		2.127660		0.300000
00:29:20	css						404							40.000000		1.418440		0.200000
00:29:20	exe						200							100.000000	2.836879		0.400000
00:29:20	gif						304							97.142857		48.226950	6.800000
00:29:20	gif						404							2.857143			1.418440		0.200000
00:29:20	htm						200							15.789474		2.127660		0.300000
00:29:20	htm						304							78.947368		10.638298	1.500000

In	addition,	it	is	also	worth	mentioning	that	the	list	of	field-expressions
specified	after	the	ON	keyword	must	be	a	proper	prefix	of	the	GROUP
BY	field-expressions.	If,	for	example,	the	ON	keyword	is	followed	by
three	field-expressions,	then	these	three	field-expressions	must	match
the	first	three	field-expressions	in	the	GROUP	BY	clause,	and	they	must
also	appear	in	the	same	order	as	they	do	in	the	GROUP	BY	clause.
In	other	words,	each	PROPCOUNT	function	in	the	following	query	is
correct,	since	the	lists	of	field-expressions	after	the	ON	keyword	are	all	a
proper	prefix	of	the	GROUP	BY	field-expressions:

SELECT	QUANTIZE(time,	20)	AS	Interval,	EXTRACT_EXTENSION(cs-uri
-stem)	AS	PageType,	sc-status,
					MUL(PROPCOUNT(*)	ON	(Interval,	PageType),	100.0)	AS	Hits1,
					MUL(PROPCOUNT(*)	ON	(Interval),	100.0)	AS	Hits2
FROM	ex040528.log	
GROUP	BY	Interval,	PageType,	sc-status

However,	none	of	the	PROPCOUNT	functions	in	the	following	query	is
correct,	since	the	lists	of	field-expressions	after	the	ON	keyword	are	not	a
proper	prefix	of	the	GROUP	BY	field-expressions:

SELECT	QUANTIZE(time,	20)	AS	Interval,	EXTRACT_EXTENSION(cs-uri
-stem)	AS	PageType,	sc-status,
					MUL(PROPCOUNT(*)	ON	(PageType,	sc-status),	100.0)	AS	Hits1,
					MUL(PROPCOUNT(*)	ON	(PageType),	100.0)	AS	Hits2,
					MUL(PROPCOUNT(*)	ON	(Interval,	sc-status),	100.0)	AS	Hits2,
FROM	ex040528.log	
GROUP	BY	Interval,	PageType,	sc-status

©	2004	Microsoft	Corporation.	All	rights	reserved.

00:29:20	htm						404							5.263158			0.709220		0.100000
00:29:20	jpg						200							15.384615		1.418440		0.200000
00:29:20	jpg						304							84.615385		7.801418		1.100000
00:29:20	js							200							50.000000		1.418440		0.200000
00:29:20	js							304							50.000000		1.418440		0.200000
00:29:20	nsf						200							61.111111		7.801418		1.100000
00:29:20	nsf						302							5.555556			0.709220		0.100000
00:29:20	nsf						304							33.333333		4.255319		0.600000
00:29:20	swf						304							100.000000	2.127660		0.300000

Filtering	Groups
Consider	again	one	of	the	previous	examples,	in	which	we	used	the
COUNT	aggregate	function	to	calculate	the	number	of	times	each	page
type	has	been	requested:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	COUNT(*)	A
S	PageTypeHits
FROM	ex040528.log	
GROUP	BY	PageType
ORDER	BY	PageTypeHits	DESC

PageType	PageTypeHits
--------	------------
gif						585
nsf						142
htm						115
jpg						77
exe						25
css						22
js							11
swf						11
asp						5
class				5
dll						1
html					1

Let's	now	assume	that	we	are	only	interested	in	seeing	page	types	that
have	been	requested	10	times	or	more.

At	first	glance,	it	might	seem	that	we	could	use	a	WHERE	clause	with	a
condition	on	the	value	of	the	COUNT	aggregate	function	to	filter	out	the
undesired	groups.
However,	we	have	seen	that	the	WHERE	clause	is	used	to	filter	input
records,	which	means	that	this	clause	is	evaluated	before	groups	are
created.	For	this	reason,	use	of	aggregate	functions	is	not	allowed	in	the
WHERE	clause.

The	task	at	hand	can	be	accomplished	by	using	the	HAVING	clause.
The	HAVING	clause	works	just	like	the	WHERE	clause,	with	the	only
difference	being	that	the	HAVING	clause	is	evaluated	after	groups	have
been	created,	which	makes	it	possible	for	the	HAVING	clause	to	specify
aggregate	functions.

Tip:	The	HAVING	clause	must	immediately	follow	the	GROUP	BY
clause.

Using	the	HAVING	clause,	we	can	write	the	example	above	as:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	COUNT(*)	A
S	PageTypeHits
FROM	ex040528.log	
GROUP	BY	PageType
And	obtain:

HAVING	PageTypeHits	>=	10
ORDER	BY	PageTypeHits	DESC
PageType	PageTypeHits
--------	------------
gif						585
nsf						142
htm						115
jpg						77
exe						25
css						22
js							11
swf						11

©	2004	Microsoft	Corporation.	All	rights	reserved.

Eliminating	Duplicate	Values
When	working	with	information	from	logs,	it	is	often	desired	to	retrieve	a
list	of	some	values	where	each	element	in	the	list	appears	only	once,
regardless	of	the	number	of	times	the	same	value	appears	in	the	original
data.

As	an	example,	consider	the	following	query,	which	extracts	all	the
domain	accounts	that	have	logged	on	a	computer	from	the	"Security"
event	log:

SELECT	RESOLVE_SID(Sid)	AS	Account
FROM	\\TESTMACHINE1\Security
WHERE	EventID	IN	(540;	528)The	output	of	this	query	is	a	list	of	all	the	domain	accounts	appearing	in
each	"Logon"	event:

Account
--
NT	AUTHORITY\LOCAL	SERVICE
NT	AUTHORITY\NETWORK	SERVICE
NT	AUTHORITY\NETWORK	SERVICE
NT	AUTHORITY\NETWORK	SERVICE
TESTDOMAIN\TESTUSER1
NT	AUTHORITY\LOCAL	SERVICE
NT	AUTHORITY\LOCAL	SERVICE
TESTDOMAIN\TESTUSER1
TESTDOMAIN\TESTUSER2
NT	AUTHORITY\LOCAL	SERVICE
TESTDOMAIN\TESTUSER1

If	we	are	interested	in	retrieving	a	list	in	which	each	account	name
appears	only	once,	we	could	use	the	DISTINCT	keyword	in	the	SELECT
clause	as	follows:	

SELECT	DISTINCT	RESOLVE_SID(Sid)	AS	Account
FROM	\\TESTMACHINE1\Security
WHERE	EventID	IN	(540;	528)And	obtain:

Account
--
NT	AUTHORITY\LOCAL	SERVICE
NT	AUTHORITY\NETWORK	SERVICE
TESTDOMAIN\TESTUSER1
TESTDOMAIN\TESTUSER2

The	DISTINCT	keyword	is	used	to	indicate	that	the	output	of	a	query
should	consist	of	unique	records;	duplicate	output	records	are	discarded.

As	another	example,	we	might	want	to	retrieve	a	list	of	all	the	browsers
used	to	request	pages	from	our	IIS	server,	with	each	browser	appearing
only	once	in	the	list:

SELECT	DISTINCT	cs(User-Agent)
FROM	<1>

cs(User-Agent)
--
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1)
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+98)
Mozilla/4.05+[en]
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.0;+T312461;+Q3124
61)
Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+NT+5.0)
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.0)
Microsoft+Data+Access+Internet+Publishing+Provider+Cache+Manager
Mozilla/2.0+(compatible;+MS+FrontPage+4.0)
MSFrontPage/4.0
Microsoft+Data+Access+Internet+Publishing+Provider+DAV

It	is	also	possible	to	use	the	DISTINCT	keyword	inside	the	COUNT
aggregate	function,	in	order	to	retrieve	the	total	number	of	different
values	appearing	in	the	data.

For	example,	the	following	query	returns	the	total	number	of	different
browsers	and	the	total	number	of	different	client	IP	addresses	that
requested	pages	from	our	IIS	server:

SELECT		COUNT(DISTINCT	cs(User-Agent))	AS	Browsers,	
	 COUNT(DISTINCT	c-ip)	AS	Clients
FROM	<1>Browsers	Clients
--------	-------
356						3379Tip:	In	the	Log	Parser	SQL-Like	language,	the	DISTINCT	keyword

can	be	used	inside	aggregate	functions	only	when	the	GROUP	BY
clause	is	not	used.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Retrieving	a	Fixed	Number	of	Records
One	of	the	most	common	log	reports	is	a	"TOP	10"	list	showing	the	top
entries	appearing	in	a	ranking.
This	is	usually	achieved	with	a	query	that	calculates	some	aggregate
function	within	groups,	orders	the	groups	by	the	value	of	the	aggregate
function,	and	then	uses	the	TOP	keyword	in	the	SELECT	clause	to	return
only	a	few	records	at	the	top	of	the	ordered	output.

As	an	example,	the	following	query	returns	the	TOP	10	URL's	requested
from	an	IIS	log	file:

SELECT		TOP	10		cs-uri-stem	AS	Url,
	 	 COUNT(*)	AS	Hits
FROM	<1>
GROUP	BY	Url
ORDER	BY	Hits	DESC

Url																												Hits
------------------------------	-----
/police/laws.nsf															25183
/cgi-bin/counts.exe												5694
/police/rulesinfo.nsf										5202
/police/laws.nsf															3980
/images/address.gif												3609
/image/1_m.jpg																	3540
/npanews0.htm																		3305
/images/tibg.gif															2955
/startopen/startopen920707.htm	2502
/police/find.nsf															2465

This	kind	of	reports	is	a	perfect	candidate	for	the	CHART	Output	Format;
assuming	that	the	following	query	is	saved	in	the	"querytop.sql"	text	file,
the	following	command	will	generate	an	image	file	containing	a	chart	of
the	query	output	above:

SELECT		TOP	10		cs-uri-stem	AS	Url,
	 	 COUNT(*)	AS	Hits
INTO	Urls.gif
FROM	<1>
GROUP	BY	Url
ORDER	BY	Hits	DESC

C:\>LogParser	file:querytop.sql	-o:chart	-chartType:Bar3d	-chartTitle:"TOP	10
	URL"

©	2004	Microsoft	Corporation.	All	rights	reserved.

Improving	Query	Readability
The	functions	available	in	the	Log	Parser	SQL	language	make	it	possible
to	write	complex	queries	operating	on	a	very	large	number	of	possible
transformations	of	the	input	fields;	however,	these	complex	queries	might
sometimes	be	cumbersome	to	write.

As	an	example,	consider	the	task	of	writing	a	query	that	extracts	from	the
Security	event	log	all	the	users	belonging	to	a	specific	domain	that
logged	on	this	computer.
For	the	purpose	of	the	example,	let's	also	assume	that	we	want	the	user
names	as	lowercase	strings,	and	that	we	are	writing	the	query	as	a	SQL
file	that	takes	a	lowercase	domain	name	as	an	input	parameter.
At	first	thought,	the	query	would	look	like	this:

SELECT	EXTRACT_TOKEN(TO_LOWERCASE(RESOLVE_SID(Sid)),	1
,	'\\')	AS	Username
FROM	 Security
WHERE	 EventID	IN	(540;	528)	AND
	 EXTRACT_TOKEN(TO_LOWERCASE(RESOLVE_SID(Sid)),	0,	'\\')	
=	'%domainname%'

To	execute	this	query,	we	can	use	the	"file:"	command-line	argument,
specifying	a	value	for	the	"domainname"	parameter:

C:\>LogParser	file:myquery.sql?domainname=tstdomain	-i:EVT

When	typing	the	query	above,	we	had	to	repeat	twice	the	whole
expression	that	transforms	the	Sid	input	record	field	into	a	lowercase
fully-qualified	account	name:

TO_LOWERCASE(RESOLVE_SID(Sid))

It	would	be	easier	if	we	could,	in	a	certain	sense,	"assign"	this	expression
to	a	"variable",	and	then	use	the	variable	when	needed.
We	could	definitely	do	that	by	aliasing	the	expression	in	the	SELECT
clause:

SELECT	TO_LOWERCASE(RESOLVE_SID(Sid))	AS	FQAccount,
	 EXTRACT_TOKEN(FQAccount,	1,	'\\')	AS	Username
FROM	 SecurityHowever,	the	output	of	this	query	now	contains	an	extraneous	field	-	the
fully-qualified	account	name:

WHERE	 EventID	IN	(540;	528)	AND
	 EXTRACT_TOKEN(FQAccount,	0,	'\\')	=	'%domainname%'
FQAccount										Username
------------------	---------------
tstdomain\testusr1	testusr1
tstdomain\testusr1	testusr1
tstdomain\testusr2	testusr2
tstdomain\testusr3	testusr3

To	obviate	this	problem,	the	Log	Parser	SQL	language	supports	the
USING	clause.
The	USING	clause,	a	non-standard	SQL	language	element,	is	used	to
declare	aliases	in	the	same	way	as	we	would	in	the	SELECT	clause,	with
the	difference	that	expressions	in	the	USING	clause	will	not	appear	in	the
output	records	(unless	explicitly	referenced	in	the	SELECT	clause).

With	the	USING	clause,	the	query	above	can	be	written	as	follows:

SELECT	EXTRACT_TOKEN(FQAccount,	1,	'\\')	AS	Username
USING	 TO_LOWERCASE(RESOLVE_SID(Sid))	AS	FQAccount
FROM	 Security
WHERE	 EventID	IN	(540;	528)	AND
	 EXTRACT_TOKEN(FQAccount,	0,	'\\')	=	'%domainname%'

Tip:	The	USING	clause	must	immediately	follow	the	SELECT
clause.

The	output	of	this	query	would	look	like	the	following	sample	output:

Username

testusr1
testusr1
testusr2
testusr3

©	2004	Microsoft	Corporation.	All	rights	reserved.

Advanced	Features
Log	Parser	offers	a	unique	set	of	features	that	enhance	its	flexibility	in	the
most	common	log	processing	scenarios.
These	features	include:

Parsing	Input	Incrementally:	some	input	formats	allow	Log	Parser	to
parse	incrementally	logs	that	grow	over	time.
Multiplexing	Output	Records:	some	output	formats	allow	the	output
records	of	a	query	to	be	written	to	different	targets,	depending	on	the
values	of	selected	output	record	fields.
Converting	File	Formats:	due	to	its	architecture,	Log	Parser	can	be
easily	used	to	convert	log	files	from	a	format	to	another.
Custom	Plugins:	Log	Parser	allows	users	to	develop	their	own	custom
input	formats,	and	use	them	with	either	the	Log	Parser	command-line
executable,	or	with	the	Log	Parser	scriptable	COM	components.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Parsing	Input	Incrementally
Log	Parser	is	often	used	to	parse	logs	that	grow	over	time.
For	example,	the	IIS	logs	and	the	Windows	Event	Log	are	continuously
updated	with	new	information,	and	in	some	cases,	we	would	like	to	parse
these	logs	periodically	and	only	retrieve	the	new	records	that	have	been
logged	since	the	last	time.
This	is	especially	true	for	scenarios	in	which,	for	example,	we	use	Log
Parser	to	consolidate	logs	to	a	database	in	an	almost	real-time	fashion,
or	when	we	use	Log	Parser	to	build	a	monitoring	system	that	periodically
scans	logs	for	new	entries	of	interest.

For	these	scenarios,	Log	Parser	offers	a	feature	that	allows	sequential
executions	of	the	same	query	to	only	process	new	data	that	has	been
logged	since	the	last	execution.
This	feature	can	be	enabled	with	the	iCheckPoint	parameter	of	the
following	input	formats:

IISW3C
NCSA
IIS
HTTPERR
URLSCAN
CSV
TSV
EVT
TEXTLINE
TEXTWORD

The	"iCheckPoint"	parameter	is	used	to	specify	the	name	of	a
"checkpoint"	file	that	Log	Parser	uses	to	store	and	retrieve	information
about	the	"position"	of	the	last	entry	parsed	from	each	of	the	logs	that
appear	in	a	command.
When	we	execute	a	command	with	a	checkpoint	file	for	the	first	time	(i.e.
when	the	specified	checkpoint	file	does	not	exist),	Log	Parser	executes
the	query	normally	and	processes	all	the	logs	in	the	command,	saving	for

each	the	"position"	of	the	last	parsed	entry	to	the	checkpoint	file.
If	later	on	we	execute	the	same	command	specifying	the	same
checkpoint	file,	Log	Parser	will	parse	again	all	the	logs	in	the	command,
but	each	log	will	be	parsed	starting	after	the	entry	that	was	last	parsed	by
the	previous	command,	thus	producing	records	for	new	entries	only.
When	the	new	command	execution	is	complete,	the	information	in	the
checkpoint	file	is	updated	with	the	new	"position"	of	the	last	entry	in	each
log.

Note:	Checkpoint	files	are	updated	only	when	a	query	executes
succesfully.	If	an	error	causes	the	execution	of	a	query	to	abort,	the
checkpoint	file	is	not	updated.

To	make	an	example,	let's	assume	that	the	"MyLogs"	folder	contains	the
following	text	files:

Log1.txt,	50	lines
Log2.txt,	100	lines
Log3.txt,	20	lines
Log4.txt,	30	lines

Let's	also	assume	that	we	want	to	parse	these	text	files	incrementally
using	the	TEXTLINE	Input	Format,	which	returns	an	input	record	for	each
line	in	the	input	text	files.
In	order	to	parse	these	logs	incrementally,	we	specify	the	name	of	a
checkpoint	file,	making	sure	that	the	file	does	not	exist	prior	to	the
command	execution.	Our	command	would	look	like	this:

logparser	"SELECT	*	FROM	MyLogs*.*"	-i:TEXTLINE	-iCheckPoint:myCh
eckPoint.lpc
When	this	command	is	executed	for	the	first	time,	Log	Parser	will	return
all	the	200	lines	from	all	of	the	four	log	files,	and	it	will	create	the
"myCheckPoint.lpc"	checkpoint	file	containing	the	position	of	the	last	line
in	each	of	the	four	log	files.

Tip:	When	the	checkpoint	file	is	specified	without	a	path,	Log
Parser	will	create	the	checkpoint	file	in	the	folder	currently	set	for	the
%TEMP%	environment	variable,	usually	"\Documents	and	Settings\
<user	name>\Local	Settings\Temp".;

Let's	now	assume	that	the	"Log3.txt"	file	is	updated,	and	that	ten	new
lines	are	added	to	the	log	file.
At	this	moment,	the	log	files	and	the	information	stored	in	the	checkpoint
file	will	look	like	this:

Log	Files Checkpoint	file
Log1.txt,	50	lines Log1.txt,	line	50
Log2.txt,	100	lines Log2.txt,	line	100
Log3.txt,	30	lines Log3.txt,	line	20
Log4.txt,	30	lines Log4.txt,	line	30
If	we	execute	again	the	same	command,	Log	Parser	will	use	the
"myCheckPoint.lpc"	file	to	determine	where	to	start	parsing	each	of	the
log	files,	and	it	will	only	parse	and	return	the	ten	new	lines	in	the
"Log3.txt"	file.	When	the	command	execution	is	complete,	the
"myCheckPoint.lpc"	checkpoint	file	is	updated	to	reflect	the	new	position
of	the	last	line	in	the	"Log3.txt"	file.

If	now	a	new	"Log5.txt"	file	is	created	containing	ten	lines,	the	log	files
and	the	information	stored	in	the	checkpoint	file	will	look	like	this:

Log	Files Checkpoint	file
Log1.txt,	50	lines Log1.txt,	line	50
Log2.txt,	100	lines Log2.txt,	line	100
Log3.txt,	30	lines Log3.txt,	line	30
Log4.txt,	30	lines Log4.txt,	line	30
Log5.txt,	10	lines not	recorded
If	we	execute	again	the	command,	Log	Parser	will	only	parse	the	new
"Log5.txt"	file,	returning	its	ten	lines.

As	another	example	showing	how	the	checkpoint	file	is	updated,	let's
assume	now	that	the	"Log2.txt"	file	is	deleted.
The	log	files	and	the	information	stored	in	the	checkpoint	file	will	now	look
like	this:

Log	Files Checkpoint	file
Log1.txt,	50	lines Log1.txt,	line	50

non-existing Log2.txt,	line	100
Log3.txt,	30	lines Log3.txt,	line	30
Log4.txt,	30	lines Log4.txt,	line	30
Log5.txt,	10	lines Log5.txt,	line	10
When	we	execute	the	command,	Log	Parser	will	detect	that	there	are	no
new	entries	to	parse,	and	it	will	return	no	records.	However,	upon
updating	the	checkpoint	file,	it	will	determine	that	the	"Log2.txt"	file
doesn't	exist	anymore,	and	it	will	remove	all	the	information	associated
with	the	log	file	from	the	checkpoint	file,	which	will	now	look	like	this:

Log	Files Checkpoint	file
Log1.txt,	50	lines Log1.txt,	line	50
Log3.txt,	30	lines Log3.txt,	line	30
Log4.txt,	30	lines Log4.txt,	line	30
Log5.txt,	10	lines Log5.txt,	line	10
At	this	moment	the	checkpoint	file	does	not	contain	anymore	information
on	the	"Log2.txt"	file;	should	a	new	"Log2.txt"	file	appear	again	for	any
reason,	a	subsequent	command	would	treat	the	file	as	a	new	file,	and	all
of	its	entries	would	be	parsed	from	the	beginning	of	the	file.

As	a	last	example,	let's	now	assume	that	the	"Log1.txt"	file	is	updated,
but	this	time	its	size	shrinks	and	it	ends	up	containing	ten	lines	only.
The	log	files	and	the	information	stored	in	the	checkpoint	file	will	now	look
like	this:

Log	Files Checkpoint	file
Log1.txt,	10	lines Log1.txt,	line	50
Log3.txt,	30	lines Log3.txt,	line	30
Log4.txt,	30	lines Log4.txt,	line	30
Log5.txt,	10	lines Log5.txt,	line	10
When	we	execute	the	command,	Log	Parser	will	detect	that	the	size	of
the	"Log1.txt"	file	has	changed,	but	instead	of	growing	larger,	the	file	is
actually	smaller.	In	this	situation,	Log	Parser	assumes	that	the	file	has
been	replaced	with	a	new	one,	and	it	will	parse	it	as	if	it	was	a	new	file,
returning	all	of	its	ten	entries.
After	the	command	execution	is	complete,	the	"myCheckPoint.lpc"

checkpoint	file	is	updated	to	reflect	the	new	situation,	and	the	log	files
and	the	information	stored	in	the	checkpoint	file	will	look	like	this:

Log	Files Checkpoint	file
Log1.txt,	10	lines Log1.txt,	line	10
Log3.txt,	30	lines Log3.txt,	line	30
Log4.txt,	30	lines Log4.txt,	line	30
Log5.txt,	10	lines Log5.txt,	line	10

Incremental	Parsing	and	Aggregated	Data
It's	important	to	note	that	the	checkpoint	file	only	records	information
about	the	files	being	parsed;	it	does	not	record	information	about	the
query	being	executed.
In	other	words,	when	we	execute	a	query	multiple	times	on	a	set	of
growing	files	using	a	checkpoint	file,	each	time	the	query	results	are
calculated	on	the	new	entries	only.	This	means	that	queries	using
aggregated	data	need	to	be	handled	carefully	when	used	with	checkpoint
files.

As	an	example,	consider	again	the	four	text	files	in	the	first	scenario
above,	and	the	following	command:

logparser	"SELECT	COUNT(*)	AS	Total	FROM	MyLogs*.*"	-i:TEXTLINE	
-iCheckPoint:myCheckPoint.lpc
When	the	command	is	executed	for	the	first	time,	the	"Total"	field	in	the
output	record	returned	by	the	query	will	be	equal	to	200,	that	is,	the	total
number	of	lines	in	the	four	log	files.
As	in	the	first	example,	let's	now	assume	that	the	"Log3.txt"	file	is
updated,	and	that	ten	new	lines	are	added	to	the	log	file.
When	we	execute	the	command	again,	the	"Total"	field	in	the	output
record	returned	by	the	query	will	be	now	equal	to	10,	the	total	number	of
new	lines	in	the	four	log	files,	and	not	to	210,	as	one	would	expect	from
the	total	number	of	rows.

In	cases	where	it	is	desirable	to	calculate	aggregated	data	across
multiple	executions	of	the	same	query	when	using	incremental	parsing,	a
possible	solution	is	to	save	the	partial	results	of	each	query	to	temporary
files,	and	then	aggregate	all	the	partial	results	with	an	additional	step.
Using	the	example	above,	we	could	save	the	result	of	the	first	query
("200")	to	the	"FirstResults.csv"	file,	and	the	result	of	the	second	query
("10")	to	the	"LastResults.csv"	file.	The	two	files	could	then	be
consolidated	into	a	single	file	with	a	command	like	this:

logparser	"SELECT	SUM(Total)	FROM	FirstResults.csv,	LastResults.csv"	-i:
CSV

©	2004	Microsoft	Corporation.	All	rights	reserved.

Multiplexing	Output	Records
Many	Log	Parser	output	formats	allow	the	user	to	specify	multiple	files	as
the	target	to	which	output	records	are	written	to.
This	is	achieved	by	using	'*'	wildcard	characters	in	the	filename	specified
in	the	INTO	clause;	during	the	execution	of	the	query,	the	first	fields	in
each	output	record	substitute	the	wildcard	characters	to	determine	the
resulting	filename	to	which	the	output	records	with	the	remaining	fields
are	written.
In	other	words,	this	feature	allows	output	records	to	be	multiplexed	to
different	target	files	depending	on	the	values	of	the	first	fields	in	the
output	record.

To	make	an	example,	let's	assume	that	we	want	to	query	the	Windows
Event	Log,	and	for	each	event	source	name,	we	want	to	create	a	CSV
text	file	containing	all	the	distinct	event	ID's	generated	by	that	source
name.
The	command	would	look	like	the	following	example:

LogParser	"SELECT	DISTINCT	SourceName,	EventID	INTO	Event_*.csv	F
ROM	System"	-i:EVT	-o:CSV
For	each	output	record	generated	by	this	query,	the	"SourceName"	field
will	be	used	to	substitute	the	wildcard	in	the	target	filename,	and	the
"EventID"	field	will	be	written	to	the	CSV	file	with	the	resulting	file	name.
After	the	command	execution	is	complete,	we	will	have	as	many	CSV
output	files	as	the	number	of	different	event	source	names:

C:\>dir
	Volume	in	drive	C	has	no	label.
	Volume	Serial	Number	is	49B5-4736

	Directory	of	C:

07/19/2004		08:56	AM				<DIR>										.
07/19/2004		08:56	AM				<DIR>										..
07/19/2004		08:56	AM																13	Event_Application	Popup.csv

Each	CSV	file	will	contain	the	distinct	event	ID's	generated	by	the	event
source:

C:\>type	Event_Tcpip.csv
EventID
4201
4202
There	is	no	limit	on	the	number	of	wildcard	characters	that	can	be	used	in
the	target	filenames.
We	can	modify	the	example	above	to	generate	a	directory	for	each	event

07/19/2004		08:56	AM																14	Event_Ati	HotKey	Poller.csv
07/19/2004		08:56	AM																23	Event_DCOM.csv
07/19/2004		08:56	AM																33	Event_Dhcp.csv
07/19/2004		08:56	AM																23	Event_DnsApi.csv
07/19/2004		08:56	AM																27	Event_EventLog.csv
07/19/2004		08:56	AM																12	Event_GEMPCC.csv
07/19/2004		08:56	AM																13	Event_i8042prt.csv
07/19/2004		08:56	AM																16	Event_Kerberos.csv
07/19/2004		08:56	AM																15	Event_NETLOGON.csv
07/19/2004		08:56	AM																15	Event_NtServicePack.csv
07/19/2004		08:56	AM																13	Event_Print.csv
07/19/2004		08:56	AM																23	Event_RemoteAccess.csv
07/19/2004		08:56	AM																14	Event_SCardSvr.csv
07/19/2004		08:56	AM																39	Event_Service	Control	Manager.csv
07/19/2004		08:56	AM																21	Event_Tcpip.csv
07/19/2004		08:56	AM																29	Event_W32Time.csv
07/19/2004		08:56	AM																14	Event_Win32k.csv
07/19/2004		08:56	AM																15	Event_Workstation.csv
														19	File(s)												372	bytes
															2	Dir(s)		34,340,712,448	bytes	free

source	name,	and	for	each	event	ID	generated	by	the	source,	a	CSV	file
containing	the	number	of	events	logged	with	that	ID:

LogParser	"SELECT	SourceName,	EventID,	COUNT(*)	AS	Total	INTO	*\ID
_*.csv	FROM	System	GROUP	BY	SourceName,	EventID"	-i:EVT	-o:CSV
After	the	command	execution	is	complete,	we	will	have	as	many
directories	as	the	number	of	different	event	source	names:

C:\>dir
	Volume	in	drive	C	has	no	label.
	Volume	Serial	Number	is	49B5-4736

	Directory	of	C:

07/19/2004		09:08	AM				<DIR>										.
07/19/2004		09:08	AM				<DIR>										..
07/19/2004		09:08	AM				<DIR>										Application	Popup
07/19/2004		09:08	AM				<DIR>										Ati	HotKey	Poller
07/19/2004		09:08	AM				<DIR>										DCOM
07/19/2004		09:08	AM				<DIR>										Dhcp
07/19/2004		09:08	AM				<DIR>										DnsApi
07/19/2004		09:08	AM				<DIR>										EventLog
07/19/2004		09:08	AM				<DIR>										GEMPCC
07/19/2004		09:08	AM				<DIR>										i8042prt
07/19/2004		09:08	AM				<DIR>										Kerberos
07/19/2004		09:08	AM				<DIR>										NETLOGON
07/19/2004		09:08	AM				<DIR>										NtServicePack
07/19/2004		09:08	AM				<DIR>										Print
07/19/2004		09:08	AM				<DIR>										RemoteAccess
07/19/2004		09:08	AM				<DIR>										SCardSvr
07/19/2004		09:08	AM				<DIR>										Service	Control	Manager
07/19/2004		09:08	AM				<DIR>										Tcpip
07/19/2004		09:08	AM				<DIR>										W32Time
07/19/2004		09:08	AM				<DIR>										Win32k
07/19/2004		09:08	AM				<DIR>										Workstation
															0	File(s)														0	bytes
														21	Dir(s)		34,340,712,448	bytes	free

Each	directory	will	contain	as	many	CSV	output	files	as	the	number	of
different	event	ID's	logged	by	the	event	source:

C:\>dir	DCOM
	Volume	in	drive	C	has	no	label.
	Volume	Serial	Number	is	49B5-4736

	Directory	of	C:\DCOM

07/19/2004		09:08	AM				<DIR>										.
07/19/2004		09:08	AM				<DIR>										..
07/19/2004		09:08	AM																10	ID_10002.csv
07/19/2004		09:08	AM																10	ID_10010.csv

Each	CSV	output	file	will	contain	the	number	of	events	logged	with	the
event	ID:

C:\>type	DCOM\ID_10010.csv
Total
2Following	is	a	list	of	the	output	formats	that	support	the	"multiplex"
feature:

CSV
TSV
XML
W3C
IIS
TPL

©	2004	Microsoft	Corporation.	All	rights	reserved.

Converting	File	Formats
Converting	a	log	file	from	one	format	to	another	can	be	easily
accomplished	with	Log	Parser	by	executing	a	command	with	the
following	characteristics:

The	input	format	chosen	for	the	command	should	match	the
conversion	source	format;
The	output	format	chosen	for	the	command	should	match	the
conversion	target	format;
The	query	should	contain	a	SELECT	clause	that	performs	the
necessary	modifications	on	the	input	format	field	names	and	values	in
order	to	match	the	requirements	of	the	target	format.

When	using	Log	Parser	to	convert	one	log	file	format	to	another,	we
should	pay	close	attention	to	the	order	and	names	of	the	fields	in	the
input	and	output	formats.	Some	output	formats,	such	as	the	IIS	output
format,	have	fixed	fields.	When	converting	to	IIS	log	format,	input	format
fields	should	be	selected	to	match	the	IIS	format	exactly.	For	example,
when	converting	a	W3C	Extended	log	file	to	IIS	log	format,	we	should
select	the	client	IP	address	first,	the	user	name	next,	and	so	on.

In	addition,	we	might	want	to	change	the	name	of	the	fields	that	we
extract	from	the	input	format.	For	example,	when	writing	to	a	W3C
Extended	format	log	file,	Log	Parser	retrieves	the	names	to	be	written	to
the	"#Fields"	directive	from	the	SELECT	clause.	If	we	retrieve	data	from
an	IIS	log	format	file,	these	names	are	not	the	same	as	those	used	by	the
W3C	Extended	format,	so	we	must	alias	every	field	in	order	to	get	the
correct	field	name.

As	an	example,	consider	the	following	SELECT	clause	that	converts	IIS
log	format	files	to	IIS	W3C	Extended	log	format:

SELECT	TO_DATE(TO_UTCTIME(TO_TIMESTAMP(Date,	Time)))	AS	dat
e,	
TO_TIME(TO_UTCTIME(TO_TIMESTAMP(Date,	Time)))	AS	time,	
ServiceInstance	AS	s-sitename,	
We	can	see	that	the	individual	fields	have	been	renamed	according	to	the
W3C	Extended	convention,	so	that	the	output	file	is	fully	compliant	with

HostName	AS	s-computername,	
ServerIP	AS	s-ip,	
RequestType	AS	cs-method,	
REPLACE_CHR(Target,	'	\u0009\u000a\u000d',	'+')	AS	cs-uri-stem,	
Parameters	AS	cs-uri-query,	
UserName	AS	cs-username,	
UserIP	AS	c-ip,	
StatusCode	AS	sc-status,	
Win32StatusCode	AS	sc-win32-status,	
BytesSent	AS	sc-bytes,	
BytesReceived	AS	cs-bytes,	
TimeTaken	AS	time-taken

the	IIS	W3C	Extended	format.
In	addition,	the	"date"	and	"time"	fields	are	converted	from	local	time,
which	is	used	in	the	IIS	log	format,	to	UTC	time,	which	is	used	in	the
W3C	Extended	log	format.

The	command-line	Log	Parser	executable	can	be	used	to	run	built-in
queries	that	perform	conversions	between	the	following	formats:

BIN	to	W3C
IIS	to	W3C
BIN	to	IIS
IISW3C	to	IIS

For	more	information,	refer	to	the	Command-Line	Operation	reference.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Custom	Plugins
Log	Parser	allows	users	to	develop	custom	input	formats	and	use	them
with	both	the	command-line	Log	Parser	executable	and	with	the	Log
Parser	scriptable	COM	components.

There	is	no	requirement	on	the	language	that	can	be	used	to	implement
a	custom	input	format;	for	example,	custom	input	formats	can	be
implemented	using	any	of	the	following	languages:

C++
C#
Visual	Basic®
JScript®	or	VBScript

Custom	input	formats	are	developed	as	COM	objects	implementing	the
methods	of	the	ILogParserInputContext	COM	interface.	There	are	two
ways	to	write	a	COM	object	that	implements	the	methods	of	this
interface:	implementing	the	ILogParserInputContext	interface	directly,	or
implementing	the	IDispatch	(Automation)	interface	exposing	the
methods	of	the	ILogParserInputContext	interface.

Implementing	the	ILogParserInputContext	Interface	Directly
With	this	method,	a	Log	Parser	custom	input	format	COM	object	must
implement	the	ILogParserInputContext	interface	directly.
This	method	usually	requires	writing	C++	or	Visual	Basic	code.

Implementing	the	IDispatch	Interface	Exposing	the
ILogParserInputContext	Interface	Methods
With	this	method,	a	Log	Parser	custom	input	format	COM	object	must
implement	the	IDispatch	interface,	and	support	the	same	methods
exposed	by	the	ILogParserInputContext	interface.	This	method	usually
requires	writing	scriptlets	(.wsc)	files	in	JScript	or	VBScript.
COM	input	format	plugins	that	implement	the	IDispatch	interface	can	also
support	custom	properties.

Custom	input	format	COM	objects	must	be	registered	with	the	COM
infrastructure	in	order	to	be	accessible	by	Log	Parser.	This	task	can	be
usually	achieved	using	the	regsvr32.exe	tool	distributed	with	the
Windows	OS.	The	following	command	registers	a	custom	input	format
COM	object	implemented	as	a	dynamic	link	library	(dll):

C:\>regsvr32	myinputformat.dll

The	following	command	registers	a	custom	input	format	COM	object
implemented	as	a	scriptlet	JScript	or	VBScript	file:

C:\>regsvr32	myinputformat.wsc

Once	developed	and	registered	with	the	COM	infrastructure,	custom
input	formats	can	be	used	with	either	the	command-line	Log	Parser
executable,	or	with	the	Log	Parser	scriptable	COM	components.

Using	Custom	Input	Formats	with	the
Command-Line	Log	Parser	Executable
With	the	command-line	Log	Parser	executable,	custom	input	formats	are
used	through	the	COM	input	format,	which	allows	users	to	specify	the
ProgID	of	the	custom	COM	object	and	eventual	run-time	properties.

As	an	example,	let's	assume	that	we	have	just	developed	a	custom	input
format,	and	that	its	ProgID	is	"MySample.MyInputFormat".
With	the	COM	input	format,	the	custom	COM	object	can	be	used	as
follows:

C:\>logparser	"SELECT	*	FROM	inputfile"	-i:COM	-iProgID:MySample.MyI
nputFormat
In	the	example	above,	"inputfile"	stands	for	the	specific	from-entity
recognized	by	the	custom	input	format.

If	we	implemented	our	COM	object	through	an	Automation	interface,	we
could	also	have	our	object	support	custom	properties,	and	set	them
through	the	COM	input	format	as	shown	in	the	following	example:

C:\>logparser	"SELECT	*	FROM	inputfile"	-i:COM	-iProgID:MySample.MyI
nputFormat	-iCOMParams:ExtendedFields=on
For	more	information	on	the	COM	input	format,	refer	to	the	COM	Input
Format	reference.

Using	Custom	Input	Formats	with	the	Log
Parser	Scriptable	COM	Components
With	the	Log	Parser	scriptable	COM	components,	custom	input	format
objects	are	passed	as	the	inputFormat	argument	to	the	Execute	or
ExecuteBatch	methods	of	the	LogQuery	object.

The	following	VBScript	example	shows	how	our
"MySample.MyInputFormat"	custom	COM	object	can	be	used	with	the
Log	Parser	scriptable	COM	components:

Dim	oLogQuery
Dim	oMyInputFormat
Dim	oCSVOutputFormat	
Dim	strQuery

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	our	custom	Input	Format	object
Set	oMyInputFormat	=	CreateObject("MySample.MyInputFormat")

'	Create	Output	Format	object
Set	oCSVOutputFormat	=	CreateObject("MSUtil.LogQuery.CSVOutputForma
t")
oCSVOutputFormat.tabs	=	TRUE

'	Create	query	text
strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\output.csv	FROM	Sy
stem"
strQuery	=	strQuery	&	"	WHERE	SourceName	=	'Application	Popup'"

'	Execute	query
oLogQuery.ExecuteBatch	strQuery,	oMyInputFormat,	oCSVOutputFormat

For	more	information	on	the	Log	Parser	scriptable	COM	components,
see	Log	Parser	COM	API	Overview,	and	COM	API	Reference.

Custom	Input	Format	Samples
Log	Parser	comes	with	three	custom	input	format	samples,	located	in	the
"Samples\COM"	folder:

Processes:	this	sample	shows	how	to	write	a	custom	input	format
using	the	C++	language;
BooksXML:	this	sample	shows	how	to	write	a	custom	input	format	that
parses	XML	documents,	using	the	C#	language;
QFE:	this	sample	shows	how	to	write	a	custom	input	format	that
returns	information	gathered	through	a	WMI	query,	using	the	VBScript
language.

For	more	information	on	custom	input	format	plugins	and	the
ILogParserInputContext	interface,	refer	to	the	COM	Input	Format	Plugins
reference.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Log	Parser	COM	API	Overview
The	Log	Parser	scriptable	COM	components	offer	numerous	advantages
and	more	flexibility	than	the	command-line	executable	binary.
For	example,	with	the	Log	Parser	scriptable	COM	components	we	can
execute	a	query	without	providing	an	output	format,	retrieve	the	result
output	records,	and	process	the	output	records	ourselves.

The	Log	Parser	scriptable	COM	components	are	implemented	as
Automation	objects,	which	means	that	they	can	be	used	from	any
programming	environment	supporting	automation,	including	C++,	C#,
Visual	Basic,	JScript	and	VBScript.

Tip:	Before	using	the	Log	Parser	scriptable	COM	components	on	a
computer,	the	"LogParser.dll"	binary	should	be	registered	with	the
computer's	COM	infrastructure	by	executing	the	following	command
in	the	directory	containing	the	"LogParser.dll"	binary:
C:\LogParser>regsvr32	LogParser.dll

The	Log	Parser	scriptable	COM	components	architecture	is	made	up	of
the	following	objects:

MSUtil.LogQuery	object:	this	is	the	main	COM	object	in	the	Log
Parser	scriptable	COM	components	architecture;	it	exposes	the	main
API	methods	and	provides	access	to	other	objects	in	the	architecture.
Input	Format	objects:	these	objects	provide	programmatic	access	to
the	input	formats	supported	by	Log	Parser;	each	input	format	object
exposes	properties	having	the	same	name	as	the	parameters	of	the
corresponding	Log	Parser	input	format.
Output	Format	objects:	these	objects	provide	programmatic	access	to
the	output	formats	supported	by	Log	Parser;	each	output	format	object
exposes	properties	having	the	same	name	as	the	parameters	of	the
corresponding	Log	Parser	output	format.

When	writing	an	application	that	uses	the	Log	Parser	scriptable	COM
components,	the	very	first	step	should	be	the	instantiation	of	the
MSUtil.LogQuery	COM	object.
The	following	JScript	example	shows	how	the	MSUtil.LogQuery	object	is

instantiated	by	a	JScript	application:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

The	following	VBScript	example	shows	how	the	MSUtil.LogQuery	object
is	instantiated	by	a	VBScript	application:

Dim	oLogQuery
Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")
Once	the	MSUtil.LogQuery	COM	object	has	been	instantiated,	an
application	would	usually	proceed	by	executing	a	query	in	either	batch
mode	or	interactive	mode,	depending	on	the	task	that	needs	to	be
accomplished.

Batch	Mode
A	query	executed	in	batch	mode	will	have	its	output	records	written
directly	to	an	output	format.
Batch	mode	works	in	the	same	way	as	the	commands	used	with	the	Log
Parser	command-line	executable,	and	it	is	useful	when	we	want	to
execute	a	query	and	have	its	results	sent	to	an	output	format,	with	no
application	intervention	on	the	query	output	records.

A	query	is	executed	in	batch	mode	by	calling	the	ExecuteBatch	method
of	the	MSUtil.LogQuery	object.	This	method	takes	three	arguments:

The	text	of	the	SQL-Like	query;
An	input	format	object;
An	output	format	object.

The	basic	steps	of	an	application	using	batch	mode	resemble	the
commands	used	with	the	Log	Parser	command-line	executable:

1.	 Instantiate	the	MSUtil.LogQuery	object;
2.	 Instantiate	the	input	format	object	corresponding	to	the	input

format	chosen	for	the	query;
3.	 If	needed,	set	input	format	object	properties	to	change	the

default	behavior	of	the	input	format;
4.	 Instantiate	the	output	format	object	corresponding	to	the

output	format	chosen	for	the	query;
5.	 If	needed,	set	output	format	object	properties	to	change	the

default	behavior	of	the	output	format;
6.	 Call	the	ExecuteBatch	method	of	the	MSUtil.LogQuery

object,	specifying	the	query	text,	the	input	format	object,	and
the	output	format	object.

The	following	examples	show	a	simple	application	that	creates	a	CSV	file

containing	selected	records	from	the	event	log.
After	instantiating	the	main	MSUtil.LogQuery	object,	the	application
instantiates	the	MSUtil.EVTInputFormat	input	format	object,	which
implements	the	EVT	input	format,	and	sets	its	direction	property	to	"BW",
in	order	to	read	events	from	the	latest	to	the	earliest.
Then,	the	application	instantiates	the	MSUtil.CSVOutputFormat	output
format	object,	which	implements	the	CSV	output	format,	and	sets	its	tabs
property	to	"ON",	in	order	to	improve	readability	of	the	CSV	file.
Finally,	the	application	calls	the	ExecuteBatch	method	of	the
MSUtil.LogQuery	object,	specifying	the	query,	the	input	format	object,
and	the	output	format	object;	the	method	will	execute	the	query,	reading
from	the	event	log	and	writing	to	the	specified	CSV	file,	and	will	return
when	the	query	execution	is	complete.

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	Input	Format	object
var	oEVTInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.EventLogInp
utFormat");
oEVTInputFormat.direction	=	"BW";

//	Create	Output	Format	object
var	oCSVOutputFormat	=	new	ActiveXObject("MSUtil.LogQuery.CSVOutput
Format");
oCSVOutputFormat.tabs	=	true;

//	Create	query	text
var	strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\\output.csv	FRO
M	System";
strQuery	+=				"	WHERE	SourceName	=	'Application	Popup'";

//	Execute	query
oLogQuery.ExecuteBatch(strQuery,	oEVTInputFormat,	oCSVOutputFormat)
;

VBScript	example:

Dim	oLogQuery
Dim	oEVTInputFormat
Dim	oCSVOutputFormat	
Dim	strQuery

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	Input	Format	object
Set	oEVTInputFormat	=	CreateObject("MSUtil.LogQuery.EventLogInputFor
mat")
oEVTInputFormat.direction	=	"BW"

'	Create	Output	Format	object
Set	oCSVOutputFormat	=	CreateObject("MSUtil.LogQuery.CSVOutputForma
t")
oCSVOutputFormat.tabs	=	TRUE

'	Create	query	text
strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\output.csv	FROM	Sy
stem"
strQuery	=	strQuery	&	"	WHERE	SourceName	=	'Application	Popup'"

'	Execute	query
oLogQuery.ExecuteBatch	strQuery,	oEVTInputFormat,	oCSVOutputFormat

Interactive	Mode
Queries	executed	in	interactive	mode	do	not	use	output	formats,	but
rather	return	their	output	records	directly	to	the	application.
Interactive	mode	is	useful	when	we	want	to	execute	a	query	and	receive
the	output	records	for	custom	processing.

A	query	is	executed	in	interactive	mode	by	calling	the	Execute	method	of
the	MSUtil.LogQuery	object.	This	method	takes	two	arguments:

The	text	of	the	SQL-Like	query;
An	input	format	object.

The	Execute	method	returns	a	LogRecordSet	object.	The
LogRecordSet	object	is	an	enumerator	of	LogRecord	objects;	it	allows
an	application	to	navigate	through	the	query	output	records.
Each	LogRecord	object	represents	a	single	query	output	record,	and	it
exposes	methods	that	can	be	used	to	retrieve	individual	field	values	from
the	output	record.

The	basic	steps	of	an	application	using	interactive	mode	are:

1.	 Instantiate	the	MSUtil.LogQuery	object;
2.	 Instantiate	the	input	format	object	corresponding	to	the	input

format	chosen	for	the	query;
3.	 If	needed,	set	input	format	object	properties	to	change	the

default	behavior	of	the	input	format;
4.	 Call	the	Execute	method	of	the	MSUtil.LogQuery	object,

specifying	the	query	text	and	the	input	format	object,	and
receiving	a	LogRecordSet	object;

5.	 Enter	a	loop	that	uses	the	atEnd,	getRecord,	and	moveNext
methods	of	the	LogRecordSet	object	to	enumerate	the
LogRecord	query	result	objects;

6.	 For	each	LogRecord	object,	access	its	field	values	using	the
getValue	method	of	the	LogRecord	object,	and	process	the

field	values	as	needed;
7.	 When	finished,	dispose	of	the	LogRecordSet	object	by

calling	its	close	method.

The	following	examples	show	a	simple	application	parsing	an	IIS	web
site's	logs	and	printing	the	output	records	to	the	console	output.
After	instantiating	the	main	MSUtil.LogQuery	object,	the	application
instantiates	the	MSUtil.IISW3CInputFormat	input	format	object,	which
implements	the	IISW3C	input	format.
Then,	the	application	calls	the	Execute	method	of	the	MSUtil.LogQuery
object,	specifying	the	query	and	the	input	format	object,	and	receiving	the
resulting	LogRecordSet	object.
The	LogRecordSet	object	is	used	in	a	loop	to	enumerate	the
LogRecord	objects	implementing	the	query	output	records;	the
application	retrieves	the	first	field	from	each	LogRecord	object	and	prints
it	to	the	console	output.
Finally,	the	application	disposes	of	the	LogRecordSet	object	by	calling
its	close	method.

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	Input	Format	object
var	oIISW3CInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.IISW3CI
nputFormat");

//	Create	query	text
var	strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%hitco
unt.asp'";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery,	oIISW3CInputFormat);

//	Visit	all	records
while(!oRecordSet.atEnd())

VBScript	example:

Dim	oLogQuery
Dim	oIISW3CInputFormat
Dim	strQuery
Dim	oRecordSet
Dim	oRecord
Dim	strClientIp

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	Input	Format	object
Set	oIISW3CInputFormat	=	CreateObject("MSUtil.LogQuery.IISW3CInputFo

©	2004	Microsoft	Corporation.	All	rights	reserved.

{
	 //	Get	a	record
	 var	oRecord	=	oRecordSet.getRecord();

	 //	Get	first	field	value
	 var	strClientIp	=	oRecord.getValue(0);

	 //	Print	field	value
	 WScript.Echo("Client	IP	Address:	"	+	strClientIp);

	 //	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext();
}

//	Close	LogRecordSet
oRecordSet.close();

rmat")

'	Create	query	text
strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%hitcount.a
sp'"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery,	oIISW3CInputFormat)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

	 '	Get	first	field	value
	 strClientIp	=	oRecord.getValue	(0)

	 '	Print	field	value
	 WScript.Echo	"Client	IP	Address:	"	&	strClientIp

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

LOOP

'	Close	RecordSet
oRecordSet.close

C#	Example
The	Log	Parser	scriptable	COM	components	can	be	easily	consumed	by
.NET	applications	using	the	COM	interop	feature	of	the	.NET	Framework.

The	COM	interop	feature	of	the	.NET	framework	allows	users	to
instantiate	and	use	COM	objects	through	the	use	of	Runtime	Callable
Wrappers	(RCW).
The	RCW	is	a	.NET	class	that	wraps	a	COM	object	and	gives	a	.NET
application	the	notion	that	it's	interacting	with	a	managed	.NET
component.
RCW's	are	created	by	either	using	the	Type	Library	Importer	(tlbimp.exe)
tool,	or	by	importing	a	reference	to	the	Log	Parser	scriptable	COM
objects	through	the	Microsoft	Visual	Studio®	.NET	user	interface.
In	either	case,	the	RCW's	are	generated	and	stored	in	an	assembly
named	"Interop.MSUtil.dll",	which	contains	Runtime	Callable	Wrappers
for	all	of	the	Log	Parser	scriptable	COM	components.	By	referencing	this
assembly,	our	.NET	applications	can	use	the	Log	Parser	scriptable	COM
components	as	if	they	were	managed	.NET	components.

The	following	example	C#	application	executes	a	Log	Parser	query	that
returns	the	latest	50	events	from	the	System	event	log,	printing	the	query
results	to	the	console	output:

using	System;
using	LogQuery	=	Interop.MSUtil.LogQueryClassClass;
using	EventLogInputFormat	=	Interop.MSUtil.COMEventLogInputContextCla
ssClass;
using	LogRecordSet	=	Interop.MSUtil.ILogRecordset;

class	LogParserSample
{
				public	static	void	Main(string[]	Args)
				{
								try
								{
												//	Instantiate	the	LogQuery	object

The	following	steps	describe	how	to	build	this	sample	application:

1.	 Build	an	interop	assembly	containing	the	Runtime	Callable
Wrappers	for	the	Log	Parser	scriptable	COM	components.
This	step	can	by	executed	in	two	different	ways:
From	within	a	Visual	Studio	.NET	project,	import	a
reference	to	the	Log	Parser	scriptable	COM	components;
From	a	command-line	shell,	execute	the	tlbimp.exe	tool
(generally	available	in	the	"Bin"	folder	of	the	.NET
framework	SDK),	specifying	the	path	to	the	LogParser.dll
binary:

												LogQuery	oLogQuery	=	new	LogQuery();

												//	Instantiate	the	Event	Log	Input	Format	object
												EventLogInputFormat	oEVTInputFormat	=	new	EventLogInputFormat
();

												//	Set	its	"direction"	parameter	to	"BW"
												oEVTInputFormat.direction	=	"BW";

												//	Create	the	query
												string	query	=	@"SELECT	TOP	50	SourceName,	EventID,	Message	F
ROM	System";

												//	Execute	the	query
												LogRecordSet	oRecordSet	=	oLogQuery.Execute(query,	oEVTInputFo
rmat);

												//	Browse	the	recordset
												for(;	!oRecordSet.atEnd();	oRecordSet.moveNext())
												{
																Console.WriteLine(oRecordSet.getRecord().toNativeString(","));
												}

												//	Close	the	recordset
												oRecordSet.close();
								}
								catch(System.Runtime.InteropServices.COMException	exc)
								{
												Console.WriteLine("Unexpected	error:	"	+	exc.Message);
								}
				}
}

C:\>tlbimp	LogParser.dll	/out:Interop.MSUtil.dll

In	either	case,	an	assembly	named	"Interop.MSUtil.dll"	is
created.

2.	 Compile	the	sample	source	file	into	an	executable,
referencing	the	newly	created	"Interop.MSUtil.dll"	assembly.
From	a	command-line	shell,	this	step	can	be	executed	as
follows:

C:\>csc	/r:Interop.MSUtil.dll	/out:Events.exe	sample.cs

©	2004	Microsoft	Corporation.	All	rights	reserved.

Security	Considerations
When	using	input	and	output	formats	to	retrieve	and	send	data	over
the	network,	users	should	be	aware	that	most	of	the	protocols	utilized
for	data	transfer	(e.g.	SMB,	HTTP,	and	SYSLOG)	do	not	make	use	of
encryption,	and	could	thus	be	vulnerable	to	interception	and	tampering
by	malicious	entities.
In	order	to	provide	a	secure	environment	in	which	these	network
connections	are	less	vulnerable	to	interception,	users	should
implement	the	IPSec	protocol	on	their	networks,	and/or	use	SSL	HTTP
connections	when	retrieving	data	from	a	Web	URL.
When	using	the	Incremental	Parsing	feature,	users	should	store	their
checkpoint	files	in	a	secure	location,	and	verify	that	checkpoint	files
have	proper	ACL's	(Access	Control	Lists)	preventing	malicious	entities
from	tampering	with	the	data	that	the	Log	Parser	input	formats	store	in
the	checkpoint	files.
When	implementing	custom	input	format	COM	objects,	users	should
ensure	that	the	objects	are	not	accessible	from	local	and	remote	low-
privileged	users,	in	order	to	prevent	malicious	entities	from	instantiating
and	using	the	custom	input	format	objects	from	the	local	computer	or
from	a	remote	computer.
In	order	to	deny	access	to	low-privileged	users,	either	set	proper	ACL's
on	the	custom	input	format	COM	objects'	binaries,	or	use	the	"DCOM
Configuration"	Management	Console	(available	in	the	"Administrative
Tools"	folder	under	the	"Component	Services"	management	console)	to
explicitly	allow	selected	users	only	local	access	to	your	custom	input
format	COM	objects.
When	using	the	SQL	output	format,	users	should	be	aware	that	the
ODBC	connection	properties	provided	through	the	SQL	output	format
parameters,	which	include	username	and	password,	could	be
transmitted	over	the	network	in	clear	text.	In	addition,	the	data
transmitted	through	the	ODBC	connection	could	be	unencrypted	and
thus	vulnerable	to	interception	and	tampering	by	malicious	entities.
In	order	to	provide	a	more	secure	environment,	users	should	create	a
Data	Source	Name	(DSN)	on	the	local	computer	specifying	the
connection	properties	to	use	for	the	connection	to	the	database,	and

specify	the	name	of	the	Data	Source	as	a	value	to	the	dsn	parameter
of	the	SQL	output	format.	Using	a	Data	Source	Name	for	the
connection	provides	the	following	benefits:
The	username	and	password	for	the	connection	are	stored	securely
by	the	ODBC	subsystem;

Certain	ODBC	drivers,	including	Microsoft	SQL	ServerTM	ODBC
drivers	and	Microsoft	Access	ODBC	drivers,	provide	an	option	that
allows	users	to	enable	encryption	of	the	network	traffic	between	the
ODBC	connection	endpoints.

For	more	information	on	securing	the	communication	between	the
ODBC	connections	endpoints,	see	the	MSDN®	Data	Access	Security
topic.
When	processing	sensitive	or	confidential	data,	users	should	provide
proper	ACL's	on	the	files	generated	by	the	output	formats	or	on	the
directories	in	which	the	output	formats	generate	files,	in	order	to
prevent	malicious	entities	from	accessing	and/or	tampering	with	the
output	data	generated	by	a	query.

©	2004	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch12.asp

Frequently	Asked	Questions
1.	 How	do	I	specify	yesterday’s	date?
2.	 How	do	I	retrieve	the	event	logs	that	have	been	logged	in	the

past	10	minutes?
3.	 After	parsing	my	IIS	log	files,	I	get	a	message	saying	"There

have	been	4	parse	errors."	What	causes	this?
4.	 How	do	I	change	the	column	names	in	my	output	file?
5.	 How	do	I	combine	the	IISW3C	"date"	and	"time"	fields	into	a

single	TIMESTAMP	field?
6.	 How	do	I	split	a	single	TIMESTAMP	field	into	a	date-only	field

and	a	time-only	field?
7.	 When	I	use	a	"SELECT	*"	on	an	IIS	W3C	Extended	log	file,	I

get	many	fields	with	NULL	values.	What	causes	this?
8.	 I	get	an	error	saying	"Unknown	field	XYZ"	when	I	execute	my

query.	How	do	I	fix	this?
9.	 I	am	trying	to	write	a	query	that	uses	the	IN	operator,	but	Log

Parser	keeps	giving	me	errors.	What	am	I	doing	wrong?
10.	 When	I	execute	a	"SELECT	*"	on	a	log	file,	the	output	records

contain	2	extra	fields	that	I	can	not	find	in	the	log.	What	are
these	fields?

11.	 I	am	developing	an	ASP	or	ASP.Net	or	Scheduled	Task
application	with	Log	Parser,	and	I'm	having	problems	with
permissions.	What	can	I	do?

12.	 Can	I	use	the	Log	Parser	scriptable	COM	components	from	a
multi-threaded	application?

How	do	I	specify	yesterday’s	date?
You	need	to	use	the	SUB	function	to	subtract	one	day	from	the
current	UTC	timestamp	returned	by	the	SYSTEM_TIMESTAMP
function.

The	origin	for	TIMESTAMP	values	is	January	1,	year	0	at	00:00:00.
This	means	that	a	time	span	of	one	day	is	represented	by	the
timestamp	for	January	2,	year	0	at	00:00:00,	i.e.	24	hours	after	the
origin	of	time.
Use	the	following	field-expression	to	specify	yesterday’s	date:

SUB	(SYSTEM_TIMESTAMP(),	TIMESTAMP('01-02',	'MM-dd'))

For	more	information,	see	the	TIMESTAMP	Reference.

How	do	I	retrieve	the	event	logs	that	have	been	logged	in	the	past
10	minutes?

You	need	to	use	the	SUB	function	to	subtract	10	minutes	from	the
current	UTC	timestamp	returned	by	the	SYSTEM_TIMESTAMP
function,	and	convert	this	timestamp	to	local	time	using	the
TO_LOCALTIME	function:

SELECT	*
FROM	System
WHERE	TimeGenerated	>=	TO_LOCALTIME(SUB(SYSTEM_TIMES
TAMP(),	TIMESTAMP('10',	'mm')))After	parsing	my	IIS	log	files,	I	get	a	message	saying	"There	have

been	4	parse	errors."	What	causes	this?
Your	log	files	are	somehow	malformed.	This	might	happen,	for
example,	if	a	client	requests	a	URL	or	specifies	a	user	name
containing	spaces.	Log	Parser	cannot	process	that	row	and	skips	it.
To	see	exactly	what's	going	on,	set	the	-e	global	switch	to	any	value
greater	than	or	equal	to	zero.	This	makes	Log	Parser	stop	the	query
execution	when	that	number	of	parse	errors	is	encountered,	and
dump	all	the	messages	of	the	parse	errors	that	occurred.
For	more	information,	see	Errors,	Parse	Errors,	and	Warnings.

How	do	I	change	the	column	names	in	my	output	file?
Use	the	AS	keyword	in	your	SELECT	clause	to	alias	the	field.
For	example:

SELECT	Field1	AS	newFieldName,	Field2	AS	newFieldName2,	...

How	do	I	combine	the	IISW3C	"date"	and	"time"	fields	into	a	single
TIMESTAMP	field?

Use	the	TO_TIMESTAMP	function,	as	in	the	following	example:

SELECT	TO_TIMESTAMP(date,	time),	...

How	do	I	split	a	single	TIMESTAMP	field	into	a	date-only	field	and	a
time-only	field?

Use	the	TO_DATE	and	TO_TIME	functions,	as	in	the	following
example:

SELECT	TO_DATE(myTimestamp),	TO_TIME(myTimestamp),	...

For	more	information,	see	the	TIMESTAMP	Reference.

When	I	use	a	"SELECT	*"	on	an	IIS	W3C	Extended	log	file,	I	get
many	fields	with	NULL	values.	What	causes	this?

The	IISW3C	input	format	has	32	fields,	which	are	all	the	possible
fields	that	IIS	5.0	and	IIS	6.0	can	log.	If	your	Web	Server	is
configured	to	log	only	a	few	of	these	fields,	the	IISW3C	input	format
returns	the	other	field	values	as	NULL	values.

I	get	an	error	saying	"Unknown	field	XYZ"	when	I	execute	my	query.
How	do	I	fix	this?

If	you	have	not	specified	an	input	format	for	your	query,	Log	Parser
chooses	one	automatically	based	on	the	<from-entity>	in	the	FROM
clause	of	your	query.	In	some	cases,	the	input	format	might	not	be
the	one	you	expect.
Try	specifying	the	input	format	explicitly	using	the	-i	switch.
If	you	have	specified	the	correct	input	format,	make	sure	that	you

have	typed	the	field	name	correctly.

I	am	trying	to	write	a	query	that	uses	the	IN	operator,	but	Log	Parser
keeps	giving	me	errors.	What	am	I	doing	wrong?

Make	sure	you	are	separating	the	values	on	the	right-side	of	the	IN
operator	with	the	correct	separator.
If	the	IN	operator	is	comparing	a	single	field-expression	with	a	list	of
values,	separate	the	values	with	a	semicolon	(;),	not	with	a	comma,
as	follows:

WHERE	MyField	IN	('VALUE1';	'VALUE2';	'VALUE3')

Different	values	for	the	same	field-expression	("value-rows")	are
separated	by	a	semicolon;	comma	characters	are	used	to	separate
values	within	a	single	value-row.
For	more	information,	see	the	IN	Operator	Reference.

When	I	execute	a	"SELECT	*"	on	a	log	file,	the	output	records
contain	2	extra	fields	that	I	can	not	find	in	the	log.	What	are	these
fields?

Most	of	the	input	formats	add	some	tracking	fields	to	the	input
records,	such	as	the	name	of	the	file	currently	parsed,	and	the	row
number	currently	parsed.
If	you	do	not	want	these	fields	to	appear	in	your	output	records,	do
not	use	"SELECT	*".	Instead,	specify	only	the	field	names	that	you
want,	as	in	the	following	example:

SELECT	Field1,	Field2,	Field3,

I	am	developing	an	ASP	or	ASP.Net	or	Scheduled	Task	application
with	Log	Parser,	and	I'm	having	problems	with	permissions.	What
can	I	do?

The	first	step	in	troubleshooting	these	problems	is	identifying	the
account	under	which	Log	Parser	is	running.	If	you	are	developing	an

ASP	or	ASP.Net	application,	Log	Parser	will	run	as	the	account	of
the	user	requesting	the	page.	If	the	request	is	anonymous,	the
account	is	the	IIS	Anonymous	account;	if	the	request	is
authenticated,	the	account	is	the	authenticated	user's	account.	If	you
are	developing	a	Scheduled	Task	application,	the	account	is	the
account	that	you	have	specified	for	the	task.
Once	the	account	has	been	identified,	appropriate	permissions	must
be	given	for	this	account	to	access	both	the	Log	Parser	binary	and
the	Dynamic	Link	Libraries	that	Log	Parser	depends	to,	which
include	standard	Windows	libraries	(e.g.	"kernel32.dll",	"user32.dll",
etc.)	and	a	significant	number	of	other	libraries	(e.g.	"WinInet.dll",
"odbcint.dll",	etc.).
Finally,	appropriate	permissions	must	be	given	for	the	account	to
access	the	data	that	your	application	asks	Log	Parser	to	process.
These	may	include	IIS	log	files,	the	Event	Log,	text	files,	and
whatever	data	you	are	processing.
Note:	It	is	not	a	good	security	practice	to	change	system	ACL's	and
permissions	to	grant	user	accounts	access	to	protected	system
resources.	This	is	especially	true	if	you	are	developing	an	external-
facing	web	application	that	uses	Log	Parser	to	display	information	to
the	users.	In	these	cases,	consider	instead	developing	a	Scheduled
Task	that	runs	under	a	"private"	account,	and	that	generates	at
frequent	intervals	the	web	pages	that	your	application	will	display	to
the	user.

Can	I	use	the	Log	Parser	scriptable	COM	components	from	a	multi-
threaded	application?

The	Log	Parser	scriptable	COM	components	are	registered	to	run
within	a	single-threaded	COM	apartment,	meaning	that	the	objects
can	be	used	from	multiple	threads,	but	calls	to	the	objects'	methods
will	be	serialized	by	the	COM	infrastructure	to	guarantee	that	only
one	thread	at	a	time	can	access	the	components.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Query	Syntax
<query> ::= <select_clause>	[<using_clause>]

[<into_clause>]
<from_clause>
[<where_clause>]
[<group_by_clause>]
[<having_clause>]
[<order_by_clause>]

Remarks:
A	query	can	include	comments,	that	is,	user-provided	text	not
evaluated	by	Log	Parser,	used	to	document	code	or	temporarily
disable	parts	of	query	statements.
For	more	information,	read	the	Comments	Reference.

Examples:

A.	Minimal	query
The	following	example	shows	the	minimal	query	that	can	be	written
with	the	Log	Parser	SQL-Like	language,	making	use	of	the	SELECT
and	FROM	clauses	only:

SELECT	TimeGenerated,	SourceName
FROM			System
B.	Complete	query
The	following	example	shows	a	complete	query	that	makes	use	of	all
the	clauses	in	the	Log	Parser	SQL-Like	language:

SELECT			TypeName,	COUNT(*)	AS	TotalCount
USING				TO_UPPERCASE(EXTRACT_TOKEN(EventTypeName,	0,	'	
'))	AS	TypeName
INTO					Report.csv
FROM					System
WHERE				TypeName	LIKE	'%service%'
GROUP	BY	TypeName
HAVING			TotalCount	>	5
ORDER	BY	TotalCount	DESC

See	also:
SELECT
USING
INTO
FROM
WHERE
GROUP	BY
HAVING
ORDER	BY

Comments

©	2004	Microsoft	Corporation.	All	rights	reserved.

SELECT
<select_clause> ::= SELECT	[TOP	<integer>]	[DISTINCT	|	ALL

]	<selection_list>	

<selection_list> ::= <selection_list_el>	[,	<selection_list_el>	...]

<selection_list_el> ::= <field_expr>	[AS	<alias>]	
*

The	SELECT	clause	specifies	the	fields	of	the	output	records	to	be
returned	by	the	query.

Arguments:

TOP	n
Specifies	that	only	the	first	n	records	are	to	be	output	from	the	query
result	set.	If	the	query	includes	an	ORDER	BY	clause,	the	first	n
records	ordered	by	the	ORDER	BY	clause	are	output.	If	the	query
has	no	ORDER	BY	clause,	the	order	of	the	records	is	arbitrary.
For	more	information,	see	Retrieving	a	Fixed	Number	of	Records.

ALL
Specifies	that	duplicate	records	can	appear	in	the	result	set.	ALL	is
the	default.

DISTINCT
Specifies	that	only	unique	records	can	appear	in	the	result	set.	NULL
values	are	considered	equal	for	the	purposes	of	the	DISTINCT
keyword.
For	more	information,	see	Eliminating	Duplicate	Values.

<selection_list>
The	fields	to	be	selected	for	the	result	set.	The	selection	list	is	a
series	of	field-expressions	separated	by	commas.

*
Specifies	that	all	the	input	record	fields	should	be	returned.	The
fields	are	returned	in	the	order	in	which	they	are	exported	by	the
Input	Format.

AS	<alias>
Specifies	an	alternative	name	to	replace	the	field	name	in	the	query
result	set.	By	default,	output	formats	that	display	field	names	use	the
text	of	a	field-expression	in	the	SELECT	clause	as	the	name	of	the
corresponding	output	record	field.	However,	when	a	field-expression
in	the	SELECT	clause	has	been	aliased,	output	formats	will	use	the
alias	as	the	name	of	the	output	record	field.
The	alias	of	a	field-expression	can	be	also	used	anywhere	else	in
the	query	as	a	shortcut	that	refers	to	the	original	field-expression.

Remarks:
When	a	field-expression	is	aliased	with	an	alias	matching	an	input
record	field	name,	the	aliasing	will	affect	that	field-expression	only;	any
other	occurrence	of	the	alias	in	the	query	will	resolve	to	the	input
record	field	name.
As	an	example,	the	output	records	of	the	following	query	are	made	up
of	two	fields	with	an	identical	name	("TimeGenerated");	the	first	output
record	field	will	contain	values	from	the	aliased	field-expression
("ADD(EventID,	1000)"),	while	the	second	output	record	field	will
contain	values	from	the	"TimeGenerated"	input	format	field:

SELECT	ADD(EventID,	1000)	AS	TimeGenerated,	TimeGenerated
FROM	system
A	field-expression	in	the	SELECT	clause	can	refer	to	aliases	defined
elsewhere	in	the	SELECT	clause,	as	long	as	the	definition	happens

before	(in	a	left-to-right	order)	its	use.
The	following	example	is	a	correct	SELECT	clause:

SELECT	EventID	AS	MyAlias,	ADD(MyAlias,	100)

On	the	other	hand,	the	following	example	is	not	a	correct	SELECT
clause,	since	the	"MyAlias"	alias	is	used	before	being	defined:

SELECT	ADD(MyAlias,	100),	EventID	AS	MyAlias

Examples:

A.	Selecting	specific	fields
The	following	query	selects	a	subset	of	all	the	fields	exported	by	the
EVT	Input	Format:

SELECT	TimeGenerated,	SourceName
FROM	System
B.	Selecting	specific	fields	and	field-expressions
The	following	query	selects	a	constant	and	a	function	that	uses	a
field	exported	by	the	EVT	Input	Format	as	argument:

SELECT	'Event	Type:',	EXTRACT_TOKEN(EventTypeName,	0,	'	')
FROM	System
C.	Selecting	all	fields	with	*
The	following	query	selects	all	the	fields	exported	by	the	EVT	Input
Format:

SELECT	*
FROM	System
D.	Using	TOP
The	following	query	returns	the	10	most	requested	Url's	in	the
specified	IISW3C	log	file:

SELECT	TOP	10	cs-uri-stem,	COUNT(*)
FROM	ex040305.log
GROUP	BY	cs-uri-stem
ORDER	BY	COUNT(*)	DESC
E.	Using	DISTINCT
The	following	query	uses	the	REG	Input	Format	to	return	all	the
registry	key	value	types	that	are	found	under	the	specified	key:

SELECT	DISTINCT	ValueType
FROM	\HKLM\SYSTEM\CurrentControlSet
F.	Aliasing	field-expressions
The	following	query	returns	a	breakdown	of	page	requests	per	page
type	from	the	specified	IISW3C	log	file:

SELECT	TO_UPPERCASE(EXTRACT_EXTENSION(cs-uri-stem))	AS	
PageType,	COUNT(*)	AS	TotalHits
FROM	ex040305.log
GROUP	BY	PageType
ORDER	BY	TotalHits	DESCSee	also:

Field	Expressions
Field	Names	and	Aliases
USING

Basics	of	a	Query
Eliminating	Duplicate	Values
Retrieving	a	Fixed	Number	of	Records

©	2004	Microsoft	Corporation.	All	rights	reserved.

USING
<using_clause> ::= USING	<field_expr>	AS	<alias>	[,	<field_expr>

AS	<alias>	...]

The	USING	clause	declares	aliased	field-expressions	that	do	not	appear
in	the	output	records	but	can	be	referenced	anywhere	in	the	query.
The	USING	clause	is	employed	to	improve	query	readability.

Remarks:
For	more	information	on	aliasing	field-expressions,	see	the	SELECT
Clause	Reference.

Examples:

A.	Declaring	aliased	field-expressions
The	following	example	query	returns	the	"account	name"	portion	of
the	fully-qualified	account	name	that	appears	in	the	resolved	"SID"
field	of	the	EVT	input	format:

SELECT	Username
USING	TO_LOWERCASE(RESOLVE_SID(Sid))	AS	FQAccount,	
						EXTRACT_TOKEN(FQAccount,	1,	'\\')	AS	Username
FROM	Security

See	also:
Field	Expressions
Field	Names	and	Aliases
SELECT

Improving	Query	Readability

©	2004	Microsoft	Corporation.	All	rights	reserved.

INTO
<into_clause> ::= INTO	<into_entity>

The	INTO	clause	is	used	to	specify	the	output	format	target(s)	to	which
the	query	output	records	are	to	be	written.

Remarks:
The	syntax	and	interpretation	of	the	<into_entity>	specified	in	the	INTO
clause	depends	on	the	output	format	used.	For	information	on	the
syntax	and	interpretation	of	the	<into_entity>	values	supported	by	each
output	format,	refer	to	the	Output	Formats	Reference.
Regardless	of	the	output	format	used,	the	<into_entity>	specified	in	the
INTO	clause	must	comply	with	the	following	general	syntax:
The	<into_entity>	can	not	contain	spaces,	unless	it	is	enclosed	by
the	'''	(single	quote)	or	'"	(double	quotes)	characters,	as	in	the
following	example:

'C:\Program	Files\file3.txt'

The	following	characters	are	considered	parenthesys	characters,
and	if	they	appear	in	an	<into_entity>,	they	must	appear	as	well-
formed	pairs	of	opening	and	closing	parenthesys:

<	>	()	[]	{	}

The	following	examples	show	valid	into-entities	containing
parenthesys	characters:

entity<value>
entity[value]value
The	following	examples	show	invalid	into-entities	containing

parenthesys	characters:

entity>value<
entity}value
entity(valueAny	character	(including	illegal	characters	and	non-printable

characters)	in	an	<into-entity>	can	be	entered	using	the	\uxxxx
notation,	where	xxxx	is	the	4-digit	hexadecimal	representation	of	the
UNICODE	character,	as	in	the	following	example:

C:\Program\u0020Files\file3.txt

Into-entities	that	represent	names	of	files	or	directories	are	not	allowed
to	contain	the	following	characters,	even	when	enclosed	in	quote
characters	or	entered	using	the	\uxxxx	notation:

tab	carriage-return	line-feed	,	()	"	<	>

Since	the	INTO	clause	is	not	a	mandatory	clause	in	the	Log	Parser
SQL-Like	language,	most	output	formats	employ	default	<into_entity>
values	that	are	implicitly	used	when	a	query	does	not	include	an	INTO
clause.
For	example,	the	NAT,	CSV,	and	TSV	output	formats	assume
STDOUT	when	an	INTO	clause	is	not	specified.	For	more	information
on	the	default	<into_entity>	values	assumed	by	each	output	format,
refer	to	the	Output	Formats	Reference.
The	TO	clause	used	by	earlier	versions	of	Log	Parser	has	been
deprecated	in	favor	of	the	INTO	clause.

Examples:

A.	Explicit	<into_entity>
The	following	example	query	specifies	an	explicit	target	CSV	file	for
the	CSV	output	format:

SELECT	*

INTO	MyOutput.csv
FROM	System
B.	Implicit	<into_entity>
The	following	example	query	uses	an	implicit	STDOUT	target	for	the
NAT	output	format:

SELECT	*
FROM	System
C.	Explicit	<into_entity>
The	following	example	query	specifies	an	explicit	STDOUT	target	for
the	NAT	output	format:

SELECT	*
INTO	STDOUT
FROM	System

See	also:
FROM

Basics	of	a	Query
Output	Formats	Reference

©	2004	Microsoft	Corporation.	All	rights	reserved.

FROM
<from_clause> ::= FROM	<from_entity>

The	FROM	clause	is	used	to	specify	the	input	format	source(s)	from
which	the	query	input	records	are	to	be	read.

Remarks:
The	syntax	and	interpretation	of	the	<from_entity>	specified	in	the
FROM	clause	depends	on	the	input	format	used.	For	information	on
the	syntax	and	interpretation	of	the	<from_entity>	values	supported	by
each	input	format,	refer	to	the	Input	Formats	Reference.
Regardless	of	the	input	format	used,	the	<from_entity>	specified	in	the
FROM	clause	must	comply	with	the	following	general	syntax:
The	<from_entity>	must	be	a	single	element	or	a	list	of	elements,
separated	by	the	','	(comma)	or	';'	(semicolon)	characters,	as	in	the
following	examples:

file1.txt
file1.txt,	file2.txt
file1.txt;	D:\file2.txt;	file3.txtEach	element	can	not	contain	spaces,	','	(comma)	characters,	or	';'
(semicolon)	characters,	unless	the	element	is	enclosed	by	the	'''
(single	quote)	or	'"	(double	quotes)	characters,	as	in	the	following
example:

file2.txt,	'C:\Program	Files\file3.txt',	file4.txt

The	following	characters	are	considered	parenthesys	characters,
and	if	they	appear	in	an	element,	they	must	appear	as	well-formed
pairs	of	opening	and	closing	parenthesys:

<	>	()	[]	{	}

The	following	examples	show	valid	from-entities	containing
parenthesys	characters:

entity<value>
entity[value]value
The	following	examples	show	invalid	from-entities	containing
parenthesys	characters:

entity>value<
entity}value
entity(valueAny	character	(including	illegal	characters	and	non-printable

characters)	in	a	<from-entity>	can	be	entered	using	the	\uxxxx
notation,	where	xxxx	is	the	4-digit	hexadecimal	representation	of	the
UNICODE	character,	as	in	the	following	example:

C:\Program\u0020Files\file3.txt

From-entities	that	represent	names	of	files	or	directories	are	not
allowed	to	contain	the	following	characters,	even	when	enclosed	in
quote	characters	or	entered	using	the	\uxxxx	notation:

tab	carriage-return	line-feed	,	()	"	<	>

Examples:

A.	<from_entity>	with	the	REG	input	format
The	following	example	query	reads	input	records	from	the	registry
using	the	REG	input	format:

SELECT	*
FROM	\HKLM\SOFTWARE
B.	<from_entity>	with	the	EVT	input	format
The	following	example	query	reads	input	records	from	the	System
and	Security	event	logs	using	the	EVT	input	format:

SELECT	*
FROM	System,	Security

See	also:
INTO

Basics	of	a	Query
Input	Formats	Reference

©	2004	Microsoft	Corporation.	All	rights	reserved.

WHERE
<where_clause> ::= WHERE	<expression>

The	WHERE	clause	is	used	to	specify	a	boolean	condition	that	must	be
satisfied	by	an	input	record	for	that	record	to	be	output.	Input	records	that
do	not	satisfy	the	condition	are	discarded.

Remarks:
The	expression	in	a	WHERE	clause	can	not	reference	SQL
(aggregate)	functions.	To	specify	conditions	on	values	of	aggregate
functions,	use	the	HAVING	clause.

Examples:

A.	Simple	expression

WHERE	EventID	=	501

B.	Complex	expression

WHERE	EXTRACT_TOKEN(Strings,	1,	'|')	LIKE	'%logon&'	AND
						(TimeGenerated	>	SUB(TO_LOCALTIME(SYSTEM_TIMESTA
MP()),	TIMESTAMP('10',	'mm'))		OR
										SID	IS	NOT	NULL
)See	also:

Expressions
HAVING

Filtering	Input	Records

©	2004	Microsoft	Corporation.	All	rights	reserved.

GROUP	BY
<group_by_clause> ::= GROUP	BY	<field_expr_list>	[WITH

ROLLUP]	

<field_expr_list> ::= <field_expr>	[,	<field_expr>	...]	

The	GROUP	BY	clause	specifies	the	groups	into	which	output	rows	are
to	be	placed	and,	if	aggregate	functions	are	included	in	the	SELECT	or
HAVING	clauses,	calculates	the	aggregate	functions	values	for	each
group.

Arguments:

WITH	ROLLUP
Specifies	that	in	addition	to	the	usual	rows	provided	by	GROUP	BY,
summary	rows	are	introduced	into	the	result	set.	Groups	are
summarized	in	a	hierarchical	order,	from	the	lowest	level	in	the	group
to	the	highest,	and	the	corresponding	summary	rows	contain	NULL
values	for	the	groups	that	have	been	summarized.
The	group	hierarchy	is	determined	by	the	order	in	which	the
grouping	field-expressions	are	specified.	Changing	the	order	of	the
grouping	field-expressions	can	affect	the	number	of	rows	produced
in	the	result	set.
The	ROLLUP	operator	is	often	used	with	the	GROUPING	aggregate
function.

Remarks:
When	GROUP	BY	is	specified,	either	each	non-aggregate	and	non-
constant	field-expression	in	the	SELECT	clause	should	be	included	in

the	GROUP	BY	field-expression	list,	or	the	GROUP	BY	field-
expression	list	must	match	exactly	the	SELECT	clause	field-expression
list.	For	more	information,	see	Aggregating	Data	Within	Groups.
Aggregate	functions	using	the	DISTINCT	keyword,	for	example,
"COUNT(DISTINCT	field-expression)",	are	not	supported	when	using
the	GROUP	BY	clause.
If	the	ORDER	BY	clause	is	not	specified,	groups	returned	using	the
GROUP	BY	clause	are	not	in	any	particular	order.	It	is	recommended
that	the	ORDER	BY	clause	is	always	used	to	specify	a	particular
ordering	of	the	data.

Examples:

A.	Simple	GROUP	BY	clause
The	following	query,	on	an	IISW3C	log	file,	returns	the	number	of
requests	for	each	page	on	each	day:

SELECT	date,	cs-uri-stem,	COUNT(*)
FROM	LogFiles\ex040528.log
GROUP	BY	date,	cs-uri-stemA	sample	output	would	be:

date							cs-uri-stem									COUNT(ALL	*)
----------	-------------------	------------
2003-11-18	/Default.htm								1
2003-11-18	/style.css										1
2003-11-18	/images/address.gif	1
2003-11-18	/cgi-bin/counts.exe	1
2003-11-18	/data/rulesinfo.nsf	2
2003-11-19	/data/rulesinfo.nsf	6
2003-11-20	/data/rulesinfo.nsf	5
2003-11-20	/maindefault.htm				1
2003-11-20	/top2.htm											1
2003-11-20	/homelog.swf								1

B.	Using	WITH	ROLLUP
The	following	example	query	is	the	same	as	in	the	previous
example,	using	the	WITH	ROLLUP	argument	to	display	additional
summary	rows:

SELECT	date,	cs-uri-stem,	COUNT(*)
FROM	LogFiles\ex040528.log
GROUP	BY	date,	cs-uri-stem	WITH	ROLLUPA	sample	output	would	be:

date							cs-uri-stem									COUNT(ALL	*)
----------	-------------------	------------

2003-11-18	/Default.htm								1
2003-11-18	/style.css										1
2003-11-18	/images/address.gif	1
2003-11-18	/cgi-bin/counts.exe	1
2003-11-18	/data/rulesinfo.nsf	2
2003-11-19	/data/rulesinfo.nsf	6
2003-11-20	/data/rulesinfo.nsf	5
2003-11-20	/maindefault.htm				1
2003-11-20	/top2.htm											1
2003-11-20	/homelog.swf								1
-										-																			20
2003-11-18	-																			6
2003-11-19	-																			6
2003-11-20	-																			8

The	group	summaries	that	have	been	introduced	by	the	rollup
operator	are:

2003-11-18	-																			6
2003-11-19	-																			6
2003-11-20	-																			8
-										-																			20
Which	represent	the	number	of	requests	on	each	day,	regardless	of
the	page	requested,	and	the	total	number	of	requests	in	the	log	file,
regardless	of	the	day.

See	also:
Field	Expressions
SELECT

Aggregating	Data	Within	Groups

©	2004	Microsoft	Corporation.	All	rights	reserved.

HAVING
<having_clause> ::= HAVING	<expression>

The	HAVING	clause	is	used	to	specify	a	boolean	condition	that	must	be
satisfied	by	a	group	for	the	group	record	to	be	output.	Groups	that	do	not
satisfy	the	condition	are	discarded.

Examples:

A.	Simple	expression

HAVING	EventID	=	501

B.	Complex	expression

HAVING	SUM(sc-bytes)	>	100000	AND
							(COUNT(*)	>	1000	OR
									EXTRACT_EXTENSION(cs-uri-stem)	LIKE	'htm'
)
C.	Complex	expression
The	following	example	query	retrieves	all	the	event	sources	from	the
System	event	log	that	generated	more	than	10	events:

SELECT	SourceName
FROM	System
GROUP	BY	SourceName
HAVING	COUNT(*)	>	10

See	also:
Expressions
WHERE

Filtering	Groups

©	2004	Microsoft	Corporation.	All	rights	reserved.

ORDER	BY
<order_by_clause> ::= ORDER	BY	<field_expr_list>	[ASC	|	DESC]	

<field_expr_list> ::= <field_expr>	[,	<field_expr>	...]	

The	ORDER	BY	clause	specifies	which	SELECT	clause	field-expressions
the	query	output	records	should	be	sorted	by.

Arguments:

ASC
Specifies	that	the	field-expression	list	values	should	be	sorted	in
ascending	order,	from	lowest	value	to	highest	value.	ASC	is	the
default.

DESC
Specifies	that	the	field-expression	list	values	should	be	sorted	in
descending	order,	from	highest	value	to	lowest	value.

Remarks:
The	Log	Parser	SQL-Like	language	requires	that	each	field-expression
appearing	in	the	ORDER	BY	clause	must	also	appear	in	the	SELECT
clause.
Differently	than	the	standard	SQL	language,	in	the	Log	Parser	SQL-
Like	language	the	DESC	or	ASC	sort	direction	applies	to	all	the	field-
expressions	in	the	ORDER	BY	clause.	In	other	words,	it	is	not	possible
to	specify	different	sort	directions	for	different	field-expressions.
NULL	values	are	treated	as	the	lowest	possible	values.

Examples:

A.	Sorting	by	a	single	field-expression

SELECT	date,	cs-uri-stem,	cs-uri-query,	sc-bytes
FROM	LogFiles\ex040528.log
ORDER	BY	sc-bytes	DESCB.	Sorting	by	multiple	field-expressions

SELECT	date,	cs-uri-stem,	cs-uri-query,	sc-bytes
FROM	LogFiles\ex040528.log
ORDER	BY	date,	sc-bytes

See	also:
Field	Expressions
SELECT

Sorting	Output	Records

©	2004	Microsoft	Corporation.	All	rights	reserved.

Expressions
<expression> ::= <term1>	[OR	<expression>]

<term1> ::= <term2>	[AND	<term1>]

<term2> ::= <field_expr>	<rel_op>	<field_expr>	
<field_expr>	[NOT]	LIKE	<like_mask>	
<field_expr>	[NOT]	BETWEEN	<field_expr>
AND	<field_expr>	
<field_expr>	IS	[NOT]	NULL	
<field_expr>	[NOT]	IN	(<value_rows>)	
<field_expr>	<rel_op>	[ALL	|	ANY]	(
<value_rows>)	
(<field_expr_list>)	[NOT]	IN	(<value_rows>
)	
(<field_expr_list>)	<rel_op>	[ALL	|	ANY]	(
<value_rows>)	
NOT	<term2>	
(<expression>)

<field_expr_list> ::= <field_expr>	[,	<field_expr>	...]

<rel_op> ::= <	
>	
<>	
=	
<=	
>=

<value_rows> ::= <value_row>	[;	<value_row>	...]

<value_row> ::= <value>	[,	<value>	...]

An	expression	is	used	in	the	WHERE	and	HAVING	clauses	to	specify
conditions	that	must	be	satisfied	for	input	records	or	group	records	to	be
output.

Operators:

<rel_op>
Standard	comparison	operators	(less	than,	greather	than,	etc.).

[NOT]	LIKE
Indicates	that	the	subsequent	character	string	is	to	be	used	with
pattern	matching.	For	more	information,	see	LIKE.

[NOT]	BETWEEN
Specifies	an	inclusive	range	of	values.	Use	AND	to	separate	the
beginning	and	ending	values.	For	more	information,	see	BETWEEN.

IS	[NOT]	NULL
The	IS	NULL	and	IS	NOT	NULL	operators	determine	whether	or	not
a	given	field-expression	is	NULL.

[NOT]	IN
The	IN	and	NOT	IN	operators	determine	whether	or	not	a	given	field-
expression	or	list	of	field-expressions	matches	any	element	in	a	list
of	values.	For	more	information,	see	IN.

ALL
Used	with	a	comparison	operator	and	a	list	of	values.	Returns	TRUE
if	all	values	in	the	list	satisfy	the	comparison	operation,	or	FALSE	if

not	all	values	satisfy	the	comparison.	If	no	ALL	nor	ANY	is	specified,
then	ANY	is	assumed	by	default.	For	more	information,	see	ALL.

ANY
Used	with	a	comparison	operator	and	a	list	of	values.	Returns	TRUE
if	any	value	in	the	list	satisfies	the	comparison	operation,	or	FALSE	if
no	values	satisfy	the	comparison.	If	no	ALL	nor	ANY	is	specified,
then	ANY	is	assumed	by	default.	For	more	information,	see	ANY.

Remarks:
The	expression	in	a	WHERE	clause	can	not	reference	SQL
(aggregate)	functions.	To	specify	conditions	on	values	of	aggregate
functions,	use	the	HAVING	clause.
There	is	no	limit	to	the	number	of	operators	that	can	be	included	in	an
expression.
The	order	of	precedence	for	the	logical	operators	is	NOT	(highest),
followed	by	AND,	followed	by	OR.	The	order	of	evaluation	at	the	same
precedence	level	is	from	left	to	right.	Parentheses	can	be	used	to
override	this	order	in	an	expression.

Examples:

A.	Simple	expression

sc-bytes	>=	1000

B.	Complex	expression

EXTRACT_TOKEN(Strings,	1,	'|')	LIKE	'%logon&'	AND
(TimeGenerated	>	SUB(TO_LOCALTIME(SYSTEM_TIMESTAMP()
),	TIMESTAMP('10',	'mm'))		OR
				SID	IS	NOT	NULL

)See	also:
ALL
ANY
BETWEEN
IN
LIKE

Constant	Values
Field	Expressions
HAVING
WHERE

©	2004	Microsoft	Corporation.	All	rights	reserved.

ALL
<field_expr>	<rel_op>	ALL	(<value_rows>)

(<field_expr_list>)	<rel_op>	ALL	(<value_rows>)

The	ALL	operator	compares	a	given	field-expression	with	a	list	of	values,
returning	TRUE	if	all	values	in	the	list	satisfy	the	comparison	operation,	or
FALSE	if	not	all	values	satisfy	the	comparison.

Examples

A.	Single	field-expression
The	following	example	expression	determines	whether	or	not	the
"Year"	field	is	greater	than	all	the	values	in	the	specified	list:

Year	>	ALL	(1999;	2000;	2001)

B.	List	of	field-expressions
The	following	example	expression	determines	whether	or	not	the
pair	of	"Year"	and	"Age"	fields	is	less	than	all	the	pairs	of	values	in
the	specified	list:

(Year,	Age)	<	ALL	(1999,	30;	2001,	40;	2002,	10)

See	also:
ANY
Expressions
Field-Expressions

©	2004	Microsoft	Corporation.	All	rights	reserved.

ANY
<field_expr>	<rel_op>	ANY	(<value_rows>)

(<field_expr_list>)	<rel_op>	ANY	(<value_rows>)

The	ANY	operator	compares	a	given	field-expression	with	a	list	of	values,
returning	TRUE	if	any	value	in	the	list	satisfies	the	comparison	operation,
or	FALSE	if	no	values	satisfy	the	comparison.

Examples

A.	Single	field-expression
The	following	example	expression	determines	whether	or	not	the
"Year"	field	is	greater	than	any	value	in	the	specified	list:

Year	>	ANY	(1999;	2000;	2001)

B.	List	of	field-expressions
The	following	example	expression	determines	whether	or	not	the
pair	of	"Year"	and	"Age"	fields	is	less	than	any	of	the	pairs	of	values
in	the	specified	list:

(Year,	Age)	<	ANY	(1999,	30;	2001,	40;	2002,	10)

See	also:
ALL
Expressions
Field-Expressions

©	2004	Microsoft	Corporation.	All	rights	reserved.

BETWEEN
<field_expr>	[NOT]	BETWEEN	<field_expr>	AND	<field_expr>

The	BETWEEN	operator	determines	if	a	given	field-expression	belongs
to	a	specified	interval.

Examples

A.	BETWEEN
The	following	example	expression	determines	if	the	"Year"	field
belongs	to	the	specified	interval:

Year	BETWEEN	1999	AND	2004

This	example	is	equivalent	to	the	following	expression:

Year	>=	1999	AND	Year	<=	2004

B.	NOT	BETWEEN
The	following	example	expression	determines	if	the	"Year"	field	does
not	belong	to	the	specified	interval:

Year	NOT	BETWEEN	1999	AND	2004

This	example	is	equivalent	to	the	following	expression:

Year	<	1999	OR	Year	>	2004

C.	TIMESTAMP	interval
The	following	example	query	uses	the	FS	Input	Format	to	return	all
the	files	that	have	been	created	between	4	hours	ago	and	1	hour
ago:

SELECT	Path	
FROM	C:\MyDir*.*	
WHERE	TO_UTCTIME(CreationTime)	BETWEEN	SUB(SYSTEM_TI
MESTAMP(),	TIMESTAMP('4',	'h'))	AND	SUB(SYSTEM_TIMESTAM
P(),	TIMESTAMP('1',	'h'))See	also:

Expressions
Field-Expressions

©	2004	Microsoft	Corporation.	All	rights	reserved.

IN
<field_expr>	[NOT]	IN	(<value_rows>)

(<field_expr_list>)	[NOT]	IN	(<value_rows>)

The	IN	and	NOT	IN	operators	determine	whether	or	not	a	given	field-
expression	or	list	of	field-expressions	matches	any	element	in	a	list	of
values.

Remarks:
Use	the	comma	character	(,)	to	separate	values	in	a	single	list	row,	and
use	the	semicolon	character	(;)	to	separate	list	rows.

Examples

A.	Single	field-expression
The	following	example	expression	determines	if	the	"Age"	field
matches	any	value	in	the	specified	list:

Age	IN	(20;	30;	45;	60)

This	example	is	equivalent	to	the	following	expression:

Age	=	20	OR	Age	=	30	OR	Age	=	45	OR	Age	=	60

B.	List	of	field-expressions
The	following	example	expression	determines	if	the	pair	of
"FirstName"	and	"State"	fields	matches	any	pair	of	values	in	the
specified	list:

(FirstName,	State)	IN	('Johnson',	'OR';	'Smith',	'WA')

This	example	is	equivalent	to	the	following	expression:

(FirstName	=	'Johnson'	AND	State	=	'OR')	OR	(FirstName	=	'Smith'	AN
D	State	=	'WA')

See	also:
Expressions
Field-Expressions

©	2004	Microsoft	Corporation.	All	rights	reserved.

LIKE
<field_expr>	[NOT]	LIKE	<like_mask>

Determines	whether	or	not	a	given	character	string	matches	a	specified
pattern.	A	pattern	can	include	regular	characters	and	wildcard	characters.
During	pattern	matching,	regular	characters	must	yield	a	case-insensitive
match	with	the	characters	specified	in	the	character	string.	Wildcard
characters,	however,	can	be	matched	with	arbitrary	fragments	of	the
character	string.	Using	wildcard	characters	makes	the	LIKE	operator
more	flexible	than	using	the	=	and	!=	string	comparison	operators.

The	wildcard	characters	that	can	be	used	in	a	LIKE	pattern	are:

_	(underscore	character):	matches	any	single	character
Examples:

LIKE	'ab_d':	matches	all	the	four-letter	strings	that	start	with	"ab"
and	end	with	"d"	(e.g.	"abcd",	"AB+d")
LIKE	'a_c_':	matches	all	the	four-letter	strings	that	have	"a"	in	the
first	position	and	"c"	in	the	third	position	(e.g.	"abcd",	"Akck")

%	(percent	character):	matches	any	string	of	zero	or	more	characters
Examples:

LIKE	'%.asp'	matches	all	the	strings	ending	with	".asp"	(e.g.
"/default.asp",	".ASP")
LIKE	'%error%'	matches	all	the	strings	containing	"error"	(e.g.	"an
error	has	been	found",	"ERROR")

Remarks:
Similarly	to	STRING	constants,	characters	in	a	LIKE	pattern	can	be
escaped	with	the	'\'	(backslash)	character	or	encoded	with	the	\uxxxx
notation.
Wildcard	pattern	matching	characters	can	be	used	as	literal	characters.
To	use	a	wildcard	character	as	a	literal	character,	escape	the	wildcard
character	with	the	'\'	(backslash)	character.

Examples:
LIKE	'ab_d':	matches	the	"ab_d"	string	(e.g.	"ab_d",	"AB_d")
LIKE	'a\%c%':	matches	all	the	strings	that	start	with	"a%c"	(e.g.
"a%cdefg",	"A%c")

When	executing	a	Log	Parser	query	from	within	a	command-line	batch
file,	using	the	%	wildcard	character	might	yeld	unexpected	results.
For	example,	consider	the	following	batch	file:

@echo	off
LogParser	"SELECT	*	FROM	SYSTEM	WHERE	Message	LIKE	'%ERRO
R%'"When	this	batch	file	is	executed,	the	command-line	shell	interpreter	will
assume	that	"%ERROR%"	is	a	reference	to	an	environment	variable,
and	it	will	try	to	replace	this	string	with	the	value	of	the	environment
variable.	In	most	cases,	such	an	environment	variable	will	not	exist,
and	the	actual	command	executed	by	the	shell	will	look	like:

LogParser	"SELECT	*	FROM	SYSTEM	WHERE	Message	LIKE	''"

Which	would	yeld	the	following	error:

Error:	Syntax	Error:	<term2>:	no	valid	LIKE	mask

To	avoid	this	problem,	use	double	%%	wildcard	characters	when
writing	a	command-line	batch	file,	as	in	the	following	example:

@echo	off
LogParser	"SELECT	*	FROM	SYSTEM	WHERE	Message	LIKE	'%%ERR
OR%%'"

Examples

A.	LIKE
The	following	example	WHERE	clause	finds	all	the	URL's	in	an
IISW3C	log	file	that	end	with	".htm":

WHERE	cs-uri-stem	LIKE	'%.htm'

B.	NOT	LIKE
The	following	example	WHERE	clause	finds	all	the	Event	Log
messages	that	do	not	contain	"error":

WHERE	Message	NOT	LIKE	'%error%'

See	also:
Expressions
Field-Expressions

©	2004	Microsoft	Corporation.	All	rights	reserved.

Field-Expressions
<field_expr> ::= <aggregate_function>	<function>	

<field_name>	
<alias>	
<value>	

Field-expressions	are	a	combination	of	symbols	and	functions	that	Log
Parser	evaluates	to	obtain	a	single	data	value.	These	are	the	basic
arguments	of	the	SELECT,	USING,	WHERE,	GROUP	BY,	HAVING,	and
ORDER	BY	clauses.

Field-expressions	can	be	divided	conceptually	into	two	groups:

Derived	field-expressions:	functions	or	aggregate	functions	having
other	field-expressions	as	arguments;
Basic	field-expressions:	constant	values	(including	functions	with	no
arguments),	names	of	input	record	fields,	or	aliases	defined	in	the
SELECT	or	USING	clauses.

Examples:

A.	Basic	field-expressions
The	SELECT	clause	in	the	following	example	query	specifies	"basic"
field-expressions	only:

SELECT	'Event	ID:',	EventID,	SYSTEM_TIMESTAMP()
FROM	System
B.	Derived	field-expressions
The	SELECT	clause	in	the	following	example	query	specifies
"derived"	field-expressions	only:

SELECT	TO_UPPERCASE(cs-uri-stem),	SUM(sc-bytes)
FROM	\MyLogs\ex042805.log
GROUP	BY	TO_UPPERCASE(cs-uri-stem)

See	also:
Aggregate	Functions
Functions
Constant	Values
Field	Names	and	Aliases
SELECT
USING

Basics	of	a	Query

©	2004	Microsoft	Corporation.	All	rights	reserved.

Field	Names	and	Aliases
<field_name> ::= [[]	<string>	[]]

<alias> ::= [[]	<string>	[]]

Field	names	are	names	of	fields	of	the	input	records	generated	by	an
input	format.

Aliases	are	alternative	names	for	field-expressions,	assigned	in	the
SELECT	or	USING	clauses.	When	a	field-expression	in	the	SELECT
clause	has	been	aliased,	output	formats	will	use	the	alias	as	the	name	of
the	corresponding	output	record	field.
The	alias	of	a	field-expression	can	be	also	used	anywhere	else	in	the
query	as	a	shortcut	that	refers	to	the	original	field-expression.

Remarks:
The	following	characters	are	not	allowed	in	field	names	or	aliases,
unless	the	field	name	or	alias	is	enclosed	in	square	brackets	([and]):

,	;	<	>	=	!	'	"	@	*	[]	space

Field	names	and	aliases	containing	spaces	or	illegal	characters	can	be
enclosed	in	square	brackets	([and]),	as	in	the	following	example:

SELECT	[Last	Request	Time],	[email@address],	CPUTime	as	[Elapsed	CP
U	Time]
FROM	perflog.csv
WHERE	[Elapsed	CPU	Time]	>	0
Any	character	(including	illegal	characters	and	non-printable
characters)	in	field	names	and	aliases	can	be	also	entered	using	the
\uxxxx	notation,	where	xxxx	is	the	4-digit	hexadecimal	representation
of	the	UNICODE	character:

SELECT	Last\u0020Request\u0020Time
FROM	perflog.csv

Field	names	and	aliases	can	not	match	keywords	or	function	names	of
the	Log	Parser	SQL-Like	language	(e.g.	"FROM",	"ADD").
Field	names	and	aliases	are	not	case-sensitive.

Examples:

A.	Basic	field-expressions
The	SELECT	clause	in	the	following	example	query	specifies	"basic"
field-expressions	only:

SELECT	'Event	ID:',	EventID,	SYSTEM_TIMESTAMP()
FROM	System
B.	Derived	field-expressions
The	SELECT	clause	in	the	following	example	query	specifies
"derived"	field-expressions	only:

SELECT	TO_UPPERCASE(cs-uri-stem),	SUM(sc-bytes)
FROM	\MyLogs\ex042805.log
GROUP	BY	TO_UPPERCASE(cs-uri-stem)

See	also:
SELECT
USING

Basics	of	a	Query

©	2004	Microsoft	Corporation.	All	rights	reserved.

Aggregate	Functions
<aggregate_function> ::= COUNT	([DISTINCT	|	ALL]	*)	COUNT

([DISTINCT	|	ALL]	<field_expr_list>)	
SUM	([DISTINCT	|	ALL]	<field_expr>)	
AVG	([DISTINCT	|	ALL]	<field_expr>)	
MAX	([DISTINCT	|	ALL]	<field_expr>)	
MIN	([DISTINCT	|	ALL]	<field_expr>)	
PROPCOUNT	(*)	[ON	(
<on_field_expr_list>)]	
PROPCOUNT	(<field_expr_list>)	[ON	(
<on_field_expr_list>)]	
PROPSUM	(<field_expr>)	[ON	(
<on_field_expr_list>)]	
GROUPING	(<field_expr>)	

Aggregate	functions	perform	a	calculation	on	a	set	of	values	but	return	a
single,	summarizing	value.

Aggregate	functions	are	often	used	with	the	GROUP	BY	clause.
When	used	without	a	GROUP	BY	clause,	aggregate	functions	perform
calculations	on	the	entire	set	of	input	records,	returning	a	single
summarizing	value	for	the	whole	set.
When	used	with	a	GROUP	BY	clause,	aggregate	functions	perform
calculations	on	each	set	of	group	records,	returning	a	summarizing	value
for	each	group.

Functions:

COUNT

Returns	the	number	of	items	in	a	group.
For	more	information,	see	COUNT.

SUM
Returns	the	sum	of	the	values	of	the	specified	field-expression.
For	more	information,	see	SUM.

AVG
Returns	the	average	across	the	values	of	the	specified	field-
expression.
For	more	information,	see	AVG.

MAX
Returns	the	maximum	value	among	the	values	of	the	specified	field-
expression.
For	more	information,	see	MAX.

MIN
Returns	the	minimum	value	among	the	values	of	the	specified	field-
expression.
For	more	information,	see	MIN.

PROPCOUNT
Returns	the	ratio	of	the	COUNT	aggregate	function	calculated	on	a
group	to	the	COUNT	aggregate	function	calculated	on	a
hierarchically	higher	group.
For	more	information,	see	PROPCOUNT.

PROPSUM
Returns	the	ratio	of	the	SUM	aggregate	function	calculated	on	a
group	to	the	SUM	aggregate	function	calculated	on	a	hierarchically
higher	group.
For	more	information,	see	PROPSUM.

GROUPING

Returns	a	value	of	1	when	the	row	is	added	by	the	ROLLUP	operator
of	the	GROUP	BY	clause,	or	0	when	the	row	is	not	the	result	of
ROLLUP.
The	GROUPING	aggregate	function	is	allowed	only	when	the
GROUP	BY	clause	contains	the	ROLLUP	operator.
For	more	information,	see	GROUPING.

Remarks:
Aggregate	functions	are	allowed	as	field-expressions	only	in	the
SELECT,	HAVING,	and	ORDER	BY	clauses.
The	arguments	of	an	aggregate	function	can	not	reference	other
aggregate	functions.
The	arguments	of	an	aggregate	function	can	not	reference	the
following	functions:
SEQUENCE
OUT_ROW_NUMBER

DISTINCT	is	allowed	in	aggregate	functions	only	when	there	is	no
GROUP	BY	clause.

Examples:

A.	COUNT(*)
The	following	query	returns	the	total	number	of	events	in	the	System
event	log:

SELECT	COUNT(*)
FROM	System
B.	COUNT(DISTINCT)
The	following	query	returns	the	total	number	of	distinct	event	source
names	in	the	System	event	log:

SELECT	COUNT(DISTINCT	SourceName)
FROM	System
C.	COUNT(*)	and	GROUP	BY
The	following	query	returns	the	total	number	of	events	generated	by
each	event	source	in	the	System	event	log:

SELECT	SourceName,	COUNT(*)
FROM	System
GROUP	BY	SourceNameD.	SUM	and	GROUP	BY
The	following	query	returns	the	total	number	of	bytes	sent	for	each
page	extension	logged	in	the	specified	IIS	W3C	log	file:

SELECT		TO_LOWERCASE(EXTRACT_EXTENSION(cs-uri-stem))	A
S	PageType,
								SUM(sc-bytes)
FROM	ex031118.log
GROUP	BY	PageType

E.	PROPCOUNT(*),	GROUP	BY,	and	HAVING
The	following	query	returns	the	pages	that	represent	more	than	10%
of	the	requests	in	the	specified	IIS	W3C	log	file:

SELECT	cs-uri-stem
FROM	ex031118.log
GROUP	BY	cs-uri-stem
HAVING	PROPCOUNT(*)	>	0.1

See	also:
COUNT
SUM
AVG
MAX
MIN
PROPCOUNT
PROPSUM
GROUPING

Functions
SELECT
HAVING

GROUP_BY

Aggregating	Data	Within	Groups
Calculating	Percentages

©	2004	Microsoft	Corporation.	All	rights	reserved.

AVG
AVG	([DISTINCT	|	ALL]	<field_expr>)	

Returns	the	average	among	all	the	values,	or	only	the	DISTINCT	values,
of	the	specified	field-expression.

Arguments:

DISTINCT
Specifies	that	AVG	returns	the	average	of	unique	values.
DISTINCT	can	only	be	used	when	the	query	does	not	make	use	of
the	GROUP	BY	clause.

ALL
Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

<field_expr>
The	field-expression	whose	values	are	to	be	averaged.
The	field-expression	data	type	must	be	INTEGER	or	REAL.

Return	Type:

INTEGER	or	REAL,	depending	on	the	argument	field-expression.

Remarks:
NULL	values	are	ignored	by	the	AVG	aggregate	function.
Aggregate	functions	are	allowed	as	field-expressions	only	in	the
SELECT,	HAVING,	and	ORDER	BY	clauses.

The	arguments	of	an	aggregate	function	can	not	reference	other
aggregate	functions.
The	arguments	of	an	aggregate	function	can	not	reference	the
following	functions:
SEQUENCE
OUT_ROW_NUMBER

DISTINCT	is	allowed	in	aggregate	functions	only	when	there	is	no
GROUP	BY	clause.

Examples:

A.	AVG
The	following	query	returns	the	average	number	of	bytes	for
executable	files	in	the	"system32"	directory,	using	the	FS	input
format:

SELECT	AVG(Size)
FROM	C:\windows\system32*.*
WHERE	TO_LOWERCASE(EXTRACT_EXTENSION(Name))	=	'exe'B.	AVG	and	GROUP	BY
The	following	query	returns	the	average	time	spent	by	each	page
extension	logged	in	the	specified	IIS	W3C	log	file:

SELECT		TO_LOWERCASE(EXTRACT_EXTENSION(cs-uri-stem))	A
S	PageType,
								AVG(time-taken)
FROM	ex031118.log
GROUP	BY	PageTypeSee	also:

COUNT
SUM
MAX
MIN
PROPCOUNT
PROPSUM

GROUPING

Aggregate	Functions

Aggregating	Data	Within	Groups

©	2004	Microsoft	Corporation.	All	rights	reserved.

COUNT
COUNT	([DISTINCT	|	ALL]	*)	
COUNT	([DISTINCT	|	ALL]	<field_expr_list>)	

<field_expr_list> ::= <field_expr>	[,	<field_expr>	...]	

Returns	the	number	of	items	in	a	group.

Arguments:

DISTINCT
Specifies	that	COUNT	returns	the	number	of	unique	values.
DISTINCT	can	only	be	used	when	the	query	does	not	make	use	of
the	GROUP	BY	clause.

ALL
Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

*
Specifies	that	all	records	should	be	counted	to	return	the	total
number	of	records,	including	records	that	contain	NULL	values.

<field_expr_list>
Specifies	that	only	records	for	which	at	least	one	of	the	specified
field-expressions	is	non-NULL	should	be	counted.

Return	Type:

INTEGER

Remarks:
Aggregate	functions	are	allowed	as	field-expressions	only	in	the
SELECT,	HAVING,	and	ORDER	BY	clauses.
The	arguments	of	an	aggregate	function	can	not	reference	other
aggregate	functions.
The	arguments	of	an	aggregate	function	can	not	reference	the
following	functions:
SEQUENCE
OUT_ROW_NUMBER

DISTINCT	is	allowed	in	aggregate	functions	only	when	there	is	no
GROUP	BY	clause.

Examples:

A.	COUNT(*)
The	following	query	returns	the	total	number	of	events	in	the	System
event	log:

SELECT	COUNT(*)
FROM	System
B.	COUNT(DISTINCT)
The	following	query	returns	the	total	number	of	distinct	event	source
names	in	the	System	event	log:

SELECT	COUNT(DISTINCT	SourceName)
FROM	System
C.	COUNT(*)	and	GROUP	BY
The	following	query	returns	the	total	number	of	events	generated	by

each	event	source	in	the	System	event	log:

SELECT	SourceName,	COUNT(*)
FROM	System
GROUP	BY	SourceNameD.	COUNT(field-expression)
The	following	query	returns	the	total	number	of	non-null	values	for
the	"cs-username"	field	in	the	specified	IIS	W3C	log	file:

SELECT	COUNT(cs-username)
FROM	ex040528.log
E.	COUNT(*)	and	WHERE
The	following	query	returns	the	total	number	of	requests	to	a	page
logged	in	the	specified	IIS	W3C	log	file:

SELECT	COUNT(*)
FROM	ex040528.log
WHERE	cs-uri-stem	=	'/home.asp'F.	COUNT(*),	GROUP	BY,	and	HAVING
The	following	query	returns	the	pages	in	the	specified	IIS	W3C	log
file	that	have	been	requested	more	than	50	times:

SELECT	cs-uri-stem
FROM	ex040528.log
GROUP	BY	cs-uri-stem
HAVING	COUNT(*)	>	50

See	also:
SUM
AVG
MAX
MIN
PROPCOUNT
PROPSUM
GROUPING

Aggregate	Functions

Aggregating	Data	Within	Groups

©	2004	Microsoft	Corporation.	All	rights	reserved.

GROUPING
GROUPING	(<field_expr>)	

Returns	a	value	of	1	when	the	row	is	added	by	the	ROLLUP	operator	of
the	GROUP	BY	clause,	or	0	when	the	row	is	not	the	result	of	ROLLUP.
GROUPING	is	used	to	distinguish	the	NULL	values	returned	by	ROLLUP
from	standard	NULL	values.	The	NULL	returned	as	the	result	of	a
ROLLUP	operation	is	a	special	use	of	NULL.	It	acts	as	a	value
placeholder	in	the	result	set	and	means	"all".

Arguments:

<field_expr>
The	GROUP	BY	field-expression	checked	for	null	values.

Return	Type:

INTEGER

Remarks:
The	GROUPING	aggregate	function	is	allowed	only	when	the	GROUP
BY	clause	contains	the	ROLLUP	operator.
Aggregate	functions	are	allowed	as	field-expressions	only	in	the
SELECT,	HAVING,	and	ORDER	BY	clauses.
The	arguments	of	an	aggregate	function	can	not	reference	other
aggregate	functions.
The	arguments	of	an	aggregate	function	can	not	reference	the
following	functions:

SEQUENCE
OUT_ROW_NUMBER

Examples:

A.	GROUPING
The	following	query,	on	an	IISW3C	log	file,	returns	the	number	of
requests	for	each	page	on	each	day,	and	uses	the	ROLLUP	operator
to	also	display	summary	rows	showing	the	number	of	requests	for
each	day,	and	the	total	number	of	requests:

SELECT	date,	cs-uri-stem,	COUNT(*),	GROUPING(date)	AS	GDate,	G
ROUPING(cs-uri-stem)	AS	GPage
FROM	ex040528.log
GROUP	BY	date,	cs-uri-stem	WITH	ROLLUP
A	sample	output	would	be:

date							cs-uri-stem									COUNT(ALL	*)	GDate	GPage
----------	-------------------	------------	-----	-----
2003-11-18	/Default.htm								1												0					0
2003-11-18	/style.css										1												0					0
2003-11-18	/images/address.gif	1												0					0
2003-11-18	/cgi-bin/counts.exe	1												0					0
2003-11-18	/data/rulesinfo.nsf	2												0					0
2003-11-19	/data/rulesinfo.nsf	6												0					0
2003-11-20	/data/rulesinfo.nsf	5												0					0
2003-11-20	/maindefault.htm				1												0					0
2003-11-20	/top2.htm											1												0					0
2003-11-20	/homelog.swf								1												0					0
-										-																			20											1					1
2003-11-18	-																			6												0					1
2003-11-19	-																			6												0					1
2003-11-20	-																			8												0					1

The	values	of	the	"GDate"	field	are	1	only	for	the	rows	in	which	the
"date"	field	is	NULL	due	to	the	introduction	of	the	ROLLUP	summary
rows.
Similarly,	the	values	of	the	"GPage"	field	are	1	only	for	the	rows	in
which	the	"cs-uri-stem"	field	is	NULL	due	to	the	introduction	of	the
ROLLUP	summary	rows.

See	also:
COUNT
SUM
AVG
MAX
MIN
PROPCOUNT
PROPSUM

GROUP	BY
Aggregate	Functions

Aggregating	Data	Within	Groups

©	2004	Microsoft	Corporation.	All	rights	reserved.

MAX
MAX	([DISTINCT	|	ALL]	<field_expr>)	

Returns	the	maximum	value	among	all	the	values	of	the	specified	field-
expression.

Arguments:

DISTINCT
Specifies	that	MAX	returns	the	maximum	value	of	unique	values.
DISTINCT	is	not	meaningful	with	MAX	and	is	available	for	SQL-92
compatibility	only.
DISTINCT	can	only	be	used	when	the	query	does	not	make	use	of
the	GROUP	BY	clause.

ALL
Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

<field_expr>
The	field-expression	among	whose	values	the	maximum	is	to	be
found.
The	field-expression	can	be	of	any	data	type.

Return	Type:

The	returned	type	is	the	same	as	the	argument	field-expression.

Remarks:

NULL	values	are	ignored	by	the	MAX	aggregate	function.
Aggregate	functions	are	allowed	as	field-expressions	only	in	the
SELECT,	HAVING,	and	ORDER	BY	clauses.
The	arguments	of	an	aggregate	function	can	not	reference	other
aggregate	functions.
The	arguments	of	an	aggregate	function	can	not	reference	the
following	functions:
SEQUENCE
OUT_ROW_NUMBER

DISTINCT	is	allowed	in	aggregate	functions	only	when	there	is	no
GROUP	BY	clause.

Examples:

A.	MAX
The	following	query	returns	the	size	of	the	largest	executable	file	in
the	"system32"	directory,	using	the	FS	input	format:

SELECT	MAX(Size)
FROM	C:\windows\system32*.*
WHERE	TO_LOWERCASE(EXTRACT_EXTENSION(Name))	=	'exe'B.	MAX	and	GROUP	BY
The	following	query	returns	the	longest	time	spent	by	each	page
extension	logged	in	the	specified	IIS	W3C	log	file:

SELECT		TO_LOWERCASE(EXTRACT_EXTENSION(cs-uri-stem))	A
S	PageType,
								MAX(time-taken)
FROM	ex031118.log
GROUP	BY	PageTypeSee	also:

COUNT
SUM
AVG

MIN
PROPCOUNT
PROPSUM
GROUPING

Aggregate	Functions

Aggregating	Data	Within	Groups

©	2004	Microsoft	Corporation.	All	rights	reserved.

MIN
MIN	([DISTINCT	|	ALL]	<field_expr>)	

Returns	the	minimum	value	among	all	the	values	of	the	specified	field-
expression.

Arguments:

DISTINCT
Specifies	that	MIN	returns	the	minimum	value	of	unique	values.
DISTINCT	is	not	meaningful	with	MIN	and	is	available	for	SQL-92
compatibility	only.
DISTINCT	can	only	be	used	when	the	query	does	not	make	use	of
the	GROUP	BY	clause.

ALL
Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

<field_expr>
The	field-expression	among	whose	values	the	minimum	is	to	be
found.
The	field-expression	can	be	of	any	data	type.

Return	Type:

The	returned	type	is	the	same	as	the	argument	field-expression.

Remarks:

NULL	values	are	ignored	by	the	MIN	aggregate	function.
Aggregate	functions	are	allowed	as	field-expressions	only	in	the
SELECT,	HAVING,	and	ORDER	BY	clauses.
The	arguments	of	an	aggregate	function	can	not	reference	other
aggregate	functions.
The	arguments	of	an	aggregate	function	can	not	reference	the
following	functions:
SEQUENCE
OUT_ROW_NUMBER

DISTINCT	is	allowed	in	aggregate	functions	only	when	there	is	no
GROUP	BY	clause.

Examples:

A.	MIN
The	following	query	returns	the	size	of	the	smallest	executable	file	in
the	"system32"	directory,	using	the	FS	input	format:

SELECT	MIN(Size)
FROM	C:\windows\system32*.*
WHERE	TO_LOWERCASE(EXTRACT_EXTENSION(Name))	=	'exe'B.	MIN	and	GROUP	BY
The	following	query	returns	the	shortest	and	the	longest	time	spent
by	each	page	extension	logged	in	the	specified	IIS	W3C	log	file:

SELECT		TO_LOWERCASE(EXTRACT_EXTENSION(cs-uri-stem))	A
S	PageType,
								MIN(time-taken),
								MAX(time-taken)
FROM	ex031118.log
GROUP	BY	PageType

See	also:
COUNT
SUM
AVG

MAX
PROPCOUNT
PROPSUM
GROUPING

Aggregate	Functions

Aggregating	Data	Within	Groups

©	2004	Microsoft	Corporation.	All	rights	reserved.

PROPCOUNT
PROPCOUNT	(*)	[ON	(<on_field_expr_list>)]	
PROPCOUNT	(<field_expr_list>)	[ON	(<on_field_expr_list>)]	

<field_expr_list> ::= <field_expr>	[,	<field_expr>	...]	

<on_field_expr_list> ::= <field_expr>	[,	<field_expr>	...]	

Returns	the	ratio	of	the	COUNT	aggregate	function	calculated	on	a	group
to	the	COUNT	aggregate	function	calculated	on	a	hierarchically	higher
group.

Arguments:

*
Specifies	that	all	records	should	be	counted	to	return	the	total
number	of	records,	including	records	that	contain	NULL	values.

<field_expr_list>
Specifies	that	only	records	for	which	at	least	one	of	the	specified
field-expressions	is	non-NULL	should	be	counted.

<on_field_expr_list>
List	of	GROUP	BY	field-expressions	identifying	the	hierarchically
higher	group	on	which	the	denominator	COUNT	aggregate	function
is	to	be	calculated.
This	list	of	field-expressions	must	be	a	proper	prefix	of	the	GROUP
BY	field-expressions,	that	is,	it	must	contain,	in	the	same	order,	a
subset	of	the	field-expressions	specified	in	the	GROUP	BY	clause,
starting	with	the	leftmost	GROUP	BY	field-expression.

When	this	list	of	field-expressions	is	not	specified,	the	denominator
COUNT	aggregate	function	is	calculated	on	the	whole	set	of	input
records.

Return	Type:

REAL

Remarks:
When	used	without	a	GROUP	BY	clause,	the	PROPCOUNT	aggregate
function	always	returns	1.0.	In	fact,	in	this	case	the	only	hierarchically
higher	group	available	is	the	whole	set	of	input	records,	and	the	ratio
numerator	and	denominator	are	calculated	on	the	same	set.
To	obtain	a	percentage,	multiply	the	return	value	of	the	PROPCOUNT
aggregate	function	by	100.0,	using	the	MUL	function.
Aggregate	functions	are	allowed	as	field-expressions	only	in	the
SELECT,	HAVING,	and	ORDER	BY	clauses.
The	arguments	of	an	aggregate	function	can	not	reference	other
aggregate	functions.
The	arguments	of	an	aggregate	function	can	not	reference	the
following	functions:
SEQUENCE
OUT_ROW_NUMBER

Examples:

A.	PROPCOUNT(*)
The	following	query	returns	the	percentage	of	events	for	each	source
in	the	System	event	log:

SELECT	SourceName,	MUL(PROPCOUNT(*),	100.0)	AS	Percent
FROM	System
GROUP	BY	SourceNameA	sample	output	of	this	query	is:

SourceName														Percent
-----------------------	---------
EventLog																10.322979
Service	Control	Manager	63.004172
Ati	HotKey	Poller							3.430691
Application	Popup							0.108175
W32Time																	14.680884
DCOM																				0.046361
NtServicePack											0.185443
Win32k																		0.324525
RemoteAccess												2.194406
GEMPCC																		0.509968
SCardSvr																0.509968
Dhcp																				0.262711
i8042prt																0.015454
Print																			0.030907
Tcpip																			0.077268
Workstation													0.015454
NETLOGON																1.869881
DnsApi																		2.240766
Kerberos																0.169989

The	"Percent"	output	record	field	shows	the	ratio	of	the	number	of
events	logged	by	a	source	to	the	total	number	of	events	in	the	event
log.

In	this	example,	the	calculation	performed	by	the	PROPCOUNT
aggregate	function	is	equivalent	to	executing	the	following	two
queries	and	calculating	the	ratio	of	the	two	aggregate	functions	for
each	event	log	source:

SELECT	SourceName,	COUNT(*)	AS	Numerator
FROM	System
GROUP	BY	SourceNameSELECT	COUNT(*)	AS	Denominator
FROM	System
B.	Using	ON
The	following	query	uses	the	IISW3C	Input	Format	to	parse	IIS	log
files	and	calculate	the	percentage	of	hits	for	a	page	type	and	HTTP
status	code	relative	to	the	number	of	hits	for	that	page	type	(i.e.	the
distribution	of	HTTP	status	codes	within	each	page	type):

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	sc-status,
	MUL(PROPCOUNT(*)	ON	(PageType),	100.0)	AS	Hits
FROM	ex040528.log	
GROUP	BY	PageType,	sc-status
ORDER	BY	PageType,	sc-status

A	sample	output	of	this	query	is:

PageType	sc-status	Hits
--------	---------	----------
asp						200							100.000000
class				200							20.000000
class				304							80.000000
css						200							13.636364
css						304							45.454545

For	each	page	type	and	HTTP	status	code,	the	"Hits"	output	record
field	shows	the	ratio	of	the	number	of	requests	for	that	page	type	and
HTTP	status	code	to	the	total	number	of	requests	for	that	page	type.

In	this	example,	the	calculation	performed	by	the	PROPCOUNT

css						404							40.909091
dll						500							100.000000
exe						200							100.000000
gif						200							21.025641
gif						304							76.923077
gif						404							2.051282
htm						200							29.565217
htm						304							68.695652
htm						404							1.739130
html					404							100.000000
jpg						200							22.077922
jpg						304							77.922078
js							200							36.363636
js							304							63.636364
nsf						200							90.845070
nsf						302							0.704225
nsf						304							6.338028
nsf						403							2.112676
swf						200							27.272727
swf						304							72.727273

aggregate	function	is	equivalent	to	executing	the	following	two
queries	and	calculating	the	ratio	of	the	two	aggregate	functions	for
each	page	type	and	HTTP	status:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	sc-status,
	COUNT(*)	AS	Numerator
FROM	ex040528.log	
GROUP	BY	PageType,	sc-status
ORDER	BY	PageType,	sc-status

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	COUNT
(*)	AS	Denominator
FROM	ex040528.log	
GROUP	BY	PageType
ORDER	BY	PageTypeSee	also:

COUNT
SUM
AVG
MAX
MIN
PROPSUM
GROUPING

Aggregate	Functions

Aggregating	Data	Within	Groups
Calculating	Percentages

©	2004	Microsoft	Corporation.	All	rights	reserved.

PROPSUM
PROPSUM	(<field_expr>)	[ON	(<on_field_expr_list>)]	

<on_field_expr_list> ::= <field_expr>	[,	<field_expr>	...]	

Returns	the	ratio	of	the	SUM	aggregate	function	calculated	on	a	group	to
the	SUM	aggregate	function	calculated	on	a	hierarchically	higher	group.

Arguments:

<field_expr>
The	field-expression	whose	values	are	to	be	summed.
The	field-expression	data	type	must	be	INTEGER	or	REAL.

<on_field_expr_list>
List	of	GROUP	BY	field-expressions	identifying	the	hierarchically
higher	group	on	which	the	denominator	SUM	aggregate	function	is	to
be	calculated.
This	list	of	field-expressions	must	be	a	proper	prefix	of	the	GROUP
BY	field-expressions,	that	is,	it	must	contain,	in	the	same	order,	a
subset	of	the	field-expressions	specified	in	the	GROUP	BY	clause,
starting	with	the	leftmost	GROUP	BY	field-expression.
When	this	list	of	field-expressions	is	not	specified,	the	denominator
SUM	aggregate	function	is	calculated	on	the	whole	set	of	input
records.

Return	Type:

REAL

Remarks:
When	used	without	a	GROUP	BY	clause,	the	PROPSUM	aggregate
function	always	returns	1.0.	In	fact,	in	this	case	the	only	hierarchically
higher	group	available	is	the	whole	set	of	input	records,	and	the	ratio
numerator	and	denominator	are	calculated	on	the	same	set.
To	obtain	a	percentage,	multiply	the	return	value	of	the	PROPSUM
aggregate	function	by	100.0,	using	the	MUL	function.
Aggregate	functions	are	allowed	as	field-expressions	only	in	the
SELECT,	HAVING,	and	ORDER	BY	clauses.
The	arguments	of	an	aggregate	function	can	not	reference	other
aggregate	functions.
The	arguments	of	an	aggregate	function	can	not	reference	the
following	functions:
SEQUENCE
OUT_ROW_NUMBER

Examples:

A.	PROPSUM
The	following	query	uses	the	IISW3C	Input	Format	to	parse	IIS	log
files	and	calculate	the	percentage	of	bytes	sent	for	each	page	type:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	MUL(P
ROPSUM(sc-bytes),	100.0)	AS	PercentBytes
FROM	ex040528.log
GROUP	BY	PageType
A	sample	output	of	this	query	is:

PageType	PercentBytes
--------	------------
htm						7.236737
css						1.035243
gif						23.772064

The	"PercentBytes"	output	record	field	shows	the	ratio	of	the	bytes
sent	for	each	page	type	to	the	total	number	of	bytes	sent	in	the	log.

exe						1.398888
nsf						24.459391
swf						32.528669
jpg						8.003440
html					0.104051
dll						0.002322
asp						0.000000
js							1.260613
class				0.198582

In	this	example,	the	calculation	performed	by	the	PROPSUM
aggregate	function	is	equivalent	to	executing	the	following	two
queries	and	calculating	the	ratio	of	the	two	aggregate	functions	for
each	page	type:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	SUM(sc-
bytes)	AS	Numerator
FROM	ex040528.log
GROUP	BY	PageType
SELECT	SUM(sc-bytes)	AS	Denominator
FROM	ex040528.log
B.	Using	ON
The	following	query	uses	the	IISW3C	Input	Format	to	parse	IIS	log
files	and	calculate	the	percentage	of	bytes	sent	for	each	page	type
and	HTTP	status	code	relative	to	the	total	bytes	sent	for	that	page
type	(i.e.	the	distribution	of	HTTP	status	code	response	bytes	within
each	page	type):

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	sc-status,
	MUL(PROPSUM(sc-bytes)	ON	(PageType),	100.0)	AS	PercentBytes
FROM	ex040528.log	
GROUP	BY	PageType,	sc-status
ORDER	BY	PageType,	sc-status

A	sample	output	of	this	query	is:

PageType	sc-status	PercentBytes
--------	---------	------------
asp						200							0.000000
class				200							92.591620
class				304							7.408380
css						200							6.039609
css						304							3.502318
css						404							90.458073
dll						500							100.000000
exe						200							100.000000
gif						200							87.811668
gif						304							6.935887
gif						404							5.252445
htm						200							92.926606
htm						304							4.197755
htm						404							2.875639

For	each	page	type	and	HTTP	status	code,	the	"PercentBytes"
output	record	field	shows	the	ratio	of	the	response	bytes	for	that
page	type	and	HTTP	status	code	to	the	total	response	bytes	for	that
page	type.

In	this	example,	the	calculation	performed	by	the	PROPSUM
aggregate	function	is	equivalent	to	executing	the	following	two
queries	and	calculating	the	ratio	of	the	two	aggregate	functions	for
each	page	type	and	HTTP	status:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	sc-status,
	SUM(sc-bytes)	AS	Numerator
FROM	ex040528.log	
GROUP	BY	PageType,	sc-status
SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType,	SUM(sc-
bytes)	AS	Denominator

html					404							100.000000
jpg						200							97.245679
jpg						304							2.754321
js							200							97.963913
js							304							2.036087
nsf						200							99.604883
nsf						302							0.050656
nsf						304							0.281114
nsf						403							0.063347
swf						200							99.910188
swf						304							0.089812

ORDER	BY	PageType,	sc-statusFROM	ex040528.log	
GROUP	BY	PageType
ORDER	BY	PageType

C.	PROPSUM,	GROUP	BY,	and	HAVING
The	following	query	uses	the	IISW3C	Input	Format	to	parse	IIS	log
files	and	return	the	page	types	that	represent	more	than	10%	of	the
total	bytes	sent:

SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	PageType
FROM	ex040528.log	
GROUP	BY	PageType
HAVING	PROPSUM(sc-bytes)	>	0.1

See	also:
COUNT
SUM
AVG
MAX
MIN
PROPCOUNT
GROUPING

Aggregate	Functions

Aggregating	Data	Within	Groups
Calculating	Percentages

©	2004	Microsoft	Corporation.	All	rights	reserved.

SUM
SUM	([DISTINCT	|	ALL]	<field_expr>)	

Returns	the	sum	of	all	the	values,	or	only	the	DISTINCT	values,	of	the
specified	field-expression.

Arguments:

DISTINCT
Specifies	that	SUM	returns	the	sum	of	unique	values.
DISTINCT	can	only	be	used	when	the	query	does	not	make	use	of
the	GROUP	BY	clause.

ALL
Applies	the	aggregate	function	to	all	values.	ALL	is	the	default.

<field_expr>
The	field-expression	whose	values	are	to	be	summed.
The	field-expression	data	type	must	be	INTEGER	or	REAL.

Return	Type:

INTEGER	or	REAL,	depending	on	the	argument	field-expression.

Remarks:
NULL	values	are	ignored	by	the	SUM	aggregate	function.
Aggregate	functions	are	allowed	as	field-expressions	only	in	the
SELECT,	HAVING,	and	ORDER	BY	clauses.

The	arguments	of	an	aggregate	function	can	not	reference	other
aggregate	functions.
The	arguments	of	an	aggregate	function	can	not	reference	the
following	functions:
SEQUENCE
OUT_ROW_NUMBER

DISTINCT	is	allowed	in	aggregate	functions	only	when	there	is	no
GROUP	BY	clause.

Examples:

A.	SUM
The	following	query	returns	the	total	number	of	bytes	for	executable
files	in	the	"system32"	directory,	using	the	FS	input	format:

SELECT	SUM(Size)
FROM	C:\windows\system32*.*
WHERE	TO_LOWERCASE(EXTRACT_EXTENSION(Name))	=	'exe'B.	SUM	and	GROUP	BY
The	following	query	returns	the	total	number	of	bytes	sent	for	each
page	extension	logged	in	the	specified	IIS	W3C	log	file:

SELECT		TO_LOWERCASE(EXTRACT_EXTENSION(cs-uri-stem))	A
S	PageType,
								SUM(sc-bytes)
FROM	ex031118.log
GROUP	BY	PageTypeSee	also:

COUNT
AVG
MAX
MIN
PROPCOUNT
PROPSUM
GROUPING

Aggregate	Functions

Aggregating	Data	Within	Groups

©	2004	Microsoft	Corporation.	All	rights	reserved.

Functions
<function> ::= <function_name>	(<argument_list>)

<argument_list> ::= <field_expr>	[,	<field_expr>	...]	

<empty>

Log	Parser	functions	take	zero	or	more	field-expressions	as	arguments,
process	the	arguments,	and	return	a	single	value.

Remarks:
Generally,	functions	that	take	no	arguments	and	functions	whose
arguments	are	constant	values	are	executed	and	replaced	with	the
return	value	before	the	query	is	processed.
As	an	example,	the	following	query	uses	a	function	with	no	arguments
and	a	function	with	constant	arguments:

SELECT	COMPUTER_NAME(),	SUM(4,	5),	TimeGenerated
FROM	System
Before	being	processed,	the	query	is	modified	as	follows:

SELECT	'MYSERVER0',	9,	TimeGenerated
FROM	System
The	only	zero-argument	functions	that	are	not	replaced	with	their	return
value	before	the	query	is	processed	are:
SEQUENCE
IN_ROW_NUMBER
OUT_ROW_NUMBER

Functions:

Arithmetical
ADD	
BIT_AND	
BIT_NOT	
BIT_OR	
BIT_SHL	
BIT_SHR	
BIT_XOR	
DIV	
EXP	
EXP10	
FLOOR	
LOG	
LOG10	
MOD	
MUL	
QNTFLOOR_TO_DIGIT	
QNTROUND_TO_DIGIT	
QUANTIZE	
ROUND	
SQR	
SQRROOT	
SUB	

Conversion
HEX_TO_INT	
INT_TO_IPV4	
IPV4_TO_INT	
TO_DATE	
TO_HEX	
TO_INT	
TO_LOCALTIME	

TO_REAL	
TO_STRING	
TO_TIME	
TO_TIMESTAMP	
TO_UTCTIME	

String	Manipulation
EXTRACT_EXTENSION	
EXTRACT_FILENAME	
EXTRACT_PATH	
EXTRACT_PREFIX	
EXTRACT_SUFFIX	
EXTRACT_TOKEN	
EXTRACT_VALUE	
HEX_TO_ASC	
HEX_TO_HEX16	
HEX_TO_HEX32	
HEX_TO_HEX8	
HEX_TO_PRINT	
INDEX_OF	
LAST_INDEX_OF	
LTRIM	
REPLACE_CHR	
REPLACE_STR	
ROT13	
RTRIM	
STRCAT	
STRCNT	
STRLEN	
STRREPEAT	
STRREV	
SUBSTR	
TO_LOWERCASE	
TO_UPPERCASE	
TRIM	

URLESCAPE	
URLUNESCAPE	

System	Information
COMPUTER_NAME	
RESOLVE_SID	
REVERSEDNS	
SYSTEM_DATE	
SYSTEM_TIME	
SYSTEM_TIMESTAMP	
SYSTEM_UTCOFFSET	

Miscellaneous
CASE	
COALESCE	
HASHMD5_FILE	
HASHSEQ	
IN_ROW_NUMBER	
OUT_ROW_NUMBER	
REPLACE_IF_NOT_NULL	
SEQUENCE	
WIN32_ERROR_DESCRIPTION	

Note:	The	REPLACE_IF_NULL	function	has	been	deprecated	in
favor	of	the	COALESCE	function.

See	also:
Aggregate	Functions

Constant	Values
Field	Expressions

©	2004	Microsoft	Corporation.	All	rights	reserved.

Constant	Values
<value> ::= <integer_constant>	

<real_constant>	
<string_constant>	
<timestamp_constant>	
<null_constant>

<integer_constant> ::= integer	
0xhexadecimal

<real_constant> ::= integer_part.fractional_part

<string_constant> ::= 'string'

<timestamp_constant> ::= TIMESTAMP	('timestamp'	,	'format')

<null_constant> ::= NULL

Constants	are	immutable	field-expressions,	and	they	are	mostly	used	in
expressions	or	as	arguments	of	functions.

Constants:

<integer_constant>
Constant	values	of	the	INTEGER	type	can	be	entered	as	decimal
numbers,	or	as	hexadecimal	numbers	preceded	by	the	"0x"	prefix.
For	more	information	about	the	Log	Parser	INTEGER	data	type,	see
INTEGER	Data	Type.

<real_constant>

Constant	values	of	the	REAL	type	are	entered	as	decimal	numbers
containing	a	decimal	point.
For	more	information	about	the	Log	Parser	REAL	data	type,	see
REAL	Data	Type.

<string_constant>
Constant	values	of	the	STRING	type	are	entered	as	strings	enclosed
by	single	quote	characters	(').
The	single	quote	character	(')	and	the	backslash	character	(\)	are
considered	special	characters	in	a	string	constant,	and	they	can	only
be	entered	as	escape	sequences	preceded	by	a	backslash	character
(\'	and	\\),	as	in	the	following	example:

'Contains	\'	single	quote	and	\\	backslash'

In	addition,	any	character	(including	illegal	characters	and	non-
printable	characters)	can	be	entered	using	the	\uxxxx	notation,
where	xxxx	is	the	4-digit	hexadecimal	representation	of	the	desired
UNICODE	character,	as	in	the	following	example:

'Contains\u0009tabs'

For	more	information	about	the	Log	Parser	STRING	data	type,	see
STRING	Data	Type.

<timestamp_constant>
Constant	values	of	the	TIMESTAMP	type	are	entered	with	the
special	TIMESTAMP	keyword,	followed	by	a	string	representation	of
the	desired	timestamp,	and	by	the	format	of	the	string	representation
of	the	desired	timestamp,	using	the	Log	Parser	Timestamp	Format
Specifiers.
If	the	timestamp	format	specifiers	include	date	specifiers	only,	the
resulting	TIMESTAMP	value	will	be	a	date-only	timestamp.	Similarly,
if	the	timestamp	format	specifiers	include	time	of	day	specifiers	only,
the	resulting	TIMESTAMP	value	will	be	a	time-only	timestamp.
For	more	information	about	the	Log	Parser	TIMESTAMP	data	type,

see	TIMESTAMP	Data	Type.

<null_constant>
Constant	values	of	the	NULL	type	are	entered	with	the	special	NULL
keyword.
For	more	information	about	the	Log	Parser	NULL	data	type,	see
NULL	Data	Type.

Remarks:
Integer	constants	entered	as	hexadecimal	numbers	are	converted
internally	to	decimal	values.	To	force	an	output	format	to	display	an
integer	field-expression	as	an	hexadecimal	value,	use	the	TO_HEX
function.

Examples:

A.	Integer	constant	entered	as	decimal	number

sc-bytes	>=	1000

B.	Integer	constant	entered	as	hexadecimal	number

BIT_AND(Flags,	0x1000)

C.	Real	constant

AVG(time-taken)	<	75.45	

D.	String	constant

'Some	string'

E.	String	constant	containing	special	characters

'Contains	\'	single	quote	and	\\	backslash'

F.	String	constant	containing	UNICODE	characters

'Contains	a	\u2530	UNICODE	character'

G.	Timestamp	constant

TimeGenerated	>	TIMESTAMP('2004-05-28	19:12:43',	'yyyy-MM-dd	h
h:mm:ss')
H.	Date-only	timestamp	constant

date	>	TIMESTAMP('2004-05-28',	'yyyy-MM-dd')

I.	Time-only	timestamp	constant

time	>	TIMESTAMP('19:12:43',	'hh:mm:ss')

J.	NULL	constant

Message	<>	NULL

See	also:
Field	Expressions
INTEGER	Data	Type
REAL	Data	Type
STRING	Data	Type
TIMESTAMP	Data	Type
NULL	Data	Type

Basics	of	a	Query

©	2004	Microsoft	Corporation.	All	rights	reserved.

Comments
<comment> ::= /*	text_of_comment	*/

--	text_of_comment

Comments	are	user-provided	text	not	evaluated	by	Log	Parser,	used	to
document	code	or	temporarily	disable	parts	of	query	statements.

Remarks:
Use	--	for	single-line	or	nested	comments.	Comments	inserted	with	--
are	delimited	by	the	newline	character.
Multiple-line	comments	must	be	indicated	by	/*	and	*/.
There	is	no	maximum	length	for	comments.

Examples:

A.	Single-line	comments

SELECT	TimeGenerated,	SourceName
FROM			System	--	We	are	using	the	SYSTEM	event	log
B.	Multiple-line	comments

SELECT			TypeName,	COUNT(*)	AS	TotalCount
USING				TO_UPPERCASE(EXTRACT_TOKEN(EventTypeName,	0,	'	
'))	AS	TypeName
INTO					Report.csv
FROM					System
/*	We	only	want	to	retrieve	event	logs	whose
			type	name	contains	'service'

©	2004	Microsoft	Corporation.	All	rights	reserved.

*/
WHERE				TypeName	LIKE	'%service%'
GROUP	BY	TypeName
HAVING			TotalCount	>	5
ORDER	BY	TotalCount	DESC

Data	Types
In	the	Log	Parser	SQL-Like	language,	each	field-expression	has	a
related	data	type,	which	is	an	attribute	that	specifies	the	type	of	data	that
the	field-expression	can	hold.
Log	Parser	supplies	a	set	of	system	data	types	that	define	all	of	the	types
of	data	that	can	be	used	with	Log	Parser.	The	set	of	system-supplied
data	types	is:

INTEGER:	integer	numeric	data;
REAL:	floating	precision	numeric	data;
STRING:	variable	length	UNICODE	character	string	data;
TIMESTAMP:	date	and	time	data;
NULL:	unknown	or	unavailable	data.

©	2004	Microsoft	Corporation.	All	rights	reserved.

INTEGER	Data	Type
The	INTEGER	data	type	represents	integer	(whole	number)	numeric
data.

Value	range:

INTEGER	values	are	represented	as	signed	64-bit	(8-byte)	integer
numbers,	with	values	ranging	from	-2^63
(-9,223,372,036,854,775,808)	through	2^63-1
(9,223,372,036,854,775,807).

Conversion	Functions:

Other	data	types	to	INTEGER	data	type:
TO_INT

INTEGER	data	type	to	other	data	types:
TO_REAL
TO_STRING
TO_TIMESTAMP

See	also:
Constant	Values

©	2004	Microsoft	Corporation.	All	rights	reserved.

REAL	Data	Type
The	REAL	data	type	represents	floating	point	numeric	data.
Floating	point	data	is	approximate;	not	all	values	in	the	data	type	range
can	be	precisely	represented.

Value	range:

REAL	values	are	represented	as	signed	64-bit	(8-byte)	floating	point
numbers,	with	values	ranging	from	±5.0×10-324	through
±1.7×10308,	with	at	least	15	digits	of	precision.

Conversion	Functions:

Other	data	types	to	REAL	data	type:
TO_REAL

REAL	data	type	to	other	data	types:
TO_INT
TO_STRING
TO_TIMESTAMP

See	also:
Constant	Values

©	2004	Microsoft	Corporation.	All	rights	reserved.

STRING	Data	Type
The	STRING	data	type	represents	variable	length	UNICODE	character
string	data.

Conversion	Functions:

Other	data	types	to	STRING	data	type:
TO_STRING

STRING	data	type	to	other	data	types:
TO_INT
TO_REAL
TO_TIMESTAMP

See	also:
Constant	Values

©	2004	Microsoft	Corporation.	All	rights	reserved.

TIMESTAMP	Data	Type
The	TIMESTAMP	data	type	represents	date	and	time	of	day	data.

Value	range:

TIMESTAMP	values	range	from	January	1,	-8192	through	December
31,	8191,	to	an	accuracy	of	one	hundred	nanoseconds	(one	ten-
thousandth	of	a	millisecond).

Date-only	and	Time-only	Timestamps

TIMESTAMP	values	can	be	restricted	to	represent	date	data	only	or
time	of	day	data	only.
As	explained	in	the	Remarks	section	below,	a	TIMESTAMP	value
that	has	been	restricted	to	represent	date	data	only	or	time	of	day
data	only	will	be	formatted	to	display	date	elements	only	(year,
month,	and	day)	or	time	of	day	elements	only	(hour,	minute,	second,
millisecond,	and	nanosecond).
TIMESTAMP	values	can	be	restricted	to	date-only	or	time-only
timestamps	in	different	ways.
Some	input	formats	return	TIMESTAMP	input	record	fields	whose
values	represent	only	dates	or	times	of	day.	For	example,	the	"date"
and	"time"	fields	of	the	IISW3C	input	format	have	values
representing	only	dates	and	times	of	day,	respectively.
TIMESTAMP	constants	can	also	be	entered	as	date-only	or	time-
only	timestamp	values,	depending	on	the	Timestamp	Format
Specifiers	used.
In	addition,	the	TO_DATE,	TO_TIME,	SYSTEM_DATE,	and
SYSTEM_TIME	functions	all	return	TIMESTAMP	values	representing
dates	or	times	of	day	only.
For	more	information,	refer	to	the	Remarks	section	below.

Remarks:

TIMESTAMP	values	are	formatted	and	parsed	using	Timestamp
Format	Specifiers.	Timestamp	format	specifiers	are	strings	that	use
special	characters	to	describe	date	and/or	time	elements	in	a	string
representation	of	a	timestamp.	For	more	information,	refer	to	the
Timestamp	Format	Specifiers	reference.
Although	the	distinction	between	date-only	or	time-only	TIMESTAMP
values	and	full	TIMESTAMP	values	is	often	transparent	to	the	user,
date-only	or	time-only	values	behave	differently	than	full	TIMESTAMP
values	in	the	following	circumstances:
Comparison	operators	in	expressions:	When	comparing	a	date-only
TIMESTAMP	value	with	another	TIMESTAMP	value,	the	time	of	day
data	of	the	date-only	value	is	assumed	to	be	time	zero.	Similarly,
when	comparing	a	time-only	TIMESTAMP	value	with	another
TIMESTAMP	value,	the	date	data	of	the	time-only	value	is	assumed
to	be	January	1,	year	0.
Formatting	TIMESTAMP	values:	whenever	a	date-only	or	time-only
TIMESTAMP	value	is	formatted	to	a	STRING	value	by	either
explicitly	using	the	TO_STRING	function	or	as	implicitly	done	by	an
output	format,	the	resulting	STRING	will	only	contain	the	date	or	time
of	day	data,	and	the	non-applicable	Timestamp	Format	Specifiers
will	be	ignored.
As	an	example,	the	following	query	uses	the	TO_STRING	function
with	date	and	time	of	day	format	specifiers	to	format	the	"time"	field
of	the	IISW3C	input	format:

SELECT	TO_STRING(time,	'yyyy-MM-dd	hh:mm:ss')
FROM	<1>
Since	the	values	of	the	"time"	field	are	time-only	TIMESTAMP
values,	the	resulting	STRING	values	will	be	formatted	according	to
the	time	of	day	format	specifiers	only,	and	the	date	format	specifiers
will	be	ignored:

18:48:04
18:48:27
18:48:27
18:48:29

Values	of	type	TIMESTAMP	can	also	be	used	to	represent	time
intervals,	for	example	with	the	ADD	and	SUB	functions.
Since	the	origin	of	time	in	the	Log	Parser	SQL-Like	language	is

January	1,	year	0,	time	intervals	should	be	expressed	as	timestamps
relative	to	this	origin	of	time.
For	example,	a	time	interval	of	one	day	should	be	specified	as	January
2,	year	0,	i.e.	24	hours	after	the	origin	of	time.
The	following	example	query	selects	all	the	event	log	records	that	have
been	written	in	the	past	2	days:

SELECT	*
FROM	SYSTEM
WHERE	TimeWritten	>	TO_LOCALTIME(SUB(SYSTEM_TIMESTAMP
(),	TIMESTAMP('0000-01-03',	'yyyy-MM-dd')))
TIMESTAMP	values	do	not	carry	information	on	the	timezone	the
timestamp	is	relative	to.
When	working	with	TIMESTAMP	fields	generated	by	an	input	format,
users	should	be	aware	of	the	timezone	these	fields	are	relative	to,	and
handle	their	values	accordingly.
For	example,	values	of	the	"TimeGenerated"	field	of	the	EVT	Input
Format	are	relative	to	the	local	timezone.	If	Universal	Time	Coordinates
(UTC)	are	desired,	the	TO_UTCTIME	function	should	be	used	to
convert	these	local	timestamps	to	UTC	timestamps.

Conversion	Functions:

Other	data	types	to	TIMESTAMP	data	type:
TO_TIMESTAMP

TIMESTAMP	data	type	to	other	data	types:
TO_INT
TO_REAL
TO_STRING

Full	TIMESTAMP	values	to	date-only	TIMESTAMP	values:
TO_DATE

Full	TIMESTAMP	values	to	time-only	TIMESTAMP	values:

TO_TIME

Date-only	and	time-only	TIMESTAMP	values	to	full	TIMESTAMP
values:
TO_TIMESTAMP

Local	timezone	TIMESTAMP	values	to	UTC	TIMESTAMP	values:
TO_UTCTIME

UTC	TIMESTAMP	values	to	local	timezone	TIMESTAMP	values:
TO_LOCALTIME

See	also:
Constant	Values
Timestamp	Format	Specifiers

©	2004	Microsoft	Corporation.	All	rights	reserved.

Timestamp	Format	Specifiers
TIMESTAMP	values	are	formatted	and	parsed	using	Timestamp	Format
Specifiers.	Timestamp	format	specifiers	are	strings	that	use	special
characters	to	describe	date	and/or	time	elements	in	a	string
representation	of	a	timestamp.

Timestamp	format	specifiers	are	used	in	the	following	circumstances:

When	entering	a	TIMESTAMP	constant	with	the	TIMESTAMP	keyword.
In	this	case,	timestamp	format	specifiers	are	used	to	describe	how	the
string	entered	should	be	parsed	in	order	to	obtain	a	TIMESTAMP
value,	as	in	the	following	example:

TimeGenerated	>	TIMESTAMP	('2004-05-28	10:23:15',	'yyyy-MM-dd	hh:
mm:ss')
When	converting	a	TIMESTAMP	value	to	a	STRING	value	using	the
TO_STRING	function.	In	this	case,	timestamp	format	specifiers	are
used	to	describe	how	the	TIMESTAMP	value	should	be	formatted	in
order	to	obtain	a	STRING	value,	as	in	the	following	example:

TO_STRING(TimeGenerated,	'yyyy	MMM,	dd	h:m:s')

When	converting	a	STRING	value	to	a	TIMESTAMP	value	using	the
TO_TIMESTAMP	function.	In	this	case,	timestamp	format	specifiers
are	used	to	describe	how	the	STRING	value	should	be	parsed	in	order
to	obtain	a	TIMESTAMP	value,	as	in	the	following	example:

TO_TIMESTAMP(Text,	'MMM	ddd	yyyy')

When	specifying	how	an	input	format	should	parse	TIMESTAMP	fields,
using	the	"iTsFormat"	parameter.	In	this	case,	timestamp	format
specifiers	are	used	to	describe	how	timestamp	values	are	represented
by	the	selected	data	source,	so	that	the	input	format	is	capable	to
parse	these	fields	and	represent	them	as	values	of	type	TIMESTAMP.
The	following	example	sets	a	specific	value	for	the	"iTsFormat"

parameter	of	the	CSV	Input	Format:

C:\>logparser	"SELECT	MyField	FROM	file.csv"	-i:CSV	-iTsFormat:"yyyy
-MM-dd"
When	specifying	how	an	output	format	should	format	and	display
TIMESTAMP	fields,	using	the	"oTsFormat"	parameter.	In	this	case,
timestamp	format	specifiers	are	used	to	describe	how	TIMESTAMP
values	should	be	formatted	by	the	output	format,	as	in	the	following
example	using	the	TSV	Output	Format:

C:\>logparser	"SELECT	TimeGenerated	INTO	file.txt	FROM	System"	-i:E
VT	-o:TSV	-oTsFormat:"yyyy-MM-dd"

The	following	table	describes	the	timestamp	format	specifiers	supported
by	the	Log	Parser	SQL-Like	language:

Specifier Description

Example
specifier
strings Example	formats

y year,	last	digit
(when	parsing,
assumed	to	be	relative
to	year	2000)

y	MM	dd 4	05	28

yy year,	last	2	digits
(when	parsing,
assumed	to	be	relative
to	year	2000)

yy	MM	dd 04	05	28

yyy year,	last	3	digits
(when	parsing,
assumed	to	be	relative
to	year	2000)

yyy	MM	dd 004	05	28

yyyy year,	4	digits yyyy	MM	dd 2004	05	28
M month,	no	leading	zero yyyy-M-dd 2004-5-28

2004-12-01
MM month,	leading	zero yyyy-MM-dd 2004-05-28

2004-12-01

MP month,	leading	space yyyy-MP-dd 2004-	5-28
2004-12-01

MX month,	with	or	without
leading	zero	(when
parsing)
month,	without	leading
zero	(when	formatting)

yyyy-MX-dd 2004-05-28	(when
parsing)
2004-5-28
2004-12-01

MMM month,	3-character
abbreviation	of	name
(1)

MMM	d,	yyyy Dec	1,	2004

MMMM month,	full	name	(1) MMMM	d,
yyyy

December	1,	2004

d day,	no	leading	zero yyyy-MM-d 2004-12-1
2004-05-28

dd day,	leading	zero yyyy-MM-dd 2004-12-01
2004-05-28

dp day,	leading	space yyyy-MM-dp 2004-12-	1
2004-05-28

dx day,	with	or	without
leading	zero	(when
parsing)
day,	without	leading
zero	(when	formatting)

yyyy-MM-dx 2004-12-01	(when
parsing)
2004-12-1
2004-05-28

ddd week	day,	3-character
abbreviation	of	name
(1)

ddd	MMMM	d,
yyyy

Wed	December	1,	2004

dddd week	day,	full	name
(1)

dddd	MMMM
d,	yyyy

Wednesday	December
1,	2004

h,	H hour,	no	leading	zero h:mm:ss 3:12:05
21:04:15

hh,	HH hour,	leading	zero hh:mm:ss 03:12:05
21:04:15

hp,	HP hour,	leading	space hp:mm:ss 	3:12:05
21:04:15

hx,	HX hour,	with	or	without
leading	zero	(when
parsing)
hour,	without	leading
zero	(when	formatting)

hx:mm:ss 03:12:05	(when
parsing)
3:12:05
21:04:15

m minute,	no	leading
zero

hh:m:ss 21:4:15
03:12:05

mm minute,	leading	zero hh:mm:ss 21:04:15
03:12:05

mp minute,	leading	space hh:mp:ss 21:	4:15
03:12:05

mx minute,	with	or	without
leading	zero	(when
parsing)
minute,	without
leading	zero	(when
formatting)

hh:mx:ss 21:04:15	(when
parsing)
21:4:15
3:12:05

s second,	no	leading
zero

hh:mm:ss 03:12:5
21:04:15

ss second,	leading	zero hh:mm:ss 03:12:05
21:04:15

sp second,	leading	space hh:mm:sp 03:12:	5
21:04:15

sx second,	with	or	without
leading	zero	(when
parsing)
second,	without
leading	zero	(when
formatting)

hh:mm:ss 03:12:05	(when
parsing)
03:12:5
21:04:15

l millisecond,	no	leading
zeroes

hh:mm:ss.l 21:4:15.5
03:12:05.395

ll millisecond,	leading
zeroes

hh:mm:ss.ll 21:04:15.005
03:12:05.395

lp millisecond,	leading
spaces

hh:mm:ss.lp 21:04:15.		5
03:12:05.395

lx millisecond,	with	or
without	leading	zero
(when	parsing)
millisecond,	without
leading	zero	(when
formatting)

hh:mm:ss.lx 21:04:15.005	(when
parsing)
21:04:15.5
3:12:05.395

n nanosecond,	no
leading	zeroes

hh:mm:ss.ll.n 21:4:15.005.400
03:12:05.395.1900

nn nanosecond,	leading
zeroes

hh:mm:ss.ll.nn 21:04:15.005.00000400
03:12:05.395.001900

np nanosecond,	leading
spaces

hh:mm:ss.ll.np 21:04:15.005.					400
03:12:05.395.		1900

nx nanosecond,	with	or
without	leading	zero
(when	parsing)
nanosecond,	without
leading	zero	(when
formatting)

hh:mm:ss.ll.nx 21:04:15.005.00000400
(when	parsing)
21:04:15.005.400
3:12:05.395.1900

tt AM/PM	notation hh:mm:ss	tt 09:04:15	PM
03:12.05	AM

? any	character	(when
parsing)
space	(when
formatting)

yyyy-MM-dd?
hh:mm:ss

2004-05-28T21:04:15
(when	parsing)
2004-05-28	21:04:15
(when	formatting)

any	other

character
verbatim	character hh:mm:ss	---

yyyy.MM+dd
09:04:15	---
2004.05+28

Notes:
(1):	element	names	are	obtained	from	the	current	system	locale.

Date-only	and	Time-only	Timestamps
When	parsing	a	timestamp	string,	the	following	assumptions	are	made:

If	the	timestamp	format	specifiers	include	date	elements	only,	the
resulting	TIMESTAMP	value	will	be	a	date-only	timestamp;	for
example,	the	following	statement	creates	a	date-only	TIMESTAMP
constant	value:

TIMESTAMP('2004-05-28',	'yyyy-MM-dd')

If	the	timestamp	format	specifiers	include	time	of	day	elements	only,
the	resulting	TIMESTAMP	value	will	be	a	time-only	timestamp;	for
example,	the	following	statement	creates	a	time-only	TIMESTAMP
constant	value:

TIMESTAMP('21:04:15',	'hh:mm:ss')

Unspecified	date	elements	are	replaced	with	the	corresponding
elements	of	the	Log	Parser	origin	date	(January	1,	year	0),	unless	the
timestamp	is	a	time-only	timestamp	value;	for	example,	the	following
statement	creates	a	date-only	timestamp	representing	the	date
February	1,	year	0:

TIMESTAMP('2',	'M')

Similarly,	unspecified	time	elements	are	replaced	with	zero	values,
unless	the	timestamp	is	a	date-only	timestamp	value;	for	example,	the
following	statement	creates	a	time-only	timestamp	representing	the
time	10:00:00.0.0:

TIMESTAMP('10',	'h')

As	another	example,	the	following	statement	creates	a	full	timestamp
value	representing	the	time	10:00:00.0.0	on	February	1,	year	0:

TIMESTAMP('2	10',	'M	h')

For	more	information	on	date-only	and	time-only	timestamp	values,	refer
to	the	Timestamp	Data	Type	reference.

See	also:
Constant	Values
Timestamp	Data	Type

©	2004	Microsoft	Corporation.	All	rights	reserved.

NULL	Data	Type
The	NULL	data	type	represents	unknown	or	unavailable	data.

Remarks:
Input	formats	often	return	NULL	values	for	input	record	fields	to
indicate	that	the	field	data	is	not	available	in	the	current	log.
A	value	of	NULL	is	different	from	a	zero	value.	In	the	Log	Parser	SQL-
Like	language,	comparison	operators	in	expressions	treat	NULL	values
as	the	minimum	possible	values.	In	other	words,	all	non-NULL	values,
even	negative	numeric	values,	are	always	greater	than	a	NULL	value.
On	the	other	hand,	the	MIN	and	MAX	aggregate	functions	treat	NULL
values	as	respectively	the	maximum	and	minimum	possible	values.	In
other	words,	the	MIN	or	MAX	value	between	a	non-NULL	value	and	a
NULL	value	is	always	the	non-NULL	value.
To	test	for	NULL	values	in	a	query	use	IS	NULL	or	IS	NOT	NULL	in	the
WHERE	or	HAVING	clauses.

See	also:
Constant	Values
Expressions

©	2004	Microsoft	Corporation.	All	rights	reserved.

Input	Formats
IIS	Log	File	Input	Formats
IISW3C:	parses	IIS	log	files	in	the	W3C	Extended	Log	File	Format.
IIS:	parses	IIS	log	files	in	the	Microsoft	IIS	Log	File	Format.
BIN:	parses	IIS	log	files	in	the	Centralized	Binary	Log	File	Format.
IISODBC:	returns	database	records	from	the	tables	logged	to	by	IIS
when	configured	to	log	in	the	ODBC	Log	Format.
HTTPERR:	parses	HTTP	error	log	files	generated	by	Http.sys.
URLSCAN:	parses	log	files	generated	by	the	URLScan	IIS	filter.

Generic	Text	File	Input	Formats
CSV:	parses	comma-separated	values	text	files.
TSV:	parses	tab-separated	and	space-separated	values	text	files.
XML:	parses	XML	text	files.
W3C:	parses	text	files	in	the	W3C	Extended	Log	File	Format.
NCSA:	parses	web	server	log	files	in	the	NCSA	Common,	Combined,
and	Extended	Log	File	Formats.
TEXTLINE:	returns	lines	from	generic	text	files.
TEXTWORD:	returns	words	from	generic	text	files.

System	Information	Input	Formats
EVT:	returns	events	from	the	Windows	Event	Log	and	from	Event	Log
backup	files	(.evt	files).
FS:	returns	information	on	files	and	directories.
REG:	returns	information	on	registry	values.
ADS:	returns	information	on	Active	Directory	objects.

Special-purpose	Input	Formats

NETMON:	parses	network	capture	files	created	by	NetMon.
ETW:	parses	Enterprise	Tracing	for	Windows	trace	log	files	and	live
sessions.
COM:	provides	an	interface	to	Custom	Input	Format	COM	Plugins.

©	2004	Microsoft	Corporation.	All	rights	reserved.

ADS	Input	Format
The	ADS	input	format	returns	properties	of	Active	Directory	objects.

The	ADS	input	format	enumerates	the	Active	Directory	objects	in	the
Active	Directory	Container	whose	LDAP	path	is	specified	in	the	from-
entity,	eventually	recursing	into	additional	Container	objects	found	during
the	enumeration.
The	information	returned	for	each	object	depends	on	the	value	specified
for	the	objClass	parameter.

When	the	objClass	parameter	is	left	unspecified,	the	ADS	input	format
works	in	"property	mode",	returning	a	record	for	each	property	of	each
object	visited	during	the	enumeration.
In	this	case,	input	records	have	a	fixed	number	of	fields	whose	values
describe	the	properties	being	returned,	including	a	"PropertyName"	field
and	a	"PropertyValue"	field	containing	the	name	and	the	value	of	the
property	being	processed.
Queries	operating	in	"property	mode"	can	work	on	Active	Directory
objects	of	different	types,	and	since	each	input	record	represents	a	single
object	property,	they	can	only	reference	a	single	property	at	a	time.

For	example,	the	following	command	returns	the	values	of	all	the
properties	named	"comment"	from	all	the	objects	in	the	specified	path:

LogParser	"SELECT	PropertyValue	FROM	LDAP://mydomain.mycompany.c
om	WHERE	PropertyName	=	'comment'"	-i:ADS	
The	output	would	look	like	the	following	example:

PropertyValue

Builtin
Builtin
Account	Operators
Account	Operators
Administrators
Administrators

When	the	name	of	an	Active	Directory	object	class	is	specified	for	the
objClass	parameter,	the	ADS	input	format	works	in	"object	mode",
returning	a	record	for	each	object	visited	during	the	enumeration	that	is
an	instance	of	the	specified	class.
In	this	case,	there	is	an	input	record	field	for	each	of	the	properties	of	the

Backup	Operators
Backup	Operators
object	being	returned.
Queries	operating	in	"object	mode"	can	only	work	on	Active	Directory
objects	of	a	single	type,	and	since	each	input	record	represents	a	single
object,	they	can	reference	multiple	properties	of	the	same	object	at	the
same	time.

For	example,	the	following	command	returns	the	specified	properties
from	all	the	objects	of	type	"Computer":

LogParser	"SELECT	cn,	operatingSystem,	operatingSystemServicePack	FRO
M	LDAP://mydomain.mycompany.com/CN=Computers,DC=mydomain,DC=
mycompany,DC=com"	-i:ADS	-objClass:ComputerThe	output	would	look	like	the	following	example:

cn											operatingSystem									operatingSystemServicePack
------------	-----------------------	--------------------------
SERVER01					Windows	XP	Professional	Service	Pack	1
SERVER02					Windows	XP	Professional	Service	Pack	2
TESTMACHINE1	Windows	Server	2003					-
TESTMACHINE2	Windows	XP	Professional	Service	Pack	2
TESTMACHINE3	Windows	XP	Professional	Service	Pack	1
TESTMACHINE4	Windows	2000	Server					Service	Pack	4

From-Entity	Syntax
Fields
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

ADS	Input	Format	From-Entity	Syntax
<from-
entity>

::= [[<provider>:]//[<username>:<password>@]
<domain>]/<path>	[;	...]

The	<from-entity>	specified	in	queries	using	the	ADS	input	format	is	a
semicolon-separated	list	of	LDAP	paths.
Each	LDAP	path	begins	with	an	optional	provider	name	(e.g.	"IIS",
"LDAP"),	followed	by	an	optional	domain	or	computer	name.	If	a	provider
name	is	not	specified,	then	"IIS"	is	assumed	by	default.	If	a	domain	name
or	computer	name	is	not	specified,	then	"localhost"	is	assumed	by
default.

The	from-entity	can	optionally	include	a	username	and	a	password	to	be
used	for	the	connection	to	the	Active	Directory	provider.	When	these	are
not	specified,	the	ADS	input	format	uses	the	current	user's	credentials.

Note:	LDAP	paths	containing	comma	(,)	characters	should	be
enclosed	within	single-quote	(')	characters.

Examples:

FROM	IIS://COMPUTER01/W3SVC/1

FROM	IIS://MyUsername:MyPassword@COMPUTER01/W3SVC/1

FROM	'LDAP://MyDomain/CN=Users,DC=MyDomain,DC=com'

FROM	'LDAP://MyUsername:MyPassword@MyDomain/CN=Users,DC=My
Domain,DC=com'
FROM	/W3SVC/1;/W3SVC/2;//COMPUTER02/W3SVC/1

©	2004	Microsoft	Corporation.	All	rights	reserved.

ADS	Input	Format	Fields
The	structure	of	the	input	records	generated	by	the	ADS	input	format
depends	on	the	value	specified	for	the	objClass	parameter.

Property	Mode
When	the	objClass	parameter	is	left	unspecified,	the	ADS	input	format
works	in	"property	mode",	returning	a	record	for	each	property	of	each
object	visited	during	the	enumeration.
In	this	case,	input	records	have	the	following	fixed	structure:

Name Type Description

ObjectPath STRING Full	Active	Directory	path	of	the	object
containing	this	property

ObjectName STRING Name	of	the	object	containing	this
property

ObjectClass STRING Class	name	of	the	object	containing	this
property

PropertyName STRING Name	of	the	property	being	processed

PropertyValue STRING Value	of	the	property	being	processed

PropertyType STRING Type	of	the	property	being	processed

Queries	operating	in	"property	mode"	can	work	on	Active	Directory
objects	of	different	types,	and	since	each	input	record	represents	a	single
object	property,	they	can	only	reference	a	single	property	at	a	time.

Object	Mode
When	the	name	of	an	Active	Directory	object	class	is	specified	for	the
objClass	parameter,	the	ADS	input	format	works	in	"object	mode",
returning	a	record	for	each	object	visited	during	the	enumeration	that	is
an	instance	of	the	specified	class.
In	this	case,	the	first	input	record	field	is	fixed,	and	it	is	described	in	the
following	table:

Name Type Description

ObjectPath STRING Full	Active	Directory	path	of	the	object
being	processed

This	field	is	followed	by	fields	representing	all	the	properties	of	the
specified	object	class.	Each	field	is	named	after	the	corresponding
property	name,	and	its	data	type	is	determined	by	the	property	type
declared	by	the	Active	Directory	schema	object	for	the	specified	class.

Queries	operating	in	"object	mode"	can	only	work	on	Active	Directory
objects	of	a	single	type,	and	since	each	input	record	represents	a	single
object,	they	can	reference	multiple	properties	of	the	same	object	at	the
same	time.

©	2004	Microsoft	Corporation.	All	rights	reserved.

ADS	Input	Format	Parameters
The	ADS	input	format	supports	the	following	parameters:

objClass

	 Values: Active	Directory	object	class	name

	 Default: not	specified

	 Description: Object	class	name	for	"object	mode"	operation.

	 Details: When	this	parameter	is	left	unspecified,	the	ADS	input	format	works	in
"property	mode",	returning	a	record	for	each	property	of	each	object
visited	during	the	enumeration.
On	the	other	hand,	when	the	name	of	an	Active	Directory	object	class	is
specified	for	this	parameter,	the	ADS	input	format	works	in	"object
mode",	returning	a	record	for	each	object	visited	during	the	enumeration
that	is	an	instance	of	the	specified	class.
For	more	information	on	the	different	modes	of	operation,	see	
Format	Fields.

	 Example: -objClass:User
	
username

	 Values: username

	 Default: not	specified

	 Description: Username	for	the	Active	Directory	connection.

	 Details: When	a	username	is	not	specified	for	this	parameter,	the	ADS	input
format	uses	the	username	specified	in	the	from-entity	of	the	query.	If	the
from-entity	does	not	include	a	username,	the	ADS	input	format	will	use
the	current	user's	credentials.

Note:	For	security	reasons,	values	specified	for	this	parameter	are
not	persisted	when	using	the	Log	Parser	command-line	Defaults
Override	Mode.

	 Example: -username:MyUser
	
password

	 Values: password

	 Default: not	specified

	 Description: Password	for	the	Active	Directory	connection.

	 Details: Password	for	the	username	specified	with	the	"username"	parameter.

Note:	For	security	reasons,	values	specified	for	this	parameter	are
not	persisted	when	using	the	Log	Parser	command-line	Defaults
Override	Mode.

	 Example: -password:MyPassword
	
recurse

	 Values: recursion	level	(number)

	 Default: -1

	 Description: Max	ADS	container	recursion	level.

	 Details: 0	disables	container	recursion;	-1	enables	unlimited	recursion.

	 Example: -recurse:2
	
multiValuedSep

	 Values: any	string

	 Default: |

	 Description: Separator	between	values	of	multi-valued	types.

	 Details: Multi-valued	property	values	are	returned	as	a	single	string,	built	by
concatenating	the	multiple	values	one	after	the	other	using	the	value	of
this	parameter	as	a	separator	between	the	elements.

	 Example: -multiValuedSep:,

	
ignoreDSErrors

	 Values: ON	|	OFF

	 Default: ON

	 Description: Ignore	Directory	Service	errors.

	 Details: When	this	parameter	is	set	to	"OFF",	Directory	Service	errors	occurring
during	the	enumeration	of	objects	and	properties	are	returned	as	
Errors.
When	this	parameter	is	set	to	"ON",	Directory	Service	errors	are	silently
ignored,	and	input	record	fields	corresponding	to	unretrievable	objects	or
properties	are	returned	as	NULL	values.

	 Example: -ignoreDSErrors:OFF
	
parseBinary

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Return	value	of	binary	properties.

	 Details: This	parameter	specifies	whether	properties	containing	binary	values	are
returned	or	not.
When	this	parameter	is	set	to	"ON",	binary	values	are	returned	as
STRING	values	formatted	according	to	the	value	specified	for	the
"binaryFormat"	parameter.

	 Example: -parseBinary:ON
	
binaryFormat

	 Values: ASC	|	PRINT	|	HEX

	 Default: HEX

	 Description: Format	of	binary	properties.

	 Details: When	the	"parseBinary"	property	is	set	to	"ON",	the	ADS	input	format
returns	properties	containing	binary	values.	In	this	case,	binary	values
are	returned	as	STRING	values	formatted	according	to	the	value
specified	for	this	parameter.
When	this	parameter	is	set	to	"ASC",	data	bytes	belonging	to	the	0x20-
0x7F	range	are	returned	as	ASCII	characters,	while	data	bytes	outside
the	range	are	returned	as	period	(.)	characters,	as	shown	in	the	following
example:

Bucket:	02096553..rundll32.exe

When	this	parameter	is	set	to	"PRINT",	data	bytes	representing	printable
ASCII	characters	are	returned	as	ASCII	characters,	while	data	bytes	that
do	not	represent	printable	ASCII	characters	are	returned	as	period	(.)
characters,	as	shown	in	the	following	example:

Bucket:	02096553
rundll32.exe
When	this	parameter	is	set	to	"HEX",	all	data	bytes	are	returned	as	two-
digit	hexadecimal	values,	as	shown	in	the	following	example:

4275636B65743A2030323039363535330D0A72756E646C6C33322E657865

	 Example: -binaryFormat:PRINT
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

ADS	Input	Format	Examples
Users'	Job	Titles
Retrieve	users'	job	title	breakdown	from	Active	Directory:

LogParser	"SELECT	title,	MUL(PROPCOUNT(*),	100.0)	AS	Percentage	INT
O	DATAGRID	FROM	'LDAP://MyUsername:MyPassword@mydomain/CN=
Users,DC=mydomain,DC=com'	WHERE	title	IS	NOT	NULL	GROUP	BY	titl
e	ORDER	BY	Percentage	DESC"	-objClass:User
IIS	AccessFlags	MetaBase	Properties
Retrieve	all	the	AccessFlags	properties	from	IIS	metabase	objects:

LogParser	"SELECT	ObjectPath,	PropertyValue	FROM	IIS://localhost	WHER
E	PropertyName	=	'AccessFlags'"

©	2004	Microsoft	Corporation.	All	rights	reserved.

BIN	Input	Format
The	BIN	input	format	parses	IIS	log	files	in	the	Centralized	Binary	Log
File	Format.

When	an	IIS	6.0	web	server	is	configured	to	log	in	the	Centralized	Binary
Log	File	Format,	all	the	IIS	virtual	sites	hosted	by	the	server	log	in	a
single,	server-wide	log	file.	Log	files	in	this	format	are	binary	files,	and	the
information	contained	in	these	logs	can	not	be	visualized	by	standard	text
file	processors.

From-Entity	Syntax
Fields
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

BIN	Input	Format	From-Entity	Syntax
<from-entity> ::= <filename>	|	<SiteID>	[,	<filename>	|	<SiteID>	...]

<SiteID> ::= <	site_number	>	<	server_comment	>
<	site_metabase_path	>

The	<from-entity>	specified	in	queries	using	the	BIN	input	format	is	a
comma-separated	list	of:

Paths	of	IIS	Centralized	Binary	log	files;
IIS	Virtual	Site	"identifiers".

"Site	identifiers"	must	be	enclosed	within	angle	brackets	(<	and	>),	and
can	have	one	of	the	following	values:
The	numeric	site	ID	(e.g.	"<1>",	"<28163489>");
The	text	value	of	the	"ServerComment"	property	of	the	site	(e.g.	"<My
External	Site>",	"<www.margiestravel.com>");
The	fully-qualified	ADSI	metabase	path	to	the	site	(e.g.	"
<//MYSERVER/W3SVC/1>"),	using	either	the	numeric	site	ID	or	the
text	value	of	the	"ServerComment"	property	of	the	site.

When	a	"site	identifier"	is	used,	the	BIN	input	format	connects	to	the
specified	machine's	metabase,	gathers	information	on	the	server's
current	logging	properties,	and	parses	all	the	log	files	in	the	server's
current	log	file	directory,	returning	only	the	entries	corresponding	to
requests	to	the	specified	virtual	site.

Filenames	and	"Site	identifiers"	can	also	include	wildcards	(e.g.
"LogFiles\ra04*.ibl",	"<www.*.com>").

Examples:

FROM	LogFiles\ra04*.ibl,	LogFiles\ra03*.ibl,	\\MyServer\LoggingShare\W3S
VC\ra04*.ibl

FROM	<1>,	<2>,	<My	External	Site>,	raw9.ibl

FROM	<www.net*home.com>,	<//MyServer2/W3SVC/www.net*home.com>,
	<*>

©	2004	Microsoft	Corporation.	All	rights	reserved.

BIN	Input	Format	Fields
The	input	records	generated	by	the	BIN	input	format	contain	the	following
fields:

Name Type Description

LogFilename STRING Full	path	of	the	log	file	containing
this	entry

LogRow INTEGER Line	in	the	log	file	containing	this
entry

ComputerName STRING The	name	of	the	server	that
served	the	request

SiteID INTEGER The	IIS	virtual	site	instance
number	that	served	the	request

DateTime TIMESTAMP The	date	and	time	at	which	the
request	was	served	(Universal
Time	Coordinates	(UTC)	time)

ClientIpAddress STRING The	IP	address	of	the	client	that
made	the	request

ServerIpAddress STRING The	IP	address	of	the	server	that
served	the	request

ServerPort INTEGER The	server	port	number	that
received	the	request

Method STRING The	HTTP	request	verb

ProtocolVersion STRING The	HTTP	version	of	the	client
request

ProtocolStatus INTEGER The	response	HTTP	status	code

SubStatus INTEGER The	response	HTTP	sub-status
code

TimeTaken INTEGER The	number	of	milliseconds
elapsed	since	the	moment	the
server	received	the	request	to
the	moment	the	server	sent	the
last	response	chunk	to	the	client

BytesSent INTEGER The	number	of	bytes	in	the
response	sent	by	the	server

BytesReceived INTEGER The	number	of	bytes	in	the
request	sent	by	the	client

Win32Status INTEGER The	Windows	status	code
associated	with	the	response
HTTP	status	code

UriStem STRING The	HTTP	request	uri-stem

UriQuery STRING The	HTTP	request	uri-query,	or
NULL	if	the	requested	URI	did
not	include	a	uri-query

UserName STRING The	name	of	the	authenticated
user	that	made	the	request,	or
NULL	if	the	request	was	from	an
anonymous	user

©	2004	Microsoft	Corporation.	All	rights	reserved.

BIN	Input	Format	Examples
Top	20	URL's	for	a	Site
Create	a	chart	containing	the	TOP	20	URL's	in	the
"www.margiestravel.com"	web	site	(assumed	to	be	logging	in	the
Centralized	Binary	log	format):

LogParser	"SELECT	TOP	20	UriStem,	COUNT(*)	AS	Hits	INTO	MyChart.gi
f	FROM	<www.margiestravel.com>	GROUP	BY	UriStem	ORDER	BY	Hits	D
ESC"	-chartType:Column3D	-groupSize:1024x768

©	2004	Microsoft	Corporation.	All	rights	reserved.

COM	Input	Format
The	COM	input	format	provides	an	interface	to	Custom	Input	Format
COM	Plugins.

With	the	Log	Parser	command-line	executable,	Custom	Input	Format
COM	Plugins	are	used	through	the	COM	input	format.	This	input	format
takes	the	ProgID	of	the	plugin	COM	object	as	a	value	of	the	iProgID
parameter,	and	it	provides	an	interface	for	command-line	operations	to
use	the	custom	input	format.

With	the	Log	Parser	scriptable	COM	components,	Custom	Input	Format
COM	Plugin	objects	can	be	used	directly	as	arguments	to	the	Execute	or
ExecuteBatch	methods	of	the	LogQuery	object.
For	this	reason,	the	COM	input	format	is	not	provided	as	a	Log	Parser
scriptable	COM	component.

From-Entity	Syntax
Fields
Parameters
Examples

See	also:
Custom	Plugins
COM	Input	Format	Plugins	Reference

©	2004	Microsoft	Corporation.	All	rights	reserved.

COM	Input	Format	From-Entity	Syntax
The	<from-entity>	specified	in	queries	using	the	COM	input	format	is
delivered	as-is	to	the	custom	input	format	COM	object	as	an	argument	to
the	OpenInput	method	of	the	ILogParserInputContext	interface,	and	its
syntax	and	interpretation	is	provided	by	the	custom	input	format	selected.
The	<from-entity>	specified	in	queries	using	the	COM	input	format	must
however	obey	the	general	syntax	for	<from-entity>	language	elements.

©	2004	Microsoft	Corporation.	All	rights	reserved.

COM	Input	Format	Fields
The	input	records	generated	by	the	COM	input	format	contain	the	fields
provided	by	the	currently	selected	Custom	Input	Format	COM	plugin.

The	number	of	fields,	their	names,	and	their	data	types	are	retrieved
through	the	GetFieldCount,	GetFieldName,	and	GetFieldType	methods	of
the	ILogParserInputContext	interface.

©	2004	Microsoft	Corporation.	All	rights	reserved.

COM	Input	Format	Parameters
The	COM	input	format	supports	the	following	parameters:

iProgID

	 Values: COM	ProgID

	 Default: not	specified

	 Description: ProgID	of	the	Custom	Input	Format	COM	Plugin.

	 Details: This	parameter	is	used	to	specify	the	version-
independent	ProgID	of	the	custom	input	format	COM
object	selected	for	the	current	query.

	 Example: -iProgID:MSUtil.LogQuery.Sample.QFE
	
iCOMParams

	 Values: name=value[,name=value	...]

	 Default: not	specified

	 Description: Parameters	for	the	Custom	Input	Format	COM	Plugin.

	 Details: The	value	of	this	parameter	is	a	comma-separated	list
of	name-value	pairs	specifying	property	names	and
values	for	Custom	Input	Format	COM	Plugins
implemented	through	the	IDispatch	COM	interface.
If	property	names	or	their	values	contain	space
characters,	the	value	of	this	parameter	should	be
surrounded	by	double-quote	(")	characters.
For	more	information	on	custom	properties	exposed	by
COM	plugins,	see	Custom	Properties	in	the	COM	Input
Format	Plugins	reference.

	 Example: -iCOMParams:TargetMachine=localhost,ExtendedFields=on
	

iCOMServer

	 Values: computer	name

	 Default: localhost

	 Description: Computer	name	on	which	the	Custom	Input	Format
COM	Plugin	is	to	be	instantiated.

	 Details: Plugin	COM	objects	supporting	Distributed	COM
(DCOM)	can	be	instantiated	on	a	remote	computer,
thus	providing	a	means	for	the	custom	input	format	to
process	data	on	a	computer	different	than	the	computer
running	the	Log	Parser	query.

	 Example: -iCOMServer:MYSERVER01
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

COM	Input	Format	Examples
QFE	Information
Return	QFE	information	from	the	local	machine,	using	the	"QFE"	sample
Custom	Input	Format	COM	Plugin:

LogParser	"SELECT	*	FROM	."	-i:COM	-iProgID:MSUtil.LogQuery.Sample.
QFE	-iCOMParams:ExtendedFields=on

©	2004	Microsoft	Corporation.	All	rights	reserved.

CSV	Input	Format
The	CSV	input	format	parses	comma-separated	values	text	files.

CSV	text	files	are	generated	and	handled	by	a	large	number	of
applications	and	tools,	including:

Microsoft	Excel
PerfMon
Generic	spreadsheet	applications

In	a	CSV	text	file,	each	line	consists	of	one	record,	and	fields	in	a	record
are	separated	by	commas.
Depending	on	the	application,	the	first	line	in	a	CSV	file	might	be	a
"header",	containing	the	labels	of	the	record	fields.
The	following	example	shows	a	CSV	file	beginning	with	a	header:

DateTime,	PID,	Comment
5/28/2004	13:56:12,	2956,	Application	started
5/28/2004	13:59:02,	2956,	Waiting	for	input
5/28/2004	14:12:45,	3104,	Application	started
5/28/2004	15:24:42,	1048,	Application	started

Moreover,	field	values	and	labels	might	be	enclosed	within	double-quote
(")	characters,	as	shown	by	the	following	PerfMon	CSV	log	file	example:

"\\GAB1\Processor(_Total)\%	Processor	Time","\\GAB1\System\Processes"
"99.999993086289507","33"
"2.0000000000000018","33"
"1.0000000000000009","33"
"0.33333333333332993","33"
"0.33333333333332993","33"
"0","33"
"4.0000000000000036","33"
"4.3333333333333339","33"

From-Entity	Syntax
Fields
Parameters
Examples

See	also:
TSV	Input	Format
CSV	Output	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

CSV	Input	Format	From-Entity	Syntax
<from-entity> ::= <filename>	[,	<filename>	...]	|	

http://<url>	|	
STDIN

The	<from-entity>	specified	in	queries	using	the	CSV	input	format	is
either:

A	comma-separated	list	of	paths	of	CSV	files,	eventually	including
wildcards;
The	URL	of	a	file	in	the	CSV	format;
The	"STDIN"	keyword,	which	specifies	that	the	input	data	is	available
from	the	input	stream	(commonly	used	when	piping	command
executions).

Examples:

FROM	LogFiles1*.csv,	LogFiles2*.csv,	\\MyServer\FileShare*.csv

FROM	http://www.microsoft.adatum.com/MyCSVFiles/example.csv

type	data.csv	|	LogParser	"SELECT	*	FROM	STDIN"	-i:CSV

©	2004	Microsoft	Corporation.	All	rights	reserved.

CSV	Input	Format	Fields
The	structure	of	the	input	records	generated	by	the	CSV	input	format	is
determined	at	run	time,	depending	on	the	data	being	parsed,	and	on	the
values	specified	for	the	input	format	parameters.

The	first	two	input	record	fields	are	fixed,	and	they	are	described	in	the
following	table:

Name Type Description

Filename STRING Full	path	of	the	file	containing	this	entry

RowNumber INTEGER Line	in	the	file	containing	this	entry

These	two	fields	are	then	followed	by	the	fields	detected	by	the	CSV
input	format	in	the	CSV	file(s)	being	parsed.	The	number,	names,	and
data	types	of	the	fields	are	determined	by	examining	initially	the	CSV
data	according	to	the	values	specified	for	the	input	format	parameters.

The	number	of	fields	detected	by	the	CSV	input	format	during	the	initial
inspection	phase	dictates	how	the	CSV	record	fields	will	be	extracted
from	the	input	data	during	the	subsequent	parsing	stage.
If	a	CSV	line	contains	less	fields	than	the	number	of	fields	established,
the	missing	fields	are	returned	as	NULL	values.
On	the	other	hand,	if	a	CSV	line	contains	more	fields	than	the	number	of
fields	established,	the	extra	fields	are	parsed	as	if	they	were	part	of	the
value	of	the	last	field	expected	by	the	CSV	input	format.

Number	of	Fields
The	number	of	fields	in	an	input	record	is	determined	by	the	input	CSV
data	and	by	the	values	of	the	nFields	and	fixedFields	parameters.

When	the	"nFields"	parameter	is	set	to	-1,	the	CSV	input	format
determines	the	number	of	fields	by	inspecting	the	input	CSV	data.

If	the	"fixedFields"	parameter	is	set	to	"ON",	indicating	that	all	the	rows	in
the	CSV	file	have	the	same	fixed	number	of	fields,	then	the	number	of
fields	is	determined	by	parsing	either	the	first	line	of	the	CSV	input	data,
or	the	first	line	of	the	header	file	specified	with	the	"iHeaderFile"
parameter.
On	the	other	hand,	if	the	"fixedFields"	parameter	is	set	to	"OFF",
indicating	that	the	rows	in	the	CSV	file	have	a	variable	number	of	fields,
then	the	number	of	fields	is	assumed	to	be	the	largest	number	of	fields
found	among	the	first	n	lines	of	the	CSV	input	data	(eventually	including
the	first	line	of	the	header	file	specified	with	the	"iHeaderFile"	parameter),
where	n	is	the	value	of	the	"dtLines"	parameter.

As	an	example,	the	following	CSV	file	contains	a	variable	number	of
fields:

Name,	City,	AreaCode
Jeff,	Redmond,	425
Steve,	Seattle,	206,	98101
Edward,	Olympia,	360
When	parsed	with	the	"nFields"	parameter	set	to	-1	and	the	"fixedFields"
parameter	set	to	"ON",	this	CSV	file	would	yield	three	fields	("Name",
"City",	and	"AreaCode").
In	this	case,	the	extra	fourth	field	in	the	second	record	would	be	parsed
as	part	of	the	third	"AreaCode"	field,	whose	value	would	then	be	"206,
98101".
On	the	other	hand,	if	the	"fixedFields"	parameter	is	set	to	"OFF",	and	the
"dtLines"	parameter	is	set	to	any	value	greater	than	2,	then	the	same
CSV	file	would	yield	four	fields	("Name",	"City",	"AreaCode",	and	an
additional	fourth	field	detected	in	the	second	CSV	record).
In	this	case,	the	first	and	third	records	would	have	a	NULL	value	for	the
fourth	field,	and	the	second	record	would	have	a	"98101"	value	for	the
fourth	field.

When	the	"nFields"	parameter	is	set	to	a	value	greater	than	zero,	the
CSV	input	format	uses	the	specified	value	as	the	number	of	fields	in	the
input	data.
However,	if	the	"fixedFields"	parameter	is	set	to	"OFF",	indicating	that	the
rows	in	the	CSV	file	have	a	variable	number	of	fields,	then	the	CSV	input
format	uses	the	value	of	the	"nFields"	parameter	as	a	"suggested
minimum"	number	of	fields,	and	it	examines	the	first	n	lines	of	the	CSV

input	data	(eventually	including	the	first	line	of	the	header	file	specified
with	the	"iHeaderFile"	parameter),	where	n	is	the	value	of	the	"dtLines"
parameter,	to	determine	the	number	of	fields	among	these	lines.
If	lines	are	found	containing	more	fields	than	the	value	specified	for	the
"nFields"	parameter,	then	the	number	of	fields	is	adjusted	to	the	largest
number	of	fields	found	among	the	first	n	lines.

Considering	again	the	previous	CSV	example	file,	parsing	the	file	with	the
"nFields"	parameter	set	to	3	and	the	"fixedFields"	parameter	set	to	"ON"
would	yield	three	fields.
However,	setting	the	"fixedFields"	parameter	to	"OFF"	and	the	"dtLines"
parameter	to	any	value	greater	than	2	would	yield	four	fields,	detecting
the	extra	field	in	the	second	record.

Field	Names
The	names	of	the	fields	in	an	input	record	is	determined	by	the	input	CSV
data	and	by	the	values	of	the	headerRow	and	iHeaderFile	parameters.

When	the	"headerRow"	parameter	is	set	to	"ON",	the	CSV	input	format
assumes	that	the	first	line	in	the	CSV	file	being	parsed	is	a	header
containing	the	field	names.
In	this	case,	if	the	"iHeaderFile"	parameter	is	left	unspecified,	the	CSV
input	format	extracts	the	field	names	from	the	header	line.
On	the	other	hand,	if	the	"iHeaderFile"	parameter	is	set	to	the	path	of	a
CSV	file	containing	at	least	one	line,	then	the	CSV	input	format	assumes
that	the	specified	file	contains	a	header,	parses	its	first	line	only,	and
extracts	the	field	names	from	this	line,	ignoring	the	first	line	of	the	CSV
file	being	parsed.

If	the	number	of	field	names	extracted	is	less	than	the	number	of	fields
detected,	the	additional	fields	are	automatically	named	"FieldN",	with	N
being	a	progressive	index	indicating	the	field	position	in	the	input	record.

Considering	the	previous	example	CSV	file,	setting	the	"headerRow"
parameter	to	"ON"	would	cause	the	CSV	input	format	to	use	the	first	line
of	the	CSV	file	as	a	header	containing	the	field	names.
With	the	"fixedFields"	parameter	set	to	"ON",	the	CSV	input	format	would
detect	three	fields,	whose	names	would	be	"Name",	"City",	and

"AreaCode".
On	the	other	hand,	with	the	"fixedFields"	parameter	set	to	"OFF",	the
CSV	input	format	would	detect	four	fields,	named	"Name",	"City",
"AreaCode",	and	"Field4".

When	the	"headerRow"	parameter	is	set	to	"OFF",	the	CSV	input	format
assumes	that	the	CSV	file	being	parsed	does	not	contain	a	header,	and
that	its	first	line	is	the	first	data	record	in	the	file.
In	this	case,	if	the	"iHeaderFile"	parameter	is	set	to	the	path	of	a	CSV	file
containing	at	least	one	line,	then	the	CSV	input	format	assumes	that	the
specified	file	contains	a	header,	parses	its	first	line	only,	and	extracts	the
field	names	from	this	line.
On	the	other	hand,	if	the	"iHeaderFile"	parameter	is	left	unspecified,	the
fields	are	automatically	named	"FieldN",	with	N	being	a	progressive
number	indicating	the	field	position	in	the	input	record.

As	an	example,	the	following	CSV	file	does	not	contain	a	header	line:

Jeff,	Redmond,	425
Steve,	Seattle,	206
Edward,	Olympia,	360When	parsed	with	the	"headerRow"	parameter	to	"OFF",	the	CSV	input
format	assumes	that	the	first	line	of	the	CSV	file	is	the	first	data	record	in
the	file.	In	this	case,	the	three	fields	would	be	named	"Field1",	"Field2",
and	"Field3".

Field	Types
The	data	type	of	each	field	extracted	from	the	input	data	is	determined	by
examining	the	first	n	CSV	data	lines,	where	n	is	the	value	specified	for
the	dtLines	parameter,	in	the	following	way:
If	all	the	non-empty	field	values	in	the	first	n	lines	are	formatted	as
decimal	numbers,	then	the	field	is	assumed	to	be	of	the	REAL	type.
If	all	the	non-empty	field	values	in	the	first	n	lines	are	formatted	as
integer	numbers,	then	the	field	is	assumed	to	be	of	the	INTEGER	type.
If	all	the	non-empty	field	values	in	the	first	n	lines	are	formatted	as
timestamps	in	the	format	specified	by	the	iTsFormat	parameter,	then
the	field	is	assumed	to	be	of	the	TIMESTAMP	type.
Otherwise,	the	field	is	assumed	to	be	of	the	STRING	type.

Empty	field	values	are	returned	as	NULL	values.

©	2004	Microsoft	Corporation.	All	rights	reserved.

CSV	Input	Format	Parameters
The	CSV	input	format	supports	the	following	parameters:

headerRow

	 Values: ON	|	OFF

	 Default: ON

	 Description: Specifies	whether	or	not	the	input	CSV	file(s)	begin	with
a	header	line.

	 Details: When	this	parameter	is	set	to	"ON",	the	CSV	input
format	assumes	that	each	file	being	parsed	begins	with
a	header	line,	containing	the	labels	of	the	fields	in	the
file.	If	the	"iHeaderFile"	parameter	is	left	unspecified,
the	CSV	input	format	will	use	the	field	names	in	the	first
file's	header	as	the	names	of	the	input	record	fields.	If	a
value	is	specified	for	the	"iHeaderFile"	parameter,	the
CSV	input	format	will	ignore	the	header	line	in	each	file
being	parsed.
When	this	parameter	is	set	to	"OFF",	the	CSV	input
format	assumes	that	the	file(s)	being	parsed	do	not
contain	a	header,	and	parses	their	first	line	as	data
records.
For	more	information	on	headers	and	field	names,	see
CSV	Input	Format	Fields.

	 Example: -headerRow:OFF
	
iHeaderFile

	 Values: path	to	a	CSV	file

	 Default: not	specified

	 Description: File	containing	field	names.

	 Details: When	parsing	CSV	files	that	do	not	contain	a	header

line,	the	fields	of	the	input	records	produced	by	the	CSV
input	format	are	named	"Field1",	"Field2",	...
To	override	this	behavior	and	use	meaningful	field
names,	this	parameter	can	be	set	to	to	the	path	of	a
CSV	file	containing	a	header	line,	causing	the	CSV
input	format	to	use	the	field	names	in	the	specified	CSV
file's	header	line	as	the	names	of	the	input	record	fields.
Only	the	first	line	of	the	specified	CSV	file	is	parsed,
and	eventual	additional	lines	are	ignored.
For	more	information	on	headers	and	field	names,	see
CSV	Input	Format	Fields.

	 Example: -iHeaderFile:"C:\My	Folder\header.csv"
	
fixedFields

	 Values: ON	|	OFF

	 Default: ON

	 Description: Specifies	whether	or	not	all	the	records	in	the	input
CSV	file(s)	have	a	fixed	number	of	fields.

	 Details: When	this	parameter	is	set	to	"ON",	the	CSV	input
format	assumes	that	the	number	of	fields	in	all	the	input
CSV	records	equals	the	number	of	fields	found	in	the
first	CSV	line	parsed,	or	the	number	of	fields	specified
for	the	"nFields"	parameter.
When	this	parameter	is	set	to	"OFF",	the	CSV	input
format	assumes	that	the	input	CSV	records	have	a
variable	number	of	fields,	and	it	parses	the	first	n	lines
of	the	input	CSV	data	to	determine	the	maximum
number	of	fields	in	the	records,	where	n	is	the	value
specified	for	the	"dtLines"	parameter.
For	more	information	on	how	the	number	of	fields	is
determined,	see	CSV	Input	Format	Fields.

	 Example: -fixedFields:OFF
	

nFields

	 Values: number	of	fields	(number)

	 Default: -1

	 Description: Number	of	fields	in	the	CSV	data	records.

	 Details: When	the	"fixedFields"	parameter	is	set	to	"ON",	this
parameter	specifies	the	number	of	fields	in	the	input
CSV	data.
When	the	"fixedFields"	parameter	is	set	to	"OFF",	this
parameter	specifies	the	minimum	number	of	fields	in
the	input	CSV	data.	If	the	first	n	lines	of	input	data
contain	more	fields	than	the	specified	number	of	fields,
where	n	is	the	value	of	the	"dtLines"	parameter,	then
the	number	of	fields	is	assumed	to	be	the	maximum
number	of	fields	found	within	the	n	lines	of	data.
The	special	"-1"	value	specifies	that	the	number	of
fields	is	to	be	deducted	by	inspecting	the	first	n	lines	of
input	data,	where	n	is	the	value	of	the	"dtLines"
parameter.
For	more	information	on	how	the	number	of	fields	is
determined,	see	CSV	Input	Format	Fields.

	 Example: -nFields:3
	
dtLines

	 Values: number	of	lines	(number)

	 Default: 10

	 Description: Number	of	lines	examined	to	determine	number	of
fields	and	field	types	at	run	time.

	 Details: This	parameter	specifies	the	number	of	initial	lines	that
the	CSV	input	format	examines	to	determine	the
number	of	the	input	record	fields	and	the	data	type	of
each	field.

If	the	value	is	0,	all	fields	will	be	assumed	to	be	of	the
STRING	data	type.
For	more	information	on	how	the	number	of	fields	and
their	data	types	are	determined,	see	CSV	Input	Format
Fields.

	 Example: -dtLines:50
	
iDQuotes

	 Values: Auto	|	Ignore

	 Default: Auto

	 Description: Behavior	with	double-quoted	fields.

	 Details: When	this	parameter	is	set	to	"Auto"	and	a	field	value	is
enclosed	within	double-quote	characters	("),	the	CSV
input	format	parses	the	field	ignoring	comma	characters
(,)	within	the	double-quotes,	and	returns	the	enclosed
value	stripping	off	the	surrounding	double-quote
characters.
When	set	to	"Ignore",	the	CSV	input	format	does	not
perform	any	double-quote	processing,	and	field	values
are	returned	verbatim,	including	double-quote
characters.

	 Example: -iDQuotes:Ignore
	
nSkipLines

	 Values: number	of	lines	(number)

	 Default: 0

	 Description: Number	of	initial	lines	to	skip.

	 Details: When	this	parameter	is	set	to	a	value	greater	than	zero,
the	CSV	input	format	skips	the	first	n	lines	of	each	input
file	before	parsing	its	header	line,	where	n	is	the	value
specified	for	this	parameter.

	 Example: -nSkipLines:5
	
comment

	 Values: any	string

	 Default: not	specified

	 Description: Skip	lines	beginning	with	this	string.

	 Details: When	this	parameter	is	set	to	a	non-empty	string,	the
CSV	input	format	skips	all	the	input	CSV	lines	that
begin	with	this	string.

	 Example: -comment:"Meta	Data:"
	
iCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	CSV	file.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -iCodepage:1245
	
iTsFormat

	 Values: timestamp	format

	 Default: yyyy-MM-dd	hh:mm:ss

	 Description: Format	of	timestamp	values	in	the	input	CSV	data.

	 Details: This	parameter	specifies	the	date	and/or	time	format
used	in	the	CSV	data	being	parsed.	Values	of	fields
matching	the	specified	format	are	returned	as	values	of
the	TIMESTAMP	data	type.	For	more	information	on
date	and	time	formats,	see	Timestamp	Format

Specifiers.

	 Example: -iTsFormat:"MMM	dd,	yyyy"
	
iCheckpoint

	 Values: checkpoint	filename

	 Default: not	specified

	 Description: Load	and	save	checkpoint	information	to	this	file.

	 Details: This	parameter	enables	the	"Incremental	Parsing"
feature	that	allows	sequential	executions	of	the	same
query	to	only	process	new	events	that	have	been
logged	since	the	last	execution.	For	more	information,
see	Parsing	Input	Incrementally.

	 Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

CSV	Input	Format	Examples
Average	Processor	Usage	per	Minute
Parse	a	PerfMon	CSV	log	file	and	calculate	the	average	processor	usage
per	minute:

LogParser	"SELECT	QUANTIZE([(PDH-CSV	4.0)	(Pacific	Daylight	Time)(4
20)],	60)	AS	Minute,	AVG([\\GAB1\Processor(_Total)\%	Processor	Time])	AS
	AVGProcessor	FROM	PerfMon_000001.csv	GROUP	BY	Minute"	-i:CSV	-iT
sFormat:"MM/dd/yyyy	hh:mm:ss.ll"

©	2004	Microsoft	Corporation.	All	rights	reserved.

ETW	Input	Format
The	ETW	input	format	parses	Enterprise	Tracing	for	Windows	trace	log
files	(.etl	files)	and	live	ETW	trace	sessions.

Enterprise	Tracing	for	Windows	(ETW)	is	a	framework	for	implementing
tracing	providers	that	can	be	used	for	debugging	and	capacity	planning.
An	ETW	trace	log	or	live	session	consists	of	a	stream	of	"Events",	each
published	by	a	"Provider".	Windows	event	providers	include	the	Kernel,
IIS,	COM+,	and	many	other	Windows	components.
Each	event	has	its	own	set	of	named	properties,	or	fields,	containing	the
event	data.	The	structure	of	each	event	is	described	by	a	WMI	class
derived	from	the	"EventTrace"	class	and	registered	with	the	WMI
repository	during	the	setup	of	the	provider	component.	The	ETW	input
format	queries	the	WMI	repository	for	these	classes	in	order	to	retrieve
information	about	the	structure	of	each	event.

ETW	trace	log	files	and	live	sessions	can	be	controlled	through	either	the
PerfMon	utility,	or	through	the	tracelog.exe	or	logman.exe	command-line
tools.

From-Entity	Syntax
Fields
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

ETW	Input	Format	From-Entity	Syntax
<from-entity> ::= <etl_file_name>	[,	<etl_file_name>	...]	|	

<live_session_name>

The	<from-entity>	specified	in	queries	using	the	ETW	input	format	can
assume	one	of	the	following	values:

A	comma-separated	list	of	paths	to	.etl	ETW	trace	log	files;
The	name	of	an	ETW	live	tracing	session.

Examples:

FROM	MyTrace1.etl,	MyTrace2.etl,	MyTrace3.etl

FROM	\\COMPUTER01\TraceFiles\MyTrace.etl,	\\COMPUTER02\TraceFiles
\MyTrace.etl
FROM	MyLiveSession

©	2004	Microsoft	Corporation.	All	rights	reserved.

ETW	Input	Format	Fields
The	structure	of	the	input	records	generated	by	the	ETW	input	format	is
determined	at	run	time,	depending	on	the	ETW	trace	being	parsed,	and
on	the	value	specified	for	the	fMode	("field	mode")	parameter,	which	can
be	set	to	"Compact",	"FNames",	"Full",	or	"Meta".

Compact	Field	Mode
When	the	"fMode"	parameter	is	set	to	"Compact",	the	ETW	input	format
generates	an	input	record	for	each	event	in	the	trace	being	parsed.
In	this	mode,	input	records	contain	four	fields	common	to	all	the	events,
plus	an	additional	"UserData"	field	containing	the	values	of	all	the
properties	specific	to	the	event	being	processed,	concatenated	into	a
single	string	value	using	the	character	specified	for	the	compactModeSep
parameter	as	a	separator	between	the	values.
The	following	table	shows	the	fields	of	the	input	records	generated	in	the
"Compact"	field	mode:

Name Type Description

EventNumber INTEGER Index	of	this	event	in	the	trace
being	parsed

EventName STRING Name	of	the	event

EventTypeName STRING Name	of	the	event	type

Timestamp TIMESTAMP Date	and	time	at	which	the	event
was	traced

UserData STRING Event-specific	property	values

The	following	example	shows	some	sample	"UserData"	field	values

generated	in	the	"Compact"	field	mode:

UserData
--
DefaultAppPool|0|http://localhost:80/|GET
{00000000-0000-0000-1200-0060000000fc}|/
DefaultAppPool|0|http://localhost:80/default.htm|GET

The	"Compact"	field	mode	provides	an	easily	readable	way	to	display	the
events	contained	in	an	ETW	trace,	but	queries	operating	in	this	mode	can
not	reference	properties	of	a	specific	event.

FNames	Field	Mode
The	"FNames"	field	mode	operates	similar	to	the	"Compact"	field	mode,
but	each	property	value	in	the	"UserData"	field	is	preceded	by	the	name
of	the	property	for	better	readability.

The	following	example	shows	some	sample	"UserData"	field	values
generated	in	the	"FNames"	field	mode:

UserData

AppPoolId=DefaultAppPool|RawConnId=0|RequestURL=http://localhost:80/|
RequestVerb=GET
ContextId={00000000-0000-0000-1200-0060000000fc}|RequestURL=/
AppPoolId=DefaultAppPool|RawConnId=0|RequestURL=http://localhost:80/d
efault.htm|RequestVerb=GET

Full	Field	Mode
In	"Full"	field	mode,	the	ETW	input	format	generates	an	input	record	for
each	event	in	the	trace	being	parsed.
In	this	mode,	input	records	contain	a	field	for	each	property	of	each	event
generated	by	the	providers	in	the	trace	being	parsed.

When	operating	in	"Full"	field	mode,	the	ETW	input	format	works	with	a
two-stage	approach.
During	the	first	stage,	the	ETW	input	format	examines	the	input	trace	to
determine	which	providers	have	logged	events	in	the	trace	being	parsed.
When	the	providers	parameter	is	left	unspecified,	the	ETW	input	format
pre-processes	a	number	of	events	equal	to	the	value	specified	for	the
dtEventsLog	or	dtEventsLive	parameters,	depending	on	whether	or	not
the	trace	being	parsed	is	a	trace	log	file	or	a	live	trace	session.	After
parsing	these	initial	events,	the	ETW	input	format	assumes	that	the	trace

being	parsed	contains	all	the	events	that	can	be	logged	by	the	providers
found	among	these	initial	events.
On	the	other	hand,	when	the	"providers"	parameter	is	set	to	either	a
comma-separated	list	of	provider	names	or	GUIDs	or	to	the	path	to	a	text
file	containing	a	list	of	provider	names	or	GUIDs,	the	ETW	input	format
assumes	that	the	trace	being	parsed	contains	all	the	events	that	can	be
logged	by	the	specified	providers.

Once	the	set	of	providers	logging	in	the	input	trace	has	been	identified,
the	ETW	input	format	"constructs"	the	input	record	structure.
The	first	20	input	record	fields	are	common	to	all	the	events,	and	they	are
described	in	the	following	table:

Name Type Description

TraceName STRING Trace	file	or	session	name
containing	this	event

EventNumber INTEGER Index	of	this	event	in	the
trace	being	parsed

Timestamp TIMESTAMP Date	and	time	at	which	the
event	was	traced

InstanceID INTEGER InstanceID	field	of	this
event

ParentInstanceID INTEGER ParentInstanceID	field	of
this	event

ParentGUID STRING ParentGUID	field	of	this
event

ProviderDescription STRING Name	of	the	provider	of	this
event

ProviderGUID STRING GUID	of	the	provider	of	this
event

EventName STRING Name	of	this	event

EventDescription STRING Description	of	this	event

EventVersion INTEGER Version	of	this	event

EventGUID STRING GUID	of	this	event

EventType INTEGER Type	of	this	event

EventTypeName STRING Name	of	this	event	type

EventTypeDescription STRING Description	of	this	event
type

EventTypeLevel INTEGER Level	of	this	event	type

ThreadID INTEGER ID	of	the	thread	that	logged
this	event

ProcessID INTEGER ID	of	the	process	that
logged	this	event

KernelTime INTEGER Elapsed	execution	time	for
kernel	mode	instructions,	in
CPU	ticks

UserTime INTEGER Elapsed	execution	time	for
user	mode	instructions,	in
CPU	ticks

These	20	fields	are	then	followed	by	the	union	of	all	the	properties	of	all

the	events	that	can	be	logged	by	the	providers	identified	during	this
stage.

During	the	second	stage,	the	ETW	input	format	parses	the	trace	events
from	beginning	to	end,	generating	an	input	record	for	each	event.
For	any	given	event,	only	the	first	20	input	record	fields	and	the	fields
corresponding	to	the	event	properties	are	populated	with	a	value;	all	the
other	input	record	fields	corresponding	to	properties	of	other	events	are
set	to	NULL	values.

The	following	sample	output	shows	selected	fields	from	the	input	records
generated	when	parsing	the	previous	example	in	"Full"	field	mode:

AppPoolId						RawConnId	ContextId																														RequestURL																
						RequestVerb
--------------	---------	--------------------------------------	-------------------------------	

DefaultAppPool	0									-																																						http://localhost:80/												GE
T
-														-									{00000000-0000-0000-1200-0060000000fc}	/																										
					-
DefaultAppPool	0									-																																						http://localhost:80/default.htm
	GET

Queries	operating	in	"Full"	mode	can	refer	to	individual	properties	of
events,	but	the	input	records	generated	contain	too	many	fields	for	the
results	to	be	eaily	redable.

Meta	Field	Mode
In	"Meta"	field	mode,	the	ETW	input	format	returns	meta-information
about	events,	generating	an	input	record	for	each	property	of	each	event
that	can	be	logged	by	each	provider	in	the	trace(s)	being	parsed.	Input
records	contain	meta-data	about	the	event	properties,	including
information	about	the	property	type,	information	about	the	event
containing	the	property,	and	information	about	the	provider	generating
the	event.

The	"Meta"	field	mode	employs	a	two-stage	parsing	schema	similar	to
the	"Full"	field	mode.	During	the	first	stage,	the	ETW	input	format	pre-
processes	the	input	trace	to	determine	the	set	of	providers	that	generated
events	in	the	trace.
In	this	mode,	however,	once	the	set	of	providers	has	been	identified,	the
ETW	input	format	does	not	process	the	trace,	but	rather	returns	the	event
meta-information	populating	the	input	record	fields	described	in	the
following	table:

Name Type Description

ProviderDescription STRING Description	of	the	provider

ProviderClassName STRING WMI	class	name	of	the
provider

ProviderGUID STRING GUID	of	the	provider

EventName STRING Name	of	the	event

EventDescription STRING Description	of	the	event

EventVersion INTEGER Version	of	the	event

EventClassName STRING WMI	class	name	of	the	event

EventGUID STRING GUID	of	the	Event

EventType INTEGER Type	of	the	event

EventTypeName STRING Name	of	the	event	type

EventTypeDescription STRING Description	of	the	event	type

EventTypeClassName STRING WMI	class	name	of	the	event
type

EventTypeLevel INTEGER Level	of	the	event	type

FieldName STRING Name	of	this	event	field

FieldDescription STRING Description	of	this	event	field

FieldIndex INTEGER Index	of	this	field	among	the
event's	fields

FieldType STRING WMI	type	of	this	field

©	2004	Microsoft	Corporation.	All	rights	reserved.

ETW	Input	Format	Parameters
The	EVT	input	format	supports	the	following	parameters:

fMode

	 Values: Full	|	Compact	|	FNames	|	Meta

	 Default: FNames

	 Description: Operation	mode.

	 Details: This	parameter	specifies	how	the	ETW	input	format
should	return	the	information	contained	in	the	trace(s)
being	parsed.
For	more	information	on	the	different	field	modes,	see
ETW	Input	Format	Fields.

	 Example: -fMode:Full
	
providers

	 Values: filename	or	comma-separated	list	of	provider	names	or
GUIDs

	 Default: not	specified

	 Description: List	of	providers	for	the	"Full"	or	"Meta"	field	modes.

	 Details: This	parameter	specifies	the	set	of	providers	logging	to
the	input	trace(s)	to	allow	the	"Full"	or	"Meta"	field
modes	to	early	detect	the	providers	to	process.	The
value	of	this	parameter	can	either	by	the	path	to	a	text
file	containing	the	providers'	GUIDs	(in	the	same	format
accepted	by	the	"pf"	argument	of	the	logman.exe	tool),
or	a	comma-separated	list	of	provider	names	or	GUIDs.
If	this	parameter	is	not	specified	when	the	ETW	input
format	operates	in	"Full"	or	"Meta"	field	mode,	then	the
set	of	providers	will	be	detected	by	pre-processing	the
first	n	events,	where	n	is	the	value	specified	for	the

"dtEventsLog"	or	"dtEventsLive"	parameters.
For	more	information	about	the	different	field	modes,
see	ETW	Input	Format	Fields.

	 Examples: -providers:MyProviders.guid
	 	 -providers:"IIS:	WWW	Server,IIS:	Active	Server	Pages

(ASP)"
	
dtEventsLog

	 Values: number	of	events	(number)

	 Default: 3000

	 Description: Number	of	trace	log	file	events	examined	to	detect	the
set	of	providers	in	"Full"	or	"Meta"	field	modes.

	 Details: This	parameter	specifies	the	number	of	initial	events
that	the	ETW	input	format	examines	to	detect	the	set	of
providers	logging	in	an	input	trace	log	file	when
operating	in	the	"Full"	or	"Meta"	field	modes.
The	value	of	this	parameter	is	only	used	when	the
"providers"	parameter	is	left	unspecified.
For	more	information	about	the	different	field	modes,
see	ETW	Input	Format	Fields.

	 Example: -dtEventsLog:100
	
dtEventsLive

	 Values: number	of	events	(number)

	 Default: 20

	 Description: Number	of	live	trace	session	events	examined	to	detect
the	set	of	providers	in	"Full"	or	"Meta"	field	modes.

	 Details: This	parameter	specifies	the	number	of	initial	events
that	the	ETW	input	format	examines	to	detect	the	set	of
providers	logging	in	an	input	live	trace	session	when

operating	in	the	"Full"	or	"Meta"	field	modes.
The	value	of	this	parameter	is	only	used	when	the
"providers"	parameter	is	left	unspecified.
For	more	information	about	the	different	field	modes,
see	ETW	Input	Format	Fields.

	 Example: -dtEventsLive:100
	
flushPeriod

	 Values: milliseconds

	 Default: 500

	 Description: Number	of	milliseconds	between	live	trace	session
flushes.

	 Details: When	processing	a	live	trace	session,	the	internal
buffering	mechanisms	of	the	ETW	infrastructure	might
cause	events	to	appear	with	a	noticeable	delay.	This
parameter	specifies	how	often	the	ETW	input	format
should	force	a	buffer	flush	to	retrieve	real-time	events.

	 Example: -flushPeriod:2000
	
ignoreEventTrace

	 Values: ON	|	OFF

	 Default: ON

	 Description: Ignore	EventTrace	events.

	 Details: The	very	first	event	in	any	trace	session	is	the
"EventTrace"	event,	which	contains	meta-data	about
the	trace	session.
This	parameter	specifies	whether	or	not	this	event
should	be	processed	and	returned	by	the	ETW	input
format.

	 Example: -ignoreEventTrace:OFF

	
compactModeSep

	 Values: any	string

	 Default: |

	 Description: Separator	between	the	values	of	the	"UserData"	field	in
the	"Compact"	or	"FNames"	field	modes.

	 Details: When	operating	in	the	"Compact"	or	"FNames"	field
modes,	the	"UserData"	field	contains	all	the	properties
of	the	event	being	processed	concatenated	one	after
the	other,	using	the	value	of	this	parameter	as	a
separator	between	the	elements.

	 Example: -compactModeSep:,
	
expandEnums

	 Values: ON	|	OFF

	 Default: ON

	 Description: Expand	enumeration	event	properties.

	 Details: Many	ETW	events	contain	numeric	properties	whose
values	describe	enumerations.
This	parameter	specifies	whether	or	not	the	numeric
values	of	properties	of	this	type	should	be	expanded	to
return	the	text	representation	of	the	enumeration
values.

	 Example: -expandEnums:OFF
	
ignoreLostEvents

	 Values: ON	|	OFF

	 Default: ON

	 Description: Ignore	lost	events.

	 Details: ETW	traces	contain	information	about	events	that	might
have	been	lost	during	the	tracing	session.
If	this	parameter	is	set	to	"OFF"	and	the	input	trace
indicates	the	presence	of	lost	events,	the	ETW	input
format	generates	a	warning	when	the	trace	has	been
completely	processed	showing	the	number	of	events
that	have	been	lost.

	 Example: -ignoreLostEvents:OFF
	
schemaServer

	 Values: computer	name

	 Default: not	specified

	 Description: Name	of	computer	with	event	schema	information.

	 Details: This	parameter	specifies	the	name	of	the	computer
whose	WMI	repository	contains	the	schema	information
for	the	events	being	parsed.
When	this	parameter	is	not	specified,	the	ETW	input
format	connects	to	the	computer	specified	in	the	from-
entity	if	parsing	a	trace	file	from	a	remote	computer,	or
to	the	local	computer	if	parsing	a	local	trace	file	or	live
tracing	session.

	 Example: -schemaServer:MYCOMPUTER02
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

ETW	Input	Format	Examples
Parsing	an	IIS	6.0	ETW	Trace	Log	File
This	example	shows	how	to	start	a	trace	session	containing	events	from
the	IIS	6.0	providers,	how	to	stop	the	session,	and	how	to	parse	the
resulting	trace	log	file.
The	example	commands	shown	here	apply	to	Windows	Server	2003.

1.	 List	the	GUIDs	of	the	providers	registered	with	the	system
using	the	following	command	from	a	command-line	window:

C:\>logman	query	providers

The	output	of	this	command	will	look	like	the	following
sample:

Provider																																	GUID

IIS:	WWW	Global																										{d55d3bc9-cba9-44df-827e-13
2d3a4596c2}
ACPI	Driver	Trace	Provider															{dab01d4d-2d48-477d-b1c3
-daad0ce6f06b}
Active	Directory:	Kerberos															{bba3add2-c229-4cdb-ae2b-5
7eb6966b0c4}
IIS:	SSL	Filter																										{1fbecc45-c060-4e7c-8a0e-0dbd61
16181b}
IIS:	Request	Monitor																					{3b7b0b4b-4b01-44b4-a95e-3c
755719aebf}
IIS:	WWW	Server																										{3a2a4e84-4c21-4981-ae10-3f
da0d9b0f83}
IIS:	Active	Server	Pages	(ASP)											{06b94d9a-b15e-456e-a4ef
-37c984a2cb4b}
Local	Security	Authority	(LSA)											{cc85922f-db41-11d2-924
4-006008269001}
IIS:	IISADMIN	Global																					{DC1271C2-A0AF-400f-850

2.	 Identify	the	providers	needed	for	the	trace	session;	in	this
example,	the	trace	session	will	be	enabled	for	the	"IIS:	WWW
Server"	and	"IIS:	Active	Server	Pages	(ASP)"	providers.

3.	 Create	a	text	file	containing	the	GUID	of	each	selected
provider	on	a	line,	followed	by	the	tracing	flags	and	tracing
level	values	for	the	provider.	For	more	information	on	the
available	flags	and	levels	for	a	provider,	consult	the
component	documentation.
The	following	example	shows	a	text	file	named
"MyProviders.guid"	containing	the	"IIS:	WWW	Server"	and
"IIS:	Active	Server	Pages	(ASP)"	providers:

{3a2a4e84-4c21-4981-ae10-3fda0d9b0f83}	0xfffffffe	5
{06b94d9a-b15e-456e-a4ef-37c984a2cb4b}	0xffffffff	5

4.	 Start	the	tracing	session	using	the	providers	text	file	as	the
argument	of	the	"-pf"	logman	command-line	parameter:

C-4E42FE16BE1C}
Windows	Kernel	Trace																					{9e814aad-3204-11d2-9a82-0
06008a86939}
ASP.NET	Events																											{AFF081FE-0247-4275-9C4E-
021F3DC1DA35}
NTLM	Security	Protocol																			{C92CF544-91B3-4dc0-8E1
1-C580339A0BF8}
IIS:	WWW	Isapi	Extension																	{a1c2040e-8840-4c31-ba11
-9871031a19ea}
Active	Directory:	SAM																				{8e598056-8993-11d2-819e-0
000f875a064}
HTTP	Service	Trace																							{dd5ef90a-6398-47a4-ad34-4d
cecdef795f}
Active	Directory:	NetLogon															{f33959b4-dbec-11d2-895b-
00c04f79ab69}
Spooler	Trace	Control																				{94a984ef-f525-4bf1-be3c-ef3
74056a592}

The	command	completed	successfully.

C:\>logman	start	ExampleTrace	-pf	MyProviders.guid	-ets

5.	 The	tracing	session	has	now	started,	and	the	selected
providers	will	be	logging	events	for	each	request	to	the	IIS
Web	Server.

6.	 When	desired,	the	tracing	session	can	be	stopped	with	the
following	command:

C:\>logman	stop	ExampleTrace	-ets

7.	 After	the	tracing	session	has	been	stopped,	the	ETW	trace	log
file	named	"ExampleTrace.etl"	is	available	for	use.
The	following	Log	Parser	command	parses	the	ETW	trace	log
file	and	displays	the	logged	events:

C:\>LogParser	"SELECT	*	FROM	ExampleTrace.etl"	-i:ETW

The	output	of	this	command	will	look	like	the	following
sample:

EventNumber	EventName		EventTypeName																Timestamp	
																					UserData
-----------	----------	----------------------------	----------------------------
--	---
--

2											IISGeneral	GENERAL_REQUEST_START								2004-10
-14	20:27:26.624.399000	ContextId={00000000-0000-0000-1200
-0060000000fc}|SiteId=1|AppPoolId=DefaultAppPool|ConnId=-2
88230375077969904|RawConnId=0|RequestURL=http://localhost
:80/|RequestVerb=GET
3											IISFilter		FILTER_START																	2004-10-14	20:27:26
.624.399000	ContextId={00000000-0000-0000-1200-0060000000
fc}|FilterName=C:\WINNT\Microsoft.NET\Framework\v1.1.4322
\aspnet_filter.dll
4											IISFilter		FILTER_PREPROC_HEADERS_START	2004-
10-14	20:27:26.624.399000	ContextId={00000000-0000-0000-12

Parsing	a	live	IIS	6.0	ETW	Trace	Session
This	example	shows	how	to	start	a	live	trace	session	containing	events
from	the	IIS	6.0	providers,	how	to	start	a	Log	Parser	command	that
shows	the	events	in	real-time,	and	how	to	stop	the	session.
The	example	commands	shown	here	apply	to	Windows	Server	2003.

1.	 Execute	steps	1-3	from	the	example	above.
4.	 Start	the	tracing	session	using	the	providers	text	file	as	the

argument	of	the	"-pf"	logman	command-line	parameter,
specifying	also	the	"-rt"	flag	to	enable	a	real-time	tracing
session:

C:\>logman	start	ExampleTrace	-pf	MyProviders.guid	-ets	-rt

00-0060000000fc}
5											IISFilter		FILTER_PREPROC_HEADERS_END			2004-1
0-14	20:27:26.624.399000	ContextId={00000000-0000-0000-120
0-0060000000fc}
6											IISFilter		FILTER_END																			2004-10-14	20:27:26.
624.399000	ContextId={00000000-0000-0000-1200-0060000000
fc}
7											IISFilter		FILTER_START																	2004-10-14	20:27:26
.624.399000	ContextId={00000000-0000-0000-1200-0060000000
fc}|FilterName=C:\Program	Files\Common	Files\Microsoft	Share
d\Web	Server	Extensions\50\bin\fpexedll.dll
8											IISFilter		FILTER_PREPROC_HEADERS_START	2004-
10-14	20:27:26.624.399000	ContextId={00000000-0000-0000-12
00-0060000000fc}
9											IISFilter		FILTER_PREPROC_HEADERS_END			2004-1
0-14	20:27:26.624.399000	ContextId={00000000-0000-0000-120
0-0060000000fc}
10										IISFilter		FILTER_END																			2004-10-14	20:27:26
.624.399000	ContextId={00000000-0000-0000-1200-0060000000
fc}
11										IISCache			URL_CACHE_ACCESS_START							2004-10
-14	20:27:26.624.399000	ContextId={00000000-0000-0000-1200
-0060000000fc}|RequestURL=/

5.	 The	tracing	session	has	now	started,	and	the	selected
providers	will	be	logging	events	for	each	request	to	the	IIS
Web	Server.

6.	 From	a	separate	command-line	shell	window,	execute	the
following	Log	Parser	command	to	parse	the	live	tracing
session	in	real-time:

C:\>LogParser	"SELECT	*	FROM	ExampleTrace"	-i:ETW

This	Log	Parser	command	will	output	the	trace	events
indefinitely,	until	the	command	is	manually	aborted,	or	until
the	tracing	session	is	stopped.

7.	 When	desired,	the	tracing	session	can	be	stopped	with	the
following	command:

C:\>logman	stop	ExampleTrace	-ets

©	2004	Microsoft	Corporation.	All	rights	reserved.

EVT	Input	Format
The	EVT	input	format	returns	events	from	the	Windows	Event	Log	and
from	Event	Log	backup	files	(.evt	files).

This	input	format	reads	event	information	from	the	Windows	Event	Log,
including	local	and	remote	System,	Application,	Security,	and	custom
event	logs,	as	well	as	from	Event	Log	backup	files.

From-Entity	Syntax
Fields
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

EVT	Input	Format	From-Entity	Syntax
<from-entity> ::= <event_log>	[,	<event_log>	...]

<event_log> ::= [\\<computer_name>\]<event_log_name>	|	
<event_log_backup_filename>

The	<from-entity>	specified	in	queries	using	the	EVT	input	format	is	a
comma-separated	list	of:

Names	of	Event	Logs	("System",	"Application",	"Security",	or	a	custom
event	log),	optionally	preceded	by	the	name	of	a	remote	computer	in
the	UNC	notation;
Paths	of	Event	Log	backup	files	(.evt	files),	optionally	including
wildcards.

Names	of	custom	event	logs	that	include	space	characters	must	be
specified	within	single-quote	characters.

Examples:

FROM	System,	Application,	\\SERVER2\System,	\\SERVER2\Application

FROM	System,	Application,	'My	Custom	Event	Log'

FROM	D:\MyEVTLogs*.evt,	\\SERVER2\D$\MyEVTLogs*.evt

FROM	System,	D:\MyEVTLogs\System.evt

©	2004	Microsoft	Corporation.	All	rights	reserved.

EVT	Input	Format	Fields
The	input	records	generated	by	the	EVT	input	format	contain	the
following	fields:

Name Type Description

EventLog STRING Name	of	the	Event	Log	or
Event	Log	backup	file
containing	this	event

RecordNumber INTEGER Index	of	this	event	in	the
Event	Log	or	Event	Log
backup	file	containing	this
event

TimeGenerated TIMESTAMP The	date	and	time	at	which
the	event	was	generated
(local	time)

TimeWritten TIMESTAMP The	date	and	time	at	which
the	event	was	logged	(local
time)

EventID INTEGER The	ID	of	the	event

EventType INTEGER The	numeric	type	of	the
event

EventTypeName STRING The	descriptive	type	of	the
event

EventCategory INTEGER The	numeric	category	of	the

event

EventCategoryName STRING The	descriptive	category	of
the	event

SourceName STRING The	source	that	generated
the	event

Strings STRING The	textual	data	associated
with	the	event

ComputerName STRING The	name	of	the	computer
on	which	the	event	was
generated

SID STRING The	Security	Identifier
associated	with	the	event

Message STRING The	full	event	message

Data STRING The	binary	data	associated
with	the	event

©	2004	Microsoft	Corporation.	All	rights	reserved.

EVT	Input	Format	Parameters
The	EVT	input	format	supports	the	following	parameters:

fullText

	 Values: ON	|	OFF

	 Default: ON

	 Description: Retrieve	the	full	text	message.

	 Details: This	parameter	enables/disables	the	retrieval	of	Event	Log	text
messages.

	 Example: -fullText:OFF
	
resolveSIDs

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Resolve	SID	values	into	full	account	names.

	 Details: When	set	to	"ON",	this	parameter	causes	the	EVT	input	format	to
perform	an	account	name	lookup	for	each	SID	value	in	the	events	being
parsed,	and	return	the	account	name	instead	of	the	SID	alphanumerical
value.

	 Example: -resolveSIDs:ON
	
formatMsg

	 Values: ON	|	OFF

	 Default: ON

	 Description: Format	the	text	message	as	a	single	line.

	 Details: Event	text	messages	often	span	multiple	lines.	When	this	parameter	is

set	to	"ON",	the	EVT	input	format	preserves	readability	of	the	
by	removing	carriage-return,	line-feed,	and	multiple	space	characters
from	the	message	text.
When	this	parameter	is	set	to	"OFF",	the	EVT	input	format	returns	the
original	message	text	with	no	intervening	post-processing.

	 Example: -formatMsg:OFF
	
msgErrorMode

	 Values: NULL	|	ERROR	|	MSG

	 Default: MSG

	 Description: Behavior	when	event	messages	or	event	category	names	cannot	be
resolved.

	 Details: The	text	of	an	event	log	message	and	the	textual	name	of	its	category
are	stored	in	binary	files	installed	with	the	application	that	generates	the
event	log.	In	some	cases,	uninstalling	the	application	or	reconfiguring
the	application	might	cause	the	loss	of	the	necessary	binary	files,	thus
making	it	impossible	to	retrieve	the	text	data	for	those	events	that	had
been	logged	prior	to	the	reconfiguration.
This	parameter	specifies	the	desired	behavior	for	the	EVT	input	format
when	an	event	log	message	text	or	its	category	name	can	not	be
retrieved.
When	this	parameter	is	set	to	"NULL",	the	"Message"	or
"EventCategoryName"	field	value	is	returned	as	a	NULL	value.	When	set
to	"ERROR",	a	parse	error	is	returned.	When	set	to	"MSG",	a	
message	is	returned	for	the	field,	specifying	that	the	text	of	the	message
or	the	category	name	could	not	be	found.

	 Example: -msgErrorMode:NULL
	
fullEventCode

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Return	the	full	event	ID	code	instead	of	the	friendly	code.

	 Details: When	this	parameter	is	set	to	"ON",	the	EVT	input	format	returns	the	full
32-bit	value	of	the	event	ID	code.	When	set	to	"OFF",	the	EVT	input
format	returns	the	lower	16-bit	value	of	the	code	(as	displayed	by	the
Event	Viewer).

	 Example: -fullEventCode:ON
	
direction

	 Values: FW	|	BW

	 Default: FW

	 Description: Chronological	direction	in	which	events	are	retrieved.

	 Details: When	set	to	"FW",	events	are	retrieved	from	the	oldest	to	the	newest.
When	set	to	"BW",	events	are	retrieved	from	the	newest	to	the	oldest.
This	parameter	is	especially	useful	with	queries	that	use	the	
keyword	to	retrieve	the	last	n	logged	events.

	 Example: -direction:BW
	
stringsSep

	 Values: any	string

	 Default: |

	 Description: Separator	between	values	of	the	"Strings"	field.

	 Details: The	"Strings"	field	contains	an	array	of	text	data	associated	with	the
event.	The	value	of	this	field	is	built	by	concatenating	the	
one	after	the	other,	using	the	value	of	this	parameter	as	a	separator
between	the	elements.

	 Example: -stringsSep:,
	
iCheckpoint

	 Values: checkpoint	filename

	 Default: not	specified

	 Description: Load	and	save	checkpoint	information	to	this	file.

	 Details: This	parameter	enables	the	"Incremental	Parsing"	feature	that	allows
sequential	executions	of	the	same	query	to	only	process	new	events	that
have	been	logged	since	the	last	execution.	For	more	information,	see
Parsing	Input	Incrementally.

	 Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc
	
binaryFormat

	 Values: ASC	|	PRINT	|	HEX

	 Default: HEX

	 Description: Format	of	the	"Data"	binary	field.

	 Details: The	"Data"	field	contains	binary	data	that	is	often	not	suitable	to	be
textually	represented.
When	this	parameter	is	set	to	"ASC",	data	bytes	belonging	to	the	0x20-
0x7F	range	are	returned	as	ASCII	characters,	while	data	bytes	outside
the	range	are	returned	as	period	(.)	characters,	as	shown	in	the	following
example:

Bucket:	02096553..rundll32.exe

When	this	parameter	is	set	to	"PRINT",	data	bytes	representing	printable
ASCII	characters	are	returned	as	ASCII	characters,	while	data	bytes	that
do	not	represent	printable	ASCII	characters	are	returned	as	period	(.)
characters,	as	shown	in	the	following	example:

Bucket:	02096553
rundll32.exe
When	this	parameter	is	set	to	"HEX",	all	data	bytes	are	returned	as	two-
digit	hexadecimal	values,	as	shown	in	the	following	example:

4275636B65743A2030323039363535330D0A72756E646C6C33322E657865

	 Example: -binaryFormat:PRINT
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

EVT	Input	Format	Examples
Logons
Create	an	XML	report	file	containing	logon	account	names	and	dates
from	the	Security	Event	Log:

LogParser	"SELECT	TimeGenerated	AS	LogonDate,	EXTRACT_TOKEN(Str
ings,	0,	'|')	AS	Account	INTO	Report.xml	FROM	Security	WHERE	EventID	N
OT	IN	(541;542;543)	AND	EventType	=	8	AND	EventCategory	=	2"

Event	Distribution
Retrieve	the	distribution	of	EventID	values	for	each	Event	Source:

LogParser	"SELECT	SourceName,	EventID,	MUL(PROPCOUNT(*)	ON	(So
urceName),	100.0)	AS	Percent	FROM	System	GROUP	BY	SourceName,	Eve
ntID	ORDER	BY	SourceName,	Percent	DESC"

Event	Message	Report
Create	TSV	files	containing	Event	Messages	for	each	Source	in	the
Application	Event	Log:

LogParser	"SELECT	SourceName,	Message	INTO	myFile_*.tsv	FROM	\\MY
SERVER1\Application,	\\MYSERVER2\Application"

©	2004	Microsoft	Corporation.	All	rights	reserved.

FS	Input	Format
The	FS	input	format	returns	information	on	files	and	directories.

The	FS	input	format	enumerates	the	files	and	directories	matching	the
search	path(s)	specified	in	the	from-entity,	much	like	the	Windows	shell
"dir"	command,	returning	an	input	record	for	each	file	and	directory	in	the
enumeration.

From-Entity	Syntax
Fields
Parameters
Examples

See	also:
REG	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

FS	Input	Format	From-Entity	Syntax
<from-entity> ::= <path>	[,	<path>	...]

The	<from-entity>	specified	in	queries	using	the	FS	input	format	is	a
comma-separated	list	of	paths,	eventually	containing	wildcards.

Examples:

FROM	C:\Windows*.dll,	\\MYSERVER\C$\Windows*.dll

FROM	*.*

FROM	C:*.*,	D:*.*

FROM	C:\Windows\Explorer.exe

©	2004	Microsoft	Corporation.	All	rights	reserved.

FS	Input	Format	Fields
The	input	records	generated	by	the	FS	input	format	contain	the	following
fields:

Name Type Description

Path STRING Full	path	of	the	file	or	directory

Name STRING Name	of	the	file	or	directory

Size INTEGER Size	of	the	file,	in	bytes

Attributes STRING Attributes	of	the	file	or	directory

CreationTime TIMESTAMP Date	and	time	at	which	the	file
or	directory	has	been	created
(local	or	UTC	time,	depending
on	the	value	of	the
useLocalTime	parameter)

LastAccessTime TIMESTAMP Date	and	time	at	which	the	file
or	directory	has	been	last
accessed	(local	or	UTC	time,
depending	on	the	value	of	the
useLocalTime	parameter)

LastWriteTime TIMESTAMP Date	and	time	at	which	the	file
or	directory	has	been	last
modified	(local	or	UTC	time,
depending	on	the	value	of	the
useLocalTime	parameter)

FileVersion STRING Version	of	the	file

ProductVersion STRING Version	of	the	product	the	file	is
distributed	with

InternalName STRING Internal	name	of	the	file

ProductName STRING Name	of	the	product	the	file	is
distributed	with

CompanyName STRING Name	of	the	vendor	company
that	produced	the	file

LegalCopyright STRING Copyright	notices	that	apply	to
the	file

LegalTrademarks STRING Trademarks	and	registered
trademarks	that	apply	to	the	file

PrivateBuild STRING Private	version	information	of
the	file

SpecialBuild STRING Special	file	build	notes

Comments STRING Comments	associated	with	the
file

FileDescription STRING Description	of	the	file

OriginalFilename STRING Original	name	of	the	file

©	2004	Microsoft	Corporation.	All	rights	reserved.

FS	Input	Format	Parameters
The	FS	input	format	supports	the	following	parameters:

recurse

	 Values: recursion	level	(number)

	 Default: -1

	 Description: Max	subdirectory	recursion	level.

	 Details: 0	disables	subdirectory	recursion;	-1	enables	unlimited
recursion.

	 Example: -recurse:2
	
preserveLastAccTime

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Preserve	the	last	access	time	of	visited	files.

	 Details: Enumerating	files	and	directories	causes	their	last
access	time	to	be	updated.	Setting	this	parameter	to
"ON"	causes	the	FS	input	format	to	restore	the	last
access	time	of	the	files	being	visited.

	 Example: -preserveLastAccTime:ON
	
useLocalTime

	 Values: ON	|	OFF

	 Default: ON

	 Description: Use	local	time	for	timestamp	fields.

	 Details: When	set	to	"ON",	the	values	of	the	"CreationTime",

"LastAccessTime",	and	"LastWriteTime"	fields	are
expressed	in	local	time.	When	set	to	"OFF",	the	values
of	these	fields	are	expressed	in	Universal	Time
Coordinates	(UTC)	time.

	 Example: -useLocalTime:OFF
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

FS	Input	Format	Examples
Ten	Largest	Files
Print	the	10	largest	files	on	the	C:	drive:

LogParser	"SELECT	TOP	10	Path,	Name,	Size	FROM	C:*.*	ORDER	BY	Siz
e	DESC"	-i:FS

MD5	Hashes	of	System	Files
Return	the	MD5	hash	of	system	executable	files:

LogParser	"SELECT	Path,	HASHMD5_FILE(Path)	FROM	C:\Windows\Syste
m32*.exe"	-i:FS	-recurse:0

Identical	Files
Find	out	if	there	are	identical	copies	of	the	same	file	on	the	C:	drive:

LogParser	"SELECT	HASHMD5_FILE(Path)	AS	Hash,	COUNT(*)	AS	Num
berOfCopies	FROM	C:*.*	GROUP	BY	Hash	HAVING	NumberOfCopies	>	1
"	-i:FS

©	2004	Microsoft	Corporation.	All	rights	reserved.

HTTPERR	Input	Format
The	HTTPERR	input	format	parses	HTTP	Error	log	files	created	by	the
Http.sys	driver.

HTTP	Error	log	files	are	server-wide	text	log	files	containing	log	entries
for	Http.sys-initiated	error	responses	to	malformed	client	requests	or	to
valid	requests	that	are	aborted	due	to	abnormal	circumstances.

Depending	on	the	version	of	Http.sys,	HTTP	Error	log	files	can	be	logged
in	two	different	formats.
Earlier	versions	of	Http.sys	log	HTTP	Error	log	entries	as	raw	lines
consisting	of	space-separated	values.	The	following	example	shows	a
portion	of	an	HTTP	Error	log	file	generated	by	earlier	versions	of
Http.sys:

2002-06-27	19:11:28	172.30.92.88	3405	172.30.162.213	80	HTTP/1.0	GET	/m
sadc/..%255c../..%255c../..%255c/..%c1%1c../..%c1%1c../..%c1%1c../winnt/sy
stem32/cmd.exe?/c+dir	400	-	URL
2002-06-27	19:11:28	172.30.92.88	3407	172.30.162.213	80	HTTP/1.0	GET	/s
cripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir	400	-	URL
2002-06-27	19:11:28	172.30.92.88	3412	172.30.162.213	80	HTTP/1.0	GET	/s
cripts/..%%35%63../winnt/system32/cmd.exe?/c+dir	400	-	URL

Later	versions	of	Http.sys	log	HTTP	Error	log	files	in	the	W3C	Extended
log	file	format.	Log	files	in	this	format	begin	with	some	informative
headers	("directives"),	the	most	important	of	which	is	the	"#Fields"
directive,	describing	which	fields	are	logged	at	which	position	in	a	log
row.
After	the	directives,	the	log	entries	follow.	Each	log	entry	is	a	space-
separated	list	of	field	values.
The	following	example	shows	a	portion	of	an	HTTP	Error	log	file
generated	by	later	versions	of	Http.sys:

#Software:	Microsoft	HTTP	API	1.0
#Version:	1.0
#Date:	2003-08-08	03:12:41
#Fields:	date	time	c-ip	c-port	s-ip	s-port	cs-version	cs-method	cs-uri	sc-status	s
-siteid	s-reason	s-queuename
2003-08-08	03:12:41	10.193.50.9	3544	10.193.50.9	80	HTTP/1.1	GET	/ISAPI
_OOP/ISAPIExtTest.dll?Action=Crash&Action;=Print&Data;=Req17769_0	-	
1	Connection_Abandoned_By_AppPool	DefaultAppPool
2003-08-08	03:12:41	10.193.50.9	3545	10.193.50.9	80	HTTP/1.1	GET	/ISAPI

From-Entity	Syntax
Fields
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

_OOP/ISAPIExtTest.dll?Action=Crash&Action;=Print&Data;=Req17769_1	-	
1	Connection_Abandoned_By_AppPool	DefaultAppPool
2003-08-08	03:12:43	10.193.50.9	3546	10.193.50.9	80	HTTP/1.1	GET	/ISAPI
_OOP/ISAPIExtTest.dll?Action=Crash&Action;=Print&Data;=Req17769_2	-	
1	Connection_Abandoned_By_AppPool	DefaultAppPool

HTTPERR	Input	Format	From-Entity
Syntax
<from-entity> ::= HTTPERR	|	

<filename>	[,	<filename>	...]

The	<from-entity>	specified	in	queries	using	the	HTTERR	input	format	is
either	the	"HTTPERR"	keyword	or	a	comma-separated	list	of	paths	of
HTTP	Error	log	files.
When	the	"HTTPERR"	keyword	is	used,	the	HTTPERR	input	format
reads	the	HTTP	Error	log	configuration	from	the	registry	and	parses	all
the	HTTP	Error	log	files	currently	available	in	the	HTTP	Error	log	file
directory.

Filenames	can	include	wildcards	(e.g.	"LogFiles\HTTPERR\httperr*.log").

Examples:

FROM	LogFiles\HTTPERR\httperr1.log,	LogFiles\HTTPERR\httperr2.log

FROM	\\MYMACHINE\LogFiles\HTTPERR\httperr*.log

FROM	HTTPERR

©	2004	Microsoft	Corporation.	All	rights	reserved.

HTTPERR	Input	Format	Fields
The	input	records	generated	by	the	HTTPERR	input	format	contain	the
following	fields:

Name Type Description

LogFilename STRING Full	path	of	the	log	file	containing
this	entry

LogRow INTEGER Line	in	the	log	file	containing	this
entry

date TIMESTAMP The	date	on	which	the	request	was
served	(Universal	Time
Coordinates	(UTC)	time)

time TIMESTAMP The	time	at	which	the	request	was
served	(Universal	Time
Coordinates	(UTC)	time)

s-
computername

STRING The	name	of	the	server	that	served
the	request	(this	field	is	logged	by
later	versions	of	Http.sys	only)

c-ip STRING The	IP	address	of	the	client	that
made	the	request

c-port INTEGER The	client	port	number	that	sent
the	request

s-ip STRING The	IP	address	of	the	server	that
served	the	request

s-port INTEGER The	server	port	number	that
received	the	request

cs-version STRING The	HTTP	version	of	the	client
request

cs-method STRING The	HTTP	request	verb

cs-uri STRING The	HTTP	request	uri

cs(User-
Agent)

STRING The	client	request	User-Agent
header	(this	field	is	logged	by	later
versions	of	Http.sys	only)

cs(Cookie) STRING The	client	request	Cookie	header
(this	field	is	logged	by	later
versions	of	Http.sys	only)

cs(Referer) STRING The	client	request	Referer	header
(this	field	is	logged	by	later
versions	of	Http.sys	only)

cs-host STRING The	client	request	Host	header
(this	field	is	logged	by	later
versions	of	Http.sys	only)

sc-status INTEGER The	response	HTTP	status	code

sc-bytes INTEGER The	number	of	bytes	in	the
response	sent	by	the	server	(this
field	is	logged	by	later	versions	of
Http.sys	only)

cs-bytes INTEGER The	number	of	bytes	in	the	request

sent	by	the	client	(this	field	is
logged	by	later	versions	of	Http.sys
only)

time-taken INTEGER The	number	of	milliseconds
elapsed	since	the	moment	the
server	received	the	request	to	the
moment	the	server	sent	the
response	to	the	client	(this	field	is
logged	by	later	versions	of	Http.sys
only)

s-siteid INTEGER The	IIS	site	instance	number	that
served	the	request

s-reason STRING Information	about	why	the	error
occurred

s-queuename STRING The	name	of	the	application	pool
hosting	the	IIS	worker	process	that
processed	the	request	(this	field	is
logged	by	later	versions	of	Http.sys
only)

©	2004	Microsoft	Corporation.	All	rights	reserved.

HTTPERR	Input	Format	Parameters
The	HTTPERR	input	format	supports	the	following	parameters:

iCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	log	file.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -iCodepage:1245
	
minDateMod

	 Values: date/time	(in	"yyyy-MM-dd	hh:mm:ss"	format)

	 Default: not	specified

	 Description: Minimum	file	last	modified	date,	in	local	time
coordinates.

	 Details: When	this	parameter	is	specified,	the	HTTPERR	input
format	processes	only	log	files	that	have	been	modified
after	the	specified	date.

	 Example: -minDateMod:"2004-05-28	22:05:10"
	
dirTime

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Use	the	value	of	the	"#Date"	directive	for	the	"date"
and/or	"time"	field	values	when	these	fields	are	not
logged.

	 Details: When	a	log	file	is	configured	to	not	log	the	"date"	and/or
"time"	fields,	specifying	"ON"	for	this	parameters	causes
the	HTTPERR	input	format	to	generate	"date"	and
"time"	values	using	the	value	of	the	last	seen	"#Date"
directive.

	 Example: -dirTime:ON
	
iCheckpoint

	 Values: checkpoint	filename

	 Default: not	specified

	 Description: Load	and	save	checkpoint	information	to	this	file.

	 Details: This	parameter	enables	the	"Incremental	Parsing"
feature	that	allows	sequential	executions	of	the	same
query	to	only	process	new	log	entries	that	have	been
logged	since	the	last	execution.	For	more	information,
see	Parsing	Input	Incrementally.

	 Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

HTTPERR	Input	Format	Examples
Errors	Distribution	Chart
Create	a	pie	chart	containing	the	distribution	of	errors	in	the	HTTP	Error
logs:

LogParser	"SELECT	sc-status,	PROPCOUNT(*)	AS	Percentage	INTO	Pie.gif	
FROM	HTTPERR	GROUP	BY	sc-status	ORDER	BY	Percentage	DESC"	-cha
rtType:PieExploded	-chartTitle:"Errors	Distribution"	-categories:off

©	2004	Microsoft	Corporation.	All	rights	reserved.

IIS	Input	Format
The	IIS	input	format	parses	IIS	log	files	in	the	Microsoft	IIS	Log	File
Format.

The	Microsoft	IIS	Log	File	Format	is	a	text-based,	fixed-field	format.	Log
entries	are	logged	on	a	single	line,	consisting	of	a	comma-separated	list
of	field	values.

The	following	example	shows	a	portion	of	a	Microsoft	IIS	Log	File	Format
log	file:

192.168.114.201,	-,	03/20/01,	7:55:20,	W3SVC2,	SERVER,	172.21.13.45,	450
2,	163,	3223,	200,	0,	GET,	/DeptLogo.gif,	-,
192.168.110.54,	-,	03/20/01,	7:57:20,	W3SVC2,	SERVER,	172.21.13.45,	411,	
221,	1967,	200,	0,	GET,	/style.css,	-,From-Entity	Syntax
Fields
Parameters
Examples

See	also:
IIS	Output	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

IIS	Input	Format	From-Entity	Syntax
<from-entity> ::= <filename>	|	<SiteID>	[,	<filename>	|	<SiteID>	...]

<SiteID> ::= <	site_number	>	<	server_comment	>
<	site_metabase_path	>

The	<from-entity>	specified	in	queries	using	the	IIS	input	format	is	a
comma-separated	list	of:

Paths	of	Microsoft	IIS	Log	File	Format	log	files;
IIS	Virtual	Site	"identifiers".

"Site	identifiers"	must	be	enclosed	within	angle	brackets	(<	and	>),	and
can	have	one	of	the	following	values:
The	numeric	site	ID	(e.g.	"<1>",	"<28163489>");
The	text	value	of	the	"ServerComment"	property	of	the	site	(e.g.	"<My
External	Site>",	"<www.margiestravel.com>");
The	fully-qualified	ADSI	metabase	path	to	the	site	(e.g.	"
<//MYSERVER/W3SVC/1>"),	using	either	the	numeric	site	ID	or	the
text	value	of	the	"ServerComment"	property	of	the	site.

When	a	"site	identifier"	is	used,	the	IIS	input	format	connects	to	the
specified	machine's	metabase,	gathers	information	on	the	site's	current
logging	properties,	and	parses	all	the	log	files	in	the	site's	current	log	file
directory.

Filenames	and	"Site	identifiers"	can	also	include	wildcards	(e.g.
"LogFiles\in04*.log",	"<www.*.com>").

Examples:

FROM	LogFiles\in04*log,	LogFiles\in03*.log,	\\MyServer\LoggingShare\W3
SVC2\in04*.log
FROM	<1>,	<2>,	<My	External	Site>,	inetsv9.log

FROM	<www.net*home.com>,	<//MyServer2/W3SVC/www.net*home.com>,
	<//MyServer2/MSFTPSVC/*>,	<*>

©	2004	Microsoft	Corporation.	All	rights	reserved.

IIS	Input	Format	Fields
The	input	records	generated	by	the	IIS	input	format	contain	the	following
fields:

Name Type Description

LogFilename STRING Full	path	of	the	log	file
containing	this	entry

LogRow INTEGER Line	in	the	log	file	containing
this	entry

UserIP STRING The	IP	address	of	the	client	that
made	the	request

UserName STRING The	name	of	the	authenticated
user	that	made	the	request,	or
NULL	if	the	request	was	from
an	anonymous	user

Date TIMESTAMP The	date	on	which	the	request
was	served	(local	time)

Time TIMESTAMP The	time	at	which	the	request
was	served	(local	time)

ServiceInstance STRING The	IIS	service	name	and	site
instance	number	that	served
the	request

HostName STRING The	name	of	the	server	that
served	the	request

ServerIP STRING The	IP	address	of	the	server
that	served	the	request

TimeTaken INTEGER The	number	of	milliseconds
elapsed	since	the	moment	the
server	received	the	request	to
the	moment	the	server	sent	the
last	response	chunk	to	the
client

BytesSent INTEGER The	number	of	bytes	in	the
request	sent	by	the	client

BytesReceived INTEGER The	number	of	bytes	in	the
response	sent	by	the	server

StatusCode INTEGER The	response	HTTP	or	FTP
status	code

Win32StatusCode INTEGER The	Windows	status	code
associated	with	the	response
HTTP	or	FTP	status	code

RequestType STRING The	HTTP	request	verb	or	FTP
operation

Target STRING The	HTTP	request	uri-stem	or
FTP	operation	target

Parameters STRING The	HTTP	request	uri-query,	or
NULL	if	the	requested	URI	did
not	include	a	uri-query

©	2004	Microsoft	Corporation.	All	rights	reserved.

IIS	Input	Format	Parameters
The	IIS	input	format	supports	the	following	parameters:

iCodepage

	 Values: codepage	ID	(number)

	 Default: -2

	 Description: Codepage	of	the	log	file.

	 Details: 0	is	the	system	codepage;	-2	specifies	that	the
codepage	is	automatically	determined	by	inspecting	the
filename	and/or	the	site's	"LogInUTF8"	property.

	 Example: -iCodepage:1245
	
recurse

	 Values: recursion	level	(number)

	 Default: 0

	 Description: Max	subdirectory	recursion	level.

	 Details: 0	disables	subdirectory	recursion;	-1	enables	unlimited
recursion.

	 Example: -recurse:-1
	
minDateMod

	 Values: date/time	(in	"yyyy-MM-dd	hh:mm:ss"	format)

	 Default: not	specified

	 Description: Minimum	file	last	modified	date,	in	local	time
coordinates.

	 Details: When	this	parameter	is	specified,	the	IIS	input	format

processes	only	log	files	that	have	been	modified	after
the	specified	date.

	 Example: -minDateMod:"2004-05-28	22:05:10"
	
locale

	 Values: 3-character	locale	ID

	 Default: DEF

	 Description: ID	of	the	locale	in	which	the	log	file	was	generated.

	 Details: IIS	versions	earlier	than	6.0	log	the	"Date"	and	"Time"
fields	using	the	current	system	locale	date	and	time
formats.	IIS	6.0	and	later	versions	use	the	ENU	locale
instead,	regardless	of	the	system	locale	settings.
For	these	reasons,	when	parsing	Microsoft	IIS	Log	File
Format	log	files	on	a	locale	whose	date	and	time
formats	do	not	match	the	formats	of	the	locale	of	the
computer	where	the	log	file	has	been	created,	users
need	to	specify	the	ID	of	the	system	locale	of	the
computer	that	created	the	log	file.
The	special	"DEF"	value	means	the	current	system
locale.

	 Example: -locale:JPN
	
iCheckpoint

	 Values: checkpoint	filename

	 Default: not	specified

	 Description: Load	and	save	checkpoint	information	to	this	file.

	 Details: This	parameter	enables	the	"Incremental	Parsing"
feature	that	allows	sequential	executions	of	the	same
query	to	only	process	new	log	entries	that	have	been
logged	since	the	last	execution.	For	more	information,
see	Parsing	Input	Incrementally.

	 Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

IIS	Input	Format	Examples
Top	20	URL's	for	a	Site
Create	a	chart	containing	the	TOP	20	URL's	in	the
"www.margiestravel.com"	web	site	(assumed	to	be	logging	in	the	IIS	log
format):

LogParser	"SELECT	TOP	20	Target,	COUNT(*)	AS	Hits	INTO	MyChart.gif	
FROM	<www.margiestravel.com>	GROUP	BY	Target	ORDER	BY	Hits	DES
C"	-chartType:Column3D	-groupSize:1024x768

Export	Errors	to	SYSLOG
Send	error	entries	in	the	IIS	log	to	a	SYSLOG	server:

LogParser	"SELECT	TO_TIMESTAMP(Date,	Time),	CASE	StatusCode	WHE
N	500	THEN	'emerg'	ELSE	'err'	END	AS	MySeverity,	HostName	AS	MyHost
name,	Target	INTO	@myserver	FROM	<1>	WHERE	StatusCode	>=	400"	-o:
SYSLOG	-severity:$MySeverity	-hostName:$MyHostname
Bytes	by	Extension	Chart
Create	a	pie	chart	with	the	total	number	of	bytes	generated	by	each
extension:

LogParser	"SELECT	EXTRACT_EXTENSION(Target)	AS	Extension,	MUL(
PROPSUM(BytesReceived),100.0)	AS	Bytes	INTO	Pie.gif	FROM	<1>	GRO
UP	BY	Extension	ORDER	BY	Bytes	DESC"	-chartType:PieExploded	-chartTi
tle:"Bytes	per	extension"	-categories:off

©	2004	Microsoft	Corporation.	All	rights	reserved.

IISODBC	Input	Format
The	IISODBC	input	format	returns	database	records	from	the	tables
logged	to	by	IIS	when	configured	to	log	in	the	ODBC	Log	Format.

From-Entity	Syntax
Fields
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

IISODBC	Input	Format	From-Entity
Syntax
<from-
entity>

::= <SiteID>	[,	<SiteID>	...]	|
table:<tablename>;username:<username>;password:
<password>;dsn:<dsn>

<SiteID> ::= <	site_number	>
<	server_comment	>
<	site_metabase_path	>

The	<from-entity>	specified	in	queries	using	the	IISODBC	input	format	is
either	a	comma-separated	list	of	IIS	Virtual	Site	"identifiers",	or	a	single
specification	of	the	ODBC	parameters	needed	to	access	the	table.

"Site	identifiers"	must	be	enclosed	within	angle	brackets	(<	and	>),	and
can	have	one	of	the	following	values:

The	numeric	site	ID	(e.g.	"<1>",	"<28163489>");
The	text	value	of	the	"ServerComment"	property	of	the	site	(e.g.	"<My
External	Site>",	"<www.margiestravel.com>");
The	fully-qualified	ADSI	metabase	path	to	the	site	(e.g.	"
<//MYSERVER/W3SVC/1>"),	using	either	the	numeric	site	ID	or	the
text	value	of	the	"ServerComment"	property	of	the	site.

When	a	"site	identifier"	is	used,	the	IISODBC	input	format	connects	to	the
specified	machine's	metabase,	gathers	information	on	the	site's	current
ODBC	logging	properties,	and	uses	this	information	to	connect	to	the
database	table.

"Site	identifiers"	can	also	include	wildcards	(e.g.	"<www.*.com>").

Examples:

FROM	<1>,	<2>,	<My	External	Site>

FROM	table:MYLOGTABLE;username:IISLOGUSER;password:IISLOGUS
ERPW;dsn:IISLOGDSN

©	2004	Microsoft	Corporation.	All	rights	reserved.

IISODBC	Input	Format	Fields
The	input	records	generated	by	the	IISODBC	input	format	contain	the
following	fields:

Name Type Description

ClientHost STRING The	IP	address	of	the	client	that
made	the	request

Username STRING The	name	of	the	authenticated
user	that	made	the	request,	or
NULL	if	the	request	was	from	an
anonymous	user

LogTime TIMESTAMP The	date	and	time	at	which	the
request	was	served	(local	time)

Service INTEGER The	IIS	service	name	and	site
instance	number	that	served	the
request

Machine STRING The	name	of	the	server	that
served	the	request

ServerIP STRING The	IP	address	of	the	server	that
served	the	request

ProcessingTime INTEGER The	number	of	milliseconds
elapsed	since	the	moment	the
server	received	the	request	to	the
moment	the	server	sent	the	last

response	chunk	to	the	client

BytesRecvd INTEGER The	number	of	bytes	in	the
request	sent	by	the	client

BytesSent INTEGER The	number	of	bytes	in	the
response	sent	by	the	server

ServiceStatus INTEGER The	response	HTTP	or	FTP
status	code

Win32Status INTEGER The	Windows	status	code
associated	with	the	response
HTTP	or	FTP	status	code

Operation STRING The	HTTP	request	verb	or	FTP
operation

Target STRING The	HTTP	request	uri-stem	or
FTP	operation	target

Parameters STRING The	HTTP	request	uri-query,	or
NULL	if	the	requested	URI	did	not
include	a	uri-query

©	2004	Microsoft	Corporation.	All	rights	reserved.

IISODBC	Input	Format	Examples
Top	20	URL's	for	a	Site
Create	a	chart	containing	the	TOP	20	URL's	in	the
"www.margiestravel.com"	web	site	(assumed	to	be	logging	in	the	ODBC
log	format):

LogParser	"SELECT	TOP	20	Target,	COUNT(*)	AS	Hits	INTO	MyChart.gif	
FROM	<www.margiestravel.com>	GROUP	BY	Target	ORDER	BY	Hits	DES
C"	-chartType:Column3D	-groupSize:1024x768

©	2004	Microsoft	Corporation.	All	rights	reserved.

IISW3C	Input	Format
The	IISW3C	input	format	parses	IIS	log	files	in	the	W3C	Extended	Log
File	Format.

IIS	web	sites	logging	in	the	W3C	Extended	format	can	be	configured	to
log	only	a	specific	subset	of	the	available	fields.
Log	files	in	this	format	begin	with	some	informative	headers	("directives"),
the	most	important	of	which	is	the	"#Fields"	directive,	describing	which
fields	are	logged	at	which	position	in	a	log	row.
After	the	directives,	the	log	entries	follow.	Each	log	entry	is	a	space-
separated	list	of	field	values.

If	the	logging	configuration	of	an	IIS	virtual	site	is	updated,	the	structure
of	the	fields	in	the	file	that	is	currently	logged	to	might	change	according
to	the	new	configuration.	In	this	case,	a	new	"#Fields"	directive	is	logged
describing	the	new	fields	structure,	and	the	IISW3C	input	format	keeps
track	of	the	structure	change	and	parses	the	new	log	entries	accordingly.

The	following	example	shows	a	portion	of	a	W3C	Extended	Log	File
Format	log	file:

#Software:	Microsoft	Internet	Information	Services	5.0
#Version:	1.0
#Date:	2003-11-18	00:28:33
#Fields:	date	c-ip	cs-uri-stem	cs-bytes
2003-11-18	192.168.1.101	/Default.htm	100
2003-11-18	192.168.1.104	/hitcount.asp	200
2003-11-18	192.168.1.102	/images/address.gif
2003-11-18	192.168.1.102	/cgi-bin/counts.exe	400

From-Entity	Syntax
Fields
Parameters
Examples

See	also:
W3C	Input	Format
W3C	Output	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

IISW3C	Input	Format	From-Entity	Syntax
<from-entity> ::= <filename>	|	<SiteID>	[,	<filename>	|	<SiteID>	...]

<SiteID> ::= <	site_number	>	<	server_comment	>
<	site_metabase_path	>

The	<from-entity>	specified	in	queries	using	the	IISW3C	input	format	is	a
comma-separated	list	of:

Paths	of	IIS	W3C	Extended	log	files;
IIS	Virtual	Site	"identifiers".

"Site	identifiers"	must	be	enclosed	within	angle	brackets	(<	and	>),	and
can	have	one	of	the	following	values:
The	numeric	site	ID	(e.g.	"<1>",	"<28163489>");
The	text	value	of	the	"ServerComment"	property	of	the	site	(e.g.	"<My
External	Site>",	"<www.margiestravel.com>");
The	fully-qualified	ADSI	metabase	path	to	the	site	(e.g.	"
<//MYSERVER/W3SVC/1>"),	using	either	the	numeric	site	ID	or	the
text	value	of	the	"ServerComment"	property	of	the	site.

When	a	"site	identifier"	is	used,	the	IISW3C	input	format	connects	to	the
specified	machine's	metabase,	gathers	information	on	the	site's	current
logging	properties,	and	parses	all	the	log	files	in	the	site's	current	log	file
directory.

Filenames	and	"Site	identifiers"	can	also	include	wildcards	(e.g.
"LogFiles\ex04*.log",	"<www.*.com>").

Examples:

FROM	LogFiles\ex04*log,	LogFiles\ex03*.log,	\\MyServer\LoggingShare\W3
SVC2\ex04*.log
FROM	<1>,	<2>,	<My	External	Site>,	extend9.log

FROM	<www.net*home.com>,	<//MyServer2/W3SVC/www.net*home.com>,
	<//MyServer2/MSFTPSVC/*>,	<*>

©	2004	Microsoft	Corporation.	All	rights	reserved.

IISW3C	Input	Format	Fields
The	input	records	generated	by	the	IISW3C	input	format	contain	the
following	fields:

Name Type Description

LogFilename STRING Full	path	of	the	log	file	containing
this	entry

LogRow INTEGER Line	in	the	log	file	containing	this
entry

date TIMESTAMP The	date	on	which	the	request	was
served	(Universal	Time
Coordinates	(UTC)	time)

time TIMESTAMP The	time	at	which	the	request	was
served	(Universal	Time
Coordinates	(UTC)	time)

c-ip STRING The	IP	address	of	the	client	that
made	the	request

cs-username STRING The	name	of	the	authenticated
user	that	made	the	request,	or
NULL	if	the	request	was	from	an
anonymous	user

s-sitename STRING The	IIS	service	name	and	site
instance	number	that	served	the
request

s-
computername

STRING The	name	of	the	server	that	served
the	request

s-ip STRING The	IP	address	of	the	server	that
served	the	request

s-port INTEGER The	server	port	number	that
received	the	request

cs-method STRING The	HTTP	request	verb	or	FTP
operation

cs-uri-stem STRING The	HTTP	request	uri-stem	or	FTP
operation	target

cs-uri-query STRING The	HTTP	request	uri-query,	or
NULL	if	the	requested	URI	did	not
include	a	uri-query

sc-status INTEGER The	response	HTTP	or	FTP	status
code

sc-substatus INTEGER The	response	HTTP	sub-status
code	(this	field	is	logged	by	IIS
version	6.0	and	later	only)

sc-win32-
status

INTEGER The	Windows	status	code
associated	with	the	response
HTTP	or	FTP	status	code

sc-bytes INTEGER The	number	of	bytes	in	the
response	sent	by	the	server

cs-bytes INTEGER The	number	of	bytes	in	the	request

sent	by	the	client

time-taken INTEGER The	number	of	milliseconds
elapsed	since	the	moment	the
server	received	the	request	to	the
moment	the	server	sent	the	last
response	chunk	to	the	client

cs-version STRING The	HTTP	version	of	the	client
request

cs-host STRING The	client	request	Host	header

cs(User-
Agent)

STRING The	client	request	User-Agent
header

cs(Cookie) STRING The	client	request	Cookie	header

cs(Referer) STRING The	client	request	Referer	header

s-event STRING The	type	of	log	event	(this	field	is
logged	by	IIS	version	5.0	only
when	the	"Process	Accounting
Logging"	feature	is	enabled)

s-process-type STRING The	type	of	process	that	triggered
the	log	event	(this	field	is	logged
by	IIS	version	5.0	only	when	the
"Process	Accounting	Logging"
feature	is	enabled)

s-user-time REAL The	total	accumulated	User	Mode
processor	time,	in	percentage,	that

the	site	used	during	the	current
interval	(this	field	is	logged	by	IIS
version	5.0	only	when	the
"Process	Accounting	Logging"
feature	is	enabled)

s-kernel-time REAL The	total	accumulated	Kernel
Mode	processor	time,	in
percentage,	that	the	site	used
during	the	current	interval	(this
field	is	logged	by	IIS	version	5.0
only	when	the	"Process
Accounting	Logging"	feature	is
enabled)

s-page-faults INTEGER The	total	number	of	memory
references	that	resulted	in	memory
page	faults	during	the	current
interval	(this	field	is	logged	by	IIS
version	5.0	only	when	the
"Process	Accounting	Logging"
feature	is	enabled)

s-total-procs INTEGER The	total	number	of	applications
created	during	the	current	interval
(this	field	is	logged	by	IIS	version
5.0	only	when	the	"Process
Accounting	Logging"	feature	is
enabled)

s-active-procs INTEGER The	total	number	of	applications

running	when	the	log	event	was
triggered	(this	field	is	logged	by	IIS
version	5.0	only	when	the
"Process	Accounting	Logging"
feature	is	enabled)

s-stopped-
procs

INTEGER The	total	number	of	applications
stopped	due	to	process	throttling
during	the	current	interval	(this
field	is	logged	by	IIS	version	5.0
only	when	the	"Process
Accounting	Logging"	feature	is
enabled)

©	2004	Microsoft	Corporation.	All	rights	reserved.

IISW3C	Input	Format	Parameters
The	IISW3C	input	format	supports	the	following	parameters:

iCodepage

	 Values: codepage	ID	(number)

	 Default: -2

	 Description: Codepage	of	the	log	file.

	 Details: 0	is	the	system	codepage;	-2	specifies	that	the
codepage	is	automatically	determined	by	inspecting	the
filename	and/or	the	site's	"LogInUTF8"	property.

	 Example: -iCodepage:1245
	
recurse

	 Values: recursion	level	(number)

	 Default: 0

	 Description: Max	subdirectory	recursion	level.

	 Details: 0	disables	subdirectory	recursion;	-1	enables	unlimited
recursion.

	 Example: -recurse:-1
	
minDateMod

	 Values: date/time	(in	"yyyy-MM-dd	hh:mm:ss"	format)

	 Default: not	specified

	 Description: Minimum	file	last	modified	date,	in	local	time
coordinates.

	 Details: When	this	parameter	is	specified,	the	IISW3C	input

format	processes	only	log	files	that	have	been	modified
after	the	specified	date.

	 Example: -minDateMod:"2004-05-28	22:05:10"
	
dQuotes

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Specifies	that	string	values	in	the	log	are	double-
quoted.

	 Details: Log	processors	might	generate	W3C	logs	whose	string
values	are	enclosed	in	double-quotes.

	 Example: -dQuotes:ON
	
dirTime

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Use	the	value	of	the	"#Date"	directive	for	the	"date"
and/or	"time"	field	values	when	these	fields	are	not
logged.

	 Details: When	a	log	file	is	configured	to	not	log	the	"date"	and/or
"time"	fields,	specifying	"ON"	for	this	parameters	causes
the	IISW3C	input	format	to	generate	"date"	and	"time"
values	using	the	value	of	the	last	seen	"#Date"
directive.

	 Example: -dirTime:ON
	
consolidateLogs

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Return	entries	from	all	the	input	log	files	ordering	by
date	and	time.

	 Details: When	a	from-entity	refers	to	log	files	from	multiple	IIS
virtual	sites,	specifying	ON	for	this	parameter	causes
the	IISW3C	input	format	to	parse	all	the	input	log	files	in
parallel,	returning	entries	ordered	by	the	values	of	the
"date"	and	"time"	fields	in	the	log	files;	the	input	records
returned	will	thus	appear	as	if	a	single	IISW3C	log	file
was	being	parsed.
Enabling	this	feature	is	equivalent	to	executing	a	query
with	an	"ORDER	BY	date,	time"	clause	on	all	the	log
files.	However,	the	implementation	of	this	feature
leverages	the	pre-existing	chronological	order	of	entries
in	each	log	file,	and	it	does	not	require	the	extensive
memory	resources	otherwise	required	by	the	ORDER
BY	query	clause.

	 Example: -consolidateLogs:ON
	
iCheckpoint

	 Values: checkpoint	filename

	 Default: not	specified

	 Description: Load	and	save	checkpoint	information	to	this	file.

	 Details: This	parameter	enables	the	"Incremental	Parsing"
feature	that	allows	sequential	executions	of	the	same
query	to	only	process	new	log	entries	that	have	been
logged	since	the	last	execution.	For	more	information,
see	Parsing	Input	Incrementally.

	 Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

IISW3C	Input	Format	Examples
Top	20	URL's	for	a	Site
Create	a	chart	containing	the	TOP	20	URL's	in	the
"www.margiestravel.com"	web	site	(assumed	to	be	logging	in	the	W3C
log	format):

LogParser	"SELECT	TOP	20	cs-uri-stem,	COUNT(*)	AS	Hits	INTO	MyChart
.gif	FROM	<www.margiestravel.com>	GROUP	BY	cs-uri-stem	ORDER	BY	
Hits	DESC"	-chartType:Column3D	-groupSize:1024x768

Export	Errors	to	SYSLOG
Send	error	entries	in	the	W3C	log	to	a	SYSLOG	server:

LogParser	"SELECT	TO_TIMESTAMP(date,time),	CASE	sc-status	WHEN	5
00	THEN	'emerg'	ELSE	'err'	END	AS	MySeverity,	s-computername	AS	MyHo
stname,	cs-uri-stem	INTO	@myserver	FROM	<1>	WHERE	sc-status	>=	400"	
-o:SYSLOG	-severity:$MySeverity	-hostName:$MyHostname
Bytes	by	Extension	Chart
Create	a	pie	chart	with	the	total	number	of	bytes	generated	by	each
extension:

LogParser	"SELECT	EXTRACT_EXTENSION(cs-uri-stem)	AS	Extension,	M
UL(PROPSUM(sc-bytes),100.0)	AS	Bytes	INTO	Pie.gif	FROM	<1>	GROUP	
BY	Extension	ORDER	BY	Bytes	DESC"	-chartType:PieExploded	-chartTitle:"
Bytes	per	extension"	-categories:off

©	2004	Microsoft	Corporation.	All	rights	reserved.

NCSA	Input	Format
The	NCSA	input	format	parses	log	files	in	the	NCSA	Common,
Combined,	and	Extended	Log	File	Formats.

The	NCSA	Log	File	Format	is	a	text-based,	fixed-field	format.	Log	entries
are	logged	on	a	single	line,	consisting	of	a	space-separated	list	of	field
values.
There	are	three	versions	of	the	NCSA	Log	File	Format:	"Common",
"Combined",	and	"Extended".	The	three	versions	differ	by	the	number	of
fields	that	are	logged	for	each	request.
IIS	can	log	NCSA	Common	Log	File	Format	log	files,	while	other	web
servers	can	be	configured	to	log	with	the	Combined	and	Extended
formats.

The	following	example	shows	a	portion	of	an	NCSA	Common	Log	File
Format	log	file:

172.21.13.45	-	Microsoft\User	[08/Apr/2001:17:39:04	-0800]	"GET	/scripts/iis
admin/ism.dll?http/serv	HTTP/1.0"	200	3401
172.21.201.112	-	-	[08/Apr/2001:21:01:19	-0800]	"GET	/style.css	HTTP/1.0"	
200	3401
The	following	example	shows	a	portion	of	an	NCSA	Combined	Log	File
Format	log	file:

172.21.13.45	-	Microsoft\User	[08/Apr/2001:17:39:04	-0800]	"GET	/scripts/iis
admin/ism.dll?http/serv	HTTP/1.0"	200	3401	"http://www.microsoft.com/"	"M
ozilla/4.05	[en]	(WinNT;	I)"	"USERID=CustomerA"
172.21.201.112	-	-	[08/Apr/2001:21:01:19	-0800]	"GET	/style.css	HTTP/1.0"	
200	1937	"http://www.microsoft.com/"	"Mozilla/4.05	[en]	(WinNT;	I)"	"USER
ID=CustomerA"

From-Entity	Syntax
Fields
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

NCSA	Input	Format	From-Entity	Syntax
<from-entity> ::= <filename>	|	<SiteID>	[,	<filename>	|	<SiteID>	...]

<SiteID> ::= <	site_number	>	<	server_comment	>
<	site_metabase_path	>

The	<from-entity>	specified	in	queries	using	the	NCSA	input	format	is	a
comma-separated	list	of:

Paths	of	NCSA	Log	File	Format	log	files;
IIS	Virtual	Site	"identifiers".

"Site	identifiers"	must	be	enclosed	within	angle	brackets	(<	and	>),	and
can	have	one	of	the	following	values:
The	numeric	site	ID	(e.g.	"<1>",	"<28163489>");
The	text	value	of	the	"ServerComment"	property	of	the	site	(e.g.	"<My
External	Site>",	"<www.margiestravel.com>");
The	fully-qualified	ADSI	metabase	path	to	the	site	(e.g.	"
<//MYSERVER/W3SVC/1>"),	using	either	the	numeric	site	ID	or	the
text	value	of	the	"ServerComment"	property	of	the	site.

When	a	"site	identifier"	is	used,	the	NCSA	input	format	connects	to	the
specified	machine's	metabase,	gathers	information	on	the	site's	current
logging	properties,	and	parses	all	the	log	files	in	the	site's	current	log	file
directory.

Filenames	and	"Site	identifiers"	can	also	include	wildcards	(e.g.
"LogFiles\nc04*.log",	"<www.*.com>").

Examples:

FROM	LogFiles\nc04*log,	LogFiles\nc03*.log,	\\MyServer\LoggingShare\W3
SVC2\nc04*.log
FROM	<1>,	<2>,	<My	External	Site>,	ncsa9.log

FROM	<www.net*home.com>,	<//MyServer2/W3SVC/www.net*home.com>,
	<*>

©	2004	Microsoft	Corporation.	All	rights	reserved.

NCSA	Input	Format	Fields
The	input	records	generated	by	the	NCSA	input	format	contain	the
following	fields:

Name Type Description

LogFilename STRING Full	path	of	the	log	file
containing	this	entry

LogRow INTEGER Line	in	the	log	file	containing
this	entry

RemoteHostName STRING The	IP	address	of	the	client	that
made	the	request

RemoteLogName STRING The	identifier	used	to	identify
the	client	making	the	HTTP
request,	or	NULL	if	no	identifier
is	used	(always	NULL	in	NCSA
log	files	generated	by	IIS)

UserName STRING The	name	of	the	authenticated
user	that	made	the	request,	or
NULL	if	the	request	was	from
an	anonymous	user

DateTime TIMESTAMP The	date	and	time	at	which	the
request	was	served	(Universal
Time	Coordinates	(UTC)	time)

Request STRING The	HTTP	request	line	(verb,

URI,	and	HTTP	version)

StatusCode INTEGER The	response	HTTP	status
code

BytesSent INTEGER The	number	of	bytes	in	the
response	sent	by	the	server

Referer STRING The	client	request	Referer
header	(not	logged	in	NCSA
Common	Log	File	Format	log
files)

User-Agent STRING The	client	request	User-Agent
header	(not	logged	in	NCSA
Common	Log	File	Format	log
files)

Cookie STRING The	client	request	Cookie
header	(not	logged	in	NCSA
Common	Log	File	Format	log
files)

©	2004	Microsoft	Corporation.	All	rights	reserved.

NCSA	Input	Format	Parameters
The	NCSA	input	format	supports	the	following	parameters:

iCodepage

	 Values: codepage	ID	(number)

	 Default: -2

	 Description: Codepage	of	the	log	file.

	 Details: 0	is	the	system	codepage;	-2	specifies	that	the
codepage	is	automatically	determined	by	inspecting	the
filename	and/or	the	site's	"LogInUTF8"	property.

	 Example: -iCodepage:1245
	
recurse

	 Values: recursion	level	(number)

	 Default: 0

	 Description: Max	subdirectory	recursion	level.

	 Details: 0	disables	subdirectory	recursion;	-1	enables	unlimited
recursion.

	 Example: -recurse:-1
	
minDateMod

	 Values: date/time	(in	"yyyy-MM-dd	hh:mm:ss"	format)

	 Default: not	specified

	 Description: Minimum	file	last	modified	date,	in	local	time
coordinates.

	 Details: When	this	parameter	is	specified,	the	NCSA	input

format	processes	only	log	files	that	have	been	modified
after	the	specified	date.

	 Example: -minDateMod:"2004-05-28	22:05:10"
	
iCheckpoint

	 Values: checkpoint	filename

	 Default: not	specified

	 Description: Load	and	save	checkpoint	information	to	this	file.

	 Details: This	parameter	enables	the	"Incremental	Parsing"
feature	that	allows	sequential	executions	of	the	same
query	to	only	process	new	log	entries	that	have	been
logged	since	the	last	execution.	For	more	information,
see	Parsing	Input	Incrementally.

	 Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

NCSA	Input	Format	Examples
Slice	Request	field	into	components
Return	the	verb,	URI,	and	HTTP	version	for	each	request:

LogParser	"SELECT	EXTRACT_TOKEN(Request,	0,	'	')	AS	Verb,	EXTRAC
T_TOKEN(Request,	1,	'	')	AS	URI,	EXTRACT_TOKEN(Request,	2,	'	')	AS	V
ersion	FROM	ncsa9.log"

Top	20	URL's	for	a	Site
Create	a	chart	containing	the	TOP	20	URL's	in	the
"www.margiestravel.com"	web	site	(assumed	to	be	logging	in	the	NCSA
log	format):

LogParser	"SELECT	TOP	20	EXTRACT_TOKEN(Request,	1,	'	')	AS	URI,	C
OUNT(*)	AS	Hits	INTO	MyChart.gif	FROM	<www.margiestravel.com>	GR
OUP	BY	URI	ORDER	BY	Hits	DESC"	-chartType:Column3D	-groupSize:102
4x768

©	2004	Microsoft	Corporation.	All	rights	reserved.

NETMON	Input	Format
The	NETMON	input	format	parses	network	capture	files	(.cap	files)
created	by	the	NetMon	Network	Monitor	application.

The	NETMON	input	format	works	in	two	different	modes,	selectable
through	the	fMode	parameter.

When	the	"fMode"	parameter	is	set	to	"TCPIP",	the	NETMON	input
format	returns	an	input	record	for	each	TCP/IP	packet	found	in	the
capture	file.
In	this	case,	input	records	contain	fields	from	the	TCP	and	IP	packet
headers,	together	with	the	payload	of	each	packet.
For	example,	the	following	command	returns	the	specified	fields	from	the
TCP/IP	packets	in	the	capture	file:

LogParser	"SELECT	SrcPort,	TCPFlags,	PayloadBytes	FROM	MyCapture.cap
"	-fMode:TCPIP
The	output	of	this	command	would	look	like	the	following	sample:

SrcPort	TCPFlags	PayloadBytes
-------	--------	------------
445					A								1
1146				A								0
1336				S								0
80						AS							0
1336				A								0
1336				AP							283
1336				A								1431
80						A								0
1336				A								1431
1336				AP							549

When	the	"fMode"	parameter	is	set	to	"TCPConn",	the	NETMON	input
format	returns	an	input	record	for	each	TCP	connection	found	in	the
capture	file.
In	this	case,	input	records	contain	fields	calculated	by	aggregating	all	the
TCP	packets	in	the	connection,	including	the	reconstructed	payload	sent
by	both	endpoints.
For	example,	the	following	command	returns	the	specified	fields	from	the
TCP	connections	in	the	capture	file:

LogParser	"SELECT	SrcPort,	TimeTaken,	SrcPayloadBytes,	DstPayloadBytes	
FROM	MyCapture.cap"	-fMode:TCPConn
The	output	of	this	command	would	look	like	the	following	sample:

SrcPort	TimeTaken				SrcPayloadBytes	DstPayloadBytes
-------	------------	---------------	---------------

1336				150.216000			3694												3673
1284				450.648000			312													1362
1286				711.023000			0															0
1287				1001.440000		0															0
1288				851.224000			0															0
1289				15120.240000	0															0
1283				66619.388000	1886												3718
1291				13663.102000	312													636
1285				47883.357000	312													708
1290				21203.946000	312													1362

From-Entity	Syntax
Fields
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

NETMON	Input	Format	From-Entity
Syntax
<from-entity> ::= <filename>	[,	<filename>	...]

The	<from-entity>	specified	in	queries	using	the	NETMON	input	format	is
a	comma-separated	list	of	NetMon	capture	files	(.cap	files).

Examples:

FROM	MyCapture1.cap

FROM	MyCapture1.cap,	MyCapture2.cap

©	2004	Microsoft	Corporation.	All	rights	reserved.

NETMON	Input	Format	Fields
The	structure	of	the	input	records	generated	by	the	NETMON	input
format	depends	on	the	value	specified	for	the	fMode	parameter.

TCPIP	Mode
When	the	fMode	parameter	is	set	to	"TCPIP",	the	NETMON	input	format
returns	an	input	record	for	each	TCP/IP	packet	found	in	the	capture	file.
In	this	mode,	input	records	contain	the	following	fields:

Name Type Description

CaptureFilename STRING The	full	path	of	the	capture	file
containing	this	packet

Frame INTEGER The	frame	number	containing
this	packet

DateTime TIMESTAMP Date	and	time	at	which	the
packet	was	sent

FrameBytes INTEGER Total	number	of	bytes	in	the
frame

SrcMAC STRING MAC	address	of	the	sender	of
this	packet

SrcIP STRING IP	address	of	the	sender	of	this
packet

SrcPort INTEGER TCP	port	number	of	the	sender
of	this	packet

DstMAC STRING MAC	address	of	the	destination
of	this	packet

DstIP STRING IP	address	of	the	destination	of
this	packet

DstPort INTEGER TCP	port	number	of	the
destination	of	this	packet

IPVersion INTEGER IP	version	of	this	packet

TTL INTEGER Time-To-Live	field	of	the	IP
header	of	this	packet

TCPFlags STRING TCP	flags	field	of	the	TCP
header	of	this	packet

Seq INTEGER TCP	sequence	number	of	this
packet

Ack INTEGER TCP	acknowledge	number	of
this	packet

WindowSize INTEGER Window	size	field	of	the	TCP
header	of	this	packet

PayloadBytes INTEGER Number	of	bytes	in	the	TCP
payload	of	this	packet

Payload STRING TCP	payload	of	this	packet

Connection INTEGER Unique	identifier	of	the	TCP
connection	to	which	this	packet
belongs

TCPConn	Mode
When	the	fMode	parameter	is	set	to	"TCPConn",	the	NETMON	input
format	returns	an	input	record	for	each	TCP	connection	found	in	the
capture	file.
In	this	mode,	input	records	contain	the	following	fields:

Name Type Description

CaptureFilename STRING The	full	path	of	the	capture	file
containing	this	connection

StartFrame INTEGER Frame	number	containing	the
first	packet	of	this	connection

EndFrame INTEGER Frame	number	containing	the
last	packet	of	this	connection

Frames INTEGER Total	number	of	frames
containing	packets	belonging	to
this	connection

DateTime TIMESTAMP Date	and	time	of	at	which	the
first	packet	of	this	connection
was	sent

TimeTaken INTEGER Total	number	of	milliseconds
elapsed	since	the	first	packet	of
this	connection	to	the	last	packet

SrcMAC STRING MAC	address	of	the	initiator	of
this	connection

SrcIP STRING IP	address	of	the	initiator	of	this
connection

SrcPort INTEGER TCP	port	number	of	the	initiator
of	this	connection

SrcPayloadBytes INTEGER Total	number	of	bytes	in	the
reconstructed	TCP	payload	sent
by	the	initiator	of	this	connection

SrcPayload STRING Reconstructed	TCP	payload
sent	by	the	initiator	of	this
connection

DstMAC STRING MAC	address	of	the	receiver	of
this	connection

DstIP STRING IP	address	of	the	receiver	of	this
connection

DstPort INTEGER TCP	port	number	of	the	receiver
of	this	connection

DstPayloadBytes INTEGER Total	number	of	bytes	in	the
reconstructed	TCP	payload	sent
by	the	receiver	of	this
connection

DstPayload STRING Reconstructed	TCP	payload
sent	by	the	receiver	of	this
connection

©	2004	Microsoft	Corporation.	All	rights	reserved.

NETMON	Input	Format	Parameters
The	NETMON	input	format	supports	the	following	parameters:

fMode

	 Values: TCPIP	|	TCPConn

	 Default: TCPIP

	 Description: Operation	mode.

	 Details: When	this	parameter	is	set	to	"TCPIP",	the	NETMON	input	format	returns	an	input
record	for	each	TCP/IP	packet	found	in	the	capture	file.	In	this	case,	input	records
contain	fields	from	the	TCP	and	IP	packet	headers,	together	
each	packet.
When	this	parameter	is	set	to	"TCPConn",	the	NETMON	input	format	returns	an
input	record	for	each	TCP	connection	found	in	the	capture	file.	In	this	case,	input
records	contain	fields	calculated	by	aggregating	all	the	TCP	packets	
connection,	including	the	reconstructed	payload	sent	by	both	endpoints.
For	more	information	on	the	different	modes	of	operation,	see	
Format	Fields.

	 Example: -fMode:TCPConn
	
binaryFormat

	 Values: ASC	|	PRINT	|	HEX

	 Default: ASC

	 Description: Format	of	binary	fields.

	 Details: TCP	packet	payloads	are	returned	as	STRING	values	formatted	according	to	the
value	specified	for	this	parameter.
When	this	parameter	is	set	to	"ASC",	data	bytes	belonging	to	the	0x20-0x7F	range
are	returned	as	ASCII	characters,	while	data	bytes	outside	the	range	are	returned
as	period	(.)	characters,	as	shown	in	the	following	example:

POST	/test_system/request	HTTP/1.1..Content-Length:	3411..Connection:	Keep-Alive..

When	this	parameter	is	set	to	"PRINT",	data	bytes	representing	printable	ASCII
characters	are	returned	as	ASCII	characters,	while	data	bytes	that	do	not	represent
printable	ASCII	characters	are	returned	as	period	(.)	characters,	as	shown	in	the
following	example:

POST	/test_system/request	HTTP/1.1
Content-Length:	3411
Connection:	Keep-AliveWhen	this	parameter	is	set	to	"HEX",	all	data	bytes	are	returned	as	two-digit
hexadecimal	values,	as	shown	in	the	following	example:

504F5354202F63636D5F73797374656D2F7265717565737420485454502F312E310D0A

	 Example: -binaryFormat:PRINT
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

NETMON	Input	Format	Examples
Network	Traffic	per	Second
Display	total	network	traffic	bytes	per	second:

LogParser	"SELECT	QUANTIZE(DateTime,	1)	AS	Second,	SUM(FrameByte
s)	INTO	DATAGRID	FROM	MyCapture.cap	GROUP	BY	Second"

©	2004	Microsoft	Corporation.	All	rights	reserved.

REG	Input	Format
The	REG	input	format	returns	information	on	registry	values.

The	REG	input	format	enumerates	local	or	remote	registry	keys	and
values,	returning	an	input	record	for	each	registry	value	found	in	the
enumeration.

From-Entity	Syntax
Fields
Parameters
Examples

See	also:
FS	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

REG	Input	Format	From-Entity	Syntax
<from-entity> ::= <registry_key>	[,	<registry_key>	...]

<registry_key> ::= [\\<computer_name>]\[<root_name>[\
<subkey_path>]]

<root_name> ::= HKCR	|	
HKCU	|	
HKLM	|	
HKCC	|	
HKU

The	<from-entity>	specified	in	queries	using	the	REG	input	format	is	a
comma-separated	list	of	registry	keys.	Valid	registry	keys	are:

The	registry	root	(e.g.	"\");
A	system	registry	root	(e.g.	"\HKLM");
Any	key	below	a	system	registry	root	(e.g.
"\HKLM\Software\Microsoft").

Registry	keys	can	be	optionally	preceded	by	a	remote	computer	name	in
the	UNC	notation.

Examples:

FROM	\

FROM	\HKLM,	\HKCU

FROM	\\SERVER1\HKLM\Software,	\\SERVER2\HKLM\Software

©	2004	Microsoft	Corporation.	All	rights	reserved.

REG	Input	Format	Fields
The	input	records	generated	by	the	REG	input	format	contain	the
following	fields:

Name Type Description

ComputerName STRING Name	of	the	computer	hosting	the
registry	containing	this	value

Path STRING Path	of	the	registry	key	containing
this	value

KeyName STRING Name	of	the	registry	key
containing	this	value

ValueName STRING Name	of	the	registry	value

ValueType STRING Name	of	the	type	of	the	registry
value

Value STRING Text	representation	of	the	content
of	the	registry	value

LastWriteTime TIMESTAMP Date	and	time	at	which	the
registry	value	has	been	last
modified	(Universal	Time
Coordinates	(UTC)	time)

©	2004	Microsoft	Corporation.	All	rights	reserved.

REG	Input	Format	Parameters
The	REG	input	format	supports	the	following	parameters:

recurse

	 Values: recursion	level	(number)

	 Default: -1

	 Description: Max	subkey	recursion	level.

	 Details: 0	disables	subkey	recursion;	-1	enables	unlimited	recursion.

	 Example: -recurse:2
	
multiSZSep

	 Values: any	string

	 Default: |

	 Description: Separator	between	elements	of	MULTI_SZ	registry	values.

	 Details: Registry	values	of	the	MULTI_SZ	type	contain	arrays	of	strings.	In	these
cases,	the	content	of	the	"Value"	field	is	built	by	concatenating	the	array
elements	one	after	the	other,	using	the	value	of	this	parameter	as	a
separator	between	the	elements.

	 Example: -multiSZSep:,
	
binaryFormat

	 Values: ASC	|	PRINT	|	HEX

	 Default: ASC

	 Description: Format	of	REG_BINARY	registry	values.

	 Details: Registry	values	of	the	REG_BINARY	type	contain	binary	data	
often	not	suitable	to	be	textually	represented.	This	parameter	specifies

how	binary	data	is	formatted	to	a	STRING	when	returned	as	content	of
the	"Value"	field.
When	this	parameter	is	set	to	"ASC",	data	bytes	belonging	to	the	0x20-
0x7F	range	are	returned	as	ASCII	characters,	while	data	bytes	outside
the	range	are	returned	as	period	(.)	characters,	as	shown	in	the	following
example:

Bucket:	02096553..rundll32.exe

When	this	parameter	is	set	to	"PRINT",	data	bytes	representing	printable
ASCII	characters	are	returned	as	ASCII	characters,	while	data	bytes	that
do	not	represent	printable	ASCII	characters	are	returned	as	period	(.)
characters,	as	shown	in	the	following	example:

Bucket:	02096553
rundll32.exe
When	this	parameter	is	set	to	"HEX",	all	data	bytes	are	returned	as	two-
digit	hexadecimal	values,	as	shown	in	the	following	example:

4275636B65743A2030323039363535330D0A72756E646C6C33322E657865

	 Example: -binaryFormat:PRINT
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

REG	Input	Format	Examples
Upload	Registry	to	SQL	Table
Load	a	portion	of	the	registry	into	a	SQL	table:

LogParser	"SELECT	*	INTO	MyTable	FROM	\HKLM"	-i:REG	-o:SQL	-serve
r:MyServer	-database:MyDatabase	-driver:"SQL	Server"	-username:TestSQLU
ser	-password:TestSQLPassword	-createTable:ON

Registry	Type	Distribution
Display	the	distribution	of	registry	value	types:

LogParser	"SELECT	ValueType,	COUNT(*)	INTO	DATAGRID	FROM	\HKL
M	GROUP	BY	ValueType"

©	2004	Microsoft	Corporation.	All	rights	reserved.

TEXTLINE	Input	Format
The	TEXTLINE	input	format	returns	lines	from	generic	text	files.

The	TEXTLINE	input	format	makes	it	possible	to	parse	text	files	in	any
format	not	supported	natively	by	Log	Parser,	and	retrieve	entire	lines	of
text	as	a	single	field.
The	field	can	then	be	processed	by	the	SQL-like	query	by	making	use	of
string	manipulation	functions,	such	as	the	EXTRACT_TOKEN	function.

From-Entity	Syntax
Fields
Parameters
Examples

See	also:
TEXTWORD	Input	Format
TSV	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

TEXTLINE	Input	Format	From-Entity
Syntax
<from-entity> ::= <filename>	[,	<filename>	...]	|	

http://<url>	|	
STDIN

The	<from-entity>	specified	in	queries	using	the	TEXTLINE	input	format
is	either:

A	comma-separated	list	of	paths	to	text	files,	eventually	including
wildcards;
The	URL	of	a	text	file;
The	"STDIN"	keyword,	which	specifies	that	the	input	data	is	available
from	the	input	stream	(commonly	used	when	piping	command
executions).

Examples:

FROM	*.txt,	\\MyServer\FileShare*.tsv

FROM	http://www.microsoft.adatum.com/example.tsv

type	data.txt	|	LogParser	"SELECT	*	FROM	STDIN"	-i:TEXTLINE

©	2004	Microsoft	Corporation.	All	rights	reserved.

TEXTLINE	Input	Format	Fields
The	input	records	generated	by	the	TEXTLINE	input	format	contain	the
following	fields:

Name Type Description

LogFilename STRING Full	path	of	the	file	containing	this	line

Index INTEGER Line	number

Text STRING Text	line	content

©	2004	Microsoft	Corporation.	All	rights	reserved.

TEXTLINE	Input	Format	Parameters
The	TEXTLINE	input	format	supports	the	following	parameters:

iCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	text	file.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -iCodepage:1245
	
recurse

	 Values: recursion	level	(number)

	 Default: 0

	 Description: Max	subdirectory	recursion	level.

	 Details: 0	disables	subdirectory	recursion;	-1	enables	unlimited
recursion.

	 Example: -recurse:-1
	
splitLongLines

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Split	lines	when	longer	than	maximum	allowed.

	 Details: When	a	text	line	is	longer	than	128K	characters,	the
TEXTLINE	input	format	truncates	the	line	and	either
discards	the	remaining	of	the	line	(when	this	parameter
is	set	to	"OFF"),	or	processes	the	remainder	of	the	line

as	a	new	line	(when	this	parameter	is	set	to	"ON").

	 Example: -dQuotes:ON
	
iCheckpoint

	 Values: checkpoint	filename

	 Default: not	specified

	 Description: Load	and	save	checkpoint	information	to	this	file.

	 Details: This	parameter	enables	the	"Incremental	Parsing"
feature	that	allows	sequential	executions	of	the	same
query	to	only	process	new	log	entries	that	have	been
logged	since	the	last	execution.	For	more	information,
see	Parsing	Input	Incrementally.

	 Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

TEXTLINE	Input	Format	Examples
HTML	Links
Return	the	lines	in	an	HTML	document	that	contain	links	to	other	pages:

LogParser	"SELECT	Text	FROM	http://www.microsoft.adatum.com	WHERE	
Text	LIKE	'%href%'"	-i:TEXTLINE

©	2004	Microsoft	Corporation.	All	rights	reserved.

TEXTWORD	Input	Format
The	TEXTWORD	input	format	returns	words	from	generic	text	files.

The	TEXTWORD	input	format	makes	it	possible	to	parse	text	files	in	any
format	not	supported	natively	by	Log	Parser,	and	retrieve	each	word	(i.e.
each	string	delimited	by	whitespace	characters)	as	a	single	field.

From-Entity	Syntax
Fields
Parameters
Examples

See	also:
TEXTLINE	Input	Format
TSV	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

TEXTWORD	Input	Format	From-Entity
Syntax
<from-entity> ::= <filename>	[,	<filename>	...]	|	

http://<url>	|	
STDIN

The	<from-entity>	specified	in	queries	using	the	TEXTWORD	input
format	is	either:

A	comma-separated	list	of	paths	to	text	files,	eventually	including
wildcards;
The	URL	of	a	text	file;
The	"STDIN"	keyword,	which	specifies	that	the	input	data	is	available
from	the	input	stream	(commonly	used	when	piping	command
executions).

Examples:

FROM	*.txt,	\\MyServer\FileShare*.tsv

FROM	http://www.microsoft.adatum.com/example.tsv

type	data.txt	|	LogParser	"SELECT	*	FROM	STDIN"	-i:TEXTWORD

©	2004	Microsoft	Corporation.	All	rights	reserved.

TEXTWORD	Input	Format	Fields
The	input	records	generated	by	the	TEXTWORD	input	format	contain	the
following	fields:

Name Type Description

LogFilename STRING Full	path	of	the	file	containing	this	word

Index INTEGER Word	number

Text STRING Word

©	2004	Microsoft	Corporation.	All	rights	reserved.

TEXTWORD	Input	Format	Parameters
The	TEXTWORD	input	format	supports	the	following	parameters:

iCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	text	file.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -iCodepage:1245
	
recurse

	 Values: recursion	level	(number)

	 Default: 0

	 Description: Max	subdirectory	recursion	level.

	 Details: 0	disables	subdirectory	recursion;	-1	enables	unlimited
recursion.

	 Example: -recurse:-1
	
iCheckpoint

	 Values: checkpoint	filename

	 Default: not	specified

	 Description: Load	and	save	checkpoint	information	to	this	file.

	 Details: This	parameter	enables	the	"Incremental	Parsing"
feature	that	allows	sequential	executions	of	the	same
query	to	only	process	new	log	entries	that	have	been
logged	since	the	last	execution.	For	more	information,

see	Parsing	Input	Incrementally.

	 Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

TEXTWORD	Input	Format	Examples
Word	Distribution
Return	the	distribution	of	words	in	the	specified	text	file:

LogParser	"SELECT	Text,	COUNT(*)	FROM	MyFile.txt	GROUP	BY	Text	O
RDER	BY	COUNT(*)	DESC"	-i:TEXTWORD

©	2004	Microsoft	Corporation.	All	rights	reserved.

TSV	Input	Format
The	TSV	input	format	parses	tab-separated	and	space-separated	values
text	files.

TSV	text	files,	usually	called	"tabular"	files,	are	generic	text	files
containing	values	separated	by	either	spaces	or	tabs.
This	it	also	the	format	of	the	output	of	many	command-line	tools.	For
example,	the	output	of	the	"netstat"	tool	is	a	series	of	lines,	each	line
consisting	of	values	separated	by	spaces:

Active	Connections

		Proto		Local	Address										Foreign	Address								State
		TCP				GABRIEGI-M:epmap							GABRIEGI-M.redmond.corp.microsoft.co
m:0		LISTENING
		TCP				GABRIEGI-M:microsoft-ds		GABRIEGI-M.redmond.corp.microsoft.
com:0		LISTENING
		TCP				GABRIEGI-M:1025								GABRIEGI-M.redmond.corp.microsoft.com
:0		LISTENING
		TCP				GABRIEGI-M:1036								GABRIEGI-M.redmond.corp.microsoft.com
:0		LISTENING
		TCP				GABRIEGI-M:3389								GABRIEGI-M.redmond.corp.microsoft.com
:0		LISTENING
		TCP				GABRIEGI-M:5000								GABRIEGI-M.redmond.corp.microsoft.com
:0		LISTENING
		TCP				GABRIEGI-M:42510							GABRIEGI-M.redmond.corp.microsoft.com
:0		LISTENING
		TCP				GABRIEGI-M:netbios-ssn		GABRIEGI-M.redmond.corp.microsoft.co
m:0		LISTENING
		UDP				GABRIEGI-M:microsoft-ds		*:*
		UDP				GABRIEGI-M:isakmp						*:*
		UDP				GABRIEGI-M:1026								*:*
		UDP				GABRIEGI-M:1027								*:*
		UDP				GABRIEGI-M:1028								*:*
		UDP				GABRIEGI-M:ntp									*:*

Depending	on	the	application,	the	first	line	in	a	TSV	file	might	be	a
"header",	containing	the	labels	of	the	record	fields.
The	following	example	shows	a	TSV	file	beginning	with	a	header:

Year	PID	Comment
2004	 2956	 Application	started
2004	 	 Waiting	for	input
2004	 3104	 Application	started
2004	 1048	 Application	started
Among	all	the	parameters	supported	by	the	TSV	input	format,	the
iSeparator,	nSep,	and	fixedSep	parameters	play	a	crucial	role	in
providing	the	flexibility	of	the	TSV	input	format	on	the	format	of	the	files
being	parsed.

The	iSeparator	parameter	specifies	the	character	used	as	a	separator
between	the	fields	in	the	files	being	parsed.
Some	text	files,	like	the	previous	netstat	example,	use	simple	space
characters	as	separator	characters,	while	other	text	files,	like	the	second
example	above,	use	tab	characters.

The	nSep	parameter	specifies	how	many	separator	characters	must
appear	for	the	characters	to	signify	a	field	separator.
In	the	netstat	example	above,	fields	are	separated	by	at	least	two	space
characters,	while	a	single	space	character	is	allowed	to	appear	in	the
value	of	a	field	(as	is	the	case	with	the	"Local	Address"	field	name).
On	the	other	hand,	in	the	previous	tab-separated	example	file,	fields	are

		UDP				GABRIEGI-M:1900								*:*
		UDP				GABRIEGI-M:ntp									*:*
		UDP				GABRIEGI-M:netbios-ns		*:*
		UDP				GABRIEGI-M:netbios-dgm		*:*
		UDP				GABRIEGI-M:1900								*:*
		UDP				GABRIEGI-M:42508							*:*

separated	by	a	single	tab	character.

The	fixedSep	parameter	specifies	whether	or	not	the	fields	in	the	input
files	are	separated	by	a	fixed	number	of	separator	characters.
In	the	netstat	example	above,	fields	are	separated	by	at	least	two	space
characters,	but	three	or	more	space	characters	still	signify	a	single	field
separator.
On	the	other	hand,	in	the	previous	tab-separated	example	file,	fields	are
separated	by	exactly	a	single	tab	character,	and	the	presence	of	two
consecutive	tab	characters	signifies	an	empty	field.

From-Entity	Syntax
Fields
Parameters
Examples

See	also:
CSV	Input	Format
TSV	Output	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

TSV	Input	Format	From-Entity	Syntax
<from-entity> ::= <filename>	[,	<filename>	...]	|	

http://<url>	|	
STDIN

The	<from-entity>	specified	in	queries	using	the	TSV	input	format	is
either:

A	comma-separated	list	of	paths	of	TSV	files,	eventually	including
wildcards;
The	URL	of	a	file	in	the	TSV	format;
The	"STDIN"	keyword,	which	specifies	that	the	input	data	is	available
from	the	input	stream	(commonly	used	when	piping	command
executions).

Examples:

FROM	LogFiles1*.txt,	LogFiles2*.txt,	\\MyServer\FileShare*.txt

FROM	http://www.microsoft.adatum.com/MyTSVFiles/example.tsv

type	data.tsv	|	LogParser	"SELECT	*	FROM	STDIN"	-i:TSV

©	2004	Microsoft	Corporation.	All	rights	reserved.

TSV	Input	Format	Fields
The	structure	of	the	input	records	generated	by	the	TSV	input	format	is
determined	at	run	time,	depending	on	the	data	being	parsed,	and	on	the
values	specified	for	the	input	format	parameters.

The	first	two	input	record	fields	are	fixed,	and	they	are	described	in	the
following	table:

Name Type Description

Filename STRING Full	path	of	the	file	containing	this	entry

RowNumber INTEGER Line	in	the	file	containing	this	entry

These	two	fields	are	then	followed	by	the	fields	detected	by	the	TSV	input
format	in	the	file(s)	being	parsed.	The	number,	names,	and	data	types	of
the	fields	are	determined	by	examining	initially	the	input	data	according	to
the	values	specified	for	the	input	format	parameters.

The	number	of	fields	detected	by	the	TSV	input	format	during	the	initial
inspection	phase	dictates	how	the	record	fields	will	be	extracted	from	the
input	data	during	the	subsequent	parsing	stage.
If	a	line	contains	less	fields	than	the	number	of	fields	established,	the
missing	fields	are	returned	as	NULL	values.
On	the	other	hand,	if	a	line	contains	more	fields	than	the	number	of	fields
established,	the	extra	fields	are	parsed	as	if	they	were	part	of	the	value	of
the	last	field	expected	by	the	TSV	input	format.

Number	of	Fields
The	number	of	fields	in	an	input	record	is	determined	by	the	input	data
and	by	the	value	of	the	nFields	parameter.

When	the	"nFields"	parameter	is	set	to	-1,	the	TSV	input	format
determines	the	number	of	fields	by	inspecting	the	first	line	of	the	input

data,	or	the	first	line	of	the	header	file	specified	with	the	"iHeaderFile"
parameter.
As	an	example,	the	following	TSV	file	contains	a	variable	number	of
fields:

Name	City	AreaCode
Jeff	Redmond	425
Steve	Seattle	206	98101
Edward	Olympia	360
When	parsed	with	the	"nFields"	parameter	set	to	-1,	this	TSV	file	would
yield	three	fields	("Name",	"City",	and	"AreaCode").
In	this	case,	the	extra	fourth	field	in	the	second	record	would	be	parsed
as	part	of	the	third	"AreaCode"	field,	whose	value	would	then	be	"206
98101".

When	the	"nFields"	parameter	is	set	to	a	value	greater	than	zero,	the
TSV	input	format	uses	the	specified	value	as	the	number	of	fields	in	the
input	data.	Considering	again	the	previous	example	file,	parsing	the	file
with	the	"nFields"	parameter	set	to	4	would	yield	four	fields.

Field	Names
The	names	of	the	fields	in	an	input	record	is	determined	by	the	input	data
and	by	the	values	of	the	headerRow	and	iHeaderFile	parameters.

When	the	"headerRow"	parameter	is	set	to	"ON",	the	TSV	input	format
assumes	that	the	first	line	in	the	file	being	parsed	is	a	header	containing
the	field	names.
In	this	case,	if	the	"iHeaderFile"	parameter	is	left	unspecified,	the	TSV
input	format	extracts	the	field	names	from	the	header	line.
On	the	other	hand,	if	the	"iHeaderFile"	parameter	is	set	to	the	path	of	a
TSV	file	containing	at	least	one	line,	then	the	TSV	input	format	assumes
that	the	specified	file	contains	a	header,	parses	its	first	line	only,	and
extracts	the	field	names	from	this	line,	ignoring	the	first	line	of	the	file
being	parsed.

If	the	number	of	field	names	extracted	is	less	than	the	number	of	fields
detected,	the	additional	fields	are	automatically	named	"FieldN",	with	N
being	a	progressive	index	indicating	the	field	position	in	the	input	record.

Considering	the	previous	example	file,	setting	the	"headerRow"

parameter	to	"ON"	would	cause	the	TSV	input	format	to	use	the	first	line
of	the	file	as	a	header	containing	the	field	names.
With	the	"nFields"	parameter	set	to	-1,	the	TSV	input	format	would	detect
three	fields,	whose	names	would	be	"Name",	"City",	and	"AreaCode".
On	the	other	hand,	with	the	"nFields"	parameter	set	to	4,	the	TSV	input
format	would	detect	four	fields,	named	"Name",	"City",	"AreaCode",	and
"Field4".

When	the	"headerRow"	parameter	is	set	to	"OFF",	the	TSV	input	format
assumes	that	the	file	being	parsed	does	not	contain	a	header,	and	that	its
first	line	is	the	first	data	record	in	the	file.
In	this	case,	if	the	"iHeaderFile"	parameter	is	set	to	the	path	of	a	TSV	file
containing	at	least	one	line,	then	the	TSV	input	format	assumes	that	the
specified	file	contains	a	header,	parses	its	first	line	only,	and	extracts	the
field	names	from	this	line.
On	the	other	hand,	if	the	"iHeaderFile"	parameter	is	left	unspecified,	the
fields	are	automatically	named	"FieldN",	with	N	being	a	progressive
number	indicating	the	field	position	in	the	input	record.

As	an	example,	the	following	TSV	file	does	not	contain	a	header	line:

Jeff	Redmond	425
Steve	Seattle	206
Edward	Olympia	360When	parsed	with	the	"headerRow"	parameter	to	"OFF",	the	TSV	input
format	assumes	that	the	first	line	of	the	TSV	file	is	the	first	data	record	in
the	file.	In	this	case,	the	three	fields	would	be	named	"Field1",	"Field2",
and	"Field3".

Field	Types
The	data	type	of	each	field	extracted	from	the	input	data	is	determined	by
examining	the	first	n	data	lines,	where	n	is	the	value	specified	for	the
dtLines	parameter,	in	the	following	way:
If	all	the	non-empty	field	values	in	the	first	n	lines	are	formatted	as
decimal	numbers,	then	the	field	is	assumed	to	be	of	the	REAL	type.
If	all	the	non-empty	field	values	in	the	first	n	lines	are	formatted	as
integer	numbers,	then	the	field	is	assumed	to	be	of	the	INTEGER	type.
If	all	the	non-empty	field	values	in	the	first	n	lines	are	formatted	as

timestamps	in	the	format	specified	by	the	iTsFormat	parameter,	then
the	field	is	assumed	to	be	of	the	TIMESTAMP	type.
Otherwise,	the	field	is	assumed	to	be	of	the	STRING	type.

Empty	field	values	are	returned	as	NULL	values.

©	2004	Microsoft	Corporation.	All	rights	reserved.

TSV	Input	Format	Parameters
The	TSV	input	format	supports	the	following	parameters:

iSeparator

	 Values: a	single	character	|	spaces	|	space	|	tab

	 Default: tab

	 Description: Separator	character	between	fields.

	 Details: The	"spaces"	value	instructs	the	TSV	input	format	to
consider	any	spacing	character	(space	and	tab)	as	a
separator	character.

	 Example: -iSeparator:space
	
nSep

	 Values: number	of	separators	(number)

	 Default: 1

	 Description: Number	of	separator	characters	between	fields	in	the
data	records.

	 Details: This	parameter	specifies	how	many	separator
characters	must	appear	for	the	characters	to	signify	a
field	separator.
This	parameter	is	usually	set	to	a	value	greater	than
one	when	parsing	space-separated	text	files	in	which
field	values	can	contain	a	single	space	character.	In
these	cases,	fields	are	usually	separated	by	more	than
a	single	space	character.
When	the	"fixedSep"	parameter	is	set	to	"OFF",	the
value	of	the	"nSep"	parameter	is	assumed	to	be	the
minimum	number	of	separator	characters	signifying	a
field	separator.

	 Example: -nSep:2
	
fixedSep

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Specifies	whether	or	not	the	fields	in	the	input	TSV
file(s)	are	separated	by	a	fixed	number	of	separator
characters.

	 Details: When	this	parameter	is	set	to	"ON",	the	TSV	input
format	assumes	that	the	number	of	separator
characters	between	the	fields	in	the	input	data	equals
exactly	the	value	specified	for	the	"nSep"	parameter.	In
this	case,	the	presence	of	more	separator	characters
signifies	an	empty	value,	which	is	returned	as	a	NULL
value.
When	this	parameter	is	set	to	"OFF",	the	TSV	input
format	assumes	that	the	fields	in	the	input	data	are
separated	by	a	variable	number	of	separator
characters,	and	the	value	of	the	"nSep"	parameter	is
assumed	to	be	the	minimum	number	of	separator
characters	signifying	a	field	separator.	In	this	case,
additional	separator	characters	are	ignored	and	parsed
as	a	single	field	separator,	thus	making	it	impossible	for
a	value	to	be	interpreted	as	a	NULL	value.

	 Example: -fixedSep:ON
	
headerRow

	 Values: ON	|	OFF

	 Default: ON

	 Description: Specifies	whether	or	not	the	input	file(s)	begin	with	a
header	line.

	 Details: When	this	parameter	is	set	to	"ON",	the	TSV	input
format	assumes	that	each	file	being	parsed	begins	with
a	header	line,	containing	the	labels	of	the	fields	in	the
file.	If	the	"iHeaderFile"	parameter	is	left	unspecified,
the	TSV	input	format	will	use	the	field	names	in	the	first
file's	header	as	the	names	of	the	input	record	fields.	If	a
value	is	specified	for	the	"iHeaderFile"	parameter,	the
TSV	input	format	will	ignore	the	header	line	in	each	file
being	parsed.
When	this	parameter	is	set	to	"OFF",	the	TSV	input
format	assumes	that	the	file(s)	being	parsed	do	not
contain	a	header,	and	parses	their	first	line	as	data
records.
For	more	information	on	headers	and	field	names,	see
TSV	Input	Format	Fields.

	 Example: -headerRow:OFF
	
iHeaderFile

	 Values: path	to	a	TSV	file

	 Default: not	specified

	 Description: File	containing	field	names.

	 Details: When	parsing	TSV	files	that	do	not	contain	a	header
line,	the	fields	of	the	input	records	produced	by	the	TSV
input	format	are	named	"Field1",	"Field2",	...
To	override	this	behavior	and	use	meaningful	field
names,	this	parameter	can	be	set	to	to	the	path	of	a
TSV	file	containing	a	header	line,	causing	the	TSV	input
format	to	use	the	field	names	in	the	specified	TSV	file's
header	line	as	the	names	of	the	input	record	fields.
Only	the	first	line	of	the	specified	TSV	file	is	parsed,
and	eventual	additional	lines	are	ignored.
For	more	information	on	headers	and	field	names,	see
TSV	Input	Format	Fields.

	 Example: -iHeaderFile:"C:\My	Folder\header.tsv"
	
nFields

	 Values: number	of	fields	(number)

	 Default: -1

	 Description: Number	of	fields	in	the	data	records.

	 Details: This	parameter	specifies	the	number	of	fields	in	the
input	data.
The	special	"-1"	value	specifies	that	the	number	of
fields	is	to	be	deducted	by	inspecting	the	first	line	of
input	data.
For	more	information	on	how	the	number	of	fields	is
determined,	see	TSV	Input	Format	Fields.

	 Example: -nFields:3
	
dtLines

	 Values: number	of	lines	(number)

	 Default: 100

	 Description: Number	of	lines	examined	to	determine	field	types	at
run	time.

	 Details: This	parameter	specifies	the	number	of	initial	lines	that
the	TSV	input	format	examines	to	determine	the	data
type	of	each	input	field.
If	the	value	is	0,	all	fields	will	be	assumed	to	be	of	the
STRING	data	type.
For	more	information	on	how	field	data	types	are
determined,	see	TSV	Input	Format	Fields.

	 Example: -dtLines:10
	
nSkipLines

	 Values: number	of	lines	(number)

	 Default: 0

	 Description: Number	of	initial	lines	to	skip.

	 Details: When	this	parameter	is	set	to	a	value	greater	than	zero,
the	TSV	input	format	skips	the	first	n	lines	of	each	input
file	before	parsing	its	header	line,	where	n	is	the	value
specified	for	this	parameter.

	 Example: -nSkipLines:5
	
lineFilter

	 Values: +|-<any_string>[,<any_string>...]

	 Default: not	specified

	 Description: Skip	or	consider	only	lines	beginning	with	these	strings.

	 Details: When	the	value	of	this	parameter	begins	with	a	"+"
character,	the	TSV	input	format	will	only	parse	those
lines	beginning	with	one	of	the	strings	following	the	"+"
character	in	the	specified	value.	For	example,	the	value
"+Data:,Summary:"	causes	the	TSV	input	format	to
parse	only	lines	beginning	with	either	"Data:"	or
"Summary:".
When	the	value	of	this	parameter	begins	with	a	"-"
character,	the	TSV	input	format	will	ignore	those	lines
beginning	with	one	of	the	strings	that	follow	the	"-"
character	in	the	specified	value.	For	example,	the	value
"-Comment,		Marker"	causes	the	TSV	input	format	to
ignore	lines	beginning	with	either	"Comment"	or
"		Marker".

	 Example: -lineFilter:"-Meta	Data:,	Summary:"
	
iCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	TSV	file.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -iCodepage:1245
	
iTsFormat

	 Values: timestamp	format

	 Default: yyyy-MM-dd	hh:mm:ss

	 Description: Format	of	timestamp	values	in	the	input	data.

	 Details: This	parameter	specifies	the	date	and/or	time	format
used	in	the	input	data	being	parsed.	Values	of	fields
matching	the	specified	format	are	returned	as	values	of
the	TIMESTAMP	data	type.	For	more	information	on
date	and	time	formats,	see	Timestamp	Format
Specifiers.

	 Example: -iTsFormat:"MMM	dd,	yyyy"
	
iCheckpoint

	 Values: checkpoint	filename

	 Default: not	specified

	 Description: Load	and	save	checkpoint	information	to	this	file.

	 Details: This	parameter	enables	the	"Incremental	Parsing"
feature	that	allows	sequential	executions	of	the	same
query	to	only	process	new	events	that	have	been
logged	since	the	last	execution.	For	more	information,
see	Parsing	Input	Incrementally.

	 Example:

-iCheckpoint:C:\Temp\myCheckpoint.lpc
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

TSV	Input	Format	Examples
NetStat	output
Parse	the	output	of	a	'netstat'	command:

netstat	-a	|	LogParser	"SELECT	*	FROM	STDIN"	-i:TSV	-iSeparator:space	-n
Sep:2	-fixedSep:OFF	-nSkipLines:3

©	2004	Microsoft	Corporation.	All	rights	reserved.

URLSCAN	Input	Format
The	URLSCAN	input	format	parses	log	files	created	by	the	URLScan	IIS
filter.

URLScan	is	an	ISAPI	filter	that	allows	administrators	of	web	servers	to
restrict	the	kind	of	HTTP	requests	that	the	server	will	process.	By
blocking	specific	HTTP	requests,	the	URLScan	filter	prevents	potentially
harmful	requests	from	reaching	the	server	and	causing	damage.
The	URLScan	filter	maintains	a	log	file	describing	the	actions	taken	when
HTTP	requests	match	the	administrator-specified	filters.

Log	files	created	by	the	URLScan	filter	look	like	the	following	example:

[04-30-2002	-	17:09:48]	----------------	Initializing	UrlScan.log	----------------
[04-30-2002	-	17:09:48]	--	Filter	initialization	time:	[04-30-2002	-	17:09:48]		-
-
[04-30-2002	-	17:09:48]	----------------	UrlScan.dll	Initializing	----------------
[04-30-2002	-	17:09:49]	UrlScan	will	return	the	following	URL	for	rejected	re
quests:	"/<Rejected-By-UrlScan>"
[04-30-2002	-	17:09:49]	URLs	will	be	normalized	before	analysis.
[04-30-2002	-	17:09:49]	URL	normalization	will	be	verified.
[04-30-2002	-	17:09:49]	URLs	must	contain	only	ANSI	characters.
[04-30-2002	-	17:09:49]	URLs	must	not	contain	any	dot	except	for	the	file	ext
ension.
[04-30-2002	-	17:09:49]	URLs	will	be	logged	up	to	128K	bytes.
[04-30-2002	-	17:09:49]	Requests	with	Content-Length	exceeding	30000000	
will	be	rejected.
[04-30-2002	-	17:09:49]	Requests	with	URL	length	exceeding	260	will	be	reje
cted.
[04-30-2002	-	17:09:49]	Requests	with	Query	String	length	exceeding	4096	wi
ll	be	rejected.
[04-30-2002	-	17:09:49]	Only	the	following	verbs	will	be	allowed	(case	sensiti
ve):
[04-30-2002	-	17:09:49]		'GET'
[04-30-2002	-	17:09:49]	Requests	containing	the	following	character	sequence
s	will	be	rejected:

From-Entity	Syntax
Fields
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

[04-30-2002	-	17:09:49]		'jj'
[04-30-2002	-	17:10:08]	Client	at	192.168.1.81:	URL	contains	sequence	'jj',	w
hich	is	disallowed.	Request	will	be	rejected.		Site	Instance='1',	Raw	URL='/jj/L
ogLongUrlsTest_2_124_aa
aa'
[04-30-2002	-	17:10:08]	Client	at	192.168.1.81:	URL	length	exceeded	maximu
m	allowed.	Request	will	be	rejected.	Site	Instance='1',	Raw	URL='/jj/LogLong
UrlsTest_2_800_aaa
aa'
[04-30-2002	-	17:10:09]	Client	at	192.168.1.81:	URL	length	exceeded	maximu
m	allowed.	Request	will	be	rejected.	Site	Instance='1',	Raw	URL='/jj/LogLong
UrlsTest_2_1000_aa
aa'

URLSCAN	Input	Format	From-Entity
Syntax
<from-entity> ::= URLSCAN	|	

<filename>	[,	<filename>	...]

The	<from-entity>	specified	in	queries	using	the	URLSCAN	input	format
is	either	the	"URLSCAN"	keyword	or	a	comma-separated	list	of	paths	of
URLScan	log	files.
When	the	"URLSCAN"	keyword	is	used,	the	URLSCAN	input	format
extracts	the	URLScan	log	configuration	parameters	from	the	UrlScan.ini
configuration	file	and	parses	all	the	URLScan	log	files	currently	available
in	the	URLScan	log	file	directory.

Filenames	can	include	wildcards	(e.g.	"URLSCAN\UrlScan*.log").

Examples:

FROM	URLSCAN\UrlScan1.log,	URLSCAN\UrlScan2.log

FROM	\\MYMACHINE\URLSCAN\UrlScan*.log

FROM	URLSCAN

©	2004	Microsoft	Corporation.	All	rights	reserved.

URLSCAN	Input	Format	Fields
The	input	records	generated	by	the	URLSCAN	input	format	contain	the
following	fields:

Name Type Description

LogFilename STRING Full	path	of	the	log	file	containing
this	entry

LogRow INTEGER Line	in	the	log	file	containing	this
entry

Date TIMESTAMP The	date	and	time	at	which	the
request	was	served	(local	time)

ClientIP STRING The	IP	address	of	the	client	that
made	the	request

Comment STRING The	filter	that	matched	the	request
and	the	action	executed	by
URLScan

SiteInstance INTEGER The	IIS	virtual	site	instance	number
that	served	the	request

Url STRING The	HTTP	request	url

©	2004	Microsoft	Corporation.	All	rights	reserved.

URLSCAN	Input	Format	Parameters
The	URLSCAN	input	format	supports	the	following	parameters:

iCheckpoint

	 Values: checkpoint	filename

	 Default: not	specified

	 Description: Load	and	save	checkpoint	information	to	this	file.

	 Details: This	parameter	enables	the	"Incremental	Parsing"
feature	that	allows	sequential	executions	of	the	same
query	to	only	process	new	log	entries	that	have	been
logged	since	the	last	execution.	For	more	information,
see	Parsing	Input	Incrementally.

	 Example: -iCheckpoint:C:\Temp\myCheckpoint.lpc
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

URLSCAN	Input	Format	Examples
Clients	sending	suspicious	requests
Retrieve	the	DNS	names	of	the	clients	that	sent	requests	matching	the
URLScan	filters:

LogParser	"SELECT	DISTINCT	REVERSEDNS(ClientIP)	FROM	URLSCA
N"

©	2004	Microsoft	Corporation.	All	rights	reserved.

W3C	Input	Format
The	W3C	input	format	parses	log	files	in	the	W3C	Extended	Log	File
Format.

Examples	of	log	files	in	this	format	include:

Personal	Firewall	log	files
Microsoft	Internet	Security	and	Acceleration	Server	(ISA	Server)	log
files
Windows	Media	Services	log	files
Exchange	Tracking	log	files
Simple	Mail	Transfer	Protocol	(SMTP)	log	files

Log	files	in	this	format	begin	with	some	informative	headers	("directives"),
the	most	important	of	which	is	the	"#Fields"	directive,	describing	which
fields	are	logged	at	which	position	in	a	log	row.
After	the	directives,	the	log	entries	follow.	Each	log	entry	is	a	space-
separated	list	of	field	values.

The	following	example	shows	a	portion	of	a	Personal	Firewall	W3C
Extended	Log	File	Format	log	file:

#Verson:	1.0
#Software:	Microsoft	Internet	Connection	Firewall
#Time	Format:	Local
#Fields:	date	time	action	protocol	src-ip	dst-ip	src-port	dst-port	size	tcpflags	tc
psyn	tcpack	tcpwin	icmptype	icmpcode	info

2004-09-03	07:11:54	OPEN	UDP	192.168.1.103	192.168.1.108	1026	53	-	-	-	-	
-	-	-	-
2004-09-03	07:11:54	OPEN	TCP	192.168.1.101	192.168.1.108	3005	80	-	-	-	-	
-	-	-	-
2004-09-03	07:11:55	OPEN	TCP	192.168.1.103	192.168.1.108	1104	139	-	-	-	-
	-	-	-	-
2004-09-03	07:11:55	OPEN	TCP	192.168.1.104	192.168.1.108	1103	445	-	-	-	-
	-	-	-	-

Note:	Differently	than	the	IISW3C	input	format,	the	W3C	input
format	does	not	support	log	files	with	varying	number	and/or	position
of	fields.	In	other	words,	when	parsing	a	set	of	W3C	log	files,	all	the
log	entries	in	all	the	log	files	must	be	structured	identically	as
declared	by	the	first	"#Fields"	directive	encountered	in	the	first	log
file.

From-Entity	Syntax
Fields
Parameters
Examples

See	also:
IISW3C	Input	Format
W3C	Output	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

W3C	Input	Format	From-Entity	Syntax
<from-entity> ::= <filename>	[,	<filename>	...]	|	

http://<url>	|	
STDIN

The	<from-entity>	specified	in	queries	using	the	W3C	input	format	is
either:

A	comma-separated	list	of	paths	of	W3C	Extended	log	files,	eventually
including	wildcards;
The	URL	of	a	file	in	the	W3C	Extended	Log	File	Format;
The	"STDIN"	keyword,	which	specifies	that	the	input	data	is	available
from	the	input	stream	(commonly	used	when	piping	command
executions).

Examples:

FROM	LogFiles1\pf*.log,	LogFiles2\pf*.log,	\\MyServer\LoggingShare\pf*.lo
g
FROM	http://www.microsoft.adatum.com/MyLogFiles/example.log

type	mylog.log	|	LogParser	"SELECT	*	FROM	STDIN"	-i:W3C

©	2004	Microsoft	Corporation.	All	rights	reserved.

W3C	Input	Format	Fields
The	structure	of	the	input	records	generated	by	the	W3C	input	format	is
determined	at	run	time,	depending	on	the	input	data.

The	first	two	input	record	fields	are	fixed,	and	they	are	described	in	the
following	table:

Name Type Description

LogFilename STRING Full	path	of	the	log	file	containing	this
entry

RowNumber INTEGER Line	in	the	log	file	containing	this	entry

Following	these	two	fields	are	all	the	fields	declared	by	the	first	"#Fields"
directive	encountered	in	the	input	data.
The	data	type	of	each	field	extracted	from	the	input	data	is	determined	by
examining	the	first	n	log	entries,	where	n	is	the	value	specified	for	the
dtLines	parameter,	in	the	following	way:

If	all	the	non-empty	field	values	in	the	first	n	log	entries	are	formatted
as	decimal	numbers,	then	the	field	is	assumed	to	be	of	the	REAL	type.
If	all	the	non-empty	field	values	in	the	first	n	log	entries	are	formatted
as	integer	numbers,	then	the	field	is	assumed	to	be	of	the	INTEGER
type.
If	all	the	non-empty	field	values	in	the	first	n	log	entries	are	formatted
as	timestamps	in	the	"yyyy-MM-dd	hh:mm:ss"	format,	then	the	field	is
assumed	to	be	of	the	TIMESTAMP	type.	In	particular,	if	a	field	value	is
formatted	as	a	date	in	the	"yyyy-MM-dd"	format,	then	the	value	is
returned	as	a	date-only	TIMESTAMP	value.	If	the	field	value	is
formatted	as	a	time	of	day	in	the	"hh:mm:ss"	format,	then	the	value	is
returned	as	a	time-only	TIMESTAMP	value.
Otherwise,	the	field	is	assumed	to	be	of	the	STRING	type.

Empty	values,	represented	by	a	hyphen	(-)	in	the	W3C	Extended	Log	File
Format,	are	returned	as	NULL	values.

As	an	example,	the	following	help	command	displays	the	input	record
structure	determined	by	the	W3C	input	format	when	parsing	the	specified
Personal	Firewall	log	file:

C:\>LogParser	-h	-i:W3C	pfirewall.log

The	structure	displayed	by	this	help	command	will	be:

Fields:

		LogFilename	(S)							RowNumber	(I)							date	(T)									time	(T)
		action	(S)												protocol	(S)								src-ip	(S)							dst-ip	(S)
		src-port	(I)										dst-port	(I)								size	(I)									tcpflags	(S)
		tcpsyn	(I)												tcpack	(I)										tcpwin	(I)							icmptype	(S)
		icmpcode	(S)										info	(S)

©	2004	Microsoft	Corporation.	All	rights	reserved.

W3C	Input	Format	Parameters
The	W3C	input	format	supports	the	following	parameters:

iCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	log	file.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -iCodepage:1245
	
dtLines

	 Values: number	of	lines	(number)

	 Default: 10

	 Description: Number	of	lines	examined	to	determine	field	types	at
run	time.

	 Details: This	parameter	specifies	the	number	of	initial	log	lines
that	the	W3C	input	format	examines	to	determine	the
data	type	of	the	input	record	fields.
If	the	value	is	zero,	all	fields	will	be	assumed	to	be	of
the	STRING	data	type.
For	more	information	on	how	field	data	types	are
determined,	see	W3C	Input	Format	Fields.

	 Example: -dtLines:50
	
dQuotes

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Specifies	that	string	values	in	the	log	are	double-
quoted.

	 Details: Some	W3C	log	files	enclose	string	values	within
double-quote	characters	(").

	 Example: -dQuotes:ON
	
separator

	 Values: a	single	character	|	space	|	tab	|	auto

	 Default: auto

	 Description: Separator	character	between	fields.

	 Details: Different	W3C	log	files	can	use	different	separator
characters	between	the	fields;	for	example,	Exchange
Tracking	log	files	use	tab	characters,	while	Personal
Firewall	log	files	use	space	characters.
The	"auto"	value	instructs	the	W3C	input	format	to
detect	automatically	the	separator	character	used	in	the
input	log(s).

	 Example: -separator:tab
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

W3C	Input	Format	Examples
Clients	Sending	Dropped	Packets
Return	all	the	clients	that	sent	a	packet	dropped	by	Personal	Firewall:

LogParser	"SELECT	DISTINCT	src-ip	FROM	pfirewall.log	WHERE	action='
DROP'"	-i:W3C

©	2004	Microsoft	Corporation.	All	rights	reserved.

XML	Input	Format
The	XML	input	format	parses	XML	text	files.

XML	files	(also	called	"XML	documents")	are	hierarchies	of	nodes.	Nodes
can	include	other	nodes,	and	each	node	can	have	a	node	value	and	a	set
of	attributes.
For	example,	the	following	XML	node	has	a	value	(in	this	instance,
"Rome"),	and	a	single	attribute	("Population",	whose	value	is,	in	this
example,	"3350000"):

<CITY	Population='3350000'>Rome</CITY>

XML	documents	can	be	parsed	in	different	ways,	and	the	XML	input
format	offers	three	distinct	usages	whose	applicability	depends	on	the
structure	of	the	documents,	and	on	the	structure	of	the	information	that
needs	to	be	extracted.

Note:	The	XML	input	format	requires	the	Microsoft	XML	parser
(MSXML)	to	be	installed	on	the	computer	running	Log	Parser.

From-Entity	Syntax
Fields
Parameters
Examples

See	also:
XML	Output	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

XML	Input	Format	From-Entity	Syntax
<from-
entity>

::= <document>[#<XPath>]	[,	<document>[#<XPath>]
...]

<document> ::= <filename>	|	<url>

The	<from-entity>	specified	in	queries	using	the	XML	input	format	is	a
comma-separated	list	of	paths	or	URLs	of	XML	files.
Filenames	or	URLs	can	be	optionally	followed	by	an	XPath	that	specifies
which	node(s)	in	the	document	are	to	be	considered	root	node(s).

Filenames	can	include	wildcards	(e.g.	"LogFiles\doc*.xml").

Examples:

FROM	Document1.xml,	http://blogs.msdn.com/MainFeed.aspx

FROM	Document1.xml#/rss/channel/item,	http://blogs.msdn.com/MainFeed.a
spx#/rss/channel/item

©	2004	Microsoft	Corporation.	All	rights	reserved.

XML	Input	Format	Fields
The	structure	of	the	input	records	generated	by	the	XML	input	format	is
determined	at	run	time,	depending	on	the	document	being	parsed,	and
on	the	values	specified	for	the	input	format	parameters.

The	XML	input	format	parses	an	XML	document	by	"visiting"	the	nodes	in
the	document,	and	the	input	record	fields	are	the	attributes	and	values
of	the	nodes	that	are	visited	by	the	XML	input	format.

By	default,	nodes	are	visited	from	the	document	root,	that	is,	the	single
top-level	node	in	an	XML	document	that	contains	all	the	other	nodes	in
the	document.
However,	by	supplying	an	XPath	in	either	the	from-entity	or	as	a	value	of
the	rootXPath	parameter,	users	can	specify	that	the	document	nodes	are
to	be	visited	starting	from	the	node(s)	selected	by	the	XPath.

Before	parsing	the	XML	document	and	return	the	input	records,	the	XML
input	format	initially	examines	the	nodes	found	along	the	paths	from	the
root	node	or	from	the	node(s)	selected	by	the	user-supplied	root	XPath	to
the	first	n	leaf	nodes,	where	n	is	the	value	of	the	dtNodes	parameter.
During	this	phase,	the	XML	input	format	creates	a	representation	of	the
tree	structure	("schema"	tree)	by	merging	nodes	with	the	same	name	and
hierarchical	position.	When	completed,	the	schema	tree	contains	one
single	instance	of	each	node	type,	and	each	node	contains	an	attribute
set	equal	to	the	union	of	all	the	attributes	found	in	the	nodes	of	that	type.
At	this	moment,	an	input	record	field	is	created	for	each	attribute
belonging	to	a	node	type	and	for	each	node	type	having	a	value.

Once	the	schema	tree	has	been	determined	and	the	input	record
structure	has	been	created,	the	XML	input	format	parses	the	XML
document	and	generates	input	records,	visiting	the	document	nodes	and
extracting	their	values	and	attributes.
The	XML	input	format	implements	three	different	algorithms	to	decide
how	document	nodes	will	be	visited.	The	three	algorithms	represent	three
different	ways	in	which	the	information	contained	in	an	XML	document
can	be	retrieved,	and	the	choice	of	an	algorithm	depends	on	the	structure
of	the	document	and	on	the	structure	of	the	information	that	needs	to	be

extracted.
Since	different	algorithms	visit	different	sets	of	nodes,	the	choice	of	an
algorithm	affects	which	fields	(i.e.	which	node	attributes	and	values)	will
be	contained	in	the	input	records.
Users	can	specify	the	algorithm	to	use	through	the	fMode	("field	mode")
parameter,	which	can	be	set	to	"Branch",	"Tree",	or	"Node".

Branch	Field	Mode
In	this	mode,	input	records	contain	the	attributes	and	values	of	the	nodes
that	are	visited	along	all	the	possible	paths	from	the	document	root	or
from	the	node(s)	selected	by	the	user-supplied	root	XPath	to	all	the	leaf
nodes.

This	mode	is	appropriate	for	documents	in	which	each	hierarchical	level
consists	of	nodes	of	the	same	type,	as	depicted	in	the	following	diagram:

In	this	structure,	the	root	node	contains	only	nodes	of	type	"A",	and	each
"A"	node	contains	only	nodes	of	type	"B".
For	example,	the	root	of	the	following	XML	document	contains
"Continent"	nodes	only;	each	"Continent"	node	contains	"Country"	nodes
only,	and	each	"Country"	node	contains	"City"	nodes	only:

<?xml	version="1.0"	?>	
<World>	

		<Continent	ContinentName='North	America'>	

				<Country	CountryName='USA'>	
						<City>	Redmond	</City>	
						<City>	San	Francisco	</City>	
				</Country>	

This	document	can	be	thought	of	as	containing	six	"entries",	the	leaf
"City"	nodes,	with	the	information	associated	with	each	entry	being
contained	in	the	nodes	that	are	encountered	along	a	path	from	the	root
node	to	the	leaf	node.
In	this	example,	the	information	about	"Roma"	includes	the	attributes	and
value	of	the	"City"	node	(the	"Roma"	node	value	and	the	"3350000"	value
of	its	"Population"	attribute),	the	attributes	and	value	of	its	parent

				<Country	CountryName='Canada'>	
						<City>	Vancouver	</City>	
						<City>	Toronto	</City>	
				</Country>	

		</Continent>	

		<Continent	ContinentName='Europe'>	

				<Country	CountryName='Italia'>	
						<City	Population='3350000'>	Roma	</City>	
						<City>	Milano	</City>	
				</Country>	

		</Continent>	

</World>	

"Country"	node	(the	"Italia"	value	of	the	"CountryName"	attribute),	and	the
attributes	and	value	of	its	grandparent	"Continent"	node	(the	"Europe"
value	of	the	"ContinentName"	attribute).

The	schema	tree	extracted	from	this	example	document	specifies	that	the
document	root	node	contains	nodes	of	the	"Continent"	type,	and	that
nodes	of	this	type	have	a	"ContinentName"	attribute.	"Continent"	nodes,
in	turn,	contain	nodes	of	the	"Country"	type,	with	a	"CountryName"
attribute;	finally,	"Country"	nodes	contain	nodes	of	the	"City"	type,	and
nodes	of	this	type	have	a	value,	and	a	"Population"	attribute.
The	input	records	generated	after	the	schema	tree	would	thus	contain
four	fields:	"ContinentName",	"CountryName",	"City",	and	"Population".

When	using	the	"Branch"	field	mode,	the	XML	input	format	generates	an
input	record	for	each	path	from	the	document	root	node	or	from	the
node(s)	selected	by	the	user-supplied	root	XPath	to	all	the	leaf	nodes.
Each	input	record	contains	the	attributes	and	values	of	the	nodes
encountered	along	the	path:

Record	1 Record	2

Record	3 Record	4

Record	5

If	a	node	does	not	specify	an	attribute	that	is	contained	in	the	attribute
superset	of	the	corresponding	schema	tree	node,	or	if	a	node	does	not
supply	a	value	while	the	corresponding	schema	tree	node	specifies	that
at	least	one	node	of	that	type	has	a	value,	then	the	corresponding	field
value	is	set	to	NULL.
For	example,	parsing	the	above	example	XML	document	in	"Branch"	field
mode	would	produce	the	following	output:

ContinentName	CountryName	City										Population
-------------	-----------	-------------	----------
North	America	USA									Redmond							-
North	America	USA									San	Francisco	-
North	America	Canada						Vancouver					-
North	America	Canada						Toronto							-
Europe								Italia						Roma										3350000
Europe								Italia						Milano								-

Tree	Field	Mode
In	this	mode,	input	records	contain	the	attributes	and	values	of	the	nodes
found	in	subtrees	that	include	all	nodes	of	distinct	types.

This	mode	is	appropriate	for	documents	in	which	a	specific	hierarchical
level	contains	child	nodes	all	having	different	types,	as	depicted	in	the
following	diagram:

In	this	structure,	the	root	node	contains	only	nodes	of	type	"A";	each	"A"
node	however	contains	nodes	all	having	different	types	(a	single	"B"

node,	a	single	"C"	node,	and	a	single	"D"	node).
For	example,	the	root	of	the	following	XML	document	contains	"Message"
nodes;	each	"Message"	node	contains	a	single	"From"	node,	a	single
"To"	node,	and	a	single	"Body"	node:

<?xml	version="1.0"	?>	
<Messages>

		<Message	Date='2004-05-28T12:24:05'>
				<From>	Gabriele	</From>
				<To>	Monica	</To>
				<Body>	How's	going?	</Body>
		</Message>

		<Message	Date='2004-05-28T13:01:14'>
				<From>	Monica	</From>
				<To>	Gabriele	</To>
				<Body>	Fine,	thanks.	</Body>
		</Message>

</Messages>

This	document	can	be	thought	of	as	containing	two	"entries",	the
"Message"	subtrees,	with	the	information	associated	with	each	entry
being	contained	in	all	the	nodes	in	the	subtree	and	in	the	nodes	that	are
encountered	along	a	path	from	the	root	node	to	the	subtree	root.
In	this	example,	the	information	about	a	message	includes	the	attributes
and	values	of	all	the	nodes	included	in	the	subtree	("From",	"To",	and
"Body"	nodes),	and	the	attributes	and	values	of	all	the	nodes
encountered	along	the	path	from	the	document	root	to	the	subtree	root
("Date"	attribute	of	the	"Message"	node).

The	schema	tree	extracted	from	this	example	document	specifies	that	the
document	root	node	contains	nodes	of	the	"Message"	type,	and	that
nodes	of	this	type	have	a	"Date"	attribute.	"Message"	nodes,	in	turn,
contain	nodes	of	the	"From",	"To",	and	"Body"	types,	each	type	having	a
node	value.
The	input	records	generated	after	the	schema	tree	would	thus	contain
four	fields:	"Date",	"From",	"To",	and	"Body".

When	using	the	"Tree"	field	mode,	the	XML	input	format	generates	an
input	record	for	each	subtree	that	includes	all	nodes	of	distinct	types.
Each	input	record	contains	the	attributes	and	values	of	the	nodes	found
in	the	subtrees,	together	with	the	attributes	and	values	of	the	nodes
encountered	along	the	paths	from	the	document	root	node	or	from	the
node(s)	selected	by	the	user-supplied	root	XPath	to	the	subtree	root
nodes:

Record	1 Record	2

For	example,	parsing	the	above	example	XML	document	in	"Tree"	field
mode	would	produce	the	following	output:

Date																From					To							Body
-------------------	--------	--------	-------------
2004-05-28	12:24:05	Gabriele	Monica			How's	going?
2004-05-28	13:01:14	Monica			Gabriele	Fine,	thanks.While	parsing	an	XML	document	in	"Tree"	mode,	if	a	subtree	is	found
containing	multiple	instances	of	the	same	node	type,	that	subtree	is
"replicated"	combinatorially	to	generate	all	the	possible	subtrees
containing	one	single	instance	of	each	node	type.
The	following	diagram	depicts	an	XML	document	in	which	a	subtree
contains	multiple	instances	of	the	same	node	type:

In	this	diagram,	the	"A"	node	contains	one	instance	of	the	"B"	node	type,
two	instances	of	the	"C"	node	type,	and	two	instances	of	the	"D"	note
type.
For	example,	the	"Message"	node	in	the	following	XML	document
contains	a	single	"From"	node,	two	"To"	nodes,	and	two	"Body"	nodes:

<?xml	version="1.0"	?>	
<Messages>
This	document	can	be	thought	of	as	a	"compact"	representation	of	four

		<Message	Date='2004-05-28T12:24:05'>
				<From>	Gabriele	</From>
				<To>	Jeff	</To>
				<To>	Steve	</To>
				<Body	Language='ENU'>	Review	ready?	</Body>
				<Body	Language='ITA'>	E'	pronta	la	review?	</Body>
		</Message>

</Messages>

different	messages:
From	"Gabriele"	to	"Jeff"	in	the	"ENU"	language;
From	"Gabriele"	to	"Jeff"	in	the	"ITA"	language;
From	"Gabriele"	to	"Steve"	in	the	"ENU"	language;
From	"Gabriele"	to	"Steve"	in	the	"ITA"	language;

When	using	the	"Tree"	field	mode,	these	"Message"	subtrees	are
replicated	combinatorially	to	generate	all	the	possible	subtrees	containing
one	single	instance	of	each	of	the	"From",	"To",	and	"Body"	node	types:

Record	1 Record	2

Record	3 Record	4

For	example,	parsing	the	above	example	XML	document	in	"Tree"	field
mode	would	produce	the	following	output:

Date																From					To				Body																	Language
-------------------	--------	-----	--------------------	--------
2004-05-28	12:24:05	Gabriele	Jeff		Review	ready?								ENU
2004-05-28	12:24:05	Gabriele	Jeff		E'	pronta	la	review?	ITA
2004-05-28	12:24:05	Gabriele	Steve	Review	ready?								ENU
2004-05-28	12:24:05	Gabriele	Steve	E'	pronta	la	review?	ITA
Node	Field	Mode
In	this	mode,	input	records	contain	only	the	attributes	and	values	of	the
document	root	node	or	of	the	node(s)	selected	by	the	user-supplied	root

XPath.

This	mode	is	appropriate	for	situations	in	which	the	information	to	be
retrieved	is	associated	with	a	specific	node	type	only.
For	example,	the	relevant	information	in	the	document	depicted	by	the
following	diagram	might	be	associated	with	"B"	node	types	only:

When	using	the	"Node"	field	mode,	the	XML	input	format	generates	an
input	record	for	each	root	node,	either	the	document	root	or	the	node(s)
selected	by	the	user-supplied	root	XPath.	Each	input	record	contains	the
attributes	and	values	of	that	node	only:

Record	1 Record	2

For	example,	parsing	the	previous	"Cities"	example	XML	document	in
"Node"	field	mode	specifying	"/World/Continent/Country"	as	the	root
XPath	would	produce	the	following	output:

CountryName

USA
Canada
ItaliaField	Types
The	data	type	of	each	field	extracted	from	the	schema	tree	is	determined

in	the	following	way:
If	all	the	non-empty	field	values	(node	values	or	attribute	values)
encountered	while	constructing	the	schema	tree	are	formatted	as
decimal	numbers,	then	the	field	is	assumed	to	be	of	the	REAL	type.
If	all	the	non-empty	field	values	(node	values	or	attribute	values)
encountered	while	constructing	the	schema	tree	are	formatted	as
integer	numbers,	then	the	field	is	assumed	to	be	of	the	INTEGER	type.
If	all	the	non-empty	field	values	(node	values	or	attribute	values)
encountered	while	constructing	the	schema	tree	are	formatted	as
timestamps	in	the	format	specified	by	the	iTsFormat	parameter,	then
the	field	is	assumed	to	be	of	the	TIMESTAMP	type.
Otherwise,	the	field	is	assumed	to	be	of	the	STRING	type.

As	an	example,	the	following	help	command	displays	the	input	record
structure	determined	by	the	XML	input	format	when	parsing	the	previous
"Cities"	example	XML	document:

C:\>LogParser	-h	-i:XML	Cities.xml

The	structure	displayed	by	this	help	command	will	be:

Fields:

		ContinentName	(S)					CountryName	(S)					City	(S)					Population	(I)©	2004	Microsoft	Corporation.	All	rights	reserved.

XML	Input	Format	Parameters
The	XML	input	format	supports	the	following	parameters:

rootXPath

	 Values: XPath	query

	 Default: not	specified

	 Description: XPath	query	of	document	node(s)	to	be	considered	root
node(s).

	 Details: The	node(s)	selected	by	the	specified	XPath	replace
the	document	root	node	as	the	starting	node(s)	from
which	all	the	document	nodes	are	visited.

Note:	This	parameter	is	ignored	for	XML
documents	whose	filename	or	URL	has	been
specified	together	with	an	optional	XPath	in	the
from-entity.

Note:	The	XPath	specified	for	this	parameter	is
case-sensitive.	If	an	XPath	is	specified	containing
non-existing	node	or	attribute	names,	or	containing
node	or	attribute	names	with	the	wrong
capitalization,	no	root	node	is	selected	and	an	error
is	returned.

	 Example: -rootXPath:/World/Continent/Country
	
fMode

	 Values: Branch	|	Tree	|	Node	|	Auto

	 Default: Auto

	 Description: Algorithm	to	use	when	visiting	the	document	nodes.

	 Details: For	information	on	the	"Branch",	"Tree",	and	"Node"
visit	algorithms	see	XML	Input	Format	Fields.
The	"Auto"	value	instructs	the	XML	input	format	to

determine	automatically	the	best	algorithm	after
inspecting	the	structure	of	the	input	document(s).

	 Example: -fMode:Tree
	
iTsFormat

	 Values: timestamp	format

	 Default: yyyy-MM-dd?hh:mm:ss

	 Description: Format	of	timestamp	values	in	the	document.

	 Details: This	parameter	specifies	the	date	and/or	time	format
used	in	the	document	being	parsed.	Values	of	nodes	or
attributes	matching	the	specified	format	are	returned	as
values	of	the	TIMESTAMP	data	type.	For	more
information	on	date	and	time	formats,	see	Timestamp
Format	Specifiers.

	 Example: -iTsFormat:"MMM	dd,	yyyy"
	
dtNodes

	 Values: number	of	leaf	nodes	(number)

	 Default: -1

	 Description: Number	of	leaf	nodes	to	be	examined	when
determining	the	document	structure.

	 Details: In	order	to	determine	the	input	document	structure,	the
XML	input	format	initially	examines	the	nodes	found
along	the	paths	from	the	root	node	or	from	the	node(s)
selected	by	the	user-supplied	root	XPath	to	the	first	n
leaf	nodes,	where	n	is	the	value	specified	for	this
parameter.
Specifying	-1	causes	the	XML	input	format	to	examine
all	the	nodes	in	the	input	document.

	 Example: -dtNodes:50

	

fNames

	 Values: Compact	|	XPath

	 Default: Compact

	 Description: Field	naming	schema.

	 Details: Specifying	"Compact"	causes	the	XML	input	format	to
create	field	names	using	the	names	of	the
corresponding	nodes	or	attributes.	If	a	field	name	is	not
unique,	a	sequential	number	is	appended	to	the	name
to	render	it	unique.
Example	field	names	in	the	"Compact"	mode	are:

ContinentName
CountryName
City
Population
Specifying	"XPath"	causes	the	XML	input	format	to
create	field	names	using	the	XPath	queries	for	the
corresponding	nodes	or	attributes.
Example	field	names	in	the	"XPath"	mode	are:

/World/Continent/@ContinentName
/World/Continent/Country/@CountryName
/World/Continent/Country/City
/World/Continent/Country/City/@Population

	 Example: -fNames:XPath
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

XML	Input	Format	Examples
MSDN	BLogs	Channel	Titles
Display	titles	of	current	channels	on	MSDN	BLogs:

LogParser	"SELECT	title	FROM	http://blogs.msdn.com/MainFeed.aspx#/rss/c
hannel/item"	-i:XML	-fMode:Tree

Check	Names	from	MBSA	report
Display	the	checks	in	an	MBSA	report:

LogParser	"SELECT	Name	FROM	MYMACHINE.xml#/SecScan/Check"	-fM
ode:Node

©	2004	Microsoft	Corporation.	All	rights	reserved.

Output	Formats
Generic	Text	File	Output	Formats
NAT:	formats	output	records	as	readable	tabulated	columns.
CSV:	formats	output	records	as	comma-separated	values	text.
TSV:	formats	output	records	as	tab-separated	or	space-separated
values	text.
XML:	formats	output	records	as	XML	documents.
W3C:	formats	output	records	in	the	W3C	Extended	Log	File	Format.
TPL:	formats	output	records	following	user-defined	templates.
IIS:	formats	output	records	in	the	Microsoft	IIS	Log	File	Format.

Special-purpose	Output	Formats
SQL:	uploads	output	records	to	a	table	in	a	SQL	database.
SYSLOG:	sends	output	records	to	a	Syslog	server.
DATAGRID:	displays	output	records	in	a	graphical	user	interface.
CHART:	creates	image	files	containing	charts.

©	2004	Microsoft	Corporation.	All	rights	reserved.

CHART	Output	Format
The	CHART	output	format	creates	image	files	containing	charts	of	the
output	record	field	values.

When	using	the	CHART	output	format,	output	record	fields	must	be	of	the
INTEGER	or	REAL	data	types,	in	order	for	their	values	to	be	plotted	in	a
chart.
The	first	field	only	can	optionally	be	of	the	STRING	or	TIMESTAMP	data
types,	in	which	case	its	values	are	used	as	the	names	of	the	categories
on	the	X-axis	of	the	chart.

The	following	example	command	creates	a	chart	plotting	the	number	of
events	logged	in	the	System	Event	Log	by	each	event	source.	The	first
field	in	the	output	records	of	this	query	is	the	name	of	the	event	source,
and	the	CHART	output	format	will	use	its	values	to	label	the	categories
along	the	X-axis	of	the	chart.	The	second	field	in	the	output	records	is	the
number	of	events,	which	will	be	plotted	on	the	chart:

LogParser	"SELECT	SourceName,	COUNT(*)	AS	[Number	of	Events]	INTO	
Events.gif	FROM	System	GROUP	BY	SourceName	ORDER	BY	[Number	of	
Events]	DESC"	-o:CHART	-chartType:Column3DThe	resulting	chart	will	look	like	the	following	example:

Charts	can	also	contain	multiple	series	plotted	from	the	values	of	different
output	record	fields.
For	example,	the	following	command	calculates	the	average,	minimum,
and	maximum	number	of	bytes	served	for	each	web	page	type:

LogParser	"SELECT	TO_UPPERCASE(EXTRACT_EXTENSION(cs-uri-ste
m))	AS	PageType,	MIN(sc-bytes)	AS	Minimum,	AVG(sc-bytes)	AS	Average,	
MAX(sc-bytes)	AS	Maximum	INTO	BytesChart.gif	FROM	<1>	GROUP	BY	
PageType	ORDER	BY	Average	ASC"	-o:CHART	-chartType:Column3D
The	resulting	chart	will	look	like	the	following	example:

The	CHART	output	format	requires	the	Microsoft	Office	Web
Components,	which	are	generally	installed	with	Microsoft	Office	2000,
Microsoft	Office	XP,	and	Microsoft	Office	2003.
In	order	to	use	the	CHART	output	format,	users	must	have	a	valid	license
of	Microsoft	Office	for	the	computer	executing	the	Log	Parser	query.

Configuration	Scripts
Into-Entity	Syntax
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

CHART	Output	Format	Configuration
Scripts
Charts	created	by	the	CHART	output	format	can	be	customized	by	user-
provided	scripts	in	the	JScript	or	VBScript	languages	that	are	executed
by	the	CHART	output	format	prior	to	generating	the	output	image	file.

These	scripts	can	refer	to	two	global	objects	which	expose	methods	and
properties	that	can	be	used	to	modify	parameters	such	as	the	chart
colors,	the	chart	fonts,	and	many	other	attributes.
The	two	global	objects	available	to	configuration	scripts	are	instances	of
the	chartSpace	and	chart	objects	of	the	Microsoft	Office	Web
Components	ChartSpace	object	model,	and	they	are	named	"chartSpace"
and	"chart",	respectively.
For	information	on	the	Office	Web	Components	ChartSpace	object
model,	and	on	the	chartSpace	and	chart	objects,	visit	the	MSDN
ChartSpace	Object	Model	documentation.

The	following	example	script	in	the	JScript	language	manipulates	the
chartSpace	and	chart	objects	to	add	a	caption	to	the	chart	and	to	set	the
background	color	to	the	transparent	color:

//	Add	a	caption
chartSpace.HasChartSpaceTitle	=	true;
chartSpace.ChartSpaceTitle.Caption	=	"Generated	by	Log	Parser	2.2";
chartSpace.ChartSpaceTitle.Font.Size	=	6;
chartSpace.ChartSpaceTitle.Position	=	chartSpace.Constants.chTitlePositionB
ottom;

//	Change	the	background	color
chart.PlotArea.Interior.Color	=	chartSpace.Constants.chColorNone;

Configuration	scripts	are	used	with	the	CHART	output	format	by
specifying	their	path	as	a	value	to	the	config	parameter,	as	shown	in	the
following	example:

LogParser	"SELECT	SourceName,	COUNT(*)	AS	[Number	of	Events]	INTO	
Events.gif	FROM	System	GROUP	BY	SourceName	ORDER	BY	[Number	of	
Events]	DESC"	-o:CHART	-chartType:Column3D	-config:MyScript.jsThe	resulting	chart	will	look	like	the	following	example:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/owcvba10/html/octocChartWorkspaceObjectModel.asp?frame=true

©	2004	Microsoft	Corporation.	All	rights	reserved.

CHART	Output	Format	Into-Entity	Syntax
<into-entity> ::= <filename>

The	<into-entity>	specified	in	queries	using	the	CHART	output	format	is
the	path	to	the	output	image	file.

Examples:

INTO	MyChart.gif

INTO	\\COMPUTER01\Charts\Chart02.jpg

©	2004	Microsoft	Corporation.	All	rights	reserved.

CHART	Output	Format	Parameters
The	CHART	output	format	supports	the	following	parameters:

chartType

	 Values: name	of	chart	type

	 Default: Line

	 Description: Chart	type.

	 Details: The	set	of	available	chart	types	depends	on	the	version	of
the	Microsoft	Office	Web	Components	installed	on	the	local
computer.
For	a	list	of	the	available	chart	types,	type	the	following	help
command	from	the	command-line	shell:

LogParser	-h	-o:CHART

	 Example: -chartType:Pie3D
	
categories

	 Values: ON	|	OFF	|	AUTO

	 Default: AUTO

	 Description: Display	category	labels	along	the	category	axis.

	 Details: When	this	parameter	is	set	to	"ON",	the	CHART	output
format	uses	the	values	of	the	first	output	record	field	to
display	category	labels	along	the	category	axis.
Setting	this	parameter	to	"AUTO"	causes	the	CHART	output
format	to	display	category	labels	only	when	the	first	output
record	field	is	of	the	STRING	or	TIMESTAMP	data	types.
Setting	this	parameter	to	"OFF"	prevents	the	CHART	output
format	from	displaying	category	labels.

	 Example: -categories:ON
	
maxCategoryLabels

	 Values: number

	 Default: 0

	 Description: Maximum	number	of	category	labels	displayed	along	the
category	axis.

	 Details: This	parameter	is	used	to	limit	the	number	of	category
labels	displayed	along	the	category	axis,	in	order	to	prevent
clutter	in	the	output	image.
When	this	parameter	is	set	to	"0",	the	CHART	output	format
calculates	the	maximum	number	of	category	labels	to
display	as	a	function	of	the	dimensions	of	the	target	image.
Setting	this	parameter	to	"-1"	causes	the	number	of
category	labels	displayed	along	the	category	axis	to	be
unlimited.

	 Example: -maxCategoryLabels:20
	
legend

	 Values: ON	|	OFF	|	AUTO

	 Default: AUTO

	 Description: Display	a	legend	describing	the	series.

	 Details: When	this	parameter	is	set	to	"ON",	the	CHART	output
format	displays	a	legend	on	the	chart	that	describes	the
series	being	plotted.
Setting	this	parameter	to	"AUTO"	causes	the	CHART	output
format	to	display	a	legend	only	when	2	or	more	series	are
being	plotted.
Setting	this	parameter	to	"OFF"	prevents	the	CHART	output
format	from	displaying	a	legend.

	 Example:

-legend:ON
	
values

	 Values: ON	|	OFF	|	AUTO

	 Default: AUTO

	 Description: Display	value	labels.

	 Details: When	this	parameter	is	set	to	"ON",	the	CHART	output
format	displays	a	label	along	each	value	being	plotted,
showing	its	numeric	value.
Setting	this	parameter	to	"AUTO"	causes	the	CHART	output
format	to	display	value	labels	depending	on	the	type	of
chart	selected.
Setting	this	parameter	to	"OFF"	prevents	the	CHART	output
format	from	displaying	value	labels.

	 Example: -values:ON
	
groupSize

	 Values: widthxheight

	 Default: 640x480

	 Description: Dimensions	of	the	target	image,	in	pixels.

	 Details: This	parameter	specifies	the	width	and	height	of	the	target
image,	in	pixels.

	 Example: -groupSize:400x260
	
fileType

	 Values: GIF	|	JPG	|	AUTO

	 Default: AUTO

	 Description: Format	of	the	output	image	file.

	 Details: When	this	parameter	is	set	to	"AUTO",	the	CHART	output
format	determines	the	output	image	file	format	by	inspecting
the	extension	of	the	file	specified	for	the	into-entity.

	 Example: -fileType:JPG
	
config

	 Values: comma-separated	list	of	file	paths

	 Default: not	specified

	 Description: Configuration	scripts	to	use	for	chart	customization.

	 Details: This	parameter	specifies	a	comma-separated	list	of	scripts
in	the	JScript	or	VBScript	languages	that	can	be	used	to
further	customize	the	chart	generated	by	the	CHART	output
format.
For	more	information	on	configuration	scripts,	see	CHART
Output	Format	Configuration	Scripts.

	 Example: -
config:C:\MyScripts\MyConfig1.js,C:\MyScripts\MyConfig2.vbs

	
chartTitle

	 Values: chart	title

	 Default: Auto

	 Description: Title	of	the	chart.

	 Details: When	this	parameter	is	set	to	"Auto"	and	the	output	records
contain	1	series	only,	the	CHART	output	format	uses	the
series'	field	name	as	the	title	of	the	chart.

	 Example: -chartTitle:"Bytes	Per	Page"
	
oTsFormat

	 Values: timestamp	format

	 Default: yyyy-MM-dd	hh:mm:ss

	 Description: Format	of	timestamp	values	in	the	category	labels.

	 Details: This	parameter	specifies	the	date	and/or	time	format	to	use
when	formatting	values	of	the	TIMESTAMP	data	type	to
generate	category	labels.
For	more	information	on	date	and	time	formats,	see
Timestamp	Format	Specifiers.

	 Example: -oTsFormat:"MMM	dd,	yyyy"
	
view

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Display	chart	image.

	 Details: Setting	this	parameter	to	"ON"	causes	the	CHART	output
format	to	open	a	window	displaying	the	generated	output
image	file.

	 Example: -view:ON
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

CHART	Output	Format	Examples
Top	20	URL's
Create	a	chart	containing	the	TOP	20	URL's	in	the
"www.margiestravel.com"	web	site:

LogParser	"SELECT	TOP	20	cs-uri-stem,	COUNT(*)	AS	Hits	INTO	MyChart
.gif	FROM	<www.margiestravel.com>	GROUP	BY	cs-uri-stem	ORDER	BY	
Hits	DESC"	-chartType:Column3D	-groupSize:1024x768

Bytes	per	Page	Type
Create	a	pie	chart	with	the	distribution	of	bytes	served	for	each	page
type:

LogParser	"SELECT	TO_UPPERCASE(EXTRACT_EXTENSION(cs-uri-ste
m))	AS	PageType,	MUL(PROPSUM(sc-bytes),100.0)	AS	Bytes	INTO	Pie.gif	
FROM	<1>	GROUP	BY	PageType	ORDER	BY	Bytes	DESC"	-chartType:Pie
Exploded	-chartTitle:"Bytes	per	page	type"	-categories:off©	2004	Microsoft	Corporation.	All	rights	reserved.

CSV	Output	Format
The	CSV	output	format	writes	output	records	as	comma-separated
values	text.

The	output	of	the	CSV	output	format	consists	of	multiple	lines	of	text,	one
line	for	each	output	record.
Each	line	contains	the	values	of	the	output	record	fields,	separated	by	a
comma	(,)	character.	Depending	on	the	value	of	the	oDQuotes
parameter,	field	values	can	be	enclosed	within	double-quote	characters
(").
If	enabled	through	the	headers	parameter,	the	first	line	in	the	output	is	a
"header"	that	contains	the	names	of	the	fields.

The	following	sample	shows	the	output	of	the	CSV	output	format	when
using	the	default	values	for	its	parameters:

EventID,SourceName,EventType,TimeGenerated
6009,EventLog,4,2004-04-18	18:48:04
6005,EventLog,4,2004-04-18	18:48:04
7024,Service	Control	Manager,1,2004-04-18	18:48:27
7035,Service	Control	Manager,4,2004-04-18	18:48:27
7035,Service	Control	Manager,4,2004-04-18	18:48:27
7036,Service	Control	Manager,4,2004-04-18	18:48:27
7036,Service	Control	Manager,4,2004-04-18	18:48:27
7035,Service	Control	Manager,4,2004-04-18	18:48:27
7036,Service	Control	Manager,4,2004-04-18	18:48:27
7035,Service	Control	Manager,4,2004-04-18	18:48:27
7036,Service	Control	Manager,4,2004-04-18	18:48:27
7035,Service	Control	Manager,4,2004-04-18	18:48:27
7036,Service	Control	Manager,4,2004-04-18	18:48:27
7035,Service	Control	Manager,4,2004-04-18	18:48:27
7036,Service	Control	Manager,4,2004-04-18	18:48:27
7036,Service	Control	Manager,4,2004-04-18	18:48:27
7035,Service	Control	Manager,4,2004-04-18	18:48:36
7036,Service	Control	Manager,4,2004-04-18	18:51:26
7036,Service	Control	Manager,4,2004-04-18	18:51:29

Files	created	with	the	CSV	output	format	are	suitable	to	be	consumed	by
a	large	number	of	applications	that	handle	CSV	text	files,	including
Microsoft	Excel	and	generic	spreadsheet	applications.

Into-Entity	Syntax
Parameters
Examples

See	also:
TSV	Output	Format
CSV	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

6006,EventLog,4,2004-04-18	18:51:37

CSV	Output	Format	Into-Entity	Syntax
<into-entity> ::= <filename>	|	

STDOUT

The	<into-entity>	specified	in	queries	using	the	CSV	output	format	is
either:

A	filename;
The	"STDOUT"	keyword,	which	specifies	that	the	output	data	is	to	be
written	to	the	output	stream	(the	console	output).

The	default	into-entity	for	queries	that	do	not	specify	an	INTO	clause	is
"STDOUT".

The	CSV	output	format	supports	the	multiplex	feature,	which	can	be
enabled	by	specifying	'*'	wildcards	in	the	into-entity	filename.	This	feature
allows	output	records	to	be	written	to	different	files	depending	on	the
values	of	their	fields.	For	more	information	on	the	multiplex	feature,	see
Multiplexing	Output	Records.

Examples:

INTO	report.csv

INTO	\\COMPUTER01\Reports\report.csv

INTO	STDOUT

INTO	Reports_*_*\Report*.csv

©	2004	Microsoft	Corporation.	All	rights	reserved.

CSV	Output	Format	Parameters
The	CSV	output	format	supports	the	following	parameters:

headers

	 Values: ON	|	OFF	|	AUTO

	 Default: AUTO

	 Description: Write	a	header	line	containing	the	field	names.

	 Details: This	parameter	controls	the	CSV	header	line	that	is
output	at	the	beginning	of	each	file.
The	possible	values	for	this	parameter	are:
ON:	always	write	the	header;
OFF:	never	write	the	header;
AUTO:	write	the	header	only	when	not	appending	to
an	existing	file.

	 Example: -headers:OFF
	
oDQuotes

	 Values: ON	|	OFF	|	AUTO

	 Default: AUTO

	 Description: Enclose	field	values	within	double-quote	characters	(").

	 Details: This	parameter	controls	whether	or	not	the	CSV	output
format	should	enclose	field	values	within	double-quote
characters	(").
The	possible	values	for	this	parameter	are:
ON:	always	enclose	field	values	within	double-quote
characters;
OFF:	never	enclose	field	values	within	double-quote
characters;

AUTO:	enclose	within	double-quote	characters	only
those	field	values	that	contain	comma	(,)	characters.

	 Example: -oDQuotes:ON
	
tabs

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Write	a	tab	character	after	each	comma	separator.

	 Details: Setting	this	parameter	to	"ON"	causes	the	CSV	output
format	to	write	a	tab	character	after	each	comma	field
separator,	in	order	to	improve	readability	of	the	CSV
output.
Note	that	using	tabs	between	field	values	might
generate	output	that	is	not	compatible	with	certain
spreadsheet	applications.

	 Example: -tabs:ON
	
oTsFormat

	 Values: timestamp	format

	 Default: yyyy-MM-dd	hh:mm:ss

	 Description: Format	of	timestamp	values	in	the	output	CSV	data.

	 Details: This	parameter	specifies	the	date	and/or	time	format	to
use	when	formatting	values	of	the	TIMESTAMP	data
type.
For	more	information	on	date	and	time	formats,	see
Timestamp	Format	Specifiers.

	 Example: -oTsFormat:"MMM	dd,	yyyy"
	

oCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	output	text.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -oCodepage:1245
	
fileMode

	 Values: 0	|	1	|	2

	 Default: 1

	 Description: Action	to	perform	when	an	output	file	already	exists.

	 Details: This	parameter	controls	the	behavior	of	the	CSV	output
format	when	the	into-entity	specifies	directly	or
indirectly	through	the	"multiplex"	feature	the	name	of	a
file	that	already	exists.
The	possible	values	for	this	parameter	are:
0:	existing	files	are	appended	with	the	output;
1:	existing	files	are	overwritten	with	the	output;
2:	existing	files	are	left	intact,	discarding	the	output.

	 Example: -fileMode:0
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

CSV	Output	Format	Examples
File	Information
Create	a	CSV	file	containing	information	on	the	files	contained	in	the
specified	directory:

LogParser	"SELECT	Path,	Name,	Size,	Attributes	INTO	Files.csv	FROM	C:\T
est*.*"	-i:FS	-o:CSV	-recurse:0

Security	Events
Retrieve	the	10	latest	events	from	the	Security	event	log	and	write	their
information	to	a	CSV	file	for	each	event	ID:

LogParser	"SELECT	TOP	10	EventID,	EventTypeName,	Message	INTO	Even
ts_*.csv	FROM	Security"	-i:EVT	-direction:BW	-o:CSV

©	2004	Microsoft	Corporation.	All	rights	reserved.

DATAGRID	Output	Format
The	DATAGRID	output	format	displays	output	records	in	a	graphical	user
interface.

Output	records	are	displayed	in	a	scrollable	grid	that	allows	users	to
browse	through	the	query	results.	Individual	output	records	can	be
selected	and	copied	to	the	clipboard	as	CSV-formatted	data	that	can	be
pasted	into	another	application.

The	following	screenshot	shows	the	DATAGRID	window	displaying	the
results	of	a	query:

Controls	in	the	DATAGRID	user	interface	allow	users	to	resize	the
window	and	the	individual	output	record	columns,	and	to	change	the
properties	of	the	font	used	to	display	the	data.

Into-Entity	Syntax
Parameters
Examples

See	also:
NAT	Output	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

DATAGRID	Output	Format	Into-Entity
Syntax
<into-entity> ::= DATAGRID

Queries	using	the	DATAGRID	output	format	are	not	required	to	specify	an
INTO	clause.	If	an	INTO	clause	is	used,	its	<into-entity>	must	be
specified	as	"DATAGRID".

Using	the	"DATAGRID"	keyword	in	the	<into-entity>	allows	Log	Parser	to
select	the	DATAGRID	output	format	automatically	when	no	output	format
is	explicitly	specified.

Examples:

INTO	DATAGRID

©	2004	Microsoft	Corporation.	All	rights	reserved.

DATAGRID	Output	Format	Parameters
The	DATAGRID	output	format	supports	the	following	parameters:

rtp

	 Values: number	of	rows

	 Default: 10

	 Description: Rows	to	print	before	pausing.

	 Details: The	DATAGRID	output	format	displays	output	records
in	batches	made	up	of	a	number	of	rows	equal	to	the
value	specified	for	this	parameter.	Once	a	batch	of	rows
has	been	displayed,	the	"Next	n	rows"	button	is
enabled,	and	the	DATAGRID	output	format	waits	for	the
user	to	press	the	button	before	displaying	the	next
batch	of	rows.
Specifying	"-1"	for	this	parameter	disables	batching
altogether.

	 Example: -rtp:-1
	
autoScroll

	 Values: ON	|	OFF

	 Default: ON

	 Description: Automatically	scroll	window	when	new	rows	are	output.

	 Details: When	this	parameter	is	set	to	"ON",	the	DATAGRID
window	scrolls	down	automatically	whenever	new
output	records	are	displayed,	in	order	to	position	the
display	grid	over	the	latest	output	records.
Setting	this	parameter	to	"OFF"	causes	the	grid	position
to	remain	unaltered	when	new	output	records	are
displayed.
This	parameter	is	also	accessible	from	the	View	menu

in	the	DATAGRID	window.

	 Example: -autoScroll:OFF
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

DATAGRID	Output	Format	Examples
Users'	Job	Titles
Retrieve	users'	job	title	breakdown	from	Active	Directory:

LogParser	"SELECT	title,	MUL(PROPCOUNT(*),	100.0)	AS	Percentage	INT
O	DATAGRID	FROM	'LDAP://MyUsername:MyPassword@mydomain/CN=
Users,DC=mydomain,DC=com'	WHERE	title	IS	NOT	NULL	GROUP	BY	titl
e	ORDER	BY	Percentage	DESC"	-objClass:User
Registry	Type	Distribution
Display	the	distribution	of	registry	value	types:

LogParser	"SELECT	ValueType,	COUNT(*)	FROM	\HKLM	GROUP	BY	Val
ueType"	-o:DATAGRID

©	2004	Microsoft	Corporation.	All	rights	reserved.

IIS	Output	Format
The	IIS	output	format	writes	output	records	in	the	Microsoft	IIS	Log	File
Format.

The	following	example	shows	a	sample	output	file	generated	by	the	IIS
output	format:

192.168.1.1,	-,	11/18/2003,	0:28:33,	-,	-,	192.168.1.100,	15,	194,	345,	304,	-,	G
ET,	/Default.htm,	-,
192.168.1.1,	-,	11/18/2003,	0:28:33,	-,	-,	192.168.1.100,	0,	139,	323,	304,	-,	G
ET,	/style.css,	-,
192.168.1.1,	-,	11/18/2003,	0:28:33,	-,	-,	192.168.1.100,	0,	139,	334,	304,	-,	G
ET,	/images/address.gif,	-,
192.168.1.1,	-,	11/18/2003,	0:28:33,	-,	-,	192.168.1.100,	31,	2285,	273,	200,	-,	
GET,	/cgi-bin/counts.exe,	test=npa&style;=14,
192.168.1.2,	-,	11/18/2003,	0:28:42,	-,	-,	192.168.1.100,	1828,	666,	442,	200,	-,
	GET,	/home/rules.htm,	-,
192.168.1.2,	-,	11/18/2003,	0:28:42,	-,	-,	192.168.1.100,	47,	2018,	463,	200,	-,	
GET,	/home/rules.htm,	-,
192.168.1.2,	-,	11/18/2003,	0:28:42,	-,	-,	192.168.1.100,	62,	8903,	308,	200,	-,	
GET,	/home/rules.htm,	-,

Into-Entity	Syntax
Parameters
Examples

See	also:
IIS	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

IIS	Output	Format	Into-Entity	Syntax
<into-entity> ::= <filename>	|	

STDOUT

The	<into-entity>	specified	in	queries	using	the	IIS	output	format	is	either:

A	filename;
The	"STDOUT"	keyword,	which	specifies	that	the	output	data	is	to	be
written	to	the	output	stream	(the	console	output).

The	default	into-entity	for	queries	that	do	not	specify	an	INTO	clause	is
"STDOUT".

The	IIS	output	format	supports	the	multiplex	feature,	which	can	be
enabled	by	specifying	'*'	wildcards	in	the	into-entity	filename.	This	feature
allows	output	records	to	be	written	to	different	files	depending	on	the
values	of	their	fields.	For	more	information	on	the	multiplex	feature,	see
Multiplexing	Output	Records.

Examples:

INTO	inetsv1.log

INTO	\\COMPUTER01\Logs\in040528.log

INTO	STDOUT

INTO	Logs_*_*\in*.log

©	2004	Microsoft	Corporation.	All	rights	reserved.

IIS	Output	Format	Parameters
The	IIS	output	format	supports	the	following	parameters:

rtp

	 Values: number	of	rows

	 Default: 10

	 Description: Rows	to	print	before	pausing.

	 Details: When	writing	to	STDOUT,	the	IIS	output	format	displays
output	records	in	batches	made	up	of	a	number	of	rows
equal	to	the	value	specified	for	this	parameter.	Once	a
batch	of	rows	has	been	displayed,	the	IIS	output	format
prompts	the	user	to	press	a	key	to	display	the	next
batch	of	rows.
Specifying	"-1"	for	this	parameter	disables	batching
altogether.

	 Example: -rtp:-1
	
oCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	output	text.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -oCodepage:1245
	
fileMode

	 Values: 0	|	1	|	2

	 Default: 1

	 Description: Action	to	perform	when	an	output	file	already	exists.

	 Details: This	parameter	controls	the	behavior	of	the	IIS	output
format	when	the	into-entity	specifies	directly	or
indirectly	through	the	"multiplex"	feature	the	name	of	a
file	that	already	exists.
The	possible	values	for	this	parameter	are:
0:	existing	files	are	appended	with	the	output;
1:	existing	files	are	overwritten	with	the	output;
2:	existing	files	are	left	intact,	discarding	the	output.

	 Example: -fileMode:0
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

IIS	Output	Format	Examples
W3C	to	IIS	Conversion
Convert	the	specified	W3C	log	file	to	an	IIS	log	file:

LogParser	"SELECT	c-ip,	cs-username,	TO_DATE(TO_LOCALTIME(TO_TI
MESTAMP(date,	time))),	TO_TIME(TO_LOCALTIME(TO_TIMESTAMP(d
ate,	time))),	s-sitename,	s-computername,	s-ip,	time-taken,	sc-bytes,	cs-bytes,	s
c-status,	sc-win32-status,	cs-method,	cs-uri-stem,	cs-uri-query	INTO	inetsv1.lo
g	FROM	extend1.log"	-i:IISW3C	-o:IIS©	2004	Microsoft	Corporation.	All	rights	reserved.

NAT	Output	Format
The	NAT	output	format	writes	output	records	in	a	readable	tabulated
column	format.

The	primary	intended	use	of	the	NAT	output	format	is	to	display	output
records	to	the	console	output.
This	is	the	default	output	format	selected	by	Log	Parser	when	a
command	does	not	explicitly	specify	an	output	format	and	the	query	does
not	specify	an	INTO	clause.

The	following	example	shows	a	sample	output	generated	by	the	NAT
output	format:

TimeGenerated							SourceName														EventID
-------------------	-----------------------	-------
2004-04-18	18:48:04	EventLog																6009
2004-04-18	18:48:04	EventLog																6005
2004-04-18	18:48:27	Service	Control	Manager	7024
2004-04-18	18:48:27	Service	Control	Manager	7035
2004-04-18	18:48:27	Service	Control	Manager	7035
2004-04-18	18:48:27	Service	Control	Manager	7036
2004-04-18	18:48:27	Service	Control	Manager	7036
2004-04-18	18:48:27	Service	Control	Manager	7035
2004-04-18	18:48:27	Service	Control	Manager	7036
2004-04-18	18:48:27	Service	Control	Manager	7035

Into-Entity	Syntax
Parameters
Examples

See	also:
DATAGRID	Output	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

NAT	Output	Format	Into-Entity	Syntax
<into-entity> ::= <filename>	|	

STDOUT

The	<into-entity>	specified	in	queries	using	the	NAT	output	format	is
either:

A	filename;
The	"STDOUT"	keyword,	which	specifies	that	the	output	data	is	to	be
written	to	the	output	stream	(the	console	output).

The	default	into-entity	for	queries	that	do	not	specify	an	INTO	clause	is
"STDOUT".

The	NAT	output	format	supports	the	multiplex	feature,	which	can	be
enabled	by	specifying	'*'	wildcards	in	the	into-entity	filename.	This	feature
allows	output	records	to	be	written	to	different	files	depending	on	the
values	of	their	fields.	For	more	information	on	the	multiplex	feature,	see
Multiplexing	Output	Records.

Examples:

INTO	report.txt

INTO	\\COMPUTER01\Reports\report.txt

INTO	STDOUT

INTO	Reports_*_*\Report*.txt

©	2004	Microsoft	Corporation.	All	rights	reserved.

NAT	Output	Format	Parameters
The	NAT	output	format	supports	the	following	parameters:

rtp

	 Values: number	of	rows

	 Default: 10

	 Description: Rows	to	print	before	pausing.

	 Details: When	writing	to	STDOUT,	the	NAT	output	format
displays	output	records	in	batches	made	up	of	a
number	of	rows	equal	to	the	value	specified	for	this
parameter.	Once	a	batch	of	rows	has	been	displayed,
the	NAT	output	format	prompts	the	user	to	press	a	key
to	display	the	next	batch	of	rows.
Specifying	"-1"	for	this	parameter	disables	batching
altogether.

	 Example: -rtp:-1
	
headers

	 Values: ON	|	OFF

	 Default: ON

	 Description: Print	column	headers.

	 Details: This	parameter	enables	or	disables	the	column	headers
displayed	before	each	batch	of	output	rows.

	 Example: -headers:OFF
	
spaceCol

	 Values: ON	|	OFF

	 Default: ON

	 Description: Space	columns	uniformly.

	 Details: When	this	parameter	is	set	to	"ON",	the	NAT	output
format	pads	values	with	enough	space	characters	to
create	columns	having	a	uniform	width	within	each
batch	of	output	rows.
When	this	parameter	is	set	to	"OFF",	the	NAT	output
format	displays	unaligned	values	separated	by	a	single
space	character.

	 Example: -spaceCol:OFF
	
rAlign

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Align	columns	to	the	right.

	 Details: When	this	parameter	is	set	to	"ON",	the	NAT	output
format	aligns	values	to	the	right	side	of	each	column.
When	this	parameter	is	set	to	"OFF",	values	are	aligned
to	the	left	side	of	each	column.

	 Example: -rAlign:ON
	
colSep

	 Values: any	string

	 Default: single	space	character

	 Description: Column	separator.

	 Details: This	parameter	specifies	the	separator	to	be	used
between	the	columns.

	 Example: -colSep:",	"
	

direct

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Enable	"direct	mode".

	 Details: When	"direct	mode"	is	enabled,	the	NAT	output	format
displays	output	records	as	they	are	made	available,
disabling	the	internal	buffering	mechanism	used	for
column	spacing	and	output	row	batching.
In	"direct	mode"	columns	are	not	uniformly	spaced,
headers	are	printed	only	at	the	beginning	of	the	output,
and	output	records	are	displayed	without	interruption.

	 Example: -direct:ON
	
oCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	output	text.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -oCodepage:1245
	
fileMode

	 Values: 0	|	1	|	2

	 Default: 1

	 Description: Action	to	perform	when	an	output	file	already	exists.

	 Details: This	parameter	controls	the	behavior	of	the	NAT	output
format	when	the	into-entity	specifies	directly	or
indirectly	through	the	"multiplex"	feature	the	name	of	a
file	that	already	exists.

The	possible	values	for	this	parameter	are:
0:	existing	files	are	appended	with	the	output;
1:	existing	files	are	overwritten	with	the	output;
2:	existing	files	are	left	intact,	discarding	the	output.

	 Example: -fileMode:0
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

NAT	Output	Format	Examples
Ten	Largest	Files
Print	the	10	largest	files	on	the	C:	drive:

LogParser	"SELECT	TOP	10	*	FROM	C:*.*	ORDER	BY	Size	DESC"	-i:FS

©	2004	Microsoft	Corporation.	All	rights	reserved.

SQL	Output	Format
The	SQL	output	format	uploads	output	records	to	a	table	in	a	SQL
database.

This	output	format	can	upload	records	to	a	table	in	any	ODBC-compliant
database,	including	Microsoft	SQL	Server	and	Microsoft	Access
databases.

When	the	target	table	does	not	already	exist	in	the	specified	database,
the	SQL	output	format	creates	a	table	with	as	many	columns	as	the
number	of	fields	in	the	SELECT	clause	of	the	query.	In	this	case,	the	SQL
type	of	each	column	is	determined	by	the	data	type	of	the	corresponding
output	record	field,	as	described	in	Column	Type	Mappings.

If	the	target	table	already	exists,	the	number	of	columns	in	the	table	must
match	exactly	the	number	of	fields	in	the	SELECT	clause	of	the	query,
and	the	SQL	type	of	each	column	must	be	compatible	with	the	data	type
of	the	output	record	field	in	the	same	position,	as	described	in	Column
Type	Mappings.

Column	Type	Mappings
Into-Entity	Syntax
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

SQL	Output	Format	Column	Type
Mappings
The	following	table	shows	the	mappings	between	the	data	types	of	the
query	output	record	fields	and	the	SQL	types	of	the	columns	in	the	target
table.

The	column	labeled	"New	Table"	shows	the	SQL	types	declared	for	the
table	columns	when	the	SQL	output	format	creates	the	table.
The	column	labeled	"Existing	Table"	shows	the	SQL	types	that	are
compatible	with	the	corresponding	Log	Parser	data	type	when	the	SQL
output	format	uploads	records	to	an	existing	table.

Log	Parser	Data	Type New	Table Existing	Table

INTEGER int int,	bigint,	smallint,	tinyint,	bit1

REAL real real,	decimal,	float

STRING varchar(n2) varchar(n),	nvarchar(n),	char
TIMESTAMP datetime datetime,	smalldatetime,	date,	time
NULL varchar any	type

Notes:
(1):	when	uploading	to	a	field	of	the	bit	type,	the	target	value	is	set	to
true	when	the	INTEGER	value	is	different	than	zero,	and	to	false
when	the	value	is	NULL	or	zero.

(2):	the	maximum	length	of	new	fields	of	the	varchar	type	can	be
controlled	through	the	maxStrFieldLen	parameter.

©	2004	Microsoft	Corporation.	All	rights	reserved.

SQL	Output	Format	Into-Entity	Syntax
<into-entity> ::= <table_name>

The	<into-entity>	specified	in	queries	using	the	SQL	output	format	is	the
name	of	the	table	where	the	results	are	to	be	uploaded	to.

If	the	specified	table	does	not	already	exist,	the	SQL	output	format
creates	a	table	with	as	many	columns	as	the	number	of	fields	in	the
SELECT	clause	of	the	query.	In	this	case,	the	SQL	type	of	each	column
is	determined	by	the	data	type	of	the	corresponding	output	record	field,
as	described	in	Column	Type	Mappings.
If	the	specified	table	already	exists,	the	number	of	columns	in	the	table
must	match	exactly	the	number	of	fields	in	the	SELECT	clause	of	the
query,	and	the	SQL	type	of	each	column	must	be	compatible	with	the
data	type	of	the	output	record	field	in	the	same	position,	as	described	in
Column	Type	Mappings.

Examples:

INTO	ReportTable

©	2004	Microsoft	Corporation.	All	rights	reserved.

SQL	Output	Format	Parameters
The	SQL	output	format	supports	the	following	parameters:

server

	 Values: server	name

	 Default: .

	 Description: Name	of	the	database	server.

	 Details: Setting	a	value	for	the	"oConnString"	parameter	causes
this	parameter	to	be	ignored.

	 Example: -server:SQLREPORTS
	
database

	 Values: database	name

	 Default: not	specified

	 Description: Name	of	the	target	database.

	 Details: Setting	a	value	for	the	"oConnString"	parameter	causes
this	parameter	to	be	ignored.

	 Example: -database:LogParserLogs
	
driver

	 Values: ODBC	driver	name

	 Default: SQL	Server

	 Description: Name	of	the	ODBC	driver	to	use.

	 Details: Setting	a	value	for	the	"oConnString"	parameter	causes
this	parameter	to	be	ignored.

	 Example: -driver:"Microsoft	Access	Driver	(*.mdb)"

	
dsn

	 Values: DSN	name

	 Default: not	specified

	 Description: Name	of	the	DSN	to	use.

	 Details: This	parameter	can	be	used	to	specify	a	Data	Source
Name	that	contains	information	about	the	connection	to
the	target	database.
Setting	a	value	for	the	"oConnString"	parameter	causes
this	parameter	to	be	ignored.

	 Example: -dsn:"My	DSN"
	
username

	 Values: SQL	username

	 Default: not	specified

	 Description: Database	username.

	 Details: When	this	parameter	is	not	specified,	the	SQL	output
format	uses	the	current	user's	credentials	through
Windows	Integrated	Authentication.
Setting	a	value	for	the	"oConnString"	parameter	causes
this	parameter	to	be	ignored.

Note:	For	security	reasons,	values	specified	for	this
parameter	are	not	persisted	when	using	the	Log
Parser	command-line	Defaults	Override	Mode.

	 Example: -username:MyDBUser
	
password

	 Values: SQL	password

	 Default: not	specified

	 Description: Database	user	password.

	 Details: Setting	a	value	for	the	"oConnString"	parameter	causes
this	parameter	to	be	ignored.

Note:	For	security	reasons,	values	specified	for	this
parameter	are	not	persisted	when	using	the	Log
Parser	command-line	Defaults	Override	Mode.

	 Example: -password:MyPassword
	
oConnString

	 Values: connection	string

	 Default: not	specified

	 Description: ODBC	connection	string	containing	the	parameters	for	the
connection	to	the	database.

	 Details: Setting	a	value	for	this	parameter	causes	the	SQL	output
format	to	ignore	any	value	set	for	the	"server",	"database",
"driver",	"dsn",	"username",	and	"password"	parameters.
The	SQL	output	format	does	not	enforce	any	syntax	on
the	connection	string.	The	value	specified	for	this
parameter	is	handed	directly	to	the	ODBC	subsystem
when	initiating	the	connection	to	the	database.

Note:	For	security	reasons,	values	specified	for	this
parameter	that	contain	a	username	and/or	a	password
are	not	persisted	when	using	the	Log	Parser
command-line	Defaults	Override	Mode.

	 Example: -oConnString:"Driver={SQL
Server};Server=MyServer;db=pubs;uid=sa;pwd=MyPassword"

	
createTable

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Create	a	new	table	when	the	table	specified	in	the	into-
entity	does	not	exist.

	 Details: When	this	parameter	is	set	to	"ON"	and	the	target	table
does	not	already	exist	in	the	specified	database,	the	SQL
output	format	creates	a	table	with	as	many	columns	as
the	number	of	fields	in	the	SELECT	clause	of	the	query.	In
this	case,	the	SQL	type	of	each	column	is	determined	by
the	data	type	of	the	corresponding	output	record	field,	as
described	in	Column	Type	Mappings.
When	this	parameter	is	set	to	"OFF"	and	the	target	table
does	not	already	exist	in	the	specified	database,	the	SQL
output	format	generates	an	error,	causing	the	currently
executing	query	to	abort.

	 Example: -createTable:ON
	
clearTable

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Clear	existing	table	before	inserting	new	rows.

	 Details: Setting	this	parameter	to	"ON"	causes	the	SQL	output
format	to	delete	existing	rows	in	the	target	table	before
inserting	the	query	output	records.

	 Example: -clearTable:ON
	
fixColNames

	 Values: ON	|	OFF

	 Default: ON

	 Description: Automatically	remove	invalid	characters	from	column
names	when	creating	the	target	table.

	 Details: When	the	"createTable"	parameter	is	set	to	"ON"	and	the

target	table	does	not	already	exist	in	the	specified
database,	the	SQL	output	format	creates	the	table	naming
its	columns	with	the	names	of	the	query	output	record
fields.	When	this	parameter	is	set	to	"ON",	the	SQL	output
format	processes	the	field	names	and	removes	or
substitutes	those	characters	that	are	considered	illegal	by
most	databases,	including	space	characters,	parenthesys
characters,	and	dash	(-)	characters.

	 Example: -fixColNames:OFF
	
maxStrFieldLen

	 Values: number	of	characters

	 Default: 255

	 Description: Maximum	number	of	characters	declared	for	string
columns	when	creating	a	table.

	 Details: When	the	"createTable"	parameter	is	set	to	"ON"	and	the
target	table	does	not	already	exist	in	the	specified
database,	the	SQL	output	format	creates	the	table
determining	the	SQL	type	of	each	column	from	the	data
type	of	the	corresponding	output	record	field,	as
described	in	Column	Type	Mappings.	Columns
corresponding	to	output	record	fields	of	the	STRING	data
type	are	declared	as	SQL	strings	having	a	maximum
length	equal	to	the	value	specified	for	this	parameter.

	 Example: -maxStrFieldLen:511
	
transactionRowCount

	 Values: number	of	rows

	 Default: 0

	 Description: Number	of	rows	enclosed	in	a	SQL	transaction.

	 Details: When	this	parameter	is	set	to	"0",	the	SQL	output	format
works	in	"auto	commit"	mode,	where	each	single	output
record	uploaded	to	the	target	table	is	automatically
committed.
When	this	parameter	is	set	to	"-1",	the	SQL	output	format
initiates	a	SQL	transaction	when	uploading	the	first	output
record,	and	commits	or	rollbacks	the	transaction	after
uploading	the	last	record	or	when	an	error	causes	the
query	execution	to	abort.
Setting	this	parameter	to	any	other	value	causes	the	SQL
output	format	to	create	multiple	SQL	transactions,	each
containing	a	number	of	records	equal	to	the	specified
value.

	 Example: -transactionRowCount:200
	
ignoreMinWarns

	 Values: ON	|	OFF

	 Default: ON

	 Description: Ignore	minor	warnings.

	 Details: When	this	parameter	is	set	to	"ON",	the	SQL	output
format	ignores	minor	warnings	that	might	occur	while
uploading	records	to	the	target	table,	including	data
truncation	warnings	and	invalid	escape	character	errors.
When	this	parameter	is	set	to	"OFF",	all	minor	warnings
are	reported	as	warnings	when	the	query	execution	is
complete.

	 Example: -ignoreMinWarns:OFF
	
ignoreIdCols

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Ignore	"identity"	columns	in	the	target	table.

	 Details: When	this	parameter	is	set	to	"OFF"	and	the	target	table
specified	in	the	into-entity	already	exists,	the	SQL	output
format	expects	a	1-to-1	match	between	the	columns	in	the
target	table	and	the	fields	in	the	query	output	records,
regardless	of	whether	or	not	any	column	in	the	target
table	is	an	"identity"	column.	In	this	case,	the	values	of	the
output	record	fields	will	be	uploaded	to	all	the	columns	in
the	table,	including	eventual	"identity"	columns.
When	this	parameter	is	set	to	"ON"	and	the	target	table
specified	in	the	into-entity	already	exists,	the	SQL	output
format	ignores	"identity"	columns	in	the	target	table,
checking	for	a	1-to-1	match	only	between	the	non-identity
columns	and	the	fields	in	the	query	output	records,	and
uploading	output	record	field	values	to	non-identity
columns	only.

	 Example: -ignoreIdCols:ON
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

SQL	Output	Format	Examples
Upload	Registry	Values	to	a	SQL	table
Upload	a	portion	of	the	registry	into	a	newly-created	SQL	table:

LogParser	"SELECT	Path,	KeyName,	ValuleName	INTO	MyTable	FROM	\H
KLM"	-i:REG	-o:SQL	-server:MyServer	-database:MyDatabase	-driver:"SQL	
Server"	-username:TestSQLUser	-password:TestSQLPassword	-createTable:O
N
Upload	IIS	W3C	log	files	to	an	Access	database
Upload	selected	fields	of	an	IIS	W3C	log	file	into	an	existing	table	in
Microsoft	Access:

LogParser	"SELECT	TO_TIMESTAMP(date,	time),	c-ip,	cs-uri-stem,	sc-statu
s	INTO	MyTable	FROM	extend1.log"	-i:IISW3C	-o:SQL	-oConnString:"Drive
r={Microsoft	Access	Driver	(*.mdb)};Dbq=C:\MyDB\MyDB.mdb;Uid=MyUs
ername;Pwd=MyPassword"©	2004	Microsoft	Corporation.	All	rights	reserved.

SYSLOG	Output	Format
The	SYSLOG	output	format	can	be	used	to	send	messages	to	a	Syslog
server,	to	create	text	files	containing	Syslog	messages,	and	to	send
Syslog	messages	to	users.

The	SYSLOG	output	format	generates	messages	formatted	according	to
the	Syslog	specifications	described	in	RFC	3164.
Syslog	messages	consist	of	six	parts,	and	the	SYSLOG	output	format
provides	parameters	that	allow	users	to	assign	constants	or	output	record
fields	to	the	different	parts	of	a	message.

The	following	example	shows	Syslog	messages	containing	information
gathered	from	the	System	event	log:

<46>Apr	18	18:48:04	MYSERVER-M	LogParser:EventLog:	The	Event	log	se
rvice	was	started.	
<30>Apr	18	18:48:27	MYSERVER-M	LogParser:Service	Control	Manager:	T
he	Telephony	service	entered	the	running	state.	
<46>Apr	18	18:51:37	MYSERVER-M	LogParser:EventLog:	The	Event	log	se
rvice	was	stopped.	
<134>Apr	18	19:20:23	MYSERVER-M	LogParser:Ati	HotKey	Poller:	The	ser
vice	was	started.	
<46>Apr	18	19:20:07	MYSERVER-M	LogParser:EventLog:	The	Event	log	se
rvice	was	started.	
<30>Apr	18	19:20:47	MYSERVER-M	LogParser:Service	Control	Manager:	T
he	Telephony	service	entered	the	running	state.	
<46>Apr	18	19:33:17	MYSERVER-M	LogParser:EventLog:	The	Event	log	se
rvice	was	stopped.	
<134>Apr	19	07:01:57	MYSERVER-M	LogParser:Ati	HotKey	Poller:	The	ser
vice	was	started.	
<46>Apr	19	07:01:41	MYSERVER-M	LogParser:EventLog:	The	Event	log	se
rvice	was	started.	
<30>Apr	19	07:02:07	MYSERVER-M	LogParser:Service	Control	Manager:	T
he	Telephony	service	entered	the	running	state.	

The	SYSLOG	output	format	can	be	optionally	configured	with	a	Syslog
server	configuration	file,	which	describes	the	rules	used	to	forward
messages	to	files,	Syslog	servers,	or	users.

Message	Structure
Configuration	Files
Into-Entity	Syntax
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

SYSLOG	Output	Format	Message
Structure
The	SYSLOG	output	format	generates	messages	formatted	according	to
the	Syslog	specifications	described	in	RFC	3164.
Syslog	messages	consist	of	six	parts,	and	the	SYSLOG	output	format
provides	parameters	that	allow	users	to	assign	constants	or	output	record
fields	to	the	different	parts	of	a	message.

A	sample	Syslog	message	is	formatted	as	follows:

<14>Nov	11	16:05:33	MYSERVER-M	LogParser:The	service	was	started.

This	message	consists	of	the	following	parts:

PRI:	 <14>

The	PRI	part	is	bound	with	angle	brackets	and	contains	a	decimal
Priority	value,	which	in	turn	is	built	as	follows:

The	first	7	bits	contain	the	facility	value,	describing	the	origin	of	the
message;
The	last	3	bits	contain	the	severity	value,	describing	the	importance
of	the	message.

HEADER:	 Nov	11	16:05:33	MYSERVER-M

The	HEADER	part	consists	of	the	following	two	elements:

A	timestamp	value,	indicating	the	local	time	at	which	the	message
was	generated;
A	hostname	value,	indicating	the	host	on	which	the	message
originated.

MSG:	 LogParser:The	service	was	started.

The	MSG	part	consists	of	the	following	two	elements:

A	tag	value,	indicating	the	name	of	the	program	or	process	that
generated	the	message,	followed	by	a	colon	character	(":");
A	content	value,	containing	the	details	of	the	message.

Facility
The	facility	value	is	represented	by	the	upper	7	bits	of	the	priority	value	in
the	PRI	part	of	the	message,	and	it	describes	the	application	or	operating
system	component	that	originated	the	message.	For	a	detailed	list	of	the
numeric	values	designated	for	well-known	operating	system	components,
refer	to	RFC	3164.
The	following	table	shows	the	names	assigned	to	the	most	common
facility	values:

Numerical	Value Facility	Name

0 kern

1 user

2 mail

3 daemon

4 auth

5 mark

6 lpr

7 news

8 uucp

9 cron

10 auth2

11 ftp

12 ntp

13 logaudit

14 logalert

15 clock

16 local0

17 local1

18 local2

19 local3

20 local4

21 local5

22 local6

23 local7

In	the	previous	example	message,	the	priority	value	"14"	indicates	a
facility	value	of	1	("user").

The

facility	parameter	of	the	SYSLOG	output	format	allows	users	to	control
the	value	of	the	facility	field	in	the	output	messages.
This	parameter	can	be	set	to	any	of	the	following	values:
A	numeric	value,	such	as	"1"	or	"23";
The	name	of	a	facility	value,	such	as	"user"	or	"local7";

The	name	or	the	1-based	index	of	an	output	record	field	prepended
with	a	dollar	character	("$"),	such	as	"$MyFacility"	or	"$2".	The
specified	output	record	field	must	be	of	either	the	INTEGER	data	type	-
in	which	case	its	values	are	assumed	to	be	numerical	facility	values,	or
of	the	STRING	data	type	-	in	which	case	its	values	are	assumed	to	be
facility	names	among	those	described	in	the	previous	table.
When	an	output	record	field	value	does	not	contain	a	recognized
facility	name	or	it	contains	a	facility	value	greater	than	23,	the	SYSLOG
output	format	uses	a	default	facility	value	of	1	("user").

The	following	example	query	returns	event	messages	from	the	System
event	log	together	with	a	"MyFacility"	field	that	maps	each	event	source
to	a	Syslog	facility	name:

SELECT	CASE	SourceName
									WHEN	'EventLog'	THEN	'mark'
									WHEN	'Service	Control	Manager'	THEN	'daemon'
									WHEN	'Print'	THEN	'lpr'
									WHEN	'Kerberos'	THEN	'auth'
									WHEN	'NETLOGON'	THEN	'logaudit'
									WHEN	'Application	Popup'	THEN	'local7'
									ELSE	'local0'
							END	AS	MyFacility,
							Message
INTO	SYSLOG
FROM	System

This	query	can	be	executed	with	the	following	command,	which	specifies
that	the	facility	value	of	each	output	message	is	to	be	retrieved	from	the
"MyFacility"	output	record	field:

LogParser	file:MyQuery.sql	-o:SYSLOG	-conf:Myconfig.conf	-facility:$MyFa
cility
The	Syslog	messages	generated	by	this	command	will	look	like	the
following	examples:

<134>Nov	13	18:17:25	MYSERVER-M	LogParser:The	service	was	started.	
<46>Nov	13	18:17:46	MYSERVER-M	LogParser:The	Event	log	service	was	s
tarted.	
<30>Nov	13	18:17:46	MYSERVER-M	LogParser:The	Telephony	service	ente
red	the	running	state.	
<46>Nov	13	18:17:46	MYSERVER-M	LogParser:The	Event	log	service	was	s
topped.	
<134>Nov	13	18:17:46	MYSERVER-M	LogParser:The	service	was	started.	
<46>Nov	13	18:17:46	MYSERVER-M	LogParser:The	Event	log	service	was	s
tarted.	
<30>Nov	13	18:17:46	MYSERVER-M	LogParser:The	Telephony	service	ente
red	the	running	state.	

The	upper	7	bits	of	the	priority	field	of	each	of	these	messages	contain
the	facility	value	provided	by	the	"MyFacility"	output	record	field.

Severity
The	severity	value	is	represented	by	the	lower	3	bits	of	the	priority	value
in	the	PRI	part	of	the	message,	and	it	describes	the	importance	of	the
message.	For	a	detailed	description	of	the	different	values	of	the	severity
field,	refer	to	RFC	3164.

<46>Nov	13	18:17:46	MYSERVER-M	LogParser:The	Event	log	service	was	s
topped.	
<134>Nov	13	18:17:46	MYSERVER-M	LogParser:The	service	was	started.	
<46>Nov	13	18:17:46	MYSERVER-M	LogParser:The	Event	log	service	was	s
tarted.	
<30>Nov	13	18:17:46	MYSERVER-M	LogParser:The	Telephony	service	ente
red	the	running	state.	

The	following	table	shows	the	names	commonly	assigned	to	the	different
severity	values:

Numerical	Value Severity	Name

0 emerg

1 alert

2 crit

3 err

4 warning

5 notice

6 info

7 debug

For	example,	a	priority	value	of	"14"	indicates	a	severity	value	of	6
("info").

The

severity	parameter	of	the	SYSLOG	output	format	allows	users	to	control
the	value	of	the	severity	field	in	the	output	messages.
This	parameter	can	be	set	to	any	of	the	following	values:
A	numeric	value,	such	as	"1"	or	"7";
The	name	of	a	severity	value,	such	as	"alert"	or	"debug";
The	name	or	the	1-based	index	of	an	output	record	field	prepended
with	a	dollar	character	("$"),	such	as	"$MySeverity"	or	"$2".	The
specified	output	record	field	must	be	of	either	the	INTEGER	data	type	-
in	which	case	its	values	are	assumed	to	be	numerical	severity	values,
or	of	the	STRING	data	type	-	in	which	case	its	values	are	assumed	to
be	severity	names	among	those	described	in	the	previous	table.
When	an	output	record	field	value	does	not	contain	a	recognized

severity	name	or	it	contains	a	severity	value	greater	than	7,	the
SYSLOG	output	format	uses	a	default	severity	value	of	6	("info").

The	following	example	query	returns	event	messages	from	the	System
event	log	together	with	a	"MySeverity"	field	that	maps	each	event	type	to
a	Syslog	severity	name:

SELECT	CASE	EventTypeName
									WHEN	'Error	event'	THEN	'err'
									WHEN	'Warning	event'	THEN	'warning'
									WHEN	'Information	event'	THEN	'info'
									ELSE	'info'
							END	AS	MySeverity,
							Message
INTO	SYSLOG
FROM	System

This	query	can	be	executed	with	the	following	command,	which	specifies
that	the	severity	value	of	each	output	message	is	to	be	retrieved	from	the
"MySeverity"	output	record	field:

LogParser	file:MyQuery.sql	-o:SYSLOG	-conf:Myconfig.conf	-severity:$MyS
everity
The	Syslog	messages	generated	by	this	command	will	look	like	the
following	examples:

<14>Nov	13	21:42:15	MYSERVER-M	LogParser:The	Event	log	service	was	s
tarted.	
<11>Nov	13	21:42:15	MYSERVER-M	LogParser:The	Computer	Browser	serv
ice	terminated	with	service-specific	error	2550	(0x9F6).	
<14>Nov	13	21:42:15	MYSERVER-M	LogParser:The	Terminal	Services	servi
ce	was	successfully	sent	a	start	control.	
<12>Nov	13	21:42:15	MYSERVER-M	LogParser:A	request	to	suspend	power	
was	denied	by	winlogon.exe.	
<14>Nov	13	21:42:15	MYSERVER-M	LogParser:The	Event	log	service	was	s
topped.	

The	lower	3	bits	of	the	priority	field	of	each	of	these	messages	contain
the	severity	value	provided	by	the	"MySeverity"	output	record	field.

Timestamp
The	timestamp	field	indicates	the	local	time	at	which	the	message	was
originated,	and	it	is	usually	formatted	as	follows:

Nov	11	16:05:33

If	the	first	field	in	the	query	output	records	is	of	the

TIMESTAMP	data	type,	the	SYSLOG	output	format	will	use	the	field
values	to	populate	the	timestamp	field	in	the	output	messages.
On	the	other	hand,	if	the	first	field	is	not	of	the	TIMESTAMP	data	type,
the	SYSLOG	output	format	will	use	the	current	local	time.

The	following	example	query	returns	event	messages	from	the	System

event	log	together	with	the	date	and	time	at	which	the	events	have	been
generated:

SELECT	TimeGenerated,
							Message
INTO	SYSLOG
FROM	System
WHERE	SourceName	=	'EventLog'

The	Syslog	messages	generated	by	this	query	will	look	like	the	following
examples:

<14>Apr	18	18:48:04	MYSERVER-M	LogParser:The	Event	log	service	was	st
arted.	
<14>Apr	18	18:51:37	MYSERVER-M	LogParser:The	Event	log	service	was	st
opped.	
<14>Apr	18	19:20:07	MYSERVER-M	LogParser:Microsoft	(R)	Windows	(R)	
5.01.	2600	Service	Pack	1	Uniprocessor	Free.	
<14>Apr	18	19:20:07	MYSERVER-M	LogParser:The	Event	log	service	was	st
arted.	
<14>Apr	18	19:33:17	MYSERVER-M	LogParser:The	Event	log	service	was	st
opped.	
<14>Apr	19	07:01:41	MYSERVER-M	LogParser:Microsoft	(R)	Windows	(R)	
5.01.	2600	Service	Pack	1	Uniprocessor	Free.	
<14>Apr	19	07:01:41	MYSERVER-M	LogParser:The	Event	log	service	was	st
arted.	
<14>Apr	19	07:29:19	MYSERVER-M	LogParser:The	Event	log	service	was	st
opped.	

Hostname
The	hostname	field	indicates	the	server	on	which	the	message
originated.

The

hostName	parameter	of	the	SYSLOG	output	format	allows	users	to
control	the	value	of	the	hostname	field	in	the	output	messages.
This	parameter	can	be	set	to	any	of	the	following	values:
The	"localhost"	keyword,	specifying	that	the	field	should	be	populated
with	the	local	computer	name;
A	generic	string	indicating	the	desired	host	name,	such	as
"MYCOMPUTER";
The	name	or	the	1-based	index	of	an	output	record	field	prepended
with	a	dollar	character	("$"),	such	as	"$MyHostname"	or	"$2".	The
specified	output	record	field	must	be	of	the	STRING	data	type,	and	its
values	will	be	used	to	populate	the	hostname	field	in	the	output
messages.

When	no	value	is	specified	for	the	"hostName"	parameter,	the	hostname
field	is	automatically	populated	with	the	local	computer	name.

The	following	example	query	returns	event	messages	from	the	System
event	log	of	different	computers,	together	with	the	computer	name	on
which	the	event	originated:

SELECT	Message,
							ComputerName
INTO	SYSLOG
FROM	\\MYSERVER01\System,\\MYSERVER02\System,\\MYSERVER03\S
ystem

This	query	can	be	executed	with	the	following	command,	which	specifies
that	the	hostname	field	of	each	output	message	is	to	be	retrieved	from
the	second	output	record	field:

LogParser	file:MyQuery.sql	-o:SYSLOG	-conf:Myconfig.conf	-hostName:$2

The	Syslog	messages	generated	by	this	command	will	look	like	the
following	examples:

<14>Nov	13	22:07:11	MYSERVER03	LogParser:Microsoft	(R)	Windows	(R)	
5.01.	2600	Service	Pack	1	Uniprocessor	Free.	
<14>Nov	13	22:07:11	MYSERVER03	LogParser:The	Event	log	service	was	st
arted.	
<14>Nov	13	22:07:11	MYSERVER01	LogParser:The	Terminal	Services	servi
ce	was	successfully	sent	a	start	control.	
<14>Nov	13	22:07:11	MYSERVER02	LogParser:The	Network	Connections	s
ervice	was	successfully	sent	a	start	control.	
<14>Nov	13	22:07:11	MYSERVER01	LogParser:The	Terminal	Services	servi
ce	entered	the	running	state.	
<14>Nov	13	22:07:11	MYSERVER02	LogParser:The	Network	Connections	s
ervice	entered	the	running	state.	
<14>Nov	13	22:07:11	MYSERVER02	LogParser:The	SSDP	Discovery	Servic
e	service	was	successfully	sent	a	start	control.	
<14>Nov	13	22:07:11	MYSERVER03	LogParser:The	SSDP	Discovery	Servic
e	service	was	successfully	sent	a	start	control.	

Tag
The	tag	field	indicates	the	name	of	the	program	or	process	that
generated	the	message.

The

processName	parameter	of	the	SYSLOG	output	format	allows	users	to
control	the	value	of	the	tag	field	in	the	output	messages.
This	parameter	can	be	set	to	any	of	the	following	values:
A	generic	string	indicating	the	desired	tag	field	value,	such	as
"MyReports";
The	name	or	the	1-based	index	of	an	output	record	field	prepended
with	a	dollar	character	("$"),	such	as	"$MyProgram"	or	"$2".	The
specified	output	record	field	must	be	of	the	STRING	data	type,	and	its
values	will	be	used	to	populate	the	tag	field	in	the	output	messages.

When	no	value	is	specified	for	the	"processName"	parameter,	the	tag
field	is	automatically	populated	with	"LogParser:".	

Content
The	content	field	contains	the	details	of	the	message,	and	its	value	is
built	by	the	SYSLOG	output	format	by	concatenating	the	values	of	all	the

output	record	fields,	excluding	those	fields	that	are	used	for	the	values	of
the

facility,	severity,	timestamp,	hostname,	and	tag	message	fields.

The	following	example	query	returns	information	from	the	System	event
log:

SELECT	SourceName,
							EventTypeName,
							EventCategoryName,
							Message
INTO	SYSLOG
FROM	System

The	Syslog	messages	generated	by	this	query	will	look	like	the	following
examples:

<14>Nov	13	22:27:17	MYSERVER-M	LogParser:EventLog	Information	even
t	None	Microsoft	(R)	Windows	(R)	5.01.	2600	Service	Pack	1	Uniprocessor	Fr
ee.	
<14>Nov	13	22:27:17	MYSERVER-M	LogParser:EventLog	Information	even
t	None	The	Event	log	service	was	started.	
<14>Nov	13	22:27:17	MYSERVER-M	LogParser:Service	Control	Manager	Er
ror	event	None	The	Computer	Browser	service	terminated	with	service-specifi
c	error	2550	(0x9F6).	
<14>Nov	13	22:27:17	MYSERVER-M	LogParser:EventLog	Information	even
t	None	The	Event	log	service	was	stopped.	
<14>Nov	13	22:27:17	MYSERVER-M	LogParser:Ati	HotKey	Poller	Informat
ion	event	None	The	service	was	started.	
<14>Nov	13	22:27:17	MYSERVER-M	LogParser:EventLog	Information	even
t	None	Microsoft	(R)	Windows	(R)	5.01.	2600	Service	Pack	1	Uniprocessor	Fr
ee.	
<14>Nov	13	22:27:17	MYSERVER-M	LogParser:EventLog	Information	even
t	None	The	Event	log	service	was	started.	
<14>Nov	13	22:27:17	MYSERVER-M	LogParser:EventLog	Information	even
t	None	The	Event	log	service	was	stopped.	

©	2004	Microsoft	Corporation.	All	rights	reserved.

SYSLOG	Output	Format	Configuration
Files
Messages	generated	by	the	SYSLOG	output	format	can	be	forwarded	to
any	of	the	following	three	possible	destinations:

A	Syslog	server;
A	text	file;
A	user,	through	the	Windows	alerter	and	messenger	services.

The	conf	parameter	of	the	SYSLOG	output	format	allows	users	to	specify
a	configuration	file	resembling	the	standard	"syslog.conf"	file	that
describes	the	rules	used	to	forward	messages	to	different	destinations.
These	rules	associate	values	of	the	facility	and	severity	message	fields
with	specific	Syslog	servers,	text	files,	or	users.

Each	line	in	a	configuration	file	is	either	a	comment	beginning	with	the
pound	character	("#"),	or	a	configuration	entry.
Configuration	entries	have	the	following	syntax:

<config_entry> ::= <selector>	<action>

<selector> ::= <facilities>.<severity>

<facilities> ::= <facility>[,<facility>	...]

<facility> ::= kern	|	user	|	mail	|	daemon	|	auth	|	mark	|	lpr	|	news
|	uucp	|	cron	|	auth2	|	ftp	|	ntp	|	logaudit	|	logalert	|
clock	|	local0	|	local1	|	local2	|	local3	|	local4	|
local5	|	local6	|	local7	|	*

<severity> ::= emerg	|	alert	|	crit	|	err	|	warning	|	notice	|	info	|
debug

<action> ::= <send_server>	|
<send_file>	|

<send_user>

<send_server> ::= @<server_name>[:<port>]

<send_file> ::= <filepath>	|
STDOUT

<send_user> ::= <user_name>

A	configuration	entry	is	composed	of	a	selector	and	an	action,	separated
by	spaces	or	tab	characters.
A	selector	is	a	comma-separated	list	of	facility	names	followed	by	a	dot
(".")	and	followed	by	a	severity	name.	The	special	"*"	wildcard	means	"all
facilities".
Messages	whose	facility	is	included	in	the	selector's	set	of	facilities	and
whose	severity	is	greater	than	or	equal	to	the	selector's	severity	are
forwarded	to	the	destination	specified	in	the	action.

An	action	can	specify	any	of	the	following	destinations:

The	name	or	address	of	a	Syslog	server,	preceded	by	an	at	character
("@")	and	optionally	followed	by	a	port	number;	when	no	port	number
is	specified,	the	SYSLOG	output	format	will	use	port	514;
The	path	of	an	output	filename;
The	STDOUT	keyword,	which	specifies	that	the	output	data	is	to	be
written	to	the	output	stream	(the	console	output);
The	name	of	a	user.

The	following	example	shows	a	SYSLOG	output	format	configuration	file:

#
#	Sample	SYSLOG	output	format	configuration	file
#
auth.err																@MYSERVER01
*.debug																	STDOUT
*.info																		C:\MyLogs\Infos.txt

This	configuration	file	defines	the	following	rules:
Messages	from	the	"auth"	facility	with	a	severity	greater	than	or	equal
to	"err"	are	forwarded	to	the	"MYSERVER01"	Syslog	server	on	port
514;

kern.emerg														MYUSER
local0,local1.emerg					@192.168.1.100:515
All	messages	having	a	severity	greater	than	or	equal	to	"debug"	are
displayed	in	the	console	output;
All	messages	having	a	severity	greater	than	or	equal	to	"info"	are
written	to	the	"C:\MyLogs\Infos.txt"	text	file;
Messages	from	the	"kern"	facility	with	a	severity	greater	than	or	equal
to	"emerg"	are	sent	to	the	"MYUSER"	user;
Messages	from	the	"local0"	or	"local1"	facilities	with	a	severity	greater
than	or	equal	to	"emerg"	are	forwarded	to	the	Syslog	server	with
address	192.168.1.100	on	port	515.

Messages	matching	more	than	one	rule	are	forwarded	to	all	the	specified
destinations.	For	example,	with	the	above	configuration	file,	messages
having	a	severity	greater	than	or	equal	to	"debug"	are	both	displayed	in
the	console	output	and	written	to	the	"C:\MyLogs\Infos.txt"	text	file.

Actions	can	also	be	specified	in	the	into-entity	of	the	query.
These	actions	are	processed	as	rules	having	a	selector	that	matches	all
messages,	with	a	"*"	facility	value	and	an	"emerg"	severity	value.

©	2004	Microsoft	Corporation.	All	rights	reserved.

SYSLOG	Output	Format	Into-Entity
Syntax
<into-entity> ::= <action>	[,	<action>	...]	|	

SYSLOG

<action> ::= <send_server>	|
<send_file>	|
<send_user>

<send_server> ::= @<server_name>[:<port>]

<send_file> ::= <filepath>	|
STDOUT

<send_user> ::= <user_name>

The	<into-entity>	specified	in	queries	using	the	SYSLOG	output	format	is
either	the	"SYSLOG"	keyword,	which	specifies	that	messages	should	be
forwarded	according	to	the	rules	in	the	configuration	file	specified	for	the
conf	parameter,	or	a	comma-separated	list	of	actions,	where	each	action
is	either:

The	name	or	address	of	a	Syslog	server,	preceded	by	an	at	character
("@")	and	optionally	followed	by	a	port	number;	when	no	port	number
is	specified,	the	SYSLOG	output	format	will	use	port	514;
The	path	of	an	output	filename;
The	STDOUT	keyword,	which	specifies	that	the	output	data	is	to	be
written	to	the	output	stream	(the	console	output);
The	name	of	a	user,	to	which	Syslog	messages	will	be	sent	through	the
Windows	alerter	and	messenger	services.

When	a	configuration	file	has	been	specified	through	the	"conf"
parameter,	queries	are	allowed	to	not	provide	an	INTO	clause	at	all;	if	an
INTO	clause	is	used,	its	into-entity	must	be	specified	as	"SYSLOG".

When	a	configuration	file	has	not	been	specified,	the	INTO	clause	is
mandatory	and	it	must	contain	at	least	one	valid	action.

Actions	specified	in	the	into-entity	are	processed	as	configuration	rules
having	a	selector	that	matches	all	messages,	with	a	"*"	facility	value	and
an	"emerg"	severity	value.

Examples:

INTO	SYSLOG

INTO	@MYSERVER02:515

INTO	\\COMPUTER01\Reports\report.txt

INTO	MYUSER

INTO	@MYSERVER01,	C:\MyLogs\Infos.txt,	STDOUT,	MYUSER,	@192.1
68.1.100:515

©	2004	Microsoft	Corporation.	All	rights	reserved.

SYSLOG	Output	Format	Parameters
The	SYSLOG	output	format	supports	the	following	parameters:

conf

	 Values: file	path

	 Default: not	specified

	 Description: Syslog	configuration	file.

	 Details: This	parameter	specifies	the	path	to	a	configuration	file
that	describes	the	rules	used	to	forward	messages	to
different	destinations.
When	this	parameter	is	used,	queries	are	allowed	to	not
provide	an	INTO	clause	at	all;	if	an	INTO	clause	is
used,	its	into-entity	must	be	specified	as	"SYSLOG".
For	more	information	on	configuration	files,	see
SYSLOG	Output	Format	Configuration	Files.

	 Example: -conf:C:\mysyslog.conf
	
severity

	 Values: <numeric_value>	|	<name>	|	$<field_name>	|
$<field_index>

	 Default: info

	 Description: Message	severity	level.

	 Details: This	parameter	controls	the	value	of	the	severity	field	of
the	output	messages.
The	possible	values	for	this	parameter	are:
A	numeric	value,	such	as	"1"	or	"7";
The	name	of	a	severity	value,	such	as	"alert"	or
"debug";
The	name	or	the	1-based	index	of	an	output	record

field	prepended	with	a	dollar	character	("$"),	such	as
"$MySeverity"	or	"$2".	The	specified	output	record
field	must	be	of	either	the	INTEGER	data	type	-	in
which	case	its	values	are	assumed	to	be	numerical
severity	values,	or	of	the	STRING	data	type	-	in
which	case	its	values	are	assumed	to	be	severity
names	among	those	described	in	the	previous	table.
When	an	output	record	field	value	does	not	contain	a
recognized	severity	name	or	it	contains	a	severity
value	greater	than	7,	the	SYSLOG	output	format
uses	a	default	severity	value	of	6	("info").

For	more	information	on	the	severity	field	of	the	output
messages,	see	SYSLOG	Output	Format	Message
Structure.

	 Examples: -severity:1
-severity:alert
-severity:$MySeverity
-severity:$2

	
facility

	 Values: <numeric_value>	|	<name>	|	$<field_name>	|
$<field_index>

	 Default: user

	 Description: Message	facility.

	 Details: This	parameter	controls	the	value	of	the	facility	field	of
the	output	messages.
The	possible	values	for	this	parameter	are:
A	numeric	value,	such	as	"1"	or	"23";
The	name	of	a	facility	value,	such	as	"user"	or
"local7";
The	name	or	the	1-based	index	of	an	output	record
field	prepended	with	a	dollar	character	("$"),	such	as

"$MyFacility"	or	"$2".	The	specified	output	record	field
must	be	of	either	the	INTEGER	data	type	-	in	which
case	its	values	are	assumed	to	be	numerical	facility
values,	or	of	the	STRING	data	type	-	in	which	case	its
values	are	assumed	to	be	facility	names	among
those	described	in	the	previous	table.
When	an	output	record	field	value	does	not	contain	a
recognized	facility	name	or	it	contains	a	facility	value
greater	than	23,	the	SYSLOG	output	format	uses	a
default	facility	value	of	1	("user").

For	more	information	on	the	facility	field	of	the	output
messages,	see	SYSLOG	Output	Format	Message
Structure.

	 Examples: -facility:23
-facility:local7
-facility:$MyFacility
-facility:$2

	
oTsFormat

	 Values: timestamp	format

	 Default: MMM	dp	hh:mm:ss

	 Description: Format	of	the	timestamp	field.

	 Details: This	parameter	specifies	the	format	of	the	timestamp
field	of	the	output	messages.
For	more	information	on	date	and	time	formats,	see
Timestamp	Format	Specifiers.
For	more	information	on	the	timestamp	field	of	the
output	messages,	see	SYSLOG	Output	Format
Message	Structure.

	 Example: -oTsFormat:"MMM	dd,	yyyy"
	

hostName

	 Values: localhost	|	<name>	|	$<field_name>	|	$<field_index>

	 Default: localhost

	 Description: Value	of	the	hostname	field.

	 Details: This	parameter	controls	the	value	of	the	hostname	field
of	the	output	messages.
The	possible	values	for	this	parameter	are:
The	"localhost"	keyword,	specifying	that	the	field
should	be	populated	with	the	local	computer	name;
A	generic	string	indicating	the	desired	host	name,
such	as	"MYCOMPUTER";
The	name	or	the	1-based	index	of	an	output	record
field	prepended	with	a	dollar	character	("$"),	such	as
"$MyHostname"	or	"$2".	The	specified	output	record
field	must	be	of	the	STRING	data	type,	and	its	values
will	be	used	to	populate	the	hostname	field	in	the
output	messages.

For	more	information	on	the	hostname	field	of	the
output	messages,	see	SYSLOG	Output	Format
Message	Structure.

	 Examples: -hostName:MYCOMPUTER
-hostName:$MyHostname
-hostName:$2

	
processName

	 Values: <name>	|	$<field_name>	|	$<field_index>

	 Default: LogParser:

	 Description: Value	of	the	tag	field.

	 Details: This	parameter	controls	the	value	of	the	tag	field	of	the

output	messages.
The	possible	values	for	this	parameter	are:
A	generic	string	indicating	the	desired	tag	field	value,
such	as	"MyReports";
The	name	or	the	1-based	index	of	an	output	record
field	prepended	with	a	dollar	character	("$"),	such	as
"$MyProgram"	or	"$2".	The	specified	output	record
field	must	be	of	the	STRING	data	type,	and	its	values
will	be	used	to	populate	the	tag	field	in	the	output
messages.

For	more	information	on	the	tag	field	of	the	output
messages,	see	SYSLOG	Output	Format	Message
Structure.

	 Examples: -processName:MyReports
-processName:$MyProgram
-processName:$2

	
separator

	 Values: any	string	|	space	|	tab

	 Default: space

	 Description: Separator	between	fields.

	 Details: This	parameter	controls	the	separator	to	be	used
between	the	message	fields.
The	"tab"	keyword	causes	the	SYSLOG	output	format
to	use	a	single	tab	character	between	the	fields,	while
the	"space"	keyword	causes	the	SYSLOG	output	format
to	use	a	single	space	character.

	 Example: -separator:tab
	
maxPacketSize

	 Values: number	of	bytes

	 Default: 1024

	 Description: Maximum	message	size.

	 Details: This	parameter	controls	the	maximum	size	of	the
messages	generated	by	the	SYSLOG	output	format.
Messages	whose	size	exceeds	the	value	specified	for
this	parameter	are	either	truncated	or	discarded,
depending	on	the	value	of	the	"discardOversized"
parameter.

	 Example: -maxPacketSize:8192
	
discardOversized

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Discard	oversized	messages.

	 Details: When	this	parameter	is	set	to	"ON",	the	SYSLOG
output	format	discards	messages	whose	size	exceeds
the	value	specified	for	the	"maxPacketSize"	parameter.
When	this	parameter	is	set	to	"OFF",	the	SYSLOG
output	format	truncates	oversized	messages	to	the	size
specified	with	the	"maxPacketSize"	parameter.

	 Example: -discardOversized:ON
	
protocol

	 Values: UDP	|	TCP

	 Default: UDP

	 Description: Protocol	used	for	transmission.

	 Details: This	parameter	specifies	the	protocol	to	use	when
sending	messages	to	Syslog	servers.

	 Example: -protocol:TCP

	
sourcePort

	 Values: port	number	|	*

	 Default: *

	 Description: Source	port	to	use	for	transmission.

	 Details: This	parameter	specifies	the	source	port	to	use	when
sending	messages	to	Syslog	servers.
Specifying	"*"	causes	the	SYSLOG	output	format	to
choose	any	available	port	number.

	 Example: -sourcePort:514
	
ignoreDspchErrs

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Ignore	dispatch	errors.

	 Details: Setting	this	parameter	to	"ON"	causes	the	SYSLOG
output	format	to	buffer	errors	occurring	while
transmitting	messages	to	Syslog	servers	or	users,
reporting	all	the	errors	as	warnings	when	the	query
execution	has	completed.
Setting	this	parameter	to	"OFF"	causes	the	SYSLOG
output	format	to	report	errors	as	they	occur,	aborting
the	execution	of	the	query.

	 Example: -ignoreDspchErrs:ON
	
oCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	output	message	text.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -oCodepage:1245
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

SYSLOG	Output	Format	Examples
Export	System	Event	Log
Export	events	from	the	System	event	log	to	a	Syslog	server	and	to	a	local
file:

SELECT	TimeGenerated,
							CASE	SourceName
									WHEN	'EventLog'	THEN	'mark'
									WHEN	'Service	Control	Manager'	THEN	'daemon'
									WHEN	'Print'	THEN	'lpr'
									WHEN	'Kerberos'	THEN	'auth'
									WHEN	'NETLOGON'	THEN	'logaudit'
									WHEN	'Application	Popup'	THEN	'local7'
									ELSE	'local0'
							END	AS	MyFacility,
							CASE	EventTypeName
									WHEN	'Error	event'	THEN	'err'
									WHEN	'Warning	event'	THEN	'warning'
									WHEN	'Information	event'	THEN	'info'
									ELSE	'info'
							END	AS	MySeverity,
							ComputerName,
							STRCAT(SourceName,	':'),
							Message
INTO	@MYSERVER04,Log.txt
FROM	System

This	query	can	be	executed	with	the	following	command:

LogParser	file:MyQuery.sql	-o:SYSLOG	-facility:$MyFacility	-severity:$MyS
everity	-hostName:$ComputerName
The	output	will	look	like	the	following	sample:

<46>Apr	18	18:48:04	MYSERVER-M	LogParser:EventLog:	The	Event	log	se
rvice	was	started.	
<30>Apr	18	18:48:27	MYSERVER-M	LogParser:Service	Control	Manager:	T
he	Telephony	service	entered	the	running	state.	
<46>Apr	18	18:51:37	MYSERVER-M	LogParser:EventLog:	The	Event	log	se
rvice	was	stopped.	
<134>Apr	18	19:20:23	MYSERVER-M	LogParser:Ati	HotKey	Poller:	The	ser
vice	was	started.	
<46>Apr	18	19:20:07	MYSERVER-M	LogParser:EventLog:	The	Event	log	se
rvice	was	started.	
<30>Apr	18	19:20:47	MYSERVER-M	LogParser:Service	Control	Manager:	T
he	Telephony	service	entered	the	running	state.	
<46>Apr	18	19:33:17	MYSERVER-M	LogParser:EventLog:	The	Event	log	se
rvice	was	stopped.	
<134>Apr	19	07:01:57	MYSERVER-M	LogParser:Ati	HotKey	Poller:	The	ser
vice	was	started.	
<46>Apr	19	07:01:41	MYSERVER-M	LogParser:EventLog:	The	Event	log	se
rvice	was	started.	
<30>Apr	19	07:02:07	MYSERVER-M	LogParser:Service	Control	Manager:	T
he	Telephony	service	entered	the	running	state.	

IIS	Log	Error	Entries
Send	error	entries	in	the	IIS	log	to	a	Syslog	server:

SELECT	TO_TIMESTAMP(date,	time),
							CASE	sc-status
									WHEN	500	THEN	'emerg'
									ELSE	'err'
							END	AS	MySeverity,
							s-computername	AS	MyHostname,								
							cs-uri-stem,
							sc-status
INTO	@MYSERVER04
FROM	<1>
WHERE	sc-status	>=	400

This	query	can	be	executed	with	the	following	command:

LogParser	file:MyQuery.sql	-o:SYSLOG	-facility:logalert	-severity:$MySeveri
ty	-hostName:$MyHostname	-processName:IIS:
The	messages	will	look	like	the	following	samples:

<115>Nov	18	00:28:43	MYSERVER04	IIS:/images/tibg.gif	404
<115>Nov	18	00:28:44	MYSERVER04	IIS:/aa.css	404
<115>Nov	18	00:28:59	MYSERVER04	IIS:/images/tibg.gif	404
<115>Nov	18	00:29:00	MYSERVER04	IIS:/aa.css	404
<115>Nov	18	00:29:01	MYSERVER04	IIS:/images/tibg.gif	404
<115>Nov	18	00:29:02	MYSERVER04	IIS:/images/tibg.gif	404

©	2004	Microsoft	Corporation.	All	rights	reserved.

<115>Nov	18	00:29:04	MYSERVER04	IIS:/gorice/rulesinfo.nsf	403
<115>Nov	18	00:29:05	MYSERVER04	IIS:/_vti_inf.html	404
<112>Nov	18	00:29:05	MYSERVER04	IIS:/_vti_bin/shtml.dll	500
<115>Nov	18	00:31:51	MYSERVER04	IIS:/na/index.html	404

TPL	Output	Format
The	TPL	output	format	writes	output	records	formatted	according	to	user-
defined	templates.

Templates	are	text	files	divided	into	three	sections	-	a	header,	a	body,
and	a	footer	-	containing	variables	that	refer	to	the	values	and	names	of
the	output	record	fields.
During	the	output	generation	stage,	the	TPL	output	format	substitutes	the
variables	with	the	values	of	the	output	record	fields,	generating	text	files
formatted	according	to	the	user	specifications.

The	flexibility	of	the	TPL	output	format	allows	users	to	generate	HTML
files,	XML	files,	and	generic	text	files	in	almost	any	format.

Template	Files
Into-Entity	Syntax
Parameters
Examples

©	2004	Microsoft	Corporation.	All	rights	reserved.

TPL	Output	Format	Template	Files
Template	files	are	divided	into	three	sections:	an	optional	header	section
that	is	written	once	at	the	beginning	of	the	output,	a	body	section	that	is
written	repeatedly	for	each	output	record,	and	an	optional	footer	section
that	is	written	once	at	the	end	of	the	output.
The	body	section	can	contain	special	variables	that	are	substituted	at	run
time	with	values	computed	during	the	execution	of	the	query,	such	as
values	and	names	of	output	record	fields,	and	the	number	of	fields	in	the
output	records.
The	header	and	footer	sections	can	contain	the	same	variables	available
to	the	body	section,	except	for	those	that	refer	to	values	of	output	record
fields.

Template	files	can	be	specified	in	two	different	ways:	as	raw	format
templates,	or	as	structured	format	templates.

Raw	Format	Templates
In	the	raw	format,	the	three	template	sections	are	specified	as	three
different	files.
The	template	file	containing	the	body	section	is	specified	using	the	tpl
parameter,	while	the	optional	header	and	footer	sections	are	specified
with	the	tplHeader	and	tplFooter	parameters,	respectively.

The	following	is	a	sample	raw	format	template	file	containing	the	body
section:

The	Url	%cs-uri-stem%,	requested	by	%c-ip%,	took	%time-taken%	millisecon
ds	to	execute.
It	was	requested	at	%time%	o’clock.The	following	command	parses	an	IIS	log	file	and	creates	a	text	file
formatted	according	to	the	template	file:

LogParser	"SELECT	*	INTO	out.txt	FROM	extend1.log"	-o:TPL	-tpl:mytempl
ate.tpl
The	resulting	output	will	look	like	the	following	example:

The	Url	/default.htm,	requested	by	192.168.1.102,	took	24	milliseconds	to	exe
cute.
It	was	requested	at	04:23:45	o’clock.
The	Url	/mydocuments/index.html,	requested	by	192.168.1.104,	took	134	milli
seconds	to	execute.
It	was	requested	at	04:23:47	o’clock.
The	Url	/mydocuments/styles/style.css,	requested	by	192.168.1.101,	took	49	m
illiseconds	to	execute.
It	was	requested	at	04:23:48	o’clock.

Structured	Format	Templates
In	the	structured	format,	a	single	template	file	contains	the	header,	body,
and	footer	sections,	each	enclosed	within	special	<LPHEADER>,
<LPBODY>,	and	<LPFOOTER>	tags	that	mark	the	boundaries	of	each
section.
Structured	format	template	files	are	specified	using	the	tpl	parameter.

The	following	is	a	sample	structured	format	template	file:

<LPHEADER>This	is	my	template,	for	a	query	containing	%FIELDS_NUM
%	fields,	executed	by	%USERNAME%.</LPHEADER>
Some	ignored	comment	here.
<LPBODY>The	Url	%cs-uri-stem%,	requested	by	%c-ip%,	took	%time-taken
%	milliseconds	to	execute.
It	was	requested	at	%time%	o’clock.
</LPBODY>
<LPFOOTER>End	of	report.
</LPFOOTER>

The	following	command	parses	an	IIS	log	file	and	creates	a	text	file
formatted	according	to	the	template	file:

LogParser	"SELECT	*	INTO	out.txt	FROM	extend1.log"	-o:TPL	-tpl:mytempl
ate.tpl
The	resulting	output	will	look	like	the	following	example:

This	is	my	template,	for	a	query	containing	32	fields,	executed	by	TestUser.
The	Url	/default.htm,	requested	by	192.168.1.102,	took	24	milliseconds	to	exe
cute.
It	was	requested	at	04:23:45	o’clock.
The	Url	/mydocuments/index.html,	requested	by	192.168.1.104,	took	134	milli
seconds	to	execute.
It	was	requested	at	04:23:47	o’clock.
The	Url	/mydocuments/styles/style.css,	requested	by	192.168.1.101,	took	49	m
illiseconds	to	execute.
It	was	requested	at	04:23:48	o’clock.
End	of	report.

Note:	The	TPL	output	format	assumes	that	the	character
immediately	following	the	opening	tag	for	a	section,	such	as
<LPBODY>,	belongs	to	that	section.

Template	Variables
The	following	table	lists	the	variables	that	are	available	to	template	files:

Variable Description Example	Template

%FIELD_n% Value	of	the
output

First	field	value:
%FIELD_1%

record	field
with	the
specified	1-
based	index

%field_name% Value	of	the
specified
output
record	field

First	field	value:
%SourceName%

%FIELDNAME_n% Name	of	the
output
record	field
with	the
specified	1-
based	index

%FIELDNAME_1%	value:
%FIELD_1%

%FIELDS_NUM% Number	of
output
record	fields

There	are
%FIELDS_NUM%	fields.

%SYSTEM_TIMESTAMP% Current
system	date
and	time,	in
UTC
coordinates

Generated	at
%SYSTEM_TIMESTAMP%

%environment_variable% Value	of	the
specified
environment

variable1

Generated	by
%USERNAME%

Notes:
(1):	When	a	variable	matches	both	a	field	name	and	an	environment
variable,	the	field	value	is	substituted.

©	2004	Microsoft	Corporation.	All	rights	reserved.

TPL	Output	Format	Into-Entity	Syntax
<into-entity> ::= <filename>	|	

STDOUT

The	<into-entity>	specified	in	queries	using	the	TPL	output	format	is
either:

A	filename;
The	"STDOUT"	keyword,	which	specifies	that	the	output	data	is	to	be
written	to	the	output	stream	(the	console	output).

The	default	into-entity	for	queries	that	do	not	specify	an	INTO	clause	is
"STDOUT".

The	TPL	output	format	supports	the	multiplex	feature,	which	can	be
enabled	by	specifying	'*'	wildcards	in	the	into-entity	filename.	This	feature
allows	output	records	to	be	written	to	different	files	depending	on	the
values	of	their	fields.	For	more	information	on	the	multiplex	feature,	see
Multiplexing	Output	Records.

Examples:

INTO	MyPage.html

INTO	\\COMPUTER01\Reports\report.txt

INTO	STDOUT

INTO	Reports_*_*\Report*.txt

©	2004	Microsoft	Corporation.	All	rights	reserved.

TPL	Output	Format	Parameters
The	TPL	output	format	supports	the	following	parameters:

tpl

	 Values: file	path

	 Default: not	specified

	 Description: Template	file.

	 Details: When	using	raw	format	template	files,	this	parameter
specifies	the	template	file	containing	the	body	section.
When	using	structured	format	template	files,	this
parameter	specifies	the	single	template	file	that
contains	the	header,	body,	and	footer	sections.
For	more	information	on	template	files,	see	Template
Files.

	 Example: -tpl:MyTemplate.tpl
	
tplHeader

	 Values: file	path

	 Default: not	specified

	 Description: Template	header	file.

	 Details: When	using	raw	format	template	files,	this	parameter
specifies	the	template	file	containing	the	header
section.
When	using	structured	format	template	files,	this
parameter	specifies	a	raw	format	template	file	that
overrides	the	<LPHEADER>	section	of	the	structured
format	template	file	specified	with	the	"tpl"	parameter.
For	more	information	on	template	files,	see	Template
Files.

	 Example: -tplHeader:MyTemplateHeader.tpl
	
tplFooter

	 Values: file	path

	 Default: not	specified

	 Description: Template	footer	file.

	 Details: When	using	raw	format	template	files,	this	parameter
specifies	the	template	file	containing	the	footer	section.
When	using	structured	format	template	files,	this
parameter	specifies	a	raw	format	template	file	that
overrides	the	<LPFOOTER>	section	of	the	structured
format	template	file	specified	with	the	"tpl"	parameter.
For	more	information	on	template	files,	see	Template
Files.

	 Example: -tplFooter:MyTemplateFooter.tpl
	
noEmptyFile

	 Values: ON	|	OFF

	 Default: ON

	 Description: Do	not	generate	empty	files.

	 Details: When	a	query	does	not	produce	output	records,	the
TPL	output	format	does	not	write	a	body	section,	and
the	resulting	output	file	could	be	empty.
Setting	this	parameter	to	"ON"	causes	the	TPL	output
format	to	avoid	generating	an	empty	file	in	these
situations.

	 Example: -noEmptyFile:OFF
	
oCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	output	text.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -oCodepage:1245
	
fileMode

	 Values: 0	|	1	|	2

	 Default: 1

	 Description: Action	to	perform	when	an	output	file	already	exists.

	 Details: This	parameter	controls	the	behavior	of	the	TPL	output
format	when	the	into-entity	specifies	directly	or
indirectly	through	the	"multiplex"	feature	the	name	of	a
file	that	already	exists.
The	possible	values	for	this	parameter	are:
0:	existing	files	are	appended	with	the	output;
1:	existing	files	are	overwritten	with	the	output;
2:	existing	files	are	left	intact,	discarding	the	output.

	 Example: -fileMode:0
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

TPL	Output	Format	Examples
Last	50	Security	Events
Create	an	HTML	page	containing	the	most	recent	50	events	from	the
Security	event	log:

LogParser	"SELECT	TOP	50	TimeGenerated,	SourceName,	EventID,	Messag
e	INTO	Events.html	FROM	Security"	-i:EVT	-direction:BW	-o:TPL	-tpl:HTM
LBody.txt	-tplHeader:HTMLHeader.txt	-tplFooter:HTMLFooter.txt

MSDN	BLogs	Channel	Titles
Display	titles	of	current	channels	on	MSDN	BLogs:

LogParser	"SELECT	title	INTO	channels.txt	FROM	http://blogs.msdn.com/M
ainFeed.aspx#/rss/channel/item"	-i:XML	-fMode:Tree	-o:TPL	-tpl:mytemplate.
tpl

©	2004	Microsoft	Corporation.	All	rights	reserved.

TSV	Output	Format
The	TSV	output	format	writes	output	records	as	tab-separated	or	space-
separated	values	text.

The	output	of	the	TSV	output	format	consists	of	multiple	lines	of	text,	one
line	for	each	output	record.
Each	line	contains	the	values	of	the	output	record	fields,	separated	by
either	a	tab	character	or	a	space	character,	depending	on	the	value	of	the
oSeparator	parameter.
If	enabled	through	the	headers	parameter,	the	first	line	in	the	output	is	a
"header"	that	contains	the	names	of	the	fields.

The	following	sample	shows	the	output	of	the	TSV	output	format	when
using	the	default	values	for	its	parameters:

EventID	 SourceName	 EventType	 TimeGenerated
6009	 EventLog	4	 2004-04-18	18:48:04
6005	 EventLog	4	 2004-04-18	18:48:04
7024	 Service	Control	Manager	 1	 2004-04-18	18:48:27
7035	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7035	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7036	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7036	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7035	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7036	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7035	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7036	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7035	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7036	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7035	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7036	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7036	 Service	Control	Manager	 4	 2004-04-18	18:48:27
7035	 Service	Control	Manager	 4	 2004-04-18	18:48:36
7036	 Service	Control	Manager	 4	 2004-04-18	18:51:26
7036	 Service	Control	Manager	 4	 2004-04-18	18:51:29
6006	 EventLog	4	 2004-04-18	18:51:37

Into-Entity	Syntax
Parameters
Examples

See	also:
CSV	Output	Format
TSV	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

TSV	Output	Format	Into-Entity	Syntax
<into-entity> ::= <filename>	|	

STDOUT

The	<into-entity>	specified	in	queries	using	the	TSV	output	format	is
either:

A	filename;
The	"STDOUT"	keyword,	which	specifies	that	the	output	data	is	to	be
written	to	the	output	stream	(the	console	output).

The	default	into-entity	for	queries	that	do	not	specify	an	INTO	clause	is
"STDOUT".

The	TSV	output	format	supports	the	multiplex	feature,	which	can	be
enabled	by	specifying	'*'	wildcards	in	the	into-entity	filename.	This	feature
allows	output	records	to	be	written	to	different	files	depending	on	the
values	of	their	fields.	For	more	information	on	the	multiplex	feature,	see
Multiplexing	Output	Records.

Examples:

INTO	report.tsv

INTO	\\COMPUTER01\Reports\report.tsv

INTO	STDOUT

INTO	Reports_*_*\Report*.tsv

©	2004	Microsoft	Corporation.	All	rights	reserved.

TSV	Output	Format	Parameters
The	TSV	output	format	supports	the	following	parameters:

headers

	 Values: ON	|	OFF	|	AUTO

	 Default: AUTO

	 Description: Write	a	header	line	containing	the	field	names.

	 Details: This	parameter	controls	the	header	line	that	is	output	at
the	beginning	of	each	file.
The	possible	values	for	this	parameter	are:
ON:	always	write	the	header;
OFF:	never	write	the	header;
AUTO:	write	the	header	only	when	not	appending	to
an	existing	file.

	 Example: -headers:OFF
	
oSeparator

	 Values: any	string	|	space	|	tab

	 Default: tab

	 Description: Separator	between	fields.

	 Details: This	parameter	controls	the	separator	to	be	used
between	field	values.
The	"tab"	keyword	causes	the	TSV	output	format	to	use
a	single	tab	character	between	the	fields,	while	the
"space"	keyword	causes	the	TSV	output	format	to	use	a
single	space	character.

	 Example: -oSeparator:space
	

oTsFormat

	 Values: timestamp	format

	 Default: yyyy-MM-dd	hh:mm:ss

	 Description: Format	of	timestamp	values	in	the	output	TSV	data.

	 Details: This	parameter	specifies	the	date	and/or	time	format	to
use	when	formatting	values	of	the	TIMESTAMP	data
type.
For	more	information	on	date	and	time	formats,	see
Timestamp	Format	Specifiers.

	 Example: -oTsFormat:"MMM	dd,	yyyy"
	
oCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	output	text.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -oCodepage:1245
	
fileMode

	 Values: 0	|	1	|	2

	 Default: 1

	 Description: Action	to	perform	when	an	output	file	already	exists.

	 Details: This	parameter	controls	the	behavior	of	the	TSV	output
format	when	the	into-entity	specifies	directly	or
indirectly	through	the	"multiplex"	feature	the	name	of	a
file	that	already	exists.
The	possible	values	for	this	parameter	are:
0:	existing	files	are	appended	with	the	output;

1:	existing	files	are	overwritten	with	the	output;
2:	existing	files	are	left	intact,	discarding	the	output.

	 Example: -fileMode:0
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

TSV	Output	Format	Examples
File	Information
Create	a	TSV	file	containing	information	on	the	files	contained	in	the
specified	directory:

LogParser	"SELECT	Path,	Name,	Size,	Attributes	INTO	Files.tsv	FROM	C:\T
est*.*"	-i:FS	-o:TSV	-recurse:0

Security	Events
Retrieve	the	10	latest	events	from	the	Security	event	log	and	write	their
information	to	a	TSV	file	for	each	event	ID:

LogParser	"SELECT	TOP	10	EventID,	EventTypeName,	Message	INTO	Even
ts_*.tsv	FROM	Security"	-i:EVT	-direction:BW	-o:TSV

©	2004	Microsoft	Corporation.	All	rights	reserved.

W3C	Output	Format
The	W3C	output	format	writes	output	records	in	the	W3C	Extended	Log
File	Format.

The	following	example	shows	a	sample	output	generated	by	the	W3C
output	format:

#Software:	Microsoft	Log	Parser
#Version:	1.0
#Date:	2004-10-25	14:20:40
#Fields:	date	time	s-id	s-type	s-category
2004-04-18	18:48:04	6009	4	0
2004-04-18	18:48:04	6005	4	0
2004-04-18	18:48:27	7024	1	0
2004-04-18	18:48:27	7035	4	0
2004-04-18	18:48:27	7035	4	0
2004-04-18	18:48:27	7036	4	0
2004-04-18	18:48:27	7036	4	0
2004-04-18	18:48:27	7035	4	0
2004-04-18	18:48:27	7036	4	0

Into-Entity	Syntax
Parameters
Examples

See	also:
W3C	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

W3C	Output	Format	Into-Entity	Syntax
<into-entity> ::= <filename>	|	

STDOUT

The	<into-entity>	specified	in	queries	using	the	W3C	output	format	is
either:

A	filename;
The	"STDOUT"	keyword,	which	specifies	that	the	output	data	is	to	be
written	to	the	output	stream	(the	console	output).

The	default	into-entity	for	queries	that	do	not	specify	an	INTO	clause	is
"STDOUT".

The	W3C	output	format	supports	the	multiplex	feature,	which	can	be
enabled	by	specifying	'*'	wildcards	in	the	into-entity	filename.	This	feature
allows	output	records	to	be	written	to	different	files	depending	on	the
values	of	their	fields.	For	more	information	on	the	multiplex	feature,	see
Multiplexing	Output	Records.

Examples:

INTO	report.log

INTO	\\COMPUTER01\Reports\report.log

INTO	STDOUT

INTO	Reports_*_*\Report*.log

©	2004	Microsoft	Corporation.	All	rights	reserved.

W3C	Output	Format	Parameters
The	W3C	output	format	supports	the	following	parameters:

rtp

	 Values: number	of	rows

	 Default: 10

	 Description: Rows	to	print	before	pausing.

	 Details: When	writing	to	STDOUT,	the	W3C	output	format
displays	output	records	in	batches	made	up	of	a
number	of	rows	equal	to	the	value	specified	for	this
parameter.	Once	a	batch	of	rows	has	been	displayed,
the	W3C	output	format	prompts	the	user	to	press	a	key
to	display	the	next	batch	of	rows.
Specifying	"-1"	for	this	parameter	disables	batching
altogether.

	 Example: -rtp:-1
	
oDQuotes

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Enclose	string	values	in	double-quote	characters.

	 Details: When	this	parameter	is	set	to	"ON",	the	W3C	output
format	writes	string	values	with	double-quote	(")
characters	around	them.

	 Example: -oDQuotes:ON
	
oDirTime

	 Values: any	string

	 Default: not	specified

	 Description: Content	of	the	"#Date"	directive	header.

	 Details: The	W3C	output	format	uses	the	value	specified	for	this
parameter	as	the	content	of	the	"#Date"	directive
written	to	the	header	of	the	output	file.	When	a	value	is
not	specified,	the	W3C	output	format	uses	the	current
date	and	time.

	 Example: -oDirTime:"1973-05-28	03:02:42"
	
encodeDelim

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Substitute	space	characters	within	field	values	with	plus
characters.

	 Details: When	this	parameter	is	set	to	"ON",	the	W3C	output
format	substitutes	space	characters	found	in	string
values	with	plus	(+)	characters,	in	order	to	generate
W3C	output	that	is	formatted	correctly.
When	this	parameter	is	set	to	"OFF",	space	characters
within	field	values	are	preserved,	potentially	generating
invalid	W3C	output.

	 Example: -encodeDelim:ON
	
oCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	output	text.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -oCodepage:1245

	
fileMode

	 Values: 0	|	1	|	2

	 Default: 1

	 Description: Action	to	perform	when	an	output	file	already	exists.

	 Details: This	parameter	controls	the	behavior	of	the	W3C	output
format	when	the	into-entity	specifies	directly	or
indirectly	through	the	"multiplex"	feature	the	name	of	a
file	that	already	exists.
The	possible	values	for	this	parameter	are:
0:	existing	files	are	appended	with	the	output;
1:	existing	files	are	overwritten	with	the	output;
2:	existing	files	are	left	intact,	discarding	the	output.

	 Example: -fileMode:0
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

W3C	Output	Format	Examples
Event	Log	Report
Create	a	W3C	file	with	information	from	the	System	event	log:

LogParser	"SELECT	TO_DATE(TimeGenerated)	AS	date,	TO_TIME(TimeGe
nerated)	AS	time,	SourceName	AS	s-source,	EventID	AS	s-event-id,	EventCat
egory	AS	s-event-category	INTO	report.log	FROM	System"	-i:EVT	-o:W3C	-
encodeDelim:ON

©	2004	Microsoft	Corporation.	All	rights	reserved.

XML	Output	Format
The	XML	output	format	writes	output	records	as	XML	document	nodes.

Users	can	choose	between	four	different	structures	for	the	output	XML
document.
Different	structures	format	the	output	record	fields	in	different	ways,
giving	users	the	ability	to	fine-tune	the	generated	XML	for	their
applications.

The	following	example	command	generates	an	XML	document
containing	fields	from	the	System	event	log:

LogParser	"SELECT	TimeGenerated,	SourceName,	EventID,	Message	INTO	
Events.xml	FROM	System"
The	output	XML	will	look	like	the	following	example:

<?xml	version="1.0"	encoding="ISO-10646-UCS-2"	standalone="yes"	?>
<!DOCTYPE	ROOT[
	<!ATTLIST	ROOT	DATE_CREATED	CDATA	#REQUIRED>
	<!ATTLIST	ROOT	CREATED_BY	CDATA	#REQUIRED>
	<!ELEMENT	TimeGenerated	(#PCDATA)>
	<!ELEMENT	SourceName	(#PCDATA)>
	<!ELEMENT	EventID	(#PCDATA)>
	<!ELEMENT	Message	(#PCDATA)>
	<!ELEMENT	ROW	(TimeGenerated,	SourceName,	EventID,	Message)>
	<!ELEMENT	ROOT	(ROW*)>
]>
<ROOT	DATE_CREATED="2004-11-08	16:26:54"	CREATED_BY="Micros
oft	Log	Parser	V2.2">
	<ROW>
		<TimeGenerated>
		2004-04-18	18:48:04
		</TimeGenerated>
		<SourceName>
		EventLog
		</SourceName>

Document	Structures
Into-Entity	Syntax
Parameters
Examples

See	also:
XML	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

		<EventID>
		6009
		</EventID>
		<Message>
		Microsoft	(R)	Windows	(R)	5.01.	2600	Service	Pack	1	Uniprocessor	Free.	
		</Message>
	</ROW>
	<ROW>
		<TimeGenerated>
		2004-04-18	18:48:04
		</TimeGenerated>
		<SourceName>
		EventLog
		</SourceName>
		<EventID>
		6005
		</EventID>
		<Message>
		The	Event	log	service	was	started.	
		</Message>
	</ROW>
	<ROW>
		<TimeGenerated>
		2004-04-18	18:48:27
		</TimeGenerated>
		<SourceName>
		Service	Control	Manager
		</SourceName>
		<EventID>
		7035
		</EventID>
		<Message>
		The	Network	Connections	service	was	successfully	sent	a	start	control.	
		</Message>
	</ROW>
</ROOT>

XML	Output	Format	Document
Structures
The	XML	output	format	generates	XML	documents	that	can	be	structured
in	four	different	ways,	depending	on	the	value	specified	for	the	structure
parameter.

Structure	1
When	the	"structure"	parameter	is	set	to	"1",	the	XML	output	format
creates	a	node	named	"ROW"	for	each	output	record.
This	node	in	turn	contains	nodes	for	each	field	in	the	output	record,
named	after	the	field	names	and	with	node	values	containing	the	field
values.

The	following	example	shows	an	XML	document	created	with	structure
"1":

<?xml	version="1.0"	encoding="ISO-10646-UCS-2"	standalone="yes"	?>
<!DOCTYPE	ROOT[
	<!ATTLIST	ROOT	DATE_CREATED	CDATA	#REQUIRED>
	<!ATTLIST	ROOT	CREATED_BY	CDATA	#REQUIRED>
	<!ELEMENT	TimeGenerated	(#PCDATA)>
	<!ELEMENT	SourceName	(#PCDATA)>
	<!ELEMENT	EventID	(#PCDATA)>
	<!ELEMENT	Message	(#PCDATA)>
	<!ELEMENT	ROW	(TimeGenerated,	SourceName,	EventID,	Message)>
	<!ELEMENT	ROOT	(ROW*)>
]>
<ROOT	DATE_CREATED="2004-11-08	17:36:44"	CREATED_BY="Micros
oft	Log	Parser	V2.2">
	<ROW>
		<TimeGenerated>
		2004-04-18	18:48:04
		</TimeGenerated>
		<SourceName>

Structure	2
Setting	the	"structure"	parameter	to	"2"	causes	the	XML	output	format	to
generate	XML	documents	that	are	formatted	according	to	structure	"1",
and	in	which	field	nodes	have	a	"TYPE"	attribute	that	specifies	the	data
type	of	the	corresponding	output	record	field.

The	following	example	shows	an	XML	document	created	with	structure
"2":

<?xml	version="1.0"	encoding="ISO-10646-UCS-2"	standalone="yes"	?>
<!DOCTYPE	ROOT[
	<!ATTLIST	ROOT	DATE_CREATED	CDATA	#REQUIRED>
	<!ATTLIST	ROOT	CREATED_BY	CDATA	#REQUIRED>
	<!ELEMENT	TimeGenerated	(#PCDATA)>
	<!ATTLIST	TimeGenerated	TYPE	CDATA	#REQUIRED>
	<!ELEMENT	SourceName	(#PCDATA)>

Structure	3
When	the	"structure"	parameter	is	set	to	"3",	the	XML	output	format
creates	a	node	named	"ROW"	for	each	output	record.
This	node	in	turn	contains	nodes	named	"FIELD"	for	each	field	in	the

		EventLog
		</SourceName>
		<EventID>
		6009
		</EventID>
		<Message>
		Microsoft	(R)	Windows	(R)	5.01.	2600	Service	Pack	1	Uniprocessor	Free.	
		</Message>
	</ROW>
	<ROW>
		<TimeGenerated>
		2004-04-18	18:48:04
		</TimeGenerated>
		<SourceName>
		EventLog
		</SourceName>
		<EventID>
		6005
		</EventID>
		<Message>
		The	Event	log	service	was	started.	
		</Message>
	</ROW>
</ROOT>

	<!ATTLIST	SourceName	TYPE	CDATA	#REQUIRED>
	<!ELEMENT	EventID	(#PCDATA)>
	<!ATTLIST	EventID	TYPE	CDATA	#REQUIRED>
	<!ELEMENT	Message	(#PCDATA)>
	<!ATTLIST	Message	TYPE	CDATA	#REQUIRED>
	<!ELEMENT	ROW	(TimeGenerated,	SourceName,	EventID,	Message)>
	<!ELEMENT	ROOT	(ROW*)>
]>
<ROOT	DATE_CREATED="2004-11-08	17:30:25"	CREATED_BY="Micros
oft	Log	Parser	V2.2">
	<ROW>
		<TimeGenerated	TYPE="TIMESTAMP">
		2004-04-18	18:48:04
		</TimeGenerated>
		<SourceName	TYPE="STRING">
		EventLog
		</SourceName>
		<EventID	TYPE="INTEGER">
		6009
		</EventID>
		<Message	TYPE="STRING">
		Microsoft	(R)	Windows	(R)	5.01.	2600	Service	Pack	1	Uniprocessor	Free.	
		</Message>
	</ROW>
	<ROW>
		<TimeGenerated	TYPE="TIMESTAMP">
		2004-04-18	18:48:04
		</TimeGenerated>
		<SourceName	TYPE="STRING">
		EventLog
		</SourceName>
		<EventID	TYPE="INTEGER">
		6005
		</EventID>
		<Message	TYPE="STRING">
		The	Event	log	service	was	started.	
		</Message>

output	record;	each	"FIELD"	node	has	a	node	value	equal	to	the	field
value,	and	a	"NAME"	attribute	that	specifies	the	field	name.

The	following	example	shows	an	XML	document	created	with	structure
"3":

<?xml	version="1.0"	encoding="ISO-10646-UCS-2"	standalone="yes"	?>
<!DOCTYPE	ROOT[
	<!ATTLIST	ROOT	DATE_CREATED	CDATA	#REQUIRED>
	<!ATTLIST	ROOT	CREATED_BY	CDATA	#REQUIRED>
	<!ELEMENT	FIELD	(#PCDATA)>
	<!ATTLIST	FIELD	NAME	CDATA	#REQUIRED>
	<!ELEMENT	ROW	(FIELD,	FIELD,	FIELD,	FIELD)>
	<!ELEMENT	ROOT	(ROW*)>
]>
<ROOT	DATE_CREATED="2004-11-08	17:32:41"	CREATED_BY="Micros
oft	Log	Parser	V2.2">
	<ROW>
		<FIELD	NAME="TimeGenerated">
		2004-04-18	18:48:04
		</FIELD>
		<FIELD	NAME="SourceName">
		EventLog
		</FIELD>
		<FIELD	NAME="EventID">
		6009
		</FIELD>
		<FIELD	NAME="Message">
		Microsoft	(R)	Windows	(R)	5.01.	2600	Service	Pack	1	Uniprocessor	Free.	
		</FIELD>
	</ROW>
	<ROW>
		<FIELD	NAME="TimeGenerated">
		2004-04-18	18:48:04
		</FIELD>
		<FIELD	NAME="SourceName">
		EventLog

Structure	4
Setting	the	"structure"	parameter	to	"4"	causes	the	XML	output	format	to
generate	XML	documents	that	are	formatted	according	to	structure	"3",
and	in	which	"FIELD"	nodes	have	an	additional	"TYPE"	attribute	that
specifies	the	data	type	of	the	corresponding	output	record	field.

The	following	example	shows	an	XML	document	created	with	structure
"4":

<?xml	version="1.0"	encoding="ISO-10646-UCS-2"	standalone="yes"	?>
<!DOCTYPE	ROOT[
	<!ATTLIST	ROOT	DATE_CREATED	CDATA	#REQUIRED>
	<!ATTLIST	ROOT	CREATED_BY	CDATA	#REQUIRED>
	<!ELEMENT	FIELD	(#PCDATA)>
	<!ATTLIST	FIELD	NAME	CDATA	#REQUIRED>
	<!ATTLIST	FIELD	TYPE	CDATA	#REQUIRED>
	<!ELEMENT	ROW	(FIELD,	FIELD,	FIELD,	FIELD)>
	<!ELEMENT	ROOT	(ROW*)>
]>
<ROOT	DATE_CREATED="2004-11-08	17:35:04"	CREATED_BY="Micros
oft	Log	Parser	V2.2">
	<ROW>
		<FIELD	NAME="TimeGenerated"	TYPE="TIMESTAMP">
		2004-04-18	18:48:04
		</FIELD>
		<FIELD	NAME="SourceName"	TYPE="STRING">
		EventLog
		</FIELD>
		<FIELD	NAME="EventID"	TYPE="INTEGER">

©	2004	Microsoft	Corporation.	All	rights	reserved.

	</ROW>
</ROOT>
		</FIELD>
		<FIELD	NAME="EventID">
		6005
		</FIELD>
		<FIELD	NAME="Message">
		The	Event	log	service	was	started.	
		</FIELD>
	</ROW>
</ROOT>

		6009
		</FIELD>
		<FIELD	NAME="Message"	TYPE="STRING">
		Microsoft	(R)	Windows	(R)	5.01.	2600	Service	Pack	1	Uniprocessor	Free.	
		</FIELD>
	</ROW>
	<ROW>
		<FIELD	NAME="TimeGenerated"	TYPE="TIMESTAMP">
		2004-04-18	18:48:04
		</FIELD>
		<FIELD	NAME="SourceName"	TYPE="STRING">
		EventLog
		</FIELD>
		<FIELD	NAME="EventID"	TYPE="INTEGER">
		6005
		</FIELD>
		<FIELD	NAME="Message"	TYPE="STRING">
		The	Event	log	service	was	started.	
		</FIELD>
	</ROW>
</ROOT>

XML	Output	Format	Into-Entity	Syntax
<into-entity> ::= <filename>	|	

STDOUT

The	<into-entity>	specified	in	queries	using	the	XML	output	format	is
either:

A	filename;
The	"STDOUT"	keyword,	which	specifies	that	the	output	data	is	to	be
written	to	the	output	stream	(the	console	output).

The	default	into-entity	for	queries	that	do	not	specify	an	INTO	clause	is
"STDOUT".

The	XML	output	format	supports	the	multiplex	feature,	which	can	be
enabled	by	specifying	'*'	wildcards	in	the	into-entity	filename.	This	feature
allows	output	records	to	be	written	to	different	files	depending	on	the
values	of	their	fields.	For	more	information	on	the	multiplex	feature,	see
Multiplexing	Output	Records.

Examples:

INTO	report.xml

INTO	\\COMPUTER01\Reports\report.xml

INTO	STDOUT

INTO	Reports_*_*\Report*.xml

©	2004	Microsoft	Corporation.	All	rights	reserved.

XML	Output	Format	Parameters
The	XML	output	format	supports	the	following	parameters:

structure

	 Values: 1	|	2	|	3	|	4

	 Default: 1

	 Description: Structure	of	the	output	document.

	 Details: For	a	description	of	the	different	structures	available,	see
Document	Structures.

	 Example: -structure:4
	
rootName

	 Values: string

	 Default: ROOT

	 Description: Name	of	the	document	root	node.

	 Details: This	parameter	allows	users	to	customize	the	name	of	the
single	root	node	that	contains	all	the	other	nodes	in	the
output	document.

	 Example: -rootName:REPORT
	
rowName

	 Values: string

	 Default: ROW

	 Description: Name	of	the	node	containing	the	output	record	fields.

	 Details: This	parameter	allows	users	to	customize	the	name	of	the
node	that	is	generated	for	each	output	record.

	 Example: -rowName:ENTRY
	
fieldName

	 Values: string

	 Default: FIELD

	 Description: Name	of	the	node	containing	the	output	record	field	values.

	 Details: This	parameter	allows	users	to	customize	the	name	of	the
node	that	is	generated	for	each	output	record	field	when
the	"structure"	parameter	is	set	to	"3"	or	"4".

	 Example: -fieldName:DATA
	
xslLink

	 Values: path	to	XSL	document

	 Default: not	specified

	 Description: XSL	document	to	be	referenced	by	the	output	XML
document.

	 Details: Specifying	a	value	for	this	parameter	causes	the	XML
output	format	to	place	a	link	to	the	specified	XSL	stylesheet
in	the	header	of	the	output	XML	document.	XSL-enabled
XML	browsers	will	follow	the	specified	link	and	format	the
output	XML	document	accordingly.
The	link	placed	in	the	document	header	is	formatted	as
follows:

<?xml-stylesheet	type="text/xsl"	href="C:\XSL\MyXSL.xsl"?>

	 Example: -xslLink:C:\XSL\MyXSL.xsl
	
schemaType

	 Values: 0	|	1

	 Default: 1

	 Description: Type	of	inline	schema.

	 Details: When	this	parameter	is	set	to	"1",	the	output	XML
document	contains	an	inline	DTD	schema.
Setting	this	parameter	to	"0"	prevents	the	XML	output
format	from	generating	an	inline	schema.

	 Example: -schemaType:0
	
compact

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Suppress	indentations	and	extra	lines	in	output.

	 Details: When	this	parameter	is	set	to	"OFF",	the	XML	output
format	generates	XML	documents	that	are	optimized	for
human	readability,	indenting	nodes	according	to	their
depth,	and	writing	nodes	on	multiple	lines.
Setting	this	parameter	to	"ON"	causes	the	XML	output
format	to	write	each	"ROW"	node	on	a	single	line	without
indentation.

	 Example: -compact:ON
	
noEmptyField

	 Values: ON	|	OFF

	 Default: OFF

	 Description: Avoid	writing	empty	nodes	for	NULL	field	values.

	 Details: When	this	parameter	is	set	to	"OFF",	output	record	fields
having	NULL	values	are	rendered	as	empty	nodes.
Setting	this	parameter	to	"ON"	prevents	the	XML	output
format	from	generating	a	node	when	the	corresponding

output	record	field	has	a	NULL	value.

	 Example: -noEmptyField:ON
	
standAlone

	 Values: ON	|	OFF

	 Default: ON

	 Description: Create	a	well-formed,	stand-alone	XML	document.

	 Details: When	this	parameter	is	set	to	"ON",	the	XML	output	format
generates	well-formed	XML	documents	having	an	XML
header	and	a	single	document	root	node.
When	this	parameter	is	set	to	"OFF",	the	XML	output
format	generates	XML	text	that	only	contains	the	output
record	nodes,	with	no	XML	header	and	no	document	root
node.

	 Example: -standAlone:OFF
	
oCodepage

	 Values: codepage	ID	(number)

	 Default: 0

	 Description: Codepage	of	the	output	text.

	 Details: 0	is	the	system	codepage,	-1	is	UNICODE.

	 Example: -oCodepage:1245
	
fileMode

	 Values: 0	|	1	|	2

	 Default: 1

	 Description: Action	to	perform	when	an	output	file	already	exists.

	 Details: This	parameter	controls	the	behavior	of	the	XML	output
format	when	the	into-entity	specifies	directly	or	indirectly
through	the	"multiplex"	feature	the	name	of	a	file	that
already	exists.
The	possible	values	for	this	parameter	are:
0:	existing	files	are	appended	with	the	output;
1:	existing	files	are	overwritten	with	the	output;
2:	existing	files	are	left	intact,	discarding	the	output.

	 Example: -fileMode:0
	

©	2004	Microsoft	Corporation.	All	rights	reserved.

XML	Output	Format	Examples
Account	Logons
Create	an	XML	document	containing	logon	account	names	and	dates
from	the	Security	Event	Log	messages:

LogParser	"SELECT	TimeGenerated	AS	LogonDate,	EXTRACT_TOKEN(Str
ings,	0,	'|')	AS	Account	INTO	Report.xml	FROM	Security	WHERE	EventID	N
OT	IN	(541;542;543)	AND	EventType	=	8	AND	EventCategory	=	2"

©	2004	Microsoft	Corporation.	All	rights	reserved.

Command-Line	Operation
The	Log	Parser	command-line	executable	is	a	single,	standalone	binary
file	("LogParser.exe")	that	can	be	used	from	the	Windows	command-line
shell	to	execute	queries	and	perform	other	Log	Parser	tasks.
The	executable	binary	does	not	require	any	installation;	once	copied	to	a
computer,	it	is	ready	to	use.

Tip:	If	you	want	to	run	LogParser.exe	from	any	directory	without
having	to	specify	the	absolute	or	relative	path,	you	can	add	the	Log
Parser	directory	location	to	the	"PATH"	environment	variable.

The	Log	Parser	command-line	executable	works	on	commands	supplied
by	the	user.	Commands	are	combinations	of	switches,	or	arguments,	that
specify	parameters	for	the	task	that	needs	to	be	executed.
The	switches	used	with	the	Log	Parser	command-line	executable	must
be	entered	with	a	dash	character	(-)	followed	by	the	switch	name,	as	in
the	following	example:

C:\>LogParser	-h

Most	switches	require	a	user-supplied	value;	in	these	cases,	the	switch
name	must	be	followed	by	a	colon	character	(:)	and	by	the	user-supplied
value	with	no	intervening	spaces,	as	in	the	following	example:

C:\>LogParser	-iCodepage:931

If	the	user-supplied	value	contains	spaces,	the	value	can	be	surround	by
double-quote	characters	("),	as	in	the	following	example:

C:\>LogParser	-chartTitle:"Top	20	Pages"

Depending	on	the	switches	used	in	a	command,	the	Log	Parser
command-line	executable	can	be	used	in	four	different	modes	of
operation:

Query	Execution	Mode:	this	is	the	default	mode	of	operation;	in	this

mode,	Log	Parser	is	used	to	execute	queries	reading	input	records
from	an	input	format	and	writing	output	records	to	an	output	format.
Conversion	Mode:	in	this	mode,	activated	by	the	"-c"	switch,	Log
Parser	is	used	to	execute	built-in	queries	that	convert	log	files	between
supported	log	file	formats.
Defaults	Override	Mode:	in	this	mode,	activated	by	the	"-
saveDefaults"	switch,	users	can	override	the	default	behavior	of	Log
Parser	by	specifying	custom	default	values	for	the	execution
parameters.
Help	Mode:	in	this	mode,	activated	by	the	"-h"	switch,	the	command-
line	executable	can	be	used	to	display	to	the	console	window	a	"quick
reference"	help	on	selected	topics,	such	as	information	on	input	and
output	formats,	syntax	of	functions,	and	syntax	of	the	Log	Parser	SQL-
Like	query	language.

See	also:
Global	Switches	Reference
Commands	and	Queries

©	2004	Microsoft	Corporation.	All	rights	reserved.

Query	Execution	Mode
"Query	Execution	Mode"	is	the	default	operational	mode	of	the	Log
Parser	command-line	executable.
In	this	mode,	Log	Parser	is	used	to	execute	queries	reading	input	records
from	an	input	format	and	writing	output	records	to	an	output	format.

The	general	syntax	of	commands	in	query	execution	mode	is:

LogParser [-i:<input_format>]	[<input_format_options>]
[-o:<output_format>]	[<output_format_options>]
<SQL	query>	|	file:<query_filename>[?param1=value1+...]
[<global_switches>]	[-queryInfo]

-i:<input_format>

Specifies	the	input	format	for	the	query.
The	"-i:"	switch	is	followed	by	the	name	of	the	selected	input	format,
as	in	the	following	example:

C:\>LogParser	-i:IISW3C	"SELECT	*	FROM	extend1.log"

When	an	input	format	is	not	specified,	Log	Parser	will	attempt	to
select	automatically	an	input	format	upon	inspection	of	the	<from-
entity>	in	the	FROM	clause.	For	example,	"System"	suggests	the
use	of	the	EVT	Input	Format,	while	"ex040302.log"	suggests	the	use
of	the	IISW3C	Input	Format.
If	the	<from-entity>	does	not	suggest	a	specific	input	format,	the
TextLine	Input	Format	will	be	selected	by	default.

<input_format_options>

Specify	values	for	input	format	parameters.
These	are	entered	as	switches	with	names	matching	the	input
format's	parameter	names,	followed	by	a	colon	and	by	the	value	for

the	parameter,	as	in	the	following	examples:

C:\>LogParser	-i:IISW3C	-iCodepage:932	-iCheckpoint:MyCheckpoint.l
pc	"SELECT	*	FROM	extend1.log"	
C:\>LogParser	-i:EVT	-binaryFormat:ASC	"SELECT	*	FROM	System"	

Parameter	values	containing	spaces	must	be	enclosed	within
double-quote	characters	("),	as	in	the	following	example:

C:\>LogParser	-i:EVT	-stringsSep:"MY	SEPARATOR"	"SELECT	*	FRO
M	System"	
For	more	information	on	input	format	parameters,	refer	to	the	Input
Format	Reference.

-o:<output_format>

Specifies	the	output	format	for	the	query.
The	"-o:"	switch	is	followed	by	the	name	of	the	selected	output
format,	as	in	the	following	example:

C:\>LogParser	-o:CSV	"SELECT	*	FROM	System"

When	an	output	format	is	not	specified,	Log	Parser	will	attempt	to
select	automatically	an	output	format	upon	inspection	of	the	<into-
entity>	in	the	INTO	clause.	For	example,	"chart.gif"	suggests	the	use
of	the	CHART	Output	Format,	while	"MyFile.csv"	suggests	the	use	of
the	CSV	Output	Format.
If	the	<into-entity>	does	not	suggest	a	specific	output	format,	or	the
query	does	not	specify	an	INTO	clause,	the	NAT	Output	Format	will
be	selected	by	default.

<output_format_options>

Specify	values	for	output	format	parameters.
These	are	entered	as	switches	with	names	matching	the	output
format's	parameter	names,	followed	by	a	colon	and	by	the	value	for

the	parameter,	as	in	the	following	examples:

C:\>LogParser	-o:NAT	-rtp:-1	-fileMode:1	"SELECT	*	FROM	System"	

C:\>LogParser	-o:CSV	-tabs:ON	"SELECT	*	FROM	System"	

Parameter	values	containing	spaces	must	be	enclosed	within
double-quote	characters	("),	as	in	the	following	example:

C:\>LogParser	-o:CHART	-chartTitle:"Page	Hits	per	Day"	"SELECT	date
,	COUNT(*)	FROM	extend1.log	GROUP	BY	date"	
For	more	information	on	output	format	parameters,	refer	to	the
Output	Format	Reference.

<SQL	query>

Specifies	the	text	of	the	Log	Parser	SQL-Like	query.
Since	a	query	always	contains	spaces,	the	text	of	the	query	must	be
enclosed	within	double-quote	characters	("),	as	in	the	following
example:

C:\>LogParser	"SELECT	*	FROM	System"

Alternatively,	a	query	can	be	specified	through	a	text	file	with	the
"file:"	switch,	as	shown	in	the	next	section.
Commands	containing	both	a	query	text	argument	and	a	"file:"
switch	are	considered	illegal	and	return	an	error.

file:<query_filename>[?param1=value1+...]

Specifies	the	name	of	a	text	file	containing	a	Log	Parser	SQL-Like
query.
The	text	file	specified	must	contain	a	valid	query	in	the	Log	Parser
SQL-Like	language.	Multiple	spaces,	comments,	and	new-line
characters	in	the	text	file	are	ignored,	allowing	the	query	text	to	be
formatted	as	desired	for	readability.

The	following	example	shows	an	example	content	of	a	query	text	file:

SELECT			TimeGenerated,
									EXTRACT_TOKEN(ResolvedSid,	1,	'\\')	AS	Username	--	only	the	'
username'	portion
/*	We	want	to	retrieve	the	full	user	name
*/
USING				RESOLVE_SID(Sid)	AS	ResolvedSid
FROM					Security

The	following	example	shows	how	the	query	is	executed,	assuming
that	the	query	text	has	been	saved	to	a	file	named	"MyQuery.sql":

C:\>LogParser	-i:EVT	file:Myquery.sql

Query	text	files	can	include	parameters,	which	are	substituted	at
runtime	with	user-supplied	text	or	environment	variable	values.
Parameters	are	user-defined	names	in	the	query	text	enclosed	within
percent	characters	(%),	such	as	"%MyParameter%".
When	issuing	a	Log	Parser	command	to	execute	a	query	text	file
containing	parameters,	users	can	specify	the	values	of	the
parameters	by	appending	the	question-mark	character	(?)	to	the
query	filename,	followed	by	a	list	of	pairs	in	the	form	of
"parameter_name=parameter_value",	separated	by	the	plus
character	(+).
For	example,	the	following	query	contains	two	parameters:

SELECT	EventID
FROM			%InputEventLog%
WHERE		SourceName	=	'%InputSourceName%'The	following	example	command	executes	the	query	substituting
user-supplied	values	for	the	parameters:

C:\>LogParser	-i:EVT	file:Myquery.sql?InputEventLog=System+InputSo
urceName=EventLog
If	a	parameter	name	or	value	contains	spaces,	the	name	or	value
must	be	enclosed	within	double-quote	characters	("),	as	in	the
following	example:

C:\>LogParser	-i:EVT	file:Myquery.sql?InputEventLog=System+InputSo
urceName="Service	Control	Manager"
If	the	value	of	a	query	text	file	parameter	is	not	supplied	by	the	user,
Log	Parser	will	search	for	the	parameter	name	in	the	current
environment	variable	set.	If	an	environment	variable	is	found

matching	the	parameter	name,	its	value	will	be	substituted	for	the
parameter;	otherwise,	the	parameter	name	is	left	as-is	in	the	query
text.

The	text	of	the	query	can	also	be	specified	directly	as	a	command-
line	argument,	as	shown	in	the	previous	section.
Commands	containing	both	a	query	text	argument	and	a	"file:"
switch	are	considered	illegal	and	return	an	error.

<global_switches>

Global	switches	control	overall	behaviors	of	the	command,	such	as
error	handling	and	command	statistics	verbosity.
For	more	information	on	global	switches,	refer	to	the	Global
Switches	Reference.

-queryInfo

Displays	diagnostic	information	about	the	command.
When	"-queryInfo"	is	specified,	the	command	is	not	executed,	and
the	following	diagnostic	information	is	displayed	to	the	console
window:
The	text	of	the	provided	query,	after	being	parsed	and	interpreted
by	the	Log	Parser	SQL-Like	engine	core;
Names	of	the	input	and	output	formats	selected;
Structure	of	the	query	output	records,	including	field	names	and
field	data	types.

This	information	can	be	used	to	troubleshoot	a	variety	of	problems,
including	unexpected	query	execution	results,	and	query	parameter
subtitution.

The	following	example	uses	the	"-queryInfo"	switch	to	display
diagnostic	information	about	the	specified	command:

C:\>LogParser	"SELECT	TO_UTCTIME(TimeGenerated)	AS	UTCTime
Generated,	SourceName	FROM	System	WHERE	EventID	>	20"	-queryIn

foThe	output	of	this	command	is:

Query:
	SELECT	TO_UTCTIME([TimeGenerated])	AS	UTCTimeGenerated,	[S
ourceName]
	FROM	System
	WHERE	[EventID]	>	ANY	(20)

Formats	selected:
	Input	format:		EVT	(Windows	Event	Log)
	Output	format:	NAT	(Native	Format)

Query	fields:
		UTCTimeGenerated	(T)												SourceName	(S)

See	also:
Command-Line	Operation	Reference
Global	Switches	Reference
Commands	and	Queries

©	2004	Microsoft	Corporation.	All	rights	reserved.

Conversion	Mode
In	"Conversion	Mode",	Log	Parser	is	used	to	execute	built-in	queries	to
convert	log	files	between	the	following	formats:

BIN	to	W3C
IIS	to	W3C
BIN	to	IIS
IISW3C	to	IIS

Conversion	mode	is	activated	by	the	"-c"	switch.

The	general	syntax	of	commands	in	conversion	mode	is:

LogParser -c	-i:<input_format>	-o:<output_format>	<from_entity>
<into_entity>	[<where_clause>]	[<input_format_options>]
[<output_format_options>]	[-multiSite[:ON|OFF]]
[<global_switches>]	[-queryInfo]

For	more	information	on	log	file	format	conversions,	refer	to	Converting
File	Formats.

-i:<input_format>

Specifies	the	input	format	for	the	conversion.
The	"-i:"	switch	is	followed	by	the	name	of	the	selected	input	format,
as	in	the	following	example:

C:\>LogParser	-c	-i:IISW3C	-o:IIS	extend1.log	inetsv1.log

Differently	than	Query	Execution	Mode,	the	input	format	specification
is	a	mandatory	argument	for	commands	in	conversion	mode.
The	specified	input	format	name	must	be	one	of	the	input	formats	in
the	table	above	for	which	a	conversion	is	supported.

-o:<output_format>

Specifies	the	output	format	for	the	conversion.
The	"-o:"	switch	is	followed	by	the	name	of	the	selected	output
format,	as	in	the	following	example:

C:\>LogParser	-c	-i:IISW3C	-o:IIS	extend1.log	inetsv1.log

Differently	than	Query	Execution	Mode,	the	output	format
specification	is	a	mandatory	argument	for	commands	in	conversion
mode.
The	specified	output	format	name	must	be	one	of	the	output	formats
in	the	table	above	for	which	a	conversion	is	supported.

<from_entity>

Specifies	the	input	file(s)	to	be	converted.
This	argument	must	conform	to	the	<from_entity>	syntax	of	the
selected	input	format.	For	information	on	the	syntax	and
interpretation	of	the	<from_entity>	values	supported	by	each	input
format,	refer	to	the	Input	Formats	Reference.
If	the	argument	contains	spaces,	it	must	be	enclosed	within	double-
quote	characters	("),	as	in	the	following	example:

C:\>LogParser	-c	-i:IISW3C	-o:IIS	"extend1.log;,	<1>"	inetsv1.log

<into_entity>

Specifies	the	conversion	target	output	file.
This	argument	must	conform	to	the	<into_entity>	syntax	of	the
selected	output	format.	For	information	on	the	syntax	and
interpretation	of	the	<into_entity>	values	supported	by	each	output
format,	refer	to	the	Output	Formats	Reference.
If	the	argument	contains	spaces,	it	must	be	enclosed	within	double-
quote	characters	("),	as	in	the	following	example:

C:\>LogParser	-c	-i:IISW3C	-o:IIS	extend1.log	"C:\My	Folder\inetsv1.lo
g"

<where_clause>

Specifies	an	optional	WHERE	clause	to	perform	filtering	on	the	input
format	entries.

The	following	example	converts	only	the	IISW3C	log	file	entries	that
represent	successful	requests:

C:\>LogParser	-c	-i:IISW3C	-o:IIS	extend1.log	inetsv1.log	"WHERE	sc-s
tatus	BETWEEN	200	AND	399"

<input_format_options>

Specify	values	for	input	format	parameters.
These	are	entered	as	switches	with	names	matching	the	input
format's	parameter	names,	followed	by	a	colon	and	by	the	value	for
the	parameter,	as	in	the	following	example:

C:\>LogParser	-c	-i:IISW3C	-o:IIS	extend1.log	inetsv1.log	-iCodepage:9
32
For	more	information	on	input	format	parameters,	refer	to	the	Input
Format	Reference.

<output_format_options>

Specify	values	for	output	format	parameters.
These	are	entered	as	switches	with	names	matching	the	output
format's	parameter	names,	followed	by	a	colon	and	by	the	value	for
the	parameter,	as	in	the	following	example:

C:\>LogParser	-c	-i:IISW3C	-o:IIS	extend1.log	inetsv1.log	-fileMode:1

For	more	information	on	output	format	parameters,	refer	to	the
Output	Format	Reference.

-multiSite[:ON|OFF]

Specifies	that	an	IIS	Central	Binary	log	file	is	to	be	converted	to
multiple	log	files,	one	for	each	IIS	Virtual	Site.
This	option	is	only	available	when	the	conversion	is	from	the	BIN
input	format,	and	when	the	specified	<into-entity>	contains	one	"*"
wildcard	enabling	the	Multiplex	Ouput	Mode.	The	wildcard	will	be
replaced	with	the	numeric	identifiers	of	the	IIS	Virtual	Sites	that
served	the	requests	logged	in	the	central	binary	log	file.

The	following	example	converts	a	single	IIS	Central	Binary	log	file	to
different	W3C	log	files,	one	for	each	IIS	Virtual	Site	that	served	a
request	logged	in	the	central	binary	log:

C:\>LogParser	-c	-i:BIN	-o:W3C	raw1.ibl	C:\NewLogs\W3SVC*\extend
1.log	-multiSite:ON

<global_switches>

Global	switches	control	overall	behaviors	of	the	command,	such	as
error	handling	and	command	statistics	verbosity.
For	more	information	on	global	switches,	refer	to	the	Global
Switches	Reference.

-queryInfo

Displays	diagnostic	information	about	the	conversion	command.
When	"-queryInfo"	is	specified,	the	command	is	not	executed,	and
the	following	diagnostic	information	is	displayed	to	the	console
window:
The	text	of	the	conversion	query,	after	being	parsed	and
interpreted	by	the	Log	Parser	SQL-Like	engine	core;
Names	of	the	input	and	output	formats	selected;
Structure	of	the	query	output	records,	including	field	names	and
field	data	types.

This	information	can	be	used	to	troubleshoot	unexpected	conversion

results.

The	following	example	uses	the	"-queryInfo"	switch	to	display
diagnostic	information	about	the	specified	conversion	command:

C:\>LogParser	-c	-i:IISW3C	-o:IIS	extend1.log	inetsv1.log	-queryInfo

The	output	of	this	command	is:

Query:
	SELECT	[c-ip],	[cs-username],	TO_DATE(TO_LOCALTIME(TO_TIM
ESTAMP([date],
	[time]))),	TO_TIME(TO_LOCALTIME(TO_TIMESTAMP([date],	[time
]))),
	[s-sitename],	[s-computername],	[s-ip],	[time-taken],	[sc-bytes],
	[cs-bytes],	[sc-status],	[sc-win32-status],	[cs-method],	[cs-uri-stem],
	[cs-uri-query]
	INTO	inetsv1.log
	FROM	extend1.log

Formats	selected:
	Input	format:		IISW3C	(IIS	W3C	Extended	Log	Format)
	Output	format:	IIS				(IIS	Log	Format)

Query	fields:
	c-ip	(S)
	cs-username	(S)
	TO_DATE(TO_LOCALTIME(TO_TIMESTAMP(date,	time)))	(T)
	TO_TIME(TO_LOCALTIME(TO_TIMESTAMP(date,	time)))	(T)
	s-sitename	(S)
	s-computername	(S)
	s-ip	(S)
	time-taken	(I)
	sc-bytes	(I)
	cs-bytes	(I)
	sc-status	(I)
	sc-win32-status	(I)

See	also:
Command-Line	Operation	Reference
Global	Switches	Reference
Converting	File	Formats

©	2004	Microsoft	Corporation.	All	rights	reserved.

	cs-method	(S)
	cs-uri-stem	(S)
	cs-uri-query	(S)

Defaults	Override	Mode
In	"Defaults	Override	Mode"	users	can	specify	new	default	values	to
replace	the	factory	default	values	of	global	switches,	input	format
parameters,	and	output	format	parameters.
Values	are	overridden	on	the	computer	on	which	the	"saveDefaults"
command	is	executed,	and	the	new	values	are	in	effect	until	they	are
overridden	by	a	new	override	command,	or	until	the	factory	defaults	are
restored	with	the	"restoreDefaults"	command.	The	new	default	values
also	affect	the	Log	Parser	scriptable	COM	components.

Note:	For	security	reasons,	properties	that	are	used	to	specify
confidential	or	sensitive	information,	such	as	usernames	and
passwords,	can	not	be	overriden	by	the	"Defaults	Override	Mode"
feature.

The	general	syntax	of	commands	in	defaults	override	mode	is:

LogParser -saveDefaults	[-i:<input_format>	<input_format_options>]
[-o:<output_format>	<output_format_options>]
[<global_switches>]

LogParser -restoreDefaults

-i:<input_format>	<input_format_options>

Specifies	the	input	format	whose	parameters'	default	values	are	to
be	overridden,	and	the	new	default	values	for	the	selected
parameters.
The	"-i:"	switch	is	followed	by	the	name	of	the	selected	input	format,
and	the	new	default	values	are	entered	as	switches	with	names
matching	the	input	format's	parameter	names,	followed	by	a	colon
and	by	the	value	for	the	new	default,	as	in	the	following	example:

C:\>LogParser	-saveDefaults	-i:EVT	-binaryFormat:ASC	-resolveSIDs:O
N
For	more	information	on	input	format	parameters,	refer	to	the	Input

Format	Reference.

-o:<output_format>	<output_format_options>

Specifies	the	output	format	whose	parameters'	default	values	are	to
be	overridden,	and	the	new	default	values	for	the	selected
parameters.
The	"-o:"	switch	is	followed	by	the	name	of	the	selected	output
format,	and	the	new	default	values	are	entered	as	switches	with
names	matching	the	output	format's	parameter	names,	followed	by	a
colon	and	by	the	value	for	the	new	default,	as	in	the	following
example:

C:\>LogParser	-saveDefaults	-o:NAT	-rtp:-1

For	more	information	on	output	format	parameters,	refer	to	the
Output	Format	Reference.

<global_switches>

Specify	new	default	values	for	global	switches.

The	following	example	command	overrides	the	default	value	of	the	"-
stats;"	global	switch,	together	with	the	"rtp"	parameter	of	the	NAT
output	format:

C:\>LogParser	-saveDefaults	-o:NAT	-rtp:-1	-stats:OFF	

For	more	information	on	global	switches,	refer	to	the	Global
Switches	Reference.

-restoreDefaults

Restores	the	factory	defaults	of	global	switches,	input	format
parameters,	and	output	format	parameters.
When	specified,	the	"-restoreDefaults"	switch	must	be	the	only

argument	of	the	command,	as	in	the	following	example:

C:\>LogParser	-restoreDefaults

See	also:
Command-Line	Operation	Reference
Global	Switches	Reference

©	2004	Microsoft	Corporation.	All	rights	reserved.

Help	Mode
"Help	Mode",	activated	with	the	"-h"	switch,	offers	users	the	possibility	to
access	"quick	reference"	help	topics	displayed	to	the	console	output.
The	help	topics,	selectable	through	additional	command-line	arguments,
are:

General	Usage
Query	Language	Syntax
Functions	Syntax
Input	and	Output	Formats
Conversion	Mode
Query	Examples

General	Usage	Help

The	Log	Parser	command-line	executable	usage	help	is	accessed	with
the	following	command:

C:\>LogParser	-h

Query	Language	Syntax	Help

The	Log	Parser	SQL-Like	language	syntax	help	is	accessed	with	the
following	command:

C:\>LogParser	-h	GRAMMAR

Functions	Syntax	Help

The	Log	Parser	SQL-Like	language	functions	syntax	help	is	accessed

with	commands	having	the	following	syntax:

LogParser -h	FUNC[TIONS]	[<function>]

Typing	the	following	command	will	display	the	syntax	for	all	the	functions
available	in	the	Log	Parser	SQL-Like	language:

C:\>LogParser	-h	FUNCTIONS

Typing	a	function	name	following	the	help	command	displays	the	syntax
of	the	selected	function	only:

C:\>LogParser	-h	FUNCTIONS	SUBSTR

Typing	the	first	few	letters	of	a	function	name	displays	the	syntax	of	all
the	functions	whose	name	starts	with	the	specified	letters:

C:\>LogParser	-h	FUNCTIONS	STR

Input	and	Output	Formats	Help

Input	and	output	formats	help	is	displayed	with	commands	having	the
following	syntax:

LogParser -h	-i:<input_format>	[<from_entity>]
[<input_format_options>]

LogParser -h	-o:<output_format>

For	example,	the	following	command	displays	help	on	the	IISW3C	input
format:

C:\>LogParser	-h	-i:IISW3C

The	output	of	this	command	gives	a	detailed	overview	of	the	IISW3C

input	format,	including	the	syntax	of	the

<from_entity>,	a	list	of	all	the	supported	properties	together	with	their
default	values,	the	structure	of	the	records	produced	by	the	input	format
(field	names	and	types),	and	examples	of	queries	using	the	input	format.

When	an	input	format	retrieves	field	information	from	the	data	that	needs
to	be	parsed,	the	help	command	can	include	the	from-entity	from	which
the	field	information	is	to	be	gathered.
For	example,	the	CSV	input	format	examines	the	input	files	to	retrieve	the
names	and	types	of	the	input	record	fields	that	will	be	exported.	A	help
command	aimed	at	displaying	the	input	record	fields	exported	by	the
CSV	input	format	when	parsing	a	specific	file	should	include	the	filename
from-entity,	as	shown	in	the	following	example:

C:\>LogParser	-h	-i:CSV	TestLogFile.csv

In	addition,	since	the	parameters	of	some	input	formats	can	affect	the
structure	of	the	input	records,	help	commands	can	include	these
parameters	to	display	the	varying	input	record	structures.
For	example,	the	NETMON	input	format	has	a	"fMode"	parameter	that
can	be	used	to	specify	how	the	input	records	should	be	structured.	A	help
command	aimed	at	displaying	the	input	record	fields	exported	by	the
NETMON	input	format	when	the	"fMode"	parameter	is	set	to	"TCPConn"
should	include	this	parameter,	as	shown	in	the	following	example:

C:\>LogParser	-h	-i:NETMON	-fMode:TCPConn

Conversion	Mode	Help

Conversion	mode	help	is	accessed	with	commands	having	the	following
syntax:

LogParser -h	-c	[-i:<input_format>	-o:<output_format>]

The	following	command	displays	general	conversion	mode	help,

including	the	list	of	available	built-in	conversion	queries:

C:\>LogParser	-h	-c

The	following	command	displays	help	on	the	conversion	between	the
specified	log	file	formats,	including	the	full	text	of	the	built-in	query	that
performs	the	conversion:

C:\>LogParser	-h	-c	-i:BIN	-o:W3C

Query	Examples	Help

Examples	of	queries	and	commands	can	be	displayed	with	the	following
command:

C:\>LogParser	-h	EXAMPLES

See	also:

Command-Line	Operation	Reference

©	2004	Microsoft	Corporation.	All	rights	reserved.

Global	Switches
Global	switches	control	overall	behaviors	of	a	command,	and	they	are
used	with	most	of	the	Log	Parser	command-line	executable	operational
modes.

The	global	switches	are:

-e:<max_errors>

-iw[:ON|OFF]

-stats[:ON|OFF]

-q[:ON|OFF]

-e:<max_errors>

Specifies	a	maximum	number	of	parse	errors	to	collect	internally
before	aborting	the	execution	of	the	command.
The	default	value	for	this	global	switch	is	-1,	which	is	a	special	value
causing	the	SQL	engine	to	ignore	all	parse	errors	and	report	only	the
total	number	of	parse	errors	encountered	during	the	execution	of	the
command.
The	following	example	command	sets	the	maximum	number	of
parse	errors	to	100:

C:\>LogParser	"SELECT	Message	FROM	System"	-e:100

For	more	information	on	parse	errors	and	the	"-e"	switch,	see	Errors,
Parse	Errors,	and	Warnings.

-iw[:ON|OFF]

Specifies	whether	or	not	warnings	should	be	ignored.

The	default	value	is	"OFF",	meaning	that	run	time	warnings	will	not
be	ignored	and	will	trigger	an	interactive	prompt	to	the	user.
Specifying	"ON",	on	the	other	hand,	disables	the	interactive	prompt,
and	run	time	warnings	will	be	ignored	and	their	total	count	will	be
reported	when	the	command	execution	has	completed.
The	following	example	command	executes	a	query	ignoring	run	time
warnings:

C:\>LogParser	"SELECT	Message	FROM	System"	-iw:ON

For	more	information	on	warnings	and	the	"-iw"	switch,	see	Errors,
Parse	Errors,	and	Warnings.

-stats[:ON|OFF]

Specifies	whether	or	not	command	execution	statistics	should	be
displayed	when	the	command	execution	has	completed.
The	default	value	is	"ON",	causing	command	execution	statistics	to
be	always	displayed.	Specifying	"OFF"	prevents	the	statistics	from
being	displayed.
The	following	example	command	executes	a	query	preventing	the
statistics	from	being	displayed:

C:\>LogParser	"SELECT	COUNT(*)	FROM	System"	-stats:OFF

-q[:ON|OFF]

Enables	or	disables	"quiet	mode".
When	"quiet	mode"	is	enabled,	the	console	output	of	a	command
contains	only	the	output	records,	suppressing	any	additional
information.	For	this	reason,	the	console	output	of	a	command
executed	in	"quiet	mode"	is	suitable	to	be	redirected	to	a	text	file.
Enabling	"quiet	mode"	disables	the	display	of	parse	errors,	warnings,
and	statistics.	In	addition,	if	the	selected	output	format	is	the	NAT
output	format,	its	"rtp"	and	"headers"	parameters	are	automatically
set	as	follows:

-rtp:-1
-headers:OFF

As	an	example,	the	output	of	following	command	shows	the	extra
information	and	the	NAT	output	format	headers	that	are	normally
displayed	to	the	console:

C:\>LogParser	"SELECT	COUNT(*)	FROM	System"
COUNT(ALL	*)

6913

Statistics:

Elements	processed:	6913
Elements	output:				1
Execution	time:					0.13	seconds

In	this	example,	enabling	"quiet	mode"	suppresses	the	headers
displayed	by	the	NAT	output	format	and	the	query	execution
statistics,	and	the	output	would	look	like	the	following:

C:\>LogParser	"SELECT	COUNT(*)	FROM	System"	-q:ON
6913

See	also:
Command-Line	Operation	Reference
Errors,	Parse	Errors,	and	Warnings

©	2004	Microsoft	Corporation.	All	rights	reserved.

COM	API
The	Log	Parser	scriptable	COM	components	architecture	is	made	up	of
the	following	objects:

LogQuery	object:	this	object	is	the	main	COM	object	in	the	Log	Parser
scriptable	COM	components	architecture;	it	exposes	methods	to
execute	SQL-Like	queries	and	provides	access	to	global	parameters
controlling	the	execution	of	a	query.
LogRecordSet	object:	this	object	is	an	enumerator	of	LogRecord
objects;	it	allows	an	application	to	navigate	through	the	output	records
of	a	query.
LogRecord	object:	this	object	represents	a	single	query	output	record,
and	it	exposes	methods	that	can	be	used	to	retrieve	individual	field
values	from	the	output	record.
Input	Format	objects:	these	objects	provide	programmatic	access	to
the	input	formats	supported	by	Log	Parser;	each	input	format	object
exposes	properties	having	the	same	name	as	the	parameters	of	the
corresponding	Log	Parser	input	format.
Output	Format	objects:	these	objects	provide	programmatic	access	to
the	output	formats	supported	by	Log	Parser;	each	output	format	object
exposes	properties	having	the	same	name	as	the	parameters	of	the
corresponding	Log	Parser	output	format.

See	also:
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

LogQuery	Object
The	LogQuery	object	exposes	the	main	API	methods	that	execute	a
SQL-Like	query	and	provides	access	to	global	parameters	controlling	the
execution	of	a	query.

The	object	is	instantiated	with	the	"MSUtil.LogQuery"	ProgId.
The	class	name	of	the	.NET	COM	wrapper	for	this	object	is
"Interop.MSUtil.LogQueryClassClass".

Methods

Execute Executes	a	query	and	returns	a	LogRecordSet
object	that	can	be	used	to	navigate	through	the
query	output	records.

ExecuteBatch Executes	a	query	and	writes	the	query	output
records	to	an	output	format.

Properties

errorMessages Returns	a	collection	of	the	error,	parse
error,	and	warning	messages	that
occurred	during	the	execution	of	a	query.

inputUnitsProcessed Returns	the	total	number	of	input
records	processed	during	the	execution
of	a	query.

lastError Returns	-1	if	errors,	parse	errors,	or
warnings	occurred	during	the	execution

of	the	query;	0	otherwise.

maxParseErrors Sets	and	gets	the	maximum	number	of
parse	errors	that	can	occur	during	the
execution	of	a	query	before	aborting	the
query	execution.

outputUnitsProcessed Returns	the	total	number	of	output
records	sent	to	an	output	format	during
the	execution	of	a	query.

versionMaj Returns	the	"major"	component	of	the
version	of	the	Log	Parser	scriptable
COM	components.

versionMin Returns	the	"minor"	component	of	the
version	of	the	Log	Parser	scriptable
COM	components.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

VBScript	example:

Dim	oLogQuery
Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

See	also:

LogRecordSet	Object
Input	Format	Objects
Output	Format	Objects
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

Execute	Method
Executes	a	query	and	returns	a	LogRecordSet	object	that	can	be	used	to
navigate	through	the	query	output	records.

Script	Syntax

objRecordSet	=	objLogQuery.Execute(strQuery	[,	objInputFormat]);

Parameters

strQuery
A	string	containing	the	text	of	the	SQL-Like	query	to	be	executed.

objInputFormat
Either	an	Input	Format	object	or	a	Custom	Input	Format	Plugin
object.
If	this	parameter	is	not	specified,	or	is	null,	Log	Parser	will	attempt	to
select	automatically	an	input	format	upon	inspection	of	the	<from-
entity>	in	the	FROM	clause	of	the	specified	query.

Return	Value
A	LogRecordSet	object,	which	can	be	used	to	navigate	through	the	query
output	records.

Remarks
If	the	query	execution	encounters	errors,	an	exception	is	thrown
containing	the	error	message	and	code,	and	the	query	execution	is
aborted.
In	this	case,	the	lastError	property	of	the	LogQuery	object	is	set	to	-1,

and	the	collection	of	strings	returned	by	the	errorMessages	property
contains	the	error	message.
If	the	query	execution	encounters	parse	errors	or	warnings,	the	query
executes	successfully,	and	the	method	returns	a	LogRecordSet	object.
In	this	case,	the	lastError	property	of	the	LogQuery	object	is	set	to	-1,
and	the	collection	of	strings	returned	by	the	errorMessages	property
contains	the	parse	error	messages	and/or	warning	messages.
A	successful	execution	of	the	Execute	method	does	not	necessarily
mean	that	the	query	execution	has	completed.
Depending	on	the	query	structure,	navigating	the	query	output	records
with	the	LogRecordSet	object	can	cause	the	query	to	further	process
new	input	records,	which	could	in	turn	generate	additional	errors,	parse
errors,	or	warnings.	See	the	LogRecordSet	Object	Reference	for	more
information.
The	specified	query	can	not	contain	an	INTO	clause.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	Input	Format	object
var	oIISW3CInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.IIS
W3CInputFormat");

//	Create	query	text
var	strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%
hitcount.asp'";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery,	oIISW3CInputFormat);

//	Visit	all	records
while(!oRecordSet.atEnd())

VBScript	example:

Dim	oLogQuery
Dim	oIISW3CInputFormat
Dim	strQuery
Dim	oRecordSet
Dim	oRecord
Dim	strClientIp

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	Input	Format	object
Set	oIISW3CInputFormat	=	CreateObject("MSUtil.LogQuery.IISW3CInp

See	also:
LogQuery	Object
ExecuteBatch	Method
LogRecordSet	Object
Input	Format	Objects
Log	Parser	COM	API	Overview

{
	 //	Get	a	record
	 var	oRecord	=	oRecordSet.getRecord();

	 //	Get	first	field	value
	 var	strClientIp	=	oRecord.getValue(0);

	 //	Print	field	value
	 WScript.Echo("Client	IP	Address:	"	+	strClientIp);

	 //	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext();
}

//	Close	LogRecordSet
oRecordSet.close();

utFormat")

'	Create	query	text
strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%hitc
ount.asp'"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery,	oIISW3CInputFormat)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

	 '	Get	first	field	value
	 strClientIp	=	oRecord.getValue	(0)

	 '	Print	field	value
	 WScript.Echo	"Client	IP	Address:	"	&	strClientIp

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

LOOP

'	Close	RecordSet
oRecordSet.close

C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

ExecuteBatch	Method
Executes	a	query	and	writes	the	output	records	to	an	output	format.

Script	Syntax

bResult	=	objLogQuery.ExecuteBatch(strQuery	[,	objInputFormat	[,	objOutput
Format]]);

Parameters

strQuery
A	string	containing	the	text	of	the	SQL-Like	query	to	be	executed.

objInputFormat
Either	an	Input	Format	object	or	a	Custom	Input	Format	Plugin
object.
If	this	parameter	is	not	specified,	or	is	null,	Log	Parser	will	attempt	to
select	automatically	an	input	format	upon	inspection	of	the	<from-
entity>	in	the	FROM	clause	of	the	specified	query.

objOutputFormat
An	Output	Format	object.
If	this	parameter	is	not	specified,	or	is	null,	Log	Parser	will	attempt	to
select	automatically	an	output	format	upon	inspection	of	the	<into-
entity>	in	the	INTO	clause	of	the	specified	query.

Return	Value
A	boolean	value.	Returns	TRUE	if	the	query	executed	with	parse	errors
or	warnings;	FALSE	if	the	query	executed	without	any	parse	error	nor
warning.

Remarks
If	the	query	execution	encounters	errors,	an	exception	is	thrown
containing	the	error	message	and	code,	and	the	query	execution	is
aborted.
In	this	case,	the	lastError	property	of	the	LogQuery	object	is	set	to	-1,
and	the	collection	of	strings	returned	by	the	errorMessages	property
contains	the	error	message.
If	the	query	execution	encounters	parse	errors	or	warnings,	the	query
executes	successfully,	and	the	method	returns	TRUE.
In	this	case,	the	lastError	property	of	the	LogQuery	object	is	set	to	-1,
and	the	collection	of	strings	returned	by	the	errorMessages	property
contains	the	parse	error	messages	and/or	warning	messages.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	Input	Format	object
var	oEVTInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.EventL
ogInputFormat");
oEVTInputFormat.direction	=	"BW";

//	Create	Output	Format	object
var	oCSVOutputFormat	=	new	ActiveXObject("MSUtil.LogQuery.CSVO
utputFormat");
oCSVOutputFormat.tabs	=	true;

//	Create	query	text
var	strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\\output.csv	
FROM	System";
strQuery	+=				"	WHERE	SourceName	=	'Application	Popup'";

//	Execute	query

VBScript	example:

Dim	oLogQuery
Dim	oEVTInputFormat
Dim	oCSVOutputFormat	
Dim	strQuery

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	Input	Format	object
Set	oEVTInputFormat	=	CreateObject("MSUtil.LogQuery.EventLogInput
Format")
oEVTInputFormat.direction	=	"BW"

'	Create	Output	Format	object

See	also:
LogQuery	Object
Execute	Method
Input	Format	Objects
Output	Format	Objects
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

oLogQuery.ExecuteBatch(strQuery,	oEVTInputFormat,	oCSVOutputFor
mat);
Set	oCSVOutputFormat	=	CreateObject("MSUtil.LogQuery.CSVOutputF
ormat")
oCSVOutputFormat.tabs	=	TRUE

'	Create	query	text
strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\output.csv	FRO
M	System"
strQuery	=	strQuery	&	"	WHERE	SourceName	=	'Application	Popup'"

'	Execute	query
oLogQuery.ExecuteBatch	strQuery,	oEVTInputFormat,	oCSVOutputFor
mat

errorMessages	Property
Returns	a	collection	of	strings	containing	the	messages	of	errors,	parse
errors,	or	warnings	encountered	while	executing	a	query	with	the	Execute
or	ExecuteBatch	methods.

Read-only	property.

Script	Syntax

value	=	objLogQuery.errorMessages;

Return	Value
A	collection	of	Strings	containing	error	messages.

Remarks
The	object	returned	by	the	errorMessages	property	implements	a
single	read-only	_NewEnum	property.	The	_NewEnum	property
retrieves	an	IEnumVARIANT	interface	on	an	object	that	can	be	used
to	enumerate	the	collection.
The	_NewEnum	property	is	hidden	within	scripting	languages	(JScript
and	VBScript).	Applications	written	in	the	JScript	language	handle
objects	implementing	the	_NewEnum	property	as	Enumerator	objects
or	with	the	for...in	statement,	while	applications	written	in	the	VBScript
language	handle	objects	implementing	the	_NewEnum	property	with
the	For	Each...Next	statement.
If	you	want	to	retrieve	parse	error	messages,	make	sure	that	the
maxParseErrors	property	of	the	LogQuery	object	is	set	to	a	value
different	than	-1.	If	the	value	of	this	property	is	-1	(the	default	value),
the	parse	error	messages	will	be	discarded,	and	the	errorMessages
collection	will	contain	a	single	message	stating	the	total	number	of
parse	errors	occurred.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Make	sure	that	parse	error	messages	are	collected
oLogQuery.maxParseErrors	=	100;

//	Create	query	text
var	strQuery	=	"SELECT	sc-bytes	INTO	C:\\output.csv	FROM	ex040528.
log";

//	Execute	query
oLogQuery.ExecuteBatch(strQuery);

//	Check	if	errors	occurred
if(oLogQuery.lastError	!=	0)
{
				WScript.Echo("Errors	occurred!");

				var	oMessages	=	new	Enumerator(oLogQuery.errorMessages);
				for(;	!oMessages.atEnd();		oMessages.moveNext())
				{
								WScript.Echo("Error	message:	"	+	oMessages.item());
				}
				
}
else
{
				WScript.Echo("Executed	successfully!");
}

VBScript	example:

Dim	oLogQuery
Dim	strQuery

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Make	sure	that	parse	error	messages	are	collected
oLogQuery.maxParseErrors	=	100

'	Create	query	text
strQuery	=	"SELECT	sc-bytes	INTO	C:\output.csv	FROM	ex040528.log"

'	Execute	query
oLogQuery.ExecuteBatch	strQuery

'	Check	if	errors	occurred
If	oLogQuery.lastError	<>	0	Then

				WScript.Echo	"Errors	occurred!"

				For	Each	strMessage	In	oLogQuery.errorMessages
								WScript.Echo	"Error	Message:	"	+	strMessage
				Next

Else

				WScript.Echo	"Executed	succesfully!"

See	also:
LogQuery	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

End	If

inputUnitsProcessed	Property
Returns	the	total	number	of	input	records	processed	by	a	query	executed
with	the	ExecuteBatch	method.

Read-only	property.

Script	Syntax

value	=	objLogQuery.inputUnitsProcessed;

Return	Value
An	integer	value	containing	the	total	number	of	input	records	processed
by	the	last	query	executed	with	the	ExecuteBatch	method.

Remarks
When	a	query	is	executed	with	the	Execute	method,	this	property
returns	zero.	In	these	cases,	use	the	inputUnitsProcessed	property	of
the	LogRecordSet	object.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\\output.csv	
FROM	System";

VBScript	example:

Dim	oLogQuery

strQuery	+=				"	WHERE	SourceName	=	'Application	Popup'";

//	Execute	query
oLogQuery.ExecuteBatch(strQuery);

//	Display	total	number	of	input	records	processed
WScript.Echo("Input	Records	Processed:	"	+	oLogQuery.inputUnitsProc
essed);

Dim	strQuery

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\output.csv	FRO
M	System"
strQuery	=	strQuery	&	"	WHERE	SourceName	=	'Application	Popup'"

'	Execute	query
oLogQuery.ExecuteBatch	strQuery

'	Display	total	number	of	input	records	processed
WScript.Echo	"Input	Records	Processed:	"	&	oLogQuery.inputUnitsProce
ssed

See	also:
LogQuery	Object
ExecuteBatch	Method
outputUnitsProcessed	Property
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

lastError	Property
Returns	-1	if	the	Execute	or	ExecuteBatch	methods	encountered	errors,
parse	errors,	or	warnings;	0	otherwise.

Read-only	property.

Script	Syntax

value	=	objLogQuery.lastError;

Return	Value
An	integer	value	containing	-1	if	the	Execute	or	ExecuteBatch	methods
encountered	errors,	parse	errors,	or	warnings;	0	otherwise.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\\output.csv	
FROM	System";
strQuery	+=				"	WHERE	SourceName	=	'Application	Popup'";

//	Execute	query
oLogQuery.ExecuteBatch(strQuery);

//	Check	if	errors	occurred
if(oLogQuery.lastError	!=	0)
{
				WScript.Echo("Errors	occurred!");

VBScript	example:

Dim	oLogQuery
Dim	strQuery

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\output.csv	FRO
M	System"
strQuery	=	strQuery	&	"	WHERE	SourceName	=	'Application	Popup'"

See	also:
LogQuery	Object
Log	Parser	COM	API	Overview
C#	Example

}
else
{
				WScript.Echo("Executed	successfully!");
}

'	Execute	query
oLogQuery.ExecuteBatch	strQuery

'	Check	if	errors	occurred
If	oLogQuery.lastError	<>	0	Then
				WScript.Echo	"Errors	occurred!"
Else
				WScript.Echo	"Executed	succesfully!"
End	If

©	2004	Microsoft	Corporation.	All	rights	reserved.

maxParseErrors	Property
Sets	or	gets	the	maximum	number	of	parse	errors	that	can	occur	during
the	execution	of	a	query	before	aborting	the	query	execution.

Read/write	property.

Script	Syntax

objLogQuery.maxParseErrors	=	value;

value	=	objLogQuery.maxParseErrors;

Argument/Return	Value
An	integer	value	specifying	the	maximum	number	of	parse	errors	that	can
occur	during	the	execution	of	a	query	before	aborting	the	query
execution.
A	value	of	-1	specifies	that	all	parse	errors	should	be	ignored.

Default	Value
-1

Remarks
This	property	is	analogous	to	the	"-e"	global	switch	available	with	the
Log	Parser	command-line	executable.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

oLogQuery.maxParseErrors	=	10;VBScript	example:

Dim	oLogQuery
Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

oLogQuery.maxParseErrors	=	10
See	also:
LogQuery	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

outputUnitsProcessed	Property
Returns	the	total	number	of	output	records	sent	to	an	output	format	by	a
query	executed	with	the	ExecuteBatch	method.

Read-only	property.

Script	Syntax

value	=	objLogQuery.outputUnitsProcessed;

Return	Value
An	integer	value	containing	the	total	number	of	output	records	sent	to	an
output	format	by	the	last	query	executed	with	the	ExecuteBatch	method.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\\output.csv	
FROM	System";
strQuery	+=				"	WHERE	SourceName	=	'Application	Popup'";

//	Execute	query
oLogQuery.ExecuteBatch(strQuery);

//	Display	total	number	of	output	records	generated
WScript.Echo("Output	Records	Written:	"	+	oLogQuery.outputUnitsProc

VBScript	example:

Dim	oLogQuery
Dim	strQuery

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	TimeGenerated,	EventID	INTO	C:\output.csv	FRO
M	System"

See	also:
LogQuery	Object
ExecuteBatch	Method
inputUnitsProcessed	Property

essed);strQuery	=	strQuery	&	"	WHERE	SourceName	=	'Application	Popup'"

'	Execute	query
oLogQuery.ExecuteBatch	strQuery

'	Display	total	number	of	output	records	generated
WScript.Echo	"Output	Records	Written:	"	&	oLogQuery.outputUnitsProc
essed

Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

versionMaj	Property
versionMin	Property
Return	the	major	and	minor	components	of	the	version	of	the	Log	Parser
scriptable	COM	components	currently	being	used.

Read-only	properties.

Script	Syntax

value	=	objLogQuery.versionMaj;

value	=	objLogQuery.versionMin;

Return	Values
Integer	values	containing	the	major	and	minor	components	of	the	version
of	the	Log	Parser	scriptable	COM	components	currently	being	used.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

WScript.Echo("Log	Parser	Version	"	+	oLogQuery.versionMaj	+	"."	+	oL
ogQuery.versionMin);
VBScript	example:

Dim	oLogQuery
Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

WScript.Echo	"Log	Parser	Version	"	&	oLogQuery.versionMaj	&	"."	&	o

LogQuery.versionMinSee	also:
LogQuery	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

LogRecordSet	Object
The	LogRecordSet	object	is	returned	by	the	Execute	method	of	the
LogQuery	object,	and	it	exposes	methods	that	can	be	used	to	navigate
through	the	output	records	of	a	query.
The	LogRecordSet	object	is	an	enumerator	of	LogRecord	objects.

The	interface	name	of	the	.NET	COM	wrapper	for	this	object	is
"Interop.MSUtil.ILogRecordset".

Methods

atEnd Returns	a	Boolean	value	indicating	if	the
enumerator	is	at	the	end	of	the	collection.

close Releases	the	enumeration	and	all	the
associated	resources.

getColumnCount Returns	the	number	of	fields	in	the	query
output	records.

getColumnName Returns	the	name	of	a	field	in	the	query
output	records.

getColumnType Returns	the	data	type	of	a	field	in	the	query
output	records.

getRecord Returns	the	current	LogRecord	object	in	the
enumeration.

moveNext Advances	the	enumerator	to	the	next
LogRecord	in	the	enumeration.

Properties

errorMessages Returns	a	collection	of	the	error,	parse
error,	and	warning	messages	that
occurred	during	the	last	invocation	of	the
moveNext	method.

inputUnitsProcessed Returns	the	total	number	of	input	records
processed	during	the	execution	of	a
query.

lastError Returns	-1	if	errors,	parse	errors,	or
warnings	occurred	during	the	last
invocation	of	the	moveNext	method;	0
otherwise.

INTEGER_TYPE Returns	the	value	of	the	constant
representing	the	INTEGER	data	type.

NULL_TYPE Returns	the	value	of	the	constant
representing	the	NULL	data	type.

REAL_TYPE Returns	the	value	of	the	constant
representing	the	REAL	data	type.

STRING_TYPE Returns	the	value	of	the	constant
representing	the	STRING	data	type.

TIMESTAMP_TYPE Returns	the	value	of	the	constant
representing	the	TIMESTAMP	data	type.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");
var	oLogRecordSet	=	oLogQuery.Execute("SELECT	*	FROM	System")
;VBScript	example:

Dim	oLogQuery
Dim	oLogRecordSet

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")
Set	oLogRecordSet	=	oLogQuery.Execute("SELECT	*	FROM	System")See	also:

LogQuery	Object
LogRecord	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

atEnd	Method
Returns	a	Boolean	value	indicating	if	the	enumerator	is	at	the	end	of	the
collection.

Script	Syntax

value	=	objRecordSet.atEnd();

Return	Value
A	Boolean	value	set	to	TRUE	if	there	are	no	more	LogRecord	objects	to
enumerate;	FALSE	otherwise.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	Input	Format	object
var	oIISW3CInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.IIS
W3CInputFormat");

//	Create	query	text
var	strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%
hitcount.asp'";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery,	oIISW3CInputFormat);

//	Visit	all	records
while(!oRecordSet.atEnd())

VBScript	example:

Dim	oLogQuery
Dim	oIISW3CInputFormat
Dim	strQuery
Dim	oRecordSet
Dim	oRecord
Dim	strClientIp

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	Input	Format	object
Set	oIISW3CInputFormat	=	CreateObject("MSUtil.LogQuery.IISW3CInp

See	also:
LogRecordSet	Object
LogRecord	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

{
	 //	Get	a	record
	 var	oRecord	=	oRecordSet.getRecord();

	 //	Get	first	field	value
	 var	strClientIp	=	oRecord.getValue(0);

	 //	Print	field	value
	 WScript.Echo("Client	IP	Address:	"	+	strClientIp);

	 //	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext();
}

//	Close	LogRecordSet
oRecordSet.close();

utFormat")

'	Create	query	text
strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%hitc
ount.asp'"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery,	oIISW3CInputFormat)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

	 '	Get	first	field	value
	 strClientIp	=	oRecord.getValue	(0)

	 '	Print	field	value
	 WScript.Echo	"Client	IP	Address:	"	&	strClientIp

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

LOOP

'	Close	RecordSet
oRecordSet.close

close	Method
Releases	the	enumeration	and	all	the	associated	resources.

Script	Syntax

objRecordSet.close();

Return	Value
None.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	Input	Format	object
var	oIISW3CInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.IIS
W3CInputFormat");

//	Create	query	text
var	strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%
hitcount.asp'";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery,	oIISW3CInputFormat);

//	Visit	all	records
while(!oRecordSet.atEnd())
{
	 //	Get	a	record

VBScript	example:

Dim	oLogQuery
Dim	oIISW3CInputFormat
Dim	strQuery
Dim	oRecordSet
Dim	oRecord
Dim	strClientIp

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	Input	Format	object
Set	oIISW3CInputFormat	=	CreateObject("MSUtil.LogQuery.IISW3CInp
utFormat")

See	also:
LogRecordSet	Object
LogRecord	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

	 var	oRecord	=	oRecordSet.getRecord();

	 //	Get	first	field	value
	 var	strClientIp	=	oRecord.getValue(0);

	 //	Print	field	value
	 WScript.Echo("Client	IP	Address:	"	+	strClientIp);

	 //	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext();
}

//	Close	LogRecordSet
oRecordSet.close();

'	Create	query	text
strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%hitc
ount.asp'"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery,	oIISW3CInputFormat)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

	 '	Get	first	field	value
	 strClientIp	=	oRecord.getValue	(0)

	 '	Print	field	value
	 WScript.Echo	"Client	IP	Address:	"	&	strClientIp

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

LOOP

'	Close	RecordSet
oRecordSet.close

getColumnCount	Method
Returns	the	number	of	fields	in	the	query	output	records.

Script	Syntax

value	=	objRecordSet.getColumnCount();

Return	Value
An	integer	value	containing	the	number	of	fields	in	the	query	output
records.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	*	FROM	System";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Display	field	names	and	types
for(var	f=0;	f<oRecordSet.getColumnCount();	f++)
{
				//	Field	Name
				WScript.Echo("Field	Name:	"	+	oRecordSet.getColumnName(f));

				//	Field	type
				switch(oRecordSet.getColumnType(f))

VBScript	example:

Dim	oLogQuery
Dim	oRecordSet
Dim	f

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	*	FROM	System"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery)

See	also:
LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

				{
								case	oRecordSet.INTEGER_TYPE:							{
																																																WScript.Echo("Field	Type:	INTEGER");
																																																break;
																																												}

								case	oRecordSet.REAL_TYPE:										{
																																																WScript.Echo("Field	Type:	REAL");
																																																break;
																																												}

								case	oRecordSet.STRING_TYPE:								{
																																																WScript.Echo("Field	Type:	STRING");
																																																break;
																																												}

								case	oRecordSet.TIMESTAMP_TYPE:					{
																																																WScript.Echo("Field	Type:	TIMESTAMP"
);
																																																break;
																																												}

								case	oRecordSet.NULL_TYPE:										{
																																																WScript.Echo("Field	Type:	NULL");
																																																break;
																																												}
				}
				
}

//	Close	LogRecordSet
oRecordSet.close();

'	Display	field	names	and	types
For	f	=	0	To	oRecordSet.getColumnCount()-1

				'	Field	Name
				WScript.Echo	"Field	Name:	"	&	oRecordSet.getColumnName(f)

				'	Field	type
				Select	Case	oRecordSet.getColumnType(f)
				
								Case	oRecordSet.INTEGER_TYPE								WScript.Echo	"Field	Type:	
INTEGER"	
								Case	oRecordSet.REAL_TYPE											WScript.Echo	"Field	Type:	R
EAL"
								Case	oRecordSet.STRING_TYPE									WScript.Echo	"Field	Type:	S
TRING"
								Case	oRecordSet.TIMESTAMP_TYPE						WScript.Echo	"Field	Typ
e:	TIMESTAMP"
								Case	oRecordSet.NULL_TYPE											WScript.Echo	"Field	Type:	N
ULL"

				End	Select
				
Next

'	Close	LogRecordSet
oRecordSet.close()

getColumnName	Method
Returns	the	name	of	a	field	in	the	query	output	records.

Script	Syntax

value	=	objRecordSet.getColumnName(index);

Parameters

index
The	0-based	index	of	the	field	in	the	query	output	records.	The	index
must	be	less	than	the	number	of	fields	returned	by	the
getColumnCount	method.

Return	Value
A	string	value	containing	the	name	of	the	output	record	field	at	the
specified	position.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	*	FROM	System";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

VBScript	example:

Dim	oLogQuery
Dim	oRecordSet
Dim	f

//	Display	field	names	and	types
for(var	f=0;	f<oRecordSet.getColumnCount();	f++)
{
				//	Field	Name
				WScript.Echo("Field	Name:	"	+	oRecordSet.getColumnName(f));

				//	Field	type
				switch(oRecordSet.getColumnType(f))
				{
								case	oRecordSet.INTEGER_TYPE:							{
																																																WScript.Echo("Field	Type:	INTEGER");
																																																break;
																																												}

								case	oRecordSet.REAL_TYPE:										{
																																																WScript.Echo("Field	Type:	REAL");
																																																break;
																																												}

								case	oRecordSet.STRING_TYPE:								{
																																																WScript.Echo("Field	Type:	STRING");
																																																break;
																																												}

								case	oRecordSet.TIMESTAMP_TYPE:					{
																																																WScript.Echo("Field	Type:	TIMESTAMP"
);
																																																break;
																																												}

								case	oRecordSet.NULL_TYPE:										{
																																																WScript.Echo("Field	Type:	NULL");
																																																break;
																																												}
				}
				
}

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	*	FROM	System"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery)

'	Display	field	names	and	types
For	f	=	0	To	oRecordSet.getColumnCount()-1

				'	Field	Name
				WScript.Echo	"Field	Name:	"	&	oRecordSet.getColumnName(f)

				'	Field	type
				Select	Case	oRecordSet.getColumnType(f)
				
								Case	oRecordSet.INTEGER_TYPE								WScript.Echo	"Field	Type:	
INTEGER"	
								Case	oRecordSet.REAL_TYPE											WScript.Echo	"Field	Type:	R
EAL"
								Case	oRecordSet.STRING_TYPE									WScript.Echo	"Field	Type:	S
TRING"
								Case	oRecordSet.TIMESTAMP_TYPE						WScript.Echo	"Field	Typ
e:	TIMESTAMP"
								Case	oRecordSet.NULL_TYPE											WScript.Echo	"Field	Type:	N
ULL"

				End	Select
				
Next

'	Close	LogRecordSet
oRecordSet.close()

See	also:
LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

//	Close	LogRecordSet
oRecordSet.close();

getColumnType	Method
Returns	the	type	of	a	field	in	the	query	output	records.

Script	Syntax

value	=	objRecordSet.getColumnType(index);

Parameters

index
The	0-based	index	of	the	field	in	the	query	output	records.	The	index
must	be	less	than	the	number	of	fields	returned	by	the
getColumnCount	method.

Return	Value
An	integer	value	containing	the	type	of	the	output	record	field	at	the
specified	position.
This	value	is	one	of	the	constants	returned	by	the	INTEGER_TYPE,
REAL_TYPE,	STRING_TYPE,	TIMESTAMP_TYPE,	and	NULL_TYPE
properties.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	*	FROM	System";
VBScript	example:

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Display	field	names	and	types
for(var	f=0;	f<oRecordSet.getColumnCount();	f++)
{
				//	Field	Name
				WScript.Echo("Field	Name:	"	+	oRecordSet.getColumnName(f));

				//	Field	type
				switch(oRecordSet.getColumnType(f))
				{
								case	oRecordSet.INTEGER_TYPE:							{
																																																WScript.Echo("Field	Type:	INTEGER");
																																																break;
																																												}

								case	oRecordSet.REAL_TYPE:										{
																																																WScript.Echo("Field	Type:	REAL");
																																																break;
																																												}

								case	oRecordSet.STRING_TYPE:								{
																																																WScript.Echo("Field	Type:	STRING");
																																																break;
																																												}

								case	oRecordSet.TIMESTAMP_TYPE:					{
																																																WScript.Echo("Field	Type:	TIMESTAMP"
);
																																																break;
																																												}

								case	oRecordSet.NULL_TYPE:										{
																																																WScript.Echo("Field	Type:	NULL");
																																																break;
																																												}

Dim	oLogQuery
Dim	oRecordSet
Dim	f

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	*	FROM	System"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery)

'	Display	field	names	and	types
For	f	=	0	To	oRecordSet.getColumnCount()-1

				'	Field	Name
				WScript.Echo	"Field	Name:	"	&	oRecordSet.getColumnName(f)

				'	Field	type
				Select	Case	oRecordSet.getColumnType(f)
				
								Case	oRecordSet.INTEGER_TYPE								WScript.Echo	"Field	Type:	
INTEGER"	
								Case	oRecordSet.REAL_TYPE											WScript.Echo	"Field	Type:	R
EAL"
								Case	oRecordSet.STRING_TYPE									WScript.Echo	"Field	Type:	S
TRING"
								Case	oRecordSet.TIMESTAMP_TYPE						WScript.Echo	"Field	Typ
e:	TIMESTAMP"
								Case	oRecordSet.NULL_TYPE											WScript.Echo	"Field	Type:	N
ULL"

				End	Select
				
Next

'	Close	LogRecordSet

See	also:
LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

				}
				
}

//	Close	LogRecordSet
oRecordSet.close();

oRecordSet.close()

getRecord	Method
Returns	the	current	LogRecord	object	in	the	enumeration.

Script	Syntax

objRecord	=	objRecordSet.getRecord();

Return	Value
The	current	LogRecord	object	in	the	enumeration.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	Input	Format	object
var	oIISW3CInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.IIS
W3CInputFormat");

//	Create	query	text
var	strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%
hitcount.asp'";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery,	oIISW3CInputFormat);

//	Visit	all	records
while(!oRecordSet.atEnd())
{
	 //	Get	a	record

VBScript	example:

Dim	oLogQuery
Dim	oIISW3CInputFormat
Dim	strQuery
Dim	oRecordSet
Dim	oRecord
Dim	strClientIp

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	Input	Format	object
Set	oIISW3CInputFormat	=	CreateObject("MSUtil.LogQuery.IISW3CInp
utFormat")

See	also:
LogRecordSet	Object
LogRecord	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

	 var	oRecord	=	oRecordSet.getRecord();

	 //	Get	first	field	value
	 var	strClientIp	=	oRecord.getValue(0);

	 //	Print	field	value
	 WScript.Echo("Client	IP	Address:	"	+	strClientIp);

	 //	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext();
}

//	Close	LogRecordSet
oRecordSet.close();

'	Create	query	text
strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%hitc
ount.asp'"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery,	oIISW3CInputFormat)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

	 '	Get	first	field	value
	 strClientIp	=	oRecord.getValue	(0)

	 '	Print	field	value
	 WScript.Echo	"Client	IP	Address:	"	&	strClientIp

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

LOOP

'	Close	RecordSet
oRecordSet.close

moveNext	Method
Advances	the	enumerator	to	the	next	LogRecord	in	the	enumeration.

Script	Syntax

objRecordSet.moveNext();

Return	Value
None.

Remarks
Depending	on	the	query	structure,	calling	the	moveNext	method	can
cause	the	query	to	further	process	new	input	records,	which	could	in
turn	generate	additional	errors,	parse	errors,	or	warnings.
If	the	moveNext	method	encounters	errors,	an	exception	is	thrown
containing	the	error	message	and	code,	and	further	processing	is
aborted.
In	this	case,	the	lastError	property	of	the	LogRecordSet	object	is	set	to
-1,	and	the	collection	of	strings	returned	by	the	errorMessages	property
contains	the	error	message.
If	the	moveNext	method	encounters	parse	errors	or	warnings,	the
enumerator	is	advanced	successfully,	and	the	lastError	property	of	the
LogRecordSet	object	is	set	to	-1.	In	this	case,	the	collection	of	strings
returned	by	the	errorMessages	property	contains	the	parse	error
messages	and/or	warning	messages.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	Input	Format	object
var	oIISW3CInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.IIS
W3CInputFormat");

//	Create	query	text
var	strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%
hitcount.asp'";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery,	oIISW3CInputFormat);

//	Visit	all	records
while(!oRecordSet.atEnd())
{
	 //	Get	a	record
	 var	oRecord	=	oRecordSet.getRecord();

	 //	Get	first	field	value
	 var	strClientIp	=	oRecord.getValue(0);

	 //	Print	field	value
	 WScript.Echo("Client	IP	Address:	"	+	strClientIp);

	 //	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext();
}

//	Close	LogRecordSet
oRecordSet.close();

VBScript	example:

Dim	oLogQuery
Dim	oIISW3CInputFormat
Dim	strQuery
Dim	oRecordSet
Dim	oRecord
Dim	strClientIp

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	Input	Format	object
Set	oIISW3CInputFormat	=	CreateObject("MSUtil.LogQuery.IISW3CInp
utFormat")

'	Create	query	text
strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%hitc
ount.asp'"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery,	oIISW3CInputFormat)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

	 '	Get	first	field	value
	 strClientIp	=	oRecord.getValue	(0)

	 '	Print	field	value
	 WScript.Echo	"Client	IP	Address:	"	&	strClientIp

	 '	Advance	LogRecordSet	to	next	record

See	also:
LogRecordSet	Object
LogRecord	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

	 oRecordSet.moveNext

LOOP

'	Close	RecordSet
oRecordSet.close

errorMessages	Property
Returns	a	collection	of	strings	containing	the	messages	of	errors,	parse
errors,	or	warnings	that	occurred	during	the	last	invocation	of	the
moveNext	method.

Read-only	property.

Script	Syntax

value	=	objLogRecordSet.errorMessages;

Return	Value
A	collection	of	Strings	containing	error	messages.

Remarks
The	object	returned	by	the	errorMessages	property	implements	a
single	read-only	_NewEnum	property.	The	_NewEnum	property
retrieves	an	IEnumVARIANT	interface	on	an	object	that	can	be	used
to	enumerate	the	collection.
The	_NewEnum	property	is	hidden	within	scripting	languages	(JScript
and	VBScript).	Applications	written	in	the	JScript	language	handle
objects	implementing	the	_NewEnum	property	as	Enumerator	objects
or	with	the	for...in	statement,	while	applications	written	in	the	VBScript
language	handle	objects	implementing	the	_NewEnum	property	with
the	For	Each...Next	statement.
If	you	want	to	retrieve	parse	error	messages,	make	sure	that	the
maxParseErrors	property	of	the	LogQuery	object	is	set	to	a	value
different	than	-1.	If	the	value	of	this	property	is	-1	(the	default	value),
the	parse	error	messages	will	be	discarded,	and	the	errorMessages
collection	will	contain	a	single	message	stating	the	total	number	of
parse	errors	occurred.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Make	sure	that	parse	error	messages	are	collected
oLogQuery.maxParseErrors	=	100;

//	Create	Input	Format	object
var	oIISW3CInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.IIS
W3CInputFormat");

//	Create	query	text
var	strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%
hitcount.asp'";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery,	oIISW3CInputFormat);

//	Check	if	errors	occurred
if(oLogQuery.lastError	!=	0)
{
								WScript.Echo("Errors	occurred!");

								var	oMessages	=	new	Enumerator(oLogQuery.errorMessages);
								for(;	!oMessages.atEnd();		oMessages.moveNext())
								{
												WScript.Echo("Error	message:	"	+	oMessages.item());
								}												
}

//	Visit	all	records
while(!oRecordSet.atEnd())
{

VBScript	example:

Dim	oLogQuery
Dim	oIISW3CInputFormat
Dim	strQuery
Dim	oRecordSet
Dim	oRecord
Dim	strClientIp

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Make	sure	that	parse	error	messages	are	collected
oLogQuery.maxParseErrors	=	100

'	Create	Input	Format	object
Set	oIISW3CInputFormat	=	CreateObject("MSUtil.LogQuery.IISW3CInp
utFormat")

'	Create	query	text
strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%hitc
ount.asp'"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery,	oIISW3CInputFormat)

'	Check	if	errors	occurred
If	oLogQuery.lastError	<>	0	Then

				WScript.Echo	"Errors	occurred!"

See	also:
LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

	 //	Get	a	record
	 var	oRecord	=	oRecordSet.getRecord();

	 //	Get	first	field	value
	 var	strClientIp	=	oRecord.getValue(0);

	 //	Print	field	value
	 WScript.Echo("Client	IP	Address:	"	+	strClientIp);

	 //	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext();

								//	Check	if	errors	occurred
								if(oRecordSet.lastError	!=	0)
								{
												WScript.Echo("Errors	occurred!");

												var	oMessages	=	new	Enumerator(oRecordSet.errorMessages);
												for(;	!oMessages.atEnd();		oMessages.moveNext())
												{
																WScript.Echo("Error	message:	"	+	oMessages.item());
												}												
							}
}

//	Close	LogRecordSet
oRecordSet.close();

				For	Each	strMessage	In	oLogQuery.errorMessages
								WScript.Echo	"Error	Message:	"	+	strMessage
				Next

End	If

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

	 '	Get	first	field	value
	 strClientIp	=	oRecord.getValue	(0)

	 '	Print	field	value
	 WScript.Echo	"Client	IP	Address:	"	&	strClientIp

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

								'	Check	if	errors	occurred
								If	oRecordSet.lastError	<>	0	Then

												WScript.Echo	"Errors	occurred!"

												For	Each	strMessage	In	oRecordSet.errorMessages
																WScript.Echo	"Error	Message:	"	+	strMessage
												Next

								End	If
LOOP

'	Close	RecordSet
oRecordSet.close

inputUnitsProcessed	Property
Returns	the	total	number	of	input	records	processed	so	far	by	a	query
executed	with	the	Execute	method.

Read-only	property.

Script	Syntax

value	=	objLogRecordSet.inputUnitsProcessed;

Return	Value
An	integer	value	containing	the	total	number	of	input	records	processed
so	far	by	the	query	that	returned	the	LogRecordSet	object.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	*	FROM	System";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Visit	all	records
while(!oRecordSet.atEnd())
{
								//	Display	number	of	input	records	processed	so	far

VBScript	example:

Dim	oLogQuery
Dim	oRecordSet
Dim	strQuery

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	*	FROM	System"

See	also:
LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

								WScript.Echo("Input	Records	Processed:	"	+	oRecordSet.inputUnits
Processed);

	 //	Get	a	record
	 var	oRecord	=	oRecordSet.getRecord();

	 //	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext();
}

//	Display	total	number	of	input	records	processed
WScript.Echo("Total	Input	Records	Processed:	"	+	oRecordSet.inputUnit
sProcessed);

//	Close	LogRecordSet
oRecordSet.close();

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute(strQuery)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

								'	Display	number	of	input	records	processed	so	far
								WScript.Echo	"Input	Records	Processed:	"	&	oRecordSet.inputUnits
Processed

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

LOOP

'	Display	total	number	of	input	records	processed
WScript.Echo	"Total	Input	Records	Processed:	"	&	oRecordSet.inputUnit
sProcessed

'	Close	RecordSet
oRecordSet.close

©	2004	Microsoft	Corporation.	All	rights	reserved.

lastError	Property
Returns	-1	if	errors,	parse	errors,	or	warnings	occurred	during	the	last
invocation	of	the	moveNext	method;	0	otherwise.

Read-only	property.

Script	Syntax

value	=	objRecordSet.lastError;

Return	Value
An	integer	value	containing	-1	if	the	last	moveNext	method	invocation
encountered	errors,	parse	errors,	or	warnings;	0	otherwise.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Make	sure	that	parse	error	messages	are	collected
oLogQuery.maxParseErrors	=	100;

//	Create	Input	Format	object
var	oIISW3CInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.IIS
W3CInputFormat");

//	Create	query	text
var	strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%
hitcount.asp'";

//	Execute	query	and	receive	a	LogRecordSet

VBScript	example:

Dim	oLogQuery
Dim	oIISW3CInputFormat
Dim	strQuery
Dim	oRecordSet
Dim	oRecord
Dim	strClientIp

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

See	also:
LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

var	oRecordSet	=	oLogQuery.Execute(strQuery,	oIISW3CInputFormat);

//	Check	if	errors	occurred
if(oLogQuery.lastError	!=	0)
{
								WScript.Echo("Errors	occurred!");

								var	oMessages	=	new	Enumerator(oLogQuery.errorMessages);
								for(;	!oMessages.atEnd();		oMessages.moveNext())
								{
												WScript.Echo("Error	message:	"	+	oMessages.item());
								}												
}

//	Visit	all	records
while(!oRecordSet.atEnd())
{
	 //	Get	a	record
	 var	oRecord	=	oRecordSet.getRecord();

	 //	Get	first	field	value
	 var	strClientIp	=	oRecord.getValue(0);

	 //	Print	field	value
	 WScript.Echo("Client	IP	Address:	"	+	strClientIp);

	 //	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext();

								//	Check	if	errors	occurred
								if(oRecordSet.lastError	!=	0)
								{
												WScript.Echo("Errors	occurred!");

												var	oMessages	=	new	Enumerator(oRecordSet.errorMessages);
												for(;	!oMessages.atEnd();		oMessages.moveNext())
												{

'	Make	sure	that	parse	error	messages	are	collected
oLogQuery.maxParseErrors	=	100

'	Create	Input	Format	object
Set	oIISW3CInputFormat	=	CreateObject("MSUtil.LogQuery.IISW3CInp
utFormat")

'	Create	query	text
strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%hitc
ount.asp'"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery,	oIISW3CInputFormat)

'	Check	if	errors	occurred
If	oLogQuery.lastError	<>	0	Then

				WScript.Echo	"Errors	occurred!"

				For	Each	strMessage	In	oLogQuery.errorMessages
								WScript.Echo	"Error	Message:	"	+	strMessage
				Next

End	If

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

	 '	Get	first	field	value
	 strClientIp	=	oRecord.getValue	(0)

	 '	Print	field	value
	 WScript.Echo	"Client	IP	Address:	"	&	strClientIp

©	2004	Microsoft	Corporation.	All	rights	reserved.

																WScript.Echo("Error	message:	"	+	oMessages.item());
												}												
							}
}

//	Close	LogRecordSet
oRecordSet.close();

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

								'	Check	if	errors	occurred
								If	oRecordSet.lastError	<>	0	Then

												WScript.Echo	"Errors	occurred!"

												For	Each	strMessage	In	oRecordSet.errorMessages
																WScript.Echo	"Error	Message:	"	+	strMessage
												Next

								End	If
LOOP

'	Close	RecordSet
oRecordSet.close

INTEGER_TYPE	Property
The	constant	value	returned	by	the	getColumnType	method	to	indicate
that	an	output	record	field	contains	values	of	the	INTEGER	data	type.

Read-only	property.

Script	Syntax

value	=	objRecordSet.INTEGER_TYPE;

Return	Value
An	integer	value	containing	the	constant	that	represents	the	INTEGER
data	type.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	*	FROM	System";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Display	field	names	and	types
for(var	f=0;	f<oRecordSet.getColumnCount();	f++)
{
				//	Field	Name
				WScript.Echo("Field	Name:	"	+	oRecordSet.getColumnName(f));

VBScript	example:

Dim	oLogQuery
Dim	oRecordSet
Dim	f

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	*	FROM	System"

See	also:
NULL_TYPE	Property
REAL_TYPE	Property
STRING_TYPE	Property
TIMESTAMP_TYPE	Property

				//	Field	type
				switch(oRecordSet.getColumnType(f))
				{
								case	oRecordSet.INTEGER_TYPE:							{
																																																WScript.Echo("Field	Type:	INTEGER");
																																																break;
																																												}

								case	oRecordSet.REAL_TYPE:										{
																																																WScript.Echo("Field	Type:	REAL");
																																																break;
																																												}

								case	oRecordSet.STRING_TYPE:								{
																																																WScript.Echo("Field	Type:	STRING");
																																																break;
																																												}

								case	oRecordSet.TIMESTAMP_TYPE:					{
																																																WScript.Echo("Field	Type:	TIMESTAMP"
);
																																																break;
																																												}

								case	oRecordSet.NULL_TYPE:										{
																																																WScript.Echo("Field	Type:	NULL");
																																																break;
																																												}
				}
				
}

//	Close	LogRecordSet
oRecordSet.close();

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery)

'	Display	field	names	and	types
For	f	=	0	To	oRecordSet.getColumnCount()-1

				'	Field	Name
				WScript.Echo	"Field	Name:	"	&	oRecordSet.getColumnName(f)

				'	Field	type
				Select	Case	oRecordSet.getColumnType(f)
				
								Case	oRecordSet.INTEGER_TYPE								WScript.Echo	"Field	Type:	
INTEGER"	
								Case	oRecordSet.REAL_TYPE											WScript.Echo	"Field	Type:	R
EAL"
								Case	oRecordSet.STRING_TYPE									WScript.Echo	"Field	Type:	S
TRING"
								Case	oRecordSet.TIMESTAMP_TYPE						WScript.Echo	"Field	Typ
e:	TIMESTAMP"
								Case	oRecordSet.NULL_TYPE											WScript.Echo	"Field	Type:	N
ULL"

				End	Select
				
Next

'	Close	LogRecordSet
oRecordSet.close()

LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

NULL_TYPE	Property
The	constant	value	returned	by	the	getColumnType	method	to	indicate
that	an	output	record	field	contains	values	of	the	NULL	data	type.

Read-only	property.

Script	Syntax

value	=	objRecordSet.NULL_TYPE;

Return	Value
An	integer	value	containing	the	constant	that	represents	the	NULL	data
type.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	*	FROM	System";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Display	field	names	and	types
for(var	f=0;	f<oRecordSet.getColumnCount();	f++)
{
				//	Field	Name
				WScript.Echo("Field	Name:	"	+	oRecordSet.getColumnName(f));

VBScript	example:

Dim	oLogQuery
Dim	oRecordSet
Dim	f

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	*	FROM	System"

See	also:
INTEGER_TYPE	Property
REAL_TYPE	Property
STRING_TYPE	Property
TIMESTAMP_TYPE	Property

				//	Field	type
				switch(oRecordSet.getColumnType(f))
				{
								case	oRecordSet.INTEGER_TYPE:							{
																																																WScript.Echo("Field	Type:	INTEGER");
																																																break;
																																												}

								case	oRecordSet.REAL_TYPE:										{
																																																WScript.Echo("Field	Type:	REAL");
																																																break;
																																												}

								case	oRecordSet.STRING_TYPE:								{
																																																WScript.Echo("Field	Type:	STRING");
																																																break;
																																												}

								case	oRecordSet.TIMESTAMP_TYPE:					{
																																																WScript.Echo("Field	Type:	TIMESTAMP"
);
																																																break;
																																												}

								case	oRecordSet.NULL_TYPE:										{
																																																WScript.Echo("Field	Type:	NULL");
																																																break;
																																												}
				}
				
}

//	Close	LogRecordSet
oRecordSet.close();

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery)

'	Display	field	names	and	types
For	f	=	0	To	oRecordSet.getColumnCount()-1

				'	Field	Name
				WScript.Echo	"Field	Name:	"	&	oRecordSet.getColumnName(f)

				'	Field	type
				Select	Case	oRecordSet.getColumnType(f)
				
								Case	oRecordSet.INTEGER_TYPE								WScript.Echo	"Field	Type:	
INTEGER"	
								Case	oRecordSet.REAL_TYPE											WScript.Echo	"Field	Type:	R
EAL"
								Case	oRecordSet.STRING_TYPE									WScript.Echo	"Field	Type:	S
TRING"
								Case	oRecordSet.TIMESTAMP_TYPE						WScript.Echo	"Field	Typ
e:	TIMESTAMP"
								Case	oRecordSet.NULL_TYPE											WScript.Echo	"Field	Type:	N
ULL"

				End	Select
				
Next

'	Close	LogRecordSet
oRecordSet.close()

LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

REAL_TYPE	Property
The	constant	value	returned	by	the	getColumnType	method	to	indicate
that	an	output	record	field	contains	values	of	the	REAL	data	type.

Read-only	property.

Script	Syntax

value	=	objRecordSet.REAL_TYPE;

Return	Value
An	integer	value	containing	the	constant	that	represents	the	REAL	data
type.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	*	FROM	System";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Display	field	names	and	types
for(var	f=0;	f<oRecordSet.getColumnCount();	f++)
{
				//	Field	Name
				WScript.Echo("Field	Name:	"	+	oRecordSet.getColumnName(f));

VBScript	example:

Dim	oLogQuery
Dim	oRecordSet
Dim	f

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	*	FROM	System"

See	also:
INTEGER_TYPE	Property
NULL_TYPE	Property
STRING_TYPE	Property
TIMESTAMP_TYPE	Property

				//	Field	type
				switch(oRecordSet.getColumnType(f))
				{
								case	oRecordSet.INTEGER_TYPE:							{
																																																WScript.Echo("Field	Type:	INTEGER");
																																																break;
																																												}

								case	oRecordSet.REAL_TYPE:										{
																																																WScript.Echo("Field	Type:	REAL");
																																																break;
																																												}

								case	oRecordSet.STRING_TYPE:								{
																																																WScript.Echo("Field	Type:	STRING");
																																																break;
																																												}

								case	oRecordSet.TIMESTAMP_TYPE:					{
																																																WScript.Echo("Field	Type:	TIMESTAMP"
);
																																																break;
																																												}

								case	oRecordSet.NULL_TYPE:										{
																																																WScript.Echo("Field	Type:	NULL");
																																																break;
																																												}
				}
				
}

//	Close	LogRecordSet
oRecordSet.close();

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery)

'	Display	field	names	and	types
For	f	=	0	To	oRecordSet.getColumnCount()-1

				'	Field	Name
				WScript.Echo	"Field	Name:	"	&	oRecordSet.getColumnName(f)

				'	Field	type
				Select	Case	oRecordSet.getColumnType(f)
				
								Case	oRecordSet.INTEGER_TYPE								WScript.Echo	"Field	Type:	
INTEGER"	
								Case	oRecordSet.REAL_TYPE											WScript.Echo	"Field	Type:	R
EAL"
								Case	oRecordSet.STRING_TYPE									WScript.Echo	"Field	Type:	S
TRING"
								Case	oRecordSet.TIMESTAMP_TYPE						WScript.Echo	"Field	Typ
e:	TIMESTAMP"
								Case	oRecordSet.NULL_TYPE											WScript.Echo	"Field	Type:	N
ULL"

				End	Select
				
Next

'	Close	LogRecordSet
oRecordSet.close()

LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

STRING_TYPE	Property
The	constant	value	returned	by	the	getColumnType	method	to	indicate
that	an	output	record	field	contains	values	of	the	STRING	data	type.

Read-only	property.

Script	Syntax

value	=	objRecordSet.STRING_TYPE;

Return	Value
An	integer	value	containing	the	constant	that	represents	the	STRING
data	type.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	*	FROM	System";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Display	field	names	and	types
for(var	f=0;	f<oRecordSet.getColumnCount();	f++)
{
				//	Field	Name
				WScript.Echo("Field	Name:	"	+	oRecordSet.getColumnName(f));

VBScript	example:

Dim	oLogQuery
Dim	oRecordSet
Dim	f

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	*	FROM	System"

See	also:
INTEGER_TYPE	Property
NULL_TYPE	Property
REAL_TYPE	Property
TIMESTAMP_TYPE	Property

				//	Field	type
				switch(oRecordSet.getColumnType(f))
				{
								case	oRecordSet.INTEGER_TYPE:							{
																																																WScript.Echo("Field	Type:	INTEGER");
																																																break;
																																												}

								case	oRecordSet.REAL_TYPE:										{
																																																WScript.Echo("Field	Type:	REAL");
																																																break;
																																												}

								case	oRecordSet.STRING_TYPE:								{
																																																WScript.Echo("Field	Type:	STRING");
																																																break;
																																												}

								case	oRecordSet.TIMESTAMP_TYPE:					{
																																																WScript.Echo("Field	Type:	TIMESTAMP"
);
																																																break;
																																												}

								case	oRecordSet.NULL_TYPE:										{
																																																WScript.Echo("Field	Type:	NULL");
																																																break;
																																												}
				}
				
}

//	Close	LogRecordSet
oRecordSet.close();

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery)

'	Display	field	names	and	types
For	f	=	0	To	oRecordSet.getColumnCount()-1

				'	Field	Name
				WScript.Echo	"Field	Name:	"	&	oRecordSet.getColumnName(f)

				'	Field	type
				Select	Case	oRecordSet.getColumnType(f)
				
								Case	oRecordSet.INTEGER_TYPE								WScript.Echo	"Field	Type:	
INTEGER"	
								Case	oRecordSet.REAL_TYPE											WScript.Echo	"Field	Type:	R
EAL"
								Case	oRecordSet.STRING_TYPE									WScript.Echo	"Field	Type:	S
TRING"
								Case	oRecordSet.TIMESTAMP_TYPE						WScript.Echo	"Field	Typ
e:	TIMESTAMP"
								Case	oRecordSet.NULL_TYPE											WScript.Echo	"Field	Type:	N
ULL"

				End	Select
				
Next

'	Close	LogRecordSet
oRecordSet.close()

LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

TIMESTAMP_TYPE	Property
The	constant	value	returned	by	the	getColumnType	method	to	indicate
that	an	output	record	field	contains	values	of	the	TIMESTAMP	data	type.

Read-only	property.

Script	Syntax

value	=	objRecordSet.TIMESTAMP_TYPE;

Return	Value
An	integer	value	containing	the	constant	that	represents	the	TIMESTAMP
data	type.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	*	FROM	System";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Display	field	names	and	types
for(var	f=0;	f<oRecordSet.getColumnCount();	f++)
{
				//	Field	Name
				WScript.Echo("Field	Name:	"	+	oRecordSet.getColumnName(f));

VBScript	example:

Dim	oLogQuery
Dim	oRecordSet
Dim	f

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	*	FROM	System"

See	also:
INTEGER_TYPE	Property
NULL_TYPE	Property
REAL_TYPE	Property
STRING_TYPE	Property

				//	Field	type
				switch(oRecordSet.getColumnType(f))
				{
								case	oRecordSet.INTEGER_TYPE:							{
																																																WScript.Echo("Field	Type:	INTEGER");
																																																break;
																																												}

								case	oRecordSet.REAL_TYPE:										{
																																																WScript.Echo("Field	Type:	REAL");
																																																break;
																																												}

								case	oRecordSet.STRING_TYPE:								{
																																																WScript.Echo("Field	Type:	STRING");
																																																break;
																																												}

								case	oRecordSet.TIMESTAMP_TYPE:					{
																																																WScript.Echo("Field	Type:	TIMESTAMP"
);
																																																break;
																																												}

								case	oRecordSet.NULL_TYPE:										{
																																																WScript.Echo("Field	Type:	NULL");
																																																break;
																																												}
				}
				
}

//	Close	LogRecordSet
oRecordSet.close();

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery)

'	Display	field	names	and	types
For	f	=	0	To	oRecordSet.getColumnCount()-1

				'	Field	Name
				WScript.Echo	"Field	Name:	"	&	oRecordSet.getColumnName(f)

				'	Field	type
				Select	Case	oRecordSet.getColumnType(f)
				
								Case	oRecordSet.INTEGER_TYPE								WScript.Echo	"Field	Type:	
INTEGER"	
								Case	oRecordSet.REAL_TYPE											WScript.Echo	"Field	Type:	R
EAL"
								Case	oRecordSet.STRING_TYPE									WScript.Echo	"Field	Type:	S
TRING"
								Case	oRecordSet.TIMESTAMP_TYPE						WScript.Echo	"Field	Typ
e:	TIMESTAMP"
								Case	oRecordSet.NULL_TYPE											WScript.Echo	"Field	Type:	N
ULL"

				End	Select
				
Next

'	Close	LogRecordSet
oRecordSet.close()

LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

LogRecord	Object
The	LogRecord	object	represents	a	single	query	output	record,	and	it
exposes	methods	that	can	be	used	to	retrieve	individual	field	values	from
the	output	record.
The	LogRecord	object	is	returned	by	the	getRecord	method	of	the
LogRecordSet	object.

The	interface	name	of	the	.NET	COM	wrapper	for	this	object	is
"Interop.MSUtil.ILogRecord".

Methods

getValue Returns	the	value	of	a	field	in	the	output
record.

getValueEx Returns	the	value	of	a	field	in	the	output
record.

isNull Returns	a	Boolean	value	indicating	if	an	output
record	field	is	NULL.

toNativeString Returns	a	field	or	the	whole	output	record	as	a
string	value.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	Input	Format	object
var	oIISW3CInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.IIS
W3CInputFormat");

//	Create	query	text
var	strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%
hitcount.asp'";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery,	oIISW3CInputFormat);

//	Visit	all	records
while(!oRecordSet.atEnd())
{
	 //	Get	a	record
	 var	oRecord	=	oRecordSet.getRecord();

	 //	Get	first	field	value
	 var	strClientIp	=	oRecord.getValue(0);

	 //	Print	field	value
	 WScript.Echo("Client	IP	Address:	"	+	strClientIp);

	 //	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext();
}

//	Close	LogRecordSet
oRecordSet.close();

VBScript	example:

Dim	oLogQuery
Dim	oIISW3CInputFormat
Dim	strQuery
Dim	oRecordSet
Dim	oRecord
Dim	strClientIp

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	Input	Format	object
Set	oIISW3CInputFormat	=	CreateObject("MSUtil.LogQuery.IISW3CInp
utFormat")

'	Create	query	text
strQuery	=	"SELECT	c-ip	FROM	<1>	WHERE	cs-uri-stem	LIKE	'%hitc
ount.asp'"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery,	oIISW3CInputFormat)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

	 '	Get	first	field	value
	 strClientIp	=	oRecord.getValue	(0)

	 '	Print	field	value
	 WScript.Echo	"Client	IP	Address:	"	&	strClientIp

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

See	also:
LogRecordSet	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

LOOP

'	Close	RecordSet
oRecordSet.close

getValue	Method
Returns	the	value	of	the	field	at	the	specified	position	in	the	record.

Script	Syntax

value	=	objRecord.getValue(index);

value	=	objRecord.getValue(fieldName);

Parameters

index
An	integer	containing	the	0-based	index	of	the	field	in	the	query
output	records.	The	index	must	be	less	than	the	number	of	fields
returned	by	the	getColumnCount	method	of	the	LogRecordSet
object.

fieldName
A	string	containing	the	name	of	the	field	in	the	query	output	records.

Return	Value
The	value	of	the	specified	field.
The	value	is	returned	as	a	VARIANT	(i.e.	a	scripting	variable)	whose	type
depends	on	the	data	type	of	the	field.	The	following	table	shows	the
VARIANT	type	returned	and	the	corresponding	scripting	types	for	each	of
the	Log	Parser	data	types:

Field	Type
VARIANT
Type JScript	Type

VBScript
Type

INTEGER VT_I4 number Long

REAL VT_R8 number Double

STRING VT_BSTR string String

TIMESTAMP VT_DATE date	(VB
date)

Date

NULL VT_NULL null	object Null

Remarks
Some	scripting	languages	might	not	handle	correctly	the	null	value
returned	by	the	getValue	method	when	the	field	at	the	specified
location	is	NULL.	In	these	cases,	call	the	isNull	method	before	the
getValue	method	to	test	the	field	for	NULL	values.
Although	the	Log	Parser	INTEGER	Data	Type	is	a	64-bit	value,	the
getValue	method	returns	INTEGER	values	as	32-bit	integers,	since
scripting	languages	do	not	handle	correctly	64-bit	integer	values.	This
means	that	truncation	might	occur	when	values	are	larger	than	the
maximum	32-bit	value.
In	these	cases,	if	a	low-level	programming	language	is	being	used	(e.g.
C++),	applications	can	call	the	getValueEx	method	to	retrieve
INTEGER	values	as	64-bit	values.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	TimeGenerated,	SourceName,	EventID,	Messag
e	FROM	System";

VBScript	example:

Dim	oLogQuery

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Visit	all	records
while(!oRecordSet.atEnd())
{
								//	Get	a	record
								var	oRecord	=	oRecordSet.getRecord();

								//	Display	record	information
								WScript.Echo("TimeGenerated:	"	+	oRecord.getValue("TimeGenera
ted"));
								WScript.Echo("SourceName			:	"	+	oRecord.getValue(1));	
								WScript.Echo("EventID						:	"	+	oRecord.getValue(2));	
								if(!oRecord.isNull(3))
								{
												WScript.Echo("Message						:	"	+	oRecord.getValue(3));	
								}
								else
								{
												WScript.Echo("Message						:	<null>");	
								}

								//	Advance	LogRecordSet	to	next	record
								oRecordSet.moveNext();
}

//	Close	LogRecordSet
oRecordSet.close();

Dim	oRecordSet
Dim	strQuery
Dim	f
Dim	val

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	TimeGenerated,	SourceName,	EventID,	Message	F
ROM	System"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute(strQuery)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

								'	Display	record	information
								WScript.Echo	"TimeGenerated:	"	&	oRecord.getValue("TimeGenera
ted")
								WScript.Echo	"SourceName			:	"	&	oRecord.getValue(1)
								WScript.Echo	"EventID						:	"	&	oRecord.getValue(2)
								If	oRecord.isNull(3)	=	False	Then	
												WScript.Echo	"Message						:	"	&	oRecord.getValue(3)
								Else
												WScript.Echo	"Message						:	<null>"
								End	If

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

LOOP

'	Close	RecordSet

See	also:
LogRecord	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

oRecordSet.close

getValueEx	Method
Returns	the	value	of	the	field	at	the	specified	position	in	the	record.
The	value	returned	by	the	getValueEx	method	is	intended	for	low-level
programming	languages	and	is	not	suitable	for	consumption	by	scripting
languages.

C++	Syntax

HRESULT	getValueEx(IN	VARIANT	*pindexOrName,	OUT	VARIANT	*pVa
l);

Parameters

pindexOrName
A	VT_I4	or	VT_BSTR	VARIANT	containing	either	the	0-based	index
of	the	field	in	the	query	output	records,	or	the	name	of	the	field	in	the
query	output	records.
The	index	must	be	less	than	the	number	of	fields	returned	by	the
getColumnCount	method	of	the	LogRecordSet	object.

Return	Value
The	value	of	the	specified	field.
The	value	is	returned	as	a	VARIANT	whose	type	depends	on	the	data
type	of	the	field.	The	following	table	shows	the	VARIANT	type	returned
for	each	of	the	Log	Parser	data	types:

Field	Type
VARIANT
Type Description

INTEGER VT_I8 64-bit	integer

REAL VT_R8 64-bit	floating-point	number

STRING VT_BSTR String

TIMESTAMP VT_I8 64-bit	integer	representing	the
number	of	100-nanosecond	intervals
since	January	1,	year	0

NULL VT_NULL VT_NULL	VARIANT

Remarks
The	getValueEx	method	returns	64-bit	integer	values	that	are	not
handled	correctly	by	scripting	languages,	For	this	reason,	the	method
is	intended	for	use	by	low-level,	non-scripting	languages,	such	as	C++.
If	you	are	developing	an	application	using	scripting	languages,
consider	using	the	getValue	method	instead.

See	also:
LogRecord	Object
getValue	Method
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

isNull	Method
Returns	a	Boolean	value	indicating	if	an	output	record	field	is	NULL.

Script	Syntax

value	=	objRecord.isNull(index);

value	=	objRecord.isNull(fieldName);

Parameters

index
An	integer	containing	the	0-based	index	of	the	field	in	the	query
output	records.	The	index	must	be	less	than	the	number	of	fields
returned	by	the	getColumnCount	method	of	the	LogRecordSet
object.

fieldName
A	string	containing	the	name	of	the	field	in	the	query	output	records.

Return	Value
A	Boolean	value	indicating	if	the	specified	output	record	field	is	NULL.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	textVBScript	example:

var	strQuery	=	"SELECT	TimeGenerated,	SourceName,	EventID,	Messag
e,	Data	FROM	System";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Visit	all	records
while(!oRecordSet.atEnd())
{
								//	Get	a	record
								var	oRecord	=	oRecordSet.getRecord();

								//	Display	record	information
								WScript.Echo("TimeGenerated:	"	+	oRecord.getValue("TimeGenera
ted"));
								WScript.Echo("SourceName			:	"	+	oRecord.getValue(1));	
								WScript.Echo("EventID						:	"	+	oRecord.getValue(2));	
								if(!oRecord.isNull(3))
								{
												WScript.Echo("Message						:	"	+	oRecord.getValue(3));	
								}
								else
								{
												WScript.Echo("Message						:	<null>");	
								}

								if(!oRecord.isNull("Data"))
								{
												WScript.Echo("Data									:	"	+	oRecord.getValue(4));	
								}
								else
								{
												WScript.Echo("Data									:	<null>");	
								}

								//	Advance	LogRecordSet	to	next	record
								oRecordSet.moveNext();

Dim	oLogQuery
Dim	oRecordSet
Dim	strQuery
Dim	f
Dim	val

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	TimeGenerated,	SourceName,	EventID,	Message,	
Data	FROM	System"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute(strQuery)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

								'	Display	record	information
								WScript.Echo	"TimeGenerated:	"	&	oRecord.getValue("TimeGenera
ted")
								WScript.Echo	"SourceName			:	"	&	oRecord.getValue(1)
								WScript.Echo	"EventID						:	"	&	oRecord.getValue(2)
								If	oRecord.isNull(3)	=	False	Then	
												WScript.Echo	"Message						:	"	&	oRecord.getValue(3)
								Else
												WScript.Echo	"Message						:	<null>"
								End	If

								If	oRecord.isNull("Data")	=	False	Then	
												WScript.Echo	"Data									:	"	&	oRecord.getValue(4)
								Else
												WScript.Echo	"Data									:	<null>"
								End	If

See	also:
LogRecord	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

}

//	Close	LogRecordSet
oRecordSet.close();

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

LOOP

'	Close	RecordSet
oRecordSet.close

toNativeString	Method
Returns	a	field	or	the	whole	output	record	as	a	string	value.

Script	Syntax

value	=	objRecord.toNativeString(index);

value	=	objRecord.toNativeString(separator);

Parameters

index
An	integer	containing	the	0-based	index	of	a	field	in	the	query	output
records.	The	index	must	be	less	than	the	number	of	fields	returned
by	the	getColumnCount	method	of	the	LogRecordSet	object.

separator
A	string	containing	the	separator	to	be	used	between	the	fields	of	the
record.

Return	Value
If	a	field	index	is	used	as	argument,	the	method	returns	the	specified	field
formatted	to	a	string	according	to	the	input	format	string	representation	of
the	data	type.	For	example,	if	the	input	format	used	parses	timestamps
formatted	as	'yyyy-MM-dd	hh:mm:ss',	then	the	method	formats
TIMESTAMP	values	using	the	same	format.
If	a	string	separator	is	used	as	argument,	the	method	returns	the
concatenation	of	all	the	record	fields	formatted	to	a	string,	separated	by
the	specified	separator.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	query	text
var	strQuery	=	"SELECT	TimeGenerated,	SourceName,	EventID,	Messag
e	FROM	System";

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery);

//	Visit	all	records
while(!oRecordSet.atEnd())
{
								//	Get	a	record
								var	oRecord	=	oRecordSet.getRecord();

								//	Display	record	information
								WScript.Echo("TimeGenerated:	"	+	oRecord.toNativeString(0));
								WScript.Echo("Whole	Record:		"	+	oRecord.toNativeString(",	"));	

								//	Advance	LogRecordSet	to	next	record
								oRecordSet.moveNext();
}

//	Close	LogRecordSet
oRecordSet.close();

VBScript	example:

Dim	oLogQuery
Dim	oRecordSet
Dim	strQuery
Dim	f
Dim	val

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	query	text
strQuery	=	"SELECT	TimeGenerated,	SourceName,	EventID,	Message	F
ROM	System"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute(strQuery)

'	Visit	all	records
DO	WHILE	NOT	oRecordSet.atEnd

	 '	Get	a	record
	 Set	oRecord	=	oRecordSet.getRecord

								'	Display	record	information
								WScript.Echo	"TimeGenerated:	"	&	oRecord.toNativeString(0)
								WScript.Echo	"Whole	Record:		"	&	oRecord.toNativeString(",	")

	 '	Advance	LogRecordSet	to	next	record
	 oRecordSet.moveNext

LOOP

See	also:
LogRecord	Object
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

'	Close	RecordSet
oRecordSet.close

Input	Format	Objects
Input	Format	objects	provide	programmatic	access	to	the	input	formats
supported	by	Log	Parser.

Input	Format	objects	are	instantiated	with	the	ProgId	and	the	.NET	COM
wrapper	class	names	specified	in	the	following	table:

Input
Format ProgId .NET	COM	Wrapper	Class	Name

ADS MSUtil.LogQuery.ADSInputFormat COMADSInputContextClassClass

BIN MSUtil.LogQuery.IISBINInputFormat COMIISBINInputContextClassClass

CSV MSUtil.LogQuery.CSVInputFormat COMCSVInputContextClassClass

ETW MSUtil.LogQuery.ETWInputFormat COMETWInputContextClassClass

EVT MSUtil.LogQuery.EventLogInputFormat COMEventLogInputContextClassClass

FS MSUtil.LogQuery.FileSystemInputFormat COMFileSystemInputContextClassClass

HTTPERR MSUtil.LogQuery.HttpErrorInputFormat COMHttpErrorInputContextClassClass

IIS MSUtil.LogQuery.IISIISInputFormat COMIISIISInputContextClassClass

IISODBC MSUtil.LogQuery.IISODBCInputFormat COMIISODBCInputContextClassClass

IISW3C MSUtil.LogQuery.IISW3CInputFormat COMIISW3CInputContextClassClass

NCSA MSUtil.LogQuery.IISNCSAInputFormat COMIISNCSAInputContextClassClass

NETMON MSUtil.LogQuery.NetMonInputFormat COMNetMonInputContextClassClass

REG MSUtil.LogQuery.RegistryInputFormat COMRegistryInputContextClassClass

TEXTLINE MSUtil.LogQuery.TextLineInputFormat COMTextLineInputContextClassClass

TEXTWORD MSUtil.LogQuery.TextWordInputFormat COMTextWordInputContextClassClass

TSV MSUtil.LogQuery.TSVInputFormat COMTSVInputContextClassClass

URLSCAN MSUtil.LogQuery.URLScanLogInputFormat COMURLScanLogInputContextClassClass

W3C MSUtil.LogQuery.W3CInputFormat COMW3CInputContextClassClass

XML MSUtil.LogQuery.XMLInputFormat COMXMLInputContextClassClass

After	instantiating	an	input	format	object,	an	application	can	set	the	input
format	parameters	and	use	the	object	as	an	argument	to	the	Execute	or
ExecuteBatch	methods	of	the	LogQuery	object.

Methods
The	Input	Format	objects	do	not	expose	methods.

Properties
The	Input	Format	objects	expose	read/write	properties	with	the	same
names	and	capitalization	as	the	parameters	accepted	by	the
corresponding	Log	Parser	input	format.
For	example,	the	MSUtil.LogQuery.EventLogInputFormat	input	format
object	exposes	a	"resolveSIDs"	property	that	controls	the	resolveSIDs
parameter	of	the	EVT	input	format.
The	value	type	accepted	and	returned	by	an	input	format	object	property
depends	on	the	nature	of	the	values	that	can	be	specified	for	the	input
format	parameter,	as	described	by	the	following	table:

Parameter	values

Property
value
type JScript	Example

"ON"/"OFF"	values Boolean oEVTInputFormat.resolveSIDs
=	true;

Enumeration	values	(e.g.
"ASC"/"PRINT"/"HEX")

String oEVTInputFormat.binaryFormat
=	"PRINT";

String	values String oEVTInputFormat.stringsSep	=
",	";

Numeric	values Number oIISW3CInputFormat.recurse	=
10;

For	more	information	on	Input	Format	Parameters,	see	the	Input	Formats
Reference.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	EVT	Input	Format	object
var	oEVTInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.EventL
ogInputFormat");

//	Set	input	format	parameters
oEVTInputFormat.resolveSIDs	=	true;
oEVTInputFormat.binaryFormat	=	"PRINT";
oEVTInputFormat.stringsSep	=	",	";
oEVTInputFormat.iCheckpoint	=	"MyCheckpoint.lpc";

//	Create	query	text
var	strQuery	=	"SELECT	*	FROM	System";

VBScript	example:

Dim	oLogQuery
Dim	oEVTInputFormat
Dim	strQuery
Dim	oRecordSet

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	EVT	Input	Format	object
Set	oEVTInputFormat	=	CreateObject("MSUtil.LogQuery.EventLogInput
Format")

See	also:
LogQuery	Object
Output	Format	Objects
Log	Parser	COM	API	Overview
C#	Example

//	Execute	query	and	receive	a	LogRecordSet
var	oRecordSet	=	oLogQuery.Execute(strQuery,	oEVTInputFormat);
'	Set	input	format	parameters
oEVTInputFormat.resolveSIDs	=	True
oEVTInputFormat.binaryFormat	=	"PRINT"
oEVTInputFormat.stringsSep	=	",	"
oEVTInputFormat.iCheckpoint	=	"MyCheckpoint.lpc"

'	Create	query	text
strQuery	=	"SELECT	*	FROM	System"

'	Execute	query	and	receive	a	LogRecordSet
Set	oRecordSet	=	oLogQuery.Execute	(strQuery,	oEVTInputFormat)

©	2004	Microsoft	Corporation.	All	rights	reserved.

Output	Format	Objects
Output	Format	objects	provide	programmatic	access	to	the	output
formats	supported	by	Log	Parser.

Output	Format	objects	are	instantiated	with	the	ProgId	and	the	.NET
COM	wrapper	class	names	specified	in	the	following	table:

Output
Format ProgId .NET	COM	Wrapper	Class	Name

CHART MSUtil.LogQuery.ChartOutputFormat COMChartOutputContextClassClass

CSV MSUtil.LogQuery.CSVOutputFormat COMCSVOutputContextClassClass

DATAGRID MSUtil.LogQuery.DataGridOutputFormat COMDataGridOutputContextClassClass

IIS MSUtil.LogQuery.IISOutputFormat COMIISOutputContextClassClass

NAT MSUtil.LogQuery.NativeOutputFormat COMNativeOutputContextClassClass

SQL MSUtil.LogQuery.SQLOutputFormat COMSQLOutputContextClassClass

SYSLOG MSUtil.LogQuery.SYSLOGOutputFormat COMSYSLOGOutputContextClassClass

TPL MSUtil.LogQuery.TemplateOutputFormat COMTemplateOutputContextClassClass

TSV MSUtil.LogQuery.TSVOutputFormat COMTSVOutputContextClassClass

W3C MSUtil.LogQuery.W3COutputFormat COMW3COutputContextClassClass

XML MSUtil.LogQuery.XMLOutputFormat COMXMLOutputContextClassClass

After	instantiating	an	output	format	object,	an	application	can	set	the
output	format	parameters	and	use	the	object	as	an	argument	to	the

ExecuteBatch	method	of	the	LogQuery	object.

Methods
The	Output	Format	objects	do	not	expose	methods.

Properties
The	Output	Format	objects	expose	read/write	properties	with	the	same
names	and	capitalization	as	the	parameters	accepted	by	the
corresponding	Log	Parser	output	format.
For	example,	the	MSUtil.LogQuery.CSVOutputFormat	output	format
object	exposes	a	"headers"	property	that	controls	the	headers	parameter
of	the	CSV	output	format.
The	value	type	accepted	and	returned	by	an	output	format	object
property	depends	on	the	nature	of	the	values	that	can	be	specified	for	the
output	format	parameter,	as	described	by	the	following	table:

Parameter	values

Property
value
type JScript	Example

"ON"/"OFF"	values Boolean oCSVOutputFormat.tabs	=	true;

Enumeration	values	(e.g.
"ON"/"OFF"/"AUTO")

String oCSVOutputFormat.oDQuotes
=	"OFF";

String	values String oCSVOutputFormat.oTsFormat
=	"yyyy-MM-dd";

Numeric	values Number oCSVOutputFormat.oCodepage
=	-1;

For	more	information	on	Output	Format	Parameters,	see	the	Output
Formats	Reference.

Examples

JScript	example:

var	oLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	EVT	Input	Format	object
var	oEVTInputFormat	=	new	ActiveXObject("MSUtil.LogQuery.EventL
ogInputFormat");

//	Create	CSV	Output	Format	object
var	oCSVOutputFormat	=	new	ActiveXObject("MSUtil.LogQuery.CSVO
utputFormat");

//	Set	output	format	parameters
oCSVOutputFormat.tabs	=	true;
oCSVOutputFormat.oDQuotes	=	"OFF";
oCSVOutputFormat.oTsFormat	=	"yyyy-MM-dd";
oCSVOutputFormat.oCodepage	=	-1;

//	Create	query	text
var	strQuery	=	"SELECT	TimeGenerated,	Message	INTO	Output.csv	FR
OM	System";

//	Execute	query
oLogQuery.ExecuteBatch(strQuery,	oEVTInputFormat,	oCSVOutputFor
mat);

VBScript	example:

Dim	oLogQuery
Dim	oEVTInputFormat
Dim	oCSVOutputFormat
Dim	strQuery
Dim	oRecordSet

Set	oLogQuery	=	CreateObject("MSUtil.LogQuery")

'	Create	EVT	Input	Format	object
Set	oEVTInputFormat	=	CreateObject("MSUtil.LogQuery.EventLogInput
Format")

'	Create	CSV	Output	Format	object
Set	oCSVOutputFormat	=	CreateObject("MSUtil.LogQuery.CSVOutputF
ormat")

'	Set	output	format	parameters
oCSVOutputFormat.tabs	=	True
oCSVOutputFormat.oDQuotes	=	"OFF"
oCSVOutputFormat.oTsFormat	=	"yyyy-MM-dd"
oCSVOutputFormat.oCodepage	=	-1

'	Create	query	text
strQuery	=	"SELECT	TimeGenerated,	Message	INTO	Output.csv	FROM	
System"

'	Execute	query

See	also:
LogQuery	Object
Input	Format	Objects
Log	Parser	COM	API	Overview
C#	Example

©	2004	Microsoft	Corporation.	All	rights	reserved.

oLogQuery.ExecuteBatch	strQuery,	oEVTInputFormat,	oCSVOutputFor
mat

COM	Input	Format	Plugins
COM	Input	Format	Plugins	are	user-developed	input	formats	that	can	be
used	with	Log	Parser	to	provide	custom	parsing	capabilities.

Custom	input	formats	are	developed	as	COM	objects	implementing	the
methods	of	the	ILogParserInputContext	COM	interface.

Once	developed	and	registered	with	the	COM	infrastructure,	custom
input	formats	can	be	used	with	either	the	Log	Parser	scriptable	COM
components	through	the	Execute	and	ExecuteBatch	methods	of	the
LogQuery	object,	or	with	the	Log	Parser	command-line	executable
through	the	COM	input	format.

ILogParserInputContext	Interface:	describes	the	methods	that	must	be
implemented	by	custom	input	format	COM	objects.
Run	Time	Interaction:	describes	how	Log	Parser	interacts	with	custom
input	format	COM	objects	at	run	time.

See	also:
Custom	Plugins
COM	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

ILogParserInputContext	Interface
Custom	input	formats	are	developed	as	COM	objects	implementing	the
methods	of	the	ILogParserInputContext	COM	interface.
A	custom	input	format	implements	the	methods	of	this	interface	by
implementing	the	ILogParserInputContext	interface	directly,	or	by
implementing	the	IDispatch	(Automation)	interface	exposing	the	methods
of	the	ILogParserInputContext	interface.

Interface

//
//	Interface	GUID
//

/*	27E78867-48AB-433c-9AFD-9D78D8B1CFC7	*/
DEFINE_GUID(IID_ILogParserInputContext,													
				0x27E78867,0x48AB,0x433C,0x9A,	0xFD,	0x9D,	0x78,	0xD8,	0xB1,	0xCF
,	0xC7);

//
//	LogParserInputContext	Interface	implemented	by	Log	Parser	Input	plugins	and	called	by	Log	Parser.

//

class	ILogParserInputContext		:	public	IUnknown
{
				public:

				enum	FieldType
				{
								Integer					=1,
								Real								=2,
								String						=3,

Methods

OpenInput Processes	the	specified	from-entity	and
performs	any	necessary	initialization.

GetFieldCount Returns	the	number	of	input	record	fields.

GetFieldName Returns	the	name	of	an	input	record	field.

GetFieldType Returns	the	type	of	an	input	record	field.

ReadRecord Reads	the	next	input	record.

GetValue Returns	the	value	of	a	field	in	the	current	input
record.

CloseInput Releases	all	the	resources	and	performs	any
necessary	cleanup.

								Timestamp			=4,
								Null								=5
				};

				virtual	HRESULT	STDMETHODCALLTYPE
				OpenInput(IN	BSTR	bszFromEntity)	=0;

				virtual	HRESULT	STDMETHODCALLTYPE
				GetFieldCount(OUT	DWORD	*pnFields)	=	0;

				virtual	HRESULT	STDMETHODCALLTYPE
				GetFieldName(IN	DWORD	fIndex,
																		OUT	BSTR	*pbszFieldName)	=	0;

				virtual	HRESULT	STDMETHODCALLTYPE
				GetFieldType(IN	DWORD	fIndex,
																		OUT	DWORD	*pnFieldType)	=	0;

				virtual	HRESULT	STDMETHODCALLTYPE
				ReadRecord(OUT	VARIANT_BOOL	*pbDataAvailable)	=0;

				virtual	HRESULT	STDMETHODCALLTYPE
				GetValue(IN	DWORD	fIndex,
														OUT	VARIANT	*pvarValue)	=0;

				virtual	HRESULT	STDMETHODCALLTYPE
				CloseInput(IN	VARIANT_BOOL	bAbort)	=0;
};

Properties

Custom	Properties Custom	input	formats	developed	as
IDispatch	COM	objects	can	support	custom
properties	that	are	controlled	at	runtime	as
input	format	parameters.

See	also:
Run	Time	Interaction
Custom	Plugins

©	2004	Microsoft	Corporation.	All	rights	reserved.

CloseInput	Method
Releases	all	the	resources	and	performs	any	necessary	cleanup.

C++	Syntax

HRESULT	STDMETHODCALLTYPE	CloseInput(IN	VARIANT_BOOL	bAb
ort);
Script	Syntax

CloseInput(bAbort);

Parameters

bAbort
A	Boolean	value	set	to	TRUE	if	the	query	execution	has	been
aborted,	or	FALSE	if	the	query	execution	has	completed
successfully.

Return	Value
None.

Remarks
This	is	the	last	method	invoked	by	Log	Parser	before	releasing	the
custom	input	format	COM	object.

Examples

C++	example:

HRESULT	CProcessesInputContext::CloseInput(IN	VARIANT_BOOL	b
Abort)
{
				//	Close	the	snapshot	handle
				if(m_hSnapshot	!=	INVALID_HANDLE_VALUE)
				{
								CloseHandle(m_hSnapshot);
								m_hSnapshot	=	INVALID_HANDLE_VALUE;
				}

				return	S_OK;
}

VBScript	example:

Function	CloseInput(bAbort)

				m_objQFEArray	=	Array()

End	FunctionSee	also:
ILogParserInputContext	Interface
OpenInput	Method
Run	Time	Interaction
Custom	Plugins

©	2004	Microsoft	Corporation.	All	rights	reserved.

GetFieldCount	Method
Returns	the	number	of	fields	in	the	input	records.

C++	Syntax

HRESULT	STDMETHODCALLTYPE	GetFieldCount(OUT	DWORD	*pnFiel
ds);
Script	Syntax

nFields	=	GetFieldCount();

Return	Value
An	integer	value	containing	the	number	of	fields	in	the	input	records.

Examples

C++	example:

HRESULT	CProcessesInputContext::GetFieldCount(OUT	DWORD	*pn
Fields)
{
	 //	This	Input	Context	exports	4	fields

	 *pnFields	=	4;

	 return	S_OK;
}

VBScript	example:

Function	GetFieldCount()

	 '	This	Input	Format	returns	4	or	6	fields
	 If	m_bExtendedFields	=	True	Then
	 	 GetFieldCount	=	6
	 Else
	 	 GetFieldCount	=	4
	 End	If

See	also:
ILogParserInputContext	Interface
Run	Time	Interaction
Custom	Plugins

End	Function
©	2004	Microsoft	Corporation.	All	rights	reserved.

GetFieldName	Method
Returns	the	name	of	an	input	record	field.

C++	Syntax

HRESULT	STDMETHODCALLTYPE	GetFieldName(IN	DWORD	fIndex,	O
UT	BSTR	*pbszFieldName);
Script	Syntax

fieldName	=	GetFieldName(fIndex);

Parameters

fIndex
The	0-based	index	of	the	input	record	field.	The	index	value	is
guaranteed	to	be	smaller	than	the	number	of	fields	returned	by	the
GetFieldCount	method.

Return	Value
A	string	value	containing	the	name	of	the	input	record	field	at	the
specified	position.

Examples

C++	example:

HRESULT	CProcessesInputContext::GetFieldName(IN	DWORD	fIndex,	
OUT	BSTR	*pbszFieldName)
{VBScript	example:

				switch(fIndex)
				{
								case	0:				{
																								*pbszFieldName	=	SysAllocString(L"ImageName");
																								break;
																			}

								case	1:				{
																								*pbszFieldName	=	SysAllocString(L"PID");
																								break;
																			}

								case	2:				{
																								*pbszFieldName	=	SysAllocString(L"ParentPID");
																								break;
																			}

								case	3:				{
																								*pbszFieldName	=	SysAllocString(L"Threads");
																								break;
																			}
				}

				return	S_OK;
}

Function	GetFieldName(nFieldIndex)

	 Select	Case	nFieldIndex
	 	 Case	0	
	 	 	 GetFieldName	=	"QFE"
	 	 Case	1
	 	 	 GetFieldName	=	"Description"
	 	 Case	2
	 	 	 GetFieldName	=	"InstallDate"
	 	 Case	3
	 	 	 GetFieldName	=	"InstalledBy"
	 	 Case	4
	 	 	 GetFieldName	=	"Comments"
	 	 Case	5
	 	 	 GetFieldName	=	"SP"
	 End	Select

End	Function

See	also:
ILogParserInputContext	Interface
GetFieldType	Method
Run	Time	Interaction
Custom	Plugins

©	2004	Microsoft	Corporation.	All	rights	reserved.

GetFieldType	Method
Returns	the	type	of	an	input	record	field.

C++	Syntax

HRESULT	STDMETHODCALLTYPE	GetFieldType(IN	DWORD	fIndex,	OU
T	DWORD	*pnFieldType);
Script	Syntax

fieldType	=	GetFieldType(fIndex);

Parameters

fIndex
The	0-based	index	of	the	input	record	field.	The	index	value	is
guaranteed	to	be	smaller	than	the	number	of	fields	returned	by	the
GetFieldCount	method.

Return	Value
An	integer	value	from	the	FieldType	enumeration	containing	the	Log
Parser	data	type	of	the	input	record	field	at	the	specified	position.

Examples

C++	example:

HRESULT	CProcessesInputContext::GetFieldType(IN	DWORD	fIndex,	
OUT	DWORD	*pnFieldType)
{VBScript	example:

				switch(fIndex)
				{
								case	0:				{
																								//	ImageName
																								*pnFieldType	=	ILogParserInputContext::String;
																								break;
																			}

								case	1:				{
																								//	PID
																								*pnFieldType	=	ILogParserInputContext::Integer;
																								break;
																			}

								case	2:				{
																								//	ParentPID
																								*pnFieldType	=	ILogParserInputContext::Integer;
																								break;
																			}

								case	3:				{
																								//	Threads
																								*pnFieldType	=	ILogParserInputContext::Integer;
																								break;
																			}
				}

				return	S_OK;
}

Function	GetFieldType(nFieldIndex)

	 Select	Case	nFieldIndex
	 	 Case	0	
	 	 	 '	String
	 	 	 GetFieldType	=	3
	 	 Case	1
	 	 	 '	String
	 	 	 GetFieldType	=	3
	 	 Case	2
	 	 	 '	Timestamp
	 	 	 GetFieldType	=	4
	 	 Case	3
	 	 	 '	String
	 	 	 GetFieldType	=	3
	 	 Case	4
	 	 	 '	String
	 	 	 GetFieldType	=	3
	 	 Case	5
	 	 	 '	String
	 	 	 GetFieldType	=	3

	 End	Select

End	Function

See	also:
ILogParserInputContext	Interface
GetFieldName	Method
Run	Time	Interaction
Custom	Plugins

©	2004	Microsoft	Corporation.	All	rights	reserved.

GetValue	Method
Returns	the	value	of	an	input	record	field.

C++	Syntax

HRESULT	STDMETHODCALLTYPE	GetValue(IN	DWORD	fIndex,	OUT	V
ARIANT	*pvarValue);
Script	Syntax

value	=	GetValue(fIndex);

Parameters

fIndex
The	0-based	index	of	the	input	record	field.	The	index	value	is
guaranteed	to	be	smaller	than	the	number	of	fields	returned	by	the
GetFieldCount	method.

Return	Value
A	VARIANT	containing	the	value	of	the	specified	field.
The	VARIANT	type	must	match	the	Log	Parser	data	type	declared	by	the
GetFieldType	method,	as	shown	in	the	following	table:

Declared
Field	Type C++	VARIANT	Type

VBScript
Type

INTEGER VT_I8	(also	compatible:	VT_I4) Long
(VT_I4)

REAL VT_R8 Double

(VT_R8)

STRING VT_BSTR String
(VT_BSTR)

TIMESTAMP VT_DATE	(also	compatible:
VT_I8,	VT_I4	containing	the
number	of	100-nanosecond
intervals	since	January	1,	year	0)

Date
(VT_DATE)

NULL VT_NULL	(also	compatible:
VT_EMPTY)

Null
(VT_NULL)

Remarks
Any	value	can	be	returned	as	a	VT_NULL	or	VT_EMPTY	VARIANT	(a
Null	VBScript	variable)	to	indicate	a	NULL	value,	regardless	of	the	field
type	declared	by	the	GetFieldType	method.
Due	to	query	execution	optimizations,	there	is	no	guarantee	that	the
GetValue	method	will	be	called	for	all	the	fields	of	an	input	record.	In
fact,	the	GetValue	method	will	only	be	called	for	those	fields	that	are
referred	to	by	the	currently	executing	query.
For	example,	if	a	query	refers	to	two	fields	only	out	of	an	input	record
made	up	of	ten	fields,	then	the	GetValue	method	will	be	called	for
those	two	fields	only.
If	a	query	does	not	refer	to	any	input	record	field	(e.g.	"SELECT
COUNT(*)"),	then	the	GetValue	method	will	never	be	called.

Examples

C++	example:

HRESULT	CProcessesInputContext::GetValue(IN	DWORD	fIndex,	OUT
	VARIANT	*pvarValue)
{
				//	Initialize	return	value
				VariantInit(pvarValue);
				

				switch(fIndex)
				{
								case	0:	{
																				//	ImageName
																				V_VT(pvarValue)	=	VT_BSTR;
																				V_BSTR(pvarValue)	=	SysAllocString(m_processEntry32.
szExeFile);
																				break;
																}

								case	1:	{
																				//	PID
																				V_VT(pvarValue)	=	VT_I4;
																				V_I4(pvarValue)	=	m_processEntry32.th32ProcessID;
																				break;
																}

								case	2:	{
																				//	ParentPID
																				V_VT(pvarValue)	=	VT_I4;
																				V_I4(pvarValue)	=	m_processEntry32.th32ParentProcessID
;
																				break;
																}

								case	3:	{
																				//	Threads
																				V_VT(pvarValue)	=	VT_I4;
																				V_I4(pvarValue)	=	m_processEntry32.cntThreads;
																				break;

VBScript	example:

Function	GetValue(nFieldIndex)

				Select	Case	nFieldIndex

								Case	0	
												'	QFE
												GetValue	=	m_objQFEArray(m_nIndex).HotFixID
								Case	1
												'	Description
												GetValue	=	m_objQFEArray(m_nIndex).Description
								Case	2
												'	InstallDate
												GetValue	=	m_objQFEArray(m_nIndex).InstallDate
								Case	3
												'	InstalledBy
												GetValue	=	m_objQFEArray(m_nIndex).InstalledBy
								Case	4
												'	Comments
												GetValue	=	m_objQFEArray(m_nIndex).FixComments
								Case	5
												'	SP
												GetValue	=	m_objQFEArray(m_nIndex).ServicePackInEffect

				End	Select				

End	Function

See	also:
ILogParserInputContext	Interface
ReadRecord	Method
Run	Time	Interaction
Custom	Plugins

©	2004	Microsoft	Corporation.	All	rights	reserved.

																}
				}

				return	S_OK;
}

OpenInput	Method
Processes	the	specified	from-entity	and	performs	any	necessary
initialization.

C++	Syntax

HRESULT	STDMETHODCALLTYPE	OpenInput(IN	BSTR	bszFromEntity);

Script	Syntax

OpenInput(bszFromEntity);

Parameters

bszFromEntity
The	from-entity	specified	in	the	FROM	clause	of	the	currently
executing	query,	or	an	empty	string	if	Log	Parser	is	executed	in	Help
Mode	to	display	the	quick-reference	help	on	the	custom	input	format.

Return	Value
None.

Remarks
The	OpenInput	method	is	the	first	method	called	by	Log	Parser	after
the	custom	input	format	COM	object	has	been	instantiated.	An
implementation	of	this	method	would	usually	perform	any	necessary
object	initialization,	prepare	the	from-entity	for	input	record	retrieval
(e.g.	opening	an	input	file),	and	eventually	pre-process	the	input	to
gather	the	input	record	fields	meta-information	that	will	be	returned	by

the	GetFieldCount,	GetFieldName,	and	GetFieldType	methods.
Users	can	execute	the	Log	Parser	command-line	executable	in	Help
Mode	to	display	a	quick-reference	help	on	a	custom	input	format.	The
quick-reference	help	displays	the	input	record	field	names	and	types,
which	are	retrieved	through	calls	to	the	GetFieldCount,	GetFieldName,
and	GetFieldType	methods.
If	the	user-supplied	help	mode	command	does	not	include	a	from-
entity,	the	bszFromEntity	argument	wil	be	an	empty	string.	In	these
cases,	a	custom	input	format	COM	object	can	behave	in	two	ways:
If	the	input	record	fields	do	not	depend	on	the	from-entity	specified	in
the	query	(i.e.	if	the	input	record	structure	is	fixed),	then	the	custom
input	format	COM	object	should	accept	the	empty	from-entity	without
returning	an	error,	allowing	Log	Parser	to	subsequently	call	the
GetFieldCount,	GetFieldName,	and	GetFieldType	methods	to
retrieve	the	input	record	structure;
If	the	input	record	fields	depend	on	the	from-entity	specified	in	the
query	(i.e.	if	the	input	record	structure	is	extracted	from	the	input
data),	then	the	custom	input	format	COM	object	should	reject	the
empty	from-entity	returning	an	error,	which	will	in	turn	cause	the	help
command	to	display	a	warning	message	to	the	user	in	place	of	the
input	record	structure.

Examples

C++	example:

HRESULT	CProcessesInputContext::OpenInput(IN	BSTR	bszFromEntit
y)
{
								//	Initialize	object
								...

								//	This	input	format	does	not	require	a	from-entity,	so
								//	we	will	just	ignore	the	argument	

VBScript	example:

Function	OpenInput(strComputerName)

	 Dim	objWMIService
	 Dim	objQFEs
	 Dim	nLengthSee	also:

	 return	S_OK;
}
	
	 '	Default	computer	name	is	local	machine
	 If	IsNull(strComputerName)	Or	Len(strComputerName)	=	0	Then
	 	 strComputerName	=	"."
	 End	If

	 '	Query	for	all	the	QFE's	on	the	specified	machine
	 Set	objWMIService	=	GetObject("winmgmts:"	&	"{impersonationL
evel=impersonate}!\\"	&	strComputerName	&	"\root\cimv2")
	 Set	objQFEs	=	objWMIService.ExecQuery	("Select	*	from	Win32_
QuickFixEngineering")

	 '	Store	in	array
	 m_objQFEArray	=	Array()
	 For	Each	objQFE	In	objQFEs
	 	 ReDim	Preserve	m_objQFEArray(UBound(m_objQFEArray)	
+	1)
	 	 Set	m_objQFEArray(UBound(m_objQFEArray))	=	objQFE
	 Next

	 m_nIndex	=	LBound(m_objQFEArray)

End	Function

ILogParserInputContext	Interface
CloseInput	Method
Run	Time	Interaction
Custom	Plugins

©	2004	Microsoft	Corporation.	All	rights	reserved.

ReadRecord	Method
Reads	the	next	input	record.

C++	Syntax

HRESULT	STDMETHODCALLTYPE	ReadRecord(OUT	VARIANT_BOOL	
*pbDataAvailable);
Script	Syntax

bDataAvailable	=	ReadRecord();

Return	Value
A	Boolean	value	set	to	TRUE	if	a	new	input	record	has	been	read	and	is
available	for	consumption,	or	FALSE	if	there	are	no	more	input	records	to
return.

Remarks
An	implementation	of	the	ReadRecord	method	would	usually	read	a
new	data	item	from	the	input	and	store	it	internally,	waiting	for	Log
Parser	to	subsequently	call	the	GetValue	method	multiple	times	to
retrieve	the	input	record	field	values.
The	Boolean	value	returned	by	the	ReadRecord	method	is	used	by
Log	Parser	to	determine	which	custom	input	format	methods	will	be
called	next.
If	the	method	returns	TRUE,	signaling	availability	of	an	input	record,
Log	Parser	will	call	the	GetValue	method	multiple	times	to	retrieve	the
input	record	field	values,	followed	by	a	new	call	to	the	ReadRecord
method	to	read	the	next	input	record.
If	the	method	returns	FALSE,	signaling	the	end	of	the	input	data,	Log
Parser	will	call	the	CloseInput	method	and	release	the	custom	input
format	COM	object.

Examples

C++	example:

HRESULT	CProcessesInputContext::ReadRecord(OUT	VARIANT_BOO
L	*pbDataAvailable)
{
				if(m_hSnapshot	==	INVALID_HANDLE_VALUE)
				{
								//	This	is	the	first	time	we	have	been	called

								//	Get	a	shapshot	of	the	current	processes
								m_hSnapshot	=	CreateToolhelp32Snapshot(TH32CS_SNAPPROC
ESS,	0);
								if(m_hSnapshot	==	INVALID_HANDLE_VALUE)
								{
												//	Error
												return	HRESULT_FROM_WIN32(GetLastError());
								}

								//	Get	the	first	entry
								if(!Process32First(m_hSnapshot,	&m;_processEntry32))
								{
												DWORD	dwLastError	=	GetLastError();
												if(dwLastError	==	ERROR_NO_MORE_FILES)
												{
																//	No	processes
																*pbDataAvailable	=	VARIANT_FALSE;
																return	S_OK;
												}
												else
												{
																//	Error
																return	HRESULT_FROM_WIN32(GetLastError());
												}

VBScript	example:

Function	ReadRecord()

				If	m_nIndex	>=	UBound(m_objQFEArray)	Then
								'	Enumeration	terminated
								ReadRecord	=	False
				Else
								'Advance
								m_nIndex	=	m_nIndex	+	1
								ReadRecord	=	True
				End	If

End	Function

See	also:
ILogParserInputContext	Interface
GetValue	Method
Run	Time	Interaction
Custom	Plugins

©	2004	Microsoft	Corporation.	All	rights	reserved.

								}
								else
								{
												//	There	is	data	available
												*pbDataAvailable	=	VARIANT_TRUE;
												return	S_OK;
								}
				}
				else
				{
								//	We	have	already	been	called	before,	and	we	have	already	taken	a	s
napshot

								//	Get	the	next	entry
								if(!Process32Next(m_hSnapshot,	&m;_processEntry32))
								{
												DWORD	dwLastError	=	GetLastError();
												if(dwLastError	==	ERROR_NO_MORE_FILES)
												{
																//	No	more	processes
																*pbDataAvailable	=	VARIANT_FALSE;
																return	S_OK;
												}
												else
												{
																//	Error
																return	HRESULT_FROM_WIN32(GetLastError());
												}
								}
								else
								{
												//	There	is	data	available
												*pbDataAvailable	=	VARIANT_TRUE;
												return	S_OK;
								}
				}
}

Custom	Properties
Provide	parameters	for	the	custom	input	format.

C++	Syntax

HRESULT	STDMETHODCALLTYPE	put_propertyName(IN	VARIANT	*val
ue);
Script	Syntax

put_propertyName(value);

Parameters

value
A	VT_BSTR	VARIANT	containing	the	string	parameter	value
specified	with	the	-iCOMParams	parameter	of	the	COM	input	format.

Return	Value
None.

Remarks
Custom	properties	can	only	be	exposed	by	custom	input	formats	that
implement	the	IDispatch	(Automation)	interface.	These	are	usually
custom	input	formats	developed	as	scriptlets	(.wsc	files)	written	in
JScript	or	VBScript.
Custom	properties	exposed	by	a	custom	input	format	can	be	set	in	two
different	ways:
With	the	Log	Parser	command-line	executable,	custom	properties
can	be	set	through	the	-iCOMParams	parameter	of	the	COM	input

format,	as	shown	in	the	following	example:

C:\>LogParser	"SELECT	*	FROM	file.txt"	-i:COM	-iProgID:MySample.CustomInputFormat
	-iCOMParams:property1=value1,property2=value2
With	the	Log	Parser	scriptable	COM	components,	custom	properties
can	be	set	directly	on	the	custom	input	format	object	before
specifying	the	object	as	an	argument	to	the	Execute	or
ExecuteBatch	methods	of	the	LogQuery	object,	as	shown	in	the
following	JScript	example:

var	objLogQuery	=	new	ActiveXObject("MSUtil.LogQuery");

//	Create	custom	input	format	object
var	objCustomInputFormat	=	new	ActiveXObject("MySample.CustomIn
putFormat");

//	Set	custom	input	format	parameters
objCustomInputFormat.property1	=	"value1";
objCustomInputFormat.property2	=	"value2";

//	Execute	query
var	objRecordSet	=	objLogQuery.Execute("SELECT	*	FROM	file.txt",	o
bjCustomInputFormat);

Examples

VBScript	example:

Function	put_extendedFields(strValue)

	 If	UCase(strValue)	=	"ON"	Then
	 	 m_bExtendedFields	=	True
	 Else
	 	 m_bExtendedFields	=	False
	 End	If

End	Function

See	also:
ILogParserInputContext	Interface
Run	Time	Interaction
Custom	Plugins
COM	Input	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

Run	Time	Interaction
Custom	input	format	COM	objects	are	used	by	Log	Parser	in	two	different
scenarios:	when	executing	a	query,	and	when	displaying	a	quick-
reference	help	on	the	custom	input	format	when	the	Log	Parser
command-line	executable	is	used	in	Help	Mode.

Query	Execution	Scenario
In	this	scenario,	a	custom	input	format	COM	object	is	used	to	retrieve
input	records	from	the	specified	from-entity.

To	make	an	example	of	the	sequence	of	the	method	calls	invoked	by	Log
Parser	on	the	custom	input	format	COM	object	in	this	scenario,	we	will
assume	that	the	custom	input	format	generates	input	records	containing
the	following	four	fields:

"FirstField",	STRING	type;
"SecondField",	INTEGER	type;
"ThirdField",	TIMESTAMP	type;
"FourthField",	STRING	type.

In	addition,	we	will	assume	that	the	query	being	executed	references	only
three	fields	out	of	the	four	fields	exported	by	the	custom	input	format,	as
in	the	following	example:

SELECT	FourthField,	ThirdField
FROM			InputFile.txt
WHERE		FirstField	LIKE	'%test%'
The	following	table	shows	the	sequence	of	method	calls	under	these
assumptions:

Method	call Returned	value
Returned	value
description

Object	is	instantiated 	 	

OpenInput("InputFile.txt") None 	

GetFieldCount() 4 	

GetFieldName(0) "FirstField" 	

GetFieldType(0) 3 FieldType.String

GetFieldName(1) "SecondField" 	

GetFieldType(1) 1 FieldType.Integer

GetFieldName(2) "ThirdField" 	

GetFieldType(2) 4 FieldType.Timestamp

GetFieldName(3) "FourthField" 	

GetFieldType(3) 3 FieldType.String

ReadRecord() TRUE an	input	record	is
available

GetValue(0) VT_BSTR
VARIANT

first	field	value

GetValue(2) VT_DATE
VARIANT

third	field	value

GetValue(3) VT_BSTR
VARIANT

fourth	field	value

ReadRecord() TRUE an	input	record	is
available

GetValue(0) VT_BSTR
VARIANT

first	field	value

GetValue(2) VT_DATE
VARIANT

third	field	value

GetValue(3) VT_BSTR
VARIANT

fourth	field	value

...

ReadRecord() TRUE an	input	record	is
available

GetValue(0) VT_BSTR
VARIANT

first	field	value

GetValue(2) VT_DATE
VARIANT

third	field	value

GetValue(3) VT_BSTR
VARIANT

fourth	field	value

ReadRecord() FALSE no	more	input	records
available

CloseInput(FALSE) None 	

Object	is	released 	 	

Help	Mode	Scenario
When	the	Log	Parser	command-line	executable	is	used	in	Help	Mode	to
display	a	quick-reference	help	on	the	custom	input	format,	the	custom
input	format	COM	object	is	only	used	to	retrieve	the	field	information	that
is	displayed	to	the	user.

The	user-supplied	help	mode	command	may	or	may	be	not	include	a
from-entity,	as	shown	in	the	following	examples:

C:\>LogParser	-h	-i:COM	-iProgID:MySample.CustomInputFormat	file.txt

C:\>LogParser	-h	-i:COM	-iProgID:MySample.CustomInputFormat

If	the	user-supplied	help	mode	command	does	not	include	a	from-entity,
then	the	bszFromEntity	argument	of	the	OpenInput	method	will	be	an
empty	string.	See	the	Remarks	section	of	the	OpenInput	Method
Reference	for	more	information	on	how	custom	input	format	COM	objects
should	behave	in	this	case.

To	make	an	example	of	the	sequence	of	the	method	calls	invoked	by	Log
Parser	on	the	custom	input	format	COM	object	in	this	scenario,	we	will
assume	that	the	custom	input	format	generates	input	records	containing
the	following	four	fields:

"FirstField",	STRING	type;
"SecondField",	INTEGER	type;
"ThirdField",	TIMESTAMP	type;
"FourthField",	STRING	type.

In	addition,	we	will	assume	that	the	help	command	does	not	include	a
from-entity.

The	following	table	shows	the	sequence	of	method	calls	under	these
assumptions:

Method	call Returned	value Returned	value	description

Object	is	instantiated 	 	

OpenInput("") None 	

GetFieldCount() 4 	

GetFieldName(0) "FirstField" 	

GetFieldType(0) 3 FieldType.String

GetFieldName(1) "SecondField" 	

GetFieldType(1) 1 FieldType.Integer

GetFieldName(2) "ThirdField" 	

GetFieldType(2) 4 FieldType.Timestamp

GetFieldName(3) "FourthField" 	

GetFieldType(3) 3 FieldType.String

CloseInput(FALSE) None 	

Object	is	released 	 	

See	also:
ILogParserInputContext	Interface
Custom	Plugins

©	2004	Microsoft	Corporation.	All	rights	reserved.

Legal	Information

Microsoft	Documentation
Information	in	this	document,	including	URL	and	other	Internet	Web	site
references,	is	subject	to	change	without	notice.	Unless	otherwise	noted,
the	example	companies,	organizations,	products,	domain	names,	e-mail
addresses,	logos,	people,	places	and	events	depicted	herein	are
fictitious,	and	no	association	with	any	real	company,	organization,
product,	domain	name,	e-mail	address,	logo,	person,	place	or	event	is
intended	or	should	be	inferred.	Complying	with	all	applicable	copyright
laws	is	the	responsibility	of	the	user.	Without	limiting	the	rights	under
copyright,	no	part	of	this	document	may	be	reproduced,	stored	in	or
introduced	into	a	retrieval	system,	or	transmitted	in	any	form	or	by	any
means	(electronic,	mechanical,	photocopying,	recording,	or	otherwise),	or
for	any	purpose,	without	the	express	written	permission	of	Microsoft
Corporation.

Microsoft	may	have	patents,	patent	applications,	trademarks,	copyrights,
or	other	intellectual	property	rights	covering	subject	matter	in	this
document.	Except	as	expressly	provided	in	any	written	license
agreement	from	Microsoft,	the	furnishing	of	this	document	does	not	give
you	any	license	to	these	patents,	trademarks,	copyrights,	or	other
intellectual	property.

©	2004	Microsoft	Corporation.	All	rights	reserved.

Active	Directory,	JScript,	Microsoft,	MSDN,	Visual	Basic,	Visual	Studio,
Windows,	Windows	Media,	and	Windows	Server	are	either	registered
trademarks	or	trademarks	of	Microsoft	Corporation	in	the	United	States
and/or	other	countries.

The	names	of	actual	companies	and	products	mentioned	herein	may	be
the	trademarks	of	their	respective	owners.

	Log Parser
	What's New in Log Parser 2.2
	Conceptual Overview
	Log Parser Architecture
	Records
	Commands and Queries
	Errors, Parse Errors, and Warnings

	Writing a Query
	Basics of a Query
	Filtering Input Records
	Sorting Output Records
	Aggregating Data Within Groups
	Calculating Percentages

	Filtering Groups

	Advanced Features
	Parsing Input Incrementally
	Multiplexing Output Records
	Converting File Formats
	Custom Plugins

	Log Parser COM API Overview
	C# Example

	Security Considerations
	Frequently Asked Questions

