
World	to	Screen	Transformation

Author		Ernie	Wright
Date		29	Mar	2001

This	page	tells	you	how	to	convert	from	LightWave's	world	(x,	y,	z)
coordinates	to	pixel	coordinates	in	the	rendered	image.	It	relates
parameters	available	from	the	LightWave	plug-in	API	to	components	of
the	synthetic	camera	model,	a	method	for	defining	the	position	of	a	virtual
camera	in	3D	space	and	determining	what	it	can	see.

Pixels	lie	on	the	view	plane	in	the
camera's	UVN	coordinate	system.	The
camera	itself	is	set	back	from	the	view
plane	by	an	amount	called	the	eye
distance	that	controls	the	perspective
foreshortening.

The	unit	vectors	u,	v	and	n	correspond
to	the	axes	of	the	UVN	system.	Position
vector	r	is	the	origin	of	UVN,	sometimes	called	the	view	reference	point,
or	VRP.	Given	these	vectors	and	the	eye	distance	e,	we	can	express	the
world	to	image	space	transformation	as	a	single	4	x	4	matrix	M,

M			=

ux vx nx -nx	/en
uy vy ny -ny	/en
uz vz nz -nz	/en
r'x r'y r'z 1	-	r'z	/en

The	upper	left	3	x	3	submatrix	rotates	the	world	into	the	UVN	orientation
and	contains	the	components	of	u,	v	and	n.	The	bottom	row	translates	the
origin	along	r',	derived	from	r	by

r'	=	(-	r	·	u,	-	r	·	v,	-	r	·	n)

The	rightmost	column	contains	the	perspective	foreshortening	terms.

To	transform	the	point	p,	multiply	its	homogeneous	position	vector	(px,	py,
pz,	1)	by	matrix	M.	The	result	is	the	transformed	point	in	viewing
coordinates.	For	pixel	coordinates,	you	need	to	divide	by	the	width	and
height	of	a	pixel.

Doing	It	from	a	Plug-in

In	your	activation	function,	get	the	globals	you'll	need.

			LWItemInfo	*lwi;

			LWCameraInfo	*lwc;

			LWSceneInfo	*lws;

			lwi	=	global(LWITEMINFO_GLOBAL,			GFUSE_TRANSIENT);

			lwc	=	global(LWCAMERAINFO_GLOBAL,	GFUSE_TRANSIENT);

			lws	=	global(LWSCENEINFO_GLOBAL,		GFUSE_TRANSIENT);

			if	(!lwi	||	!lwc	||	!lws)	return	AFUNC_BADGLOBAL;

When	you're	ready	to	do	the	transformation,	get	the	camera's	RIGHT,	UP,
FORWARD	and	W_POSITION	vectors,	and	the	camera	zoom	factor.	These
correspond	to	u,	v,	n,	r	(sort	of)	and	e.

			LWItemID	id;

			LWTime	lwtime;

			double	u[3],	v[3],	n[3],	r[3],	e;

			id	=	lws->renderCamera(lwtime);

			lwi->param(id,	LWIP_RIGHT,						lwtime,	u);

			lwi->param(id,	LWIP_UP,									lwtime,	v);

			lwi->param(id,	LWIP_FORWARD,				lwtime,	n);

			lwi->param(id,	LWIP_W_POSITION,	lwtime,	r);

			e	=	-lwc->zoomFactor(id,	lwtime);

Fill	in	the	transformation	matrix.

			typedef	double	MAT4[4][4];

			MAT4	t;

			t[0][0]	=	u[0];

			t[0][1]	=	v[0];

			t[0][2]	=	n[0];

			t[1][0]	=	u[1];

			t[1][1]	=	v[1];

			t[1][2]	=	n[1];

			t[2][0]	=	u[2];

			t[2][1]	=	v[2];

			t[2][2]	=	n[2];

			t[3][0]	=	-dot(r,	u);

			t[3][1]	=	-dot(r,	v);

			t[3][2]	=	-dot(r,	n)	+	e;

			t[0][3]	=	-n[0]	/	e;

			t[1][3]	=	-n[1]	/	e;

			t[2][3]	=	-n[2]	/	e;

			t[3][3]	=	1.0	-	t[3][2]	/	e;

Multiply	the	point	by	the	matrix.

			double	pt[3],	tpt[3],	w;

			w	=	transform(pt,	t,	tpt);

At	this	point,	you'll	probably	want	to	test	whether	the	transformed	point	is
actually	visible	in	the	image.	It	might	be	behind	the	camera,	or	in	front	of
it	but	outside	the	boundaries	of	the	viewport.	The	z	coordinate	returned	by
the	transformation,	however,	is	the	pseudodepth,	which	has	desireable
mathematical	properties	but	isn't	very	useful	for	visibility	testing	in
LightWave.

We	calculate	the	true	z	distance	(the	perpendicular	distance	from	the
camera	plane)	instead,	using	the	homogeneous	coordinate	w	returned	by
our	transform	function.	zdist	is	the	value	that	would	be	in	the	z-buffer	for	the
point.

			double	zdist,	frameAspect;

			zdist	=	w	*	tpt.z	-	e;

			if	(zdist	<=	0)	{

						//	the	point	is	behind	the	camera	...

			

			frameAspect	=	lws->pixelAspect	*	lws->frameWidth	/	lws->frameHeight;

			if	((fabs(tpt.y)	>	1)	||	(fabs(tpt.x)	>	frameAspect))	{

						//	the	point	is	outside	the	image	rectangle	...

Finally,	convert	from	meters	(on	the	projection	plane)	to	pixels.

			double	s,	x,	y;

			s	=	lws->frameHeight	*	0.5;

			y	=	s	-	tpt.y	*	s;

			x	=	lws->frameWidth	*	0.5	+	tpt.x	*	s	/	lws->pixelAspect;

The	transform	function	looks	like

			double	transform(double	pt[3],	MAT4	t,	double	tpt[3])

			{

						double	w;

						tpt[0]	=	pt[0]	*	t[0][0]

															+	pt[1]	*	t[1][0]

															+	pt[2]	*	t[2][0]	+	t[3][0];

						tpt[1]	=	pt[0]	*	t[0][1]

															+	pt[1]	*	t[1][1]

															+	pt[2]	*	t[2][1]	+	t[3][1];

						tpt[2]	=	pt[0]	*	t[0][2]

															+	pt[1]	*	t[1][2]

															+	pt[2]	*	t[2][2]	+	t[3][2];

						w								=	pt[0]	*	t[0][3]

															+	pt[1]	*	t[1][3]

															+	pt[2]	*	t[2][3]	+	t[3][3];

						if	(w	!=	0)	{

									tpt[0]	/=	w;

									tpt[1]	/=	w;

									tpt[2]	/=	w;

						}

						return	w;

			}

and	dot	is	just

			double	dot(double	a[3],	double	b[3])

			{

						return	(a[0]	*	b[0]	+	a[1]	*	b[1]	+	a[2]	*	b[2]);

			}

Let's	Make	a	Box

Author		Ernie	Wright
Date		29	May	2001

This	is	an	introductory	level	plug-in	tutorial.	We'll	be	discussing	a
Modeler	plug-in	that	makes	a	box.	The	emphasis	in	this	first	installment	is
on	the	basic	mechanics	of	writing	and	compiling	a	plug-in.	We	don't	want
to	get	bogged	down	in	the	specifics	of	creating	geometry,	so	we'll	make	a
simple	shape,	and	we'll	do	it	in	the	simplest	available	way,	using	the
MAKEBOX	command.	But	don't	worry,	we'll	get	to	some	of	the	cool	stuff	in
later	installments.

Our	First	Box	Plug-in

Here's	the	entire	source	file	for	our	first	plug-in.	This	is	included	in	the
SDK	samples	as	the	file	sample/boxes/box1/box.c.

			#include	<lwserver.h>

			#include	<lwcmdseq.h>

			#include	<stdio.h>

			XCALL_(int)

			Activate(long	version,	GlobalFunc	*global,	LWModCommand	*local,

						void	*serverData)

			{

						char	cmd[128];

						if	(version	!=	LWMODCOMMAND_VERSION)

									return	AFUNC_BADVERSION;

						sprintf(cmd,	"MAKEBOX	<%g	%g	%g>	<%g	%g	%g>	<%d	%d	%d>",

									-0.5,	-0.5,	-0.5,		0.5,	0.5,	0.5,		1,	1,	1);

						local->evaluate(local->data,	cmd);

						return	AFUNC_OK;

			}

			ServerRecord	ServerDesc[]	=	{

						{	LWMODCOMMAND_CLASS,	"Tutorial_Box1",	Activate	},

						{	NULL	}

			};

A	Closer	Look

Let's	break	this	down	and	examine	the	parts	in	detail.

			#include	<lwserver.h>

			#include	<lwcmdseq.h>

			#include	<stdio.h>

These	are	the	headers	required	by	the	plug-in.	The	first	two,	lwserver.h
and	lwcmdseq.h,	are	part	of	the	LightWave	SDK,	in	the	include	directory.
lwserver.h	contains	definitions	required	by	every	plug-in.	These	are
explained	on	the	Common	Elements	page	of	the	SDK,	but	I'll	repeat	some
of	that	information	less	formally	here.	The	second	SDK	header,
lwcmdseq.h,	contains	the	structure	definitions	and	function	prototypes
comprising	the	CommandSequence	plug-in	class.

Classes:	LightWave	plug-ins	are	divided	into	different	types,	called
classes.	Each	class	does	something	different,	or	plugs	into	LightWave
in	a	different	place.	The	three	Modeler	classes	are	called
CommandSequence	(the	kind	we're	looking	at	now),	MeshDataEdit
and	MeshEditTool.	The	CommandSequence	class	drives	Modeler	by
issuing	commands.

We	also	include	the	C	standard	header	stdio.h	to	get	the	function	prototype
for	sprintf,	which	we'll	use	to	build	the	command	string.

The	order	in	which	these	are	listed,	meaning	whether	the	C	headers	or	the
LightWave	SDK	headers	come	first,	usually	doesn't	matter.	I	put	the	SDK
headers	inside	angle	brackets	(<	and	>),	which	tells	the	compiler	to	look	for
them	in	the	"usual	place."	Most	compilers	allow	you	to	add	directories	to
the	search	path	for	this	usual	place,	and	I	use	this	to	add	the	path	to	the
SDK's	include	directory.

			XCALL_(int)

			Activate(long	version,	GlobalFunc	*global,	LWModCommand	*local,

						void	*serverData)

			{

This	is	the	activation	function,	which	happens	to	be	the	only	function	in
our	plug-in.	Modeler	will	call	this	function	when	the	user	starts	our	plug-
in.	The	actions	of	the	plug-in	are	complete	when	this	function	returns.

Activation	Function:	Every	plug-in	has	one.	This	is	the	entry	point
of	a	plug-in,	sort	of	like	main	in	a	standard	C	program.	Activation
functions	have	a	standard	list	of	four	arguments.	The	type	of	the	third
one	depends	on	the	plug-in	class,	but	the	others	are	always	the	same.
The	function	doesn't	have	to	be	called	Activate.

The	XCALL_	macro	is	defined	in	lwserver.h.	It	encloses	the	return	type	of	the
function.	XCALL_	is	a	placeholder	for	any	platform-specific	or	compiler-
specific	weirdness	that	might	be	required	to	get	the	calling	conventions
right.	If	you've	programmed	Microsoft	Windows,	you	know	that	Win32
defines	several	macros	(WINAPI	and	CALLBACK,	for	example)	that	serve	a
similar	purpose.

Strictly	speaking,	XCALL_	should	be	used	on	every	function	in	your	source
code	that	can	be	called	by	LightWave.	But	as	of	this	writing,	XCALL_	has	no
effect	on	any	platform	LightWave	currently	supports,	and	you	might
notice	that	I've	gotten	somewhat	careless	in	the	SDK	samples	about	using
it	for	some	callbacks.	Just	be	aware	that	it	might	be	needed	in	the	future.

For	Modeler	command	plug-ins,	the	third	argument	to	the	activation
function	is	a	pointer	to	an	LWModCommand	structure,	which	is	defined	in
lwcmdseq.h.

						char	cmd[128];

Plug-ins	can	declare	data	in	all	the	ways	any	other	C	program	or	library
can.	This	is	the	string	in	which	we'll	build	our	command.

						if	(version	!=	LWMODCOMMAND_VERSION)

									return	AFUNC_BADVERSION;

The	first	thing	an	activation	function	should	do	is	ensure	that	the	version	is
correct.	As	LightWave	and	the	SDK	develop	over	time,	the	definition	of
LWModCommand	can	change.	The	version	number	passed	to	your
activation	function	tells	you,	among	other	things,	which	version	of
LWModCommand	Modeler	is	passing	to	you.

The	headers	define	symbols	for	the	version	number	of	each	class's	local
data.	This	is	the	version	that	matches	the	definition	in	the	header.	In	other
words,	the	version	of	LWModCommand	in	lwcmdseq.h	is
LWMODCOMMAND_VERSION.	If	you	recompile	your	plug-in	with	newer	headers,
LWModCommand	might	be	different,	and	if	it	is,	LWMODCOMMAND_VERSION	will
be	also.

LightWave	tries	to	be	backward-compatible	with	older	plug-ins.	It	will	call
your	activation	function	with	different	versions	of	the	local	data	until	you
accept	one	of	the	versions	(by	not	returning	AFUNC_BADVERSION)	or	until	it	runs

out	of	versions	to	try.	With	a	couple	of	exceptions,	it	will	start	with	the
highest	version	first,	so	that	you'll	run	with	the	highest	version	of	the	API
you	accept.	For	more	about	this,	see	the	Compatibility	page.

						sprintf(cmd,	"MAKEBOX	<%g	%g	%g>	<%g	%g	%g>	<%d	%d	%d>",

									-0.5,	-0.5,	-0.5,		0.5,	0.5,	0.5,		1,	1,	1);

						local->evaluate(local->data,	cmd);

This	is	where	something	actually	happens.	We	build	a	command	string
containing	the	command	and	its	arguments,	then	call	the
LWModCommand	evaluate	function	to	issue	the	command.

Function	Pointers:	These	may	be	new	to	you.	The	plug-in	API
makes	extensive	use	of	them	as	a	means	of	allowing	separate
modules	(in	this	case	Modeler	and	the	plug-in)	to	call	each	other's
functions.

A	pointer	to	a	function	can	be	used	like	pointers	to	anything	else.
They	can	appear	in	arguments,	arrays	and	structures.	When	you
dereference	a	function	pointer,	you're	calling	the	function.	The
evaluate	member	of	the	LWModCommand	structure	is	a	pointer	to	a
function	that	takes	two	arguments	and	returns	an	int.

A	call	to	a	function	through	a	pointer	is	sometimes	written	with	an
explicit	dereference	operator,	like	this.

			result	=	(*local->evaluate)(local->data,	cmd);

The	parentheses	are	necessary	to	ensure	that	the	*	binds	to	the
function	pointer.	The	result	of	writing	the	call	this	way	is	exactly
equivalent	to	writing	it	without	the	*,	but	it	may	clarify	what's	going
on	for	human	readers,	and	in	rare	cases	it	can	prevent	the	C
preprocessor	from	making	incorrect	macro	substitutions.

The	first	argument	to	evaluate	is	the	data	field	of	the	LWModCommand
structure.	data	is	an	opaque	pointer,	meaning	you're	not	supposed	to	know
what	it	points	to.	This	is	data	owned	by	Modeler,	that	Modeler	uses	to
keep	track	of	what	it's	doing.	The	second	argument	is	the	MAKEBOX	command
string.

The	MAKEBOX	command	is	described	on	the	Modeler	Commands	page.	It

takes	two	required	arguments,	the	coordinates	of	the	low	and	high	corners,
and	one	optional	argument,	the	number	of	segments	along	each	axis.	Each
of	these	arguments	is	a	vector,	a	triple	of	three	numbers,	delimited	by
angle	brackets	(<	and	>).

Since	we're	making	a	cube	centered	on	the	origin,	all	three	numbers	in
each	vector	are	the	same.	We	could	simplify	the	command	string
somewhat	by	writing	only	the	first	value	in	each	vector.	And	since	the
values	are	constants,	we	don't	need	sprintf	at	all.	We	could	have	written
instead,

			local->evaluate(local->data,	"MAKEBOX	<-.5>	<.5>	<1>");

When	vector	components	are	omitted,	their	values	are	taken	from	the	last
one	included.

						return	AFUNC_OK;

			}

The	activation	function	returns	AFUNC_OK	to	indicate	that	it	completed
successfully.

The	LWModCommand	evaluate	function	returns	0	to	indicate	success,	or	a
non-zero	error	code	if	something	went	wrong.	For	our	simple	plug-in,
we're	ignoring	evaluate's	return	value,	but	in	non-trivial	code,	you'll
probably	want	to	react	to	errors,	and	this	might	involve	returning
something	other	than	AFUNC_OK	from	your	activation	function.

			ServerRecord	ServerDesc[]	=	{

						{	LWMODCOMMAND_CLASS,	"Tutorial_Box1",	Activate	},

						{	NULL	}

			};

The	ServerRecord	array	lists	the	plug-ins	contained	in	a	plug-in	(.p)	file.
Our	source	code	defines	only	one	plug-in.	Its	class	is	LWMODCOMMAND_CLASS,	its
server	name	is	"Tutorial_Box1"	and	its	activation	function	is	Activate.
Although	we	don't	use	it	here,	the	ServerRecord	also	allows	you	to	specify
a	user	name	that	differs	from	the	server	name,	along	with	other
information	about	the	plug-in	supplied	as	an	array	of	tags.

On	each	platform	LightWave	supports,	the	operating	system	provides	a
standard	method	of	loading	the	.p	file	as	a	shared	or	dynamically-linked
library	and	of	obtaining	the	address	within	the	library	of	the	ServerRecord

array.	On	Windows,	for	example,	LightWave	uses	the	Win32	LoadLibrary
and	GetProcAddress	functions.	Once	LightWave	has	the	address	of	the
ServerRecord	array,	it	can	read	the	list	of	plug-ins	in	the	file	and	find	the
activation	functions.

Building	the	Plug-in

The	Compiling	page	of	the	SDK	gives	detailed	instructions	for	creating	a
.p	file	from	your	C	source	code.	But	the	instructions	there	can	be	a	little
bewildering	if	your	experience	with	setting	compiler	switches	and
building	DLLs	or	shared	libraries	is	limited.	So	I	thought	I'd	show	you
how	I	build	plug-ins	on	my	own	machine	with	the	compiler	I'm	using,
Microsoft	Visual	C++	version	4.0	Standard.

This	obviously	won't	be	so	helpful	for	people	using	different	compilers
and	platforms,	but	hopefully	it	will	at	least	demystify	the	process	a	little
for	them	and	demonstrate	that	no	rocket	science	is	involved.

Begin	by	creating	a	new
project	workspace.	Make	sure
the	project	type	is	Dynamic-
Link	Library.

	

Insert	your	source	files	into	the	project.
You	also	need	to	insert	a	small	amount	of
code	from	the	SDK.

The	Compiling	page	tells	you	how	to	build
the	SDK	code	into	a	library	called
server.lib,	and	if	you've	done	that	already,
you	can	just	insert	server.lib	here.	Or	you
can	add	server.lib	to	the	library	files	listed
on	the	Link	tab	of	the	Settings	dialog.	The
effect	is	the	same.

But	if	you	haven't	built	server.lib,	you	can
instead	insert	the	SDK	files	startup.c	and
shutdown.c	from	the	source	directory.	The
advantage	of	this	approach	is	that	you	get
both	debug	and	release	builds	of	the	SDK
code	without	having	to	worry	about
keeping	track	of	two	versions	of	server.lib.

Either	way,	you'll	also	need	to	insert
servmain.c	and	serv.def.	The	sole	purpose
of	the	.def	file	is	to	tell	the	linker	to	export
the	symbol	_mod_descrip.,	which	is	defined
in	servmain.c.	_mod_descrip	contains	your
ServerDesc	array,	among	other	things,	and

exporting	it	makes	it	visible	to	other
programs	like	LightWave	that	call	the
Win32	GetProcAddress	function.

Once	you've	gotten	all	your	sources	into
your	project,	you're	ready	for	the	compile
and	link	settings	that	will	turn	it	into	a	.p
file.	Open	the	settings	dialog.

We're	only	concerned	here	with	settings	on	three	of	the	tabs:	the	Debug,
C/C++	and	Link	tabs.	The	information	you	enter	on	the	Debug	tab	allows
you	to	debug	your	plug-in	using	the	windowed	debugger	in	MSVC.	You
can	set	breakpoints	in	your	code,	step	through	it	line	by	line,	and	examine
the	values	of	variables.

In	the	edit	field	labelled	"Executable	for	debug	session:",	you'll	enter	the
path	to	your	installation	of	either	Layout	(Lightwav.exe)	or	Modeler
(Modeler.exe),	depending	on	which	part	of	LightWave	your	plug-in	is
intended	to	run	in.	Our	box	plug-in	runs	in	Modeler.

The	"Working	directory:"	will	typically	be	the	same	as	the	"Start	in:"
directory	for	your	LightWave	installation.	To	find	that,	look	on	the
Shortcut	tab	of	the	Properties	panel	for	the	icon	or	the	Startup	Menu	entry
that	launches	LightWave	on	your	system.	Also	look	there	for	the	program
arguments	you	normally	use.	I	usually	set	mine	to	run	without	the	Hub	and
to	write	the	config	files	in	the	directory	where	the	program	files	are.

You	might	also	want	to	add	the	-d	switch,	which	runs	the	LightWave
component	in	a	"debug"	mode.	In	this	mode,	plug-in	files	are	always
closed	and	detached	when	not	in	use,	making	it	possible	to	recompile	them
while	LightWave	remains	open.	LightWave	may	also	create	a	text	file
error	dump	when	certain	plug-in	related	problems	occur.

Like	a	lot	of	compilers,	MSVC	gives	you	the	option	of	precompiling	the
headers,	and	it	does	this	by	default.	The	headers	for	a	project	tend	not	to
change	as	often	as	the	C	sources,	so	in	theory	this	can	save	a	small	amount
of	time,	especially	when	you're	including	the	Win32	headers	and
compiling	on	a	slow	machine.	But	the	.pch	files	MSVC	creates	can	be
surprisingly	large,	over	a	megabyte	for	the	Win32	headers,	and	these	are
created	redundantly	for	each	project.	And	they	don't	really	save	that	much
time.	So	I	always	turn	this	option	off.

I	also	turn	off	incremental	linking,	mostly	for	similar	reasons,	but	also	to
avoid	the	small	chance	that	it	will	introduce	errors	by	failing	to	rebuild
code	affected	by	changes	elsewhere	in	the	project.

On	the	C/C++	tab,	under	Preprocessor,	add	_X86_	and	_WIN32	to	the
preprocessor	definitions.	The	SDK	source	and	the	lwdisplay.h	header	use
these	symbols	to	select	platform-specific	code.	In	the	"Additional	include
directories:"	field,	enter	the	path	to	the	SDK	include	directory.

The	last	settings	step	is	renaming	the	output	file	so	that	it	has	a	.p
extension.	This	isn't	strictly	necessary.	You	can	rename	the	file	later,	or
simply	use	it	with	its	default	.dll	extension,	which	LightWave	has	no
problem	with.	If	you	do	rename	the	file	here,	make	sure	only	one	of	the
two	builds	is	selected	in	the	left	pane	before	altering	the	filename.	If	both

are	selected,	the	debug	and	release	builds	will	have	the	same	name	and
will	overwrite	each	other.

You're	now	ready	to	build.	By	default,	the	toolbar	includes	a	dropdown	list
from	which	you	can	select	the	debug	or	release	builds	of	your	project.
During	development,	you'll	usually	want	to	be	building	and	testing	the
debug	version.	Once	you've	chosen	the	build,	select	"Build	box1.p"	(Shift
+	F8)	or	"Rebuild	All"	(Alt	+	F8)	from	the	Build	menu,	or	hit	the	little
build	icon	on	the	toolbar.

To	run	the	plug-in,	hit	"Execute	Modeler.exe"	in	the	same	menu.	If	this	is
the	first	time	you've	run	the	plug-in,	you'll	need	to	install	it	in	LightWave.
Use	the	Add	Plug-ins	option	(in	the	Modeler/Plug-ins	or	Layout/Plug-ins
menu)	and	in	the	file	dialog,	navigate	to	the	.p	file	you	created.	Unless	you
changed	the	path,	your	.p	file	will	be	in	the	Debug	directory	created	by
MSVC	in	your	project	directory.

To	debug	your	plug-in,	select	one	of	the	Debug	submenu	options,	typically
Go.	MSVC	will	warn	you	that	the	LightWave	component	contains	no
debugging	information.	That's	OK,	since	you're	not	debugging	LightWave
itself.	The	debug	build	of	your	plug-in	does	contain	this	information.
Before	hitting	Debug/Go,	you'll	typically	set	one	or	more	breakpoints,	so
that	execution	stops	at	those	points	and	you	can	examine	the	state	of	the
plug-in's	data.	Put	the	cursor	in	one	of	your	source	files	in	the	MSVC
editor	and	press	F9	to	set	a	breakpoint	there.

What's	Next

If	all's	gone	well,	you've	learned	how	to	write,	compile	and	run	a	Modeler
plug-in.	In	the	next	installment,	we'll	work	on	calling	Modeler	commands
in	a	more	sophisticated	way,	and	we'll	add	a	user	interface.

Let's	Make	Another	Box

Author		Ernie	Wright
Date		1	June	2001

In	the	first	installment	of	this	tutorial,	we	looked	at	a	simple	plug-in	that
creates	a	box	in	Modeler	by	calling	the	MAKEBOX	command.	In	this
installment	we'll	assume	you're	comfortable	with	the	plug-in	basics
covered	there.	We'll	call	MAKEBOX	in	a	different	way,	and	we'll	add	a	user
interface.	The	complete	source	is	in	sample/boxes/box2/box.c.

Our	Second	Box	Plug-in

In	this	plug-in,	we'll	move	the	box	creation	out	of	the	activation	function
into	its	own	function,	and	we'll	use	lookup	and	execute	rather	than	evaluate	to
issue	the	MAKEBOX	command.

Here's	our	new	makebox	function.

			int	makebox(LWModCommand	*local,	float	*size,	float	*center,

						int	nsegments)

			{

						static	LWCommandCode	ccode	=	0;

						DynaValue	argv[3];

						argv[0].type	=	DY_VFLOAT;

						argv[0].fvec.val[0]	=	center[0]	-	0.5f	*	size[0];

						argv[0].fvec.val[1]	=	center[1]	-	0.5f	*	size[1];

						argv[0].fvec.val[2]	=	center[2]	-	0.5f	*	size[2];

						argv[1].type	=	DY_VFLOAT;

						argv[1].fvec.val[0]	=	center[0]	+	0.5f	*	size[0];

						argv[1].fvec.val[1]	=	center[1]	+	0.5f	*	size[1];

						argv[1].fvec.val[2]	=	center[2]	+	0.5f	*	size[2];

						if	(nsegments)	{

									argv[2].type	=	DY_VINT;

									argv[2].ivec.val[0]	=

									argv[2].ivec.val[1]	=

									argv[2].ivec.val[2]	=	nsegments;

						}

						else	argv[2].type	=	DY_NULL;

						if	(!ccode)

									ccode	=	local->lookup(local->data,	"MAKEBOX");

						return	local->execute(local->data,	ccode,	3,	argv,	0,	NULL);

			}

Now	we're	getting	into	some	stuff!	Before	I	explain	it,	you	might	wonder
why	we'd	bother	with	this	apparently	more	complicated	method	at	all,
when	we	can	use	the	simpler	evaluate	function.	One	answer	is	speed.

The	lookup	and	execute	functions	are	Modeler's	native	mechanism	for
processing	commands.	When	you	use	evaluate	instead,	Modeler	parses	the
command	string	you	pass	and	then	calls	the	lookup	and	execute	functions
itself.	You	save	some	time	by	using	lookup	and	execute	directly,	rather	than
building	an	evaluate	string	in	your	plug-in	that	Modeler	is	just	going	to	take
apart	again.

Also	on	the	plus	side,	you	only	have	to	write	your	makebox	function	once.
After	that,	you	can	call	it	as	often	as	you	like	with	a	single	line	of	code,
and	you	can	cut	and	paste	it	into	other	plug-ins.	The	modlib	SDK	sample
is	a	library	of	about	a	hundred	functions	like	makebox,	each	of	which	issues
one	of	the	Modeler	commands.

And	if	the	low	and	high	corner	arguments	to	the	MAKEBOX	command	are
inconvenient,	you	can	make	up	your	own,	as	we	did	above	with	the	size
and	center	arguments.	Obviously,	your	makebox	could	call	evaluate,	but	if
you're	going	to	the	trouble	to	write	a	makebox	at	all,	you	might	as	well	go	all
the	way	and	use	the	faster	lookup	and	execute.

Arguments

Except	for	the	last	line,	makebox	spends	all	of	its	time	constructing	the
arguments	for	the	execute	function,	one	of	which	is	the	argument	list	for	the
MAKEBOX	command.	Let's	take	a	closer	look	at	all	of	these	arguments.

			int	execute(void	*mddata,	LWCommandCode	ccode,	int	argc,

						DynaValue	*argv,	EltOpSelect	opsel,	int	*result);

mddata
As	with	evaluate,	this	is	the	data	field	of	the	LWModCommand
structure,	which	provides	Modeler	the	context	in	which	the	command
will	be	processed.	You	never	need	to	know	what's	in	this	data.	You
just	have	to	pass	it	to	the	functions	that	require	it.

ccode
A	command	code	obtained	by	calling	lookup.	A	code	is	used	to	specify

the	command	instead	of	the	name	of	the	command	(in	our	case,
"MAKEBOX")	because	it's	faster.	Modeler	doesn't	have	to	do	a	lot	of
string	comparisons	to	figure	out	which	command	you're	issuing.	The
string	search	need	only	be	done	once	per	Modeler	session,	when	you
call	lookup.	In	our	plug-in,	the	command	code	returned	by	lookup	is
stored	in	a	static	variable.	We	only	call	lookup	the	first	time	through
makebox,	when	our	static	variable	hasn't	been	initialized	yet.

argc,	argv
The	argument	list	for	the	MAKEBOX	command.	argv	is	an	array	of
DynaValues,	and	argc	is	the	number	of	elements	in	the	argv	array.
DynaValues	are	the	union	of	a	number	of	different	data	types.	To
initialize	a	DynaValue,	you	set	the	type	field,	then	set	the	value	of	the
union	member	appropriate	for	the	type.	DynaValues	allow	you	to
create	a	single	array	in	which	each	element	can	be	a	different	data
type.

opsel
This	is	the	selection	mode	for	the	command.	It	determines	which
existing	geometry	your	command	will	interact	with.	You	want	some
commands	to	work	only	on	the	polygons	the	user	has	selected,	or	on
all	polygons	regardless	of	the	selection,	and	so	on.	This	is	ignored	for
MAKEBOX,	so	we	just	set	it	to	0.

result
A	few	commands	return	command-specific	result	codes	in	this
argument.	MAKEBOX	isn't	one	of	them,	so	we	set	this	to	NULL.

Before	we	move	on	to	the	interface	part,	there's	one	other	thing	to	notice
here.	The	third	argument	to	the	MAKEBOX	command	is	optional.	You	don't
have	to	specify	a	number	of	segments.	To	support	this	in	our	makebox
function,	we	allow	the	nsegments	argument	to	be	0.	In	that	case,	the	third
element	of	the	argv	array	is	a	DynaValue	of	type	DY_NULL.	The	DY_NULL	type
serves	as	a	placeholder	when	the	argument	list	for	a	command	contains	an
optional	argument	that	you	aren't	supplying.

The	Interface

Our	interface	function	displays	a	modal	input	window,	or	panel,	that	looks

like	this.

This	is	built	with	XPanels,	a	component	of	the	platform-independent	user
interface	API.	The	panel	layout	and	event	handling	in	XPanels	are	highly
automated,	so	to	create	this	panel,	all	we	have	to	do	is	create	a	list	of
controls	and	initialize	them,	display	the	panel,	and	then	collect	the	results.

Here's	the	source	code	for	our	interface	function.

			int	get_user(LWXPanelFuncs	*xpanf,	double	*size,	double	*center,

						int	*nsegments)

			{

						LWXPanelID	panel;

						int	ok	=	0;

						enum	{	ID_SIZE	=	0x8001,	ID_CENTER,	ID_NSEGMENTS	};

						LWXPanelControl	ctl[]	=	{

									{	ID_SIZE,						"Size",					"distance3"	},

									{	ID_CENTER,				"Center",			"distance3"	},

									{	ID_NSEGMENTS,	"Segments",	"integer"			},

									{	0	}

						};

						LWXPanelDataDesc	cdata[]	=	{

									{	ID_SIZE,						"Size",					"distance3"	},

									{	ID_CENTER,				"Center",			"distance3"	},

									{	ID_NSEGMENTS,	"Segments",	"integer"			},

									{	0	}

						};

						LWXPanelHint	hint[]	=	{

									XpMIN(ID_NSEGMENTS,	0),

									XpMAX(ID_NSEGMENTS,	200),

									XpDIVADD(ID_SIZE),

									XpDIVADD(ID_CENTER),	

									XpEND

						};

						panel	=	xpanf->create(LWXP_FORM,	ctl);

						if	(!panel)	return	0;

						xpanf->describe(panel,	cdata,	NULL,	NULL);

						xpanf->hint(panel,	0,	hint);

						xpanf->formSet(panel,	ID_SIZE,	size);

						xpanf->formSet(panel,	ID_CENTER,	center);

						xpanf->formSet(panel,	ID_NSEGMENTS,	nsegments);

			

						ok	=	xpanf->post(panel);

						if	(ok)	{

									double	*d;

									int	*i;

									d	=	xpanf->formGet(panel,	ID_SIZE);

									size[0]	=	d[0];

									size[1]	=	d[1];

									size[2]	=	d[2];

									d	=	xpanf->formGet(panel,	ID_CENTER);

									center[0]	=	d[0];

									center[1]	=	d[1];

									center[2]	=	d[2];

									i	=	xpanf->formGet(panel,	ID_NSEGMENTS);

									*nsegments	=	*i;

						}

						xpanf->destroy(panel);

						return	ok;

			}

Dissecting	the	Interface

Let's	take	a	closer	look.

			int	get_user(LWXPanelFuncs	*xpanf,	double	*size,	double	*center,

						int	*nsegments)

The	first	argument	to	get_user	is	a	pointer	to	LWXPanelFuncs.	When	we
get	to	our	activation	function,	I'll	explain	where	this	comes	from.	But	for
now,	it's	a	structure	containing	the	functions	we	need	to	work	with	our
panel.	The	other	three	arguments	are	used	to	initialize	our	controls,	and
they'll	be	modified	with	the	values	entered	by	the	user.	Note	that	size	and
center	are	arrays	of	three	doubles,	while	nsegments	is	a	pointer	to	a	single
integer.

						LWXPanelID	panel;

						int	ok	=	0;

LWXPanelID	is	just	an	opaque	pointer	that	LightWave	uses	to	identify	our
panel.	The	double	and	integer	pointers	will	be	used	when	we	retrieve	the
user's	entries	from	the	controls,	and	ok	will	be	true	if	the	user	presses	OK
to	dismiss	the	panel.

						enum	{	ID_SIZE	=	0x8001,	ID_CENTER,	ID_NSEGMENTS	};

XPanels	uses	integer	codes	to	identify	panel	controls.	User-defined
controls	have	IDs	that	start	at	0x8001.

						LWXPanelControl	ctl[]	=	{

									{	ID_SIZE,						"Size",					"distance3"	},

									{	ID_CENTER,				"Center",			"distance3"	},

									{	ID_NSEGMENTS,	"Segments",	"integer"			},

									{	0	}

						};

						LWXPanelDataDesc	cdata[]	=	{

									{	ID_SIZE,						"Size",					"distance3"	},

									{	ID_CENTER,				"Center",			"distance3"	},

									{	ID_NSEGMENTS,	"Segments",	"integer"			},

									{	0	}

						};

These	two	arrays	define	our	controls.	They	look	redundant,	and	to	a
certain	extent,	for	what	we're	doing,	they	are.	XPanels	distinguishes
between	controls	(the	widgets	drawn	on	your	panel)	and	data	descriptions,
which	define	how	you'll	represent	the	values	of	your	controls.	You	can
define	controls	that	don't	have	corresponding	data	descriptions,	and	vice
versa.	This	amount	of	abstraction	is	useful	for	more	sophisticated	panels,
but	we're	setting	up	the	simplest	kind	of	relationship	between	our	controls
and	their	values,	so	our	control	list	and	our	data	descriptions	are	parallel.

Note	that	XPanels,	as	of	this	writing,	doesn't	support	controls	of	type
"integer3".	We	could	simulate	one	with	three	separate	"integer"	controls,
but	for	the	sake	of	simplicity	I	chose	not	to	do	this.	As	a	result,	our	makebox
will	create	the	same	number	of	segments	along	all	three	axes.

						LWXPanelHint	hint[]	=	{

									XpMIN(ID_NSEGMENTS,	1),

									XpMAX(ID_NSEGMENTS,	200),

									XpDIVADD(ID_SIZE),

									XpDIVADD(ID_CENTER),	

									XpEND

						};

XPanels	automates	most	aspects	of	control	layout.	The	rules	it	uses
resemble	those	used	to	build	LightWave's	own	interface,	so	your	plug-in's
panels	are	aesthetically	and	functionally	consistent	with	the	rest	of	the
program.	In	exchange	for	this,	you	must	sacrifice	some	low-level	control
over	the	appearance	of	your	panel.	You	can't	specify	the	pixel	positions	of
your	controls,	for	example.

Instead,	you	use	hints	to	describe	your	controls	and	the	appearance	of	your
panel	in	a	more	abstract	way.	Here	we	define	a	sane	range	for	the

segments	control	and	add	dividers	between	the	controls.	The	positions	and
sizes	of	the	controls,	their	labels,	and	decorations	like	the	dividers	are	all
calculated	for	us.	You	can	also	use	hints	to	group	controls,	put	controls	on
different	tabs,	establish	dependencies	between	controls,	and	lots	of	other
things.

						panel	=	xpanf->create(LWXP_FORM,	ctl);

						if	(!panel)	return	0;

This	is	where	we	create	the	panel.	If	panel	creation	fails	for	some	reason,
we	return	0,	which	is	also	what	we	return	when	the	user	presses	the	Cancel
button.

XPanels	supports	two	kinds	of	panels,	called	forms	and	views.	Views	are
designed	primarily	for	the	panels	associated	with	handler	class	plug-ins	in
Layout.	Views	work	with	instances,	the	unique	data	pointers	returned	by
each	invocation	of	a	handler	plug-in.	But	you're	free	to	choose.	You	can
use	forms	in	your	handlers,	and	we	could	have	used	a	view	here.	Forms
are	just	a	little	easier	to	grasp	initially.

						xpanf->describe(panel,	cdata,	NULL,	NULL);

						xpanf->hint(panel,	0,	hint);

						xpanf->formSet(panel,	ID_SIZE,	size);

						xpanf->formSet(panel,	ID_CENTER,	center);

						xpanf->formSet(panel,	ID_NSEGMENTS,	nsegments);

These	calls	initialize	the	panel.	The	last	two	arguments	to	the	describe
function	are	NULL	because	our	panel	is	a	form.	If	it	had	been	a	view,
these	arguments	would	contain	pointers	to	our	get	and	set	callbacks.	The
IDs	in	the	formSet	calls	are	value	IDs	corresponding	to	entries	in	the	data
description	array	(as	opposed	to	control	IDs	from	our	control	array).	This
is	a	distinction	without	a	difference	for	us	now,	but	I	wanted	to	plant	this
in	the	back	of	your	mind	for	a	time	when	it	will	make	a	difference.

						ok	=	xpanf->post(panel);

The	post	function	displays	the	panel	and	waits	for	the	user.	Using	post
makes	the	panel	modal,	which	just	means	that	everything	else	stops	until
the	user	presses	OK	or	Cancel	on	the	panel.

						if	(ok)	{

									double	*d;

									int	*i

									d	=	xpanf->formGet(panel,	ID_SIZE);

									size[0]	=	d[0];

									size[1]	=	d[1];

									size[2]	=	d[2];

									d	=	xpanf->formGet(panel,	ID_CENTER);

									center[0]	=	d[0];

									center[1]	=	d[1];

									center[2]	=	d[2];

									i	=	xpanf->formGet(panel,	ID_NSEGMENTS);

									nsegments[2]	=	nsegments[1]	=	nsegments[0]	=	*i;

						}

If	the	user	presses	OK,	we	retrieve	the	value	of	each	control	and	store	it
for	use	later	in	our	plug-in.	The	formGet	function	returns	a	pointer	to	a
variable	of	the	appropriate	type	for	the	value.

						xpanf->destroy(panel);

						return	ok;

			}

We're	done	with	the	panel,	so	we	destroy	it.	If	we	needed	to	open	this
panel	more	than	once,	we	could	create	it	once,	post	it	as	many	times	as	we
need	it,	then	destroy	it	when	we	exit.

Activation

All	that	remains	is	our	activation	function,	which	really	hasn't	changed
very	much.

			XCALL_(int)

			Activate(long	version,	GlobalFunc	*global,	LWModCommand	*local,

						void	*serverData)

			{

						LWXPanelFuncs	*xpanf;

						double	size[3]			=	{	1.0,	1.0,	1.0	};

						double	center[3]	=	{	0.0,	0.0,	0.0	};

						int	nsegments	=	1;

						if	(version	!=	LWMODCOMMAND_VERSION)

									return	AFUNC_BADVERSION;

						xpanf	=	global(LWXPANELFUNCS_GLOBAL,	GFUSE_TRANSIENT);

						if	(!xpanf)	return	AFUNC_BADGLOBAL;

						if	(get_user(xpanf,	size,	center,	&nsegments))

									makebox(local,	size,	center,	nsegments);

						return	AFUNC_OK;

			}

We've	added	storage	for	the	box	parameters	so	that	these	can	be	user-
defined,	and	we	call	our	get_user	and	makebox	functions	rather	than	sprintf

and	evaluate.	We've	also	added	a	couple	of	lines	having	to	do	with	that
LWXPanelFuncs	pointer,	and	as	promised,	I'll	now	explain	where	that
pointer	comes	from.

			LWXPanelFuncs	*xpanf;

			xpanf	=	global(LWXPANELFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(!xpanf)	return	AFUNC_BADGLOBAL;

The	second	argument	to	every	activation	function	is	the	global	function.
The	globals	returned	by	this	function	are	services	provided	by	LightWave.
The	XPanels	global	is	a	common	example.	When	called	with	an
LWXPANELFUNCS_GLOBAL	argument,	the	global	function	returns	a	pointer	to	an
LWXPanelFuncs	structure	containing	the	functions	you	need	to	build	and
display	an	XPanels	interface.	The	Globals	page	of	the	SDK	describes	the
global	function	in	detail	and	lists	the	globals	available	in	LightWave.

What's	Next

We'll	be	taking	our	user	interface	with	us	into	the	next	installment,	but
we'll	be	leaving	behind	the	MAKEBOX	command	as	we	explore	the
construction	of	boxes	from	individual	points	and	polygons.

A	Mesh	Edit	Box

Author		Ernie	Wright
Date		11	June	2001

In	the	previous	installment	of	this	tutorial,	we	created	a	user	interface	and
a	function	that	calls	Modeler's	MAKEBOX	command.	In	this	installment,	we'll
leave	the	MAKEBOX	command	behind	and	instead	create	our	box	from	its
constituent	points	and	polygons.	In	LightWave	nomenclature,	creating,
deleting	and	modifying	points	and	polygons	is	called	mesh	editing,	and
we'll	be	using	the	functions	in	a	MeshEditOp	structure	provided	by
Modeler.

We'll	also	cover	the	use	of	the	Surface	Functions	global	to	build	a	menu	of
surface	names	on	our	panel,	and	I'll	introduce	command	line	processing,
which	allows	our	box	plug-in	to	be	called	with	arguments	by	other	plug-
ins.

We're	taking	a	significant	step	up	in	complexity,	so	I've	divided	the	source
into	three	separate	files.	You	can	find	it	in	sample/boxes/box3/box.c,	ui.c	and
cmdline.c.

Some	Data

With	the	MAKEBOX	command,	we	didn't	need	explicit	definitions	of	point
positions	and	polygon	vertices,	but	we	do	need	these	in	some	form	now.

			double	vert[8][3]	=	{			/*	a	unit	cube	*/

						-0.5,	-0.5,	-0.5,

							0.5,	-0.5,	-0.5,

							0.5,	-0.5,		0.5,

						-0.5,	-0.5,		0.5,

						-0.5,		0.5,	-0.5,

							0.5,		0.5,	-0.5,

							0.5,		0.5,		0.5,

						-0.5,		0.5,		0.5

			};

			int	face[6][4]	=	{					/*	vertex	indexes	*/

						0,	1,	2,	3,

						0,	4,	5,	1,

						1,	5,	6,	2,

						3,	2,	6,	7,

						0,	3,	7,	4,

						4,	7,	6,	5

			};

The	vert	array	contains	the	(x,	y,	z)	coordinates	of	the	eight	corner	points
of	a	unit	cube,	which	we'll	scale	to	create	the	points	of	the	box.	The	face
array	lists	the	vertices	defining	each	of	the	six	rectangular	faces	of	our
box.	The	numbers	correspond	to	indexes	into	the	vert	array.

We're	also	going	to	define	a	UV	map	for	the	box.	(UV	mapping	is	a
texture	projection	method.	It	associates	specific	points	in	3D	space	with
specific	points	on	a	2D	texture,	typically	an	image.)

			float	cuv[8][2]	=	{				/*	continuous	UVs	(spherical	mapping)	*/

						.125f,	.304f,

						.375f,	.304f,

						.625f,	.304f,

						.875f,	.304f,

						.125f,	.696f,

						.375f,	.696f,

						.625f,	.696f,

						.875f,	.696f

			};

			float	duv[2][2]	=	{				/*	discontinuous	UVs	*/

						-0.125f,	0.304f,

						-0.125f,	0.696f

			};

This	is	the	UV	mapping	Modeler	generates	when	it	uses	spherical
mapping	to	initialize	a	new	vertex	map.

Vertex	Map:	Associates	a	set	of	vectors	with	a	set	of	points.	UV
vmaps	contain	two	floats	for	each	point,	the	u	and	v	coordinates.
Color	vmaps	are	made	up	of	RGB	or	RGBA	vectors.	Weight	maps
have	a	single	value	per	point.	Point	selection	sets	are	implemented	as
vmaps	with	no	value	at	all.	Type	codes	for	the	most	common	vmap
types	are	defined	in	lwmeshes.h,	but	you	can	also	define	your	own
custom	vmaps.

Mesh	Editing

The	mesh	edit	version	of	our	makebox	function	uses	the	vert,	face,	cuv	and	duv
arrays	to	create	the	points	and	polygons	that	comprise	our	box.

			void	makebox(MeshEditOp	*edit,	double	*size,	double	*center,

						char	*surfname,	char	*vmapname)

			{

						LWDVector	pos;

						LWPntID	pt[8],	vt[4];

						LWPolID	pol[6];

						int	i,	j;

						for	(i	=	0;	i	<	8;	i++)	{

									for	(j	=	0;	j	<	3;	j++)

												pos[j]	=	size[j]	*	vert[i][j]	+	center[j];

									pt[i]	=	edit->addPoint(edit->state,	pos);

									edit->pntVMap(edit->state,	pt[i],

												LWVMAP_TXUV,	vmapname,	2,	cuv[i]);

						}

						for	(i	=	0;	i	<	6;	i++)	{

									for	(j	=	0;	j	<	4;	j++)

												vt[j]	=	pt[face[i][j]];

									pol[i]	=	edit->addFace(edit->state,	surfname,	4,	vt);

						}

						edit->pntVPMap(edit->state,	pt[3],	pol[4],

									LWVMAP_TXUV,	vmapname,	2,	duv[0]);

						edit->pntVPMap(edit->state,	pt[7],	pol[4],

									LWVMAP_TXUV,	vmapname,	2,	duv[1]);

			}

Let's	go	through	it	one	step	at	a	time.

			void	makebox(MeshEditOp	*edit,	double	*size,	double	*center,

						char	*surfname,	char	*vmapname)

			{

Instead	of	the	LWModCommand	structure	we	passed	to	the	previous
version	of	makebox,	the	first	argument	to	this	one	is	a	MeshEditOp,	which
contains	all	of	the	mesh	editing	functions.	We'll	be	getting	this	from	our
activation	function.	The	other	arguments	control	the	size	and	center	of	the
box,	the	surface	for	the	box	faces,	and	the	name	of	the	vertex	map	that	will
hold	our	UVs.	To	simplify	this	a	bit,	there's	no	argument	for	the	number	of
segments,	nor	will	we	support	more	than	one.

						LWDVector	pos;

						LWPntID	pt[8],	vt[4];

						LWPolID	pol[6];

						int	i,	j;

The	LWPntID	and	LWPolID	types	are	used	to	identify	points	and
polygons.	They're	returned	from	functions	that	create	these	elements,	and
they're	later	passed	as	arguments	when	you	need	to	refer	to	them.	The
LWDVector	type	is	just	an	array	of	three	doubles.

						for	(i	=	0;	i	<	8;	i++)	{

									for	(j	=	0;	j	<	3;	j++)

												pos[j]	=	size[j]	*	vert[i][j]	+	center[j];

The	position	of	each	point	is	the	size	multiplied	by	the	coordinates	for	a

unit	cube,	offset	by	the	center	position.

									pt[i]	=	edit->addPoint(edit->state,	pos);

The	addPoint	function	creates	a	point	at	the	specified	position.	We'll	need	to
refer	to	the	points	we	create	when	we	connect	them	together	to	form	the
faces,	so	we	store	the	point	IDs.

									edit->pntVMap(edit->state,	pt[i],

												LWVMAP_TXUV,	vmapname,	2,	cuv[i]);

						}

While	we're	in	the	points	loop,	we	also	initialize	the	UV	values	for	each
point.	pntVMap	takes	a	point	ID,	a	vertex	map,	and	a	vector	of	two	floats
containing	the	UV	coordinates.

Vmaps	are	defined	by	a	name,	a	type	code	and	a	vector	dimension.	The
name	is	what	the	user	sees	in	the	interface	when	vmaps	are	listed.	Type
codes	for	common	vmap	types	like	texture	UV	maps	are	defined	in
lwmeshes.h,	but	it's	also	possible	to	create	custom	vmap	types.	The	vector
is	an	array	of	floats	associated	with	a	point,	and	the	dimension	is	just	the
number	of	elements	in	the	vector.	UV	vmaps	contain	two	floats	for	each
point,	the	u	and	v	coordinates.

If	the	vmap	doesn't	exist	at	the	time	of	the	call,	pntVMap	creates	it.

						for	(i	=	0;	i	<	6;	i++)	{

									for	(j	=	0;	j	<	4;	j++)

												vt[j]	=	pt[face[i][j]];

The	vt	array	contains	four	point	IDs,	one	for	each	vertex	of	a	box	face.
The	direction	of	the	polygon	normal	depends	on	the	order	in	which	the
points	are	listed.	The	point	indexes	in	the	face	array	are	listed	in	clockwise
order	as	seen	from	the	polygon's	visible	side.

									pol[i]	=	edit->addFace(edit->state,	surfname,	4,	vt);

						}

The	addFace	function	creates	a	polygon	with	the	given	surface	name	and
vertex	list.	If	the	surface	doesn't	exist,	addFace	creates	it.

						edit->pntVPMap(edit->state,	pt[3],	pol[4],

									LWVMAP_TXUV,	vmapname,	2,	duv[0]);

						edit->pntVPMap(edit->state,	pt[7],	pol[4],

									LWVMAP_TXUV,	vmapname,	2,	duv[1]);

			}

Finally,	we	add	two	discontinuous	UV	values	to	the	vmap.	Most	points
have	a	single	UV	value.	The	(u,	v)	is	the	same	at	a	given	point	for	all	faces
that	use	the	point	as	a	vertex.	Discontinuous	UVs	override	this	value,	but
only	for	one	of	the	polygons	that	shares	the	point.	This	fixes	the	seam
problem,	where	two	points	are	on	opposite	sides	of	a	discontinuity,	or
seam,	in	the	texture.

In	our	case,	we're	fixing	up	the	-X	face	of	the	box,	where	the	left	and	right
sides	of	an	image	map	would	meet	if	it	used	our	vmap.	Without	this	fix,
the	interpolation	of	u	across	this	face	would	be	"backwards,"	the	reverse	of
that	across	the	-Z,	+X	and	+Z	faces.

Surface	Name	List

In	our	interface,	we	need	to	give	the	user	a	way	to	specify	the	surface	and
vmap	names.	For	vmap	names,	we'll	provide	a	simple	text	edit	field.	But
to	show	what	else	we	can	do,	we'll	build	a	popup	menu	for	the	surface
names.

The	declaration	of	our	Surface	popup	control	and	its	data	description	in
our	get_user	function	looks	like	this.

			LWXPanelControl	ctl[]	=	{

						...

						{	ID_SURFLIST,	"Surface",	"iPopChoice"	},	...

			LWXPanelDataDesc	cdata[]	=	{

						...

						{	ID_SURFLIST,	"Surface",	"integer"	},	...

The	value	of	a	popup	control	is	a	0-based	integer	index	into	the	list	of
menu	items.	We	need	a	way	to	give	XPanels	our	list	of	surface	names.
Although	there	are	other	ways	to	do	it,	we'll	populate	the	menu	using	an
XpSTRLIST	hint.

			LWXPanelHint	hint[]	=	{

						...

						XpSTRLIST(ID_SURFLIST,	surflist),	...

The	second	argument	to	the	XpSTRLIST	macro	is	an	array	of	strings.	The	last

element	of	the	array	is	NULL	to	mark	the	end	of	the	list.

If	we	knew	the	item	list	in	advance,	we	could	simply	declare	it	like	this:

			char	*menulist[]	=	{	"Apples",	"Oranges",	"Bananas",	NULL	};

But	we	don't	know	in	advance	what	surfaces	exist	in	Modeler,	so	we	have
to	allocate	and	initialize	one	of	these	string	arrays	dynamically,	when	our
plug-in	is	executed.

To	build	the	surface	name	list,	we'll	use	the	first,	next	and	name	routines
provided	by	the	Surface	Functions	global.	first	and	next	walk	you	through
the	linked	list	of	surface	descriptions	in	Modeler,	and	name	returns	the	name
of	a	surface,	given	its	LWSurfaceID.	The	function	in	our	plug-in	that
allocates	and	initializes	the	surface	name	list	is	called	init_surflist.

			int	init_surflist(LWSurfaceFuncs	*surff)

			{

						LWSurfaceID	surfid;

						const	char	*name;

						int	i,	count	=	0;

The	first	thing	it	does	is	count	the	surfaces.

						surfid	=	surff->first();

						while	(surfid)	{

									++count;

									surfid	=	surff->next(surfid);

						}

It's	possible	for	the	count	to	be	0.	In	that	case,	we	create	a	list	with	a	single
entry,	"Default",	and	return	a	count	of	1.

						if	(!count)	{

									surflist	=	calloc(2,	sizeof(char	*));

									surflist[0]	=	malloc(8);

									strcpy(surflist[0],	"Default");

									return	1;

						}

Otherwise,	we	allocate	an	array	of	count	+	1	strings.	The	extra	one	is	the
NULL	string	that	marks	the	end	of	the	list.

						surflist	=	calloc(count	+	1,	sizeof(char	*));

						if	(!surflist)	return	0;

Now	we	loop	through	the	surface	list	again	using	first	and	next,	this	time
copying	the	surface	name	into	our	string	array.	If	anything	goes	wrong

while	we're	doing	this,	we	call	our	free_surflist	function,	which	frees	each
string	and	the	string	array,	and	then	return	a	count	of	0.

						surfid	=	surff->first();

						for	(i	=	0;	i	<	count;	i++)	{

									name	=	surff->name(surfid);

									if	(!name)	{

												free_surflist();

												return	0;

									}

									surflist[i]	=	malloc(strlen(name)	+	1);

									if	(!surflist[i])	{

												free_surflist();

												return	0;

									}

									strcpy(surflist[i],	name);

									surfid	=	surff->next(surfid);

						}

We're	done.

						return	count;

			}

This	function	is	fairly	typical	of	the	way	you'll	get	and	use	information
from	LightWave.	The	Surface	Functions	global	doesn't	provide	a	canned
getSurfaceNameArray	function,	and	XPanels	doesn't	have	an
"iPopSurfaceName"	control	type.	This	arguably	places	a	greater	burden	on
plug-in	authors,	but	it	also	offers	greater	flexibility.	Suppose	you	only
want	to	list	green	surfaces,	or	surface	names	starting	with	the	letter	B?

Doing	It	Differently

Before	we	leave	the	surface	list,	I	want	to	call	attention	to	things	we	can
and	can't	do	differently	with	it.	We	can't	call	init_surflist	from	within
get_user.	At	that	point,	it's	already	too	late.	The	(not	yet	initialized)	surflist
has	already	been	written	into	the	hint	array.	For	the	same	reason,	we	can't
declare	the	hint	array	static.

It's	also	not	easy	to	write	the	correct	value	for	surflist	into	the	hint	array
after	it's	been	declared,	because	it's	hard	to	know	what	its	array	index	will
be	after	the	various	Xp	macros	have	been	expanded.	For	example,	our	hint
array	after	expansion	looks	like	the	following.

			LWXPanelHint	hint[]	=	{

						((void	*)(0x3D000B03)),													/*	XPTAG_LABEL			*/

						((void	*)(0)),

						((void	*)("Box	Tutorial	Part	3")),

						((void	*)(0)),																						/*	XPTAG_NULL				*/

						((void	*)(0x3D021481)),													/*	XPTAG_DIVADD		*/

						((void	*)(0x00008001)),													/*	ID_SIZE							*/

						((void	*)(0)),																						/*	XPTAG_NULL				*/

						((void	*)(0x3D021481)),													/*	XPTAG_DIVADD		*/

						((void	*)(0x00008002)),													/*	ID_CENTER					*/

						((void	*)(0)),																						/*	XPTAG_NULL				*/

						((void	*)(0x3D014503)),													/*	XPTAG_STRLIST	*/

						((void	*)(0x00008003)),													/*	ID_SURFLIST			*/

						((void	*)(surflist)),

						((void	*)(0)),																						/*	XPTAG_NULL				*/

						((void	*)(0)),																						/*	XPTAG_END					*/

			};

Without	expanding	it	by	hand	like	this,	it's	not	at	all	obvious	that	surflist
ends	up	in	hint[12].

There's	another	way	to	give	XPanels	the	items	in	a	popup,	however.
Instead	of	the	XpSTRLIST	macro,	you	can	use	XpPOPFUNCS	to	pass	a	pair	of
callbacks	that	XPanels	will	call	when	it	needs	to	know	the	item	count	and
the	name	of	each	item.	Since	it	doesn't	paint	you	into	a	corner	the	way
XpSTRLIST	can,	this	is	the	preferred	method	for	item	lists	that	must	be	built	at
runtime.	I	chose	not	to	use	it	here	because	I	decided,	somewhat	arbitrarily,
that	an	array	would	be	easier	to	understand	than	the	callbacks	would	be.
But	we	will	use	XpPOPFUNCS	in	Part	4.

Command	Line	Processing

Command	sequence	plug-ins	can	call	other	command	sequence	plug-ins
using	Modeler's	CMDSEQ	command.	CMDSEQ	allows	you	to	pass	arguments	to
the	called	plug-in.

Our	box	plug-in,	in	other	words,	can	be	called	by	other	Modeler	plug-ins.
When	used	this	way,	it	becomes	just	another	command!	For	this	to	be
really	useful,	we	need	to	process	the	command	line	so	that	we	can	accept
arguments.	Modeler	passes	the	command	line	to	us	in	the	argument	field	of
the	LWModCommand	structure.

Our	parameters	are	the	box	size	and	center,	the	surface	name,	and	the
vmap	name.	The	obvious	command	line	for	us	would	be

			<size>	<center>	surfname	vmapname

where	the	size	and	center	arguments	are	vectors	enclosed	in	angle
brackets,	and	the	other	two	arguments	are	strings,	possibly	enclosed	in

double	quotes.	For	example,

			<1.5	2.5	3.5>	<0>	"Bram	Stoker"	Dracula

Modeler	passes	this	to	us	as	a	single	string.	It's	up	to	us	to	divide	it	into	an
array	of	tokens	similar	to	the	argv	array	passed	to	a	C	console	program's
main	function.	It's	a	little	tricky.	We	can't	just	call	the	C	runtime	function
strtok,	since	spaces	are	only	delimiters	if	they're	not	inside	double	quotes
or	angle	brackets,	and	angle	brackets	are	only	delimiters	if	they're	not
inside	double	quotes.

We'd	also	like	to	support	some	of	the	same	conventions	Modeler	itself
does	for	command	arguments:	Vector	components	after	the	first	are
optional,	and	if	omitted,	are	assigned	the	value	of	the	last	component
present.	Strings	that	don't	contain	spaces	don't	have	to	be	enclosed	in
double	quotes.

It	might	seem	like	we're	making	work	for	ourselves	by	supporting	a	more
complicated	command	line.	But	keep	in	mind	that	users	can	also	write	a
command	line	for	our	plug-in	when	they	assign	it	to	a	key	or	a	menu,	so
conforming	to	Modeler	command	conventions	is	usually	a	good	idea.
We'll	also	get	some	help	from	LightWave	for	converting	the	vectors.

Our	get_argv	function	breaks	the	command	line	into	an	array	of	token
strings.	It	just	looks	at	each	character	in	the	command	string	and	decides
whether	to	add	it	to	the	existing	token	or	start	a	new	one.	Tokenizing	a
string	is	covered	in	numerous	general	programming	texts,	so	I	won't	go
into	detail	about	how	get_argv	is	implemented.

The	function	that	calls	get_argv	is	parse_cmdline.

			int	parse_cmdline(DynaConvertFunc	*convert,	const	char	*cmdline,

						double	*size,	double	*center,	char	*surfname,	char	*vmapname)

			{

						DynaValue	from	=	{	DY_STRING	},	to	=	{	DY_VDIST	};

						int	argc;

						char	**argv;

The	first	argument	is	the	function	returned	by	the	Dynamic	Conversion
global.	This	function	takes	a	DynaValue	of	one	type	(in	our	case,	a	string)
and	returns	one	of	a	different	type	(a	3-vector	of	distance	values).	We'll
use	this	to	convert	the	size	and	center	vector	strings	into	arrays	of	three

doubles.	This	gives	us	automatic	support	for	the	default	values	of	missing
vector	components.

						argv	=	get_argv(cmdline,	4,	&argc);

						if	(argc	==	4)	{

									from.str.buf	=	argv[0];

									to.fvec.defVal	=	1.0;

									convert(&from,	&to,	NULL);

						

									size[0]	=	to.fvec.val[0];

									size[1]	=	to.fvec.val[1];

									size[2]	=	to.fvec.val[2];

						

									from.str.buf	=	argv[1];

									to.fvec.defVal	=	0.0;

									convert(&from,	&to,	NULL);

						

									center[0]	=	to.fvec.val[0];

									center[1]	=	to.fvec.val[1];

									center[2]	=	to.fvec.val[2];

									strcpy(surfname,	argv[2]);

									strcpy(vmapname,	argv[3]);

						}

						free_argv(argc,	argv);

						return	(argc	==	4);

			}

If	get_argv	finds	four	tokens	in	the	command	string,	the	first	two	are
assumed	to	be	vectors	and	are	assigned	to	the	size	and	center	arrays	after
conversion.	The	last	two	are	assumed	to	be	surface	and	vmap	names.	The
function	returns	TRUE	if	the	argument	count	is	4.

Activation

The	activation	function	is	where	we	pull	all	of	this	together.

			XCALL_(int)

			Activate(long	version,	GlobalFunc	*global,	LWModCommand	*local,

						void	*serverData)

			{

						DynaConvertFunc	*dynaf;

						LWXPanelFuncs	*xpanf;

						LWSurfaceFuncs	*surff;

						MeshEditOp	*edit;

We'll	get	these	four	things	by	calling	functions	in	Modeler.

						double	size[3]			=	{	1.0,	1.0,	1.0	};

						double	center[3]	=	{	0.0,	0.0,	0.0	};

						char	surfname[128];

						char	vmapname[128]	=	"MyUVs";

						int	ok	=	0;

This	is	where	our	parameters	are	kept.

						if	(version	!=	LWMODCOMMAND_VERSION)

									return	AFUNC_BADVERSION;

Like	always,	the	first	thing	we	do	is	make	sure	Modeler	is	calling	us	with
the	right	version	of	LWModCommand.

						if	(local->argument[0])	{

The	argument	string	is	always	valid.	To	decide	whether	we've	received	a
command	line,	we	need	to	see	whether	the	string	is	empty.

									dynaf	=	global(LWDYNACONVERTFUNC_GLOBAL,	GFUSE_TRANSIENT);

									if	(!dynaf)	return	AFUNC_BADGLOBAL;

									ok	=	parse_cmdline(dynaf,	local->argument,

												size,	center,	surfname,	vmapname);

									if	(!ok)	return	AFUNC_BADLOCAL;

						}

If	it	isn't	empty,	we	get	our	parameters	from	the	command	line	instead	of
displaying	our	interface.

						else	{

									xpanf	=	global(LWXPANELFUNCS_GLOBAL,	GFUSE_TRANSIENT);

									surff	=	global(LWSURFACEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

									if	(!xpanf	||	!surff)	return	AFUNC_BADGLOBAL;

									if	(!init_surflist(surff))	return	AFUNC_BADGLOBAL;

									ok	=	get_user(xpanf,	size,	center,	surfname,	vmapname);

									free_surflist();

						}

If	we	don't	have	a	command	line,	we	display	our	interface	as	before.

						if	(ok)	{

									edit	=	local->editBegin(0,	0,	OPSEL_GLOBAL);

									if	(edit)	{

												makebox(edit,	size,	center,	surfname,	vmapname);

												edit->done(edit->state,	EDERR_NONE,	0);

									}

						}

If	we	got	parameters	from	somewhere,	either	the	command	line	or	our
interface,	we	perform	the	mesh	edit	that	creates	our	box.	Between	the	calls
to	local->editBegin	and	edit->done,	we	can't	call	any	commands.	These	calls
are	the	boundaries	of	a	single	undo	atom.	Mesh	edits	aren't	actually
applied	until	you	call	done,	so	from	the	point	of	view	of	commands,	the
geometry	database	is	in	an	indeterminate	state.

We	should	probably	track	errors	that	might	occur	in	makebox	and	pass
something	other	than	EDERR_NONE	to	done	if	something	goes	wrong,	but	I	left
that	out	because	we	had	a	lot	of	ground	to	cover.	Don't	be	lazy	like	me.
Stuff	can	go	wrong.

						return	AFUNC_OK;

			}

But	life	is	good.

What's	Next

Up	to	now,	we've	been	writing	imperative	code.	It	marches	from
beginning	to	end,	pausing	only	once	to	allow	the	user	to	type	some
numbers.	In	the	final	installment,	we'll	see	how	to	turn	our	plug-in	into	an
event-driven	tool	that	allows	the	user	to	size	and	center	the	box
interactively.

A	Tool	Box

Author		Ernie	Wright
Date		3	July	2001

In	the	first	three	installments	of	this	tutorial,	I	introduced	the	basics	of
plug-in	creation,	including	the	organization	of	plug-ins	into	classes,	the
use	of	the	SDK	headers,	the	activation	function,	the	server	record,	and
function	pointers.	We	walked	through	the	build	process	with	a	specific
compiler.	We	used	globals	that	allowed	us	to	create	a	user	interface,	query
the	surface	list,	and	convert	between	text	and	binary	representations	of
numbers.	We	learned	how	to	process	a	command	line	so	that	our	plug-in
can	be	run	in	batch	mode.	And	we	created	a	box	in	Modeler,	both	by
issuing	a	command	(in	two	different	ways)	and	by	calling	mesh	edit
functions.

In	this	final	installment,	we'll	apply	what	we've	learned	to	create	a	tool,	a
plug-in	that	interacts	with	the	user	in	the	same	way	that	Modeler's	native
tools	do.	The	user	will	be	able	to	click	and	drag	in	Modeler's	interface	to
position	and	size	our	box,	and	our	non-modal	panel	will	open	when	the
user	requests	our	numeric	options.

Unlike	the	first	three	versions	of	our	box	plug-in,	this	one	isn't	a
CommandSequence	plug-in.	Modeler	tools	are	of	the	MeshEditTool	class.
The	complete	source	code	for	the	box	tool	can	be	found	in
sample/boxes/box4/box.c,	tool.c	and	ui.c.	Because	it's	difficult	to	use	a
windowed	debugger	to	trace	the	execution	of	code	that	responds	to	mouse
clicks	and	drags,	I've	also	written	debug	versions	of	the	tool	and	interface
modules	called	wdbtool.c	and	wdbui.c	that	write	event	information	to	a	file.
wdbtool.c	contains	a	few	lines	of	Windows-specific	code	related	to	hooking
mouse	events.	Hopefully	they	can	be	easily	replaced	for	use	with	other
operating	systems.

The	Basic	Idea

Tool	plug-ins	supply	a	set	of	callbacks,	functions	that	Modeler	calls	while
the	tool	is	active.	These	callbacks	respond	to	user	actions	by	drawing	the

tool	and	generating	the	geometry	that	the	tool	creates	or	modifies.

A	handle	is	a	point	that	the	user	can	grab	and	move	to	change	the
operation	of	the	tool.	Our	plug-in	will	support	two	handles,	one	for	the
center	of	the	box,	and	the	other	at	the	(+x,	+y,	+z)	corner	to	control	the
size.	(More	sophisticated	tools	will	usually	support	many	more	handles.)
The	following	table	shows	the	user	clicking	to	establish	the	box	center,
then	dragging	to	pull	out	the	corner	handle.	The	callbacks	are	listed	in	the
order	in	which	they're	typically	called	during	each	part	of	this	operation.

mouse	down mouse	move mouse	up spacebar

count

start

dirty

test

handle

adjust

dirty

test

build

draw

end done

We'll	cover	the	implementation	of	each	of	these	callbacks,	pretty	much	in
the	same	order.	But	before	we	do	that,	note	that	all	of	the	callbacks	take	an
LWInstance	(a	pointer	to	void)	as	their	first	argument.	This	is	the	tool's
instance,	a	structure	we	design	to	hold	all	of	the	information	we	need	to
maintain	the	tool's	state	and	generate	the	geometry.	Our	instance	data
structure	is	called	BoxData.	One	of	these	is	allocated	in	our	activation
function,	and	it	persists	until	the	user	is	finished	with	the	tool.

Count,	Start

These	two	callbacks	are	related.	They're	only	called	when	the	user	clicks
the	left	mouse	button	to	begin	dragging	the	tool,	and	start	is	only	called	if
count	returns	0.

			static	int	Count(BoxData	*box,	LWToolEvent	*event)

			{

						return	box->active	?	2	:	0;

			}

From	our	tool's	point	of	view,	there	are	two	different	kinds	of	mouse	down
events.	The	first	is	the	initial	mouse	down,	before	any	box	has	been
dragged	out	and	before	we've	drawn	the	handles.	For	that	case,	our	box-
>active	is	FALSE,	and	our	Count	returns	0,	so	that	our	Start	will	be	called.
The	other	kind	of	mouse	down	occurs	after	the	first	one.	The	user	is
modifying	an	existing	box,	rather	than	starting	a	new	one.	In	this	second
case,	Count	returns	2	(because	we	have	2	handles),	and	Modeler	doesn't	call
Start.

			static	int	Start(BoxData	*box,	LWToolEvent	*event)

			{

						int	i;

						if	(!box->active)

									box->active	=	1;

						for	(i	=	0;	i	<	3;	i++)	{

									box->center[i]	=	event->posSnap[i];

									box->size[i]	=	0.0;

						}

						calc_handles(box);

						return	1;

			}

When	Modeler	calls	Start,	the	user	has	just	clicked	the	left	mouse	button	to
begin	a	new	box.	We	make	sure	box->active	is	now	TRUE,	and	we	set	the
size	of	the	box	to	0	and	the	center	to	the	point	at	which	the	user	clicked.
We	initialize	the	precalculated	handle	positions,	then	return	1,	the	index	of
the	second	handle,	to	indicate	that	the	user	has	grabbed	the	sizing	handle.
While	the	left	mouse	button	remains	down,	the	handle	callback	will	only	be
called	for	this	handle.

Dirty,	Test

These	two	callbacks	are	also	somewhat	related.	The	dirty	callback	tells
Modeler	whether	the	tool	needs	to	be	redrawn	on	the	screen.	The	test
callback	tells	Modeler	whether	the	tool	needs	to	create	new	geometry	or
discard	existing	geometry.

			static	int	Dirty(BoxData	*box)

			{

						return	box->dirty	?	LWT_DIRTY_WIREFRAME	|	LWT_DIRTY_HELPTEXT	:	0;

			}

Dirty	is	only	concerned	with	the	tool's	appearance	to	the	user.	After	the
initial	mouse	down	for	a	new	box,	box->dirty	is	FALSE,	since	we	haven't

drawn	anything	yet,	and	we	tell	Modeler	that	nothing	needs	to	be	redrawn.
During	mouse	move	events,	our	Adjust	callback	is	called,	and	this	sets	box-
>dirty	to	TRUE	so	that	we	get	redrawn	to	follow	the	user's	mouse	moves.
We're	also	dirty	after	receiving	reset	and	activate	events	in	our	Event
callback.	Our	Draw	callback	sets	box->dirty	to	FALSE	again	after	redrawing
the	tool.

			static	int	Test(BoxData	*box)

			{

						return	box->update;

			}

Like	box->dirty,	our	Adjust	and	Event	callbacks	set	box->update,	depending	on
our	tool's	state	at	that	point.	Build	also	sets	it	(to	LWT_TEST_NOTHING)	after
creating	the	box	geometry.	Our	Test	just	returns	the	value	in	box->update.

Handle

This	callback	tells	Modeler	about	one	of	our	handles.

			static	int	Handle(BoxData	*box,	LWToolEvent	*event,	int	handle,

						LWDVector	pos)

			{

						if	(handle	>=	0	&&	handle	<	2)	{

									pos[0]	=	box->hpos[handle][0];

									pos[1]	=	box->hpos[handle][1];

									pos[2]	=	box->hpos[handle][2];

						}

						return	handle	+	1;

			}

Handle	is	called	during	mouse	moves,	but	only	for	the	handle	the	user	is
currently	moving.	It's	also	called	right	after	mouse	down,	if	Count	returns	a
non-zero	number	of	handles.	In	that	case,	it's	called	for	every	handle,	and
Modeler	uses	the	positions	to	determine	which	handle	the	user	has
selected.	The	return	value	is	the	priority	of	the	handle,	which	is	used	to
decide	between	handles	that	overlap	visually	(have	the	same	apparent
position	in	the	viewport).	When	the	user	points	to	two	or	more
overlapping	handles,	Modeler	chooses	the	one	with	the	highest	priority.

Adjust

The	adjust	callback	is	called	during	mouse	moves	to	tell	you	that	a	handle
is	being	dragged.

			static	int	Adjust(BoxData	*box,	LWToolEvent	*event,	int	handle)

			{

						if	(event->portAxis	>=	0)	{

									if	(event->flags	&	LWTOOLF_CONSTRAIN)	{

												int	x,	y,	xaxis[]	=	{	1,	2,	0	},	yaxis[]	=	{	2,	0,	1	};

												x	=	xaxis[event->portAxis];

												y	=	yaxis[event->portAxis];

												if	(event->flags	&	LWTOOLF_CONS_X)

															event->posSnap[x]	-=	event->deltaSnap[x];

												else	if	(event->flags	&	LWTOOLF_CONS_Y)

															event->posSnap[y]	-=	event->deltaSnap[y];

									}

						}

Before	we	move	the	handle,	we	check	whether	its	new	position	should	be
quantized	or	fixed	by	a	constraint.	Typically,	this	is	to	account	for	the	user
holding	down	the	Ctrl	key.	The	fact	that	Modeler	doesn't	do	this	for	us
means	that	we	aren't	required	to	honor	this	convention,	but	in	our	case
(and	in	most	cases),	we	have	no	reason	not	to.

						if	(handle	==	0)	{		/*	center	*/

									box->center[0]	=	event->posSnap[0];

									box->center[1]	=	event->posSnap[1];

									box->center[2]	=	event->posSnap[2];

						}

						else	if	(handle	==	1)	{		/*	corner	*/

									box->size[0]	=	2.0	*	fabs(event->posSnap[0]

												-	box->center[0]);

									box->size[1]	=	2.0	*	fabs(event->posSnap[1]

												-	box->center[1]);

									box->size[2]	=	2.0	*	fabs(event->posSnap[2]

												-	box->center[2]);

						}

						calc_handles(box);

						box->dirty	=	1;

						box->update	=	LWT_TEST_UPDATE;

						return	handle;

			}

If	the	user's	moving	the	center	handle,	we	set	the	box	center	to	the	new
position,	and	if	the	user	is	moving	the	size	handle,	we	recalculate	the	size.
In	both	cases,	we	precalculate	the	handle	positions	for	the	next	Handle	and
Draw	calls,	and	we	tell	Modeler	that	we	need	to	be	both	redrawn	and	rebuilt.

Build

Finally!	This	callback	creates	geometry	based	on	what	the	user	is	doing.

			static	LWError	Build(BoxData	*box,	MeshEditOp	*edit)

			{

						makebox(edit,	box);

						box->update	=	LWT_TEST_NOTHING;

						return	NULL;

			}

All	we	have	to	do	here	is	call	our	old	friend	makebox,	passing	it	the
MeshEditOp	and	the	size	and	center	set	by	the	user.	And	since	we've	just
built	the	geometry,	we	set	box->update	to	NOTHING.

Draw

Here	we	draw	the	tool	itself.	We	don't	have	to	draw	the	geometry	we
create,	since	Modeler	takes	care	of	that	for	us.

			static	void	Draw(BoxData	*box,	LWWireDrawAccess	*draw)

			{

						if	(!box->active)	return;

						draw->moveTo(draw->data,	box->hpos[0],	LWWIRE_SOLID);

						draw->lineTo(draw->data,	box->hpos[1],	LWWIRE_ABSOLUTE);

						box->dirty	=	0;

			}

To	keep	this	simple,	we're	drawing	a	single	line	segment	connecting	our
two	handles.	More	typically,	you'll	draw	a	bounding	box	or	some	other
representation	of	the	scope	of	your	tool's	effects,	and	you'll	draw	the
handles	in	some	way,	so	that	the	user	knows	where	they	are.

Help

The	help	callback	returns	a	line	of	text	that	Modeler	draws	while	the	tool	is
selected.	Modeler	calls	Help	whenever	Dirty	returns	the	LWT_DIRTY_HELPTEXT	bit.
It	also	calls	Help	each	time	the	user	moves	the	mouse	cursor	to	a	new
viewport,	so	that	you	can	return	a	different	string	for	each	view.

			static	const	char	*Help(BoxData	*box,	LWToolEvent	*event)

			{

						static	char	buf[]	=	"Box	Tool	Plug-in	Tutorial";

						return	buf;

			}

Event

This	is	called	when	the	user	drops,	resets	or	re-activates	the	tool.

			static	void	Event(BoxData	*box,	int	code)

			{

						switch	(code)

						{

									case	LWT_EVENT_DROP:

									if	(box->active)	{

												box->update	=	LWT_TEST_REJECT;

												break;

									}

The	user	can	drop	a	tool	by	clicking	in	a	blank	area	of	Modeler's	interface
outside	the	viewports.	Generally	this	means	that	the	user	wants	to	discard
the	geometry	created	with	the	tool,	so	if	we've	created	some	geometry
(box->active	is	TRUE),	we	set	box->update	to	LWT_TEST_REJECT,	so	that	Modeler
will	discard	the	geometry	the	next	time	it	calls	Test.	If	box->active	is	FALSE,
we	fall	through	to	the	next	case,	treating	a	drop	like	a	reset.

									case	LWT_EVENT_RESET:

												box->size[0]	=	box->size[1]	=	box->size[2]	=	1.0;

												box->center[0]	=	box->center[1]	=	box->center[2]	=	0.0;

												strcpy(box->surfname,	"Default");

												strcpy(box->vmapname,	"MyUVs");

												box->update	=	LWT_TEST_UPDATE;

												box->dirty	=	1;

												calc_handles(box);

												break;

A	reset	event	occurs	when	the	user	selects	the	Reset	action	on	Modeler's
Numeric	panel.	We	set	all	of	the	box	parameters	to	default	values	and	set
our	state	variables	so	that	Modeler	will	both	rebuild	and	redraw	us.

									case	LWT_EVENT_ACTIVATE:

												box->update	=	LWT_TEST_UPDATE;

												box->active	=	1;

												box->dirty	=	1;

												break;

						}

			}

An	activate	event	can	be	triggered	from	the	Numeric	window	or	with	a
keystroke,	and	it	should	restart	the	edit	operation	with	its	current	settings.

End,	Done

These	sound	confusingly	alike.	The	end	callback	is	called	at	the	completion
of	a	mouse	down,	mouse	move,	mouse	up	sequence.	While	the	tool	is
selected,	you	may	get	any	number	of	end	calls.	The	done	callback	is	called
when	the	user	is	finished	with	the	tool	and	has	deselected	it,	and	it's
typically	used	to	free	memory	allocated	by	the	activation	function.

			static	void	End(BoxData	*box,	int	keep)

			{

						box->update	=	LWT_TEST_NOTHING;

						box->active	=	0;

			}

Our	End	sets	box->update	to	NOTHING	and	box->active	to	FALSE,	the	state	we
want	our	tool	data	to	be	in	the	next	time	Count	is	called.

			static	void	Done(BoxData	*box)

			{

						free(box);

			}

Our	Done	frees	the	BoxData	structure.

The	Interface

The	panel	we	create	for	a	tool	is	displayed	inside	Modeler's	Numeric	panel
when	the	tool	is	active.	We	don't	open	it	ourselves.	We	create	the	panel	in
yet	another	callback,	and	Modeler	takes	care	of	opening	or	closing	it.	The
panel	becomes	just	another	way	for	the	user	to	interact	with	the	tool.	As
settings	are	changed	on	the	panel,	the	geometry	is	changed	and	the	tool	is
redrawn,	just	as	if	the	user	were	dragging	the	mouse	in	the	viewport.

So	our	panel	is	now	non-modal.	It	differs	from	previous	incarnations	of
our	interface	in	a	couple	of	other	ways,	too.	Since	tools	use	instances	(our
BoxData	structure),	it's	more	natural	to	make	our	panel	an	LWXP_VIEW	instead
of	an	LWXP_FORM.	And	the	surface	name	list	is	built	with	the	popup	callbacks
I	avoided	in	Part	3.

			LWXPanelID	Panel(BoxData	*box)

			{

						LWXPanelID	panel;

						static	LWXPanelControl	ctl[]	=	{

									{	ID_SIZE,					"Size",						"distance3"		},

									{	ID_CENTER,			"Center",				"distance3"		},

									{	ID_SURFLIST,	"Surface",			"iPopChoice"	},

									{	ID_VMAPNAME,	"VMap	Name",	"string"					},

									{	0	}

						};

						static	LWXPanelDataDesc	cdata[]	=	{

									{	ID_SIZE,					"Size",						"distance3"	},

									{	ID_CENTER,			"Center",				"distance3"	},

									{	ID_SURFLIST,	"Surface",			"integer"			},

									{	ID_VMAPNAME,	"VMap	Name",	"string"				},

									{	0	}

						};

						LWXPanelHint	hint[]	=	{

									XpLABEL(0,	"Box	Tutorial	Part	4"),

									XpPOPFUNCS(ID_SURFLIST,	get_surfcount,	get_surfname),

									XpDIVADD(ID_SIZE),

									XpDIVADD(ID_CENTER),

									XpEND

						};

The	control	and	data	description	arrays	are	the	same	as	before,	with	one
important	difference:	they've	been	declared	static.	Our	panel	is	no	longer
modal.	It	persists	after	the	Panel	function	returns,	and	the	control	and	data

descriptions	must	also.

The	XpSTRLIST	hint	has	been	replaced	by	an	XpPOPFUNCS	hint	that	tells	XPanels
to	use	the	get_surfcount	and	get_surfname	callbacks	with	the	surface	name
popup.	These	callbacks	will	be	called	to	initialize	the	list	each	time	the
user	clicks	on	it	to	open	it.	They	use	the	same	techniques	for	enumerating
the	surfaces	in	Modeler	that	init_surflist	used	in	Part	3.

						panel	=	xpanf->create(LWXP_VIEW,	ctl);

						if	(!panel)	return	NULL;

						xpanf->describe(panel,	cdata,	Get,	Set);

						xpanf->hint(panel,	0,	hint);

						return	panel;

			}

Recall	that	in	Part	3,	the	third	and	fourth	arguments	to	describe	were
NULL.	Since	our	panel	is	a	view,	we	now	pass	get	and	set	callbacks.

Get,	Set

It's	easy	to	get	these	two	mixed	up.	Just	try	to	remember	that	the	names	are
from	LightWave's	point	of	view,	not	yours	(you're	the	server,	LightWave	is
the	client).	XPanels	calls	the	Get	callback	when	it	wants	to	get	the	value	of
a	control	from	you.	It	calls	the	Set	callback	when	it	wants	you	to	write	the
value	of	a	control	into	your	instance	data.

			static	void	*Get(BoxData	*box,	unsigned	long	vid)

			{

						static	int	i;

						switch	(vid)	{

									case	ID_SIZE:						return	&box->size;

									case	ID_CENTER:				return	&box->center;

									case	ID_SURFLIST:		i	=	get_surfindex(box->surfname);

																												return	&i;

									case	ID_VMAPNAME:		return	&box->vmapname;

									default:											return	NULL;

						}

			}

Get	is	usually	pretty	straightforward.	Just	return	a	pointer	to	the	appropriate
element	of	your	instance	data.

			static	int	Set(BoxData	*box,	unsigned	long	vid,	void	*value)

			{

						const	char	*a;

						double	*d;

						int	i;

						switch	(vid)

						{

									case	ID_SIZE:

												d	=	(double	*)	value;

												sbox.size[0]	=	box->size[0]	=	d[0];

												sbox.size[1]	=	box->size[1]	=	d[1];

												sbox.size[2]	=	box->size[2]	=	d[2];

												break;

									case	ID_CENTER:

												...

Set	adds	a	few	wrinkles.	The	first	is	that	you	generally	need	to	cast	the
value	argument	before	assigning	its	contents	to	your	instance	data,	so	it's
convenient	to	have	temporary	pointers	of	the	right	type	handy.	The
second,	for	us,	is	that	we'd	like	to	keep	a	local	copy	of	the	instance,	so	that
we	can	use	it	to	initialize	the	tool	instance	the	next	time	the	user	activates
the	tool.	The	user's	perception	of	this	is	that	the	tool	"remembers"	what
was	done	previously.	So	all	of	our	assignments	are	duplicated	for	the	local
copy.

									default:

												return	LWXPRC_NONE;

						}

						box->update	=	LWT_TEST_UPDATE;

						box->dirty	=	1;

						calc_handles(box);

						return	LWXPRC_DRAW;

			}

Lastly,	when	the	value	of	a	control	changes,	we	want	to	tell	Modeler	to
redraw	and	rebuild	us	the	next	time	it	calls	Dirty	and	Test,	so	we	set	box-
>update	and	box->dirty	accordingly	and	precalculate	the	positions	of	our
handles.

The	Activation	Function

Our	activation	function	is	significantly	different	from	the	ones	in	previous
installments	of	this	tutorial.	Instead	of	being	finished	when	the	function
returns,	tool	plug-ins	haven't	really	begun	yet.		The	only	thing	a	tool's
activation	function	is	required	to	do,	and	all	ours	does,	is	create	an
instance	and	tell	Modeler	where	to	find	the	callbacks.	In	this	sense,
Modeler	tools	are	like	Layout	handlers,	which	supply	callbacks	that
Layout	later	calls	during	animation	and	rendering.

			XCALL_(int)

			Activate(long	version,	GlobalFunc	*global,	LWMeshEditTool	*local,

						void	*serverData)

			{

						BoxData	*box;

						if	(version	!=	LWMESHEDITTOOL_VERSION)

									return	AFUNC_BADVERSION;

Note	that	the	third	argument	is	now	LWMeshEditTool	instead	of
LWModCommand.	Each	plug-in	class	gets	its	own	local	data.	As	always,
the	first	thing	we	do	is	ensure	that	the	version	of	this	structure	in	our	copy
of	the	headers	is	the	same	as	the	version	being	passed	to	us	by	Modeler.

						if	(!get_xpanf(global))	return	AFUNC_BADGLOBAL;

						box	=	new_box();

						if	(!box)	return	AFUNC_OK;

						local->instance	=	box;

The	get_xpanf	and	new_box	functions	are	in	ui.c,	since	that's	where	the
LWXPanelFuncs	and	LWSurfaceFuncs	pointers	and	the	local	copy	of	the
box	settings	are	stored	and	used.	get_xpanf	gets	the	globals	used	by	the
interface,	and	new_box	allocates	a	BoxData	and	initializes	it	with	default
values	(or	values	remembered	from	previous	invocations).	The	BoxData
will	be	freed	when	Done	is	called.

						local->tool->done			=	Done;

						local->tool->help			=	Help;

						local->tool->count		=	Count;

						local->tool->handle	=	Handle;

						local->tool->adjust	=	Adjust;

						local->tool->start		=	Start;

						local->tool->draw			=	Draw;

						local->tool->dirty		=	Dirty;

						local->tool->event		=	Event;

						local->tool->panel		=	Panel;

						local->build								=	Build;

						local->test									=	Test;

						local->end										=	End;

						return	AFUNC_OK;

			}

And	we're	done!	After	returning	from	the	activation	function,	Modeler
will	start	calling	your	callbacks	through	the	function	pointers	you've
supplied.

Server	Tags

Finally,	note	that	we've	added	server	tags	to	the	ServerRecord	array.

			static	ServerTagInfo	srvtag[]	=	{

						{	"Tutorial:	Box	4",				SRVTAG_USERNAME	|	LANGID_USENGLISH	},

						{	"create",													SRVTAG_CMDGROUP	},

						{	"objects/primitives",	SRVTAG_MENU	},

						{	"Tut	Box	4",										SRVTAG_BUTTONNAME	},

						{	"",	0	}

			};

These	are	explained	in	detail	on	the	Common	Elements	page	of	the	SDK.
The	user	name	appears	in	the	interface	in	plug-in	lists	and	popup	menus.
The	server	name	is	used	if	this	isn't	supplied,	but	there	are	lexical
constraints	on	server	names	(they	can't	contain	spaces,	for	example)	that
make	them	less	user-friendly.	Modeler	is	currently	ignoring	the	MENU	and
CMDGROUP	tags,	but	it	may	not	in	the	future.

What's	Next

Unless	you	had	the	evidence	in	front	of	you,	you	might	not	believe	that	a
40-page	tutorial	about	writing	box	plug-ins	was	possible.	But	on	this	thin
pretext,	we've	briefly	visited	most	of	the	important	techniques	used	to
write	plug-ins	for	LightWave	Modeler.	In	the	future,	we	might	be	seeing
even	more	boxes	on	a	similar	tour	of	Layout...

AnimLoaderHandler
AnimLoaderInterface

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwanimlod.h

An	animation	loader	loads	frames	from	an	animation	file.	An	animation
file	is	a	file	that	contains	a	time	sequence	of	still	images,	or	data	that	can
be	interpreted	that	way.	Animation	loaders	must	be	prepared	to	provide
random	access	to	the	frames	in	an	animation	file.	They	must	also	be	able
to	distinguish	between	files	they	can	load	and	those	they	can't.	LightWave
relies	on	this	to	choose	the	proper	loader	for	an	animation	file.

Handler	Activation	Function

			XCALL_(int)	MyAnimLoader(long	version,	GlobalFunc	*global,

						LWAnimLoaderHandler	*local,	void	*serverData);

The	local	argument	to	an	anim	loader's	activation	function	is	an
LWAnimLoaderHandler.

			typedef	struct	st_LWAnimLoaderHandler	{

						LWInstanceFuncs	*inst;

						int													(*frameCount)	(LWInstance);

						double										(*frameRate)		(LWInstance);

						double										(*aspect)					(LWInstance,	int	*w,	int	*h,

																																							double	*pixAspect);

						void												(*evaluate)			(LWInstance,	double,

																																							LWAnimFrameAccess	*);

			}	LWAnimLoaderHandler;

The	first	member	of	this	structure	points	to	the	standard	instance	handler
functions.	An	anim	loader	also	provides	functions	that	return	image	pixels
and	other	information	from	the	file.

The	context	argument	to	the	create	function	is	the	filename.	The	create
function	should	open	the	file	and	determine	whether	it's	in	a	format	the
loader	can	load.	If	the	format	isn't	recognized,	create	should	return	NULL,
without	setting	the	error	string.	LightWave	will	understand	this	to	mean
that	the	file	should	be	handled	by	a	different	anim	loader.

count	=	frameCount(instance)

Returns	the	number	of	frames	in	the	file.
fps	=	frameRate(instance)

Returns	the	animation's	playback	speed,	in	frames	per	second.

frame_aspect	=	aspect(instance,	w,	h,	pixel_aspect)
Fills	in	the	width	and	height	of	the	frames	and	the	pixel	aspect	ratio
and	returns	the	frame	aspect	ratio.	The	aspect	ratio	of	a	rectangle
describes	its	shape--whether	it's	short	and	broad,	tall	and	thin,	or
square--and	is	expressed	as	width	/	height.	The	aspect	ratios	of	each
pixel	and	of	the	image	as	a	whole	are	related	in	the	following	way.

frame_aspect	=	w	*	pixel_aspect	/	h
pixel_aspect	=	h	*	frame_aspect	/	w

The	aspect	function	therefore	asks	for	redundant	information,	so	to
ensure	that	what	you're	returning	is	self-consistent,	you	should
calculate	one	of	the	aspects	in	terms	of	the	other.

evaluate(instance,	time,	access)

Load	an	image	at	the	specified	running	time	from	the	file.	At	the
loader's	discretion,	the	image	can	be	the	frame	nearest	to	the	time	or
an	interpolation	of	two	or	more	frames.	The	access	structure,
described	below,	provides	the	functions	the	loader	uses	to	pass	image
data	to	Layout.

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.	LightWave	currently
doesn't	give	the	user	an	interface	for	animation	loaders,	although	it	may	in
a	future	version.

Anim	Frame	Access

The	access	structure	passed	to	the	loader's	evaluation	function	uses	the
image	I/O	mechanism	to	pass	image	data	to	Layout.

			typedef	struct	st_LWAnimFrameAccess	{

						void														*priv_data;

						LWImageProtocolID	(*begin)	(void	*,	int	type);

						void														(*done)		(void	*,	LWImageProtocolID);

			}	LWAnimFrameAccess;

priv_data

An	opaque	pointer	to	data	used	by	Layout.	Pass	this	to	begin	and	done.

protocol	=	begin(priv_data,	type)

Call	this	to	tell	Layout	that	you're	about	to	send	it	image	data	for	a
frame.	The	type	argument	describes	the	kind	of	pixel	data	you'll	send
and	can	be	any	of	the	image	I/O	pixel	types.	Layout	returns	an
LWImageProtocolID	containing	the	functions	used	to	pass	the	data.

done(priv_data,	protocol)

Call	this	to	tell	Layout	that	you've	finished	sending	the	image.

Example

The	ancounter	sample	is	a	simple	animation	loader	that	draws	its	frames
on	the	fly	based	on	a	small	amount	of	information	in	a	text	file.	The	text
file	is	the	"animation	file"	the	user	selects	in	order	to	invoke	this	loader.

Every	animation	file	passes	through	every	anim	loader's	create	function
until	one	of	the	loaders	claims	the	file	as	its	own.	AnCounter	reads	the
first	line	of	each	file	and	compares	it	to	a	phrase	that	identifies	the	file	as
an	AnCounter	text	file.	If	the	phrase	isn't	present	at	the	start	of	the	file,	the
create	function	quietly	fails	by	returning	NULL.

			fp	=	fopen(filename,	"r");

			if	(!fp)	{

						*emsg	=	"Couldn't	open	anim	file.";

						return	NULL;

			}

			fgets(buf,	sizeof(buf),	fp);

			if	(strncmp(buf,	"Counter	AnimLoader	File",	23))	{

						fclose(fp);

						return	NULL;

			}

If	the	phrase	is	there,	create	allocates	an	instance	structure	and	initializes	it
using	the	information	in	the	file.	The	evaluation	function	later	uses	this
information	to	make	a	"counter"	image.	A	string	of	the	form	"hh:mm:ss:ff"
(hours,	minutes,	seconds,	frames)	is	made	from	the	time	argument,	and
this	is	rasterized,	using	the	font	information	in	the	text	file,	and	passed	to
LightWave	as	the	current	frame.

			if	(!getTextImage(counter,	text))	return;

			ip	=	access->begin(access->priv_data,	LWIMTYP_GREY8);

			if	(!ip)	return;

			LWIP_SETSIZE(ip,	counter->w,	counter->h);

			LWIP_SETPARAM(ip,	LWIMPAR_ASPECT,	0,	1.0f);

			for	(i	=	0;	i	<	counter->h;	i++)	{

						result	=	LWIP_SENDLINE(ip,	i,	counter->buf	+	i	*	counter->w);

						if	(result	!=	IPSTAT_OK)	break;

			}

			LWIP_DONE(ip,	result);

			access->done(access->priv_data,	ip);

AnimSaverHandler
AnimSaverInterface

Availability		LightWave	6.0
Component		Layout
Header		lwanimsav.h

Animation	savers	write	out	a	sequence	of	rendered	images	as	an	animation
file.	Anim	savers	add	frames	to	the	animation	file	as	each	frame	is
rendered.	The	rendered	image	is	passed	to	the	saver	in	the	same	way	it's
passed	to	frame	buffer	display	plug-ins,	except	that	animation	savers	are
given	a	filename,	and	there	is	no	pause	after	each	frame.

Handler	Activation	Function

			XCALL_(int)	MyAnimSaver(long	version,	GlobalFunc	*global,

						LWAnimSaverHandler	*local,	void	*serverData);

The	local	argument	to	an	anim	saver's	activation	function	is	an
LWAnimSaverHandler.

			typedef	struct	st_LWAnimSaverHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						int														type;

						LWError									(*open)		(LWInstance,	int	w,	int	h,

																																		const	char	*filename);

						void												(*close)	(LWInstance);

						LWError									(*begin)	(LWInstance);

						LWError									(*write)	(LWInstance,	const	void	*R,	const	void	*G,

																																		const	void	*B,	const	void	*alpha);

			}	LWAnimSaverHandler;

The	first	two	member	of	this	structure	point	to	the	standard	handler
functions.	In	addition	to	these,	an	anim	loader	also	provides	functions	for
opening	and	closing	the	file	and	for	writing	a	frame,	and	it	specifies	what
type	of	data	it	wants	to	receive.	The	context	argument	to	the	inst->create
function	is	currently	unused.

type

The	type	of	pixel	data	Layout	should	send	to	the	write	function.	This
can	be	either	LWAST_UBYTE	or	LWAST_FLOAT.

error	=	open(instance,	width,	height,	filename)

Open	the	file.	This	function	receives	the	width	and	height	of	the
frame	in	pixels,	and	the	name	of	the	file.	Called	when	a	rendering
session	begins.	Returns	an	error	message	string	if	an	error	occurs,
otherwise	it	returns	NULL.

close(instance)

Close	the	file.	This	is	called	when	rendering	is	complete.
error	=	begin(instance)

Prepare	to	receive	the	next	frame.	Returns	an	error	message	string	if
an	error	occurs,	otherwise	it	returns	NULL.

error	=	write(instance,	R,	G,	B,	alpha)

Write	the	next	scanline	of	the	current	frame.	The	scanlines	for	each
frame	are	sent	in	order	from	top	to	bottom.	The	buffer	arguments
point	to	arrays	of	color	channel	values.	There	are	exactly	width	values
for	each	channel,	one	for	each	pixel	in	a	scanline,	and	the	values	are
either	unsigned	bytes	or	floats,	depending	on	the	type	code.	Returns
an	error	message	string	or	NULL.

You'll	need	a	way	to	know	when	you	can	write	each	frame.	You	can
initialize	a	scanline	index	to	0	in	your	begin	and	then	increment	it	in	write
until	you've	received	the	last	scanline.	Or	you	can	save	the	last	completed
frame	in	begin	(save	frame	1	when	begin	is	called	for	frame	2,	and	so	on)
and	save	the	last	frame	in	close.

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.	The	saver's	interface
is	invoked	by	Layout	when	the	user	selects	the	saver	from	the	anim	saver
list	on	the	Render	panel.

Example

The	SDK	avisave	sample	is	an	anim	saver	for	Windows	AVI	files.

ChannelHandler

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwchannel.h

A	channel	is	a	value	that	can	vary	continuously	with	time.	Channels	are
everywhere	in	LightWave.	Any	animation	parameter	that	can	be
enveloped	is	associated	with	an	underlying	channel.	Channel	handlers	dip
into	the	stream	of	a	parameter	and	alter	its	value.

Handler	Activation	Function

			XCALL_(int)	MyChannel(long	version,	GlobalFunc	*global,

						LWChannelHandler	*local,	void	*serverData);

The	local	argument	to	a	channel	handler's	activation	function	is	an
LWChannelHandler.

			typedef	struct	st_LWChannelHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						void												(*evaluate)	(LWInstance,	const	LWChannelAccess	*);

						unsigned	int				(*flags)				(LWInstance);

			}	LWChannelHandler;

The	first	two	members	of	this	structure	are	standard	instance	handler
functions.	The	context	argument	to	the	create	function	is	the	LWChannelID
of	the	associated	channel.	When	the	plug-in	is	activated	by	Modeler,	the
item	member	of	the	LWChannelHandler	will	be	NULL.	Check	for	this
before	assigning	the	item	callbacks.

A	channel	handler	also	provides	an	evaluation	function	and	a	flags
function.

evaluate(instance,	access)

The	channel	value	is	examined	and	modified	at	each	time	step	using
functions	in	the	channel	access	structure,	described	below.

f	=	flags(instance)

Returns	an	integer	containing	bit	flags	combined	using	bitwise-or.	No
flags	are	currently	defined	for	channel	handlers,	so	this	should	return

0.

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.	Channel	handlers	are
selected	on	the	graph	editor	panel,	and	their	non-modal	interfaces	will	be
drawn	there.

Channel	Access

This	is	the	structure	passed	to	the	handler's	evaluation	function.

			typedef	struct	st_LWChannelAccess	{

						LWChannelID			chan;

						LWFrame							frame;

						LWTime								time;

						double								value;

						void									(*getChannel)		(LWChannelID	chan,	LWTime	t,

																																					double	*value);

						void									(*setChannel)		(LWChannelID	chan,	const	double	value);

						const	char	*	(*channelName)	(LWChannelID	chan);

			}	LWChannelAccess;

chan

The	channel	ID.
frame

The	frame	number	of	the	evaluation.
time

The	time	of	the	evaluation,	in	seconds.
value

The	current	value	of	the	channel	at	the	given	time.
getChannel(channel,	time,	value)

Retrieves	a	value	from	a	channel.
setChannel(channel,	value)

Sets	the	value	of	the	channel.
name	=	channelName(channel)

Returns	the	name	associated	with	the	channel	ID.

Example

Several	of	the	SDK	samples	are	channel	handlers.	NoisyChan	uses	the

texture	system's	noise	function	to	modify	a	channel.	A	channel	handler	is
one	of	four	classes	demonstrated	in	txchan,	which	also	uses	textures	as
channel	modifiers.	xpanchan	is	a	channel	handler	that	demonstrates	four
ways	of	displaying	the	same	XPanels	interface.

ColorPicker

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwdialog.h

Color	pickers	prompt	the	user	for	a	color	selection.	They	replace	the
operating	system's	default	color	selection	mechanism,	or	provide	one	if	no
default	exists.

See	the	Color	Picker	global	for	a	discussion	of	color	pick	requests	from
the	host's	point	of	view.

Activation	Function

			XCALL_(int)	MyColorPick(long	version,	GlobalFunc	*global,

						LWColorPickLocal	*local,	void	*serverData);

The	local	argument	to	a	color	picker's	activation	function	is	an
LWColorPickLocal.

			typedef	void	LWHotColorFunc(void	*data,	float	r,	float	g,	float	b);

			typedef	struct	st_LWColorPickLocal	{

						int													result;

						const	char					*title;

						float											red,	green,	blue;

						void											*data;

						LWHotColorFunc	*hotFunc;

			}	LWColorPickLocal;

result

The	result	of	the	request.	Set	this	to	1	if	the	user	selects	a	color,	0	if
the	user	cancels	the	request,	and	a	negative	number	to	indicate	an
error.

title

The	title	string.	This	is	generally	displayed	near	the	top	of	the	color
dialog	and	tells	the	user	the	context	of	the	color	request.

red,	green,	blue

The	initial	color.	If	the	user	selects	a	color,	the	selected	color	should
be	written	in	these	fields.	The	nominal	range	for	RGB	levels	is	0.0	to
1.0,	but	they	can	be	outside	this	range.

data

A	pointer	to	data	that	should	be	passed	to	the	caller's	color	callback.
hotFunc(data,	r,	g,	b)

A	color	callback	supplied	by	the	host.	Call	this	while	the	user	is
playing	with	any	of	your	color	selection	mechanisms.	This	allows	the
host	to	update	its	display	interactively	as	the	user	selects	a	color.	(The
"hot"	part	of	the	name	refers	to	this	dynamic	interaction.	This	isn't	a
video	color	gamut	test.)

Example

The	simpcolr	SDK	sample	is	a	simple	example	of	a	color	picker.

CommandSequence

Availability		LightWave	6.0
Component		Modeler
Header		lwcmdseq.h

Command	sequence	plug-ins	issue	commands	to	create	and	manipulate
geometry	in	Modeler.	They	also	have	access	to	the	same	mesh	editing
functions	as	the	MeshDataEdit	class.

Activation	Function

			XCALL_(int)	MyCmdSeq(long	version,	GlobalFunc	*global,

						LWModCommand	*local,	void	*serverData);

The	local	argument	to	a	command	sequence's	activation	function	is	an
LWModCommand.

			typedef	struct	st_LWModCommand	{

						void										*data;

						const	char				*argument;

						LWCommandCode	(*lookup)			(void	*,	const	char	*cmdName);

						int											(*execute)		(void	*,	LWCommandCode	cmd,	int	argc,

																																			const	DynaValue	*argv,

																																			EltOpSelect,	DynaValue	*result);

						MeshEditBegin	*editBegin;

						int											(*evaluate)	(void	*,	const	char	*command);

			}	LWModCommand;

data
An	opaque	pointer	to	data	used	internally	by	Modeler.	Pass	this	as	the
first	argument	to	the	lookup,	execute	and	evaluate	functions.

argument
Users	and	other	plug-ins	can	invoke	your	plug-in	with	arguments,
which	are	stored	here	as	a	string.

cmdcode	=	lookup(data,	cmdname)
Returns	an	integer	code	corresponding	to	the	command	name.	The
command	is	issued	by	passing	the	command	code	to	the	execute
function.	Command	codes	are	constant	for	a	given	Modeler	session,
so	this	only	needs	to	be	called	once	per	command,	after	which	the
codes	can	be	cached	and	then	used	in	any	number	of	calls	to	execute.

result	=	execute(data,	cmdcode,	argc,	argv,	selection,	cmdresult)
Issue	the	command	given	by	the	command	code	argument.	argv	is	an
array	of	DynaValue	arguments.	argc	is	the	number	of	arguments	in	the
argv	array.	The	selection	determines	which	geometry	will	be	affected
by	the	command	and	can	be	any	one	of	the	EltOpSelect	codes	except
OPSEL_MODIFY.	The	result	of	the	command	is	written	in	cmdresult.	The
function	returns	CSERR_NONE	(0)	if	it	succeeds	or	one	of	the	following
non-zero	error	codes.

CSERR_MEMORY
CSERR_IO
CSERR_USERABORT
CSERR_ARGCOUNT
CSERR_ARGTYPE
CSERR_ARGVALUE
CSERR_OPFAILURE
CSERR_BADSEL

edit	=	editBegin(pnt_bufsize,	pol_bufsize,	opsel)
Begin	a	mesh	edit.	The	buffer	sizes	are	used	to	create	temporary
buffers	associated	with	each	point	and	polygon.	Modeler	allocates
and	frees	this	memory	for	you,	and	you	can	use	it	for	any	per-point	or
per-polygon	data	you	might	need	during	the	edit.	Points	and	polygons
are	flagged	as	selected	according	to	the	code	you	pass	in	opsel.

The	editBegin	function	is	identical	to	the	function	passed	as	the	local
data	to	mesh	edit	plug-ins.	See	that	page	for	complete	documentation
of	the	MeshEditOp	structure	it	returns.	Command	sequence	plug-ins
can	perform	multiple	mesh	edits.	Each	edit	begins	by	calling	this
function	to	get	a	MeshEditOp	and	ends	when	the	MeshEditOp's	done
function	is	called.	No	commands	can	be	issued	during	a	mesh	edit.

result	=	evaluate(data,	cmdstring)
Issue	the	command	with	the	name	and	arguments	in	the	command
string.	This	is	an	alternative	to	using	lookup	and	execute.	The	command
and	its	arguments	are	written	to	a	single	string	and	delimited	by
spaces.

See	the	Commands	pages	for	a	complete	list	of	the	commands	that	can	be
issued	in	Modeler,	as	well	as	a	detailed	explanation	of	the	formatting	of
command	arguments	for	both	the	execute	and	evaluate	methods.

Example

The	DNA	sample	is	a	CommandSequence	plug-in	that	builds	classic
Watson-Crick	DNA	molecules.	It	uses	the	ModLib	static-link	library,
which	greatly	simplifies	command	execution	by	translating	commands
into	function	calls.	The	library	currently	contains	about	170	functions	that
cover	Modeler	commands,	mesh	edit	functions,	and	globals.

This	ModLib	function	executes	the	MAKEBALL	command,	building	the
DynaValue	argument	list	and	calling	the	lookup	and	execute	functions.
(ModData	is	a	ModLib	structure	that	caches	the	LWModCommand	pointer
and	the	data	returned	from	a	number	of	globals.)

			int	csMakeBall(double	*radius,	int	nsides,	int	nsegments,

						double	*center)

			{

						static	LWCommandCode	ccode;

						ModData	*md	=	getModData();

						DynaValue	argv[4];

						assert(md->edit	==	NULL);

						argv[0].type	=	DY_VFLOAT;

						argv[0].fvec.val[0]	=	radius[0];

						argv[0].fvec.val[1]	=	radius[1];

						argv[0].fvec.val[2]	=	radius[2];

						argv[1].type	=	DY_INTEGER;

						argv[1].intv.value	=	nsides;

						argv[2].type	=	DY_INTEGER;

						argv[2].intv.value	=	nsegments;

						if	(center)	{

									argv[3].type	=	DY_VFLOAT;

									argv[3].fvec.val[0]	=	center[0];

									argv[3].fvec.val[1]	=	center[1];

									argv[3].fvec.val[2]	=	center[2];

						}

						else	argv[3].type	=	DY_NULL;

						if	(!ccode)

									ccode	=	md->local->lookup(md->local->data,	"MAKEBALL");

						md->cmderror	=	md->local->execute(md->local->data,	ccode,

									4,	argv,	md->opsel,	&md->result);

						return	md->cmderror	==	CSERR_NONE;

			}

Using	ModLib	makes	DNA's	command	processing	almost	as	simple	as
scripting.	Below	is	a	code	fragment	from	the	function	in	the	DNA	plug-in
that	creates	the	cylinders	representing	atomic	bonds.

			csSetLayer(layer2);

			csSetDefaultSurface(surface_name(snum));

			csMakeDisc(r,	h,	0,	"Y",	bond_nsides,	bond_nsegments,	c);

			csRotate(xrot,	"X",	NULL);

			csRotate(yrot,	"Y",	NULL);

			csMove(pt);

			rot	=	36	*	j;

			csRotate(rot,	"Y",	NULL);

			csCut();

			csSetLayer(layer1);

			csPaste();

	

CustomObjHandler
CustomObjInterface

Availability		LightWave	6.0	
Component		Layout	
Header		lwcustobj.h

Layout	uses	null	objects	as	placeholders	for	animation	data.	Nulls	can	be
used	as	parents	to	add	degrees	of	freedom	to	the	motion	of	other	objects,
or	as	references	for	texturing,	or	as	camera	targets.	Plug-ins	can	also	rely
on	nulls	as	a	way	for	users	to	interactively	set	parameters.

A	custom	object	handler	can	be	associated	with	a	null	to	customize	its
appearance	in	Layout's	interface.	This	is	useful	for	providing	visual
feedback	about,	for	example,	the	range	or	magnitude	of	an	effect
controlled	by	the	null.	Custom	nulls	will	often	be	an	adjunct	to	a	plug-in
of	another	class	that	uses	nulls	for	data	entry,	but	they	can	also	be	used	by
themselves	for	things	like	guides	and	rulers.

When	applied	to	non-null	objects,	a	custom	object	plug-in	supplements
LightWave's	drawing	of	the	object	in	the	interface.	Hypervoxels,	for
example,	uses	a	custom	object	handler	to	draw	wireframe	bounding
spheres	around	the	particles	associated	with	an	object.

Handler	Activation	Function

			XCALL_(int)	MyCustomObj(long	version,	GlobalFunc	*global,

						LWCustomObjHandler	*local,	void	*serverData);

The	local	argument	to	a	custom	object's	activation	function	is	an
LWCustomObjHandler.
			typedef	struct	st_LWCustomObjHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						LWRenderFuncs			*rend;

						void												(*evaluate)(LWInstance,	const	LWCustomObjAccess	*);

						unsigned	int				(*flags)			(LWInstance);

			}	LWCustomObjHandler;

The	first	three	members	of	this	structure	are	the	standard	handler

functions.	In	addition	to	these,	a	custom	object	provides	an	evaluation
function	and	a	flags	function.

The	context	argument	to	the	inst->create	function	is	the	LWItemID	of	the
associated	object.

	
evaluate(instance,	access)

Draw	the	object	on	the	interface	using	the	information	in	the	access
structure,	described	below.

f	=	flags(instance)

Returns	bit	flags	combined	using	bitwise-or.	
LWCOF_SCHEMA_OK	
				Tells	Layout	that	you	support	drawing	in	schematic	viewports.
LWCOF_VIEWPORT_INDEX	
				Tells	layout	to	use	the	viewport	number	instead	of	its	type	in	the
LWCustomObjAccess					view	element		
LWCOF_NO_DEPTH_BUFFER

			Causes	drawing	to	occur	in	front	of	other	OpenGL	elements,
regardless	of	Z	position.

Interface	Activation	Function
			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.	Users	open	a	custom
object's	interface	by	pressing	an	Options	button	on	the	Geometry	tab	of	the
Object	Properties	panel.

Custom	Object	Access

The	access	structure	contains	drawing	functions	and	fields	indicating
which	of	the	interface	views	the	object	will	be	drawn	in	and	whether	the
object	is	currently	selected.

Within	the	limitations	of	the	drawing	functions,	there	aren't	any
restrictions	on	what	your	custom	object	may	look	like.	But	in	most	cases	it
will	be	helpful	to	users	if	your	object's	appearance	is	consistent	in	color
and	style	with	the	rest	of	Layout's	interface.

			typedef	struct	st_LWCustomObjAccess	{

						int			view;

						int			flags;

						void	*dispData;

						void	(*setColor)			(void	*,	float	rgba[4]);

						void	(*setPattern)	(void	*,	int	lpat);

						void	(*setTexture)	(void	*,	int,	unsigned	char	*);

						void	(*setUVs)					(void	*,	double[2],	double[2],	double[2],

																												double[2]);

						void	(*point)						(void	*,	double[3],	int	csys);

						void	(*line)							(void	*,	double[3],	double[3],	int	csys);

						void	(*triangle)			(void	*,	double[3],	double[3],	double[3],

																												int	csys);

						void	(*quad)							(void	*,	double[3],	double[3],	double[3],

																												double[3],	int	csys);

						void	(*circle)					(void	*,	double[3],	double,	int	csys);

						void	(*text)							(void	*,	double[3],	const	char	*,	int	just,

																												int	csys);

						LWDVector	viewPos,	viewDir;

			}	LWCustomObjAccess;

view

The	view	the	object	will	be	drawn	in.	Possible	values	are	

LWVIEW_ZY	
LWVIEW_XZ	
LWVIEW_XY	
LWVIEW_PERSP	
LWVIEW_LIGHT	
LWVIEW_CAMERA	
LWVIEW_SCHEMA

These	refer	to	the	orthographic,	perspective,	light,	camera	and	schematic
views	available	to	the	user	in	the	Layout	interface.

flags

Contains	bitfields	with	information	about	the	context	of	the	render
request.	Currently	the	only	flag	defined	is	LWCOFL_SELECTED,	which	tells
you	whether	the	object	should	be	rendered	in	its	selected	state.

dispData

An	opaque	pointer	to	private	data	used	by	Layout.	Pass	this	as	the
first	argument	to	the	drawing	functions.

setColor(dispData,	rgba)

Set	the	current	drawing	color,	including	the	alpha	level.	Calling	this
is	optional.	By	default,	all	drawing	is	done	in	the	color	set	by	the	user
in	the	Scene	panel	when	the	custom	object	isn't	selected,	and	in
yellow	when	the	object	is	selected.	Color	settings	don't	persist

between	calls	to	the	evaluation	function,	nor	do	they	change	the
settings	in	the	Scene	panel.

setPattern(dispData,	linepat)

Set	the	current	line	pattern.	The	pattern	codes	are	

LWLPAT_SOLID	
LWLPAT_DOT	
LWLPAT_DASH	
LWLPAT_LONGDOT

As	with	setColor,	calling	setPattern	is	optional.	By	default,	all	drawing	is
done	with	solid	lines.	Line	pattern	settings	don't	persist	between
evaluations.

setTexture(dispData,	size,	imagebytes)

Set	the	current	image	for	texture	mapping.	This	image	is	mapped
onto	quads	drawn	by	the	quad	function.	The	size	is	the	width	(and
height)	of	the	image	in	pixels	and	must	be	a	power	of	2.	The	pixel
data	is	an	OpenGL	image	in	GL_RGBA	format	and	GL_UNSIGNED_BYTE	data
type.	Each	pixel	is	represented	by	a	set	of	four	contiguous	bytes
containing	red,	green,	blue	and	alpha	values	ranging	from	0	to	255.

setUVs(dispData,	uv0,	uv1,	uv2,	uv3)

Set	the	UVs	for	texture	mapping.	This	sets	the	position	of	the	texture
image	on	each	polygon	drawn	by	the	quad	function	until	the	next	call
to	setUVs.

point(dispData,	xyz,	coord_sys)

Draw	a	point	at	the	specified	position.	The	point	will	be	drawn	in	the
color	set	by	the	most	recent	setColor	call,	or	in	the	default	color	if	no
color	was	set.	The	coordinate	system	argument	identifies	the
coordinates	in	which	the	position	is	expressed	and	may	be	one	of	the
following.

	

LWCSYS_WORLD

"Absolute"	coordinates,	unaffected	by	the	position,	rotation	and	scale
of	the	underlying	null	object.

LWCSYS_OBJECT

"Relative"	coordinates.	Layout	will	transform	the	point.

LWCSYS_ICON

A	special	coordinate	system	that	works	like	LWCSYS_OBJECT	but	scales
with	the	grid	size.	Layout's	camera	and	light	images	are	examples	of
the	use	of	this	mode.

line(dispData,	end1,	end2,	coord_sys)

Draw	a	line	between	the	specified	endpoints	using	the	current	color
and	line	pattern.

triangle(dispData,	v1,	v2,	v3,	coord_sys)

Draw	a	solid	triangle	with	the	specified	vertices	using	the	current
color.

quad(dispData,	v1,	v2,	v3,	v4,	coord_sys)

Draw	a	solid	quadrangle	with	the	specified	vertices	using	the	current
color	or	texture.

circle(dispData,	center,	radius,	coord_sys)

Draw	a	circle	of	the	given	radius	around	the	specified	center	point
using	the	current	color	and	line	pattern.	Circles	can	only	be	drawn	in
the	orthographic	views,	not	in	the	light,	camera	or	perspective	views.

text(dispData,	pos,	textline,	justify,	coord_sys)

Draw	a	single	line	of	text	using	the	current	color	and	line	pattern.	The
justify	argument	determines	whether	the	text	will	be	drawn	to	the	left
or	right	of	the	position,	or	centered	on	it:
LWJUST_LEFT

LWJUST_CENTER

LWJUST_RIGHT

History

In	LightWave	7.0,	LWCUSTOMOBJ_VERSION	was	incremented	to	5	because	of
significant	changes	to	the	LWCustomObjAccess	structure.	The	previous
version	of	the	structure	looked	like	this.	

		typedef	struct	st_LWCustomObjAccess_V4	{

						int			view;

						int			flags;

						void	*dispData;

						void	(*setColor)			(void	*,	float	rgb[3]);

						void	(*setPattern)	(void	*,	int	lpat);

						void	(*point)						(void	*,	double[3],	int	csys);

						void	(*line)							(void	*,	double[3],	double[3],	int	csys);

						void	(*triangle)			(void	*,	double[3],	double[3],	double[3],

																												int	csys);

						void	(*circle)					(void	*,	double[3],	double,	int	csys);

						void	(*text)							(void	*,	double[3],	const	char	*,	int	csys);

			}	LWCustomObjAccess_V4;

The	setTexture,	setUVs	and	quad	functions	are	missing,	and	the	text	function
lacks	the	justification	argument.

Example

The	barn	sample	draws	a	simple	barn	or	house	shape.	It's	easy	to	tell
which	way	this	shape	is	pointing,	which	makes	it	useful	for	quickly	testing
programming	assumptions	about	the	effects	of	animation	parameters	on
the	orientation	of	objects.

DisplacementHandler
DisplacementInterface

Availability		LightWave	6.0
Component		Layout
Header		lwdisplce.h

Displacement	plug-ins	deform	objects	by	moving	their	points	at	each	time
step.

Handler	Activation	Function

			XCALL_(int)	MyDisplacement(long	version,	GlobalFunc	*global,

						LWDisplacementHandler	*local,	void	*serverData);

The	local	argument	to	a	displacement	plug-in's	activation	function	is	an
LWDisplacementHandler.

			typedef	struct	st_LWDisplacementHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						LWRenderFuncs			*rend;

						void												(*evaluate)	(LWInstance,	LWDisplacementAccess	*);

						unsigned	int				(*flags)				(LWInstance);

			}	LWDisplacementHandler;

The	first	three	members	of	this	structure	are	the	standard	handler
functions.	The	context	argument	to	the	inst->create	function	is	the
LWItemID	of	the	object	associated	with	this	instance.

In	addition	to	the	standard	functions,	a	displacement	plug-in	provides	an
evaluation	function	and	a	flags	function.

evaluate(instance,	access)

This	is	where	the	displacement	happens.	At	each	time	step,	the
evaluation	function	is	called	for	each	vertex	in	the	object.	The
position	of	the	vertex	is	examined	and	modified	through	the	access
structure	described	below.

f	=	flags(instance)

Returns	bit	flags	combined	using	bitwise-or.	The	flags	tell	Layout
whether	the	displacement	will	be	in	world	coordinates	and	whether	it

should	occur	before	or	after	the	object	has	been	deformed	by	bones.
Only	one	of	these	flags	should	be	set.

LWDMF_WORLD
LWDMF_BEFOREBONES

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.

Displacement	Access

The	LWDisplacementAccess	passed	to	the	evaluation	function	contains
two	point	positions,	the	point	ID,	and	a	mesh	info	for	the	object	the	point
belongs	to.

			typedef	struct	st_LWDisplacementAccess	{

						LWDVector				oPos;

						LWDVector				source;

						LWPntID						point;

						LWMeshInfo		*info;

			}	LWDisplacementAccess;

oPos

The	original	point	location	in	object	coordinates.	This	is	read-only.
source

The	location	to	be	transformed	in	place	by	the	displacement.	If	the
flags	function	returned	the	LWDMF_WORLD	bit,	the	source	is	in	world
coordinates	and	has	already	been	modified	by	morphing,	bones	and
object	motion.	Otherwise	the	source	is	in	object	coordinates	(after
morphing,	before	item	motion,	and	before	or	after	bone	effects,
depending	on	whether	the	flags	function	returned	LWDMF_BEFOREBONES).

point
The	point	ID.	This	can	be	used	to	retrieve	other	information	about	the
point	from	the	mesh	info	structure.

info
A	mesh	info	structure	for	the	object.

History

In	LightWave	7.0,	LWDISPLACEMENT_VERSION	was	incremented	to	5.	This	reflects
additions	to	the	LWMeshInfo	structure,	but	in	all	other	respects,
displacement	handlers	were	unchanged.

Example

The	inertia	sample	is	a	displacement	handler	that	causes	points	to	"lag
behind"	as	the	object	moves.	This	plug-in	was	formerly	known	as
LazyPoints.

EnvironmentHandler
EnvironmentInterface

Availability		LightWave	6.0
Component		Layout
Header		lwenviron.h

Environment	handlers	render	the	backdrop,	the	points	at	infinity	that	aren't
covered	by	anything	in	the	scene.	This	is	the	natural	place	to	draw	the	sky,
the	distant	horizon,	or	a	procedural	nebula	in	space.

Handler	Activation	Function

			XCALL_(int)	MyEnvironment(long	version,	GlobalFunc	*global,

						LWEnvironmentHandler	*local,	void	*serverData);

The	local	argument	to	an	environment	handler's	activation	function	is	an
LWEnvironmentHandler.

			typedef	struct	st_LWEnvironmentHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						LWRenderFuncs			*rend;

						LWError									(*evaluate)	(LWInstance,	LWEnvironmentAccess	*);

						unsigned	int				(*flags)	(LWInstance);

			}	LWEnvironmentHandler;

The	first	three	members	of	this	structure	point	to	the	standard	handler
functions.	In	addition	to	these,	an	environment	handler	provides	an
evaluation	function	and	a	flags	function.

errmsg	=	evaluate(instance,	access)

This	is	where	the	environment	handler	does	its	work.	At	each	time
step	in	the	animation,	the	evaluation	function	is	called	for	each
affected	pixel	in	the	image.	The	access	argument,	described	below,
contains	information	about	the	environment	to	be	colored.

f	=	flags(instance)

Returns	flag	bits	combined	using	bitwise-or.

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.	An	environment's
non-modal	xpanel	interface	is	drawn	on	the	Backdrop	tab	of	the	Effects
panel.

Environment	Access

This	is	the	structure	passed	to	the	handler's	evaluation	function.

			typedef	struct	st_LWEnvironmentAccess	{

						LWEnvironmentMode	mode;

						double												h[2],	p[2];

						LWDVector									dir;

						double												colRect[4][3];

						double												color[3];

			}	LWEnvironmentAccess;

mode

The	context	of	the	evaluation.	Currently	this	distinguishes	between
rendering	(EHMODE_REAL)	and	lower	quality	previewing	(EHMODE_PREVIEW).

h,	p

The	heading	and	pitch	extents	of	a	rectangular	area	of	the	backdrop.
They're	both	expressed	in	radians.	In	preview	mode,	these	form	a
bounding	box	in	spherical	coordinates	of	an	area	to	be	colored.	They
should	be	ignored	in	real	mode.

dir
A	vector	pointing	toward	a	point	on	the	backdrop	to	be	colored.	Use
this	when	evaluating	in	real	mode.

colRect

In	preview	mode,	this	is	where	the	evaluation	function	returns	the
color	at	the	corners	of	the	rectangular	area	defined	by	h	and	p.	The
preview	display	interpolates	between	these	at	points	inside	the
rectangle.

colRect[0]	gets	the	color	of	(h[0],	p[0])
colRect[1]	gets	the	color	of	(h[0],	p[1])
colRect[2]	gets	the	color	of	(h[1],	p[0])
colRect[3]	gets	the	color	of	(h[1],	p[1])

color

In	real	mode,	this	is	where	the	evaluation	function	returns	the	color	of

the	point	defined	by	the	direction	vector	dir.

Example

The	horizon	sample	duplicates	Layout's	gradient	backdrop	settings.	It	can
also	produce	a	grid	backdrop.	Be	sure	to	look	for	the	haiku	in	the	newTime
function.

The	following	code	can	be	used	to	draw	a	simple	representation	of	the	sky
and	ground	that	includes	a	disk	for	the	sun.

Drawing	the	sun	requires	knowing	whether	a	point	on	the	backdrop	is
inside	the	sun's	disk.	The	point's	angular	separation	from	the	center	of	the
sun	must	be	less	than	the	sun's	angular	radius.	So	we	need	a	function	for
calculating	the	angular	separation	between	two	spherical	coordinates.

			static	double	angsep(double	h1,	double	p1,	double	h2,	double	p2)

			{

						double	cd;

			

						if	(h1	==	h2	&&	p1	==	p2)

									return	0.0;

						

						cd	=	cos(p1)	*	cos(p2)	*	cos(fabs(h2	-	h1))

									+	sin(p1)	*	sin(p2);

			

						/*	catch	small	roundoff	errors	*/

			

						if	(cd	>		1.0)	cd	=		1.0;

						if	(cd	<	-1.0)	cd	=	-1.0;

			

						return	acos(cd);

			}

We'd	also	like	to	write	a	sampling	function	that	uses	the	same
representation	for	the	point	being	sampled,	regardless	of	whether	it's
called	in	preview	or	real	mode,	so	we	need	to	be	able	to	convert	the
direction	vector	into	spherical	(heading	and	pitch)	coordinates.	If	the
vector	points	straight	up	or	down,	the	heading	is	undefined,	so	we	set	it
arbitrarily	to	0.	To	avoid	problems	with	roundoff,	we	say	that	the	vector	is
straight	up	or	down	if	the	magnitude	of	the	y	component	is	within	some
epsilon	of	1.0.

			static	void	vec2hp(LWDVector	n,	double	*h,	double	*p)

			{

						*p	=	asin(-n[1]);

						if	(1.0	-	fabs(n[1])	>	1e-5)	{

									/*	not	straight	up	or	down	*/

									*h	=	acos(n[2]	/	cos(*p));

									if	(n[0]	<	0.0)	*h	=	2	*	PI	-	*h;

						}

						else	*h	=	0;

			}

The	sampling	function	decides	whether	the	point	is	in	the	sky,	the	ground,
or	the	sun,	and	colors	the	point	accordingly.	If	the	backdrop	point	is	below
the	horizon,	the	ground	color	is	used.	If	both	the	point	and	the	sun	are
above	the	horizon,	the	point	is	compared	to	the	sun's	position	to	decide
whether	the	sun	or	the	sky	color	is	used.	hsun	and	psun	are	the	heading	and
pitch	of	the	sun's	position.	In	preview	mode,	the	Manhattan	distance
between	the	point	and	the	sun's	center	is	sufficient,	while	in	real	mode	we
do	the	more	expensive	angular	separation	calculation.

			static	void	sample(MyInstance	*inst,	double	h,	double	p,

						double	*color,	int	mode)

			{

						int	insun;

						if	(p	>=	0.0)	{

									color[0]	=	inst->gndcolor[0];

									color[1]	=	inst->gndcolor[1];

									color[2]	=	inst->gndcolor[2];

									return;

						}

			

						insun	=	inst->psun	-	inst->sunrad	<	0.0;

						if	(insun)	{

									if	(mode	==	EHMODE_PREVIEW)

												insun	=		(fabs(h	-	inst->hsun)	<	inst->sunrad)

																		&&	(fabs(p	-	inst->psun)	<	inst->sunrad);

									else

												insun	=	angsep(h,	p,	inst->hsun,	inst->psun)

																		<	inst->sunrad;

						}

						if	(insun)	{

									color[0]	=	inst->suncolor[0];

									color[1]	=	inst->suncolor[1];

									color[2]	=	inst->suncolor[2];

						}

						else	{

									color[0]	=	inst->skycolor[0];

									color[1]	=	inst->skycolor[1];

									color[2]	=	inst->skycolor[2];

						}

			}

The	evaluation	function	uses	the	sampling	function	to	find	the	right	color
and	returns	the	color	to	the	renderer.

			XCALL_(static	LWError)

			Evaluate(MyInstance	*inst,	LWEnvironmentAccess	*access)

			{

						double	h,	p;

						switch	(access->mode)

						{

									case	EHMODE_PREVIEW:

												sample(inst,	access->h[0],	access->p[0],

															access->colRect[0],	access->mode);

												sample(inst,	access->h[0],	access->p[1],

															access->colRect[1],	access->mode);

												sample(inst,	access->h[1],	access->p[0],

															access->colRect[2],	access->mode);

												sample(inst,	access->h[1],	access->p[1],

															access->colRect[3],	access->mode);

									break;

									case	EHMODE_REAL:

												vec2hp(access->dir,	&h,	&p);

												sample(inst,	h,	p,	access->color,	access->mode);

												break;

									default:

												break;

						}

						return	NULL;

			}

FileRequester

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwdialog.h

File	request	plug-ins	prompt	the	user	for	a	file	selection.	At	a	minimum,
they	should	provide	the	same	functionality	as	the	operating	system's
default	file	dialog,	allowing	users	to	browse	their	file	systems	to	select	or
enter	a	file	name.

See	the	File	Request	2	global	for	a	discussion	of	file	requests	from	the
host's	point	of	view.

Handler	Activation	Function

			XCALL_(int)	MyFileReq(long	version,	GlobalFunc	*global,

						LWFileReqLocal	*local,	void	*serverData);

The	local	argument	to	a	file	request	plug-in's	activation	function	is	an
LWFileReqLocal.

			typedef	struct	st_LWFileReqLocal	{

						int									reqType;

						int									result;

						const	char	*title;

						const	char	*fileType;

						char							*path;

						char							*baseName;

						char							*fullName;

						int									bufLen;

						int								(*pickName)	(void);

			}	LWFileReqLocal;

reqType

Indicates	the	type	of	file	request.	Possible	values	are

FREQ_LOAD
FREQ_SAVE
FREQ_DIRECTORY

A	request	for	a	path.
FREQ_MULTILOAD

A	request	for	one	or	more	files	to	load.

result

The	result	of	the	request.	Set	this	to	1	if	the	user	selects	a	file,	0	if	the
user	cancels	the	request,	and	a	negative	number	to	indicate	an	error.

title

The	title	string.	This	is	generally	displayed	near	the	top	of	the	file
dialog	and	tells	the	user	what	kind	of	file	is	being	requested.

fileType

A	string	identifying	a	file	type	filter.	This	should	be	used	to	filter	the
names	displayed	in	the	dialog.	The	string	will	generally	contain	one
of	the	file	type	names	used	in	LightWave's	configuration	files,	rather
than	a	literal,	platform-specific	list	of	type	IDs	or	wildcards.	See	the
File	Type	Pattern	global	for	more	information	about	what	the	file	type
string	might	contain.	You	can	use	the	global	to	translate	this	into	a
literal	filter	string.

path

The	initial	path	on	entry.	This	is	where	browsing	of	the	file	system
should	begin.	The	initial	path	can	be	either	absolute	(fully	qualified)
or	relative	to	the	operating	system's	current	default	path,	also
sometimes	called	the	current	working	directory.	If	the	user	completes
the	file	request,	the	plug-in	should	write	the	fully	qualified	path	of	the
selected	file	in	this	field.

If	the	operation	of	the	file	request	plug-in	changes	the	current
working	directory,	this	should	be	restored	before	the	file	request	is
completed.

baseName

The	initial	file	name,	not	including	the	path.	This	may	be	empty,	or	it
may	contain	a	default	name.	If	the	user	selects	a	file,	the	initial	name
should	be	replaced	with	the	name	(not	including	the	path)	of	the
selected	file.

fullName

The	file	request	returns	the	selected	file	name,	including	the	path,	in
this	string.	The	initial	contents	are	ignored.

bufLen

The	size	in	bytes	of	the	baseName,	path	and	fullName	strings.	When
writing	to	these	strings,	the	file	request	plug-in	should	not	write	more
than	bufLen	characters,	including	the	NULL	terminating	byte.

error	=	pickName()

A	callback	function	provided	by	the	host	for	FREQ_MULTILOAD	requests.
This	function	should	be	called	for	each	selected	file	when	the	request
type	is	FREQ_MULTILOAD,	even	if	only	one	file	is	selected.	For	each	call,
the	baseName,	path	and	fullName	fields	should	be	filled	with	the	data	for
the	next	selected	file	in	the	list.	The	function	returns	0	to	continue
and	any	non-zero	value	to	stop	processing	the	files	in	a	multiple	file
selection.

Example

The	wfilereq	sample	is	a	FileRequester	that	uses	the	Windows	common
file	dialog.

FrameBufferHandler
FrameBufferInterface

Availability		LightWave	6.0
Component		Layout
Header		lwframbuf.h

Frame	buffer	plug-ins	display	the	current	rendered	frame,	either	on	the
screen	or	to	another	output	device.

Handler	Activation	Function

			XCALL_(int)	MyFrameBuffer(long	version,	GlobalFunc	*global,

						LWFrameBufferHandler	*local,	void	*serverData);

The	local	argument	to	a	frame	buffer's	activation	function	is	an
LWFrameBufferHandler.

			typedef	struct	st_LWFrameBufferHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						int														type;

						LWError									(*open)		(LWInstance,	int	w,	int	h);

						void												(*close)	(LWInstance);

						LWError									(*begin)	(LWInstance);

						LWError									(*write)	(LWInstance,	const	void	*R,	const	void	*G,

																																		const	void	*B,	const	void	*alpha);

						void												(*pause)	(LWInstance);

			}	LWFrameBufferHandler;

The	first	two	member	of	this	structure	point	to	the	standard	handler
functions.	In	addition	to	these,	a	frame	buffer	also	provides	functions	for
the	start	and	end	of	a	rendering	session,	for	receiving	a	frame's	scanlines,
and	for	displaying	the	frame,	and	it	specifies	what	type	of	data	it	wants	to
receive.

type

The	type	of	pixel	data	Layout	should	send	to	the	write	function.	This
can	be	either	LWFBT_UBYTE	or	LWFBT_FLOAT.

error	=	open(instance,	width,	height)

Initialize	the	frame	buffer.	Called	when	a	rendering	session	begins.
Returns	an	error	message	string	if	an	error	occurs,	otherwise	it	returns
NULL.

close(instance)

Close	the	frame	buffer.	Called	when	the	rendering	session	is
complete.

error	=	begin(instance)

Prepare	to	receive	the	next	frame.	Returns	an	error	message	string	if
an	error	occurs,	otherwise	it	returns	NULL.

error	=	write(instance,	R,	G,	B,	alpha)

Receive	the	next	scanline	of	the	current	frame.	The	scanlines	for	each
frame	are	sent	in	order	from	top	to	bottom.	The	buffer	arguments
point	to	arrays	of	color	channel	values.	There	are	exactly	width	values
for	each	channel,	one	for	each	pixel	in	a	scanline,	and	the	values	are
either	unsigned	bytes	or	floats,	depending	on	the	type	code.	Returns
an	error	message	string	or	NULL.

pause(instance)

Pause	awaiting	user	input.	This	is	called	for	F9	and	manually
advanced	frames,	but	not	during	automatic	rendering.	Typically	the
frame	buffer	displays	the	image	here	and	then	waits	for	the	user	to
dismiss	the	display	before	returning	from	this	function.

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.	A	frame	buffer's
interface	is	invoked	when	the	plug-in	is	selected	as	the	render	display	on
the	Render	Options	panel.

Example

The	framebuf	sample	is	a	simple	example	of	a	frame	buffer.	It	uses	the
Raster	Functions	and	Panels	globals	to	store	and	display	the	rendered
image.

Global

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwglobsrv.h

Global	class	plug-ins	provide	services	that	other	plug-ins	can	use.	They
extend	the	list	of	globals	that	are	part	of	the	plug-in	API.

Other	plug-ins	call	your	global	class	plug-in	by	calling	the	GlobalFunc
with	your	server	name	as	the	first	argument.	LightWave	calls	your
activation	function,	which	fills	in	the	local->data	field.	This	is	then	passed
back	to	the	caller	as	the	return	value	of	the	GlobalFunc	call.

Activation	Function

The	local	argument	to	a	global's	activation	function	is	an
LWGlobalService.

			typedef	struct	st_LWGlobalService	{

						const	char	*id;

						void							*data;

			}	LWGlobalService;

id

The	server	name.	This	will	be	the	same	as	the	name	field	of	the	plug-
in's	server	record.	It's	also	the	string	that	the	requesting	plug-in
passed	as	the	first	argument	to	the	GlobalFunc.	If	the	module
contains	more	than	one	global	plug-in	and	they	share	a	single
activation	function,	the	id	can	be	used	to	tell	which	global	is	being
requested.

data

The	return	value	of	the	global.	Fill	this	in	with	whatever	is
appropriate	to	satisfy	the	global	request,	or	NULL	to	indicate	failure.
The	value	is	typically	a	pointer	to	static	data.

Global	class	plug-ins	are	available	in	both	Modeler	and	Layout	by	default.
If	you	don't	want	to	run	in	one	of	these	components,	call	the	System	ID
global	in	your	activation	function	and	return	AFUNC_BADAPP	if	the	LWSYS_TYPEBITS
of	the	return	value	don't	match	a	program	you	will	run	in.	The	following

fragment	will	allow	your	global	to	be	activated	in	Layout	and
Screamernet,	but	not	in	Modeler.

			unsigned	long	sysid,	app;

			sysid	=	(unsigned	long)	global(LWSYSTEMID_GLOBAL,

						GFUSE_TRANSIENT);

			app	=	sysid	&	LWSYS_TYPEBITS;

			if	(app	!=	LWSYS_LAYOUT	&&	app	!=	LWSYS_SCREAMERNET)

						return	AFUNC_BADAPP;

Example

The	vecmath	sample	is	a	Global	class	plug-in	that	provides	a	library	of
vector	and	matrix	routines.	Information	on	how	to	use	this	library	in	your
plug-ins	is	given	in	the	comments	at	the	top	of	the	source	file.

ImageFilterHandler
ImageFilterInterface

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwfilter.h

Image	filter	plug-ins	apply	image	post	processing	(filtering)	effects	to	the
rendered	image.

Handler	Activation	Function

			XCALL_(int)	MyImageFilter(long	version,	GlobalFunc	*global,

						LWImageFilterHandler	*local,	void	*serverData);

The	local	argument	to	an	image	filter's	activation	function	is	an
LWImageFilterHandler.

			typedef	struct	st_LWImageFilterHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						void												(*process)(LWInstance,	const	LWFilterAccess	*);

						unsigned	int				(*flags)		(LWInstance);

			}	LWImageFilterHandler;

The	first	two	members	of	this	structure	contain	standard	handler	functions.
In	addition	to	these,	an	image	filter	provides	a	processing	function	and	a
flags	function.

The	context	argument	to	the	inst->create	function	is	a	pointer	to	an	integer
containing	context	flags.	If	the	LWFCF_PREPROCESS	flag	is	set,	the	instance	is
being	created	for	an	image	other	than	the	rendered	output,	and	buffers
other	than	the	RGBA	of	the	image	won't	be	available.

An	image	filter	can	be	activated	by	both	Layout	and	Modeler.	When
activated	by	Modeler,	the	LWItemFuncs	pointer	in	the	local	data	is	NULL.
Be	sure	to	test	for	this	before	filling	in	the	useItems	and	changeID	fields.	Note
too	that	if	your	image	filter	relies	on	Layout-only	globals,	those	won't	be
available	when	Modeler	calls	your	callbacks.

process(instance,	access)

This	is	where	the	image	filter	does	its	work.	For	each	frame,	the	filter

is	given	access	to	the	red,	green,	blue	and	alpha	channels	of	the
rendered	image,	along	with	any	other	image	buffers	requested	by	the
flags	function.	The	access	structure,	described	below,	provides	image
information	and	functions	for	examining	the	buffers	and	writing	new
RGB	and	alpha	values.

flags(instance)

Returns	an	int	that	tells	the	renderer	which	buffers	the	image	filter
will	need	to	examine.	The	return	value	contains	bitfields	combined
using	bitwise-or.	The	symbols	listed	here	and	in	lwfilter.h	are	bit
positions,	not	the	flags	themselves,	so	you'll	need	to	form	the
expression	(1	<<	LWBUF_WHATEVER)	to	create	the	flags	before	or-ing	them
together.

The	renderer	may	ignore	requests	from	the	processing	function	for
access	to	any	buffers	you	haven't	asked	for	here.	The	buffers	are

LWBUF_RED
LWBUF_GREEN
LWBUF_BLUE
LWBUF_ALPHA

The	final	output	of	the	rendering	pass.	These	form	the	image	to
be	modified	by	the	filter.	They	are	always	provided	to	every
image	filter	(it	isn't	necessary	to	return	flags	for	them	in	the	flags
function).

LWBUF_LUMINOUS
LWBUF_DIFFUSE
LWBUF_SPECULAR
LWBUF_MIRROR
LWBUF_TRANS
LWBUF_RAW_RED
LWBUF_RAW_GREEN
LWBUF_RAW_BLUE

The	raw,	unshaded	values	of	the	surface	parameters	at	each
pixel.

LWBUF_SHADING

A	picture	of	the	diffuse	shading	and	specular	highlights	applied
to	the	objects	in	the	scene.	This	is	a	component	of	the	rendering
calculations	that	depends	solely	on	the	angle	of	incidence	of	the
lights	on	a	surface.	It	doesn't	include	the	effects	of	explicit
shadow	calculations.

LWBUF_DIFFSHADE
LWBUF_SPECSHADE

Like	the	LWBUF_SHADING	buffer,	but	these	store	the	amount	of	diffuse
and	specular	shading	(highlighting)	separately,	rather	than
adding	them	together.	They	should	not	be	confused	with	the
LWBUF_DIFFUSE	and	LWBUF_SPECULAR	buffers,	which	store	the	unshaded
surface	values	for	those	parameters.

LWBUF_SHADOW
Indicates	where	shadows	are	falling	in	the	final	image.	It	may
also	be	thought	of	as	an	illumination	map,	showing	what	parts	of
the	image	are	visible	to	the	lights	in	the	scene.

LWBUF_GEOMETRY
The	values	in	this	buffer	are	the	dot-products	of	the	surface
normals	with	the	eye	vector	(or	the	cosine	of	the	angle	of	the
surfaces	to	the	eye).	They	reveal	something	about	the	underlying
shape	of	the	objects	in	the	image.	Where	the	value	is	1.0,	the
surface	is	facing	directly	toward	the	camera,	and	where	it's	0,	the
surface	is	edge-on	to	the	camera.

LWBUF_DEPTH
The	distance	from	the	camera	to	the	nearest	object	visible	in	a
pixel.	Strictly	speaking,	this	is	the	perpendicular	distance	from
the	plane	defined	by	the	camera's	position	and	view	vector.	Also
known	as	the	z-buffer.

LWBUF_MOTION_X
LWBUF_MOTION_Y

Support	for	2D	vector-based	motion	blur.	These	buffers	contain
the	pixel	distance	moved	by	the	item	visible	in	each	pixel.	The
amount	of	movement	depends	on	the	amount	of	time	the	shutter
was	open	(controlled	by	the	blur	length	user	setting)	and

includes	the	effects	of	the	camera's	own	motion.

LWBUF_REFL_RED
LWBUF_REFL_GREEN
LWBUF_REFL_BLUE

The	RGB	levels	of	the	contribution	from	mirror	reflections
calculated	by	raytracing	or	environment	mapping.

LWBUF_SPECIAL
Contains	user-assigned	values	that	are	unique	for	each	surface.

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.

Filter	Access

This	is	the	access	structure	passed	to	the	processing	function.	The	data
members	are	read-only.	The	functions	provide	the	means	to	get	and	set
pixel	values,	and	the	optional	monitor	informs	the	user	of	the	filter's
progress.

			typedef	struct	st_LWFilterAccess	{

						int								width,	height;

						LWFrame				frame;

						LWTime					start,	end;

						float	*			(*getLine)		(int	type,	int	y);

						void						(*setRGB)			(int	x,	int	y,	const	LWFVector	rgb);

						void						(*setAlpha)	(int	x,	int	y,	float	alpha);

						LWMonitor	*monitor;

			}	LWFilterAccess;

width,	height

The	dimensions,	in	pixels,	of	all	of	the	image	buffers.
frame

The	frame	number.
start,	end

The	start	and	end	times	for	the	frame.	These	times	are	the	same
unless	the	frame	was	rendered	with	motion	blur,	in	which	case	the
difference	between	them	can	be	considered	the	exposure	time	for	the
frame.

buf	=	getLine(buftype,	y)

Returns	a	pointer	to	the	start	of	a	scanline	from	the	specified	buffer.
y=0	is	the	top	line	of	the	buffer,	and	y=height-1	is	the	bottom	line.	Don't
try	to	look	past	the	end	of	a	scanline.	Layout	may	not	store	scanlines
contiguously	for	a	given	buffer.	In	fact,	scanlines	aren't	guaranteed	to
exist	at	all	until	they're	requested	through	these	functions.	The	type
codes	are	the	same	as	those	used	by	the	flags	function.	NULL	is
returned	for	invalid	type	codes,	or	type	codes	for	buffers	not
requested	by	the	flags	function.

setRGB(x,	y,	rgb)

setAlpha(x,	y,	a)

Use	these	functions	to	set	the	output	values	of	the	filter.	The	input
RGBA	buffers	do	not	change	as	the	output	buffers	are	modified.	A
filter	must	set	every	pixel	in	the	output	image	even	if	it	does	not	alter
the	value,	but	it	can	set	them	in	any	order.

monitor

The	filter	can	use	this	to	update	the	user	about	its	progress	through
the	frame.	This	also	allows	the	user	to	cancel	the	rendering	during	the
filter's	processing.	The	monitor	mechanism	is	the	same	one	provided
by	the	monitor	global.	As	with	all	monitors,	the	number	of	steps
should	be	kept	fairly	low	since	checking	for	abort	can	have
significant	overhead	on	some	systems.

Example

The	negative	sample	is	a	simple	filter	that	inverts	the	colors	of	the	image.
The	convolve	sample	is	a	somewhat	more	complete	example.	It	applies	a	3
x	3	convolution	to	the	image	and	includes	an	interface	that	allows	the	user
to	set	the	values	of	the	filter	kernel.	These	values	are	stored	and	retrieved
using	the	handler	save	and	load	functions.	The	zcomp	sample	includes	an
image	filter	that	saves	the	current	LWBUF_DEPTH	buffer	to	a	file.

ImageLoader

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwimageio.h

Image	loaders	read	image	files.	Each	of	them	typically	supports	a	single
format.

When	an	image	loader's	activation	function	is	called,	it	should	open	the
image	file	and	try	to	recognize	its	contents.	LightWave	calls	all	of	the
installed	image	loaders	in	sequence	until	one	of	them	recognizes	the	file.
Each	image	loader	is	therefore	responsible	for	identifying	the	files	it	can
load.	If	the	file	isn't	one	the	loader	understands,	the	loader	sets	the	result
field	of	the	local	structure	to	IPSTAT_NOREC	and	returns	AFUNC_OK.

If,	on	the	other	hand,	the	loader	understands	the	image	file,	it	calls	local-
>begin	to	get	the	image	protocol	functions	and	then	loads	the	file.

Activation	Function

			XCALL_(int)	MyImageLoader(long	version,	GlobalFunc	*global,

						LWImageLoaderLocal	*local,	void	*serverData);

The	local	argument	to	an	image	loader's	activation	function	is	an
LWImageLoaderLocal.

			typedef	struct	st_LWImageLoaderLocal	{

						void														*priv_data;

						int																result;

						const	char								*filename;

						LWMonitor									*monitor;

						LWImageProtocolID	(*begin)	(void	*,	LWImageType);

						void														(*done)		(void	*,	LWImageProtocolID);

			}	LWImageLoaderLocal;

priv_data

Pass	this	as	the	first	argument	to	the	begin	and	done	functions.	It's	an
opaque	pointer	to	data	used	internally	by	LightWave.

result

Set	this	to	indicate	whether	the	image	was	loaded	successfully.	The
result	codes	are

IPSTAT_OK

The	image	was	loaded	successfully.
IPSTAT_NOREC

The	loader	didn't	recognize	the	file.	This	can	happen	frequently,
since	all	loaders	are	called	in	sequence	until	one	of	them	doesn't
return	this	result.

IPSTAT_BADFILE

The	loader	couldn't	open	the	file.	If	the	loader	is	able	to	open	the
file	but	believes	it	has	found	an	error	in	the	contents,	it	should
return	IPSTAT_NOREC.

IPSTAT_ABORT

Use	this	to	indicate	that	the	user	cancelled	the	load	operation.
This	can	happen	if	you	use	the	monitor	to	indicate	the	progress
of	a	lengthy	image	loading	operation.

IPSTAT_FAILED

An	error	occurred	during	loading,	for	example	a	memory
allocation	failed.

filename

The	name	of	the	file	to	load.

monitor

A	monitor	for	displaying	the	progress	of	the	load	to	the	user.	You
don't	have	to	use	this,	but	you're	encouraged	to	if	your	image	loading
takes	an	unusual	amount	of	time.	This	is	the	same	structure	as	that
returned	by	the	monitor	global's	create	function.

protocol	=	begin(priv_data,	pixeltype)

Call	this	when	you're	ready	to	begin	sending	image	data	to
LightWave.	This	will	be	after	you've	opened	and	examined	the	image
file	and	know	what	it	contains.	The	pixel	type	code	tells	LightWave
what	kind	of	pixel	data	you	will	be	sending,	and	this	will	in	general
depend	on	what	kind	of	pixel	data	the	file	contains,	although	it
doesn't	have	to.	Pixel	type	codes	are	listed	on	the	Image	I/O	page.

The	begin	function	returns	a	pointer	to	an	LWImageProtocol,	which	is
the	structure	you'll	use	to	actually	transfer	the	image	data.	See	the
Image	I/O	page.	If	you	call	begin,	you	must	also	call	done	so	that
LightWave	can	free	resources	associated	with	the	LWImageProtocol
it	allocates	for	you.

done(priv_data,	protocol)

Completes	the	image	loading	process.	The	protocol	is	the
LWImageProtocolID	returned	by	begin.	Only	call	done	if	you
previously	called	begin.

Example

The	iff	sample	is	a	complete	IFF	ILBM	loader	and	saver.	The	zcomp
sample	includes	an	image	loader	that	creates	a	floating-point	grayscale
image	from	the	values	in	a	previously	saved	LWBUF_DEPTH	buffer.

ImageSaver

Availability		LightWave	6.0
Component		Layout
Header		lwimageio.h

Image	savers	write	image	files.	Each	of	them	typically	supports	a	single
format.

When	a	saver's	activation	function	is	called,	it	should	try	to	open	the
output	file	named	in	the	local	structure.	If	the	open	fails,	the	saver	can	set
local->result	to	IPSTAT_BADFILE	and	return	immediately.	Otherwise,	the	saver
creates	and	initializes	an	image	protocol	and	calls	sendData	to	tell
LightWave	it's	ready	to	receive	image	data.	LightWave	then	calls	the
saver's	callbacks	to	transfer	the	data.	sendData	doesn't	return	until
LightWave	calls	the	saver's	done	callback.

Activation	Function

			XCALL_(int)	MyImageSaver(long	version,	GlobalFunc	*global,

						LWImageSaverLocal	*local,	void	*serverData);

The	local	argument	to	an	image	saver's	activation	function	is	an
LWImageSaverLocal.

			typedef	struct	st_LWImageSaverLocal	{

						void								*priv_data;

						int										result;

						LWImageType		type;

						const	char		*filename;

						LWMonitor			*monitor;

						int									(*sendData)	(void	*,	LWImageProtocolID,	int	flags);

			}	LWImageSaverLocal;

priv_data

Pass	this	to	the	sendData	function.	It's	an	opaque	pointer	to	data	used
internally	by	LightWave.

result

Set	this	to	indicate	whether	the	image	was	saved	successfully.	The
result	codes	are

IPSTAT_OK

The	image	was	saved	successfully.
IPSTAT_BADFILE

The	saver	couldn't	open	the	file.
IPSTAT_ABORT

Use	this	to	indicate	that	the	user	cancelled	the	save	operation.
This	can	happen	if	you	use	the	monitor	to	indicate	the	progress
of	a	lengthy	image	saving	operation.

IPSTAT_FAILED

An	error	occurred	during	saving.

type

The	kind	of	pixel	data	to	be	saved.	Pixel	types	are	listed	on	the	Image
I/O	page.	The	most	common	types	will	be	LWIMTYP_RGBAFP	for	color
images	and	LWIMTYP_GREYFP	for	grayscale	images.	Use	this	to	decide
what	kind	of	pixel	data	you	want	to	receive.	If	your	file	format
supports	24-bit	color	and	8-bit	grayscale,	for	example,	you	would	set
your	image	protocol	type	to	LWIMTYP_RGB24	when	the	local	type	field
contains	any	of	the	RGB	types,	and	LWIMTYP_GREY8	when	it	contained
either	LWIMTYP_GREYFP	or	LWIMTYP_GREY8.

filename

The	name	of	the	image	file	to	write.

monitor

A	monitor	for	displaying	the	progress	of	the	save	to	the	user.	You
don't	have	to	use	this,	but	you're	encouraged	to	if	your	image	saving
takes	an	unusual	amount	of	time.	This	is	the	same	structure	returned
by	the	monitor	global.

result	=	sendData(priv_data,	protocol,	flags)

Call	this	when	you're	ready	to	begin	receiving	image	data	from
LightWave.	This	will	be	after	you've	filled	in	the	fields	of	an
appropriate	LWImageProtocol	structure,	which	is	described	on	the
Image	I/O	page.	The	only	flag	currently	defined	is	IMGF_REVERSE,	which
instructs	LightWave	to	send	scanlines	in	bottom-to-top	order.	When
you	call	sendData,	LightWave	calls	the	functions	you	provided	in	your
image	protocol	structure	to	actually	save	the	image.	sendData	won't
return	until	the	image	is	saved.

Example

The	iff	sample	is	a	complete	IFF	ILBM	loader	and	saver.

ItemMotionHandler
ItemMotionInterface

Availability		LightWave	6.0
Component		Layout
Header		lwmotion.h

Motion	handlers	apply	procedural	translation,	rotation	and	scaling	to	an
item.	They	can	be	associated	with	any	item	in	a	scene	that	can	be
keyframed	(objects,	lights,	cameras,	bones).

Handler	Activation	Function

			XCALL_(int)	MyItemMotion(long	version,	GlobalFunc	*global,

						LWItemMotionHandler	*local,	void	*serverData);

The	local	argument	to	a	motion	handler's	activation	function	is	an
LWItemMotionHandler.

			typedef	struct	st_LWItemMotionHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						void												(*evaluate)(LWInstance,	const	LWItemMotionAccess	*);

						unsigned	int				(*flags)			(LWInstance);

			}	LWItemMotionHandler;

The	first	two	members	of	this	structure	are	standard	handler	functions.	The
context	argument	to	the	inst->create	function	is	the	LWItemID	of	the	item
associated	with	this	instance.

In	addition	to	the	standard	handler	functions,	a	motion	handler	provides	an
evaluation	function	and	a	flags	function.

evaluate(instance,	access)

This	is	where	the	motion	handler	does	its	work.	LightWave	calls	the
evaluation	function	at	every	point	in	the	animation	at	which	an	item's
motion	parameters	need	to	be	calculated.	The	access	structure,
described	below,	tells	you	the	item	being	animated	and	the	frame	and
time	of	the	evaluation,	and	provides	functions	to	set	motion
parameters	for	the	current	time	and	to	get	the	item's	motion
parameters	for	any	time.

f	=	flags(instance)

Returns	an	integer	containing	flags	combined	using	bitwise-or.
Currently	the	only	flag	is	LWIMF_AFTERIK,	which	specifies	that	the	plug-
in	will	be	evaluated	after	LightWave	has	performed	the	inverse
kinematics	calculations	for	the	item.

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

The	interface	activation's	local	data	is	the	standard	interface	structure	for
handlers.

Motion	Access

The	evaluation	function	receives	an	LWItemMotionAccess	structure.	The
data	members	are	read-only.	The	functions	provide	the	means	to	get	and
set	motion	parameters.

			typedef	struct	st_LWItemMotionAccess	{

						LWItemID		item;

						LWFrame			frame;

						LWTime				time;

						void					(*getParam)	(LWItemParam,	LWTime,	LWDVector);

						void					(*setParam)	(LWItemParam,	const	LWDVector);

			}	LWItemMotionAccess;

item

The	ID	for	the	item	to	be	affected	by	the	procedural	motion.
frame

The	frame	number	at	which	the	motion	should	be	evaluated.
time

The	animation	time	for	which	the	motion	should	be	evaluated.
getParam(param,	lwtime,	vec)

Returns	a	motion	parameter	for	the	item	at	any	given	time.	Only	the
LWIP_POSITION,	LWIP_ROTATION	and	LWIP_SCALING	parameters	may	be	queried.

setParam(param,	vec)

Used	by	the	evaluation	function	to	set	the	computed	motion	of	the
item	at	the	current	time.	Only	the	LWIP_POSITION,	LWIP_ROTATION	and
LWIP_SCALING	parameters	may	be	set.

Example

If	you	want	to	modify	an	item's	motion,	rather	than	completely	replace	it,
call	getParam	for	the	current	time	to	find	out	what	the	item's	unmodified
motion	would	be,	then	calculate	a	new	motion	based	on	that	and	call
setParam.

			XCALL_(static	void)

			Evaluate(MyInstance	*inst,	const	LWItemMotionAccess	*access)

			{

						LWDVector	pos;

						access->getParam(LWIP_POSITION,	access->time,	pos);

						...do	something	to	pos[]...

						access->setParam(LWIP_POSITION,	pos);

			}

The	kepler	sample	is	a	motion	handler	that	moves	an	item	in	an	elliptical
orbit

LayoutGeneric

Availability		LightWave	6.0
Component		Layout
Header		lwgeneric.h

Layout	generic	plug-ins	can	issue	commands	to	alter	the	scene.	They	can
also	manipulate	scene	settings	at	a	lower	level	by	saving,	altering,	and
reloading	scene	files.	Generics	also	supply	general-purpose,	non-rendering
functionality	for	doing	things	like	configuring	external	devices,
performing	scratch	calculations,	or	displaying	scene	information.

Activation	Function

			XCALL_(int)	MyGeneric(long	version,	GlobalFunc	*global,

						LWLayoutGeneric	*local,	void	*serverData);

The	local	argument	to	a	generic's	activation	function	is	an
LWLayoutGeneric.

			typedef	struct	st_LWLayoutGeneric	{

						int											(*saveScene)(const	char	*file);

						int											(*loadScene)(const	char	*file,	const	char	*name);

						void										*data;

						LWCommandCode	(*lookup)			(void	*,	const	char	*cmdName);

						int											(*execute)		(void	*,	LWCommandCode	cmd,	int	argc,

																																			const	DynaValue	*argv,

																																			DynaValue	*result);

						int											(*evaluate)	(void	*,	const	char	*command);

			}	LWLayoutGeneric;

ok	=	saveScene(filename)
Save	the	scene	in	its	current	state	as	a	LightWave	scene	file.

ok	=	loadScene(filename,	newname)
Load	a	scene	file.	The	scene	is	loaded	from	the	file	named	in	the	first
argument.	The	second	argument	is	the	default	filename	for
subsequent	saving	of	the	scene	and	the	name	that	will	be	displayed	to
the	user.

data
An	opaque	pointer	to	data	used	internally	by	Layout.	Pass	this	as	the
first	argument	to	the	lookup,	execute	and	evaluate	functions.

cmdcode	=	lookup(data,	cmdname)
Returns	an	integer	code	corresponding	to	the	command	name.	The
command	is	issued	by	passing	the	command	code	to	the	execute
function.	Command	codes	are	constant	for	a	given	Layout	session,	so
this	only	needs	to	be	called	once	per	command,	after	which	the	codes
can	be	cached	and	used	multiple	times.

result	=	execute(data,	cmdcode,	argc,	argv,	cmdresult)
Issue	the	command	given	by	the	command	code	argument.	argv	is	an
array	of	DynaValue	arguments.	argc	is	the	number	of	arguments	in	the
argv	array.	The	result	of	the	command	is	written	in	cmdresult.	The
function	returns	1	if	it	succeeds	or	0	if	it	does	not.

result	=	evaluate(data,	cmdstring)
Issue	the	command	with	the	name	and	arguments	in	the	command
string.	This	is	an	alternative	to	using	lookup	and	execute.	The	command
and	its	arguments	are	written	to	a	single	string	and	delimited	by
spaces.	The	function	returns	1	if	it	succeeds	or	0	if	it	does	not.

See	the	Commands	pages	for	a	complete	list	of	the	commands	that	can	be
issued	in	Layout,	as	well	as	a	detailed	explanation	of	the	formatting	of
command	arguments	for	both	the	execute	and	evaluate	methods.

Example

The	hello	sample	is	the	LightWave	version	of	everybody's	favorite	"Hello,
World!"	program.	It	opens	a	panel	with	an	edit	field,	displays	messages,
and	issues	a	command.

LayoutTool

Availability		Future
Component		Layout
Header		lwlaytool.h

Layout	tool	plug-ins	are	just	custom	Layout	tools.	To	the	user,	they	behave
like	Layout's	built-in	tools	(the	tools	activated	by	the	Move,	Rotate	and
Scale	buttons,	for	example).

Support	for	this	class	hasn't	been	implemented	yet.

Activation	Function

			XCALL_(int)	MyLayoutTool(long	version,	GlobalFunc	*global,

						LWLayoutTool	*local,	void	*serverData);

The	local	argument	to	a	Layout	tool's	activation	function	is	an
LWLayoutTool.

			typedef	struct	st_LWLayoutTool	{

						LWInstance									instance;

						LWLayoutToolFuncs	*tool;

			}	LWLayoutTool;

The	activation	function	fills	in	the	instance	field	and	the	callbacks	of	the
tool	field	and	returns.	As	with	handlers,	the	remaining	interaction	between
Layout	and	the	plug-in	takes	place	through	the	callbacks.

instance
A	pointer	to	your	user	data.	This	will	be	passed	to	each	of	the	tool
callbacks.

tool
Points	to	a	structure	containing	function	pointers	for	your	callbacks,
described	below.

Tool	Functions

The	tool	field	of	the	LWLayoutTool	is	a	pointer	to	an
LWLayoutToolFuncs.

			typedef	struct	st_LWLayoutToolFuncs	{

						void									(*done)			(LWInstance);

						void									(*draw)			(LWInstance,	LWCustomObjAccess	*);

						const	char	*	(*help)			(LWInstance,	LWToolEvent	*);

						int										(*dirty)		(LWInstance);

						int										(*count)		(LWInstance,	LWToolEvent	*);

						int										(*handle)	(LWInstance,	LWToolEvent	*,	int	i,

																																LWDVector	pos);

						int										(*start)		(LWInstance,	LWToolEvent	*);

						int										(*adjust)	(LWInstance,	LWToolEvent	*,	int	i);

						int										(*down)			(LWInstance,	LWToolEvent	*);

						void									(*move)			(LWInstance,	LWToolEvent	*);

						void									(*up)					(LWInstance,	LWToolEvent	*);

						void									(*event)		(LWInstance,	int	code);

						LWXPanelID			(*panel)		(LWInstance);

			}	LWLayoutToolFuncs;

done(inst)
Destroy	the	instance.	Called	when	the	user	discards	the	tool.

draw(inst,	custobj_access)
Display	a	wireframe	representation	of	the	tool	in	a	3D	viewport.
Typically	this	draws	the	handles.

helptext	=	help(inst,	event)
Returns	a	text	string	to	be	displayed	as	a	help	tip	for	this	tool.

dirty	=	dirty(inst)
Returns	flag	bit	if	either	the	wireframe	or	help	string	need	to	be
refreshed.

nhandles	=	count(inst,	event)
Returns	the	number	of	handles.	If	zero,	then	start	is	used	to	set	the
initial	handle	point.

priority	=	handle(inst,	event,	handle,	pos)
Returns	the	3D	location	and	priority	of	the	handle,	or	zero	if	the
handle	is	currently	invalid.

handle	=	start(inst,	event)
Take	an	initial	mouse-down	position	and	return	the	index	of	the
handle	that	should	be	dragged.

handle	=	adjust(inst,	event,	handle)
Drag	the	given	handle	to	a	new	location	and	return	the	index	of	the

handle	that	should	continue	being	dragged	(often	the	same	as	the
input).

rawmouse	=	down(inst,	event)
Process	a	mouse-down	event.	If	this	function	returns	false,	handle
processing	will	be	done	instead	of	raw	mouse	event	processing.

move(inst,	event)
Process	a	mouse-move	event.	This	is	only	called	if	the	down	function
returned	true.

up(inst,	event)
Process	a	mouse-up	event.	This	is	only	called	if	the	down	function
returned	true.

event(inst,	code)
Process	a	general	event:	DROP,	RESET	or	ACTIVATE

panel	=	panel(inst)
Create	and	return	a	view-type	xPanel	for	the	tool	instance.

Example

.

	

MasterHandler

Availability		LightWave	6.0	Component		Layout	
Header		lwmaster.h

Masters	can	issue	commands	like	generics,	but	unlike	generics,	masters
can	respond	to	the	user's	changes	to	a	scene	as	the	scene	is	being
composed.	Masters	are	handlers,	so	they	have	persistent	instances	that	can
be	saved	in	scene	files.	Masters	can	be	used	to	record	a	sequence	of
commands	for	scripting	or	as	a	central	point	of	control	for	a	suite	of
handler	plug-ins.

Activation	Function

			XCALL_(int)	MyMaster(long	version,	GlobalFunc	*global,

						LWMasterHandler	*local,	void	*serverData);

The	local	argument	to	a	master's	activation	function	is	an
LWMasterHandler.
			typedef	struct	st_LWMasterHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						int														type;

						double										(*event)	(LWInstance,	const	LWMasterAccess	*);

						unsigned	int				(*flags)	(LWInstance);

			}	LWMasterHandler;

The	first	two	members	of	this	structure	point	to	standard	handler
functions.	In	addition	to	these,	a	master	handler	provides	a	type	code,	an
event	function	and	a	flags	function.

	
type

This	can	be	one	of	the	following.
		
LWMAST_SCENE

LWMAST_OBJECTS

LWMAST_EFFECTS

LWMAST_LAYOUT

The	SCENE	type	is	the	most	common.	OBJECTS	and	EFFECTS	types	are	reserved
for	future	enhancement	of	the	class.	LAYOUT	masters	are	like	SCENE	masters,

but	they	survive	scene	clearing	and	can	therefore	be	used	to	automate
scene	management.
val	=	event(instance,	access)

The	event	function	is	called	to	notify	the	handler	that	something	has
happened.	Information	about	the	event	is	included	in	the	access
structure,	described	below.	The	handler	can	respond	to	the	event	by
issuing	commands	through	functions	provided	in	the	access	structure.
The	return	value	is	currently	ignored	and	should	be	set	to	0.

f	=	flags(instance)

Returns	flag	bits	combined	using	bitwise-or.	No	flags	are	currently
defined,	so	this	function	should	simply	return	0.	

Interface	Activation	Function
			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.

Master	Access

This	is	the	structure	passed	to	the	handler's	event	function.	

			typedef	struct	st_LWMasterAccess	{

						int												eventCode;

						void										*eventData;

						void										*data;

						LWCommandCode	(*lookup)			(void	*,	const	char	*cmdName);

						int											(*execute)		(void	*,	LWCommandCode	cmd,	int	argc,

																																			const	DynaValue	*argv,

																																			DynaValue	*result);

						int											(*evaluate)	(void	*,	const	char	*command);

			}	LWMasterAccess;

eventCode

eventData

The	type	of	event	and	its	associated	data.	The	event	can	be	one	of	the
following.	

LWEVNT_NOTHING

Not	currently	used.
LWEVNT_COMMAND

A	user	action	corresponding	to	a	command.	The	eventData	is	a	string
containing	the	command	and	its	arguments,	written	in	the	same
format	used	by	the	evaluate	function	to	issue	commands.

LWEVNT_TIME

Sent	whenever	the	frame	slider	is	moved,	which	includes	playing	the

scene,	but	not	playing	back	a	preview.	This	allows	masters	to	remain
synchronized	in	time	with	the	Layout	interface.

LWEVNT_SELECT

Sent	when	the	item	selection	has	changed.

LWEVNT_RENDER_DONE

Sent	when	a	render	has	been	completed.
data

An	opaque	pointer	to	data	used	internally	by	Layout.	Pass	this	as	the
first	argument	to	the	lookup,	execute	and	evaluate	functions.

cmdcode	=	lookup(data,	cmdname)

Returns	an	integer	code	corresponding	to	the	command	name.	The
command	is	issued	by	passing	the	command	code	to	the	execute
function.	Command	codes	are	constant	for	a	given	Layout	session,	so
this	only	needs	to	be	called	once	per	command,	after	which	the	codes
can	be	cached	and	used	multiple	times.

result	=	execute(data,	cmdcode,	argc,	argv,	cmdresult)

Issue	the	command	given	by	the	command	code	argument.	argv	is	an
array	of	DynaValue	arguments.	argc	is	the	number	of	arguments	in	the
argv	array.	The	result	of	the	command	is	written	in	cmdresult.	The
function	returns	1	if	it	succeeds	or	0	if	it	does	not.

result	=	evaluate(data,	cmdstring)

Issue	the	command	with	the	name	and	arguments	in	the	command
string.	This	is	an	alternative	to	using	lookup	and	execute.	The	command
and	its	arguments	are	written	to	a	single	string	and	delimited	by
spaces.	The	function	returns	1	if	it	succeeds	or	0	if	it	does	not.

See	the	Commands	pages	for	a	complete	list	of	the	commands	that	can	be
issued	in	Layout,	as	well	as	a	detailed	explanation	of	the	formatting	of
command	arguments	for	both	the	execute	and	evaluate	methods.

History

The	LWEVNT_SELECT	event	code	was	added	in	LightWave	7.0.	The
LWEVNT_RENDER_DONE	event	code	was	added	in	LightWave	7.5.

Example

The	macro	sample	is	a	master	that	records	a	sequence	of	commands	and

saves	it	as	an	LScript.

MeshDataEdit

Availability		LightWave	6.0
Component		Modeler
Header		lwmeshedt.h

Mesh	edit	plug-ins	create	and	modify	geometry	at	the	point	and	polygon
level.	This	class	is	a	subset	of	the	CommandSequence	class,	which
provides	access	to	both	mesh	editing	and	commands,	and	of	the
MeshEditTool	class,	an	interactive	version	of	MeshDataEdit.

Activation	Function

			XCALL_(int)	MyMeshEdit(long	version,	GlobalFunc	*global,

						MeshEditBegin	*local,	void	*serverData);

The	local	argument	to	a	mesh	edit	plug-in's	activation	function	is	a
MeshEditBegin.

			typedef	MeshEditOp	*

						MeshEditBegin	(int	pntBuf,	int	polBuf,	EltOpSelect);

This	function	returns	a	MeshEditOp	structure	containing	the	mesh	editing
functions.	It	can	be	called	only	once	for	each	activation.

The	MeshEditBegin	function	can	allocate	a	user	data	buffer	for	each	point
and	polygon.	This	is	memory	you	can	use	to	store	per-point	and	per-
polygon	information	during	the	edit.	Modeler	automatically	frees	these
buffers	when	the	edit	is	completed.	The	pntBuf	and	polBuf	arguments	set	the
sizes	of	the	buffers.

EltOpSelect

When	the	edit	begins,	Modeler	sets	a	selection	flag	for	each	point	and
polygon.	The	EltOpSelect	code	determines	which	geometry	is	flagged	as
selected,	and	it	can	be	one	of	the	following.

OPSEL_GLOBAL
All	elements,	whether	or	not	they're	selected	by	the	user.

OPSEL_USER
Only	those	elements	selected	by	the	user.	This	includes	the	implicit
selection	of	all	elements	when	nothing	is	explicitly	selected,	and
selections	by	volume.

OPSEL_DIRECT
Elements	selected	directly	with	the	point	or	polygon	selection	tools.
This	applies	to	both	points	and	polygons	regardless	of	which	is
currently	active	in	the	interface.

OPSEL_MODIFY
This	activates	a	special	mesh	edit	mode	that	can	change	the	selection
state	of	specific	points	and	polygons.	The	mesh	editing	functions	for
adding	and	changing	geometry	aren't	available	in	this	mode,	but	the
query	functions	can	be	used.	The	selection	state	of	a	point	or	polygon
is	modified	by	calling	the	MeshEditOp	pntSelect	or	polSelect	functions,
typically	within	a	pointScan	or	polyScan	callback.	OPSEL_MODIFY	must	be
combined	with	one	of	the	other	selection	modes	in	the
MeshEditBegin	call.

EltOpLayer

Many	of	the	MeshEditOp	functions	operate	on	a	specific	set	of	layers,	and
these	are	identified	by	an	EltOpLayer	code.

OPLYR_PRIMARY

The	primary	layer.	This	is	the	single	active	layer	affected	by	mesh
edits,	normally	the	lowest	numbered	foreground	layer.

OPLYR_FG

Foreground	layers,	which	are	active	and	displayed.
OPLYR_BG

Background	layers,	which	are	inactive	but	still	displayed.
OPLYR_SELECT

Both	foreground	and	background	layers.
OPLYR_ALL

All	layers	in	the	Modeler	system	whether	they	contain	data	or	not.
OPLYR_EMPTY

Empty	layers	are	those	that	contain	no	geometry.
OPLYR_NONEMPTY

Non-empty	layers	are	any	layers	which	contain	some	data	(the
complement	of	OPLYR_EMPTY).

Individual	Layers

In	addition	to	the	defined	values,	codes	starting	at	101	(for	layer	1)
can	be	used	to	select	the	individual	layers	by	number.

Error	Codes

Most	of	the	mesh	edit	functions	return	an	error	state	defined	by	one	of	the
following	codes.	One	of	these	is	also	passed	to	the	MeshEditOp	done
function.

EDERR_NONE
Success.

EDERR_NOMEMORY
A	memory	allocation	failed.

EDERR_BADLAYER
An	operation	was	attempted	in	an	invalid	layer.

EDERR_BADSURF
The	edit	created	an	invalid	surface	name.

EDERR_USERABORT
The	user	(or	the	plug-in)	ended	the	edit	before	it	was	completed.

EDERR_BADVMAP

The	operation	involved	an	invalid	vertex	map.
EDERR_BADARGS

The	function	failed	for	a	reason	not	covered	by	the	other	error	codes.

MeshEditOp

The	MeshEditBegin	function	returns	a	MeshEditOp	containing	data	and
functions	for	performing	mesh	edits.

			typedef	struct	st_MeshEditOp	{

						EDStateRef							state;

						int														layerNum;

						void												(*done)						(EDStateRef,	EDError,	int	selm);

						int													(*pointCount)(EDStateRef,	EltOpLayer,	int	mode);

						int													(*polyCount)	(EDStateRef,	EltOpLayer,	int	mode);

						EDError									(*pointScan)	(EDStateRef,	EDPointScanFunc	*,

																																						void	*,	EltOpLayer);

						EDError									(*polyScan)		(EDStateRef,	EDPolyScanFunc	*,

																																						void	*,	EltOpLayer);

						EDPointInfo	*			(*pointInfo)	(EDStateRef,	LWPntID);

						EDPolygonInfo	*	(*polyInfo)		(EDStateRef,	LWPolID);

						int													(*polyNormal)(EDStateRef,	LWPolID,	double[3]);

						LWPntID									(*addPoint)		(EDStateRef,	double	*xyz);

						LWPolID									(*addFace)			(EDStateRef,	const	char	*surf,

																																						int	numPnt,	const	LWPntID	*);

						LWPolID									(*addCurve)		(EDStateRef,	const	char	*surf,

																																						int	numPnt,	const	LWPntID	*,

																																						int	flags);

						EDError									(*addQuad)			(EDStateRef,	LWPntID,	LWPntID,

																																						LWPntID,	LWPntID);

						EDError									(*addTri)				(EDStateRef,	LWPntID,	LWPntID,

																																						LWPntID);

						EDError									(*addPatch)		(EDStateRef,	int	nr,	int	nc,	int	lr,

																																						int	lc,	EDBoundCv	*r0,

																																						EDBoundCv	*r1,	EDBoundCv	*c0,

																																						EDBoundCv	*c1);

						EDError									(*remPoint)		(EDStateRef,	LWPntID);

						EDError									(*remPoly)			(EDStateRef,	LWPolID);

						EDError									(*pntMove)			(EDStateRef,	LWPntID,	const	double	*);

						EDError									(*polSurf)			(EDStateRef,	LWPolID,	const	char	*);

						EDError									(*polPnts)			(EDStateRef,	LWPolID,	int,

																																						const	LWPntID	*);

						EDError									(*polFlag)			(EDStateRef,	LWPolID,	int	mask,

																																						int	value);

						EDError									(*polTag)				(EDStateRef,	LWPolID,	LWID,

																																						const	char	*);

						EDError									(*pntVMap)			(EDStateRef,	LWPntID,	LWID,

																																						const	char	*,	int,	float	*);

						LWPolID									(*addPoly)			(EDStateRef,	LWID	type,	LWPolID,

																																						const	char	*surf,	int	numPnt,

																																						const	LWPntID	*);

						LWPntID									(*addIPnt)			(EDStateRef,	double	*xyz,	int	numPnt,

																																						const	LWPntID	*,	const	double	*wt);

						EDError									(*initUV)				(EDStateRef,	float	*uv);

						void	*										(*pointVSet)	(EDStateRef,	void	*,	LWID,

																																						const	char	*);

						int													(*pointVGet)	(EDStateRef,	LWPntID,	float	*);

						const	char	*				(*polyTag)			(EDStateRef,	LWPolID,	LWID);

						EDError									(*pntSelect)	(EDStateRef,	LWPntID,	int);

						EDError									(*polSelect)	(EDStateRef,	LWPolID,	int);

						int													(*pointVPGet)(EDStateRef,	LWPntID,	LWPolID,

																																						float	*);

						int													(*pointVEval)(EDStateRef,	LWPntID,	LWPolID,

																																						float	*);

						EDError									(*pntVPMap)		(EDStateRef,	LWPntID,	LWPolID,

																																						LWID,	const	char	*,	int,	float	*);

			}	MeshEditOp;

state
An	opaque	pointer	to	data	used	internally	by	Modeler	during	the
mesh	edit.	Pass	this	as	the	first	argument	to	all	of	the	edit	functions.

layerNum
Points	and	polygons	may	only	be	created	or	modified	in	the	primary
active	layer,	which	is	given	by	this	layer	number.	The	primary	layer	is
the	lowest	numbered	foreground	layer.

done(state,	error,	selset)
Call	this	when	the	edit	is	complete.	As	changes	are	made	during	an
edit,	they	are	buffered	through	Modeler's	undo	mechanism,	so	they
are	not	reflected	in	the	data	until	done	is	called,	and	not	at	all	if	done

sets	the	error	argument.

In	general,	if	one	of	the	edit	functions	returns	an	error,	you'll	pass	that
error	to	done.	If	you	just	want	the	edit	to	stop	or	be	discarded,	possibly
because	the	user	pressed	the	Cancel	button	in	a	progress	monitor,
you'll	pass	EDERR_USERABORT.	If	an	error	occurs	in	your	plug-in,	you'll
pass	EDERR_NOMEMORY	(for	memory	allocation	errors)	or	EDERR_BADARGS	(for
everything	else).	And	if	the	edit	was	successful,	you'll	use	EDERR_NONE.

The	selset	argument	tells	Modeler	how	you	want	the	selection	to
appear	to	the	user	after	the	edit	has	been	applied.	It	contains	flags
combined	using	bitwise-or,	and	can	include	the	following.

EDSELM_CLEARCURRENT
Deselect	elements	that	were	selected	when	the	edit	began.

EDSELM_SELECTNEW
Select	elements	created	by	the	edit.

EDSELM_FORCEVRTS
Force	selection	of	newly	created	vertices.

EDSELM_FORCEPOLS
Force	selection	of	newly	created	polygons.

A	value	of	0	leaves	all	directly	selected	elements	selected	after	the
edit.	The	CLEARCURRENT	and	SELECTNEW	flags	are	polite	hints;	they	won't
override	selection	settings	made	by	the	user.	The	force	flags	will
always	force	direct	selection	of	the	points	or	polygons	created	by	the
edit.

npoints	=	pointCount(state,	oplayer,	selmode)
npolygons	=	polyCount(state,	oplayer,	selmode)

Returns	the	number	of	points	or	polygons	that	meet	the	layer	and
selection	criteria.	The	selection	mode	can	be	one	of	the	following.

EDCOUNT_ALL
Both	selected	and	unselected	points	or	polygons.

EDCOUNT_SELECT
Only	selected	points	or	polygons.

EDCOUNT_DELETE

Only	points	or	polygons	flagged	for	deletion	by	this	mesh	edit.

err	=	pointScan(state,	scanfunc,	userdata,	oplayer)
err	=	polyScan(state,	scanfunc,	userdata,	oplayer)

Enumerate	the	points	or	polygons	in	the	specified	layers.	For	each
element,	Modeler	calls	the	callback	function	you	supply.	The
callbacks	are	defined	this	way.
typedef	EDError	EDPointScanFunc	(void	*,	const	EDPointInfo	*);

typedef	EDError	EDPolyScanFunc	(void	*,	const	EDPolygonInfo	*);

The	userdata	pointer	is	passed	as	the	first	argument	to	your	callbacks,
and	it	can	be	whatever	is	useful	to	you.	The	point	and	polygon	info
structures	passed	as	the	second	argument	are	described	later.	If	your
callback	returns	an	error,	the	scan	is	stopped	and	the	callback's	error
is	returned.

Point	and	polygon	scans	will	enumerate	all	of	the	geometry	in	the
layers	you	request,	regardless	of	what	geometry	is	selected,	even	if
you	begin	the	edit	with	OPSEL_USER	or	OPSEL_DIRECT.	To	find	out	whether	a
given	element	is	selected	(as	defined	by	your	choice	of	EltOpSelect),
you	need	to	test	the	EDPointInfo	or	EDPolygonInfo	flags	field	for	the
EDDF_SELECT	bit.	Similarly,	if	you've	deleted	geometry	during	the	mesh
edit,	it	will	still	be	enumerated,	but	the	flags	field	of	the	info	structure
will	contain	EDDF_DELETE.

info	=	pointInfo(state,	point)
info	=	polyInfo(state,	polygon)

Returns	information	about	a	point	or	polygon.	These	return	the	same
EDPointInfo	and	EDPolygonInfo	structures	that	are	passed	to	the
scan	callbacks.

ok	=	polyNormal(state,	polygon,	norm)
Get	a	polygon's	normal.	The	normal	is	a	unit	vector	perpendicular	to
the	plane	defined	by	the	first,	second	and	last	vertex	of	the	polygon.
If	the	polygon	has	fewer	than	three	vertices,	or	is	somehow
degenerate,	norm	isn't	changed	and	the	function	returns	0.	Otherwise	it
returns	1	and	norm	receives	the	normal.

point	=	addPoint(state,	pos)

Create	a	point.

polygon	=	addFace(state,	surfname,	npoints,	point_array)
Create	a	polygon.	If	the	surface	name	is	NULL,	the	polygon	will	be
assigned	the	current	default	surface.	The	vertices	are	defined	by	an
array	of	point	IDs	listed	in	clockwise	order.	The	polygon	normal	will
be	inferred	from	the	first,	second	and	last	points.

polygon	=	addCurve(state,	surfname,	npoints,	point_array,	flags)
Create	a	curve	(a	polygon	of	type	LWPOLTYPE_CURV).	The	EDPF_CCSTART	and
EDPF_CCEND	flags	specify	that	the	first	and	last	points	in	the	point	array
should	serve	as	control	points	and	not	be	included	in	the	curve	itself.
To	create	a	closed	curve,	both	of	these	flags	must	be	set,	and	the	first
and	last	point	must	overlap.

err	=	addQuad(state,	v1,	v2,	v3,	v4)
err	=	addTri(state,	v1,	v2,	v3)

Create	a	quadrangle	or	a	triangle	with	the	current	default	surface.
These	two	functions	respect	the	user's	settings	for	new	geometry.	Two
collocated	polygons	with	opposite	normals	will	be	created	if	the	user
has	set	the	double-sided	option,	and	quads	will	be	split	into	two
triangles	if	the	user	has	set	the	triangles-only	option.

err	=	addPatch(state,	nr,	nc,	lr,	lc,	r0,	r1,	c0,	c1)
Create	a	polygonal	patch	defined	by	three	or	four	bounding	curves.
The	first	two	arguments	(after	the	EditStateRef)	give	the	number	of
patch	divisions	in	the	R	(row)	and	C	(column)	directions.	The	second
two	arguments	are	booleans;	if	0,	the	divisions	are	equally	spaced
along	the	curve,	and	if	1,	the	spacing	is	determined	by	the	positions
of	the	curve	knots.	The	last	four	arguments	are	the	bounding	curves,
each	defined	by	an	EDBoundCV	structure.
typedef	struct	st_EDBoundCv	{

			LWPolID	curve;

			int					start,	end;

}	EDBoundCv;

The	start	and	end	indexes	are	the	points	on	the	curve	that	should	be
used	as	endpoints	for	patching.	The	first	and	second	curves	define	the
R	boundaries.	The	third	and	optional	fourth	curve	define	the	C
boundaries.

err	=	remPoint(state,	point)
Delete	the	point.	Modeler	will	flag	the	point	as	deleted,	but	will
actually	remove	it	from	the	database	only	after	done	is	called.

err	=	remPoly(state,	polygon)
Delete	the	polygon.

err	=	pntMove(state,	point,	pos)
Put	a	point	in	a	new	position.

err	=	polSurf(state,	polygon,	surfname)
Change	the	surface	assigned	to	a	polygon.

err	=	polPnts(state,	polygon,	npoints,	point_array)
Replace	the	point	list	of	a	polygon.

err	=	polFlag(state,	polygon,	mask,	value)
Set	polygon	flags.	The	mask	contains	1	bits	for	each	flag	you	want	to
change,	and	the	value	contains	the	new	flag	settings	(0	or	1	for	each	1
bit	in	the	mask).	Currently,	the	flags	that	can	be	changed	are	the
EDPF_START	and	EDPF_END	flags	for	curves.

err	=	polTag(state,	polygon,	tagtype,	tag)
Add	a	polygon	tag	to	a	polygon,	or	change	an	existing	tag.	If	the	tag
type	is	LWPTAG_SURF,	the	tag	is	the	surface	name.	If	the	tag	type	is
LWPTAG_PART,	the	tag	is	the	part	(or	group)	name.	For	anything	other	than
surface	tags,	passing	a	NULL	tag	will	remove	an	existing	tag	of	the
specified	type.

err	=	pntVMap(state,	point,	type,	name,	nvalues,	val_array)
Add	a	vmap	vector	to	a	point.	The	vmap	type	can	be	one	of	the
following,	or	something	else.

LWVMAP_PICK	-	selection	set
LWVMAP_WGHT	-	weight	map
LWVMAP_MNVW	-	subpatch	weight	map
LWVMAP_TXUV	-	texture	UV	coordinates
LWVMAP_MORF	-	relative	vertex	displacement	(morph)
LWVMAP_SPOT	-	absolute	vertex	displacement	(morph)

LWVMAP_RGB,	LWVMAP_RGBA	-	vertex	color

Pass	a	NULL	val_array	to	remove	a	vmap	vector	from	the	point.

polygon	=	addPoly(state,	type,	template,	surf,	npoints,	point_array)
Create	a	polygon.	If	a	template	polygon	is	supplied,	Modeler	copies
the	polygon	tags	for	the	new	polygon	from	the	template.	If	the
surface	name	is	NULL,	the	surface	will	be	that	of	the	template,	or	the
current	default	surface	if	the	template	is	NULL.	The	vertices	of	the
new	polygon	are	listed	in	clockwise	order,	and	the	normal	will	be
inferred	from	the	first,	second	and	last	vertex.

point	=	addIPnt(state,	pos,	npoints,	point_array,	weight_array)
Create	an	"interpolated"	point.	The	new	point's	vmap	values	are
calculated	as	a	weighted	average	of	the	vmaps	of	the	points	in	the
points	array.	If	pos	is	NULL,	the	position	is	also	computed	as	a
weighted	average.	If	the	weight	array	is	NULL,	the	averaging	over
the	point	list	is	uniform.	The	weights	are	renormalized	to	sum	to	1.0.

err	=	initUV(state,	uv)
Set	the	texture	UV	for	a	point	or	polygon	you're	about	to	create.	If	a
texture	map	is	selected	in	Modeler's	interface,	the	UVs	will	be
assigned	to	that	map	as	points	or	polygons	are	created.	You'll
typically	want	to	give	the	user	the	option	of	whether	or	not	to	create
UVs	for	new	points	and	polygons.

When	creating	points,	pass	initUV	an	array	of	two	floats	and	then	call
any	of	the	functions	that	create	a	point.	The	two	floats	will	be	used	as
the	U	and	V	for	the	point,	after	which	the	initUV	state	will	be	cleared
so	that	subsequent	points	have	no	UV	unless	the	function	is	called
again.

To	initialize	per-polygon,	or	discontinuous,	UVs,	call	initUV	with	a
pointer	to	2n	floats	before	creating	a	polygon	with	n	vertices.	For
each	vertex,	if	the	point's	continuous	UV	value	is	different	from	the
UV	in	the	array,	then	a	polygon-specific	UV	is	set	for	the	vertex.	If
the	point	has	no	continuous	UV,	then	the	continuous	value	for	the
point	is	set	to	the	polygon	UV.

Any	combination	of	these	two	methods	can	be	used	to	assign	UVs	to
new	data.	If	only	polygon	UVs	are	specified,	continuous	UVs	will
still	be	created	where	polygons	share	UV	values.	Alternately,	plug-ins
can	assign	UVs	to	points	and	only	specify	polygon	UVs	along	seam
polygons.

vmapID	=	pointVSet(state,	vmapID,	vmaptype,	vmapname)
Select	a	vmap	for	reading	vectors.	Returns	an	opaque	pointer	that	can
be	used	to	select	the	same	vmap	in	later	calls	to	this	function.	The
first	time	this	is	called	for	a	given	vmap,	the	pointer	can	be	NULL,
and	Modeler	will	locate	and	select	the	vmap	using	the	type	and	name
arguments.

ismapped	=	pointVGet(state,	point,	val)
Read	the	vmap	vector	for	a	point.	The	vector	is	read	from	the	vmap
selected	by	a	previous	call	to	pointVSet.	If	the	point	is	mapped	(has	a
vmap	value	in	the	selected	vmap),	the	val	array	is	filled	with	the
vmap	vector	for	the	point,	and	pointVGet	returns	true.	If	you	don't
already	know	the	dimension	of	the	vmap	(the	number	of	values	per
point,	and	therefore	the	required	size	of	the	val	array),	you	can	use	the
scene	objects	global	to	find	out.

See	also	pointVPGet	and	pointVEval.	pointVGet	is	equivalent	to	reading
values	from	a	VMAP	chunk	in	an	object	file.	It	returns	the
continuous,	or	per-point,	vector.	For	the	raw	discontinuous,	or	per-
polygon-vertex	value,	use	pointVPGet,	and	for	the	combined	value
accounting	for	both	sources,	use	pointVEval.

tag	=	polyTag(state,	polygon,	tagtype)
Returns	a	tag	string	associated	with	the	polygon.	For	the	LWPTAG_SURF
tag	type,	the	surface	name	is	returned.

err	=	pntSelect(state,	point,	setsel)
err	=	polSelect(state,	polygon,	setsel)

Set	the	selection	state	of	a	point	or	polygon.	These	can	only	be	called
during	OPSEL_MODIFY	mesh	edits.	The	element	is	selected	if	setsel	is	true
and	deselected	if	it's	false.

ismapped	=	pointVPGet(state,	point,	polygon,	val)

Read	the	vmap	vector	for	a	polygon	vertex.	This	is	like	pointVGet,	but
it	returns	the	discontinuous	vmap	value,	equivalent	to	reading	entries
in	a	VMAD	chunk.

ismapped	=	pointVEval(state,	point,	polygon,	val)
Read	the	vmap	vector	for	a	point,	accounting	for	both	continuous	and
discontinuous	values.	Generally,	if	a	discontinuous	value	exists	for
the	point,	that	value	will	be	returned.		Otherwise	the	continuous	value
is	used.

err	=	pntVPMap(state,	point,	polygon,	type,	name,	dim,	val)
Add	a	discontinuous	vmap	vector	to	a	polygon	vertex.	This	is	the
vector	returned	by	pointVPGet.	See	pntVMap	for	a	partial	list	of	vmap
types.

Point	and	Polygon	Info

The	info	and	scan	functions	use	EDPointInfo	and	EDPolygonInfo
structures	to	provide	information	about	points	and	polygons.	Modeler
maintains	only	one	of	each	of	these.	It	overwrites	the	structure	each	time
data	for	a	different	point	or	polygon	is	required,	so	if	you	need	to	keep
data	for	multiple	points	or	polygons,	you	must	copy	it	from	the	structure
and	store	it	locally.

			typedef	struct	st_EDPointInfo	{

						LWPntID		pnt;

						void				*userData;

						int						layer;

						int						flags;

						double			position[3];

						float			*vmapVec;

			}	EDPointInfo;

pnt
The	ID	of	the	point.

userData
Your	per-point	data	buffer,	allocated	by	the	MeshEditBegin	call.

layer
The	layer	in	which	the	point	resides.

flags
Flags	for	the	point.	The	EDDF_SELECT	bit	is	set	if	the	selection	state	of	the
point	matches	the	EltOpSelect	passed	to	the	MeshEditBegin	function.
The	EDDF_DELETE	bit	is	set	if	the	point	has	been	deleted	during	this	mesh
edit.

position
The	point's	position.

vmapVec
The	vmap	values	associated	with	the	point.

			typedef	struct	st_EDPolygonInfo	{

						LWPolID								pol;

						void										*userData;

						int												layer;

						int												flags;

						int												numPnts;

						const	LWPntID	*points;

						const	char				*surface;

						unsigned	long		type;

			}	EDPolygonInfo;

pol
The	polygon	ID.

userData
Your	per-polygon	data	buffer,	allocated	by	the	MeshEditBegin	call.

layer
The	layer	in	which	the	polygon	resides.

flags
Flags	for	the	polygon.	These	include	the	EDPF_CCSTART	and	EDDF_CCEND	bits
for	curves.

numPnts
The	number	of	vertices	in	the	polygon.

points
An	array	of	point	IDs	for	the	vertices	of	the	polygon.

surface

The	polygon's	surface.

type
The	polygon	type,	which	will	usually	be	one	of	the	following.

LWPOLTYPE_FACE	-	face
LWPOLTYPE_CURV	-	higher	order	curve
LWPOLTYPE_PTCH	-	subdivision	control	cage	polygon
LWPOLTYPE_MBAL	-	metaball
LWPOLTYPE_BONE	-	bone

Example

The	zfacing	sample	demonstrates	OPSEL_MODIFY	edits.	This	method	of	altering
the	selection	is	especially	useful	in	CommandSequence	plug-ins,	so
zfacing.c	contains	both	edit	and	command	versions	of	the	activation
function.	The	vidscape	sample	uses	mesh	editing	to	enumerate	the
geometry	of	an	object	before	exporting	it	to	a	VideoScape	format	file.
Many	former	mesh	edit	sample	plug-ins,	notably	superq	and	spikey,	have
been	converted	to	interactive	mesh	edit	tools.

	

MeshEditTool

Availability		LightWave	6.0	Component		Modeler	
Header		lwmodtool.h,	lwtool.h

Mesh	edit	tools	are	interactive	versions	of	MeshDataEdit	plug-ins.	For
users	they	behave	like	Modeler's	built-in	tools.	You	supply	callbacks	for
drawing	the	tool,	for	creating	"handles"	that	can	be	manipulated	by	the
user,	and	for	generating	the	geometry	the	tool	creates	or	modifies.

Activation	Function

			XCALL_(int)	MyMETool(long	version,	GlobalFunc	*global,

						LWMeshEditTool	*local,	void	*serverData);

The	local	argument	to	a	mesh	edit	plug-in's	activation	function	is	an
LWMeshEditTool.
			typedef	struct	st_LWMeshEditTool	{

						LWInstance			instance;

						LWToolFuncs	*tool;

						int									(*test)		(LWInstance);

						LWError					(*build)	(LWInstance,	MeshEditOp	*);

						void								(*end)			(LWInstance,	int	keep);

			}	LWMeshEditTool;

instance

Set	this	to	point	to	your	instance	data.	Typically	this	is	a	structure	that
holds	all	of	the	data	your	plug-in	needs	to	perform	its	function.	

tool

A	set	of	tool	callbacks	you	need	to	define.	See	below.

action	=	test(inst)

Returns	a	code	for	the	edit	action	that	should	be	performed.	The
action	can	be	one	of	the	following.	

LWT_TEST_NOTHING

Do	nothing.	The	edit	state	remains	unchanged.
LWT_TEST_UPDATE

Reapply	the	operation	with	new	settings.	The	build	function	will	be
called.

LWT_TEST_ACCEPT

Keep	the	last	operation.	The	end	callback	is	called	with	a	nonzero	keep
value.

LWT_TEST_REJECT

Discard	the	last	operation.	The	end	callback	is	called	with	a	keep	value
of	0.

LWT_TEST_CLONE

Keep	the	last	operation	and	begin	a	new	one.	The	end	callback	is
called	with	a	nonzero	keep	value,	and	then	the	build	function	is	called
again.

The	return	value	can	also	encode	a	memory	size	that	will	be	allocated	for
each	point	and	each	polygon.	These	user	memory	sizes	would	be	passed	to
the	begin	function	of	the	MeshEditOp	structure	passed	to	MeshDataEdit
plug-ins.	For	MeshEditTool	class	plug-ins,	they	are	encoded	in	the	value
returned	from	test	using	the	LWT_VMEM	and	LWT_PMEM	macros	for	vertex	and
polygon	sizes	respectively.

lwerr	=	build(inst,	edit)

Perform	the	tool's	mesh	edit	operation.	A	tool	that	creates	a	primitive
would	add	the	points	and	polygons	of	the	primitive	within	this
callback.	The	edit	argument	points	to	the	same	MeshEditOp	structure
passed	to	MeshDataEdit	plug-ins.

end(inst,	keep)

Clear	the	state	when	the	last	edit	action	is	completed.	This	can	be	a
result	of	a	call	to	test,	or	it	can	be	triggered	by	an	external	action.

Tool	Functions

Your	plug-in	fills	in	an	LWToolFuncs	structure	to	tell	Modeler	where	your
tool	callbacks	are	located.

			typedef	struct	st_LWToolFuncs	{

						void									(*done)			(LWInstance);

						void									(*draw)			(LWInstance,	LWWireDrawAccess	*);

						const	char	*	(*help)			(LWInstance,	LWToolEvent	*);

						int										(*dirty)		(LWInstance);

						int										(*count)		(LWInstance,	LWToolEvent	*);

						int										(*handle)	(LWInstance,	LWToolEvent	*,	int	i,

																																LWDVector	pos);

						int										(*start)		(LWInstance,	LWToolEvent	*);

						int										(*adjust)	(LWInstance,	LWToolEvent	*,	int	i);

						int										(*down)			(LWInstance,	LWToolEvent	*);

						void									(*move)			(LWInstance,	LWToolEvent	*);

						void									(*up)					(LWInstance,	LWToolEvent	*);

						void									(*event)		(LWInstance,	int	code);

						LWXPanelID			(*panel)		(LWInstance);

			}	LWToolFuncs;

done(instance)

Destroy	the	instance.	Called	when	the	user	discards	the	tool.	

draw(instance,	draw_access)

Display	a	wireframe	representation	of	the	tool	in	a	3D	viewport	using
the	drawing	functions	in	the	LWWireDrawAccess,	described	below.	

helptext	=	help(instance,	eventinfo)

Returns	a	text	string	to	be	displayed	as	a	help	tip	for	this	tool.	

dcode	=	dirty(instance)

Returns	flag	bits	indicating	whether	the	wireframe	or	the	help	string
need	to	be	refreshed.	The	bits	are	combined	using	bitwise-or.	Return
0	if	nothing	needs	to	be	refreshed,	or	any	combination	of	the
following.	

LWT_DIRTY_WIREFRAME

LWT_DIRTY_HELPTEXT

nhandles	=	count(instance,	eventinfo)

Returns	the	number	of	handles.	A	"handle"	is	a	component	of	the
tool's	wireframe	that	the	user	can	move	independently.	If	this	returns
0,	then	the	start	callback	is	used	to	set	the	initial	handle	point.	

priority	=	handle(instance,	eventinfo,	hnum,	pos)

Returns	the	3D	location	and	priority	of	handle	hnum,	or	0	if	the	handle
is	currently	invalid.	

hnum	=	start(instance,	eventinfo)

Take	an	initial	mouse-down	position	and	return	the	index	of	the
handle	that	should	be	dragged.	

hdrag	=	adjust(instance,	eventinfo,	hnum)

Drag	the	handle	to	a	new	location.	Returns	the	index	of	the	handle
that	should	continue	being	dragged	(typically	the	same	as	hnum).	

domouse	=	down(instance,	eventinfo)

Process	a	mouse-down	event.	If	this	function	returns	0,	handle
processing	will	be	done	instead	of	raw	mouse	event	processing.	

move(instance,	eventinfo)

Process	a	mouse-move	event.	This	will	only	be	called	if	the	down
function	returned	a	nonzero	value.	

up(instance,	eventinfo)

Process	a	mouse-up	event.	This	will	only	be	called	if	the	down	function
returned	a	nonzero	value.	

event(instance,	code)

Process	a	general	event	indicated	by	one	of	the	following	codes.	

LWT_EVENT_DROP

The	tool	has	been	dropped.	The	user	has	clicked	on	an	empty	area	of
the	interface,	or	pressed	the	spacebar,	or	selected	another	tool.

LWT_EVENT_RESET

The	user	has	requested	that	the	tool	return	to	its	initial	state.	Numeric
parameters	should	be	reset	to	their	default	values.

LWT_EVENT_ACTIVATE

The	tool	has	been	activated.

xpanel	=	panel(instance)

Create	an	LWXP_VIEW	xpanel	for	the	tool	instance.

Event	Information

Most	of	the	tool	functions	take	an	LWToolEvent	as	an	argument.

			typedef	struct	st_LWToolEvent	{

						LWDVector	posRaw,	posSnap;

						LWDVector	deltaRaw,	deltaSnap;

						LWDVector	axis;

						LWDVector	ax,	ay,	az;

						double				pxRaw,	pxSnap;

						double				pyRaw,	pySnap;

						int							dx,	dy;

						int							portAxis;

						int							flags;

			}	LWToolEvent;

posRaw,	posSnap

The	event	position	in	3D	space.	The	snap	vector	is	the	raw	vector
after	quantizing	to	the	nearest	grid	intersection	in	3D.

deltaRaw,	deltaSnap

The	vector	from	the	initial	mouse-down	event	to	the	current	event
location.	This	is	just	the	difference	between	the	initial	and	current
positions.

axis

The	event	axis.	All	the	points	under	the	mouse	location	are	along	this
axis	through	pos.

ax,	ay,	az

Screen	coordinate	system.	ax	points	to	the	right,	ay	points	up	and	az
points	into	the	screen.	Movement	by	1.0	along	each	vector
corresponds	to	approximately	one	pixel	of	screen	space	movement.

pxRaw,	pxSnap	
pyRaw,	pySnap

Parametric	translation	values.	These	are	the	mouse	offsets	converted
to	values	in	model	space.	They	provide	a	method	for	computing
abstract	distance	measures	from	left/right	and	up/down	mouse
movement	roughly	scaled	to	the	magnification	of	the	viewport..

dx,	dy

Screen	movement	in	pixels.	This	is	the	total	raw	mouse	offset	from
the	starting	position.

portAxis

The	view	type.	0,	1	or	2	for	orthogonal	views,	or	-1	for	perspective
views.

flags

This	contains	flag	bits	assembled	using	bitwise-or.	It	can	be	some
combination	of	the	following.	

LWTOOLF_CONSTRAIN

The	action	of	the	tool	is	constrained.	Activated	by	a	standard	key	or
mouse	combination.

LWTOOLF_CONS_X

LWTOOLF_CONS_Y

The	direction	of	constraint	for	orthogonal	moves.	Initially	neither	bit
is	set,	but	as	the	user	moves	enough	to	select	a	primary	direction,	one
or	the	other	will	be	set.

LWTOOLF_ALT_BUTTON

Alternate	mouse	button	event,	usually	the	right	button.
LWTOOLF_MULTICLICK

Multiple	mouse	click	event.

Draw	Access

The	draw	callback	is	given	an	LWWireDrawAccess	containing	a	set	of
drawing	functions	for	rendering	the	visual	representation	of	the	tool	in	the
interface.

			typedef	struct	st_LWWireDrawAccess	{

						void		*data;

						void		(*moveTo)	(void	*,	LWFVector,	int);

						void		(*lineTo)	(void	*,	LWFVector,	int);

						void		(*spline)	(void	*,	LWFVector,	LWFVector,	LWFVector,	int);

						void		(*circle)	(void	*,	double,	int);

						int				axis;

						void		(*text)			(void	*,	const	char	*,	int);

						double	pxScale;

			}	LWWireDrawAccess;

data

An	opaque	pointer	to	data	used	by	Modeler.	Pass	this	as	the	first
argument	to	the	drawing	functions.

moveTo(data,	pos,	line_style)

Move	the	drawing	point	to	the	new	position.	Use	this	to	set	one
endpoint	of	a	line	or	a	spline	or	the	center	of	a	circle.	The	third
argument	sets	the	line	style	for	the	drawing	functions	and	can	be	one
of	the	following.	

LWWIRE_SOLID

LWWIRE_DASH

lineTo(data,	pos,	coord_type)

Draw	a	line	segment	from	the	current	drawing	point	to	the	given
position.	The	coordinate	type	can	be	one	of	the	following.	

LWWIRE_ABSOLUTE

Absolute	coordinates	in	model	space.
LWWIRE_RELATIVE

Relative	coordinates	in	model	space.	The	pos	argument	is	an	offset
from	the	current	drawing	point,	which	is	the	most	recent	position
specified	in	a	previous	call	to	a	drawing	function.

LWWIRE_SCREEN

Relative	coordinates	in	screen	space.	A	distance	of	1.0	in	this
coordinate	system	corresponds	to	about	20	pixels.	Tool	handles	will
typically	be	drawn	in	screen	space,	so	that	they	remain	the	same
displayed	size	regardless	of	the	zoom	level	of	the	view.

spline(data,	LWFVector,	LWFVector,	LWFVector,	coord_type)

Draw	a	curve	from	the	current	drawing	point.	The	vectors	are	Bezier

control	points,	with	the	current	drawing	point	acting	as	the	first	of	the
required	four	points.	When	using	relative	coordinates,	each	position
vector	is	an	offset	from	the	previous	one.

circle(data,	radius,	coord_type)

Draw	a	circle	centered	at	the	current	drawing	point.

axis

The	view	in	which	you're	drawing.	This	can	be	0,	1	or	2	for	the	x,	y
and	z	axis	views,	or	-1	for	a	perspective	view.

text(data,	textline,	justify)

Draw	a	single	line	of	text.	The	justify	argument	positions	the	text
relative	to	the	current	drawing	point	and	can	be	one	of	the	following.

LWWIRE_TEXT_L

LWWIRE_TEXT_C

LWWIRE_TEXT_R

pxScale

The	approximate	size	of	a	pixel	in	the	current	view.

History

In	LightWave	7.0,	the	text	function	and	the	pxScale	field	were	added	to
LWWireDrawAccess,	but	LWMESHEDITTOOL_VERSION	was	not	incremented.	If
your	activation	accepts	a	version	of	4,	use	the	Product	Info	global	to
determine	whether	these	items	are	available.

Example

The	boxes/box4	sample	is	a	simple	example	of	a	mesh	edit	tool.	It's
described	in	the	Boxes	tutorial.	The	mesh	edit	tool	samples	also	include
capsule,	which	creates	a	capsule	shaped	primitive,	superq	for	making
ellipsoidal	and	toroidal	superquadrics,	and	spikeytool	for	adding	spikes
during	subdivision.

ObjectLoader

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwobjimp.h

Object	loaders	read	object	files	that	aren't	in	LightWave's	native	object	file
format.

When	an	object	loader's	activation	function	is	called,	it	should	open	the
object	file	and	try	to	recognize	its	contents.	LightWave	calls	all	of	the
installed	object	loaders	in	sequence	until	one	of	them	recognizes	the	file.
Each	object	loader	is	therefore	responsible	for	identifying	the	files	it	can
load.	If	the	file	isn't	one	the	loader	understands,	the	loader	sets	the	result
field	of	the	local	structure	to	LWOBJIM_NOREC	and	returns	AFUNC_OK.

If,	on	the	other	hand,	the	loader	understands	the	object	file,	it	reads	the	file
and	submits	its	contents	to	the	host	through	the	functions	provided	in	the
local	structure.

Handler	Activation	Function

			XCALL_(int)	MyObjImport(long	version,	GlobalFunc	*global,

						LWObjectImport	*local,	void	*serverData);

The	local	argument	to	an	object	loader's	activation	function	is	an
LWObjectImport.

			typedef	struct	st_LWObjectImport	{

						int									result;

						const	char	*filename;

						LWMonitor		*monitor;

						char							*failedBuf;

						int									failedLen;

						void							*data;

						void							(*done)				(void	*);

						void							(*layer)			(void	*,	short	int	lNum,	const	char	*name);

						void							(*pivot)			(void	*,	const	LWFVector	pivot);

						void							(*parent)		(void	*,	int	lNum);

						void							(*lFlags)		(void	*,	int	flags);

						LWPntID				(*point)			(void	*,	const	LWFVector	xyz);

						void							(*vmap)				(void	*,	LWID	type,	int	dim,

																															const	char	*name);

						void							(*vmapVal)	(void	*,	LWPntID	point,	const	float	*val);

						LWPolID				(*polygon)	(void	*,	LWID	type,	int	flags,	int	numPts,

																															const	LWPntID	*);

						void							(*polTag)		(void	*,	LWPolID	polygon,	LWID	type,

																															const	char	*tag);

						void							(*surface)	(void	*,	const	char	*,	const	char	*,	int,

																															void	*);

						void							(*vmapPDV)	(void	*,	LWPntID	point,	LWPolID	polygon,

																															const	float	*val);

			}	LWObjectImport;

result
Set	this	to	indicate	whether	the	object	was	loaded	successfully.	The
result	codes	are

LWOBJIM_OK
The	object	was	loaded	successfully.

LWOBJIM_NOREC
The	loader	didn't	recognize	the	file	format.	This	can	happen
frequently,	since	all	loaders	are	called	in	sequence	until	one	of
them	doesn't	return	this	result.

LWOBJIM_BADFILE
The	loader	couldn't	open	the	file.	If	the	loader	is	able	to	open	the
file	but	believes	it	has	found	an	error	in	the	contents,	it	should
return	IPSTAT_NOREC.

LWOBJIM_ABORTED
Use	this	to	indicate	that	the	user	cancelled	the	load	operation.
This	can	happen	if	you	use	the	monitor	to	indicate	the	progress
of	a	lengthy	image	loading	operation..

LWOBJIM_FAILED
An	error	occurred	during	loading,	for	example	a	memory
allocation	failed.

filename
The	name	of	the	file	to	load.

monitor
A	monitor	for	displaying	the	progress	of	the	load	to	the	user.	You
don't	have	to	use	this,	but	you're	encouraged	to	if	your	object	loading
takes	an	unusual	amount	of	time.	This	is	the	same	structure	as	that
returned	by	the	monitor	global's	create	function.

failedBuf
failedLen

These	are	used	to	display	an	error	message	to	the	user	when	object

loading	fails.	Use	strcpy	or	a	similar	function	to	copy	a	single-line
error	string	into	failedBuf.	failedLen	is	the	maximum	size	of	this	string,
and	it	may	be	0.

data
An	opaque	pointer	to	data	used	internally	by	LightWave	during
object	loading.	Pass	this	as	the	first	argument	to	the	loading
functions.

done(data)
Call	this	when	object	loading	is	complete,	after	setting	the	result	field.

layer(data,	layernum,	layername)
Create	a	new	layer.	All	of	the	geometry	you	load	will	be	put	in	this
layer	until	you	call	layer	again.	Even	if	your	object	format	doesn't
support	anything	that	could	be	interpreted	as	layers,	this	needs	to	be
called	at	least	once	to	initialize	a	layer	that	will	receive	your
geometry.	The	layer	name	is	optional	and	can	be	NULL.	Layers	are
ordinarily	created	in	increasing	numerical	order,	starting	at	1,	but	this
isn't	required.

pivot(data,	pivpoint)
Set	the	pivot	point	for	the	current	layer.	The	pivot	point	is	the	origin
for	rotations	in	the	layer.

parent(data,	layernum)
Set	the	parent	layer	for	the	current	layer.	Layer	parenting	is	a
mechanism	for	creating	object	hierarchies.

lFlags(data,	layerflags)
Set	flags	for	the	current	layer.	The	only	flag	currently	defined	is	the
low	order	bit,	1	<<	0,	which	when	set	signifies	that	the	layer	is
hidden.

pointID	=	point(data,	pos)
Create	a	point	in	the	current	layer.	Returns	a	point	ID	that	can	be	used
later	to	refer	to	the	point	in	polygon	vertex	lists.

vmap(data,	type,	dim,	name)

Create	or	select	a	vertex	map.	If	the	vmap	doesn't	exist,	this	function
creates	it.	Otherwise	it	selects	the	vmap	for	subsequent	calls	to
vmapVal.	The	lwmeshes.h	header	defines	common	vmap	IDs,	but	you
can	create	custom	vmap	types	for	special	purposes.

LWVMAP_PICK	-	selection	set
LWVMAP_WGHT	-	weight	map
LWVMAP_MNVW	-	subpatch	weight	map
LWVMAP_TXUV	-	texture	UV	coordinates
LWVMAP_MORF	-	relative	vertex	displacement	(morph)
LWVMAP_SPOT	-	absolute	vertex	displacement	(morph)
LWVMAP_RGB,	LWVMAP_RGBA	-	vertex	color

The	dimension	of	a	vmap	is	just	the	number	of	values	per	point.

vmapVal(data,	point,	valarray)
Set	the	value	of	the	current	vmap	for	the	point.	The	number	of
elements	in	the	value	array	should	be	the	same	as	the	dimension	of
the	vmap.

polID	=	polygon(data,	type,	flags,	npoints,	point_array)
Create	a	polygon	in	the	current	layer.	The	type	will	usually	be	one	of
the	polygon	types	defined	in	lwmeshes.h.

LWPOLTYPE_FACE	-	face
LWPOLTYPE_CURV	-	higher	order	curve
LWPOLTYPE_PTCH	-	subdivision	control	cage	polygon
LWPOLTYPE_MBAL	-	metaball
LWPOLTYPE_BONE	-	bone

The	flags	are	specific	to	each	type.	The	point	array	contains	npoints
point	IDs	returned	by	calls	to	the	point	function.

polTag(data,	polygon,	type,	tag)
Associate	a	tag	string	with	a	polygon.	A	polygon's	surface	is	set,	for
example,	by	passing	LWPTAG_SURF	as	the	type	and	the	surface	name	as
the	tag.	Note	that	you	can	do	this	without	first	having	called	surface.

surface(data,	basename,	refname,	chunk_size,	surf_chunk)

Set	parameters	for	a	surface.	The	base	name	is	the	name	of	the
surface,	while	the	reference	name	is	the	name	of	a	"parent"	surface
(which	can	be	NULL).	Parameters	not	explicitly	defined	for	the
surface	will	be	taken	from	its	reference,	or	parent,	surface.	The
surface	data	is	passed	as	the	memory	image	of	a	LightWave	object
file	SURF	chunk.	See	the	object	file	format	document	for	a	detailed
description	of	the	contents	of	a	SURF	chunk.

Note	that	this	method	of	specifying	surface	parameters	doesn't	allow
you	to	associate	envelopes	or	image	textures	with	a	surface.	In	the
SURF	chunk,	envelopes	and	images	are	referenced	by	index	into	ENVL
and	CLIP	chunks,	respectively,	and	object	loaders	have	no	way	to
create	these.

vmapPDV(data,	point,	polygon,	valarray)
Like	vmapVal,	but	sets	the	per-polygon,	or	discontinuous,	vmap	vector
for	a	polygon	vertex.

Example

The	vidscape	sample	loads	VideoScape	ASCII	object	files.	Several
examples	of	this	simple	format	(the	files	with	.geo	extensions)	are	included
in	the	directory.	The	singular	merit	of	the	VideoScape	format	is	that	it's
easy	to	write,	even	by	hand,	but	in	particular	using	languages	like	LScript,
Perl	and	BASIC.	The	qbasic	program	that	generated	the	ball.geo	object	is
included.	The	vidscape	sample	also	demonstrates	the	use	of	a
MeshDataEdit	plug-in	to	save	objects	in	non-LightWave	formats.

ObjReplacementHandler
ObjReplacementInterface

Availability		LightWave	6.0
Component		Layout
Header		lwobjrep.h

Object	replacement	handlers	are	called	at	each	time	step	to	decide	whether
Layout	should	use	a	different	object	file	to	represent	an	object.	An	object's
geometry	might	be	replaced	depending	on	its	camera	distance	(level	of
detail	replacement),	or	a	time	(object	sequence	loading),	or	some	other
criterion	(previewing	versus	rendering,	for	example).

Object	replacement	can	be	used	in	combination	with	ObjectLoaders	to
perform	procedural	object	animation.	The	replacement	plug-in	might	write
a	brief	description	file	for	the	parameters	of	a	time	step,	which	the	object
import	server	would	then	convert	into	a	complete	mesh	during	loading.

Handler	Activation	Function

			XCALL_(int)	MyObjReplace(long	version,	GlobalFunc	*global,

						LWObjReplacementHandler	*local,	void	*serverData);

The	local	argument	to	an	object	replacement's	activation	function	is	an
LWObjReplacementHandler.

			typedef	struct	st_LWObjReplacementHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						void												(*evaluate)	(LWInstance,	LWObjReplacementAccess	*);

			}	LWObjReplacementHandler;

The	first	two	members	of	this	structure	are	standard	handler	functions.	The
context	argument	to	the	inst->create	function	is	the	LWItemID	of	the	item
associated	with	this	instance.	An	object	replacement	handler	provides	an
evaluation	function	in	addition	to	the	standard	handler	functions.

evaluate(instance,	access)

This	is	where	the	object	replacement	happens.	The	access	structure
passed	to	this	function	contains	information	about	the	currently
loaded	object	and	the	evaluation	time.	You	compare	these	and

provide	a	new	filename	if	a	different	object	should	be	loaded.	If	the
currently	loaded	geometry	can	be	used	for	the	new	frame	and	time,
set	the	new	filename	to	NULL.

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.

Object	Replacement	Access

The	access	structure	is	the	data	passed	to	the	handler's	evaluation	function.
All	of	the	fields	of	this	structure	are	read-only	except	for	newFilename.

			typedef	struct	st_LWObjReplacementAccess	{

						LWItemID				objectID;

						LWFrame					curFrame,	newFrame;

						LWTime						curTime,		newTime;

						int									curType,		newType;

						const	char	*curFilename;

						const	char	*newFilename;

			}	LWObjReplacementAccess;

objectID
Item	ID	of	the	object.

curFrame,	curTime
The	frame	number	and	time	at	which	the	currently	loaded	object	file
was	most	recently	evaluated.

newFrame,	newTime
The	evaluation	frame	and	time.	If	you	provide	a	new	filename,	this	is
the	time	at	which	that	object	file	will	be	loaded.	Because	of	network
rendering,	the	new	frame	and	time	may	not	follow	the	curFrame	and
curTime	values	sequentially.

curType,	newType
These	describe	the	current	geometry	and	the	type	needed	for	the	new
time.	An	object	replacement	handler	might	ignore	the	time	values	and
only	perform	replacements	when	the	types	differ.	The	type	can	be

LWOBJREP_NONE
The	current	geometry	for	the	object	is	a	null	object.	This	value
only	appears	in	curType.

LWOBJREP_PREVIEW
The	object	will	be	used	during	previewing	and	user	interaction
with	the	interface.

LWOBJREP_RENDER
The	object	will	be	used	during	rendering.

curFilename
The	filename	of	the	currently	loaded	object	file.	This	will	be	NULL	if
the	curType	is	LWOBJREP_NONE.

	
newFilename

If	you	want	to	replace	the	currently	loaded	object	file,	set	this	to	the
name	of	a	different	file.	Set	this	to	NULL	if	the	object	file	shouldn't
be	changed.	The	memory	that	holds	this	string	must	persist	after	the
evaluation	function	returns.

Example

The	objseq	sample	lets	the	user	select	a	list	of	files	from	a	file	dialog.	It
sorts	the	selected	filenames	and	then	replaces	the	object	at	frame	1	with
the	first	file,	at	frame	2	with	the	second	file,	and	so	on.

	

PixelFilterHandler
PixelFilterInterface

Availability		LightWave	6.0	
Component		Layout,	Modeler	
Header		lwfilter.h

Pixel	filters	apply	image	processing	effects	to	individual	pixels	in	the
rendered	image.	

Pixel	filters	look	like	image	filters	at	first	glance,	but	they	differ	in	several
significant	ways.	Pixel	filters	can	modify	any	of	the	buffers,	not	just	the
red,	green,	blue	and	alpha	values,	and	they	have	access	to	the	raytracing
functions.	They're	applied	during	rendering,	before	antialiasing	and
motion	blur,	so	their	effects	are	automatically	accumulated	by	Layout	for
antialiasing	and	motion	blur	purposes.

Unlike	image	filters,	which	have	access	to	the	entire	image	and	are	called
once	per	frame,	pixel	filters	only	evaluate,	and	only	have	access	to,	a
single	pixel	sample	at	a	time,	and	they	can	be	called	multiple	times	per
pixel	during	the	rendering	of	a	frame.

Handler	Activation	Function

			XCALL_(int)	MyPixelFilter(long	version,	GlobalFunc	*global,

						LWPixelFilterHandler	*local,	void	*serverData);

The	local	argument	to	a	pixel	filter's	activation	function	is	an
LWPixelFilterHandler.
			typedef	struct	st_LWPixelFilterHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						LWRenderFuncs			*rend;

						void												(*evaluate)	(LWInstance,	const	LWPixelAccess	*);

						unsigned	int				(*flags)				(LWInstance);

			}	LWPixelFilterHandler;

The	first	three	members	of	this	structure	are	the	standard	handler
functions.	In	addition	to	these,	a	pixel	filter	provides	an	evaluation
function	and	a	flags	function.

The	context	argument	to	the	inst->create	function	is	a	pointer	to	an	integer
containing	context	flags.	If	the	LWFCF_PREPROCESS	flag	is	set,	the	instance	is
being	created	for	an	image	other	than	the	rendered	output,	and	buffers
other	than	the	RGBA	of	the	image	won't	be	available.

A	pixel	filter	can	be	activated	by	both	Layout	and	Modeler.	When
activated	by	Modeler,	the	LWItemFuncs	pointer	in	the	local	data	is	NULL.
Be	sure	to	test	for	this	before	filling	in	the	useItems	and	changeID	fields.	Note
too	that	if	your	pixel	filter	relies	on	Layout-only	globals,	those	won't	be
available	when	Modeler	calls	your	callbacks.

	
evaluate(instance,	access)

This	is	where	the	pixel	filter	does	its	work.	For	each	frame,	the	filter
is	given	access	to	the	red,	green,	blue	and	alpha	values	of	each	pixel
sample,	along	with	any	other	pixel	data	requested	by	the	flags
function.	The	access	structure,	described	below,	provides	pixel
information	and	functions	for	examining	the	buffers	and	writing	new
values.

flags(instance)

Returns	an	int	that	tells	the	renderer	which	buffers	the	pixel	filter	will
examine	and/or	modify	and	whether	the	evaluation	function	will	call
one	of	the	raytracing	functions	in	the	access	structure.	The	return
value	contains	bitfields	combined	using	bitwise-or.	See	the	image
filter	page	for	a	list	of	the	buffer	codes.	In	addition	to	these,	the
LWPFF_RAYTRACE	flag	indicates	that	the	evaluation	function	will	call	the
raytracing	functions,	and	the	LWPFF_EVERYPIXEL	flag	indicates	that	the
filter	should	be	evaluated	for	every	pixel,	despite	adaptive	sampling
settings.

Interface	Activation	Function
			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.

Pixel	Access

The	pixel	access	structure	passed	to	the	evaluation	function	contains	the
pixel	coordinates	for	the	sample,	functions	for	getting	and	setting	pixel

values,	and	the	raytracing	functions.	Because	the	sampling	of	the	output
image	is	adaptive,	pixel	positions	may	be	evaluated	in	any	order,	multiple
times,	or	not	at	all.	The	evaluation	function	must	call	setRGBA	for	every
pixel	it	evaluates,	even	if	the	filter	doesn't	modify	the	pixel.

			typedef	struct	st_LWPixelAccess	{

						double												sx,	sy;

						void													(*getVal)		(int	type,	int	num,	float	*);

						void													(*setRGBA)	(const	float[4]);

						void													(*setVal)		(int	type,	int	num,	float	*);

						LWIlluminateFunc	*illuminate;

						LWRayTraceFunc			*rayTrace;

						LWRayCastFunc				*rayCast;

						LWRayShadeFunc			*rayShade;

			}	LWPixelAccess;

sx,	sy

Image	coordinates	of	the	sample,	in	pixel	units.	These	will	often
contain	fractional	values.

getVal(type,	buflen,	buf)

Get	a	pixel	value	from	one	of	the	buffers.	If	the	buffer	type	is	invalid
or	a	type	not	requested	by	the	flags	function,	the	pixel	value	returned
in	buf	is	undefined.	See	the	image	filter	page	for	the	list	of	buffer
types.	buflen	is	the	number	of	contiguous	values	to	return.	For	most
buffers,	this	number	will	be	1,	but	the	RGB	buffers	can	be	retrieved
all	at	once.	With	a	type	of	LWBUF_RAW_RED,	for	example,	the	number	can
be	up	to	3	to	get	RAW_RED,	RAW_GREEN	and	RAW_BLUE,	and	for	LWBUF_RED	it	can
be	up	to	4,	for	the	RGBA	values.

	

setRGBA(rgba)

The	RGBA	(red,	green,	blue	and	alpha)	output	of	the	pixel	filter.	This
must	be	called	even	if	the	filter	doesn't	modify	the	values.

setVal(type,	buflen,	buf)

Write	a	value	to	one	of	the	buffers.

lit	=	illuminate(lightID,	position,	direction,	color)	
len	=	rayTrace(position,	direction,	color)	
len	=	rayCast(position,	direction)	
len	=	rayShade(position,	direction,	shaderAccess)

These	functions	trace	rays	into	the	scene.	See	the	raytracing	functions
page	for	details.	You	can	only	use	these	if	the	return	value	of	your
flags	function	includes	the	LWPFF_RAYTRACE	flag.

Example

The	zcomp	sample	includes	a	pixel	filter	that	composites	the	render	with
an	image	sequence	using	the	LWBUF_DEPTH	buffer.	zcomp	compares	the	depth
at	each	pixel	with	the	corresponding	depth	in	the	image	to	be	composited,
and	substitutes	the	image	pixel	if	it's	nearer	in	z	order	to	the	camera.

The	mandfilt	sample	turns	LightWave	into	a	Mandelbrot	set	renderer.
Unlike	most	real	pixel	filters,	it	simply	overwrites	the	pixel	values	with	its
own	output,	so	it	should	be	run	in	an	empty	scene.	But	it	does	demonstrate
how	pixel	filter	output	is	antialiased	and	adaptively	sampled	by
LightWave.

ProceduralTextureHandler
ProceduralTextureInterface

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwtexture.h

Fundamentally,	a	procedural	texture	is	a	function	of	three	variables.	In
other	words,	given	three	numbers	x,	y	and	z,	a	procedural	texture
calculates	and	returns	a	fourth	number	t.

The	variables	are	usually	the	coordinates	of	a	3D	position,	either	in	world
space	or	in	some	idealized	texture	space,	and	the	number	returned	by	the
function	is	used	to	modulate	a	rendering	parameter,	typically	one	of	the
surface	attributes.	LightWave's	built-in	fractal	noise	is	an	example	of	a
procedural	texture.

Some	procedural	textures	will	also	return	a	gradient.	Roughly	speaking,
this	is	the	direction	of	the	texture	at	the	sample	point,	or	the	direction	in
which	the	value	of	the	texture	function	increases	the	fastest.	If	the	texture
is	being	used	as	a	bump	map,	the	renderer	can	infer	a	bump	normal	from
the	gradient.

If	your	texture	function	is	analytical,	you	can	compute	the	gradient	from
the	partial	derivative	of	the	function	with	respect	to	each	axis.	You	aren't
required	to	form	the	gradient	that	way,	or	at	all.	If	the	texture	doesn't
return	a	gradient,	the	renderer	will	calculate	a	numerical	approximation	by
calling	your	texture	function	at	six	neighboring	points.

Textures	can	also	return	a	color.	This	is	useful	when	the	texture	will	be
applied	to	the	color	channel	of	a	surface	or	will	modulate	some	other
color-valued	parameter.

Handler	Activation	Function

			XCALL_(int)	MyTexture(long	version,	GlobalFunc	*global,

						LWTextureHandler	*local,	void	*serverData);

The	local	argument	to	a	texture's	activation	function	is	an

LWTextureHandler.

			typedef	struct	st_LWTextureHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						LWRenderFuncs			*rend;

						double										(*evaluate)	(LWInstance,	LWTextureAccess	*);

						unsigned	int				(*flags)				(LWInstance);

			}	LWTextureHandler;

The	first	three	members	of	this	structure	are	the	standard	handler
functions.	In	addition	to	these,	a	procedural	texture	provides	an	evaluation
function	and	a	flags	function.

The	context	argument	to	the	inst->create	function	is	the	LWTextureID	for
the	texture.	LWTextureID	is	defined	in	the	lwtxtr.h	header	file	and	is	used
by	the	texture	functions	and	texture	editor	globals.

A	procedural	texture	can	be	activated	by	Modeler	as	well	as	Layout.	When
activated	by	Modeler,	the	LWItemFuncs	pointer	in	the	local	data	is	NULL.
Be	sure	to	test	for	this	before	filling	in	the	useItems	and	changeID	fields.	Note
too	that	if	your	texture	relies	on	Layout-only	globals,	those	won't	be
available	when	Modeler	calls	your	callbacks.

txval	=	evaluate(instance,	access)

Returns	a	texture	value,	given	the	information	in	the	access	structure,
described	below.

flagbits	=	flags(instance)

Returns	an	int	that	tells	LightWave	about	the	texture.	The	return
value	can	be	any	of	the	following	flags	combined	using	bitwise-or.
LWTEXF_GRAD

The	texture	returns	a	gradient	(the	evaluation	function	sets	the
value	of	the	txGrad	member	of	the	access	structure).	If	this	flag
isn't	set,	the	texture	engine	ignores	txGrad	and,	when	necessary,
calculates	the	gradient	numerically	(by	evaluating	6	neighboring
points).

LWTEXF_SLOWPREVIEW

Set	this	if	the	texture	evaluates	too	slowly	to	be	previewed	in
real	time.

LWTEXF_AXIS

The	texture	uses	an	axis.	The	texture	editor	will	allow	the	user	to
select	an	axis	for	the	texture,	and	this	selection	will	be	found	in

the	axis	member	of	the	access	structure.
LWTEXF_AALIAS

The	texture	value	is	already	antialiased.	Currently	ignored,	but	it
may	not	be	in	the	future.

LWTEXF_DISPLACE

Use	the	texture	value	for	displacements.	If	this	flag	is	set,	the
texture	editor's	axis	selector	is	enabled	and	the	displacement
occurs	along	the	selected	axis.	If	this	flag	isn't	set,	but	LWTEXF_GRAD
is,	the	texture	engine	will	use	the	gradient	for	displacements.	If
neither	flag	is	set,	no	displacement	will	occur.

LWTEXF_HV_SRF
The	texture	is	appropriate	for	use	as	a	HyperVoxels	surface
texture.	This	basically	means	that	the	texture	function	is
continuous	and	evaluates	relatively	quickly.

LWTEXF_HV_VOL
The	texture	is	appropriate	for	use	as	a	HyperVoxels	volume
texture.	Efficiency	is	especially	important	for	these	textures.

LWTEXF_SELF_COLOR
The	texture	returns	an	RGBA	color	in	addition	to	a	value.

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.

Texture	Access

The	access	structure	passed	to	the	evaluation	function	contains	parameters
that	can	affect	the	texture	value.	The	texture	can	return	a	gradient	and	a
color	through	the	txGrad	and	txRGBA	fields.	The	other	fields	are	read-only.

			typedef	struct	st_LWTextureAccess	{

						double		wPos[3];

						double		tPos[3];

						double		size[3];

						double		amp;

						double		spotSize;

						double		txGrad[3];

						int					axis;

						int					flags;

						double		octaves;

						double		txRGBA[4];

			}	LWTextureAccess;

wPos

The	world	coordinate	position	of	the	sample	to	be	textured.
tPos

The	position	of	the	sample	in	texture	coordinates.
size

The	size	of	the	texture.	The	size	value	is	used	to	scale	the	texture
spatially.	The	interpretation	is	up	to	the	texture,	but	typically	this	is
the	size	of	a	texture	cell	or	the	distance	between	repeating	elements.

amp

The	amplitude	of	the	texture.	This	value	is	typically	used	to	scale	the
magnitude	or	strength	of	the	texture.

spotSize

The	approximate	diameter	of	the	sample	spot.	This	is	useful	when
antialiasing	the	texture.

txGrad

Storage	for	the	texture	gradient	at	the	sample.	The	evaluation
function	must	fill	this	in	when	the	flags	function	returns	LWTEXF_GRAD.
Otherwise	it	can	be	ignored.

axis

The	texture	axis	selected	by	the	user.	Only	valid	if	the	flags	function
set	the	LWTEXF_AXIS	or	LWTEXF_DISPLACE	flags.

flags

The	access	flags	provide	information	about	the	context	in	which	the
evaluation	function	was	called.

LWTXEF_VECTOR
Set	when	a	bump	is	being	evaluated.

LWTXEF_AXISX
LWTXEF_AXISY
LWTXEF_AXISZ

Which	dimensions	are	used	for	evaluation.	Currently,	all	three	of
these	are	always	set,	but	in	the	future,	the	texture	engine	might
evaluate	the	texture	in	2D	only,	for	example,	and	it	would	use
these	flags	to	allow	the	texture	to	switch	to	an	evaluation
optimized	for	2D.

LWTXEF_DISPLACE
Set	when	a	displacement	is	being	evaluated.

LWTXEF_COLOR

Set	when	a	color	is	being	evaluated.

octaves
The	number	of	octaves,	or	frequencies,	that	should	be	used	by	the
texture.	This	affects	the	amount	of	structure	the	texture	generates	at
different	scales.	This	field	is	currently	only	initialized	by
HyperVoxels.

txRGBA
Storage	for	the	texture	color	at	the	sample.	The	evaluation	function
must	fill	this	in	when	the	flags	function	returns	LWTEXF_SELF_COLOR.
Otherwise	it	can	be	ignored..

Example

The	rapts	sample	contains	10	procedural	textures.

SceneConverter

Availability		LightWave	6.0
Component		Layout
Header		lwscenecv.h

Scene	converters	load	scene	files	written	in	formats	other	than
LightWave's	native	format.

When	the	user	selects	a	scene	file	to	load,	Layout	first	tries	to	load	it
directly	as	a	LightWave	format	file.	If	it	can't,	it	passes	the	filename	to
each	installed	scene	converter	until	one	of	them	claims	to	recognize	the
file.	The	scene	converter	reads	the	file	and	rewrites	it	as	a	LightWave
scene	file,	passing	the	name	of	this	temporary	file	back	to	Layout.	After
loading	this	file,	Layout	calls	the	scene	converter's	deleteTmp	function	to
remove	it.

Activation	Function

			XCALL_(int)	MySceneConvert(long	version,	GlobalFunc	*global,

						LWSceneConverter	*local,	void	*serverData);

The	local	argument	to	a	scene	converter's	activation	function	is	an
LWSceneConverter.

			typedef	struct	st_LWSceneConverter	{

						const	char	*filename;

						LWError					readFailure;

						const	char	*tmpScene;

						void							(*deleteTmp)	(const	char	*tmpScene);

			}	LWSceneConverter;

filename
The	name	of	the	non-native	scene	file.	This	is	the	file	to	be
converted.

readFailure
A	one-line	error	message.	Set	this	if	you	recognize	the	file	format	but
can't	read	the	file	for	some	reason.	If	you	don't	recognize	the	format,
leave	this	and	the	tmpScene	and	deleteTmp	fields	NULL.	This	tells	Layout
to	submit	the	file	to	the	next	installed	converter.

tmpScene
The	filename	of	the	temporary	LightWave-format	scene	file	created
by	the	scene	converter.	If	you	successfully	create	this	temporary	file,
you	should	also	provide	a	valid	deleteTmp	callback.	If	an	error	occurs
during	the	conversion,	you	should	remove	the	partially	written
temporary	file,	set	tmpScene	to	NULL,	and	set	the	readFailure	field	to	an
error	message.	Since	this	tells	Layout	to	stop	trying	to	load	the	file,
you	should	be	careful	to	distinguish	between	files	you	don't	recognize
and	those	you	do	but	which	contain	errors.	If	you're	not	sure,	leave
the	readFailure	field	NULL	so	that	other	converters	have	a	chance	to
try	to	load	the	file.

deleteTmp(filename)
A	function	you	provide	for	removing	the	tmpScene	file	you	create.
Layout	calls	this	after	reading	the	tmpScene	file.

Example

Most	scene	converters	will	follow	the	pattern	shown	in	this	pseudocode.
Note	that	rather	than	write	our	own	deleteTmp	function	for	removing	the
temporary	LightWave	scene	file,	we	just	pass	back	the	C	runtime	remove
function.

			#include	<lwserver.h>

			#include	<lwscenecv.h>

			#include	<stdio.h>

			#include	<stdlib.h>

			XCALL_(int)

			MySceneConvert(long	version,	GlobalFunc	*global,

						LWSceneConverter	*local,	void	*serverData)

			{

						static	char	tempfile[260];

						FILE	*ifp,	*ofp;

			

						ifp	=	fopen(local->filename,	"rb");

						if	(!ifp)	return	AFUNC_BADLOCAL;

			

						...	read	some	of	the	file	...

			

						if	(not	our	format)

									return	AFUNC_OK;

			

						ofp	=	fopen(tempfile,	"w");

						if	(!ofp)	{

									fclose(ifp);

									local->readFailure	=	"Couldn't	create	temp	scene	file.";

									return	AFUNC_OK;

						}

			

						...	convert	the	scene	...

			

						if	(error	while	converting)	{

									fclose(ifp);

									fclose(ofp);

									local->readFailure	=	"Error	while	converting.";

									return	AFUNC_OK;

						}

			

						/*	successful	*/

			

						local->tmpScene	=	tempfile;

						local->deleteTemp	=	remove;

						return	AFUNC_OK;

			}

			ServerRecord	ServerDesc[]	=	{

						{	LWSCENECONVERTER_CLASS,	"MySceneConverter",	MySceneConvert	},

						{	NULL	}

			};

ShaderHandler
ShaderInterface

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwshader.h

Shaders	set	the	color	and	other	appearance	attributes	of	each	visible	spot
on	a	surface.

A	surface,	sometimes	called	a	material	in	other	programs,	is	a	collection
of	attributes	that	define	the	appearance	of	a	polygon.	The	same	surface	can
be	applied	to	multiple	objects,	and	different	surfaces	can	be	applied	to
different	polygons	on	the	same	object.	Shaders	are	always	associated	with
a	surface	and	affect	its	appearance	during	rendering	by	setting	or
modifying	its	attributes.	More	than	one	shader	can	be	associated	with	a
surface,	and	the	effects	of	one	shader	might	in	turn	be	modified	by	the
next	shader	in	line.	A	shader	can	also	fire	rays	into	the	scene	that	cause
other	shaders	to	be	evaluated.

For	each	pixel	in	the
rendered	image,	the
renderer	finds	the	spot	in
the	scene	that	the	camera
sees	at	that	pixel.	If	the	spot
is	on	an	object,	its
appearance	depends	on	the
suface	assigned	to	the
polygon	it	lies	in.	The
renderer	uses	the	surface
settings	to	calculate	a	color
for	the	pixel,	and	if	a
shader	is	attached	to	the	surface,	its	evaluation	function	is	called	to	either
modify	the	surface	settings	or	perform	its	own	color	calculation.

The	shader	evaluation	function	is	given	the	surface	attributes,	the
geometry	of	the	spot,	the	ID	of	the	object	and	the	polygon,	the	source	of

the	viewing	ray,	and	other	contextual	information,	and	it	has	access	to
raytracing	functions	that	can	tell	it	even	more	about	the	scene.

Handler	Activation	Function

			XCALL_(int)	MyShader(long	version,	GlobalFunc	*global,

						LWShaderHandler	*local,	void	*serverData);

The	local	argument	to	a	shader's	activation	function	is	an
LWShaderHandler.

			typedef	struct	st_LWShaderHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						LWRenderFuncs			*rend;

						void												(*evaluate)	(LWInstance,	LWShaderAccess	*);

						unsigned	int				(*flags)				(LWInstance);

			}	LWShaderHandler;

The	first	three	members	of	this	structure	are	the	standard	handler
functions.	In	addition	to	these,	a	shader	provides	an	evaluation	function
and	a	flags	function.

The	context	argument	to	the	create	function	is	the	LWSurfaceID	for	the
surface.	LWSurfaceID	is	defined	in	the	lwsurf.h	header	file	and	is	used	by
the	surface	functions	global.

A	shader	can	be	activated	by	Modeler	as	well	as	Layout.	When	activated
by	Modeler,	the	LWItemFuncs	pointer	in	the	local	data	is	NULL.	Be	sure
to	test	for	this	before	filling	in	the	useItems	and	changeID	fields.	Note	too	that
if	your	shader	relies	on	Layout-only	globals,	those	won't	be	available
when	Modeler	calls	your	callbacks.

evaluate(instance,	access)

This	is	where	the	shader	does	its	work.	At	each	time	step	in	the
animation,	the	evaluation	function	is	called	for	each	pixel	affected	by
the	shader's	surface.	The	access	argument,	described	below,	contains
information	about	the	spot	to	be	colored.

flagbits	=	flags(instance)

Returns	an	int	that	tells	the	renderer	which	surface	attributes	the
shader	will	modify	and	whether	it	will	call	the	raytracing	functions.
The	flags	are	bits	combined	using	bitwise-or.	They	correspond	to
members	of	the	shader	access	structure	described	below.	For

efficiency	reasons,	the	renderer	may	ignore	changes	to	any	surface
attributes	that	weren't	indicated	by	the	bit	flags	returned	from	this
function,	and	it	won't	provide	access	to	the	raytracing	functions
unless	the	LWSHF_RAYTRACE	bit	is	set.	The	flags	are

LWSHF_NORMAL
LWSHF_COLOR
LWSHF_LUMINOUS
LWSHF_DIFFUSE
LWSHF_SPECULAR
LWSHF_MIRROR
LWSHF_TRANSP
LWSHF_ETA
LWSHF_ROUGH
LWSHF_TRANSLUCENT
LWSHF_RAYTRACE

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.	Inline	xpanels	will
appear	in	the	Shaders	tab	of	the	Surface	Editor.

Shader	Access

The	evaluation	function	is	called	for	every	visible	spot	on	a	surface	and	is
passed	a	shader	access	structure	describing	the	spot	to	be	shaded.	The
access	structure	contains	some	values	which	are	read-only	and	some
which	are	meant	to	be	modified.	The	read-only	values	describe	the
geometry	of	the	pixel	being	shaded.	The	read-write	values	describe	the
current	attribute	settings	of	the	spot	and	should	be	modified	in	place	to
affect	the	final	look	of	the	spot.	Since	shaders	may	be	layered,	these
properties	may	be	altered	many	more	times	before	final	rendering.	The
access	structure	also	contains	raytracing	functions	that	can	be	called	only
while	rendering.

			typedef	struct	st_LWShaderAccess	{

						int															sx,	sy;

						double												oPos[3],	wPos[3];

						double												gNorm[3];

						double												spotSize;

						double												raySource[3];

						double												rayLength;

						double												cosine;

						double												oXfrm[9],	wXfrm[9];

						LWItemID										objID;

						int															polNum;

						double												wNorm[3];

						double												color[3];

						double												luminous;

						double												diffuse;

						double												specular;

						double												mirror;

						double												transparency;

						double												eta;

						double												roughness;

						LWIlluminateFunc	*illuminate;

						LWRayTraceFunc			*rayTrace;

						LWRayCastFunc				*rayCast;

						LWRayShadeFunc			*rayShade;

						int															flags;

						int															bounces;

						LWItemID										sourceID;

						double												wNorm0[3];

						double												bumpHeight;

						double												translucency;

						double												colorHL;

						double												colorFL;

						double												addTransparency;

						double												difSharpness;

						LWPntID											verts[4];

						float													weights[4];

						float													vertsWPos[4][3];

						LWPolID											polygon;

						double												replacement_percentage;

						double												replacement_color[3];	

						double												reflectionBlur;

						double												refractionBlur;

		}	LWShaderAccess;

Read-Only	Parameters

These	fields	provide	read-only	information	about	the	local	geometry	of	the
spot	and	the	context	of	the	evaluation.

sx,	sy

The	pixel	coordinates	at	which	the	spot	is	visible	in	the	rendered
image.	This	is	labeled	PIXEL	in	the	figure,	but	note	that	it	won't
necessarily	be	the	spot's	projection	onto	the	viewplane.	When	the
viewing	ray	originates	on	a	reflective	surface,	for	example,	the	pixel
coordinates	are	usually	for	the	source	of	the	ray	(the	spot's	reflection).
The	pixel	coordinate	origin	(0,	0)	is	in	the	upper	left	corner	of	the
image.

oPos

Spot	position	in	object	(Modeler)	coordinates	(the	(X',	Y',	Z')	system
in	the	figure).

wPos

Spot	position	in	world	coordinates	(X,	Y,	Z).	This	is	the	position
after	transformation	and	the	effects	of	bones,	displacement	and
morphing.

gNorm

Geometric	normal	in	world	coordinates.	This	is	the	raw	polygonal
normal	at	the	spot,	unperturbed	by	smoothing	or	bump	mapping.

wNorm0

The	interpolated	normal	in	world	coordinates.	This	is	the	same	as
gNorm,	but	after	smoothing.

spotSize

Approximate	spot	diameter,	useful	for	texture	antialiasing.	The
diameter	is	only	approximate	because	spots	in	general	aren't	circular.
On	a	surface	viewed	on	edge,	they're	long	and	thin.

raySource

Origin	of	the	incoming	viewing	ray	in	world	coordinates.	Labeled
EYE	in	the	figure,	this	is	often	the	camera,	but	it	can	also,	for
example,	be	a	point	on	a	reflective	surface.

rayLength

The	distance	the	viewing	ray	traveled	in	free	space	to	reach	this	spot
(ordinarily	the	distance	between	raySource	and	wPos).

cosine

The	cosine	of	the	angle	between	the	raw	surface	normal	and	a	ray
pointing	from	the	spot	back	toward	the	raySource.	This	is	the	same	as
the	dot	product	of	gNorm	and	the	unit	vector	(raySource	-	wPos)/rayLength.
Low	values	correspond	to	high	angles	and	therefore	glancing	views.
This	is	also	a	measure	of	how	approximate	the	spot	size	is.

oXfrm

Object	to	world	transformation	matrix.	The	nine	values	in	this	array
form	a	3	x	3	matrix	that	describes	the	rotation	and	scaling	of	the
object.	This	is	useful	primarily	for	transforming	direction	vectors
(bump	gradients,	for	example)	from	object	to	world	space.
			LWDVector	ovec,	wvec;

			wvec[0]	=	ovec[0]	*	oXfrm[0]

													+	ovec[1]	*	oXfrm[1]

													+	ovec[2]	*	oXfrm[2];

			wvec[1]	=	ovec[0]	*	oXfrm[3]

													+	ovec[1]	*	oXfrm[4]

													+	ovec[2]	*	oXfrm[5];

			wvec[2]	=	ovec[0]	*	oXfrm[6]

													+	ovec[1]	*	oXfrm[7]

													+	ovec[2]	*	oXfrm[8];

wXfrm

World	to	object	transformation	matrix	(the	inverse	of	oXfrm).
	
objID

The	object	being	shaded.	It's	possible	for	a	single	shader	instance	to
be	shared	between	multiple	objects,	so	this	may	be	different	for	each
call	to	the	shader's	evaluation	function.	For	sample	sphere	rendering
the	ID	will	refer	to	an	object	not	in	the	current	scene.

polNum

An	index	identifying	the	polygon	that	contains	the	spot.	It	may
represent	other	sub-object	information	in	non-mesh	objects.	See	also
the	polygon	field.

flags

Bit	fields	describing	the	nature	of	the	call.	The	LWSAF_SHADOW	bit	tells
you	when	the	evaluation	function	is	being	called	during	shadow
computations,	which	you	might	want	to	treat	differently	from
"regular"	shader	evaluation.

bounces

The	number	of	times	the	viewing	ray	has	branched,	or	bounced,
before	reaching	this	spot.	This	value	can	be	used	to	limit	recursion,
particularly	the	shader's	own	calls	to	the	raytracing	functions.

sourceID

The	item	ID	of	the	source	of	the	viewing	ray.
verts

The	four	vertices	surrounding	the	spot,	useful	for	interpolating
vertex-based	surface	data.

weights

The	weights	assigned	to	the	four	neighboring	vertices.

vertsWPos
The	world	coordinate	position	of	the	neighboring	vertices.

polygon
The	polygon	ID	of	the	polygon	containing	the	spot.

Modifiable	Parameters

These	parameters	are	used	by	the	renderer	to	compute	the	perceived	color
at	the	spot	and	may	be	modified	by	the	shader.	Almost	all	of	them
correspond	directly	to	surface	parameters	in	the	user	interface,	although
the	values	may	be	represented	by	different	ranges.	Unless	stated
otherwise,	the	values	of	these	fields	nominally	range	from	0.0	to	1.0,	and
values	outside	that	range	are	also	valid.

The	shader's	flags	function	must	have	returned	the	correct	flags	for	the
fields	the	shader	will	modify,	or	changes	to	these	fields	may	be	ignored.
Prior	to	LightWave	7.0,	to	set	the	perceived	color	directly	a	shader	would
set	all	of	the	parameters	to	zero	except	for	luminous,	which	would	be	1.0,
and	color,	which	would	be	the	output	color	of	the	spot.	Newer	shaders	can
instead	use	the	replacement_color	and	replacement_percentage	fields.

wNorm

Surface	normal	in	world	coordinates.	If	you	modify	this	vector,	you
must	renormalize	it	(make	its	length	equal	to	1.0).

bumpHeight

The	relative	height	of	peaks	in	the	bump	map.	Increasing	this	value
makes	the	bump	mapping	appear	more	pronounced.	Currently	this	is
used	solely	as	a	texture	input.	If	no	texture	is	applied	to	the	bump
channel	of	the	surface,	it	will	be	0,	and	values	you	write	will	be
ignored.

	
color

The	RGB	components	of	the	base	color	of	the	spot.
	
luminous

Luminosity	level.	Higher	values	add	more	of	the	base	color	to	the
final	color	of	the	spot.	This	component	is	unaffected	by	lighting	and
shading.

	
diffuse

Diffuse	reflection	level.
specular

Specular	reflection	level.
	
mirror

Mirror	reflection	level.

transparency

Transparency	level.
eta

Index	of	refraction.	In	the	real	world	this	ranges	between	1.0	and
about	3.5,	depending	on	the	material,	but	values	outside	that	range
are	also	valid	here.

roughness

Surface	roughness,	the	inverse	of	the	exponent	in	the	Phong	specular
highlight	formula.	The	corresponding	user	parameter	is	called
Glossiness.	The	roughness	is	approximately	2(10g+2).

translucency

Translucency	level.	This	determines	how	much	the	brightness	of	a
surface	is	affected	by	the	brightness	of	the	environment	behind	it.

colorHL

Amount	of	highlight	coloring.	Higher	values	mix	more	of	the	base
color	of	the	spot	into	the	color	of	specular	highlights,	a	simple	way	to
simulate	the	behavior	of	metallic	(nondielectric)	surfaces.

colorFL

Color	filtering	amount.	This	controls	how	strongly	the	light	passing
through	a	transparent	surface	is	colored	by	that	surface,	which	affects
the	color	of	other	surfaces	illuminated	by	this	light.

addTransparency

Additive	transparency.	An	additively	transparent	surface	adds	its	own
color	to	the	colors	of	surfaces	seen	through	it.	This	usually	has	the
effect	of	lightening	the	color	of	the	underlying	surfaces.

difSharpness

Diffuse	sharpness	level.	This	controls	how	the	shading	varies	with	the
angle	of	the	light.	Higher	values	make	the	brightness	of	illuminated
areas	more	uniform	and	increase	the	sharpness	of	the	transition
between	lit	and	dark	areas	(the	terminator	of	a	planet,	for	example).

replacement_percentage
replacement_color

Use	these	together	to	set	a	color	for	the	surface	that	will	be	unaffected
by	subsequent	shading	and	lighting	calculations.	This	is	typically
used	by	plug-ins	that	partially	replace	LightWave's	lighting	model.

reflectionBlur
refractionBlur

The	amount	of	blurring	applied	to	reflections	and	refractions.

Rendering	Functions

lit	=	illuminate(lightID,	position,	direction,	color)

len	=	rayTrace(position,	direction,	color)

len	=	rayCast(position,	direction)

len	=	rayShade(position,	direction,	shaderAccess)

See	the	raytracing	functions	page	for	a	description	of	these.

History

LightWave	7.0	added	the	replacement_percentage,	replacement	color,
reflectionBlur	and	refractionBlur	fields	to	LWShaderAccess,	but
LWSHADER_VERSION	was	not	incremented.	If	your	shader	activation	accepts
version	4,	use	the	Product	Info	global	to	determine	whether	these	fields
are	available	before	attempting	to	read	or	write	them.

Example

The	blotch	sample	is	a	simple	shader	that	renders	a	circular	blotch	of	a
user-specified	position,	size	and	color.

VolumetricHandler

Availability		LightWave	6.0
Component		Layout
Header		lwvolume.h

Volumetric	handlers	model	the	attenuation	and	scattering	of	light	in	gases,
differences	in	density	in	3D	medical	imaging	data,	or	the	shapes	of
surfaces	too	complex	to	model	explicitly	with	geometry.	They	do	this	by
participating	in	LightWave's	raytracing	mechanism.

For	each	ray	fired	into	the	scene,	the	volumetric	handler	calculates	a	color
and	opacity	for	one	or	more	samples.	It	hands	each	sample	back	to
LightWave,	which	integrates	all	of	the	samples	from	all	of	the	volumetrics
to	produce	the	final	color	seen	from	the	source	of	the	ray.

A	sample	represents	a	segment	of	the	ray	over	which	the	color	and	opacity
are	constant.		Consider	a	simple	cloud	pierced	by	a	ray.	The	handler	that
draws	the	cloud	isn't	interested	in	the	parts	of	the	ray	that	are	outside	it,	so
it	creates	no	samples	there.	In	the	simplest	case,	it	may	create	a	single
sample	that	begins	at	the	point	where	the	ray	enters	the	cloud	and	extends
as	far	as	the	ray	remains	inside.	If	the	cloud	is	somewhat	transparent,	the
color	might	be	a	linear	combination	of	the	cloud	color	and	the	backdrop
color,	and	the	opacity	will	be	somewhat	less	than	1.0.

Handler	Activation	Function

			XCALL_(int)	MyVolumetric(long	version,	GlobalFunc	*global,

						LWVolumetricHandler	*local,	void	*serverData);

The	local	argument	to	a	volumetric	handler's	activation	function	is	an
LWVolumetricHandler.

			typedef	struct	st_LWVolumetricHandler	{

						LWInstanceFuncs	*inst;

						LWItemFuncs					*item;

						LWRenderFuncs			*rend;

						double										(*evaluate)	(LWInstance,	LWVolumeAccess	*);

						unsigned	int				(*flags)				(LWInstance);

			}	LWVolumetricHandler;

The	first	three	members	of	this	structure	point	to	the	standard	handler

functions.	In	addition	to	these,	a	volumetric	handler	provides	an	evaluation
function	and	a	flags	function.

d	=	evaluate(instance,	access)

Called	for	each	ray	fired	into	the	scene.	The	evaluation	function	adds
zero	or	more	samples	to	the	ray,	based	on	the	information	in	the
access	structure,	described	below.

f	=	flags(instance)

Returns	an	int	that	tells	the	renderer	which	effects	the	handler
supplies.	The	return	value	contains	bitfields	combined	using	bitwise-
or.

LWVOLF_SHADOWS
The	evaluation	function	can	be	called	for	shadow	rays.

LWVOLF_REFLECTIONS
Can	be	evaluated	for	reflection	rays.

LWVOLF_REFRACTIONS
Can	be	evaluated	for	refraction	rays.

Interface	Activation	Function

			XCALL_(int)	MyInterface(long	version,	GlobalFunc	*global,

						LWInterface	*local,	void	*serverData);

This	is	the	standard	interface	activation	for	handlers.

Volumetric	Access

This	is	the	structure	passed	to	the	handler's	evaluation	function.

			typedef	struct	st_LWVolumeAccess	{

						void													*ray;

						int															flags;

						LWItemID										source;

						double												o[3],	dir[3];

						double												rayColor[3];

						double												farClip,	nearClip;

						double												oDist,	frustum;

						void													(*addSample)	(void	*ray,	LWVolumeSample	*smp);

						double											(*getOpacity)(void	*ray,	double	dist,

																																							double	opa[3]);

						LWIlluminateFunc	*illuminate;

						LWRayTraceFunc			*rayTrace;

						LWRayCastFunc				*rayCast;

						LWRayShadeFunc			*rayShade;

			}	LWVolumeAccess;

ray
An	opaque	pointer	to	LightWave's	representation	of	the	ray.	Pass	this
as	the	first	argument	to	the	addSample	and	getOpacity	functions.

flags

Evaluation	flags.	Some	of	these	allow	the	evaluation	function	to
streamline	its	calculations.

LWVEF_OPACITY
Calculate	an	opacity	value	for	each	sample.	When	this	flag	is
absent,	the	opacity	calculation	can	be	omitted.

LWVEF_COLOR
Calculate	a	color	for	each	sample.

LWVEF_RAYTRACE
If	this	flag	is	absent,	the	evaluation	function	is	being	called
during	the	volumetric	pass	that	occurs	before	pixel	filtering	but
after	normal	rendering.	Otherwise	the	evaluation	function	is
being	called	during	"regular"	raytracing	(reflection,	refraction	or
shadow	rays,	for	example).

source

The	item	from	which	the	ray	originated.	This	can	be	a	light	(for
shadow	rays),	a	camera,	or	LWITEM_NULL	for	other	sources.

o,	dir

The	origin	and	direction	of	the	ray.	The	origin	is	the	position	of	the
source	item	or	of	a	spot	on	the	surface	of	the	source	object.

far,	near

Far	and	near	clipping	distances.	These	are	distances	along	the	ray
measured	from	the	origin	o	along	the	direction	dir.	All	sample
segments	will	normally	fall	between	these	two.

rayColor

The	color	seen	from	the	origin	of	the	ray,	before	volumetric	effects
are	applied.

oDist

Distance	from	the	origin	o	to	the	true	start	of	the	viewing	path.	This	is
non-zero	for	reflection	and	refraction	rays.	If	the	origin	o	is	a	spot	on
the	surface	of	an	object,	oDist	is	the	distance	from	that	spot	to	the
camera.	This	is	good	to	know	if	your	calculations	will	be	based	on
the	length	of	the	path	to	the	viewer	(the	camera)	and	not	just	on	the

length	of	the	ray	fired	from	the	spot	on	the	object.
frustum

Pixel	frustum,	equal	to	2	*	tan(0.5	*	hfov)/w,	where	hfov	is	the
horizontal	field	of	view	and	w	is	the	width	of	the	rendered	image	in
pixels.	The	frustum	is	a	measure	of	the	size	of	a	pixel	relative	to	the
ray.	(It's	the	actual	size	of	the	pixel	at	a	distance	of	1.0.)	This	quantity
plays	a	role	in	calculating	sample	size,	or	stride,	during	raymarching.
A	typical	calculation	of	the	stride	might	look	like
increment	=	scale_factor	*	frustum;

stride	=	dist	*	increment;

addSample(ray,	sample)

Add	a	new	volume	sample	to	the	ray.	This	is	how	volumetric
handlers	submit	their	contributions	to	the	integration	of	opacity	and
color	along	the	ray.	The	sample	structure	is	described	below.

opacity	=	getOpacity(ray,	dist,	opa)

Returns	the	currently	calculated	opacity	(vector	and	scalar)	at	the
specified	distance.

	
lit	=	illuminate(lightID,	position,	direction,	color)

len	=	rayTrace(position,	direction,	color)

len	=	rayCast(position,	direction)

len	=	rayShade(position,	direction,	shaderAccess)

See	the	raytracing	functions	page	for	a	description	of	these.

Volume	Sample

A	volume	sample	is	a	single	ray	segment	with	a	uniform	color	and	opacity.
The	distance	and	stride	define	the	position	and	size	of	the	sample,	and	the
opacity	and	color	are	given	as	color	vectors.	By	the	way,	you	can	create
surface	samples	by	setting	stride	to	0	and	dist	to	0.9999	*	farClip.

			typedef	struct	st_LWVolumeSample	{

						double		dist;

						double		stride;

						double		opacity[3];

						double		color[3];

			}	LWVolumeSample;

dist
The	starting	point	of	the	sample	expressed	as	a	distance	from	the
origin	of	the	ray.	This	should	be	greater	than	or	equal	to	nearClip.

stride

The	length	of	the	sample.	dist	+	stride	should	be	less	than	or	equal	to
farClip.

opacity
The	red,	green	and	blue	components	of	the	opacity	of	this	sample.

color
The	color	at	this	sample.

Example

The	atmosphere	sample	is	a	straightforward	implementation	of	some	of
the	volumetric	techniques	discussed	in	chapter	14	(K.	Musgrave,	L.	Gritz,
S.	Worley)	of	Texturing	and	Modeling,	2nd	ed.,	Academic	Press,	1998.	It
includes	both	a	fast	analytical	solution	that	creates	a	single	sample	and	a
more	refined	solution	that	uses	raymarching	and	multiple	samples	per	ray.

Common	Commands

These	commands	are	available	in	both	Layout	and	Modeler.	They're
handled	by	a	set	of	editor	modules	that	are	common	to	both	programs.
Although	the	editors	are	represented	to	the	user	as	separate	windows,	you
can	issue	most	of	these	commands	regardless	of	whether	the	editor's
window	is	open.

In	the	command	list	that	follows,	the	data	types	of	the	arguments	are
denoted	by	the	initial	letter.	(The	same	letters	are	used	in	C	printf
formatting.)

number
An	integer.

gfloat
A	floating-point	number.

string
A	string,	such	as	a	filename	or	channel	name.

hex
A	hexadecimal	number,	such	as	an	item	identifier.

Surface	Editor

The	Surface	Editor	is	a	window	for	setting	and	changing	surface
parameters.	These	commands	are	a	counterpart	to	the	Surface	Functions
global.

Surf_OpenWindow
Surf_CloseWindow
Surf_SetWindowPos	nx	ny

Open	and	close	the	Surface	Editor	window,	and	set	its	position.	In
Layout,	SurfaceEditor	is	a	synonym	for	Surf_OpenWindow	and
Surf_CloseWindow.

Surf_SetSurf	ssurfname	sobjname
Set	the	current	surface	in	the	Surface	Editor.	All	of	the	surface
commands	that	modify	surface	parameters	operate	on	the	current

surface.	The	object	name	is	the	name	returned	by	the	Item	Info	name
function	in	Layout	and	the	State	Query	object	function	in	Modeler.

Surf_SetInt	schannel	nvalue
Set	the	integer	value	associated	with	the	surface	channel.	Use	this	to
add	or	remove	an	envelope	or	a	texture	(equivalent	to	pressing	the	E
or	T	buttons	in	the	interface).	The	channel	name	can	be	any	of	the
strings	defined	in	lwsurf.h.	The	value	is	one	of	the	following.

0	-	no	envelope,	no	texture
1	-	envelope,	no	texture
2	-	texture,	no	envelope
3	-	envelope	and	texture

Once	you've	added	an	envelope,	you	can	create	keys	for	it	and
manipulate	it	in	other	ways	using	the	Animation	Envelopes	global.
Use	the	Texture	Functions	global	to	modify	the	texture.	You	can	get
the	envelope	and	texture	IDs	you'll	need	from	the	Surface	Functions
global.	Getting	the	IDs	also	allows	you	to	check	whether	an	envelope
or	a	texture	exists	before	issuing	this	command.

Surf_SetFloat	schannel	gvalue
Set	the	value	of	a	float-valued	channel.

Surf_SetColor	schannel	gred	ggreen	gblue
Set	the	color	of	a	color-valued	channel.

Surf_AddShader	sshader
Surf_RemShader	sshader

Add	or	remove	a	shader.	The	argument	is	the	shader's	server	name,
the	string	in	the	name	field	of	the	shader's	ServerRecord.

Surf_Rename	sname
Rename	the	current	surface.

Surf_Copy	ssurfname	sobjname

Copy	the	settings	of	the	current	surface	(the	one	set	by	Surf_SetSurf)	to
the	surface	specified	in	the	arguments.

Surf_SetBakerImage	sfilename

Set	the	base	filename	for	the	image	file	output	of	the	Surface	Baker
shader.

Image	Editor

The	Image	Editor	is	a	window	for	managing	LightWave's	list	of	images,
image	sequences	and	animation	files.	See	also	the	Image	List	global.

IE_OpenWindow
IE_SetWindowPos	nx	ny

Open	the	Image	Editor	window,	and	set	its	position.	In	Layout,
ImageEditor	is	a	synonym	for	IE_OpenWindow.

Graph	Editor

The	Graph	Editor	is	a	window	for	editing	parameters	that	vary	with	time.
These	functions	of	time	are	called	channels.	The	function	is	assigned	a
value	at	specific	times,	and	the	(value,	time)	pair	is	called	a	key.	The	value
at	other	times	is	found	by	interpolating	between	keys,	or	by	extrapolating
from	the	first	and	last	key.	See	the	envelope	SDK	sample	to	find	out
exactly	how	this	is	done.

The	channels	available	for	editing	are	displayed	in	a	list,	called	the
channel	bin.	Channels	are	selected	for	editing	from	the	bin,	and	commands
can	be	used	both	to	select	channels	and	to	change	the	contents	of	the	bin.
One	or	more	keys	in	the	selected	channels	can	also	be	selected.
Commands	typically	operate	on	the	selected	channels	and	keys.

The	Graph	Editor	commands	complement	the	functions	available	through
the	Animation	Envelopes	and	Channel	Info	globals.

GE_OpenWindow	nmode
GE_SetWindowPos	nx	xy
GE_SetWindowSize	nwidth	nheight

Open	the	Graph	Editor	window,	and	set	its	position	and	size.	In
Layout,	GraphEditor	is	a	synonym	for	GE_OpenWindow.

GE_ClearBin
Remove	all	channels	from	the	channel	bin.

GE_SetEnv	schannelname	nappend
GE_SetEnvID	xchannelid	nappend

Add	the	channel	to	the	channel	bin	and	select	it.	If	append	is	true,	the
channel	bin	isn't	cleared,	and	the	channel	is	added	to	the	current
selection.	Otherwise	the	added	channel	replaces	the	contents	of	the
channel	bin.

GE_GetLayoutSel	nappend
Get	motion	channels	for	the	items	selected	in	Layout	and	add	them	to
the	channel	bin.	If	append	is	true	(non-zero),	the	channel	bin	isn't
cleared,	and	selected	item	channels	are	added	to	the	bin.	Otherwise
the	selected	item	channels	replace	the	contents	of	the	channel	bin.

GE_FilterSelection	sfilter
Remove	channels	from	the	channel	bin	whose	names	don't	match	the
filter	string.	(Contrary	to	what	the	name	implies,	this	command	filters
the	bin	contents,	not	the	selection.)	The	filter	is	a	regular	expression.
"*.Position.*"	leaves	only	position	channels	in	the	list,	for	example.
If	the	filter	can't	be	parsed,	the	user	will	be	prompted	for	a	valid	filter.
Currently,	the	filter	string	must	be	enclosed	in	double-quotes.

GE_SelectAllCurves
Select	all	of	the	channels	in	the	channel	list.

GE_SetGroup	xgroupid
Assign	the	selected	channels	to	a	group.

GE_ApplyServer	sclass	sserver
GE_RemoveServer	sclass	nindex

Apply	a	plug-in	to	the	selected	channels,	or	remove	it.	The	class	and
server	arguments	are	the	first	and	second	fields	of	the	ServerRecord
for	the	plug-in.	The	index	refers	to	the	list	of	applied	servers	of	a
given	class.	The	first	server	in	each	list	has	an	index	of	1.

GE_BakeCurves
Create	a	keyframe	at	every	frame	of	the	selected	channels,	and	make
every	span's	interpolation	linear.

GE_SelectAllKeys	ndeselect

Select	all	of	the	keys	in	the	selected	channels,	if	deselect	is	false,	or
deselect	all	keys	if	deselect	is	true.

GE_CopySelKeys
GE_PasteKeys	gframe

Copy	the	selected	keys	and	paste	them	at	the	given	frame.

GE_DeleteSelKeys
Delete	the	selected	keys.

GE_MoveKeys	gdeltaframe	gdeltavalue
Shift	the	selected	keys	in	both	time	and	value.	The	deltas	are	added	to
the	time	and	value,	so	to	shift	only	one	of	these,	set	the	other	delta	to
0.

GE_SnapKeysToFrames
Shift	each	selected	key	in	time	to	the	nearest	integral	frame.	(Keys
may	be	set	at	fractional	frame	times.)

GE_ReduceKeys	nrecursive	gthreshold
Delete	neighboring	keys	with	values	that	differ	by	less	than	the
threshold.	For	example,	consider	consecutive	keys	A	B	C	D	E	with
values	that	all	lie	within	the	threshold.	When	recursive	is	false,	the
first	GE_ReduceKeys	deletes	keys	B	and	D,	leaving	A	C	E.	The	second
call	deletes	C,	and	the	third	deletes	E.	When	recursive	is	true,	a	single
call	to	GE_ReduceKeys	deletes	all	the	keys	except	A.

GE_LockKeys	nunlock
Lock	the	selected	keys,	if	unlock	is	false,	or	unlock	the	keys	if	unlock	is
true.	A	locked	key	can	still	be	selected	but	can't	be	edited	in	the
interface,	a	protection	against	accidental	changes.

GE_LeaveFootprints
GE_PickupFootprints
GE_BacktrackFootprints

Apply,	remove	or	revert	to	footprints.	A	footprint	is	a	static	copy	of	a
selected	curve.	It's	displayed	in	the	Graph	Editor	window	as	a
reference	while	the	user	edits	the	curve,	and	the	user	can	undo	the
changes	made	after	the	footprint	was	created.	GE_LeaveFootprints

records	the	current	state	of	the	selected	curves.	GE_PickupFootprints
removes	the	footprints.	GE_BacktrackFootprints	reverts	the	curves	to	the
state	recorded	in	the	footprints.

GE_CopyTimeslice	nfromfootprint	gframe
GE_PasteTimeslice	gframe

Copy	and	paste	keys	at	specific	times.	If	fromfootprint	is	true,	the	keys
are	copied	from	the	footprint	rather	than	the	curve.

GE_MatchFootprintAtFrame	frame
Create	a	key	at	the	specified	frame	with	the	value	of	the	footprint	at
that	frame.

GE_CreateExpression	sname	sexpression
Create	an	expression.	The	name	is	used	to	refer	to	the	expression	in
both	the	interface	and	the	GE_AttachExpression	commands.	Consult	the
LightWave	user	documentation	for	information	about	what	an
expression	can	contain.

GE_AttachExpression	schannelname	sexpressionname
GE_AttachExpressionID	xchannelid	sexpressionname

Associate	an	expression	with	the	channel	identified	either	by	name	or
by	channel	ID.

GE_LoadExpressions	sfilename
GE_SaveExpressions	sfilename

Store	all	of	the	expressions	in	a	file,	or	retrieve	them	from	a	file.

Layout	Commands

Layout	commands	are	case-sensitive.	Layout's	native	command
mechanism	is	the	evaluate	function,	with	the	command	name	and	its
arguments	passed	as	a	single,	space-delimited	string.	Commands	issued
using	the	lookup	and	execute	functions	will	be	translated	into	evaluate	strings
before	being	processed,	and	the	command	arguments	passed	to	execute
must	all	be	DynaValues	of	type	DY_STRING.

Layout	doesn't	strip	quote	marks	from	arguments.	They're	treated	literally,
so	they	should	only	be	included	when	they're	actually	part	of	the
argument.	(There	aren't	any	commands	whose	argument	lists	require
anything	other	than	spaces	to	delimit	the	arguments.)

Most	Layout	command	arguments	are	optional.	If	the	argument	isn't
supplied,	Layout	will	prompt	the	user	for	the	argument.	In	the	command
list	that	follows,	the	data	types	of	the	arguments	are	denoted	by	the	initial
letter.	(The	same	letters	are	used	in	C	printf	formatting.)

number
An	integer.

gfloat
A	floating-point	number.

string
A	string,	such	as	a	filename	or	channel	name.

hex
A	hexadecimal	number,	such	as	an	item	identifier.

The	commands	are	divided	into	15	categories,	roughly	according	to	what
they	do	and	which	globals	provide	the	current	values	of	the	parameters
they	set.

Selection
Objects
Bones
Lights
Global

Cameras
Items
Motion
Effects

Navigation
Display
Tools
Panels

Illumination Scenes Miscellaneous

Selection

Most	item-specific	commands	operate	on	the	currently	selected	item.	The
Interface	Info	global	returns	a	list	of	the	currently	selected	items.

SelectItem	xID
SelectByName	sname
AddToSelection	xID
RemoveFromSelection	xID

Select	an	item	by	item	ID	or	by	name,	or	add	and	remove	an	item
from	the	list	of	selected	items.

SelectAllObjects
SelectAllBones
SelectAllLights
SelectAllCameras

Select	all	items	of	a	given	type.

EditObjects
EditBones
EditLights
EditCameras

Set	the	edit	mode.	This	may	affect	the	scope	of	some	commands	that
depend	on	the	contents	of	the	scene	or	the	item	selection.

PreviousItem
NextItem
FirstItem
LastItem

Select	items	by	traversing	the	item	list.

SelectParent
SelectChild
PreviousSibling
NextSibling

Select	items	by	traversing	the	parenting	tree.

Objects

Commands	that	set	object	parameters	operate	on	the	currently	selected
object.	You	can	use	the	functions	returned	by	the	Object	Info	global	to	get
the	current	values	of	these	parameters.

LoadObject	sfilename
LoadObjectLayer	nlayer	sfilename

Load	an	object,	or	an	object	layer,	and	add	it	to	the	scene.

ReplaceWithObject	sfilename
ReplaceObjectLayer	nlayer	sfilename

Replace	the	selected	object	or	object	layer.

AddNull	sname
ReplaceWithNull	sname

Add	a	null	object	to	the	scene,	or	replace	the	selected	object	with	a
null.

AddPartigon	sfilename
Add	a	partigon	(a	particle	object)	to	the	scene.	The	filename	is	used
to	save	the	object.

SaveAllObjects
Save	all	objects	in	the	scene.	This	updates	(overwrites)	the	object
files	and	is	useful	primarily	for	saving	any	surface	changes	that	may
have	been	made	in	Layout.

SaveObject	sfilename
Save	the	selected	object	to	a	different	file.	Later	references	to	the
object	in	the	scene	will	use	the	new	filename.

SaveTransformed	sfilename
Save	a	copy	of	the	selected	object	in	its	current	state,	generally	after
patching,	deformations	and	motions	have	been	applied	in	the	current
frame.

SaveEndomorph	sfilename
Save	an	endomorph	of	the	selected	object.	This	is	the	geometry	of	the

object	after	transforming	the	points	using	a	vertex	map	of	type	MORF	or
SPOT.

SaveObjectCopy	sfilename
Save	a	copy	of	the	selected	object.

ClearAllObjects
Remove	all	objects	from	the	scene.

SubdivisionOrder	norder
Set	the	subdivision	order	for	subpatches	in	the	selected	object.	The
argument	can	be	any	of	the	values	returned	by	the	Object	Info
subdivOrder	function.

SubPatchLevel	ndisplay	nrender
MetaballResolution	ndisplay	nrender

Set	the	patch	resolution	for	subpatches	and	metaballs.

MorphTarget	xID
Set	the	selected	object's	morph	target.	The	argument	is	the	item	ID	of
the	target	object.

MorphAmount	gamount
Set	the	selected	object's	morph	amount,	usually	a	value	between	0.0
and	1.0.

MorphMTSE
MorphSurfaces

Toggle	the	selected	object's	MTSE	(Multiple	Target	Single	Envelope)
and	Morph	Surfaces	options.

ObjectDissolve	gdissolve
Set	the	selected	object's	dissolve,	usually	a	value	between	0.0	and
1.0.

PolygonSize	gsize
Set	the	selected	object's	polygon	size.	The	default	size	is	1.0.

UnseenByRays

UnseenByCamera
UnaffectedByFog

Toggle	options	affecting	the	participation	of	the	object	in	certain
rendering	components.

SelfShadow
CastShadow
ReceiveShadow

Toggle	the	selected	object's	raytraced	shadow	options.

IncludeLight	xID
ExcludeLight	xID

Include	or	exclude	a	light.	The	argument	is	the	item	ID	of	the	light.

ShadowExclusion
A	toggle	that's	on	by	default	and	applies	to	the	whole	scene.	When
turned	off,	shadow	calculations	will	ignore	light	exclusion.

PolygonEdgeFlags	nflags
PolygonEdgeColor	gred	ggreen	gblue

Set	the	flags	and	color	of	the	object's	polygon	edges.	See	the	Object
Info	edgeOpts	function	for	a	list	of	possible	flags.

EnableDeformations
Enable	or	disable	deformations	for	all	objects	in	the	scene.

Bones

Commands	that	set	bone	parameters	operate	on	the	currently	selected
bone.	You	can	use	the	functions	returned	by	the	Bone	Info	global	to	get
the	current	values	of	these	parameters.

AddBone	sname
AddChildBone	sname

Add	a	bone	to	the	scene.	The	currently	selected	bone	becomes	the
parent	of	new	child	bones.

DrawBones
DrawChildBones

Activates	a	mode	in	which	bones	can	be	added	by	clicking	and
dragging	in	the	interface.

ClearAllBones
Remove	all	bones	from	the	scene.

SkelegonsToBones
Convert	skelegons	in	the	object	to	scene	bones.

BoneActive
Make	the	bone	active	or	inactive.	An	inactive	bone	is	ignored	during
deformation	calculations.

BoneFalloffType	ntype
Set	the	falloff	function	for	the	bone.	The	falloff	is	proportional	to	the
distance	raised	to	the	power	-2type.	A	type	of	0	is	inverse	distance,	1	is
inverse	distance	squared,	2	is	inverse	distance	to	the	fourth	power,
and	so	on.

BoneRestPosition	gX	gY	gZ
BoneRestRotation	gH	gP	gB
BoneRestLength	glength
BoneStrength	gstrength

Set	bone	parameters.

BoneStrengthMultiply
When	set,	the	strength	will	be	multiplied	by	the	rest	length.

RecordRestPosition
Take	the	bone's	current	position	to	be	its	rest	position.

BoneWeightMapName	sname
BoneWeightMapOnly
BoneNormalization

Set	a	weight	map	for	a	bone.	If	the	Weight	Map	Only	option	is
toggled	on,	the	normalization	toggle	is	also	turned	on	by	default.
With	normalization	on,	the	displacement	of	a	point	is	divided	by	the
sum	of	the	weights.

BoneLimitedRange
BoneMinRange	gdistance
BoneMaxRange	gdistance

Toggle	limited	range,	and	set	the	minimum	and	maximum	extents	of
the	range.

BoneJointComp
BoneJointCompParent
BoneJointCompAmounts	gself	gparent

Toggle	joint	compensation	and	the	inclusion	of	the	parent	in	the
calculations,	and	set	the	compensation	amounts.	Both	joint
compensation	and	muscle	flexing	are	deformation	adjustments
designed	to	preserve	volume,	and	they	can	optionally	take	the	parent
into	account	when	the	adjustment	is	calculated.

BoneMuscleFlex
BoneMuscleFlexParent
BoneMuscleFlexAmounts	gself	gparent

Toggle	muscle	flexing	and	the	inclusion	of	the	parent	in	the
calculations,	and	set	the	flex	amounts.

Lights

Commands	that	set	light	parameters	operate	on	the	currently	selected	light.
You	can	use	the	functions	returned	by	the	Light	Info	global	to	get	the
current	values	of	these	parameters.

AddDistantLight	sname
AddPointLight	sname
AddSpotlight	sname
AddLinearLight	sname
AddAreaLight	sname

Add	a	light	of	the	given	type	to	the	scene.

ClearAllLights
Remove	all	lights	from	the	scene.

SaveLight
Save	the	light's	parameters	to	a	file.	The	user	is	prompted	for	the

filename.	The	light	information	is	stored	in	the	format	used	for	scene
files.

DistantLight
PointLight
Spotlight
LinearLight
AreaLight

Set	the	type	of	the	light.

LightColor	gred	ggreen	gblue
LightIntensity	gintensity

Set	the	color	and	intensity	of	the	selected	light.

LightFalloffType	ntype
LightRange	gdistance

Set	the	falloff	type	and	range	(or	nominal	distance)	for	the	light.	The
falloff	type	affects	the	interpretation	of	the	range	value.	These
parameters	aren't	valid	for	distant	lights.

AffectDiffuse
AffectSpecular
AffectCaustics
AffectOpenGL

Toggle	these	effects	for	the	light.

LightConeAngle	gangle
LightEdgeAngle	gangle

Set	the	cone	angle	and	soft	edge	angle	for	a	spotlight.

LightQuality	nquality
Set	the	quality	level	for	a	linear	or	area	light.

ShadowType	ntype
Set	the	light's	shadow	type.

CacheShadowMap
Toggle	the	Cache	Shadow	Map	option	for	a	shadow-mapped	light.

ShadowMapSize	nsize
Set	the	dimension	of	the	shadow	map	for	a	light.	A	shadow	map	is	a
2D	array	of	pixels.	The	amount	of	memory	it	uses	is	proportional	to
the	square	of	the	size.

ShadowMapFuzziness	gfuzziness
Set	the	amount	of	blur	or	softness	for	the	shadow	map.

ShadowMapFitCone
ShadowMapAngle	gangle

Set	the	"field	of	view"	for	a	shadow	map.	This	is	the	angle	subtended
by	the	shadow	map	at	the	position	of	the	light.	The	FitCone	toggle	sets
this	angle	equal	to	the	cone	angle	of	a	spotlight.

LensFlare
Toggle	a	lens	flare	effect	for	the	light.

FlareIntensity	gintensity
Set	the	lens	flare	intensity.

VolumetricLighting
Toggle	volumetrics	for	the	light.

Global	Illumination

EnableLensFlares
EnableShadowMaps
EnableVolumetricLights
EnableRadiosity
EnableCaustics

Toggle	these	features	for	the	whole	scene.

AmbientColor	gred	ggreen	gblue
AmbientIntensity	gintensity

Set	the	ambient	light	color	and	intensity.

NoiseReduction
Toggle	the	Shader	Noise	Reduction	feature.

RadiosityType	ntype
Set	the	radiosity	type,	which	can	be	one	of	the	following.

0	-	Backdrop	Only
1	-	Monte	Carlo
2	-	Interpolated

CacheRadiosity
CacheCaustics

Toggle	caching	of	the	solutions	for	radiosity	and	caustics.

RadiosityIntensity	gintensity
RadiosityTolerance	gtolerance

CausticIntensity	gintensity

Set	the	radiosity	intensity	and	tolerance	and	the	caustic	intensity.

VolumetricRadiosity
A	toggle	that's	on	by	default,	this	controls	whether	volumetrics	are
taken	into	account	by	radiosity.

Cameras

Commands	that	set	camera	parameters	operate	on	the	currently	selected
camera.	You	can	use	the	functions	returned	by	the	Camera	Info	global	to
get	the	current	values	of	these	parameters.

AddCamera	sname
Add	a	camera	to	the	scene.

ClearAllCameras
Remove	all	cameras	from	the	scene	and	restore	the	default	camera.

FrameSize	nwidth	nheight
ResolutionMultiplier	gmultiplier

Set	the	size	of	the	output	image.	The	resolution	multiplier	makes	it
easier	to	scale	the	image	up	or	down	without	affecting	(or	knowing)
the	base	frame	size.

PixelAspect	gaspect
Set	the	ratio	of	width	to	height	for	a	pixel.	Aspects	less	than	1.0

produce	pixels	that	are	taller	than	they	are	wide.

CameraMask
MaskPosition	nleft	ntop	nwidth	nheight
MaskColor	gred	ggreen	gblue

Enabling	the	camera	mask	causes	the	mask	color	to	be	drawn	into	the
image	outside	the	mask	rectangle.

LimitedRegion
Toggle	limited	region	rendering.	When	this	is	enabled,	only	the	part
of	the	image	inside	the	limited	region	rectangle	will	be	rendered.

ZoomFactor	gfactor
Set	the	camera	zoom.	This	is	the	distance	of	the	camera	from	the
plane	of	projection.	The	image	on	this	plane	always	has	a	half-height
of	1.0.

ApertureHeight	gheight
Set	the	aperture	height	of	the	camera.	The	focal	length	is	zoom	*
ApertureHeight	/	2.

Antialiasing	nlevel
Set	the	antialiasing	level.

0	-	Off
1	-	Low	(5	passes)
2	-	Medium	(9	passes)
3	-	High	(17	passes)
4	-	Extreme	(33	passes)

EnhancedAA
Toggles	Enhanced	antialiasing.

AdaptiveSampling
Toggles	adaptive	sampling.

AdaptiveThreshold	gthreshold
Sets	the	threshold	at	which	adjacent	pixels	are	sufficiently	different	to
receive	antialiasing	attention.	Pixels	with	luminosity	differences

smaller	than	this	will	be	skipped	during	antialiasing	when	adaptive
sampling	is	enabled.

ParticleBlur
Toggle	particle	blur.

MotionBlur	ntype
Set	the	motion	blur	option.

0	-	Off
1	-	Normal
2	-	Dithered

BlurLength	glength
Set	the	blur	length	as	a	fraction	of	the	time	between	successive
frames.

Stereoscopic
EyeSeparation	gseparation

Toggle	stereoscopic	rendering	and	set	the	interoccular	distance.

DepthOfField
FocalDistance	gdistance
LensFStop	gfstop

Toggle	depth	of	field	rendering	and	set	the	focus	distance	and	f-stop.

Items

These	commands	operate	on	the	currently	selected	item	and	work	with
items	of	all	types.	Use	the	Item	Info	or	Interface	Info	globals	to	get	the
current	values	of	the	parameters	set	by	many	of	these	commands.

ClearSelected
Remove	the	selected	items	from	the	scene.

Rename	sname
Rename	the	item.	This	works	for	all	item	types	except	objects,	which
derive	their	names	from	their	filenames.

Clone	nclones
Create	one	or	more	clones	of	the	item.

ItemActive	nactive
Make	the	item	active	or	inactive.	An	inactive	item	doesn't	participate
in	rendering	calculations.	Inactive	objects	are	100%	dissolved,	and
inactive	lights	have	an	intensity	of	0.	For	bones,	the	command	is	a
synonym	for	the	BoneActive	command.	It	currently	has	no	effect	on
cameras.

ApplyServer	sclass	sserver
Apply	a	plug-in.	The	arguments	are	the	first	and	second	fields	of	the
ServerRecord	for	the	plug-in.

RemoveServer	sclass	nindex
Remove	a	plug-in.	The	index	refers	to	the	list	of	applied	servers	of	a
given	class.	The	first	server	in	each	list	has	an	index	of	1.

AddEnvelope	schannel
RemoveEnvelope	schannel

Create	or	remove	the	envelope	associated	with	a	parameter	in	Layout.
These	commands	"press	the	E	button"	for	envelopes	Layout	itself
maintains.	Use	them	for	envelopes	not	created	by	your	plug-in
through	either	the	Variant	Parameters	or	Animation	Envelopes
globals.	The	channel	argument	is	the	same	as	the	channel	name
displayed	in	the	Scene	Editor	when	an	item's	channel	list	is	expanded.

SchematicPosition	nX	nY
Set	the	position	of	the	current	item	within	schematic	views.	The
coordinates	are	relative	to	the	upper	left	corner	of	the	view	pane.

ItemLock	nlocked
Lock	or	unlock	the	selected	item.	A	locked	item	can't	be	selected	by
clicking	on	it	in	the	view.

ItemVisibility	nvisibility
Set	the	visibility	of	the	selected	item.	The	argument	can	be	any	of	the
values	returned	by	the	Interface	Info	global's	itemVis	function.

ItemColor	ncolor
Set	the	wireframe	color	of	the	selected	item.	The	argument	is	an
index	into	a	color	table.
	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Motion

Motion	commands	operate	on	the	current	item.	Use	the	param	function	of
the	Item	Info	global,	as	well	as	the	Animation	Envelopes	and	Channel	Info
globals,	to	read	motion-related	settings.

CreateKey	gtime
Create	a	key	for	all	nine	motion	channels	(position,	rotation	and
scale).	If	a	key	already	exists,	this	changes	its	settings.

DeleteKey	gtime
Delete	all	of	an	item's	motion	keys	at	a	given	time.

AutoKey
Toggle	the	Auto	Key	setting.	When	on,	changes	in	the	position,
rotation	or	scale	of	an	item	are	automatically	recorded	to	a	key.	When
off,	a	key	must	be	created	explicitly.

Position	gX	gY	gZ
Rotation	gH	gP	gB
Scale	gX	gY	gZ

Position,	rotate	or	scale	the	item.	This	has	no	effect	on	keys	at	the
current	time	unless	Auto	Key	has	been	turned	on.

AddPosition	gX	gY	gZ
AddRotation	gH	gP	gB
AddScale	gX	gY	gZ

Increment	the	motion.	Like	Position,	Rotation	and	Scale,	but	the	values
are	relative	rather	than	absolute.

PivotPosition	gX	gY	gZ
PivotRotation	gH	gP	gB

Set	the	position	and	rotation	of	the	pivot	(the	origin	of	the	item's
rotation).

RecordPivotRotation
Add	the	current	item	rotation	angles	to	the	pivot	rotation,	and	reset
the	item	rotation	angles	to	(0,	0,	0).

Numeric
Prepare	for	numeric	entry.	The	specific	behavior	depends	on	which
tool	is	active.	For	the	Move,	Rotate	and	Size	tools,	this	activates	the
vector	edit	fields,	and	values	typed	after	this	will	be	entered	there.

EnableXH
EnableYP
EnableZB

Unlock	or	lock	a	channel	against	changes	caused	by	mouse	dragging.
Which	channel	is	affected	depends	on	which	tool	is	active.	If	the
Move	tool	is	active,	for	example,	EnableXH	toggles	the	enable	state	of
the	X	channel,	and	when	it's	disabled,	moving	an	item	by	dragging
the	mouse	may	affect	the	Y	and	Z	components	of	its	position,	but	not
the	X	component.

WorldCoordinateSystem
ParentCoordinateSystem
LocalCoordinateSystem

These	affect	the	coordinate	system	in	which	mouse	movement	is
interpreted	for	the	motion	tools.	Moving	the	mouse	can	move	an	item
along	the	world,	parent	or	local	(item)	axes.

LoadMotion	sfilename
SaveMotion	sfilename

Load	or	save	an	item's	keyframes	in	a	motion	file.	The	format	of	the
file	is	similar	to	the	format	of	the	key	data	in	scene	files.

Undo

Undo	the	most	recent	motion	change.

Reset
Set	an	item's	animation	channels	to	the	values	they	had	when	the

object	was	created	or	loaded.	Which	channels	are	affected	depends	on
which	tool	is	currently	active.	Channels	disabled	by	EnableXH,	EnableYP
or	EnableZB	are	not	reset.

ParentItem	xID

Set	the	parent	of	the	current	item	to	the	item	given	by	the	ID.	The
item's	motion	is	relative	to	that	of	its	parent.

ParentInPlace
A	global	setting.	When	turned	off,	setting	a	parent	relationship	causes
the	child	item	to	jump	to	a	new	(world	coordinate)	position,	since	the
child's	position	setting	suddenly	becomes	relative	to	that	of	its	parent.
When	turned	on,	parenting	in	place	prevents	the	jump,	adjusting	the
child's	position	relative	to	its	parent	so	that	its	world	position	doesn't
change.	This	setting	can	be	read	as	a	flag	using	the	Interface	Info
global.

TargetItem	xID
Set	the	target	of	the	current	item	to	the	item	given	by	the	ID.	The
item	will	rotate	so	that	it	points	toward	the	target.

PathAlignLookAhead	gtime
Set	the	look-ahead	interval,	in	seconds,	for	motion	channels
controlled	by	Align	to	Path.	This	is	the	amount	of	time	by	which
changes	in	orientation	of	the	item	anticipate	changes	in	the	path
direction.

EnableIK
A	global	toggle	that	enables	or	disables	inverse	kinematics
calculations	for	all	items.

UnaffectedByIK
Toggle	the	Unaffected	by	IK	of	Descendents	option.	When	on,	the
item	is	isolated	from	the	motion	effects	of	inverse	kinematics	applied
to	the	item's	children.	The	item	becomes	the	base	of	the	IK	chain
containing	its	children.

GoalItem	xID
Set	the	IK	goal	of	the	current	item	to	the	item	given	by	the	ID.

FullTimeIK
Toggle	Full-time	IK	for	the	item.	This	determines	whether	IK	is
recalculated	each	time	the	item's	goal	is	moved.

GoalStrength	gstrength
Set	the	strength,	or	amount	of	influence,	of	an	item's	IK	goal.	The
goal	strength	is	relative	to	that	of	the	other	goals	associated	with	an
IK	chain.

MatchGoalOrientation
When	on,	this	toggle	causes	the	item's	rotation	and	scale	to	match
that	of	its	goal.

KeepGoalWithinReach
When	on,	this	toggle	constrains	the	motion	of	the	goal	so	that	it's
always	"attached"	to	the	item.

HController	ncontroller
PController	ncontroller
BController	ncontroller

Set	the	controller	for	each	rotation	channel.	The	argument	can	be	any
of	the	values	returned	by	the	Item	Info	controller	function.

HLimits	gmin	gmax
PLimits	gmin	gmax
BLimits	gmin	gmax

Set	minimum	and	maximum	limits	for	each	rotation	channel.
	
RecordMinAngles

RecordMaxAngles

Use	the	current	rotation	of	the	item	as	the	minimum	or	maximum
limit	for	all	three	rotation	channels.

LimitH

LimitP

LimitB

Enable	or	disable	rotation	limits.

HStiffness	gstiffness
PStiffness	gstiffness

BStiffness	gstiffness
Set	the	stiffness	(resistance	to	rotation	via	IK).

Effects

These	commands	affect	settings	on	the	Effects	panel.	Use	the	Backdrop
Info	and	Fog	Info	globals	to	read	these	settings.

GradientBackdrop
ZenithColor	gred	ggreen	gblue
SkyColor	gred	ggreen	gblue
GroundColor	gred	ggreen	gblue
NadirColor	gred	ggreen	gblue

Enable	or	disable	the	gradient	backdrop,	and	set	its	key	colors.

FogType	ntype
Set	the	fog	type.	The	type	can	be	any	of	the	values	that	are	valid	for
the	Fog	Info	type	field.

FogMinDistance	gdistance
FogMaxDistance	gdistance

Set	the	distance	extents	of	the	fog.

FogMinAmount	gamount
FogMaxAmount	gamount

Set	the	fog	amounts	at	the	minimum	and	maximum	distances.

FogColor	gred	ggreen	gblue
Set	the	fog	color.

Scenes

These	commands	involve	render	options	and	scene	loading	and	saving.
You	can	read	many	of	the	parameters	using	the	Scene	Info	global.

ClearScene
Clear	the	scene.	All	items	are	removed	and	all	scene	parameters	are
reset	to	their	default	values.

LoadScene	sfilename
Load	a	scene	file.

LoadFromScene	sfilename
Load	the	objects,	and	optionally	the	lights,	from	a	scene	file.

SaveScene
SaveSceneAs	sfilename

Save	the	scene.

SaveLWSC1	sfilename
Save	the	scene	in	version	1	format.	This	is	the	scene	file	format	used
by	versions	of	LightWave	prior	to	6.0.	Some	information	may	be	lost,
since	the	old	format	doesn't	support	many	of	the	newer	features.

SaveSceneCopy	sfilename
Save	a	copy	of	the	scene.	Unlike	SaveSceneAs,	SaveSceneCopy	doesn't
rename	the	scene.

ContentDirectory	sdirname
Set	the	content	directory	(a	file	system	path).	Objects	and	other	files
referenced	in	the	scene	are	listed	relative	to	this	path.

FirstFrame	nframe
LastFrame	nframe
FrameStep	nframes

Set	the	frame	range	and	step	size	for	rendering.

FramesPerSecond	gfps
Set	the	playback	speed	of	the	animation.	This	is	used	to	convert
between	frame	numbers	and	elapsed	time	in	seconds.

AutoFrameAdvance
Toggle	the	Auto	Frame	Advance	feature.	During	rendering	with	this
turned	off,	the	user	must	confirm	before	each	frame	is	rendered.

EnableVIPER
Enable	or	disable	the	VIPER	(Virtual	Interactive	Preview	Render)
system.	Enabling	VIPER	allows	it	to	store	buffers	from	the	most

recently	rendered	frame,	but	doesn't	open	the	VIPER	window.

RayTraceShadows
RayTraceReflection
RayTraceRefraction
RayTraceTransparency

Toggle	raytracing	of	shadows,	reflection,	refraction	and	transparency.

RenderFrame
RenderSelected
RenderScene

Render	the	current	frame,	render	only	the	currently	selected	objects
in	the	frame,	or	render	all	frames.

Navigation

These	commands	are	concerned	with	the	user's	navigation	within	Layout's
interface,	but	being	able	to	set	the	current	frame	and	animate	the	display	is
also	useful	to	plug-ins.	The	current	frame	is	available	from	the	Interface
Info	global	as	the	current	time.	Use	the	framesPerSecond	field	from	the	Scene
Info	global	to	convert	this	to	a	frame	number.

Some	of	these	commands	operate	on	a	single	view	pane,	the	one	that
currently	contains	the	mouse	cursor.

GoToFrame	nframe
PreviousFrame
NextFrame
PreviousKey
NextKey

Shuttle	the	display	to	a	specific	frame,	an	adjacent	frame,	or	the	next
or	previous	frame	containing	a	motion	key.

Refresh
RefreshNow

Tell	Layout	to	recompute	motions	and	geometry.	After	changing	the
current	frame,	plug-ins	that	bake	geometry	can	issue	the	RefreshNow
command	so	that	vertex	positions	are	updated	immediately.	By
default,	Refresh	runs	during	idle	time,	which	won't	occur	while	a	plug-

in's	code	is	executing.

Redraw
RedrawNow

Redraw	the	display.	Like	RefreshNow,	RedrawNow	executes	immediately
rather	than	waiting	for	idle	time.	But	the	draw	commands	by
themselves	don't	cause	motions	and	geometry	to	be	recomputed.

PlayForward
PlayBackward
Pause

Animate	the	display,	or	make	it	stop	animating.

PreviewFirstFrame	nframe
PreviewLastFrame	nframe
PreviewFrameStep	nframes

Set	the	range	of	frames	and	the	frame	step	for	animating	the	display.
The	frame	range	also	affects	the	range	of	frames	that	are	accessible	to
the	user	through	the	frame	shuttle	control.

MakePreview
PlayPreview
FreePreview
LoadPreview
SavePreview

Manage	pre-rendered	previews.	These	store	the	animated	display	as
an	image	sequence.

ClearAudio
LoadAudio
PlayAudio

Manage	Layout's	audio	track.

FractionalFrames
When	this	toggle	is	set,	Layout	allows	the	user	to	move	the	frame
shuttle	to	non-integer	frame	numbers.

CenterMouse
Center	a	view	over	the	current	mouse	position.

CenterItem
Center	a	view	over	the	position	of	the	selected	item.	This	is	a	toggle
that	causes	the	view	to	remain	centered	on	the	item	while	it's	being
moved.

FitAll
FitSelected

Scale	and	move	a	view	so	that	it	contains	all	items	or	all	selected
items.

ZoomIn
ZoomOut
ZoomInX2
ZoomOutX2

Scale	a	view.	The	X2	versions	scale	the	view	by	a	factor	twice	as
large.

Display

These	commands	set	display	options.	Many	of	these	can	be	read	from	the
Interface	Info	global.	As	with	some	navigation	commands,	many	of	these
commands	operate	on	the	view	pane	that	contains	the	mouse	cursor.

GridSize	gsize
IncreaseGrid
DecreaseGrid

Set	the	grid	size,	or	scale	it	in	approximately	logarithmic	steps:	1,	2,
5,	10,	20,	50,	and	so	on.	The	grid	size	is	the	interval	in	meters
between	grid	lines	in	the	display.	The	scale	of	the	view	is	relative	to
this	size,	so	the	entire	scene	(but	not	the	grid)	will	appear	to	grow	or
shrink	in	the	view	panes	as	this	number	is	changed.

DynamicUpdate	nlevel
Set	the	amount	of	display	interactivity.	The	level	can	be	any	of	the
values	that	are	valid	for	the	Interface	Info	dynaUpdate	field.

ShowMotionPaths
ShowHandles

ShowIKChains
ShowCages
ShowSafeAreas
ShowFieldChart
ShowTargetLines

Toggle	the	drawing	of	these	display	components.

BoundingBoxThreshold	nthreshold
Set	the	minimum	number	of	points	at	which	an	object	will	be	drawn
initially	as	a	bounding	box.	Lower	numbers	improve	interactivity,	but
plug-ins	that	bake	geometry	transformations	may	need	to	set	this
above	the	number	of	points	in	the	object	they're	baking.	Otherwise
only	the	bounding	box	vertex	positions	will	be	computed	by	Layout.

TopView
BottomView
BackView
FrontView
RightView
LeftView
XYView
XZView
ZYView
PerspectiveView
LightView
CameraView
SchematicView

Set	the	type	of	view	in	a	view	pane.	The	first	six	are	orthographic
views	in	the	direction	of	the	world	-Y,	+Y,	-Z,	+Z,	-X	and	+X	axes,
respectively.	XYView	(X	increasing	to	the	right	on	the	display,	Y
increasing	upwards)	is	a	synonym	for	BackView.	XZView	(X	right,	Y	up)	is
a	synonym	for	TopView,	and	ZYView	(Z	right,	Y	up)	is	a	synonym	for
RightView.	The	light	and	camera	views	look	through	the	selected	light
and	camera.	The	schematic	view	is	a	diagram	of	the	parenting
hierarchy.

ViewLayout	nlayout
PreviousViewLayout
NextViewLayout

SingleView
Select	a	view	layout,	the	arrangement	of	up	to	four	view	panes.	The
layout	indexes	are
	
0 1 2 3 4 5 6 7 8 9 10 11

SingleView	is	a	synonym	for	ViewLayout	0.

SaveViewLayout
Make	the	current	view	layout	the	default.

Layout_SetWindowPos	nX	nY
Scene_SetWindowPos	nX	nY
Item_SetWindowPos	nX	nY

Set	the	position	of	Layout's	main	window	and	the	Scene	Editor	and
Item	Properties	panels.	The	arguments	are	the	screen	coordinates	of
the	upper	left	corner.

Layout_SetWindowSize	nwidth	nheight
Scene_SetWindowSize	nwidth	nheight

Set	the	dimensions	of	Layout's	main	window	and	the	Scene	Editor
panel.

HideToolbar
Toggle	the	visibility	of	the	toolbar	(the	vertical	strip	of	buttons	next
to	the	view	area).

AddButton	scommand	sgroup
Add	a	button	to	the	toolbar	or	one	of	the	other	menu	areas.	The	group
is	the	name	of	the	menu	group	in	which	the	button	will	be	added.

AlertLevel	nlevel
Set	the	alert	level.	This	controls	the	method	used	to	display	warning,
error	and	informational	messages.	The	level	can	be	any	of	the	values
returned	by	the	Interface	Info	alertLevel	function.

AutoConfirm	non_off
Set	the	auto-confirm	switch.	When	this	is	turned	on,	confirmation

dialogs	that	would	otherwise	be	displayed	to	the	user	are	suppressed.
Plug-ins	can	use	this	to	issue	a	large	number	of	commands	without
inundating	the	user	with	requests	to	confirm	each	operation.
Remember	to	turn	it	off	again	when	you	no	longer	need	it.

Tools

These	enable	specific	tools.	Once	a	tool	is	active,	the	user's	mouse
movements	and	button	clicking	are	interpreted	as	operations	of	the	tool.
These	are	available	as	commands	primarily	so	that	the	user	can	map	them
to	shortcut	keys,	but	a	few	of	the	commands	(Reset,	for	example)	use	the
active	tool	as	a	context.

MoveTool

RotateTool

SizeTool

StretchTool

SquashTool

MovePivotTool

RotatePivotTool

MovePathTool

MorphAmountTool

RestLengthTool

ConeAngleTool

CameraZoomTool

AdjustRegionTool

LightIntensityTool

ChangeTool

Panels

These	commands	open	or	close	panels.

EditServer	sclass	nindex
LastPluginInterface

Display	a	plug-in's	interface.	The	class	is	the	first	field	of	the	plug-in's
ServerRecord,	and	the	index	refers	to	the	list	of	applied	servers	of	a
given	class.	The	first	server	in	each	list	has	an	index	of	1.	Use	the
Item	Info	global	to	examine	each	item's	server	lists.

HideWindows
Toggle	the	visibility	of	open	panels.

About
Display	the	About	dialog.

SceneEditor
GraphEditor
SurfaceEditor
ImageEditor
ItemProperties
DisplayOptions
GeneralOptions
FlareOptions
VolumetricLightingOptions
MotionOptions
PreviewOptions
RenderOptions
NetRender
Backdrop
Volumetrics
Compositing
ImageProcessing
AboutOpenGL
VIPER
Presets
Statistics
EditMenus
EditKeys
EditPlugins
MasterPlugins
Generics
CommandHistory
CommandInput	scommand

Open	one	of	the	panels,	or	close	the	panel	if	it's	open.

Miscellaneous

These	commands	don't	easily	fit	into	any	of	the	other	categories.

Model
Switch	to	Modeler.	If	Modeler	isn't	running,	it	will	be	started.	If	the
Hub	isn't	running,	the	command	has	no	effect.

Synchronize
Synchronize	objects	in	the	scene	with	Modeler	(reload	objects	that
have	been	modified	in	Modeler).

AddPlugins	sfilename
Install	the	plug-ins	found	in	the	file.

SaveCommandList
Save	a	list	of	these	commands	as	a	text	file.	The	list	will	also	contain
all	of	the	installed	LayoutGeneric	class	plug-ins,	as	well	as
commands	for	some	of	the	editors.

Quit
Quit	Layout.

Modeler	Commands

Modeler	commands	are	not	case-sensitive.	Modeler's	native	command
mechanism	is	the	lookup	and	execute	pair	of	functions,	which	translate	the
command	name	into	a	code	and	use	an	array	of	DynaValues	to	pass	the
arguments.	Commands	issued	using	the	evaluate	function	will	be	converted
into	lookup	and	execute	calls.	(See	the	CommandSequence	document	for
definitions	of	these	functions.)

Modeler's	evaluate	function	treats	double	quote	marks	as	delimiters,	not
literal	characters.	Use	them	when	a	string	argument	contains	spaces.	You
can	insert	a	quote	mark	as	a	literal	character	in	a	string	argument	by
preceeding	it	with	the	backslash	(\)	escape	character.	If	you	need	a	literal
backslash,	use	two	in	a	row.	(This	can	produce	some	odd-looking	code	if
you're	generating	evaluate	strings	using	sprintf.	To	generate	a	literal	quote
character	that	won't	be	removed	by	either	the	C	compiler	or	Modeler's
command	processor,	the	sprintf	string	needs	to	contain	three	backslashes,
followed	by	the	quote	character:	\\\".)

Some	Modeler	command	arguments	are	optional.	If	they	occur	at	the	end
of	the	argument	list,	they	can	simply	be	omitted.	If	they're	in	the	middle,
they	can	be	replaced	by	placeholders,	a	DY_NULL	DynaValue	for	execute	or	an
asterisk	(*)	in	an	evaluate	string.	Either	way,	Modeler	will	supply	default
values.

In	the	command	list	that	follows,	optional	arguments	are	placed	inside
square	brackets.	The	types	of	the	arguments	are	denoted	by	the	initial
letter.

number
A	single	integer	or	floating-point	number.	These	are	passed	to
execute	as	DynaValues	of	type	DY_INTEGER	or	DY_FLOAT.

vector
A	triple	of	numbers.	In	evaluate	strings,	vectors	are	delimited	by
angle	brackets	(<	and	>).	If	one	or	two	of	the	numbers	is	omitted,
the	last	number	present	is	repeated,	so	<0>	and	<0	0	0>	are
equivalent.	For	execute,	vectors	are	passed	as	DY_VINTs	or

DY_VFLOATs.
string

A	string,	such	as	a	filename	or	surface	name.	Passed	to	execute	as
DY_STRINGs.

keyword
A	string	containing	one	of	several	options.	Valid	keywords	are
listed	in	the	definition	of	the	command.

flags
A	string	in	which	each	character	represents	a	toggle.

The	commands	are	divided	into	six	broad	categories	here,	but	this	is	just	to
get	the	list	under	control.	The	categories	don't	have	any	programming
significance.

General

CLOSE
CLOSE_ALL

Close	the	current	object	workspace,	or	all	object	workspaces.
EXIT

Exit	Modeler.
NEW

Create	a	new,	empty,	unnamed	object.

UNDO
REDO

These	move	back	and	forth	in	Modeler's	undo	buffer.

DELETE
CUT
COPY
PASTE

The	delete	command	removes	the	selected	geometry	without	placing
it	in	Modeler's	clipboard,	unlike	cutting,	but	deletes	can	still	be
undone.

LOAD	sfilename
SAVE	sfilename

Load	and	save	object	files.

REVERT	sfilename
Reload	an	existing	object	file.

SETOBJECT	sname	[nindex]
Set	the	current	object	by	name,	filename	or	index.

SETLAYER	slayers
SETALAYER	slayers
SETBLAYER	slayers

Set	the	current	foreground	(or	active)	and	background	layers.	SETALAYER
is	a	synonym	for	SETLAYER.	The	layers	argument	is	a	string	containing
one	or	more	layer	numbers	separated	by	spaces.	Layers	are	numbered
sequentially,	starting	at	1.

SETLAYERNAME	sname

Set	the	name	of	the	current	layer.
SETPIVOT	vpos

Set	the	pivot	point	for	the	current	layer.	The	pivot	point	is	the	origin
for	rotations	in	Layout.

SURFACE	sname

Set	the	current	default	surface.	Geometry	created	after	this	is	called
will	be	assigned	this	surface.

SELECTVMAP	ktype	sname

Set	the	current	vertex	map	of	a	given	type.	The	type	can	be	MORF
(relative	morph),	SPOT	(absolute	morph),	WGHT	(weight),	MNVW	(subpatch
weight)	or	TXUV	(texture	UV).

CMDSEQ	sname	[sarg]

Activate	another	command	sequence	plug-in,	identified	by	its	internal
name,	the	string	in	the	plug-in's	ServerRecord	name	field.	The
argument	string	is	placed	in	the	argument	field	of	the
LWModCommand	structure	passed	to	the	plug-in's	activation
function.

MESHEDIT	sname

Activate	a	MeshDataEdit	class	plug-in,	identified	by	its	internal
name.

PLUGIN	sfilename	[sclass	sname	susername]

Install	the	plug-ins	contained	in	a	.p	file.

Selection

Commands	are	applied	to	the	current	selection,	a	subset	of	the	geometry
data	residing	in	Modeler	when	a	command	is	issued.	The	selection	is	made
up	of	elements	from	the	current	layers,	and	within	those	layers,	is	defined
by	your	choice	of	EltOpSelect	mode	for	each	command.

For	OPSEL_USER	and	OPSEL_DIRECT	modes,	you	can	change	which	elements	are
selected	using	the	SEL_POINT	and	SEL_POLYGON	family	of	commands.	(To
individually	select	points	and	polygons	by	ID,	you'll	need	to	use	a	mesh
edit	with	the	special	OPSEL_MODIFY	mode.)

SEL_POINT	kaction	[condition	...]

Modify	point	selection.	If	it	isn't	already,	the	Point	tab	in	Modeler's
interface	will	be	selected	after	this	command	is	issued.	The	action	can
be	either	SET	or	CLEAR.	If	there	is	no	condition,	the	action	will	apply	to
all	points.	Otherwise,	the	points	specified	by	the	condition	will	be
added	to	the	selection	for	SET	and	removed	from	the	selection	for
CLEAR.	The	possible	conditions	with	their	additional	arguments	are:
"VOLUME"	vlo	vhi

Points	within	the	volume.
"CONNECT"

Points	connected	to	already	selected	ones.	Only	works	with	SET.
"NPEQ"	npols

Points	belonging	to	exactly	pols	polygons.
"NPLT"	npols

Points	belonging	to	less	than	pols	polygons.
"NPGT"	npols

points	belonging	to	more	than	npol	polygons.
SEL_POLYGON	kaction	[condition	...]

Modify	polygon	selection.	Like	SEL_POINT,	with	the	following
conditions:
"VOLEXCL"	vlo,	vhi

Polygons	entirely	within	the	volume.
"VOLINCL"	vlo,	vhi

Polygons	at	least	partly	within	the	volume.
"CONNECT"

Polygons	connected	to	already	selected	ones.	Only	works	with
SET.

"NVEQ"	nverts

Polygons	with	exactly	verts	vertices.
"NVLT"	nverts

Polygons	with	less	than	verts	vertices.
"NVGT"	nverts

Polygons	with	more	than	verts	vertices.
"SURFACE"	ssurface

Polygons	having	the	given	surface.
"FACE"

Face	polygons	only.
"CURVE"

Curve	polygons	only.
"NONPLANAR"	[nlimit]

Polygons	less	planar	than	the	given	limit.	If	limit	is	omitted,	the
user's	default	limit	is	used.

SEL_INVERT

Invert	the	selection.	Selected	data	becomes	unselected	and	vice	versa.
SEL_HIDE	kstate

Hide	data	from	view.	The	state	can	be	SELECTED	(hide	the	selected	data,
the	default)	or	UNSELECTED.

SEL_UNHIDE

Unhide	all	hidden	data.
INVERT_HIDE

Invert	the	hiding	of	data.	Hidden	data	becomes	unhidden	and	vice
versa.

Point	Transforms

The	flex	and	deform	transformations	use	similar	region	data	to	define	the
scope	of	their	operations.	These	are	set	globally	and	then	applied	to	all
transformations	of	a	given	type.

FIXEDFLEX	kaxis	nstart	nend	[fease]

Set	the	flex	functions	to	operate	on	a	fixed	range	along	an	axis.	Ease
flags	can	be	"i"	(ease-in),	"o"	(ease-out),	or	"io".

AUTOFLEX	kaxis	kpolarity	[fease]

Set	the	flex	functions	to	operate	on	an	automatic	range	along	an	axis
of	the	given	polarity,	which	can	be	"+"	or	"-".

DEFORMREGION	vradius	[vcenter	kaxis]

Set	the	area	of	effect	for	the	deformation	tools.	If	axis	is	omitted,	the
effect	is	bounded	in	all	directions	by	the	given	radius.	If	an	axis	is
specified,	the	effect	is	unbounded	along	that	axis.

MOVE	voffset
SHEAR	voffset
MAGNET	voffset

Translate	points	by	the	given	offset.	Shear	translates	along	the	flex
axis.	Magnet	translates	in	the	deform	region.

ROTATE	nangle	kaxis	[vcenter]
TWIST	nangle	kaxis	[vcenter]
VORTEX	nangle	kaxis	[vcenter]

Rotate	points	along	the	given	axis	by	the	angle	given	in	degrees.
Twist	uses	the	flex	axis,	and	vortex	uses	the	deform	region.

SCALE	vfactor	[vcenter]
TAPER	vfactor	[vcenter]
POLE	vfactor	[vcenter]

Scale	points	by	the	given	factors	around	the	given	center.	Taper	uses
the	flex	axis,	and	pole	uses	the	deform	region.

BEND	nangle	ndirection	[vcenter]

BEND2	nangle	ndirection	[vcenter]

Bend	points	by	the	given	bend	angle	in	the	direction	around	the
optional	center.	These	commands	use	the	current	flex	axis.	In	new
code,	use	BEND2,	which	always	interprets	angle	values	as	degrees.

JITTER	vradius	[ktype	vcenter]

Randomly	translate	points	using	different	displacement	functions.
The	jitter	type	can	be	UNIFORM,	GAUSSIAN,	NORMAL	or	RADIAL.	UNIFORM	is	the
default	and	moves	points	randomly	along	all	three	axes	within	a	box
of	the	given	size.	GAUSSIAN	distributes	the	offsets	in	a	bell	curve	around
the	start	point.	NORMAL	shifts	the	points	in	and	out	along	the	local
surface	normal.	RADIAL	shifts	points	toward	or	away	from	the	center.

SMOOTH	[niterations	nstrength]

Apply	a	smoothing	function	to	attempt	to	remove	kinks	in	polygons
connecting	affected	points.

QUANTIZE	vsize

Snap	all	points	to	a	3D	grid	defined	by	the	size	vector.
MERGEPOINTS	[nmindist]

Merge	points	lying	within	a	certain	minimum	distance	of	each	other.
If	no	distance	is	given,	it	is	computed	heuristically.

Object	Creation

MAKEBOX	vlowcorner	vhighcorner	[vsegments]

Make	a	box	with	the	given	extent	and	and	number	of	segments.
MAKEBALL	vradius	nsides	nsegments	[vcenter]

Make	a	globe-style	sphere.
MAKETESBALL	vradius	nlevel	[vcenter]

MAKETESBALL2	vradius	nsegments	[vcenter]

Make	a	tesselated	sphere.	A	level	0	tesball	is	an	icosahedron.	A	level
n	tesball	divides	the	edges	of	the	icosahedron	into	2n	segments.	The
newer	MAKETESBALL2	comand	allows	the	number	of	segments	along	the
edges	to	be	any	number,	not	just	powers	of	2.

MAKEDISC	vradius	ntop	nbottom	kaxis	nsides	[nsegments	vcenter]

Make	a	disc.
MAKECONE	vradius	ntop	nbottom	kaxis	nsides	[nsegments	vcenter]

Make	a	cone.	The	top	is	the	pointy	end.
MAKETEXT	stext	nfont	[kcornertype	nkern	nscale	kaxis	vpos]

MAKETEXT2	stext	nfont	[kcornertype	nkern	nscale	kaxis	vpos	kalignment]

Generate	text	using	the	given	font	index.	The	font	index	begins	at	1
for	MAKETEXT	and	0	(in	agreement	with	the	Font	List	global's	index
function)	for	MAKETEXT2.	The	corner	type	can	be	either	SHARP	or	BUFFERED.
The	kern	is	an	additional	distance	to	put	between	characters
(normally	0).	The	scale	sets	the	approximate	height	of	the	character
cell	in	meters.	The	axis	defines	the	plane	in	which	the	text	will	lie.
For	MAKETEXT,	text	is	always	left-aligned	with	the	position	argument,
while	for	MAKETEXT2,	the	alignment	can	be	LEFT,	CENTER	or	RIGHT.

Replication

LATHE	kaxis	nsides	[vcenter	nendangle	nstartangle	noffset]

Spin	a	template	around	an	axis.
EXTRUDE	kaxis	nextent	[nsegments]

Sweep	a	template	along	an	axis.
MIRROR	kaxis	nplane

Copy	selected	data,	flipping	it	through	a	plane.

PATHCLONE	sfilename	[nstep	nstart	nend]
PATHEXTRUDE	sfilename	[nstep	nstart	nend]

Load	a	motion	file	and	clone	or	extrude	the	selected	data	along	the

path	in	the	file.	Clone	creates	copies	of	the	selected	geometry	at
intervals	along	the	path,	while	extrude	creates	a	single	continuous
object	by	connecting	the	copies.

RAILCLONE	nsegments	[kdivs	fflags	nstrength]
RAILEXTRUDE	nsegments	[kdivs	fflags	nstrength]

Clone	or	extrude	selected	data	along	one	or	more	rails	(curves)	in
background	layers.	If	segments	is	0,	the	number	of	segments	is
computed	automatically.	Otherwise	the	number	of	segments	is	fixed,
and	the	intervals	between	segments	depend	on	whether	divs	is	KNOTS
(the	default)	or	LENGTHS.	For	KNOTS,	an	equal	number	of	segments	is
placed	between	each	knot,	or	curve	vertex,	while	for	LENGTHS,	the
segments	are	spaced	at	equal	intervals	along	the	curve.	The	flags	can
be	"o"	(oriented),	"s"	(scaled)	or	"os".

Tools

AXISDRILL	soperation	kaxis	[ssurface]
SOLIDDRILL	soperation	[ssurface]

The	drill	commands	slice	the	foreground	geometry	using	a	2D
template	or	3D	shape	in	the	background	layer.	The	operation	can	be
CORE,	TUNNEL,	SLICE	or	STENCIL.

BOOLEAN	soperation
Booleans	combine	geometry	in	the	foreground	and	background	to
create	new	shapes.	The	geometry	involved	must	form	fully	enclosed
volumes,	which	Modeler	treats	as	solids	when	performing	booleans.
The	operation	can	be	UNION,	SUBTRACT,	INTERSECT	or	ADD.

BEVEL	ninset	nshift
Create	a	beveled	edge	around	each	selected	polygon.	The	polygon's
edges	are	moved	inward	(toward	the	polygon's	center)	by	the	inset
amount,	and	the	polygon	is	offset	in	the	direction	of	its	normal	by	the
shift	amount.	The	gap	between	the	polygon's	new	and	old	vertices	is
filled	by	new	polygons	that	form	the	beveled	edge.

SHAPEBEVEL	pattern
Perform	multiple	bevels	using	a	single	command.	The	patten	for	a
shapebevel	is	either	a	string	containing	pairs	of	inset/shift	values,	or	a

DY_CUSTOM	DynaValue	with	the	val[0]	field	set	to	the	number	of	pairs,
and	the	val[1]	field	cast	to	a	pointer	to	an	array	of	doubles	holding	the
pairs.

SMOOTHSHIFT	noffset	[nmaxangle]
Extrude	part	of	a	mesh.	Vertices	are	moved	in	the	average
("smoothed")	direction	of	the	shared	polygons'	normals.	The	mesh
breaks	at	edges	that	form	angles	greater	than	maxangle,	and	the	shift
direction	isn't	averaged	across	those	edges.

SMSCALE	noffset
Move	and	scale	part	of	a	mesh.	Vertices	are	moved	as	they	are	with
SMOOTHSHIFT,	but	no	new	polygons	are	created.

Polygons

FLIP
Flip	the	sidedness	(reverse	the	surface	normals)	of	faces	and	the
directions	of	curves.

TRIPLE
Convert	polygons	into	triangles	by	subdividing.

FREEZECURVES
Convert	curves	into	polygons.

REMOVEPOLS
Delete	polygons,	leaving	behind	their	vertices	as	points.

UNIFYPOLS
Delete	duplicate	polygons.

ALIGNPOLS
Roughly	speaking,	flip	polygons	so	that	they	all	face	in	the	"same"
direction	to	form	a	coherent	mesh.	Incoherent	meshes	can	result	from
the	use	of	the	UNIFYPOLS	command,	or	when	the	geometry	is	created	in
another	program	that	ignores	the	sidedness	of	polygons.	It	isn't
always	possible	for	ALIGNPOLS	to	infer	the	correct	sidedness	for	all
polygons,	however.

CHANGESURFACE	ssurface
Set	the	surface	of	selected	polygons.

CHANGEPART	spart
Set	the	part	tag	for	selected	polygons.

SUBDIVIDE	kmode	[nmaxangle]
Split	triangles	into	four	smaller	triangles	and	quads	into	four	smaller
quads.	The	mode	can	be	FLAT,	SMOOTH,	or	METAFORM.	With	flat	subdivision,
the	new	polygons	retain	the	parent's	normal.	A	smooth	subdivide
creates	polygons	with	normals	that	interpolate	the	parent's	normal
and	those	of	its	neighbors.	Modeler	won't	try	to	interpolate	normals
across	edges	that	form	angles	larger	than	maxangle.	Metaform,	unlike
smooth	mode,	moves	the	original	vertices	to	approximate	the
continuity	(roundness)	of	a	higher-order	patch.

FRACSUBDIVIDE	kmode	nfractal	[nmaxangle]
Like	SUBDIVIDE,	but	applies	a	fractal	displacement	to	each	new	vertex
as	a	function	of	its	position.

TOGGLECCSTART
TOGGLECCEND

These	affect	the	interpretation	of	the	first	and	last	points	in	curves.
When	toggled	"on,"	the	first	(or	last)	point	in	a	curve	becomes	a
continuity	control	point.	It	and	the	curve	segment	connected	to	it	are
no	longer	part	of	the	curve,	but	it	can	be	used	to	affect	the	shape	of
the	first	(or	last)	segment	that	is	still	part	of	the	curve.

TOGGLEPATCHES
Toggling	this	"on"	converts	the	selected	geometry	into	a	subpatch
control	cage.

UNWELD
Create	multiple	copies	of	the	selected	points	so	that	none	are	shared
by	two	polygons	at	once.

The	following	eight	commands	are	only	valid	with	EltOpSelect	modes	of
OPSEL_USER	or	OPSEL_DIRECT.	Just	as	in	the	user	interface,	these	operations

require	explicit	selection	of	the	elements	they	will	operate	on.

MAKE4PATCH	nperpendicular	nparallel
Create	a	quad	mesh	from	three	or	four	curves.	The	perpendicular	and
parallel	values	determine	the	number	of	segments	that	will	be	created
in	directions	perpendicular	and	parallel	to	the	last-selected	curve.	The
curves	must	share	vertices	to	form	a	closed	area.

SKINPOLS
Create	a	triangle	mesh	that	connects	two	or	more	polygons	and
encloses	the	volume	between	them.	This	is	sometimes	called	lofting.
The	original	polygons	aren't	required	to	have	the	same	number	of
vertices.

MORPHPOLS	nsegments
Create	a	triangle	mesh	that	connects	exactly	two	polygons	with	the
same	number	of	vertices.	The	new	mesh	is	divided	into	a	number	of
segments	along	the	line	connecting	the	two	original	polygons.

MERGEPOLS
Merge	selected	polygons	into	a	single	polygon.	Each	selected
polygon	must	share	at	least	one	edge	with	another.

WELDPOINTS
Merge	selected	points	into	a	single	point.	The	position	of	the
resulting	point	is	the	same	as	that	of	the	last-selected	point	before	the
weld.

WELDAVERAGE
Weld	selected	points	into	a	single	point	located	at	the	average
position	of	the	welded	points.

SPLITPOLS
Divide	a	polygon	into	two	smaller	polygons.	The	new	edge	is	created
between	selected	points.

SMOOTHCURVES
Smooth	a	composite	of	two	curves	at	their	join	point.

Object	File	Examples

This	page	is	a	supplement	to	the	LightWave	LWO2	object	file	format
specification.	It	illustrates	the	most	common	elements	of	LightWave
object	files	using	a	unit	cube	embellished	in	various	ways.	The	discussion
assumes	you	have	access	to	the	spec,	but	reading	it	isn't	a	prerequisite.	In
fact,	you	may	want	to	read	through	these	examples	before	tackling	the
reference	information	in	the	spec.

File	contents	are	presented	as	both	hex	dumps	and	outlines.	Although	the
outlines	are	much	easier	to	read,	the	hex	dumps	are	important	because
they're	unambiguous.	They	contain	the	actual	bytes	of	the	file,	written	as
2-digit	hexadecimal	numbers,	with	16	per	line.	Many	of	the	files
themselves	can	be	found	in	the	same	directory	as	this	page.

The	source	code	samples	in	the	LightWave	plug-in	SDK	include	a
standalone	LWO2	reader.

The	Basic	Cube
Subpatches
Vertex	Maps
Meatballs?
Envelopes
Textures
UV	Mapping
Discontinuous	UVs
Plug-ins

The	Basic	Cube

The	first	example	is	a	simple	unit	cube	centered	on	the	origin,	with	default
surface	settings	and	a	single	layer.	The	file	is	348	bytes	in	length.	A	hex
dump	of	the	entire	file	looks	like	this.

				46	4F	52	4D	00	00	01	54	4C	57	4F	32	54	41	47	53			FORM				LWO2TAGS

				00	00	00	08	44	65	66	61	75	6C	74	00	4C	41	59	52							Default	LAYR

				00	00	00	12	00	00	00	00	00	00	00	00	00	00	00	00

				00	00	00	00	00	00	50	4E	54	53	00	00	00	60	BF	00									PNTS

				00	00	BF	00	00	00	BF	00	00	00	3F	00	00	00	BF	00

				00	00	BF	00	00	00	3F	00	00	00	BF	00	00	00	3F	00

				00	00	BF	00	00	00	BF	00	00	00	3F	00	00	00	BF	00

				00	00	3F	00	00	00	BF	00	00	00	3F	00	00	00	3F	00

				00	00	BF	00	00	00	3F	00	00	00	3F	00	00	00	3F	00

				00	00	BF	00	00	00	3F	00	00	00	3F	00	00	00	42	42																	BB

				4F	58	00	00	00	18	BF	00	00	00	BF	00	00	00	BF	00			OX

				00	00	3F	00	00	00	3F	00	00	00	3F	00	00	00	50	4F																	PO

				4C	53	00	00	00	40	46	41	43	45	00	04	00	00	00	01			LS				FACE

				00	02	00	03	00	04	00	00	00	04	00	05	00	01	00	04

				00	01	00	05	00	06	00	02	00	04	00	03	00	02	00	06

				00	07	00	04	00	00	00	03	00	07	00	04	00	04	00	04

				00	07	00	06	00	05	50	54	41	47	00	00	00	1C	53	55									PTAG				SU

				52	46	00	00	00	00	00	01	00	00	00	02	00	00	00	03			RF

				00	00	00	04	00	00	00	05	00	00	53	55	52	46	00	00													SURF

				00	2A	44	65	66	61	75	6C	74	00	00	00	43	4F	4C	52					Default			COLR

				00	0E	3F	48	C8	C9	3F	48	C8	C9	3F	48	C8	C9	00	00

				44	49	46	46	00	06	3F	80	00	00	00	00															DIFF

Here's	the	same	file	written	in	outline	form.

			FORM	340	LWO2

						TAGS	8

									"Default"

						LAYR	18

									0

									0

									0.0		0.0		0.0

									""

						PNTS	96

									-0.5		-0.5		-0.5

										0.5		-0.5		-0.5

										0.5		-0.5			0.5

									-0.5		-0.5			0.5

									-0.5			0.5		-0.5

										0.5			0.5		-0.5

										0.5			0.5			0.5

									-0.5			0.5			0.5

						BBOX	24

									-0.5		-0.5		-0.5

										0.5			0.5			0.5

						POLS	64

									FACE

									4		0		1		2		3

									4		0		4		5		1

									4		1		5		6		2

									4		3		2		6		7

									4		0		3		7		4

									4		4		7		6		5

						PTAG	28

									SURF

									0		0

									1		0

									2		0

									3		0

									4		0

									5		0

						SURF	42

									"Default"

									""

									COLR	14

												0.78431		0.78431		0.78431

												0

									DIFF	6

												1.0

												0

LightWave	object	files	use	the	IFF	syntax	described	in	the	EA-IFF85
document.	Data	is	stored	in	a	collection	of	chunks.	Each	chunk	begins
with	a	4-byte	chunk	ID	and	the	size	of	the	chunk	in	bytes,	and	this	is
followed	by	the	chunk	contents.

			FORM	340	LWO2

Formally,	a	LightWave	object	file	is	a	single	IFF	FORM	chunk	of	type	LWO2.
The	first	4	bytes	are	the	characters	'F',	'O',	'R',	'M',	and	this	is	followed	by
a	4-byte	integer	containing	the	chunk	size	(the	size	of	the	file	minus	8)	and
the	FORM	type	(the	characters	'L',	'W',	'O',	'2').	As	with	all	numbers	in	LWO2
files,	the	chunk	size	is	always	written	in	big-endian	(Motorola,	network)
byte	order.

						TAGS	8

									"Default"

The	TAGS	chunk	contains	an	array	of	strings.	Whenever	something	is
identified	by	name	in	the	file,	the	ID	is	often	a	0-based	index	into	the	TAGS
array.	The	only	named	element	in	this	file	is	its	single	surface,	named
"Default".

						LAYR	18

									0

									0

									0.0		0.0		0.0

									""

The	layer	header	signals	the	start	of	a	new	layer.	All	geometry	elements
that	appear	in	the	file	after	this	and	before	the	next	LAYR	chunk	belong	to
this	layer.	The	layer	header	contains	an	index,	a	flags	word,	the	pivot	point
of	the	layer,	the	layer's	name,	and	the	index	of	the	parent	layer.	This	is	the
first	(and	only)	layer,	so	its	index	is	0	and	the	optional	parent	index	is
omitted.	The	bits	in	the	flags	word	are	also	0,	and	the	layer	hasn't	been
given	a	name.

The	pivot	point	is	the	origin	for	rotations	in	this	layer	and	is	expressed	in
world	coordinates.	Pivots	typically	differ	from	(0,	0,	0)	when	layers	and
layer	parenting	are	used	to	create	an	object	hierarchy.

						PNTS	96

									-0.5		-0.5		-0.5

										0.5		-0.5		-0.5

										0.5		-0.5			0.5

									-0.5		-0.5			0.5

									-0.5			0.5		-0.5

										0.5			0.5		-0.5

										0.5			0.5			0.5

									-0.5			0.5			0.5

The	PNTS	chunk	contains	triples	of	floating-point	numbers,	the	coordinates
of	a	list	of	points.	The	numbers	are	written	as	IEEE	32-bit	floats	in
network	byte	order.	The	IEEE	float	format	is	the	standard	bit	pattern	used
by	almost	all	CPUs	and	corresponds	to	the	internal	representation	of	the	C
language	float	type.	In	other	words,	this	isn't	some	bizarre	proprietary
encoding.	You	can	process	these	using	simple	fread	and	fwrite	calls	(but
don't	forget	to	correct	the	byte	order	if	necessary).

						BBOX	24

									-0.5		-0.5		-0.5

										0.5			0.5			0.5

The	bounding	box	for	the	layer,	just	so	that	readers	don't	have	to	scan	the
PNTS	chunk	to	find	the	extents.

						POLS	64

									FACE

									4		0		1		2		3

									4		0		4		5		1

									4		1		5		6		2

									4		3		2		6		7

									4		0		3		7		4

									4		4		7		6		5

The	POLS	chunk	contains	a	list	of	polygons.	A	"polygon"	in	this	context	is
anything	that	can	be	described	using	an	ordered	list	of	vertices.	A	POLS	of
type	FACE	contains	ordinary	polygons,	but	the	POLS	type	can	also	be	CURV,
PTCH,	MBAL	or	BONE,	for	example.

The	high	6	bits	of	the	vertex	count	for	each	polygon	are	reserved	for	flags,
which	in	effect	limits	the	number	of	vertices	per	polygon	to	1023.	Don't
forget	to	mask	the	high	bits	when	reading	the	vertex	count.	The	flags	are
currently	only	defined	for	CURVs.

The	point	indexes	following	the	vertex	count	refer	to	the	points	defined	in
the	most	recent	PNTS	chunk.	Each	index	can	be	a	2-byte	or	a	4-byte	integer.
If	the	high	order	(first)	byte	of	the	index	is	not	0xFF,	the	index	is	2	bytes
long.	This	allows	values	up	to	65279	to	be	stored	in	2	bytes.	If	the	high

order	byte	is	0xFF,	the	index	is	4	bytes	long	and	its	value	is	in	the	low
three	bytes	(index	&	0x00FFFFFF).	The	maximum	value	for	4-byte	indexes	is
16,777,215	(224	-	1).	Objects	with	more	than	224	vertices	can	be	stored
using	multiple	pairs	of	PNTS	and	POLS	chunks.

The	cube	has	6	square	faces	each	defined	by	4	vertices.	LightWave
polygons	are	single-sided	by	default	(double-sidedness	is	a	possible
surface	property).	The	vertices	are	listed	in	clockwise	order	as	viewed
from	the	visible	side,	starting	with	a	convex	vertex.	(The	normal	is	defined
as	the	cross	product	of	the	first	and	last	edges.)

						PTAG	28

									SURF

									0		0

									1		0

									2		0

									3		0

									4		0

									5		0

The	PTAG	chunk	associates	tags	with	polygons.	In	this	case,	it	identifies
which	surface	is	assigned	to	each	polygon.	The	first	number	in	each	pair	is
a	0-based	index	into	the	most	recent	POLS	chunk,	and	the	second	is	a	0-
based	index	into	the	TAGS	chunk.

						SURF	42

									"Default"

									""

									COLR	14

												0.78431		0.78431		0.78431

												0

									DIFF	6

												1.0

												0

The	description	of	each	surface	is	stored	in	a	SURF	chunk.	The	only	items
guaranteed	to	be	in	a	SURF	chunk	are	the	names	of	the	surface	and	of	its
parent.	The	parent	name	is	often	empty,	but	if	it's	not,	any	surface
parameters	not	defined	in	the	SURF	can	be	inherited	from	the	parent's	SURF.
When	there's	no	parent,	undefined	parameters	are	assigned	default	values.
("Default"	is	just	the	default	name.	If	you	aren't	concerned	about
confusing	people,	you're	free	to	give	non-default	values	to	a	surface	with
this	name.)

Following	the	name	fields	is	a	collection	of	subchunks,	each	of	which
defines	a	property	of	the	surface.	Like	IFF	chunks,	SURF	subchunks	start

with	a	4-byte	ID	followed	by	a	chunk	size,	but	the	size	is	2	bytes	in	length
rather	than	4.	Although	subchunks	tend	to	be	quite	small,	SURFs	may
contain	a	large	number	of	them,	as	we'll	see	later.

The	0	at	the	end	of	the	COLR	and	DIFF	subchunks	indicates	that	these	surface
attributes	are	not	enveloped	(don't	vary	over	time).	We'll	change	that	later,
too.

Subpatched	Cube

	

Loading	the	original	cube	(left)	and	activating	subdivision	patches	turns
the	cube	into	a	control	cage	for	the	patches	(right).	(The	numbers	in	the
figure	are	the	point	indexes.	The	hidden	corner	is	point	0.)	In	the	object
file,	the	only	difference	between	these	two	objects	is	the	polygon	type	ID
in	the	POLS	chunk.	For	the	subpatch	version	of	the	cube,	the	ID	is	PTCH	rather
than	FACE.

						POLS	64

									PTCH

									...

In	all	other	respects	the	files	are	identical.	The	geometry	that	results	from
subdivision	is	determined	interactively	by	the	user	through	settings	in
LightWave.	The	method	used	to	generate	the	patches	is	proprietary,	but	it
produces	results	similar	to	other	subdivision	surface	methods.	The
LightWave	plug-in	API	includes	functions	for	reading	the	subpatch
geometry.	Subpatches	can	also	be	frozen,	after	which	they	are	ordinary
polygons	that	can	be	saved	explicitly	as	FACEs.

Vertex	Maps

VMAP	chunks	associate	vectors	with	the	points	in	the	most	recent	PNTS	chunk.

The	vectors	can	contain	texture	coordinates,	weights,	colors,
or	anything	else	that	it	makes	sense	to	assign	to	a	vertex.	A
subpatch	weight	map	(type	MNVW),	for	example,	can	be	used	to
alter	the	shape	of	subpatch	geometry	by	"pulling"	it	toward
control	cage	vertices	with	higher	weight	values.	MNVW	VMAPs
have	a	dimension	of	1,	meaning	that	they	contain	a	single	value	(the
weight)	per	vertex.

			56	4D	41	50	00	00	00	12	4D	4E	56	57	00	01	62	61			VMAP				MNVW		ba

			73	65	00	00	00	07	3F	49	C6	6E																					se

						VMAP	18

									MNVW

									1

									"base"

									7		0.78818

The	image	illustrates	the	effect	of	this	VMAP,	prosaically	named	"base,"	on
our	subpatched	cube.	A	single	non-zero	weight	has	been	assigned	to	vertex
7.

Meatballs?

In	addition	to	FACEs	and	PTCHs,	POLS	can	also	store	curves,	bones	and
metaballs	(sometimes	spooneristically	referred	to	as	meatballs).

The	CURV	type	holds	the	vertices	of	Catmull-Rom	splines.	The	low	two	flag
bits	of	the	vertex	count	indicate	whether	the	endpoints	are	part	of	the
curve	or	just	continuity	control	points.	Curves	are	currently	ignored	by	the
renderer,	so	their	use	is	limited	to	modeling.	BONE	polygons	are	line
segments	created	in	Modeler	that	can	be	converted	to	bones	in	Layout.
MBALs	are	single-point	polygons.	The	points	are	associated	with	a	VMAP	of
type	MBAL	that	contains	the	radius	of	influence	of	each	metaball.

Envelopes

The	potential	complexity	of	surface	information	becomes	apparent	when
we	start	adding	envelopes	and	textures	to	the	definitions	of	surface
parameters.	In	our	first	example	of	this,	envelopes	are	added	to	the	color
and	luminosity	channels	of	the	Default	surface	of	our	basic	cube.	Four	ENVL
chunks	are	added	to	the	file	(three	for	the	color	channel).

			45	4E	56	4C	00	00	00	70	00	01	4E	41	4D	45	00	08			ENVL						NAME

			43	6F	6C	6F	72	2E	52	00	54	59	50	45	00	02	04	0A			Color.R	TYPE

			50	52	45	20	00	02	00	01	4B	45	59	20	00	08	00	00			PRE					KEY

			00	00	3F	48	C8	C9	53	50	41	4E	00	10	54	43	42	20									SPAN		TCB

			00	00	00	00	00	00	00	00	00	00	00	00	4B	45	59	20															KEY

			00	08	3F	80	00	00	3F	80	00	00	53	50	41	4E	00	10													SPAN

			54	43	42	20	00	00	00	00	00	00	00	00	00	00	00	00			TCB

			50	4F	53	54	00	02	00	01																											POST

						ENVL	112

									1

									NAME	8				Color.R

									TYPE	2				0x040A

									PRE		2				1

									KEY		8				0.0		0.78431

									SPAN	16			TCB			0.0		0.0		0.0

									KEY		8				1.0		1.0

									SPAN	16			TCB			0.0		0.0		0.0

									POST	2				1

Note	that	the	PRE,	KEY,	and	TCB	IDs	include	a	trailing	space.

The	envelopes	for	the	red,	green	and	blue	components	of	the	color	channel
are	written	to	separate,	contiguous	ENVL	chunks.	The	type	code	contains
flags	indicating	that	the	envelope	is	represented	to	the	user	as	a	percentage
and	that	this	is	the	first	component	of	a	(color)	vector.	The	pre	and	post
behavior	codes	control	what	happens	outside	the	range	of	the	keys,	and	in
this	case	they're	set	to	keep	the	value	constant.

This	envelope	contains	two	keys.	Each	KEY	subchunk	contains	a	time	in
seconds	and	a	value,	and	the	corresponding	SPAN	subchunk	stores	the
interpolation	parameters	and	identifies	the	type	of	interpolation	between
the	key	and	its	predecessor.	The	parameters	for	TCB	curves	are	the
tension,	continuity	and	bias,	all	0.0	in	this	example.

The	envelopes	for	the	green	and	blue	channels	are	very	similar.

			45	4E	56	4C	00	00	00	70	00	02	4E	41	4D	45	00	08			ENVL						NAME

			43	6F	6C	6F	72	2E	47	00	54	59	50	45	00	02	04	0B			Color.G	TYPE

			50	52	45	20	00	02	00	01	4B	45	59	20	00	08	00	00			PRE					KEY

			00	00	3F	48	C8	C9	53	50	41	4E	00	10	54	43	42	20									SPAN		TCB

			00	00	00	00	00	00	00	00	00	00	00	00	4B	45	59	20															KEY

			00	08	3F	80	00	00	3F	00	00	00	53	50	41	4E	00	10													SPAN

			54	43	42	20	00	00	00	00	00	00	00	00	00	00	00	00			TCB													

			50	4F	53	54	00	02	00	01																											POST

						ENVL	112

									2

									NAME	8				Color.G

									TYPE	2				0x040B

									PRE		2				1

									KEY		8				0.0		0.78431

									SPAN	16			TCB			0.0		0.0		0.0

									KEY		8				1.0		0.5

									SPAN	16			TCB			0.0		0.0		0.0

									POST	2				1

			45	4E	56	4C	00	00	00	70	00	03	4E	41	4D	45	00	08			ENVL						NAME

			43	6F	6C	6F	72	2E	42	00	54	59	50	45	00	02	04	0C			Color.B	TYPE

			50	52	45	20	00	02	00	01	4B	45	59	20	00	08	00	00			PRE					KEY

			00	00	3F	48	C8	C9	53	50	41	4E	00	10	54	43	42	20									SPAN		TCB

			00	00	00	00	00	00	00	00	00	00	00	00	4B	45	59	20															KEY

			00	08	3F	80	00	00	00	00	00	00	53	50	41	4E	00	10													SPAN

			54	43	42	20	00	00	00	00	00	00	00	00	00	00	00	00			TCB

			50	4F	53	54	00	02	00	01																											POST

						ENVL	112

									3

									NAME	8				Color.B

									TYPE	2				0x040C

									PRE		2				1

									KEY		8				0.0		0.78431

									SPAN	16			TCB			0.0		0.0		0.0

									KEY		8				1.0		0.0

									SPAN	16			TCB			0.0		0.0		0.0

									POST	2				1

The	envelope	for	the	luminosity	channel	contains	5	keys.

			45	4E	56	4C	00	00	00	D0	00	04	4E	41	4D	45	00	0C			ENVL						NAME

			4C	75	6D	69	6E	6F	73	69	74	79	00	00	54	59	50	45			Luminosity		TYPE

			00	02	04	00	50	52	45	20	00	02	00	01	4B	45	59	20							PRE					KEY

			00	08	00	00	00	00	00	00	00	00	53	50	41	4E	00	10													SPAN

			54	43	42	20	00	00	00	00	00	00	00	00	00	00	00	00			TCB

			4B	45	59	20	00	08	3E	AA	AA	AB	3F	20	00	00	53	50			KEY											SP

			41	4E	00	0C	42	45	5A	49	3F	5F	0B	6D	3E	1A	E6	07			AN		BEZI			

			4B	45	59	20	00	08	3F	2A	AA	AB	3E	9A	E6	07	53	50			KEY											SP

			41	4E	00	10	54	43	42	20	BF	00	00	00	BF	80	00	00			AN		TCB

			3F	80	00	00	4B	45	59	20	00	08	3F	80	00	00	3E	F7							KEY

			A6	F5	53	50	41	4E	00	10	54	43	42	20	00	00	00	00					SPAN		TCB

			00	00	00	00	00	00	00	00	4B	45	59	20	00	08	3F	AE											KEY

			EE	EF	00	00	00	00	53	50	41	4E	00	04	4C	49	4E	45									SPAN		LINE

			50	4F	53	54	00	02	00	01																											POST

						ENVL	208

									4

									NAME	12			Luminosity

									TYPE	2				0x0400

									PRE		2				1

									KEY		8				0.0		0.0

									SPAN	16			TCB			0.0		0.0		0.0

									KEY		8				0.33333		0.625

									SPAN	12			BEZI		0.87127		0.15127

									KEY		8				0.66667		0.28804

									SPAN	16			TCB			-0.5		-1.0		1.0

									KEY		8				1.0		0.4837

									SPAN	16			TCB			0.0		0.0		0.0

									KEY		8				1.36667		0.0

									SPAN	4				LINE

									POST	2				1

The	span	between	the	first	and
second	keys	is	a	Bezier	curve
requiring	two	parameters.	The
third	key's	tension,	continuity
and	bias	are	non-zero.	The	span
between	the	fourth	and	fifth	keys	has	been	set	to	Linear,	which	requires	no
interpolation	parameters.

These	envelopes	are	referenced	by	index	in	the	SURF	chunk.

			53	55	52	46	00	00	00	36	44	65	66	61	75	6C	74	00			SURF				Default	

			00	00	43	4F	4C	52	00	0E	3F	48	C8	C9	3F	48	C8	C9					COLR

			3F	48	C8	C9	00	01	4C	55	4D	49	00	06	00	00	00	00									LUMI

			00	04	44	49	46	46	00	06	3F	80	00	00	00	00											DIFF

						SURF	54

									"Default"

									""

									COLR	14				0.78431		0.78431		0.78431		1

									LUMI	6					0.0		4

									DIFF	6					1.0		0

The	COLR	subchunk	includes	a	reference	to	ENVL	1	(which	implies	ENVL	2	and
3	as	well),	and	the	LUMI	subchunk	refers	to	ENVL	4.	As	we've	seen,	the	0	in
DIFF	means	that	it	doesn't	have	an	envelope.

Textures

In	the	next	example,	an	image	is	planar	mapped	onto	the	north	(+Z)	face
of	our	basic	cube,	which	is	assigned	a	new	surface	called	"Screen".

			54	41	47	53	00	00	00	10	44	65	66	61	75	6C	74	00			TAGS				Default

			53	63	72	65	65	6E	00	00																											Screen

						TAGS	16

									"Default"

									"Screen"

The	new	surface's	name	is	written	into	TAGS.	Note	that	because	the	length	of
the	name	(including	the	0	byte	that	terminates	the	string)	is	odd,	a	pad	byte
is	appended	so	that	the	next	chunk	starts	on	an	even	byte.	All	strings	in
object	files	are	written	this	way.

			50	54	41	47	00	00	00	1C	53	55	52	46	00	00	00	00			PTAG				SURF

			00	01	00	00	00	02	00	00	00	03	00	01	00	04	00	00

			00	05	00	00

						PTAG	28

									SURF

									0		0

									1		0

									2		0

									3		1

									4		0

									5		0

The	PTAG	shows	that	polygon	3	is	assigned	the	Screen	surface,	while	the
others	still	have	the	surface	named	Default.

				43	4C	49	50	00	00	00	1E	00	00	00	01	53	54	49	4C			CLIP								STIL

				00	14	49	6D	61	67	65	73	2F	74	65	73	74	62	61	72					Images/testbar

				73	2E	69	66	66	00																																	s.iff

						CLIP	30

									1

									STIL	20

												"Images/testbars.iff"

Information	about	the	mapped	image	is	stored	in	a	CLIP	chunk.	This	one
happens	to	be	a	still,	but	it	could	also	be	an	image	sequence	(ISEQ)	or	an
animation	(ANIM),	and	it	could	be	modified	by	one	or	more	image
processing	operators.	This	filename	is	relative	to	the	current	content
directory,	and	it's	written	in	a	platform-neutral	format.

				53	55	52	46	00	00	01	48	53	63	72	65	65	6E	00	00			SURF				Screen		

				00	00	43	4F	4C	52	00	0E	3F	48	C8	C9	3F	48	C8	C9					COLR

				3F	48	C8	C9	00	00	44	49	46	46	00	06	3F	80	00	00									DIFF

				00	00	53	50	45	43	00	06	00	00	00	00	00	00	42	4C					SPEC								BL

				4F	4B	01	0C	49	4D	41	50	00	32	80	00	43	48	41	4E			OK		IMAP				CHAN

				00	04	43	4F	4C	52	4F	50	41	43	00	08	00	00	3F	80					COLROPAC

				00	00	00	00	45	4E	41	42	00	02	00	01	4E	45	47	41							ENAB				NEGA

				00	02	00	00	41	58	49	53	00	02	00	01	54	4D	41	50							AXIS				TMAP

				00	68	43	4E	54	52	00	0E	00	00	00	00	00	00	00	00					CNTR

				00	00	00	00	00	00	53	49	5A	45	00	0E	3F	80	00	00									SIZE

				3F	80	00	00	3F	80	00	00	00	00	52	4F	54	41	00	0E													ROTA

				00	00	00	00	00	00	00	00	00	00	00	00	00	00	46	41																	FA

				4C	4C	00	10	00	00	00	00	00	00	00	00	00	00	00	00			LL

				00	00	00	00	4F	52	45	46	00	08	28	6E	6F	6E	65	29							OREF		(none)

				00	00	43	53	59	53	00	02	00	00	50	52	4F	4A	00	02					CSYS				PROJ

				00	00	41	58	49	53	00	02	00	02	49	4D	41	47	00	02					AXIS				IMAG

				00	01	57	52	41	50	00	04	00	01	00	01	57	52	50	57					WRAP						WRPW

				00	06	3F	80	00	00	00	00	57	52	50	48	00	06	3F	80											WRPH

				00	00	00	00	41	41	53	54	00	06	00	01	3F	80	00	00							AAST

				50	49	58	42	00	02	00	01	53	54	43	4B	00	06	00	00			PIXB				STCK

				00	00	00	00	54	41	4D	50	00	06	3F	80	00	00	00	00							TAMP

						SURF	328

									"Screen"

									""

									COLR	14			0.78431		0.78431		0.78431		0

									DIFF	6				1.0		0

									SPEC	6				0.0		0

									BLOK	268

												IMAP	50

															"\x80"

															CHAN	4				COLR

															OPAC	8				0		1.0		0

															ENAB	2				1

															NEGA	2				0

															AXIS	2				1

												TMAP	104

															CNTR	14			0.0		0.0		0.0

																		0

															SIZE	14			1.0		1.0		1.0		0

															ROTA	14			0.0		0.0		0.0		0

															FALL	16			0		0.0		0.0		0.0		0

															OREF	8				"(none)"

															CSYS	2				0

												PROJ	2				0

												AXIS	2				2

												IMAG	2				1

												WRAP	4				1		1

												WRPW	6				1.0		0

												WRPH	6				1.0		0

												AAST	6				1		1.0

												PIXB	2				1

												STCK	6				0.0		0

												TAMP	6				1.0		0

Texture	layers	are	stored	in	BLOKs	inside	the	SURF	chunk.	A	BLOK	begins	with	a
header	subchunk	that	identifies	the	texture	type	of	the	layer.	For	IMAP
(image	map)	and	PROC	(procedural)	layer	types,	the	BLOK	also	contains	a	TMAP
that	describes	the	mapping	from	world	or	object	space	to	texture	space.
And	the	BLOK	contains	other	subchunks	specific	to	the	layer	type.

The	first	field	of	the	BLOK	header	(the	IMAP	subchunk)	is	called	an	ordinal
string.	When	multiple	textures	are	applied	to	a	surface	channel,	the	ordinal
string	determines	the	order	in	which	they're	evaluated.	Object	readers	can
sort	BLOKs	by	using	strcmp	to	compare	the	ordinal	strings.	Writers	can
generate	ordinal	strings	with	the	following	function.

			void	make_ord(int	nbloks,	int	index,	unsigned	char	*ord)

			{

						int	i,	d;

			

						for	(i	=	8,	d	=	16;	i	<	128;	i	*=	2)

									if	(i	>=	nbloks)	break;

									d	/=	2;

						}

						ord[0]	=	128	+	index	*	d;

						ord[1]	=	0;

			}

nbloks	is	the	total	number	of	BLOKs,	and	index	is	a	number	between	0	and
nbloks	-	1.	This	works	for	nbloks	<=	128.	In	the	unlikely	event	that	you	need
to	apply	more	than	128	texture	layers	to	a	single	surface	channel,	you	can
extend	the	method	of	this	function	to	create	ordinal	strings	with	two	or
more	characters.

(You	probably	will	have	to	do	this	if	you're	generating	new	ordinals	to	fit
with	ones	LightWave	has	made.	With	enough	fooling	around,	users	can
cause	LightWave	to	generate	ordinal	strings	that	are	fairly	long.	They're
valid,	just	longer	than	strictly	necessary,	unlike	the	ones	generated	by	our
make_ord	function.)

The	rest	of	the	BLOK	header	identifies	which	surface	channel	the	texture
layer	modifies,	the	layer's	opacity,	whether	it's	enabled,	whether	its	output
is	inverted,	and	what	the	displacement	axis	is.	The	subchunks	following
the	TMAP	are	specific	to	IMAP	layers.	The	AXIS	subchunk	in	the	IMAP	header	is
only	used	if	the	texture	is	applied	as	a	displacement	map.	The	AXIS	in	the
body	of	the	BLOK	is	the	one	that	determines	the	image	mapping	plane.	The
IMAG	subchunk	contains	a	CLIP	index	that	identifies	the	image.

If	we	add	a	procedural	texture	layer	that	uses	the	built-in	Turbulence
function,	the	BLOK	for	the	new	layer	looks	like	the	following.

			42	4C	4F	4B	00	DE	50	52	4F	43	00	32	90	00	43	48			BLOK		PROC	2		CH

			41	4E	00	04	43	4F	4C	52	4F	50	41	43	00	08	00	00			AN		COLROPAC

			3F	80	00	00	00	00	45	4E	41	42	00	02	00	01	4E	45									ENAB				NE

			47	41	00	02	00	00	41	58	49	53	00	02	00	01	54	4D			GA				AXIS				TM

			41	50	00	68	43	4E	54	52	00	0E	00	00	00	00	00	00			AP		CNTR

			00	00	00	00	00	00	00	00	53	49	5A	45	00	0E	3F	80											SIZE

			00	00	3F	80	00	00	3F	80	00	00	00	00	52	4F	54	41															ROTA

			00	0E	00	00	00	00	00	00	00	00	00	00	00	00	00	00

			46	41	4C	4C	00	10	00	00	00	00	00	00	00	00	00	00			FALL

			00	00	00	00	00	00	4F	52	45	46	00	08	28	6E	6F	6E									OREF		(non

			65	29	00	00	43	53	59	53	00	02	00	00	41	58	49	53			e)		CSYS				AXIS

			00	02	00	02	56	41	4C	55	00	0C	3F	4C	CC	CD	3F	4C							VALU

			CC	CD	3F	4C	CC	CD	46	55	4E	43	00	18	54	75	72	62									FUNC		Turb

			75	6C	65	6E	63	65	00	00	00	00	00	03	00	00	00	00			ulence

			3F	00	00	00

									BLOK	222

												PROC	50

															"\x90"

															CHAN	4				COLR

															OPAC	8				0		1.0		0

															ENAB	2				1

															NEGA	2				0

															AXIS	2				1

												TMAP	104

															CNTR	14			0.0		0.0		0.0

																		0

															SIZE	14			1.0		1.0		1.0		0

															ROTA	14			0.0		0.0		0.0		0

															FALL	16			0		0.0		0.0		0.0		0

															OREF	8				"(none)"

															CSYS	2				0

												AXIS	2				2

												VALU	12			0.8		0.8		0.8

												FUNC	24			"Turbulence"		3		0.0		0.5

Note	the	similarities	to	the	image	map	layer.	The	BLOK	header	begins	with
PROC,	and	the	ordinal	string	("\x90")	puts	this	texture	after	the	image	map
("\x80"),	but	otherwise	the	header	is	the	same	as	the	IMAP	header,	and	we
also	have	a	TMAP	with	the	same	contents.	The	FUNC	subchunk	names	the
procedural	and	lists	its	parameters,	in	this	case	the	number	of	frequencies
or	octaves,	the	contrast	level,	and	the	small	power.

You	might	also	notice	that	the	structure	of	a	BLOK	closely	follows	the	layout
of	the	Texture	Editor	interface.	The	header	corresponds	to	the	items	above
the	first	divider	in	the	editor,	the	TMAP	to	the	stuff	below	the	second	divider,
and	the	other	subchunks	to	the	type-specific	settings	in	between.

UV	Mapping

The	next	example	uses	UV	mapping	to	paint	an	image	onto	one	of	the
cube	faces,	equivalent	to	the	earlier	planar	mapping	example.

UV	mapped	textures	use	VMAPs	of	type	TXUV	to	hold	the	U	and	V	texture
coordinates.	TXUV	VMAPs	have	a	dimension	of	2.

			56	4D	41	50	00	00	00	3A	54	58	55	56	00	02	55	56			VMAP				TXUV		UV

			20	54	65	78	74	75	72	65	00	00	00	02	00	00	00	00				Texture

			00	00	00	00	00	03	3F	80	00	00	00	00	00	00	00	06

			00	00	00	00	3F	80	00	00	00	07	3F	80	00	00	3F	80

			00	00

						VMAP	58

									TXUV

									2

									"UV	Texture"

									2		0.0		0.0

									3		1.0		0.0

									6		0.0		1.0

									7		1.0		1.0

			53	55	52	46	00	00	01	5C	55	56	45	78	61	6D	70	6C			SURF				UVExampl

			65	00	00	00	43	4F	4C	52	00	0E	3F	48	C8	C9	3F	48			e			COLR

			C8	C9	3F	48	C8	C9	00	00	44	49	46	46	00	06	3F	80											DIFF

			00	00	00	00	53	50	45	43	00	06	00	00	00	00	00	00							SPEC

			42	4C	4F	4B	01	1E	49	4D	41	50	00	32	80	00	43	48			BLOK		IMAP				CH

			41	4E	00	04	43	4F	4C	52	4F	50	41	43	00	08	00	00			AN		COLROPAC

			3F	80	00	00	00	00	45	4E	41	42	00	02	00	01	4E	45									ENAB				NE

			47	41	00	02	00	00	41	58	49	53	00	02	00	01	54	4D			GA				AXIS				TM

			41	50	00	68	43	4E	54	52	00	0E	00	00	00	00	00	00			AP		CNTR

			00	00	00	00	00	00	00	00	53	49	5A	45	00	0E	3F	80											SIZE

			00	00	3F	80	00	00	3F	80	00	00	00	00	52	4F	54	41															ROTA

			00	0E	00	00	00	00	00	00	00	00	00	00	00	00	00	00

			46	41	4C	4C	00	10	00	00	00	00	00	00	00	00	00	00			FALL

			00	00	00	00	00	00	4F	52	45	46	00	08	28	6E	6F	6E									OREF		(non

			65	29	00	00	43	53	59	53	00	02	00	00	50	52	4F	4A			e)		CSYS				PROJ

			00	02	00	05	41	58	49	53	00	02	00	02	49	4D	41	47							AXIS				IMAG

			00	02	00	01	57	52	41	50	00	04	00	01	00	01	57	52							WRAP						WR

			50	57	00	06	3F	80	00	00	00	00	57	52	50	48	00	06			PW								WRPH

			3F	80	00	00	00	00	56	4D	41	50	00	0C	55	56	20	54									VMAP		UV	T

			65	78	74	75	72	65	00	00	41	41	53	54	00	06	00	01			exture		AAST

			3F	80	00	00	50	49	58	42	00	02	00	01	53	54	43	4B							PIXB				STCK

			00	06	00	00	00	00	00	00	54	41	4D	50	00	06	3F	80											TAMP

			00	00	00	00

						SURF	348

									"UVExample"

									""

									COLR	14			0.78431		0.78431		0.78431		0

									DIFF	6				1.0		0

									SPEC	6				0.0		0

									BLOK	286

												IMAP	50

															"\x80"

															CHAN	4				COLR

															OPAC	8				0		1.0		0

															ENAB	2				1

															NEGA	2				0

															AXIS	2				1

												TMAP	104

															CNTR	14			0.0		0.0		0.0

																		0

															SIZE	14			1.0		1.0		1.0		0

															ROTA	14			0.0		0.0		0.0		0

															FALL	16			0		0.0		0.0		0.0		0

															OREF	8				"(none)"

															CSYS	2				0

												PROJ	2				5

												AXIS	2				2

												IMAG	2				1

												WRAP	4				1		1

												WRPW	6				1.0		0

												WRPH	6				1.0		0

												VMAP	12			"UV	Texture"

												AAST	6				1		1.0

												PIXB	2				1

												STCK	6				0.0		0

												TAMP	6				1.0		0

The	surface	description	is	nearly	identical	to	the	planar	mapping	case.
Although	most	of	it	will	be	ignored,	we	still	have	a	complete	TMAP
subchunk.	The	value	in	PROJ	(projection)	has	changed	from	0	(planar)	to	5
(UV),	and	a	VMAP	subchunk	identifies	the	TXUV	VMAP	by	name.

Discontinuous	UVs

When	the	UV	mapping	is	topologically	equivalent	to	a	cylinder	or	a
sphere,	a	seam	is	formed	where	the	edges	of	the	map	meet.	Problems	arise
when	the	renderer	needs	to	interpolate	between	points	on	opposite	sides	of
this	UV	international	date	line.	The	seam	is	a	discontinuity,	a	place	where
the	mapping	instantly	jumps	from	one	value	to	another.

To	deal	with	this,	a	second	set	of	UV	coordinates	is	assigned	to	points	of

the	object	near	the	seam.	This	creates	an	area	of	overlap	that	allows	the
coordinate	interpolation	to	be	calculated	correctly.	These	secondary	UVs
are	used	to	render	only	those	polygons	on	which	the	seam	lies.

The	following	example	wraps	a	single	image	around	four	faces	of	the
basic	cube.

			56	4D	41	50	00	00	00	62	54	58	55	56	00	02	55	56			VMAP				TXUV		UV

			20	54	65	78	74	75	72	65	00	00	00	00	3E	00	00	00				Texture

			00	00	00	00	00	01	3E	C0	00	00	00	00	00	00	00	02

			3E	00	00	00	3F	80	00	00	00	03	3E	C0	00	00	3F	80

			00	00	00	04	3F	20	00	00	00	00	00	00	00	05	3F	60

			00	00	00	00	00	00	00	06	3F	20	00	00	3F	80	00	00

			00	07	3F	60	00	00	3F	80	00	00

						VMAP	98

									TXUV

									2

									"UV	Texture"

									0		0.125		0.0

									1		0.375		0.0

									2		0.125		1.0

									3		0.375		1.0

									4		0.625		0.0

									5		0.875		0.0

									6		0.625		1.0

									7		0.875		1.0

The	secondary	UV	coordinates	are	stored	in	a	VMAD	chunk.

			56	4D	41	44	00	00	00	2A	54	58	55	56	00	02	55	56			VMAD				TXUV		UV

			20	54	65	78	74	75	72	65	00	00	00	05	00	04	BE	00				Texture

			00	00	00	00	00	00	00	07	00	04	BE	00	00	00	3F	80

			00	00

						VMAD	42

									TXUV

									2

									"UV	Texture"

									5		4		-0.125		0.0

									7		4		-0.125		1.0

Each	entry	contains	both	a	point	and	a	polygon	index.	The	seam	in	this
case	falls	in	the	middle	of	polygon	4,	and	the	VMAD	says	that	when	rendering
any	part	of	this	polygon,	the	VMAP	values	for	points	5	and	7	should	be
replaced	with	the	ones	in	the	VMAD	for	those	points.	Other	polygons	that
share	those	points	are	unaffected	by	this	replacement.

VMADs	were	added	to	the	file	format	with	version	6.5	of	LightWave.
Although	they	will	be	used	most	often	for	UV	mapping,	they	can	be	used
to	supplement	other	kinds	of	vertex	mapping.	They	can	also	be	applied
without	a	corresponding	VMAP.

Plug-ins

Object	files	can	store	instances	of	several	kinds	of	plug-ins.	The	plug-in
data	is	stored	in	different	places,	depending	on	the	plug-in	class.	Channel
modifiers	are	stored	in	CHAN	subchunks	inside	an	ENVL	chunk.	Here,	the
NoisyChannel	plug-in	has	been	applied	to	the	red	channel	of	a	surface.

			45	4E	56	4C	00	00	00	BA	00	01	4E	41	4D	45	00	08			ENVL						NAME		

			43	6F	6C	6F	72	2E	52	00	54	59	50	45	00	02	04	0A			Color.R	TYPE

			50	52	45	20	00	02	00	01	4B	45	59	20	00	08	00	00			PRE					KEY

			00	00	3F	48	C8	C9	53	50	41	4E	00	10	54	43	42	20									SPAN		TCB

			00	00	00	00	00	00	00	00	00	00	00	00	4B	45	59	20															KEY

			00	08	3F	22	22	22	3F	8E	9B	D3	53	50	41	4E	00	10													SPAN

			54	43	42	20	00	00	00	00	00	00	00	00	00	00	00	00			TCB

			4B	45	59	20	00	08	3F	8C	CC	CD	3F	22	C8	59	53	50			KEY											SP

			41	4E	00	10	54	43	42	20	00	00	00	00	00	00	00	00			AN		TCB

			00	00	00	00	50	4F	53	54	00	02	00	01	43	48	41	4E							POST				CHAN

			00	20	4E	6F	69	73	79	43	68	61	6E	6E	65	6C	00	00					NoisyChannel

			00	00	00	00	00	00	3F	80	00	00	3F	80	00	00	00	00

			00	00

						ENVL	186

									1

									NAME	8				Color.R

									TYPE	2				0x040A

									PRE		2				1

									KEY		8				0.0		0.78431

									SPAN	16			TCB			0.0		0.0		0.0

									KEY		8				0.63333		1.1141

									SPAN	16			TCB			0.0		0.0		0.0

									KEY		8				1.1		0.63587

									SPAN	16			TCB			0.0		0.0		0.0

									POST	2				1

									CHAN	32

												"NoisyChannel"

												0

												0.0		1.0		1.0		0.0

The	value	following	the	name	is	a	flags	word.	If	the	first	bit	is	set,	the
plug-in	is	disabled.	The	data	that	follows	the	flags	belongs	to	the	plug-in,
and	unless	the	author	has	documented	it,	it	can	only	be	interpreted	by	the
plug-in.	Except	for	size,	which	must	be	even	and	can't	exceed	65536
bytes,	including	the	name,	the	file	format	places	no	restrictions	on	what
plug-ins	can	write	here.

Shader	information	is	stored	inside	a	BLOK	of	type	SHDR.

			53	55	52	46	00	00	00	72	44	65	66	61	75	6C	74	00			SURF				Default	

			00	00	43	4F	4C	52	00	0E	3F	71	BE	8C	3F	48	C8	C9					COLR

			3F	48	C8	C9	00	01	44	49	46	46	00	06	3F	80	00	00									DIFF

			00	00	42	4C	4F	4B	00	42	53	48	44	52	00	0A	80	00					BLOK		SHDR				

			45	4E	41	42	00	02	00	01	46	55	4E	43	00	2C	44	65			ENAB				FUNC		De

			6D	6F	5F	42	6C	6F	74	63	68	00	3E	CC	CC	CD	00	00			mo_Blotch

			00	00	3F	4C	CC	CD	00	00	00	00	00	00	00	00	00	00

			00	00	3F	80	00	00	3F	00	00	00

						SURF	114

									"Default"

									""

									COLR	14			0.78431		0.78431		0.78431		0

									DIFF	6				1.0		0

									SPEC	6				0.0		0

									BLOK	66

												SHDR	10

															"\x80"

															ENAB	2				1

												FUNC	44

															"Demo_Blotch"

															0.4		0.0		0.8		0.0		0.0		0.0		1.0		0.5

The	SHDR	header	contains	an	ENAB	subchunk	that	determines	whether	the
shader	is	enabled.	The	FUNC	subchunk	holds	the	plug-in	name	and	its	data.

"EA	IFF	85"	Standard	for	Interchange	Format	Files

Document	Date:
From:
Status	of	Standard:
	

		January	14,	1985
		Jerry	Morrison,	Electronic	Arts
		Released	and	in	use
	

1.	Introduction

Standards	are	Good	for	Software	Developers

As	home	computer	hardware	evolves	to	better	and	better	media	machines,
the	demand	increases	for	higher	quality,	more	detailed	data.	Data
development	gets	more	expensive,	requires	more	expertise	and	better
tools,	and	has	to	be	shared	across	projects.	Think	about	several	ports	of	a
product	on	one	CD-ROM	with	500M	Bytes	of	common	data!

Development	tools	need	standard	interchange	file	formats.	Imagine
scanning	in	images	of	"player"	shapes,	moving	them	to	a	paint	program
for	editing,	then	incorporating	them	into	a	game.	Or	writing	a	theme	song
with	a	Macintosh	score	editor	and	incorporating	it	into	an	Amiga	game.
The	data	must	at	times	be	transformed,	clipped,	filled	out,	and	moved
across	machine	kinds.	Media	projects	will	depend	on	data	transfer	from
graphic,	music,	sound	effect,	animation,	and	script	tools.

Standards	are	Good	for	Software	Users

Customers	should	be	able	to	move	their	own	data	between	independently
developed	software	products.	And	they	should	be	able	to	buy	data	libraries
usable	across	many	such	products.	The	types	of	data	objects	to	exchange
are	open-ended	and	include	plain	and	formatted	text,	raster	and	structured
graphics,	fonts,	music,	sound	effects,	musical	instrument	descriptions,	and
animation.

The	problem	with	expedient	file	formats	typically	memory	dumps	is	that
they're	too	provincial.	By	designing	data	for	one	particular	use	(e.g.	a
screen	snapshot),	they	preclude	future	expansion	(would	you	like	a	full

page	picture?	a	multi-page	document?).	In	neglecting	the	possibility	that
other	programs	might	read	their	data,	they	fail	to	save	contextual
information	(how	many	bit	planes?	what	resolution?).	Ignoring	that	other
programs	might	create	such	files,	they're	intolerant	of	extra	data	(texture
palette	for	a	picture	editor),	missing	data	(no	color	map),	or	minor
variations	(smaller	image).	In	practice,	a	filed	representation	should	rarely
mirror	an	in-memory	representation.	The	former	should	be	designed	for
longevity;	the	latter	to	optimize	the	manipulations	of	a	particular	program.
The	same	filed	data	will	be	read	into	different	memory	formats	by
different	programs.

The	IFF	philosophy:	"A	little	behind-the-scenes	conversion	when
programs	read	and	write	files	is	far	better	than	NxM	explicit	conversion
utilities	for	highly	specialized	formats."

So	we	need	some	standardization	for	data	interchange	among	development
tools	and	products.	The	more	developers	that	adopt	a	standard,	the	better
for	all	of	us	and	our	customers.

Here	is	"EA	IFF	1985"

Here	is	our	offering:	Electronic	Arts'	IFF	standard	for	Interchange	File
Format.	The	full	name	is	"EA	IFF	1985".	Alternatives	and	justifications
are	included	for	certain	choices.	Public	domain	subroutine	packages	and
utility	programs	are	available	to	make	it	easy	to	write	and	use	IFF-
compatible	programs.

Part	1	introduces	the	standard.	Part	2	presents	its	requirements	and
background.	Parts	3,	4,	and	5	define	the	primitive	data	types,	FORMs,	and
LISTs,	respectively,	and	how	to	define	new	high	level	types.	Part	6	specifies
the	top	level	file	structure.	Appendix	A	is	included	for	quick	reference	and
Appendix	B	names	the	committee	responsible	for	this	standard.

References

American	National	Standard	Additional	Control	Codes	for	Use	with
ASCII,	ANSI	standard	3.64-1979	for	an	8-bit	character	set.	See	also	ISO
standard	2022	and	ISO/DIS	standard	6429.2.

Amiga™	is	a	trademark	of	Commodore-Amiga,	Inc.

C,	A	Reference	Manual,	Samuel	P.	Harbison	and	Guy	L.	Steele	Jr.,	Tartan
Laboratories.	Prentice-Hall,	Englewood	Cliffs,	NJ,	1984.

Compiler	Construction,	An	Advanced	Course,	edited	by	F.	L.	Bauer	and	J.
Eickel	(Springer-Verlag,	1976).	This	book	is	one	of	many	sources	for
information	on	recursive	descent	parsing.

DIF	Technical	Specification	©	1981	by	Software	Arts,	Inc.	DIF™	is	the
format	for	spreadsheet	data	interchange	developed	by	Software	Arts,	Inc.
DIF™	is	a	trademark	of	Software	Arts,	Inc.

Electronic	Arts™	is	a	trademark	of	Electronic	Arts.

"FTXT"	IFF	Formatted	Text,	from	Electronic	Arts.	IFF	supplement
document	for	a	text	format.

Inside	Macintosh	©	1982,	1983,	1984,	1985	Apple	Computer,	Inc.,	a
programmer's	reference	manual.
Apple®	is	a	trademark	of	Apple	Computer,	Inc.
Macintosh™	is	a	trademark	licensed	to	Apple	Computer,	Inc.

"ILBM"	IFF	Interleaved	Bitmap,	from	Electronic	Arts.	IFF	supplement
document	for	a	raster	image	format.

M68000	16/32-Bit	Microprocessor	Programmer's	Reference	Manual	©
1984,	1982,	1980,	1979	by	Motorola,	Inc.

PostScript	Language	Manual	©	1984	Adobe	Systems	Incorporated.	
PostScript™	is	a	trademark	of	Adobe	Systems,	Inc.
Times	and	Helvetica®	are	trademarks	of	Allied	Corporation.

InterScript:	A	Proposal	for	a	Standard	for	the	Interchange	of	Editable
Documents	©	1984	Xerox	Corporation.
Introduction	to	InterScript	©	1985	Xerox	Corporation.

2.	Background	for	Designers

Part	2	is	about	the	background,	requirements,	and	goals	for	the	standard.
It's	geared	for	people	who	want	to	design	new	types	of	IFF	objects.	People

just	interested	in	using	the	standard	may	wish	to	skip	this	part.

What	Do	We	Need?

A	standard	should	be	long	on	prescription	and	short	on	overhead.	It	should
give	lots	of	rules	for	designing	programs	and	data	files	for	synergy.	But
neither	the	programs	nor	the	files	should	cost	too	much	more	than	the
expedient	variety.	While	we're	looking	to	a	future	with	CD-ROMs	and
perpendicular	recording,	the	standard	must	work	well	on	floppy	disks.

For	program	portability,	simplicity,	and	efficiency,	formats	should	be
designed	with	more	than	one	implementation	style	in	mind.	(In	practice,
pure	stream	I/O	is	adequate	although	random	access	makes	it	easier	to
write	files.)	It	ought	to	be	possible	to	read	one	of	many	objects	in	a	file
without	scanning	all	the	preceding	data.	Some	programs	need	to	read	and
play	out	their	data	in	real	time,	so	we	need	good	compromises	between
generality	and	efficiency.

As	much	as	we	need	standards,	they	can't	hold	up	product	schedules.	So
we	also	need	a	kind	of	decentralized	extensibility	where	any	software
developer	can	define	and	refine	new	object	types	without	some	"standards
authority"	in	the	loop.	Developers	must	be	able	to	extend	existing	formats
in	a	forward-	and	backward-compatible	way.	A	central	repository	for
design	information	and	example	programs	can	help	us	take	full	advantage
of	the	standard.

For	convenience,	data	formats	should	heed	the	restrictions	of	various
processors	and	environments.	E.g.	word-alignment	greatly	helps	68000
access	at	insignificant	cost	to	8088	programs.

Other	goals	include	the	ability	to	share	common	elements	over	a	list	of
objects	and	the	ability	to	construct	composite	objects	containing	other	data
objects	with	structural	information	like	directories.

And	finally,	"Simple	things	should	be	simple	and	complex	things	should	be
possible."	--Alan	Kay.

Think	Ahead

Let's	think	ahead	and	build	programs	that	read	and	write	files	for	each

other	and	for	programs	yet	to	be	designed.	Build	data	formats	to	last	for
future	computers	so	long	as	the	overhead	is	acceptable.	This	extends	the
usefulness	and	life	of	today's	programs	and	data.

To	maximize	interconnectivity,	the	standard	file	structure	and	the	specific
object	formats	must	all	be	general	and	extensible.	Think	ahead	when
designing	an	object.	It	should	serve	many	purposes	and	allow	many
programs	to	store	and	read	back	all	the	information	they	need;	even
squeeze	in	custom	data.	Then	a	programmer	can	store	the	available	data
and	is	encouraged	to	include	fixed	contextual	details.	Recipient	programs
can	read	the	needed	parts,	skip	unrecognized	stuff,	default	missing	data,
and	use	the	stored	context	to	help	transform	the	data	as	needed.

Scope

IFF	addresses	these	needs	by	defining	a	standard	file	structure,	some
initial	data	object	types,	ways	to	define	new	types,	and	rules	for	accessing
these	files.	We	can	accomplish	a	great	deal	by	writing	programs	according
to	this	standard,	but	don't	expect	direct	compatibility	with	existing
software.	We'll	need	conversion	programs	to	bridge	the	gap	from	the	old
world.

IFF	is	geared	for	computers	that	readily	process	information	in	8-bit	bytes.
It	assumes	a	"physical	layer"	of	data	storage	and	transmission	that	reliably
maintains	"files"	as	strings	of	8-bit	bytes.	The	standard	treats	a	"file"	as	a
container	of	data	bytes	and	is	independent	of	how	to	find	a	file	and
whether	it	has	a	byte	count.

This	standard	does	not	by	itself	implement	a	clipboard	for	cutting	and
pasting	data	between	programs.	A	clipboard	needs	software	to	mediate
access,	to	maintain	a	"contents	version	number"	so	programs	can	detect
updates,	and	to	manage	the	data	in	"virtual	memory".

Data	Abstraction

The	basic	problem	is	how	to	represent	information	in	a	way	that's
program-independent,	compiler-	independent,	machine-independent,	and
device-independent.

The	computer	science	approach	is	"data	abstraction",	also	known	as

"objects",	"actors",	and	"abstract	data	types".	A	data	abstraction	has	a
"concrete	representation"	(its	storage	format),	an	"abstract	representation"
(its	capabilities	and	uses),	and	access	procedures	that	isolate	all	the	calling
software	from	the	concrete	representation.	Only	the	access	procedures
touch	the	data	storage.	Hiding	mutable	details	behind	an	interface	is	called
"information	hiding".	What	data	abstraction	does	is	abstract	from	details
of	implementing	the	object,	namely	the	selected	storage	representation	and
algorithms	for	manipulating	it.

The	power	of	this	approach	is	modularity.	By	adjusting	the	access
procedures	we	can	extend	and	restructure	the	data	without	impacting	the
interface	or	its	callers.	Conversely,	we	can	extend	and	restructure	the
interface	and	callers	without	making	existing	data	obsolete.	It's	great	for
interchange!

But	we	seem	to	need	the	opposite:	fixed	file	formats	for	all	programs	to
access.	Actually,	we	could	file	data	abstractions	("filed	objects")	by
storing	the	data	and	access	procedures	together.	We'd	have	to	encode	the
access	procedures	in	a	standard	machine-independent	programming
language	la	PostScript.	Even	still,	the	interface	can't	evolve	freely	since
we	can't	update	all	copies	of	the	access	procedures.	So	we'll	have	to	design
our	abstract	representations	for	limited	evolution	and	occasional
revolution	(conversion).

In	any	case,	today's	microcomputers	can't	practically	store	data
abstractions.	They	can	do	the	next	best	thing:	store	arbitrary	types	of	data
in	"data	chunks",	each	with	a	type	identifier	and	a	length	count.	The	type
identifier	is	a	reference	by	name	to	the	access	procedures	(any	local
implementation).	The	length	count	enables	storage-level	object	operations
like	"copy"	and	"skip	to	next"	independent	of	object	type.

Chunk	writing	is	straightforward.	Chunk	reading	requires	a	trivial	parser
to	scan	each	chunk	and	dispatch	to	the	proper	access/conversion
procedure.	Reading	chunks	nested	inside	other	chunks	requires	recursion,
but	no	lookahead	or	backup.

That's	the	main	idea	of	IFF.	There	are,	of	course,	a	few	other	details.

Previous	Work

Where	our	needs	are	similar,	we	borrow	from	existing	standards.

Our	basic	need	to	move	data	between	independently	developed	programs
is	similar	to	that	addressed	by	the	Apple	Macintosh	desk	scrap	or
"clipboard"	[Inside	Macintosh	chapter	"Scrap	Manager"].	The	Scrap
Manager	works	closely	with	the	Resource	Manager,	a	handy	filer	and
swapper	for	data	objects	(text	strings,	dialog	window	templates,	pictures,
fonts)	including	types	yet	to	be	designed	[Inside	Macintosh	chapter
"Resource	Manager"].	The	Resource	Manager	is	a	kin	to	Smalltalk's
object	swapper.

We	will	probably	write	a	Macintosh	desk	accessory	that	converts	IFF	files
to	and	from	the	Macintosh	clipboard	for	quick	and	easy	interchange	with
programs	like	MacPaint	and	Resource	Mover.

Macintosh	uses	a	simple	and	elegant	scheme	of	4-character	"identifiers"	to
identify	resource	types,	clipboard	format	types,	file	types,	and	file	creator
programs.	Alternatives	are	unique	ID	numbers	assigned	by	a	central
authority	or	by	hierarchical	authorities,	unique	ID	numbers	generated	by
algorithm,	other	fixed	length	character	strings,	and	variable	length	strings.
Character	string	identifiers	double	as	readable	signposts	in	data	files	and
programs.	The	choice	of	4	characters	is	a	good	tradeoff	between	storage
space,	fetch/compare/store	time,	and	name	space	size.	We'll	honor	Apple's
designers	by	adopting	this	scheme.

"PICT"	is	a	good	example	of	a	standard	structured	graphics	format
(including	raster	images)	and	its	many	uses	[Inside	Macintosh	chapter
"QuickDraw"].	Macintosh	provides	QuickDraw	routines	in	ROM	to
create,	manipulate,	and	display	PICTs.	Any	application	can	create	a	PICT	by
simply	asking	QuickDraw	to	record	a	sequence	of	drawing	commands.
Since	it's	just	as	easy	to	ask	QuickDraw	to	render	a	PICT	to	a	screen	or	a
printer,	it's	very	effective	to	pass	them	between	programs,	say	from	an
illustrator	to	a	word	processor.	An	important	feature	is	the	ability	to	store
"comments"	in	a	PICT	which	QuickDraw	will	ignore.	Actually,	it	passes
them	to	your	optional	custom	"comment	handler".

PostScript,	Adobe's	print	file	standard,	is	a	more	general	way	to	represent
any	print	image	(which	is	a	specification	for	putting	marks	on	paper)
[PostScript	Language	Manual].	In	fact,	PostScript	is	a	full-fledged

programming	language.	To	interpret	a	PostScript	program	is	to	render	a
document	on	a	raster	output	device.	The	language	is	defined	in	layers:	a
lexical	layer	of	identifiers,	constants,	and	operators;	a	layer	of	reverse
polish	semantics	including	scope	rules	and	a	way	to	define	new
subroutines;	and	a	printing-specific	layer	of	built-in	identifiers	and
operators	for	rendering	graphic	images.	It	is	clearly	a	powerful	(Turing
equivalent)	image	definition	language.	PICT	and	a	subset	of	PostScript	are
candidates	for	structured	graphics	standards.

A	PostScript	document	can	be	printed	on	any	raster	output	device
(including	a	display)	but	cannot	generally	be	edited.	That's	because	the
original	flexibility	and	constraints	have	been	discarded.	Besides,	a
PostScript	program	may	use	arbitrary	computation	to	supply	parameters
like	placement	and	size	to	each	operator.	A	QuickDraw	PICT,	in
comparison,	is	a	more	restricted	format	of	graphic	primitives
parameterized	by	constants.	So	a	PICT	can	be	edited	at	the	level	of	the
primitives,	e.g.	move	or	thicken	a	line.	It	cannot	be	edited	at	the	higher
level	of,	say,	the	bar	chart	data	which	generated	the	picture.

PostScript	has	another	limitation:	Not	all	kinds	of	data	amount	to	marks	on
paper.	A	musical	instrument	description	is	one	example.	PostScript	is	just
not	geared	for	such	uses.

"DIF"	is	another	example	of	data	being	stored	in	a	general	format	usable
by	future	programs	[DIF	Technical	Specification].	DIF	is	a	format	for
spreadsheet	data	interchange.	DIF	and	PostScript	are	both	expressed	in
plain	ASCII	text	files.	This	is	very	handy	for	printing,	debugging,
experimenting,	and	transmitting	across	modems.	It	can	have	substantial
cost	in	compaction	and	read/write	work,	depending	on	use.	We	won't	store
IFF	files	this	way	but	we	could	define	an	ASCII	alternate	representation
with	a	converter	program.

InterScript	is	Xerox'	standard	for	interchange	of	editable	documents
[Introduction	to	InterScript].	It	approaches	a	harder	problem:	How	to
represent	editable	word	processor	documents	that	may	contain	formatted
text,	pictures,	cross-references	like	figure	numbers,	and	even	highly
specialized	objects	like	mathematical	equations?	InterScript	aims	to	define
one	standard	representation	for	each	kind	of	information.	Each	InterScript-
compatible	editor	is	supposed	to	preserve	the	objects	it	doesn't	understand

and	even	maintain	nested	cross-references.	So	a	simple	word	processor
would	let	you	edit	the	text	of	a	fancy	document	without	discarding	the
equations	or	disrupting	the	equation	numbers.

Our	task	is	similarly	to	store	high	level	information	and	preserve	as	much
content	as	practical	while	moving	it	between	programs.	But	we	need	to
span	a	larger	universe	of	data	types	and	cannot	expect	to	centrally	define
them	all.	Fortunately,	we	don't	need	to	make	programs	preserve
information	that	they	don't	understand.	And	for	better	or	worse,	we	don't
have	to	tackle	general-purpose	cross-references	yet.

3.	Primitive	Data	Types

Atomic	components	such	as	integers	and	characters	that	are	interpretable
directly	by	the	CPU	are	specified	in	one	format	for	all	processors.	We
chose	a	format	that's	most	convenient	for	the	Motorola	MC68000
processor	[M68000	16/32-Bit	Microprocessor	Programmer's	Reference
Manual].

N.B.:	Part	3	dictates	the	format	for	"primitive"	data	types	where	and	only
where	used	in	the	overall	file	structure	and	standard	kinds	of	chunks	(Cf.
Chunks).	The	number	of	such	occurrences	will	be	small	enough	that	the
costs	of	conversion,	storage,	and	management	of	processor-	specific	files
would	far	exceed	the	costs	of	conversion	during	I/O	by	"foreign"
programs.	A	particular	data	chunk	may	be	specified	with	a	different	format
for	its	internal	primitive	types	or	with	processor-	or	environment-	specific
variants	if	necessary	to	optimize	local	usage.	Since	that	hurts	data
interchange,	it's	not	recommended.	(Cf.	Designing	New	Data	Sections,	in
Part	4.)

Alignment

All	data	objects	larger	than	a	byte	are	aligned	on	even	byte	addresses
relative	to	the	start	of	the	file.	This	may	require	padding.	Pad	bytes	are	to
be	written	as	zeros,	but	don't	count	on	that	when	reading.

This	means	that	every	odd-length	"chunk"	(see	below)	must	be	padded	so
that	the	next	one	will	fall	on	an	even	boundary.	Also,	designers	of

structures	to	be	stored	in	chunks	should	include	pad	fields	where	needed	to
align	every	field	larger	than	a	byte.	Zeros	should	be	stored	in	all	the	pad
bytes.

Justification:	Even-alignment	causes	a	little	extra	work	for	files	that	are
used	only	on	certain	processors	but	allows	68000	programs	to	construct
and	scan	the	data	in	memory	and	do	block	I/O.	You	just	add	an	occasional
pad	field	to	data	structures	that	you're	going	to	block	read/write	or	else
stream	read/write	an	extra	byte.	And	the	same	source	code	works	on	all
processors.	Unspecified	alignment,	on	the	other	hand,	would	force	68000
programs	to	(dis)assemble	word	and	long-word	data	one	byte	at	a	time.
Pretty	cumbersome	in	a	high	level	language.	And	if	you	don't
conditionally	compile	that	out	for	other	processors,	you	won't	gain
anything.

Numbers

Numeric	types	supported	are	two's	complement	binary	integers	in	the
format	used	by	the	MC68000	processor	high	byte	first,	high	word	first	the
reverse	of	8088	and	6502	format.	They	could	potentially	include	signed
and	unsigned	8,	16,	and	32	bit	integers	but	the	standard	only	uses	the
following:

				UBYTE				8	bits	unsigned

				WORD				16	bits	signed

				UWORD			16	bits	unsigned

				LONG				32	bits	signed

The	actual	type	definitions	depend	on	the	CPU	and	the	compiler.	In	this
document,	we'll	express	data	type	definitions	in	the	C	programming
language.	[See	C,	A	Reference	Manual.]	In	68000	Lattice	C:

			typedef	unsigned	char			UBYTE;		/*		8	bits	unsigned	*/

			typedef	short											WORD;			/*	16	bits	signed			*/

			typedef	unsigned	short		UWORD;		/*	16	bits	unsigned	*/

			typedef	long												LONG;			/*	32	bits	signed			*/

Characters

The	following	character	set	is	assumed	wherever	characters	are	used,	e.g.
in	text	strings,	IDs,	and	TEXT	chunks	(see	below).

Characters	are	encoded	in	8-bit	ASCII.	Characters	in	the	range	NUL	(hex	0)

through	DEL	(hex	7F)	are	well	defined	by	the	7-bit	ASCII	standard.	IFF
uses	the	graphic	group	'	'	(SP,	hex	20)	through	'~'	(hex	7E).

Most	of	the	control	character	group	hex	01	through	hex	1F	have	no
standard	meaning	in	IFF.	The	control	character	LF	(hex	0A)	is	defined	as	a
"newline"	character.	It	denotes	an	intentional	line	break,	that	is,	a
paragraph	or	line	terminator.	(There	is	no	way	to	store	an	automatic	line
break.	That	is	strictly	a	function	of	the	margins	in	the	environment	the	text
is	placed.)	The	control	character	ESC	(hex	1B)	is	a	reserved	escape
character	under	the	rules	of	ANSI	standard	3.64-1979	American	National
Standard	Additional	Control	Codes	for	Use	with	ASCII,	ISO	standard
2022,	and	ISO/DIS	standard	6429.2.

Characters	in	the	range	hex	7F	through	hex	FF	are	not	globally	defined	in
IFF.	They	are	best	left	reserved	for	future	standardization.	But	note	that
the	FORM	type	FTXT	(formatted	text)	defines	the	meaning	of	these	characters
within	FTXT	forms.	In	particular,	character	values	hex	7F	through	hex	9F	are
control	codes	while	characters	hex	A0	through	hex	FF	are	extended
graphic	characters	like	'é',	as	per	the	ISO	and	ANSI	standards	cited	above.
[See	the	supplementary	document	"FTXT"	IFF	Formatted	Text.]

Dates

A	"creation	date"	is	defined	as	the	date	and	time	a	stream	of	data	bytes	was
created.	(Some	systems	call	this	a	"last	modified	date".)	Editing	some	data
changes	its	creation	date.	Moving	the	data	between	volumes	or	machines
does	not.

The	IFF	standard	date	format	will	be	one	of	those	used	in	MS-DOS,
Macintosh,	or	Amiga	DOS	(probably	a	32-bit	unsigned	number	of	seconds
since	a	reference	point).	Issue:	Investigate	these	three.

Type	IDs

A	"type	ID",	"property	name",	"FORM	type",	or	any	other	IFF	identifier	is	a
32-bit	value:	the	concatenation	of	four	ASCII	characters	in	the	range	'	'
(SP,	hex	20)	through	'~'	(hex	7E).	Spaces	(hex	20)	should	not	precede
printing	characters;	trailing	spaces	are	ok.	Control	characters	are
forbidden.

				typedef	CHAR	ID[4];

IDs	are	compared	using	a	simple	32-bit	case-dependent	equality	test.

Data	section	type	IDs	(aka	FORM	types)	are	restriced	IDs.	(Cf.	Data
Sections.)	Since	they	may	be	stored	in	filename	extensions	(Cf.	Single
Purpose	Files)	lower	case	letters	and	punctuation	marks	are	forbidden.
Trailing	spaces	are	ok.

Carefully	choose	those	four	characters	when	you	pick	a	new	ID.	Make
them	mnemonic	so	programmers	can	look	at	an	interchange	format	file
and	figure	out	what	kind	of	data	it	contains.	The	name	space	makes	it
possible	for	developers	scattered	around	the	globe	to	generate	ID	values
with	minimal	collisions	so	long	as	they	choose	specific	names	like	"MUS4"
instead	of	general	ones	like	"TYPE"	and	"FILE".	EA	will	"register"	new	FORM
type	IDs	and	format	descriptions	as	they're	devised,	but	collisions	will	be
improbable	so	there	will	be	no	pressure	on	this	"clearinghouse"	process.
Appendix	A	has	a	list	of	currently	defined	IDs.

Sometimes	it's	necessary	to	make	data	format	changes	that	aren't
backward	compatible.	Since	IDs	are	used	to	denote	data	formats	in	IFF,
new	IDs	are	chosen	to	denote	revised	formats.	Since	programs	won't	read
chunks	whose	IDs	they	don't	recognize	(see	Chunks,	below),	the	new	IDs
keep	old	programs	from	stumbling	over	new	data.	The	conventional	way
to	chose	a	"revision"	ID	is	to	increment	the	last	character	if	it's	a	digit	or
else	change	the	last	character	to	a	digit.	E.g.	first	and	second	revisions	of
the	ID	"XY"	would	be	"XY1"	and	"XY2".	Revisions	of	"CMAP"	would	be
"CMA1"	and	"CMA2".

Chunks

Chunks	are	the	building	blocks	in	the	IFF	structure.	The	form	expressed	as
a	C	typedef	is:

			typedef	struct	{

						ID						ckID;

						LONG				ckSize;	/*	sizeof(ckData)	*/

						UBYTE			ckData[/*	ckSize	*/];

			}	Chunk;

We	can	diagram	an	example	chunk	a	"CMAP"	chunk	containing	12	data	bytes
like	this:

ckID: 'CMAP'
ckSize: 12

ckData:

0,	0,	0,	32
0,	0,	64,	0
0,	0,	64,	0	
(12	bytes)

The	fixed	header	part	means	"Here's	a	type	ckID	chunk	with	ckSize	bytes
of	data."

The	ckID	identifies	the	format	and	purpose	of	the	chunk.	As	a	rule,	a
program	must	recognize	ckID	to	interpret	ckData.	It	should	skip	over	all
unrecognized	chunks.	The	ckID	also	serves	as	a	format	version	number	as
long	as	we	pick	new	IDs	to	identify	new	formats	of	ckData	(see	above).

The	following	ckIDs	are	universally	reserved	to	identify	chunks	with
particular	IFF	meanings:	"LIST",	"FORM",	"PROP",	"CAT	",	and	"				".	The
special	ID	"				"	(4	spaces)	is	a	ckID	for	"filler"	chunks,	that	is,	chunks
that	fill	space	but	have	no	meaningful	contents.	The	IDs	"LIS1"	through
"LIS9",	"FOR1"	through	"FOR9",	and	"CAT1"	through	"CAT9"	are	reserved	for
future	"version	number"	variations.	All	IFF-compatible	software	must
account	for	these	23	chunk	IDs.	Appendix	A	has	a	list	of	predefined	IDs.

The	ckSize	is	a	logical	block	size	how	many	data	bytes	are	in	ckData.	If
ckData	is	an	odd	number	of	bytes	long,	a	0	pad	byte	follows	which	is	not
included	in	ckSize.	(Cf.	Alignment.)	A	chunk's	total	physical	size	is	ckSize
rounded	up	to	an	even	number	plus	the	size	of	the	header.	So	the	smallest
chunk	is	8	bytes	long	with	ckSize	=	0.	For	the	sake	of	following	chunks,
programs	must	respect	every	chunk's	ckSize	as	a	virtual	end-of-file	for
reading	its	ckData	even	if	that	data	is	malformed,	e.g.	if	nested	contents
are	truncated.

We	can	describe	the	syntax	of	a	chunk	as	a	regular	expression	with	"#"
representing	the	ckSize,	i.e.	the	length	of	the	following	{braced}	bytes.
The	"[0]"	represents	a	sometimes	needed	pad	byte.	(The	regular
expressions	in	this	document	are	collected	in	Appendix	A	along	with	an
explanation	of	notation.)

			Chunk	::=	ID	#{	UBYTE*	}	[0]

One	chunk	output	technique	is	to	stream	write	a	chunk	header,	stream
write	the	chunk	contents,	then	random	access	back	to	the	header	to	fill	in
the	size.	Another	technique	is	to	make	a	preliminary	pass	over	the	data	to
compute	the	size,	then	write	it	out	all	at	once.

Strings,	String	Chunks,	and	String	Properties

In	a	string	of	ASCII	text,	LF	denotes	a	forced	line	break	(paragraph	or	line
terminator).	Other	control	characters	are	not	used.	(Cf.	Characters.)

The	ckID	for	a	chunk	that	contains	a	string	of	plain,	unformatted	text	is
"TEXT".	As	a	practical	matter,	a	text	string	should	probably	not	be	longer
than	32767	bytes.	The	standard	allows	up	to	231	-	1	bytes.

When	used	as	a	data	property	(see	below),	a	text	string	chunk	may	be	0	to
255	characters	long.	Such	a	string	is	readily	converted	to	a	C	string	or	a
Pascal	STRING[255].	The	ckID	of	a	property	must	be	the	property	name,	not
"TEXT".

When	used	as	a	part	of	a	chunk	or	data	property,	restricted	C	string	format
is	normally	used.	That	means	0	to	255	characters	followed	by	a	NUL	byte
(ASCII	value	0).

Data	Properties

Data	properties	specify	attributes	for	following	(non-property)	chunks.	A
data	property	essentially	says	"identifier	=	value",	for	example	"XY	=	(10,
200)",	telling	something	about	following	chunks.	Properties	may	only
appear	inside	data	sections	("FORM"	chunks,	cf.	Data	Sections)	and	property
sections	("PROP"	chunks,	cf.	Group	PROP).

The	form	of	a	data	property	is	a	special	case	of	Chunk.	The	ckID	is	a
property	name	as	well	as	a	property	type.	The	ckSize	should	be	small
since	data	properties	are	intended	to	be	accumulated	in	RAM	when
reading	a	file.	(256	bytes	is	a	reasonable	upper	bound.)	Syntactically:

				Property	::=	Chunk

When	designing	a	data	object,	use	properties	to	describe	context
information	like	the	size	of	an	image,	even	if	they	don't	vary	in	your

program.	Other	programs	will	need	this	information.

Think	of	property	settings	as	assignments	to	variables	in	a	programming
language.	Multiple	assignments	are	redundant	and	local	assignments
temporarily	override	global	assignments.	The	order	of	assignments	doesn't
matter	as	long	as	they	precede	the	affected	chunks.	(Cf.	LISTs,	CATs,	and
Shared	Properties.)

Each	object	type	(FORM	type)	is	a	local	name	space	for	property	IDs.	Think
of	a	"CMAP"	property	in	a	"FORM	ILBM"	as	the	qualified	ID	"ILBM.CMAP".	Property
IDs	specified	when	an	object	type	is	designed	(and	therefore	known	to	all
clients)	are	called	"standard"	while	specialized	ones	added	later	are
"nonstandard".

Links

Issue:	A	standard	mechanism	for	"links"	or	"cross	references"	is	very
desirable	for	things	like	combining	images	and	sounds	into	animations.
Perhaps	we'll	define	"link"	chunks	within	FORMs	that	refer	to	other	FORMs	or
to	specific	chunks	within	the	same	and	other	FORMs.	This	needs	further
work.	EA	IFF	1985	has	no	standard	link	mechanism.

For	now,	it	may	suffice	to	read	a	list	of,	say,	musical	instruments,	and	then
just	refer	to	them	within	a	musical	score	by	index	number.

File	References

Issue:	We	may	need	a	standard	form	for	references	to	other	files.	A	"file
ref"	could	name	a	directory	and	a	file	in	the	same	type	of	operating	system
as	the	ref's	originator.	Following	the	reference	would	expect	the	file	to	be
on	some	mounted	volume.	In	a	network	environment,	a	file	ref	could	name
a	server,	too.

Issue:	How	can	we	express	operating-system	independent	file	refs?

Issue:	What	about	a	means	to	reference	a	portion	of	another	file?	Would
this	be	a	"file	ref"	plus	a	reference	to	a	"link"	within	the	target	file?

4.	Data	Sections

The	first	thing	we	need	of	a	file	is	to	check:	Does	it	contain	IFF	data	and,
if	so,	does	it	contain	the	kind	of	data	we're	looking	for?	So	we	come	to	the
notion	of	a	"data	section".

A	"data	section"	or	IFF	"FORM"	is	one	self-contained	"data	object"	that
might	be	stored	in	a	file	by	itself.	It	is	one	high	level	data	object	such	as	a
picture	or	a	sound	effect.	The	IFF	structure	"FORM"	makes	it	self-
identifying.	It	could	be	a	composite	object	like	a	musical	score	with	nested
musical	instrument	descriptions.

Group	FORM

A	data	section	is	a	chunk	with	ckID	"FORM"	and	this	arrangement:

			FORM							::=	"FORM"	#{	FormType	(LocalChunk	|	FORM	|	LIST	|	CAT)*	}

			FormType			::=	ID

			LocalChunk	::=	Property	|	Chunk

The	ID	"FORM"	is	a	syntactic	keyword	like	"struct"	in	C.	Think	of	a	"struct
ILBM"	containing	a	field	"CMAP".	If	you	see	"FORM"	you'll	know	to	expect	a	FORM
type	ID	(the	structure	name,	"ILBM"	in	this	example)	and	a	particular
contents	arrangement	or	"syntax"	(local	chunks,	FORMs,	LISTs,	and	CATs).
(LISTs	and	CATs	are	discussed	in	part	5,	below.)	A	"FORM	ILBM",	in	particular,
might	contain	a	local	chunk	"CMAP",	an	"ILBM.CMAP"	(to	use	a	qualified	name).

So	the	chunk	ID	"FORM"	indicates	a	data	section.	It	implies	that	the	chunk
contains	an	ID	and	some	number	of	nested	chunks.	In	reading	a	FORM,	like
any	other	chunk,	programs	must	respect	its	ckSize	as	a	virtual	end-of-file
for	reading	its	contents,	even	if	they're	truncated.

The	FormType	(or	FORM	type)	is	a	restricted	ID	that	may	not	contain	lower
case	letters	or	punctuation	characters.	(Cf.	Type	IDs.	Cf.	Single	Purpose
Files.)

The	type-specific	information	in	a	FORM	is	composed	of	its	"local	chunks":
data	properties	and	other	chunks.	Each	FORM	type	is	a	local	name	space	for
local	chunk	IDs.	So	"CMAP"	local	chunks	in	other	FORM	types	may	be
unrelated	to	"ILBM.CMAP".	More	than	that,	each	FORM	type	defines	semantic
scope.	If	you	know	what	a	FORM	ILBM	is,	you'll	know	what	an	ILBM.CMAP	is.

Local	chunks	defined	when	the	FORM	type	is	designed	(and	therefore	known

to	all	clients	of	this	type)	are	called	"standard"	while	specialized	ones
added	later	are	"nonstandard".

Among	the	local	chunks,	property	chunks	give	settings	for	various	details
like	text	font	while	the	other	chunks	supply	the	essential	information.	This
distinction	is	not	clear	cut.	A	property	setting	cancelled	by	a	later	setting
of	the	same	property	has	effect	only	on	data	chunks	in	between.	E.g.	in	the
sequence:

			prop1	=	x		(propN	=	value)*		prop1	=	y

where	the	propNs	are	not	prop1,	the	setting	prop1	=	x	has	no	effect.

The	following	universal	chunk	IDs	are	reserved	inside	any	FORM:	"LIST",
"FORM",	"PROP",	"CAT	",	"				",	"LIS1"	through	"LIS9",	"FOR1"	through	"FOR9",	and
"CAT1"	through	"CAT9".	(Cf.	Chunks.	Cf.	Group	LIST.	Cf.	Group	PROP.)	For
clarity,	these	universal	chunk	names	may	not	be	FORM	type	IDs,	either.

Part	5,	below,	talks	about	grouping	FORMs	into	LISTs	and	CATs.	They	let	you
group	a	bunch	of	FORMs	but	don't	impose	any	particular	meaning	or
constraints	on	the	grouping.	Read	on.

Composite	FORMs

A	FORM	chunk	inside	a	FORM	is	a	full-fledged	data	section.	This	means	you
can	build	a	composite	object	like	a	multi-frame	animation	sequence	from
available	picture	FORMs	and	sound	effect	FORMs.	You	can	insert	additional
chunks	with	information	like	frame	rate	and	frame	count.

Using	composite	FORMs,	you	leverage	on	existing	programs	that	create	and
edit	the	component	FORMs.	Those	editors	may	even	look	into	your
composite	object	to	copy	out	its	type	of	component,	although	it'll	be	the
rare	program	that's	fancy	enough	to	do	that.	Such	editors	are	not	allowed
to	replace	their	component	objects	within	your	composite	object.	That's
because	the	IFF	standard	lets	you	specify	consistency	requirements	for	the
composite	FORM	such	as	maintaining	a	count	or	a	directory	of	the
components.	Only	programs	that	are	written	to	uphold	the	rules	of	your
FORM	type	should	create	or	modify	such	FORMs.

Therefore,	in	designing	a	program	that	creates	composite	objects,	you	are

strongly	requested	to	provide	a	facility	for	your	users	to	import	and	export
the	nested	FORMs.	Import	and	export	could	move	the	data	through	a
clipboard	or	a	file.

Here	are	several	existing	FORM	types	and	rules	for	defining	new	ones.

FTXT

An	FTXT	data	section	contains	text	with	character	formatting	information
like	fonts	and	faces.	It	has	no	paragraph	or	document	formatting
information	like	margins	and	page	headers.	FORM	FTXT	is	well	matched	to	the
text	representation	in	Amiga's	Intuition	environment.	See	the	supplemental
document	"FTXT"	IFF	Formatted	Text.

ILBM

"ILBM"	is	an	InterLeaved	BitMap	image	with	color	map;	a	machine-
independent	format	for	raster	images.	FORM	ILBM	is	the	standard	image	file
format	for	the	Commodore-Amiga	computer	and	is	useful	in	other
environments,	too.	See	the	supplemental	document	"ILBM"	IFF	Interleaved
Bitmap.

PICS

The	data	chunk	inside	a	"PICS"	data	section	has	ID	"PICT"	and	holds	a
QuickDraw	picture.	Issue:	Allow	more	than	one	PICT	in	a	PICS?	See	Inside
Macintosh	chapter	"QuickDraw"	for	details	on	PICTs	and	how	to	create	and
display	them	on	the	Macintosh	computer.

The	only	standard	property	for	PICS	is	"XY",	an	optional	property	that
indicates	the	position	of	the	PICT	relative	to	"the	big	picture".	The	contents
of	an	XY	is	a	QuickDraw	Point.

Note:	PICT	may	be	limited	to	Macintosh	use,	in	which	case	there'll	be
another	format	for	structured	graphics	in	other	environments.

Other	Macintosh	Resource	Types

Some	other	Macintosh	resource	types	could	be	adopted	for	use	within	IFF
files;	perhaps	MWRT,	ICN,	ICN#,	and	STR#.

Issue:	Consider	the	candidates	and	reserve	some	more	IDs.

Designing	New	Data	Sections

Supplemental	documents	will	define	additional	object	types.	A	supplement
needs	to	specify	the	object's	purpose,	its	FORM	type	ID,	the	IDs	and	formats
of	standard	local	chunks,	and	rules	for	generating	and	interpreting	the
data.	It's	a	good	idea	to	supply	typedefs	and	an	example	source	program
that	accesses	the	new	object.	See	"ILBM"	IFF	Interleaved	Bitmap	for	a	good
example.

Anyone	can	pick	a	new	FORM	type	ID	but	should	reserve	it	with	Electronic
Arts	at	their	earliest	convenience.	[Issue:	EA	contact	person?	Hand	this	off
to	another	organization?]	While	decentralized	format	definitions	and
extensions	are	possible	in	IFF,	our	preference	is	to	get	design	consensus	by
committee,	implement	a	program	to	read	and	write	it,	perhaps	tune	the
format,	and	then	publish	the	format	with	example	code.	Some	organization
should	remain	in	charge	of	answering	questions	and	coordinating
extensions	to	the	format.

If	it	becomes	necessary	to	revise	the	design	of	some	data	section,	its	FORM
type	ID	will	serve	as	a	version	number	(Cf.	Type	IDs).	E.g.	a	revised	"VDEO"
data	section	could	be	called	"VDE1".	But	try	to	get	by	with	compatible
revisions	within	the	existing	FORM	type.

In	a	new	FORM	type,	the	rules	for	primitive	data	types	and	word-alignment
(Cf.	Primitive	Data	Types)	may	be	overriden	for	the	contents	of	its	local
chunks	but	not	for	the	chunk	structure	itself	if	your	documentation	spells
out	the	deviations.	If	machine-specific	type	variants	are	needed,	e.g.	to
store	vast	numbers	of	integers	in	reverse	bit	order,	then	outline	the
conversion	algorithm	and	indicate	the	variant	inside	each	file,	perhaps	via
different	FORM	types.	Needless	to	say,	variations	should	be	minimized.

In	designing	a	FORM	type,	encapsulate	all	the	data	that	other	programs	will
need	to	interpret	your	files.	E.g.	a	raster	graphics	image	should	specify	the
image	size	even	if	your	program	always	uses	320	x	200	pixels	x	3
bitplanes.	Receiving	programs	are	then	empowered	to	append	or	clip	the
image	rectangle,	to	add	or	drop	bitplanes,	etc.	This	enables	a	lot	more
compatibility.

Separate	the	central	data	(like	musical	notes)	from	more	specialized
information	(like	note	beams)	so	simpler	programs	can	extract	the	central
parts	during	read-in.	Leave	room	for	expansion	so	other	programs	can
squeeze	in	new	kinds	of	information	(like	lyrics).	And	remember	to	keep
the	property	chunks	manageably	short	let's	say	2	256	bytes.

When	designing	a	data	object,	try	to	strike	a	good	tradeoff	between	a
super-general	format	and	a	highly-specialized	one.	Fit	the	details	to	at
least	one	particular	need,	for	example	a	raster	image	might	as	well	store
pixels	in	the	current	machine's	scan	order.	But	add	the	kind	of	generality
that	makes	it	usable	with	foreseeable	hardware	and	software.	E.g.	use	a
whole	byte	for	each	red,	green,	and	blue	color	value	even	if	this	year's
computer	has	only	4-bit	video	DACs.	Think	ahead	and	help	other
programs	so	long	as	the	overhead	is	acceptable.	E.g.	run	compress	a	raster
by	scan	line	rather	than	as	a	unit	so	future	programs	can	swap	images	by
scan	line	to	and	from	secondary	storage.

Try	to	design	a	general	purpose	"least	common	multiple"	format	that
encompasses	the	needs	of	many	programs	without	getting	too
complicated.	Let's	coalesce	our	uses	around	a	few	such	formats	widely
separated	in	the	vast	design	space.	Two	factors	make	this	flexibility	and
simplicity	practical.	First,	file	storage	space	is	getting	very	plentiful,	so
compaction	is	not	a	priority.	Second,	nearly	any	locally-performed	data
conversion	work	during	file	reading	and	writing	will	be	cheap	compared
to	the	I/O	time.

It	must	be	ok	to	copy	a	LIST	or	FORM	or	CAT	intact,	e.g.	to	incorporate	it	into	a
composite	FORM.	So	any	kind	of	internal	references	within	a	FORM	must	be
relative	references.	They	could	be	relative	to	the	start	of	the	containing
FORM,	relative	from	the	referencing	chunk,	or	a	sequence	number	into	a
collection.

With	composite	FORMs,	you	leverage	on	existing	programs	that	create	and
edit	the	components.	If	you	write	a	program	that	creates	composite
objects,	please	provide	a	facility	for	your	users	to	import	and	export	the
nested	FORMs.	The	import	and	export	functions	may	move	data	through	a
separate	file	or	a	clipboard.

Finally,	don't	forget	to	specify	all	implied	rules	in	detail.

5.	LISTs,	CATs,	and	Shared	Properties

Data	often	needs	to	be	grouped	together	like	a	list	of	icons.	Sometimes	a
trick	like	arranging	little	images	into	a	big	raster	works,	but	generally
they'll	need	to	be	structured	as	a	first	class	group.	The	objects	"LIST"	and
"CAT"	are	IFF-universal	mechanisms	for	this	purpose.

Property	settings	sometimes	need	to	be	shared	over	a	list	of	similar
objects.	E.g.	a	list	of	icons	may	share	one	color	map.	LIST	provides	a	means
called	"PROP"	to	do	this.	One	purpose	of	a	LIST	is	to	define	the	scope	of	a
PROP.	A	"CAT",	on	the	other	hand,	is	simply	a	concatenation	of	objects.

Simpler	programs	may	skip	LISTs	and	PROPs	altogether	and	just	handle	FORMs
and	CATs.	All	"fully-conforming"	IFF	programs	also	know	about	"CAT	",
"LIST",	and	"PROP".	Any	program	that	reads	a	FORM	inside	a	LIST	must	process
shared	PROPs	to	correctly	interpret	that	FORM.

Group	CAT

A	CAT	is	just	an	untyped	group	of	data	objects.

Structurally,	a	CAT	is	a	chunk	with	chunk	ID	"CAT	"	containing	a	"contents
type"	ID	followed	by	the	nested	objects.	The	ckSize	of	each	contained
chunk	is	essentially	a	relative	pointer	to	the	next	one.

			CAT										::=	"CAT	"	#{	ContentsType	(FORM	|	LIST	|	CAT)*	}

			ContentsType	::=	ID		--	a	hint	or	an	"abstract	data	type"	ID

In	reading	a	CAT,	like	any	other	chunk,	programs	must	respect	it's	ckSize	as
a	virtual	end-of-file	for	reading	the	nested	objects	even	if	they're
malformed	or	truncated.

The	"contents	type"	following	the	CAT's	ckSize	indicates	what	kind	of	FORMs
are	inside.	So	a	CAT	of	ILBMs	would	store	"ILBM"	there.	It's	just	a	hint.	It	may
be	used	to	store	an	"abstract	data	type".	A	CAT	could	just	have	blank
contents	ID	("				")	if	it	contains	more	than	one	kind	of	FORM.

CAT	defines	only	the	format	of	the	group.	The	group's	meaning	is	open	to
interpretation.	This	is	like	a	list	in	LISP:	the	structure	of	cells	is	predefined

but	the	meaning	of	the	contents	as,	say,	an	association	list	depends	on	use.
If	you	need	a	group	with	an	enforced	meaning	(an	"abstract	data	type"	or
Smalltalk	"subclass"),	some	consistency	constraints,	or	additional	data
chunks,	use	a	composite	FORM	instead	(Cf.	Composite	FORMs).

Since	a	CAT	just	means	a	concatenation	of	objects,	CATs	are	rarely	nested.
Programs	should	really	merge	CATs	rather	than	nest	them.

Group	LIST

A	LIST	defines	a	group	very	much	like	CAT	but	it	also	gives	a	scope	for	PROPs
(see	below).	And	unlike	CATs,	LISTs	should	not	be	merged	without
understanding	their	contents.

Structurally,	a	LIST	is	a	chunk	with	ckID	"LIST"	containing	a	"contents	type"
ID,	optional	shared	properties,	and	the	nested	contents	(FORMs,	LISTs,	and
CATs),	in	that	order.	The	ckSize	of	each	contained	chunk	is	a	relative
pointer	to	the	next	one.	A	LIST	is	not	an	arbitrary	linked	list	the	cells	are
simply	concatenated.

				LIST									::=	"LIST"	#{	ContentsType	PROP*	(FORM	|	LIST	|	CAT)*	}

				ContentsType	::=	ID

Group	PROP

PROP	chunks	may	appear	in	LISTs	(not	in	FORMs	or	CATs).	They	supply	shared
properties	for	the	FORMs	in	that	LIST.	This	ability	to	elevate	some	property
settings	to	shared	status	for	a	list	of	forms	is	useful	for	both	indirection
and	compaction.	E.g.	a	list	of	images	with	the	same	size	and	colors	can
share	one	"size"	property	and	one	"color	map"	property.	Individual	FORMs
can	override	the	shared	settings.

The	contents	of	a	PROP	is	like	a	FORM	with	no	data	chunks:

			PROP	::=	"PROP"	#{	FormType	Property*	}

It	means,	"Here	are	the	shared	properties	for	FORM	type	<<FormType>>."

A	LIST	may	have	at	most	one	PROP	of	a	FORM	type,	and	all	the	PROPs	must
appear	before	any	of	the	FORMs	or	nested	LISTs	and	CATs.	You	can	have
subsequences	of	FORMs	sharing	properties	by	making	each	subsequence	a

LIST.

Scoping:	Think	of	property	settings	as	variable	bindings	in	nested	blocks
of	a	programming	language.	Where	in	C	you	could	write:

			TEXT_FONT	text_font	=	Courier;		/*	program's	global	default	*/

			File();	{

						TEXT_FONT	text_font	=	TimesRoman;				/*	shared	setting							*/

						{

									TEXT_FONT	text_font	=	Helvetica;		/*	local	setting								*/

									Print("Hello	");																		/*	uses	font	Helvetica		*/

						}

						{

									Print("there.");																		/*	uses	font	TimesRoman	*/

						}

			}

An	IFF	file	could	contain:

			LIST	{

						PROP	TEXT	{

									FONT	{TimesRoman}							/*	shared	setting							*/

						}

						FORM	TEXT	{

									FONT	{Helvetica}								/*	local	setting								*/

									CHRS	{Hello	}											/*	uses	font	Helvetica		*/

						}

						FORM	TEXT	{

									CHRS	{there.}											/*	uses	font	TimesRoman	*/

						}

			}

The	shared	property	assignments	selectively	override	the	reader's	global
defaults,	but	only	for	FORMs	within	the	group.	A	FORM's	own	property
assignments	selectively	override	the	global	and	group-supplied	values.	So
when	reading	an	IFF	file,	keep	property	settings	on	a	stack.	They're
designed	to	be	small	enough	to	hold	in	main	memory.

Shared	properties	are	semantically	equivalent	to	copying	those	properties
into	each	of	the	nested	FORMs	right	after	their	FORM	type	IDs.

Properties	for	LIST

Optional	"properties	for	LIST"	store	the	origin	of	the	list's	contents	in	a	PROP
chunk	for	the	fake	FORM	type	"LIST".	They	are	the	properties	originating
program	"OPGM",	processor	family	"OCPU",	computer	type	"OCMP",	computer

serial	number	or	network	address	"OSN	",	and	user	name	"UNAM".	In	our
imperfect	world,	these	could	be	called	upon	to	distinguish	between
unintended	variations	of	a	data	format	or	to	work	around	bugs	in	particular
originating/receiving	program	pairs.	Issue:	Specify	the	format	of	these
properties.

A	creation	date	could	also	be	stored	in	a	property	but	let's	ask	that	file
creating,	editing,	and	transporting	programs	maintain	the	correct	date	in
the	local	file	system.	Programs	that	move	files	between	machine	types	are
expected	to	copy	across	the	creation	dates.

6.	Standard	File	Structure

File	Structure	Overview

An	IFF	file	is	just	a	single	chunk	of	type	FORM,	LIST,	or	CAT.	Therefore	an	IFF
file	can	be	recognized	by	its	first	4	bytes:	"FORM",	"LIST",	or	"CAT	".	Any	file
contents	after	the	chunk's	end	are	to	be	ignored.

Since	an	IFF	file	can	be	a	group	of	objects,	programs	that	read/write	single
objects	can	communicate	to	an	extent	with	programs	that	read/write
groups.	You're	encouraged	to	write	programs	that	handle	all	the	objects	in
a	LIST	or	CAT.	A	graphics	editor,	for	example,	could	process	a	list	of	pictures
as	a	multiple	page	document,	one	page	at	a	time.

Programs	should	enforce	IFF's	syntactic	rules	when	reading	and	writing
files.	This	ensures	robust	data	transfer.	The	public	domain	IFF
reader/writer	subroutine	package	does	this	for	you.	A	utility	program
"IFFCheck"	is	available	that	scans	an	IFF	file	and	checks	it	for	conformance
to	IFF's	syntactic	rules.	IFFCheck	also	prints	an	outline	of	the	chunks	in	the
file,	showing	the	ckID	and	ckSize	of	each.	This	is	quite	handy	when
building	IFF	programs.	Example	programs	are	also	available	to	show
details	of	reading	and	writing	IFF	files.

A	merge	program	"IFFJoin"	will	be	available	that	logically	appends	IFF
files	into	a	single	CAT	group.	It	"unwraps"	each	input	file	that	is	a	CAT	so	that
the	combined	file	isn't	nested	CATs.

If	we	need	to	revise	the	IFF	standard,	the	three	anchoring	IDs	will	be	used
as	"version	numbers".	That's	why	IDs	"FOR1"	through	"FOR9",	"LIS1"	through
"LIS9",	and	"CAT1"	through	"CAT9"	are	reserved.

IFF	formats	are	designed	for	reasonable	performance	with	floppy	disks.
We	achieve	considerable	simplicity	in	the	formats	and	programs	by
relying	on	the	host	file	system	rather	than	defining	universal	grouping
structures	like	directories	for	LIST	contents.	On	huge	storage	systems,	IFF
files	could	be	leaf	nodes	in	a	file	structure	like	a	B-tree.	Let's	hope	the	host
file	system	implements	that	for	us!

Thre	are	two	kinds	of	IFF	files:	single	purpose	files	and	scrap	files.	They
differ	in	the	interpretation	of	multiple	data	objects	and	in	the	file's	external
type.

Single	Purpose	Files

A	single	purpose	IFF	file	is	for	normal	"document"	and	"archive"	storage.
This	is	in	contrast	with	"scrap	files"	(see	below)	and	temporary	backing
storage	(non-interchange	files).

The	external	file	type	(or	filename	extension,	depending	on	the	host	file
system)	indicates	the	file's	contents.	It's	generally	the	FORM	type	of	the	data
contained,	hence	the	restrictions	on	FORM	type	IDs.

Programmers	and	users	may	pick	an	"intended	use"	type	as	the	filename
extension	to	make	it	easy	to	filter	for	the	relevant	files	in	a	filename
requestor.	This	is	actually	a	"subclass"	or	"subtype"	that	conveniently
separates	files	of	the	same	FORM	type	that	have	different	uses.	Programs
cannot	demand	conformity	to	its	expected	subtypes	without	overly
restricting	data	interchange	since	they	cannot	know	about	the	subtypes	to
be	used	by	future	programs	that	users	will	want	to	exchange	data	with.

Issue:	How	to	generate	3-letter	MS-DOS	extensions	from	4-letter	FORM	type
IDs?

Most	single	purpose	files	will	be	a	single	FORM	(perhaps	a	composite	FORM
like	a	musical	score	containing	nested	FORMs	like	musical	instrument
descriptions).	If	it's	a	LIST	or	a	CAT,	programs	should	skip	over	unrecognized
objects	to	read	the	recognized	ones	or	the	first	recognized	one.	Then	a

program	that	can	read	a	single	purpose	file	can	read	something	out	of	a
"scrap	file",	too.

Scrap	Files

A	"scrap	file"	is	for	maximum	interconnectivity	in	getting	data	between
programs;	the	core	of	a	clipboard	function.	Scrap	files	may	have	type
"IFF	"	or	filename	extension	".IFF".

A	scrap	file	is	typically	a	CAT	containing	alternate	representations	of	the
same	basic	information.	Include	as	many	alternatives	as	you	can	readily
generate.	This	redundancy	improves	interconnectivity	in	situations	where
we	can't	make	all	programs	read	and	write	super-general	formats.	[Inside
Macintosh	chapter	"Scrap	Manager".]	E.g.	a	graphically-annotated
musical	score	might	be	supplemented	by	a	stripped	down	4-voice	melody
and	by	a	text	(the	lyrics).

The	originating	program	should	write	the	alternate	representations	in	order
of	"preference":	most	preferred	(most	comprehensive)	type	to	least
preferred	(least	comprehensive)	type.	A	receiving	program	should	either
use	the	first	appearing	type	that	it	understands	or	search	for	its	own
"preferred"	type.

A	scrap	file	should	have	at	most	one	alternative	of	any	type.	(A	LIST	of
same	type	objects	is	ok	as	one	of	the	alternatives.)	But	don't	count	on	this
when	reading;	ignore	extra	sections	of	a	type.	Then	a	program	that	reads
scrap	files	can	read	something	out	of	single	purpose	files.

Rules	for	Reader	Programs

Here	are	some	notes	on	building	programs	that	read	IFF	files.	If	you	use
the	standard	IFF	reader	module	"IFFR.C",	many	of	these	rules	and	details
will	be	automatically	handled.	(See	"Support	Software"	in	Appendix	A.)
We	recommend	that	you	start	from	the	example	program	"ShowILBM.C".	You
should	also	read	up	on	recursive	descent	parsers.	[See,	for	example,
Compiler	Construction,	An	Advanced	Course.]

The	standard	is	very	flexible	so	many	programs	can	exchange	data.
This	implies	a	program	has	to	scan	the	file	and	react	to	what's
actually	there	in	whatever	order	it	appears.	An	IFF	reader	program	is

a	parser.
For	interchange	to	really	work,	programs	must	be	willing	to	do	some
conversion	during	read-in.	If	the	data	isn't	exactly	what	you	expect,
say,	the	raster	is	smaller	than	those	created	by	your	program,	then
adjust	it.	Similarly,	your	program	could	crop	a	large	picture,	add	or
drop	bitplanes,	and	create/discard	a	mask	plane.	The	program	should
give	up	gracefully	on	data	that	it	can't	convert.
If	it	doesn't	start	with	"FORM",	"LIST",	or	"CAT	",	it's	not	an	IFF-85	file.
For	any	chunk	you	encounter,	you	must	recognize	its	type	ID	to
understand	its	contents.
For	any	FORM	chunk	you	encounter,	you	must	recognize	its	FORM	type	ID
to	understand	the	contained	"local	chunks".	Even	if	you	don't
recognize	the	FORM	type,	you	can	still	scan	it	for	nested	FORMs,	LISTs,	and
CATs	of	interest.
Don't	forget	to	skip	the	pad	byte	after	every	odd-length	chunk.
Chunk	types	LIST,	FORM,	PROP,	and	CAT	are	generic	groups.	They	always
contain	a	subtype	ID	followed	by	chunks.
Readers	ought	to	handle	a	CAT	of	FORMs	in	a	file.	You	may	treat	the	FORMs
like	document	pages	to	sequence	through	or	just	use	the	first	FORM.
Simpler	IFF	readers	completely	skip	LISTs.	"Fully	IFF-conforming"
readers	are	those	that	handle	LISTs,	even	if	just	to	read	the	first	FORM
from	a	file.	If	you	do	look	into	a	LIST,	you	must	process	shared
properties	(in	PROP	chunks)	properly.	The	idea	is	to	get	the	correct	data
or	none	at	all.
The	nicest	readers	are	willing	to	look	into	unrecognized	FORMs	for
nested	FORM	types	that	they	do	recognize.	For	example,	a	musical	score
may	contain	nested	instrument	descriptions	and	an	animation	file
may	contain	still	pictures.

Note	to	programmers:	Processing	PROP	chunks	is	not	simple!	You'll	need
some	background	in	interpreters	with	stack	frames.	If	this	is	foreign	to
you,	build	programs	that	read/write	only	one	FORM	per	file.	For	the	more
intrepid	programmers,	the	next	paragraph	summarizes	how	to	process	LISTs
and	PROPs.	See	the	general	IFF	reader	module	"IFFR.C"	and	the	example
program	"ShowILBM.C"	for	details.

Allocate	a	stack	frame	for	every	LIST	and	FORM	you	encounter	and	initialize
it	by	copying	the	stack	frame	of	the	parent	LIST	or	FORM.	At	the	top	level,
you'll	need	a	stack	frame	initialized	to	your	program's	global	defaults.

While	reading	each	LIST	or	FORM,	store	all	encountered	properties	into	the
current	stack	frame.	In	the	example	ShowILBM,	each	stack	frame	has	a	place
for	a	bitmap	header	property	ILBM.BMHD	and	a	color	map	property	ILBM.CMAP.
When	you	finally	get	to	the	ILBM's	BODY	chunk,	use	the	property	settings
accumulated	in	the	current	stack	frame.

An	alternate	implementation	would	just	remember	PROPs	encountered,
forgetting	each	on	reaching	the	end	of	its	scope	(the	end	of	the	containing
LIST).	When	a	FORM	XXXX	is	encountered,	scan	the	chunks	in	all	remembered
PROPs	XXXX,	in	order,	as	if	they	appeared	before	the	chunks	actually	in	the
FORM	XXXX.	This	gets	trickier	if	you	read	FORMs	inside	of	FORMs.

Rules	for	Writer	Programs

Here	are	some	notes	on	building	programs	that	write	IFF	files,	which	is
much	easier	than	reading	them.	If	you	use	the	standard	IFF	writer	module
"IFFW.C"	(see	"Support	Software"	in	Appendix	A),	many	of	these	rules	and
details	will	automatically	be	enforced.	See	the	example	program
"Raw2ILBM.C".

An	IFF	file	is	a	single	FORM,	LIST,	or	CAT	chunk.
Any	IFF-85	file	must	start	with	the	4	characters	"FORM",	"LIST",	or
"CAT	",	followed	by	a	LONG	ckSize.	There	should	be	no	data	after	the
chunk	end.
Chunk	types	LIST,	FORM,	PROP,	and	CAT	are	generic.	They	always	contain	a
subtype	ID	followed	by	chunks.	These	three	IDs	are	universally
reserved,	as	are	"LIS1"	through	"LIS9",	"FOR1"	through	"FOR9",	"CAT1"
through	"CAT9",	and	"				".
Don't	forget	to	write	a	0	pad	byte	after	each	odd-length	chunk.
Four	techniques	for	writing	an	IFF	group:	(1)	build	the	data	in	a	file
mapped	into	virtual	memory,	(2)	build	the	data	in	memory	blocks	and
use	block	I/O,	(3)	stream	write	the	data	piecemeal	and	(don't	forget!)
random	access	back	to	set	the	group	length	count,	and	(4)	make	a
preliminary	pass	to	compute	the	length	count	then	stream	write	the
data.
Do	not	try	to	edit	a	file	that	you	don't	know	how	to	create.	Programs
may	look	into	a	file	and	copy	out	nested	FORMs	of	types	that	they
recognize,	but	don't	edit	and	replace	the	nested	FORMs	and	don't	add	or
remove	them.	That	could	make	the	containing	structure	inconsistent.

You	may	write	a	new	file	containing	items	you	copied	(or	copied	and
modified)	from	another	IFF	file,	but	don't	copy	structural	parts	you
don't	understand.
You	must	adhere	to	the	syntax	descriptions	in	Appendex	A.	E.g.	PROPs
may	only	appear	inside	LISTs.

Appendix	A.	Reference

Type	Definitions

The	following	C	typedefs	describe	standard	IFF	structures.	Declarations	to
use	in	practice	will	vary	with	the	CPU	and	compiler.	For	example,	68000
Lattice	C	produces	efficient	comparison	code	if	we	define	ID	as	a	"LONG".	A
macro	"MakeID"	builds	these	IDs	at	compile	time.

				/*	Standard	IFF	types,	expressed	in	68000	Lattice	C.				*/

				typedef	unsigned	char		UBYTE;			/*		8	bits	unsigned					*/

				typedef	short										WORD;				/*	16	bits	signed							*/

				typedef	unsigned	short	UWORD;			/*	16	bits	unsigned					*/

				typedef	long											LONG;				/*	32	bits	signed							*/

				typedef	char	ID[4];					/*	4	chars	in	'	'	through	'~'			*/

				typedef	struct	{

								ID						ckID;

								LONG				ckSize;	/*	sizeof(ckData)							*/

								UBYTE			ckData[/*	ckSize	*/];

								}	Chunk;

				/*	ID	typedef	and	builder	for	68000	Lattice	C.	*/

				typedef	LONG	ID;								/*	4	chars	in	'	'	through	'~'			*/

				#define	MakeID(a,b,c,d)	((a)<<24	|	(b)<<16	|	(c)<<8	|	(d))

				/*	Globally	reserved	IDs.	*/

				#define	ID_FORM			MakeID('F','O','R','M')

				#define	ID_LIST			MakeID('L','I','S','T')

				#define	ID_PROP			MakeID('P','R','O','P')

				#define	ID_CAT				MakeID('C','A','T','	')

				#define	ID_FILLER	MakeID('	','	','	','	')

Syntax	Definitions

Here's	a	collection	of	the	syntax	definitions	in	this	document.

				Chunk								::=	ID	#{	UBYTE*	}	[0]

				Property					:=	Chunk

				FORM									::=	"FORM"	#{	FormType	(LocalChunk	|	FORM	|	LIST	|	CAT)*	}

				FormType					:=	ID

				LocalChunk			:=	Property	|	Chunk

				CAT										::=	"CAT	"	#{	ContentsType	(FORM	|	LIST	|	CAT)*	}

				ContentsType	::=	ID		--	a	hint	or	an	"abstract	data	type"	ID

				LIST									::=	"LIST"	#{	ContentsType	PROP*	(FORM	|	LIST	|	CAT)*	}

				PROP									::=	"PROP"	#{	FormType	Property*	}

In	this	extended	regular	expression	notation,	the	token	"#"	represents	a
ckSize	LONG	count	of	the	following	{braced}	data	bytes.	Literal	items	are
shown	in	"quotes",	[square	bracketed	items]	are	optional,	and	"*"	means	0
or	more	instances.	A	sometimes-needed	pad	byte	is	shown	as	"[0]".

Defined	Chunk	IDs

This	is	a	table	of	currently	defined	chunk	IDs.	We	may	also	borrow	some
Macintosh	IDs	and	data	formats.

Group	chunk	IDs
FORM,	LIST,	PROP,	CAT.
Future	revision	group	chunk	IDs
FOR1	-	FOR9,	LIS1	-	LIS9,	CAT1	-	CAT9.
FORM	type	IDs
(The	above	group	chunk	IDs	may	not	be	used	for	FORM	type	IDs.)
(Lower	case	letters	and	punctuation	marks	are	forbidden	in	FORM	type
IDs.)
8SVX	8-bit	sampled	sound	voice,	ANBM	animated	bitmap,	FNTR	raster	font,
FNTV	vector	font,	FTXT	formatted	text,	GSCR	general-use	musical	score,
ILBM	interleaved	raster	bitmap	image,	PDEF	Deluxe	Print	page
definition,	PICS	Macintosh	picture,	PLBM	(obsolete),	USCR	Uhuru	Sound
Software	musical	score,	UVOX	Uhuru	Sound	Software	Macintosh	voice,
SMUS	simple	musical	score,	VDEO	Deluxe	Video	Construction	Set	video.
Data	chunk	IDs
"	",	TEXT,	PICT.
PROP	LIST	property	IDs
OPGM,	OCPU,	OCMP,	OSN,	UNAM.

Support	Software

These	public	domain	C	source	programs	are	available	for	use	in	building
IFF-compatible	programs:

IFF.H,	IFFR.C,	IFFW.C
IFF	reader	and	writer	package.	These	modules	handle	many	of	the
details	of	reliably	reading	and	writing	IFF	files.
IFFCheck.C

This	handy	utility	program	scans	an	IFF	file,	checks	that	the	contents
are	well	formed,	and	prints	an	outline	of	the	chunks.
PACKER.H,	Packer.C,	UnPacker.C
Run	encoder	and	decoder	used	for	ILBM	files.
ILBM.H,	ILBMR.C,	ILBMW.C
Reader	and	writer	support	routines	for	raster	image	FORM	ILBM.	ILBMR
calls	IFFR	and	UnPacker.	ILBMW	calls	IFFW	and	Packer.
ShowILBM.C

Example	caller	of	IFFR	and	ILBMR	modules.	This	Commodore-Amiga
program	reads	and	displays	a	FORM	ILBM.
Raw2ILBM.C

Example	ILBM	writer	program.	As	a	demonstration,	it	reads	a	raw
raster	image	file	and	writes	the	image	as	a	FORM	ILBM	file.
ILBM2Raw.C

Example	ILBM	reader	program.	Reads	a	FORM	ILBM	file	and	writes	it	into	a
raw	raster	image.
REMALLOC.H,	Remalloc.c
Memory	allocation	routines	used	in	these	examples.
INTUALL.H

generic	"include	almost	everything"	include-file	with	the	sequence	of
includes	correctly	specified.
READPICT.H,	ReadPict.c
given	an	ILBM	file,	read	it	into	a	bitmap	and	a	color	map
PUTPICT.H,	PutPict.c
given	a	bitmap	and	a	color	map,	save	it	as	an	ILBM	file.
GIO.H,	Gio.c
generic	I/O	speedup	package.	Attempts	to	speed	disk	I/O	by	buffering
writes	and	reads.
giocall.c

sample	call	to	gio.
ilbmdump.c

reads	in	ILBM	file,	prints	out	ascii	representation	for	including	in	C
files.
bmprintc.c

prints	out	a	C-language	representation	of	data	for	a	bitmap.

Example	Diagrams

Here's	a	box	diagram	for	an	example	IFF	file,	a	raster	image	FORM	ILBM.	This
FORM	contains	a	bitmap	header	property	chunk	BMHD,	a	color	map	property
chunk	CMAP,	and	a	raster	data	chunk	BODY.	This	particular	raster	is	320	x	200
pixels	x	3	bit	planes	uncompressed.	The	"0"	after	the	CMAP	chunk	represents
a	zero	pad	byte;	included	since	the	CMAP	chunk	has	an	odd	length.	The	text
to	the	right	of	the	diagram	shows	the	outline	that	would	be	printed	by	the
IFFCheck	utility	program	for	this	particular	file.

'FORM'	24070
'ILBM'
	
'BMHD'	20	
320,	200,	0,	0,	3,	0,	0,	...
'CMAP'	21	
0,	0,	0;	32,	0,	0;	64,	0,	0	...

0

'BODY'	24000	
0,	0,	0,	...

FORM	24070	ILBM

	
.BMHD	20	
	
.CMAP	21	
	

	

.BODY	24000	
	

This	second	diagram	shows	a	LIST	of	two	FORMs	ILBM	sharing	a	common	BMHD
property	and	a	common	CMAP	property.	Again,	the	text	on	the	right	is	an
outline	a	la	IFFCheck.

'LIST'	48114
'AAAA'

'PROP'	62
'ILBM'

'BMHD'	20	
320,	200,	0,	0,	3,	0,	0,	...

LIST	48114	AAAA

	
.PROP	62	ILBM

	
..BMHD	20	

'CMAP'	21	
0,	0,	0;	32,	0,	0;	64,	0,	0	...

0

'FORM'	24012
'ILBM'

'BODY'	24000	
0,	0,	0,	...

'FORM'	24012
'ILBM'

'BODY'	24000	
0,	0,	0,	...

	
..CMAP	21	
	

	

.FORM	24012	ILBM

	
..BODY	24000	
	
.FORM	24012	ILBM

	
..BODY	24000	
	

Appendix	B.	Standards	Committee

The	following	people	contributed	to	the	design	of	this	IFF	standard:

Bob	"Kodiak"	Burns,	Commodore-Amiga
R.	J.	Mical,	Commodore-Amiga
Jerry	Morrison,	Electronic	Arts
Greg	Riker,	Electronic	Arts
Steve	Shaw,	Electronic	Arts
Barry	Walsh,	Commodore-Amiga

Flexible	Precision	Images

December	3,	2000

This	document	describes	the	FPBM	(Flexible	Precision	Buffer	Map)	file
format	for	images	and	animations	introduced	with	LightWave	6.0.

Introduction
IFF	Chunks
Data	Basics
File	Structure
File	Header
Frame	Header
Layer	Header
Layer	Data
Run-Length	Compression
Delta	Compression
Example	Source	Code

Introduction

An	image	is	a	rectangular	array	of	values.	The	image	data	generated	by
LightWave	includes	not	only	the	red,	green	and	blue	levels	of	each	pixel	in
the	rendered	image,	but	also	values	at	each	pixel	for	the	alpha	level,	z-
depth,	shading,	reflectivity,	surface	normal,	2D	motion,	and	other	buffers
used	during	rendering.	Most	of	these	quantities	are	represented	internally
as	floating-point	numbers,	and	all	may	change	over	time.	Existing	image
and	animation	file	formats	are	inadequate	for	storing	all	of	this
information,	which	is	the	motivation	for	the	new	FPBM	format.

The	data	channels	in	an	FPBM	are	called	layers,	and	each	layer	can	store
values	as	8-bit	or	16-bit	integers	or	as	32-bit	floating-point	numbers.	A	set
of	these	layers	for	a	given	animation	time	is	called	a	frame.	An	FPBM
containing	a	single	frame	is	a	still	image,	and	one	containing	a	time
sequence	of	frames	is	an	animation.

(The	descriptions	here	of	the	animation	features	of	FPBM	should	be

considered	preliminary.	They	haven't	been	implemented	in	LightWave
yet.)

Chunks

The	FPBM	format	is	based	on	the	metaformat	for	binary	files	described	in
"EA	IFF	85	Standard	for	Interchange	Format	Files."	(See	also	ILBM,	an
earlier	IFF	image	format.)	The	basic	structural	element	in	an	IFF	file	is	the
chunk.	A	chunk	consists	of	a	four-byte	ID	tag,	a	four-byte	chunk	size,	and
size	bytes	of	data.	If	the	size	is	odd,	the	chunk	is	followed	by	a	0	pad	byte,
so	that	the	next	chunk	begins	on	an	even	byte	boundary.	(The	pad	byte
isn't	counted	in	the	size.)

A	chunk	ID	is	a	sequence	of	4	bytes	containing	7-bit	ASCII	values,
usually	upper-case	printable	characters,	used	to	identify	the	chunk's	data.
ID	tags	can	be	interpreted	as	unsigned	integers	for	comparison	purposes.
They're	typically	constructed	using	macros	like	the	following.

			#define	CKID_(a,b,c,d)	(((a)<<24)|((b)<<16)|((c)<<8)|(d))

			#define	ID_FORM	CKID_('F','O','R','M')

			#define	ID_FPBM	CKID_('F','P','B','M')

			...

FPBM	files	start	with	the	four	bytes	"FORM"	followed	by	a	four-byte	integer
giving	the	length	of	the	file	(minus	8)	and	the	four	byte	ID	"FPBM".	The
remainder	of	the	file	is	a	collection	of	chunks	containing	layer	data.

To	be	read,	IFF	files	must	be	parsed.	FPBM	files	are	pretty	uniform,	but	in
general	the	order	in	which	chunks	can	occur	in	an	IFF	file	isn't	fixed.	You
may	encounter	chunks	or	layer	types	that	aren't	defined	here,	which	you
should	be	prepared	to	skip	gracefully	if	you	don't	understand	them.	You
can	do	this	by	using	the	chunk	size	to	seek	to	the	next	chunk.	And	you
may	encounter	chunk	sizes	that	differ	from	those	implied	here.	Readers
must	respect	the	chunk	size.	Missing	data	should	be	given	default	values,
and	extra	data,	which	the	reader	presumably	doesn't	understand,	should	be
skipped.

Data	Basics

The	data	in	an	FPBM	will	be	described	in	this	document	using	C	language
conventions.	Chunks	will	be	represented	as	structures,	and	the	values

within	each	structure	will	be	defined	as	the	C	basic	types	short	or	float.	As
used	here,	a	short	is	a	signed,	two's	complement,	16-bit	integer,	and	a	float
is	a	32-bit	IEEE	floating-point	number.	All	data	in	an	FPBM	is	written	in
big-endian	(Motorola,	Internet)	byte	order.	Programs	running	in
environments	(primarily	Microsoft	Windows)	that	use	a	different	byte
order	must	swap	bytes	after	reading	and	before	writing.

File	Structure

Structurally,	FPBMs	are	quite	simple.

			FORM	formsize	FPBM

			FPHD	28	FPHeader

			for	each	frame

						FLEX	2	numLayers

						for	each	layer

									LYHD	20	LayerHeader

									LAYR	datasize	data

The	header	is	followed	by	one	or	more	frames.	Each	frame	begins	with	a
layer	count,	and	this	is	followed	by	the	layers.	Each	layer	begins	with	a
header	describing	the	data	it	contains.

The	following	sections	describe	the	FPHD,	FLEX	and	LYHD	chunks.

FPHD	-	Flexible	Precision	Header

The	FPHeader	contains	information	that	applies	globally	to	all	of	the
frames	in	the	file.	It	appears	first	in	the	file,	after	the	FORM	prefix	and	before
the	first	frame.

			typedef	struct	st_FPHeader	{

						short	width;

						short	height;

						short	numLayers;

						short	numFrames;

						short	numBuffers;

						short	flags;

						short	srcBytesPerLayerPixel;

						short	pad2;

						float	pixelAspect;

						float	pixelWidth;

						float	framesPerSecond;

			}	FPHeader;

width,	height
Pixel	dimensions	of	the	image.

numLayers
The	maximum	number	of	layers	per	frame.	Some	layers	may	not	be
stored	for	all	frames,	since	their	contents	may	not	differ	from	frame
to	frame.

numFrames
Number	of	frames.	For	still	images,	this	will	be	1.

numBuffers
Number	of	animation	buffers.	This	affects	the	interpretation	of	delta
encoded	layer	data.	When	the	file	is	written	for	single	buffered
playback,	the	number	of	buffers	is	1	and	the	deltas	are	relative	to	the
previous	frame.	For	double	buffered	playback,	the	deltas	are	relative
to	the	frame	"two	frames	back,"	since	the	new	frame	is	drawn	over
the	contents	of	the	back	buffer.	This	field	is	ignored	for	still	images.

flags
One	or	more	of	the	following	flag	values,	combined	using	bitwise-or.

Source_Int	(0	<<	0)
Source_FP	(1	<<	0)

The	"natural"	representation	of	the	data,	or	the	way	the	data	was
stored	before	being	written	to	the	file,	either	integer	(the	default)
or	floating-point.	This	can	differ	from	the	way	the	data	is
actually	stored	in	the	file	(specified	for	each	layer	in	the
LayerHeader	flags	field).	Readers	may	wish	to	restore	the	data	to
its	original	representation	using	this	information.	It	can	also	be
used	to	indicate	the	precision	of	the	source	data.

InterlaceFlag	(1	<<	1)
Scanlines	should	be	interlaced	(field	rendered)	for	playback.
(The	actual	interlace	state	is	stored	for	each	layer	in	the
LayerHeader.)

srcBytesPerLayerPixel
Use	this	in	combination	with	the	Source_Int	and	Source_FP	flags	to
determine	the	"natural"	data	type	for	the	data	in	the	file,	or	the	type	in
which	the	data	was	stored	before	it	was	written	to	the	file.	The	most
common	values	for	this	field	are	1,	2	and	4.	The	actual	size	of	a	pixel

in	each	layer	is	in	the	LayerHeader's	bytesPerLayerPixel	field.

pad2
Reserved	for	future	use.

pixelAspect
Pixel	aspect	ratio	expressed	as	width	divided	by	height.

pixelWidth
Pixel	width	in	millimeters.	This	fixes	the	size	of	the	image	for	print.
To	calculate	horizontal	and	vertical	DPI	(dots	per	inch)	from	this
value,
hdpi	=	25.4	/	pixelWidth

vdpi	=	25.4	/	(pixelWidth	*	pixelAspect)

framesPerSecond
Number	of	frames	per	second	for	animations.	Writers	may	set	this	to
0.0	for	still	images.

FLEX	-	Frame	Header

The	FrameHeader	appears	at	the	start	of	each	frame.	This	chunk	may	grow
in	the	future	to	include	other	information.

			typedef	struct	st_FrameHeader	{

						short	numLayers;

			}	FrameHeader;

numLayers
Number	of	layers	in	this	frame.

LYHD	-	Layer	Header

The	LayerHeader	appears	at	the	start	of	each	layer	to	describe	the	layer's
contents.

			typedef	struct	st_LayerHeader	{

						short	flags;

						short	layerType;

						short	bytesPerLayerPixel;

						short	compression;

						float	blackPoint;

						float	whitePoint;

						float	gamma;

			}	LayerHeader;	

flags
One	or	more	of	the	following	flags,	combined	using	bitwise-or.

Layer_Int	(0	<<	0)
Layer_FP	(1	<<	0)

Data	in	the	layer	is	integer	(the	default)	or	floating-point.

Layer_Interlace	(1	<<	1)
Scanlines	are	interlaced	(field	rendered).

Layer_EvenField	(0	<<	2)
Layer_OddField	(1	<<	2)

Field	dominance	for	interlaced	layers.	This	indicates	which	field
is	displayed	first	in	time.

layerType
The	data	channel	contained	in	the	layer.	Possible	values	include

Layer_MONO	0
Monochrome	(grayscale)	image	channel.

Layer_RED	1
Layer_GREEN	2
Layer_BLUE	3
Layer_ALPHA	4

Color	and	alpha	channels.

Layer_OBJECT	5
Object	ID.

Layer_SURFACE	6
Surface	or	material	ID.

Layer_COVERAGE	7
Object	transparency/antialiasing.

Layer_ZDEPTH	8
Layer_WDEPTH	9

The	Z	depth	is	the	distance	from	the	camera	to	the	nearest	object

visible	in	a	pixel.	Strictly	speaking,	this	is	the	perpendicular
distance	from	the	plane	defined	by	the	camera's	position	and
view	vector.	The	W	depth	buffer	contains	the	inverse	of	Z.

Layer_GEOMETRY	10
The	values	in	this	buffer	are	the	dot-products	of	the	surface
normals	with	the	eye	vector	(or	the	cosine	of	the	angle	of	the
surfaces	to	the	eye).	They	reveal	something	about	the	underlying
shape	of	the	objects	in	the	image.	Where	the	value	is	1.0,	the
surface	is	facing	directly	toward	the	camera,	and	where	it's	0,	the
surface	is	edge-on	to	the	camera.

Layer_SHADOW	11
Indicates	where	shadows	are	falling	in	the	final	image.	It	may
also	be	thought	of	as	an	illumination	map,	showing	what	parts	of
the	image	are	visible	to	the	lights	in	the	scene.

Layer_SHADING	12
A	picture	of	the	diffuse	shading	and	specular	highlights	applied
to	the	objects	in	the	scene.	This	is	a	component	of	the	rendering
calculations	that	depends	solely	on	the	angle	of	incidence	of	the
lights	on	a	surface.	It	doesn't	include	the	effects	of	explicit
shadow	calculations.

Layer_DFSHADING	13
Layer_SPSHADING	14

Like	the	Layer_SHADING	buffer,	but	these	store	the	amount	of	diffuse
and	specular	shading	(highlighting)	separately,	rather	than
adding	them	together.

Layer_TEXTUREU	15
Layer_TEXTUREV	16
Layer_TEXTUREW	17

Texture	coordinates.

Layer_NORMALX	18
Layer_NORMALY	19
Layer_NORMALZ	20

Normal	vector.	This	is	the	geometric	normal	of	the	object

surface	visible	in	each	pixel.

Layer_REFLECT	21
Reflection.

Layer_MOTIONX	22
Layer_MOTIONY	23

Support	for	2D	vector-based	motion	blur.	These	buffers	contain
the	pixel	distance	moved	by	the	item	visible	in	each	pixel.	The
amount	of	movement	depends	on	the	camera	exposure	time	and
includes	the	effects	of	the	camera's	motion.

bytesPerLayerPixel
Number	of	bytes	per	pixel,	usually	1,	2	or	4.

compression
One	of	the	following	compression	codes.

NoCompression	0
Data	is	uncompressed.

HorizontalRLE	1
VerticalRLE	3

Run-length	encoding	(RLE).	The	horizontal	type	is	identical	to
the	byteRun1	RLE	encoding	used	in	ILBM	and	the	output	of	the
Macintosh	PackBits	function.	The	vertical	type	compresses	along
columns	rather	than	rows.	The	compressor	treats	the	data	as	a
sequence	of	bytes,	regardless	of	the	data	type	of	the	layer's
values.

HorizontalDelta	2
VerticalDelta	4

Delta	encoding	for	animation.	Only	the	parts	of	the	image	that
differ	from	a	previous	frame	are	written.

The	RLE	and	delta	methods	are	described	in	more	detail	below.

blackPoint,	whitePoint
The	nominal	minimum	and	maximum	buffer	levels.	These	define	the

dynamic	range	of	the	data	in	the	layer.	Typical	values	for	RGB	layers
are	0.0	and	1.0.

gamma
Linearity	of	the	data.	This	and	the	black	and	white	points	are	used
primarily	to	encode	RGB	levels	for	different	display	devices.	The
default	is	1.0.

Layer	Data

The	data	for	a	layer	is	written	in	a	LAYR	chunk	that	immediately	follows	the
layer's	LayerHeader.	The	data	is	a	rectangular	array	of	values.	The	origin
is	the	top	left	corner,	and	before	compression,	values	are	stored	from	left
to	right,	and	rows	from	top	to	bottom.	No	padding	is	added	to	the	end	of
any	row.

When	the	compression	type	is	NoCompression,	this	is	also	how	the	layer	is
written	in	the	file.	The	number	of	bytes	in	one	row	is

			rowbytes	=	LayerHeader.bytesPerLayerPixel	*	FPHeader.width;

The	number	of	rows	is	FPHeader.Height,	and	the	total	number	of	bytes	of
layer	data	(and	the	LAYR	chunk	size)	is

			layerbytes	=	rowbytes	*	FPHeader.height;

RLE	Compression

The	following	psuedocode	illustrates	how	RLE-compressed	bytes	are
unpacked.

			loop

						read	the	next	source	byte	into	n

						if	n	>=	0

									copy	the	next	n	+	1	bytes	literally

						else	if	n	<	0

									replicate	the	next	byte	-n	+	1	times

			until	the	row	or	column	is	full

The	unpacker	reads	from	the	source	(compressed	data	in	a	LAYR	chunk)	and
writes	to	a	destination	(a	memory	buffer).	For	horizontal	RLE,	the
destination	pointer	is	incremented	by	1	for	each	decoded	byte,	while	for
vertical	RLE,	the	destination	pointer	is	incremented	by	rowbytes	bytes.

Each	row	(or	column)	is	separately	packed.	In	other	words,	runs	never
cross	rows	(or	columns).

In	the	inverse	routine	(the	packer),	it's	best	to	encode	a	2	byte	repeat	run	as
a	replicate	run	except	when	preceded	and	followed	by	a	literal	run,	in
which	case	it's	best	to	merge	the	three	into	one	literal	run.	Always	encode
3	byte	repeats	as	replicate	runs.

Delta	Compression

The	delta	compression	method	uses	RLE,	but	it	adds	a	mechanism	for
skipping	bytes	that	haven't	changed.	This	is	used	when	storing	animation
frames.	The	skipped	bytes	retain	the	values	stored	there	by	a	previous
frame.

			loop

						read	the	next	source	byte	into	nc

						if	nc	<	0

									skip	ahead	-nc	columns

						else

									for	i	=	0	to	nc

												read	the	next	source	byte	into	nr

												if	nr	<	0

															skip	ahead	-nr	rows

												else

															unpack	rle	encoded	span	of	size	nr	+	1

			until	the	layer	is	full

Example	Code

The	unpackRLE	function	decodes	RLE	compressed	data.	psrc	points	to	the
source	pointer.	The	function	advances	the	source	pointer	as	it	decodes	the
compressed	bytes.	dst	is	the	destination	buffer	where	decoded	bytes	are
written.	size	is	the	RLE	span,	or	the	number	of	destination	bytes	that
should	be	produced.	This	is	typically	rowbytes	for	horizontal	RLE	and
FPHeader.Height	for	vertical	RLE.	step	is	the	number	of	bytes	that	the
destination	pointer	should	be	moved	after	each	decoded	byte	is	written,
typically	1	for	horizontal	and	rowbytes	for	vertical.	The	function	returns	TRUE
if	it	succeeds	and	FALSE	otherwise.

			int	unpackRLE(char	**psrc,	char	*dst,	int	size,	int	step)

			{

						int	c,	n;

						char	*src	=	*psrc;

						while	(size	>	0)	{

									n	=	*src++;

									if	(n	>=	0)	{

												++n;

												size	-=	n;

												if	(size	<	0)	return	FALSE;

												while	(n--)	{

															*dst	=	*src++;

															dst	+=	step;

												}

									}

									else	{

												n	=	-n	+	1;

												size	-=	n;

												if	(size	<	0)	return	FALSE;

												c	=	*src++;

												while	(n--)	{

															*dst	=	c;

															dst	+=	step;

												}

									}

						}

						*psrc	=	src;

						return	TRUE;

			}

The	packRLE	function	reads	uncompressed	bytes	from	the	source	buffer	and
writes	encoded	bytes	to	the	destination.	It	returns	the	number	of	bytes
written	to	the	destination	(the	packed	size	of	the	source	bytes).

			#define	DUMP				0

			#define	RUN					1

			#define	MINRUN		3

			#define	MAXRUN		128

			#define	MAXDUMP	128

			int	packRLE(char	*src,	char	*dst,	int	size,	int	step)

			{

						char	c,	lastc;

						int

									mode	=	DUMP,

									rstart	=	0,

									putsize	=	0,

									sp	=	1,

									i;

						lastc	=	*src;

						size--;

						while	(size	>	0)	{

									c	=	*(src	+	sp	*	step);

									sp++;

									size--;

									switch	(mode)	{

												case	DUMP:

															if	(sp	>	MAXDUMP)	{

																		*dst++	=	sp	-	2;

																		for	(i	=	0;	i	<	sp	-	1;	i++)

																					*dst++	=	*(src	+	i	*	step);

																		putsize	+=	sp;

																		src	+=	(sp	-	1)	*	step;

																		sp	=	1;

																		rstart	=	0;

																		break;

															}

															if	(c	==	lastc)	{

																		if	((sp	-	rstart)	>=	MINRUN)	{

																					if	(rstart	>	0)	{

																								*dst++	=	rstart	-	1;

																								for	(i	=	0;	i	<	rstart;	i++)

																											*dst++	=	*(src	+	i	*	step);

																								putsize	+=	rstart	+	1;

																					}

																					mode	=	RUN;

																		}

																		else	if	(rstart	==	0)	mode	=	RUN;

															}

															else	rstart	=	sp	-	1;

															break;

												case	RUN:

															if	((c	!=	lastc)	||	(sp	-	rstart	>	MAXRUN))	{

																		*dst++	=	rstart	+	2	-	sp;

																		*dst++	=	lastc;

																		putsize	+=	2;

																		src	+=	(sp	-	1)	*	step;

																		sp	=	1;

																		rstart	=	0;

																		mode	=	DUMP;

															}

									}

									lastc	=	c;

						}

						switch	(mode)	{

									case	DUMP:

												*dst++	=	sp	-	1;

												for	(i	=	0;	i	<	sp;	i++)

															*dst++	=	*(src	+	i	*	step);

												putsize	+=	sp	+	1;

												break;

									case	RUN:

												*dst++	=	rstart	+	1	-	sp;

												*dst			=	lastc;

												putsize	+=	2;

						}

						return	putsize;

			}

The	unpackDelta	function	decodes	delta-compressed	data.	After	skipping	to	a
part	of	the	layer	containing	changes,	it	calls	unpackRLE.

			int	unpackDelta(char	*src,	char	*dst,	int	size,	int	vstep,

						int	hstep)

			{

						int	n,	nn;

						while	(size	>	0)	{

									n	=	*src++;

									--size;

									if	(n	<	0)

												dst	+=	-n	*	vstep;

									else	{

												for	(;	n	>=	0;	n--)	{

															nn	=	*src++;

															--size;

															if	(nn	<	0)

																		nn	=	-nn;

															else	{

																		++nn;

																		if	(!unpackRLE(&src,	dst,	nn,	hstep))

																					return	FALSE;

															}

															dst	+=	nn	*	hstep;

												}

									}

						}

						return	TRUE;

			}

"ILBM"	IFF	Interleaved	Bitmap

Document	Date:
From:
Status	of	Standard:
	

		January	17,	1986
		Jerry	Morrison,	Electronic	Arts
		Released	and	in	use
	

1.	Introduction

"EA	IFF	85"	is	Electronic	Arts'	standard	for	interchange	format	files.
"ILBM"	is	a	format	for	a	2	dimensional	raster	graphics	image,	specifically	an
InterLeaved	bitplane	BitMap	image	with	color	map.	An	ILBM	is	an	IFF
"data	section"	or	"FORM	type",	which	can	be	an	IFF	file	or	a	part	of	one.	(See
the	IFF	reference.)

[Ed.:	Editorial	remarks	(the	text	appearing	between	"[Ed.:"	and	"End	ed.]"
brackets)	have	been	inserted	at	certain	points	in	this	document	to	update
information	about	the	way	ILBM	is	currently	implemented.	EW.	End	ed.]

An	ILBM	is	an	archival	representation	designed	for	three	uses.	First,	a
standalone	image	that	specifies	exactly	how	to	display	itself	(resolution,
size,	color	map,	etc.).	Second,	an	image	intended	to	be	merged	into	a
bigger	picture	which	has	its	own	depth,	color	map,	and	so	on.	And	third,
an	empty	image	with	a	color	map	selection	or	"palette"	for	a	paint
program.	ILBM	is	also	intended	as	a	building	block	for	composite	IFF	FORMs
like	"animation	sequence"	and	"structured	graphics".	Some	uses	of	ILBM
will	be	to	preserve	as	much	information	as	possible	across	disparate
environments.	Other	uses	will	be	to	store	data	for	a	single	program	or
highly	cooperative	programs	while	maintaining	subtle	details.	So	we're
trying	to	accomplish	a	lot	with	this	one	format.

This	memo	is	the	IFF	supplement	for	FORM	ILBM.	Section	2	defines	the
purpose	and	format	of	property	chunks	bitmap	header	BMHD,	color	map	CMAP,
hotspot	GRAB,	destination	merge	data	DEST,	sprite	information	SPRT,	and
Commodore	Amiga	viewport	mode	CAMG.	Section	3	defines	the	standard
data	chunk	BODY.	These	are	the	"standard"	chunks.	Section	4	defines	the

nonstandard	color	range	data	chunk	CRNG.	Additional	specialized	chunks
like	texture	pattern	can	be	added	later.	The	ILBM	syntax	is	summarized	in
Appendix	A	as	a	regular	expression	and	in	Appendix	B	as	a	box	diagram.
Appendix	C	explains	the	optional	run	encoding	scheme.	Appendix	D
names	the	committee	responsible	for	this	FORM	ILBM	standard.

Details	of	the	raster	layout	are	given	in	part	3,	"Standard	Data	Chunk".
Some	elements	are	based	on	the	Commodore	Amiga	hardware	but
generalized	for	use	on	other	computers.	An	alternative	to	ILBM	would	be
appropriate	for	computers	with	true	color	data	in	each	pixel,	though	the
wealth	of	available	ILBM	images	makes	import	and	export	important.	[Ed.:
A	standard	for	24-bit	RGB,	8-bit	grayscale	and	32-bit	RGBA	is	described
in	Appendix	E.	End	ed.]

Reference:

"EA	IFF	85"	Standard	for	Interchange	Format	Files	describes	the
underlying	conventions	for	all	IFF	files.

Amiga®	is	a	registered	trademark	of	Commodore-Amiga,	Inc.
Electronic	Arts™	is	a	trademark	of	Electronic	Arts.
Macintosh™	is	a	trademark	licensed	to	Apple	Computer,	Inc.
MacPaint™	is	a	trademark	of	Apple	Computer,	Inc.

2.	Standard	Properties

ILBM	has	several	property	chunks	that	act	on	the	main	data	chunk.	The
required	property	BMHD	and	any	optional	properties	must	appear	before	any
BODY	chunk.	(Since	an	ILBM	has	only	one	BODY	chunk,	any	following
properties	would	be	superfluous.)	Any	of	these	properties	may	be	shared
over	a	LIST	of	FORMs	ILBM	by	putting	them	in	a	PROP	ILBM.	(See	the	EA	IFF	85
document.)

[Ed.:	BMHD	is	the	only	essential	property	chunk	for	ILBMs	used	with
LightWave.	For	broader	support	of	different	image	types,	you	may	also
want	to	support	CMAP	and	possibly	CAMG.	The	other	property	chunks	(and	CAMG)
have	Amiga-specific	semantics.	It's	also	safe	to	assume	that	you'll	never
encounter	PROPs.	End	ed.]

BMHD

The	required	property	BMHD	holds	a	BitMapHeader	as	defined	in	the
following	documentation.	It	describes	the	dimensions	of	the	image,	the
encoding	used,	and	other	data	necessary	to	understand	the	BODY	chunk	to
follow.

			typedef	UBYTE	Masking;		/*	Choice	of	masking	technique.	*/

			#define	mskNone			0

			#define	mskHasMask			1

			#define	mskHasTransparentColor			2

			#define	mskLasso		3

			typedef	UBYTE	Compression;				/*	Choice	of	compression	algorithm

						applied	to	the	rows	of	all	source	and	mask	planes.		"cmpByteRun1"

						is	the	byte	run	encoding	described	in	Appendix	C.		Do	not	compress

						across	rows!	*/

			#define	cmpNone			0

			#define	cmpByteRun1		1

			typedef	struct	{

						UWORD	w,	h;													/*	raster	width	&	height	in	pixels						*/

						WORD		x,	y;													/*	pixel	position	for	this	image								*/

						UBYTE	nPlanes;										/*	#	source	bitplanes																			*/

						Masking	masking;

						Compression	compression;

						UBYTE	pad1;													/*	unused;	ignore	on	read,	write	as	0			*/

						UWORD	transparentColor;	/*	transparent	"color	number"	(sort	of)	*/

						UBYTE	xAspect,	yAspect;	/*	pixel	aspect,	a	ratio	width	:	height	*/

						WORD		pageWidth,	pageHeight;		/*	source	"page"	size	in	pixels			*/

			}	BitMapHeader;

Fields	are	filed	in	the	order	shown.	The	UBYTE	fields	are	byte-packed
(the	C	compiler	must	not	add	pad	bytes	to	the	structure).

The	fields	w	and	h	indicate	the	size	of	the	image	rectangle	in	pixels.	Each
row	of	the	image	is	stored	in	an	integral	number	of	16	bit	words.	The
number	of	words	per	row	is	words=((w+15)/16)	or	Ceiling(w/16).	The	fields	x
and	y	indicate	the	desired	position	of	this	image	within	the	destination
picture.	Some	reader	programs	may	ignore	x	and	y.	A	safe	default	for
writing	an	ILBM	is	(x,	y)	=	(0,	0).

The	number	of	source	bitplanes	in	the	BODY	chunk	(see	below)	is	stored	in
nPlanes.	An	ILBM	with	a	CMAP	but	no	BODY	and	nPlanes	=	0	is	the	recommended
way	to	store	a	color	map.

Note:	Color	numbers	are	color	map	index	values	formed	by	pixels	in	the
destination	bitmap,	which	may	be	deeper	than	nPlanes	if	a	DEST	chunk	calls

for	merging	the	image	into	a	deeper	image.

The	field	masking	indicates	what	kind	of	masking	is	to	be	used	for	this
image.	The	value	mskNone	designates	an	opaque	rectangular	image.	The
value	mskHasMask	means	that	a	mask	plane	is	interleaved	with	the	bitplanes
in	the	BODY	chunk	(see	below).	[Ed.:	These	are	usually	the	only	masking
options	you'll	encounter.	End	ed.]	The	value	mskHasTransparentColor	indicates
that	pixels	in	the	source	planes	matching	transparentColor	are	to	be
considered	"transparent".	(Actually,	transparentColor	isn't	a	"color	number"
since	it's	matched	with	numbers	formed	by	the	source	bitmap	rather	than
the	possibly	deeper	destination	bitmap.	Note	that	having	a	transparent
color	implies	ignoring	one	of	the	color	registers.	See	CMAP,	below.)	The
value	mskLasso	indicates	the	reader	may	construct	a	mask	by	lassoing	the
image	as	in	MacPaint.	To	do	this,	put	a	1	pixel	border	of	transparentColor
around	the	image	rectangle.	Then	do	a	seed	fill	from	this	border.	Filled
pixels	are	to	be	transparent.

Issue:	Include	in	an	appendix	an	algorithm	for	converting	a	transparent
color	to	a	mask	plane,	and	maybe	a	lasso	algorithm.

A	code	indicating	the	kind	of	data	compression	used	is	stored	in
compression.	Beware	that	using	data	compression	makes	your	data
unreadable	by	programs	that	don't	implement	the	matching	decompression
algorithm.	So	we'll	employ	as	few	compression	encodings	as	possible.	The
run	encoding	byteRun1	is	documented	in	Appendix	C,	below.

The	field	pad1	is	a	pad	byte	reserved	for	future	use.	It	must	be	set	to	0	for
consistency.

The	transparentColor	specifies	which	bit	pattern	means	"transparent".	This
only	applies	if	masking	is	mskHasTransparentColor	or	mskLasso	(see	above).
Otherwise,	transparentColor	should	be	0	(see	above).

The	pixel	aspect	ratio	is	stored	as	a	ratio	in	the	two	fields	xAspect	and
yAspect.	This	may	be	used	by	programs	to	compensate	for	different	aspects
or	to	help	interpret	the	fields	w,	h,	x,	y,	pageWidth,	and	pageHeight,	which	are	in
units	of	pixels.	The	fraction	xAspect/yAspect	represents	a	pixel's
width/height.	It's	recommended	that	your	programs	store	proper	fractions
in	BitMapHeaders,	but	aspect	ratios	can	always	be	correctly	compared

with	the	test

			xAspect	*	yDesiredAspect	=	yAspect	*	xDesiredAspect

Typical	values	for	aspect	ratio	are	width	:	height	=	10	:	11	(Amiga	320	x
200	display)	and	1	:	1	(Macintosh).

The	size	in	pixels	of	the	source	"page"	(any	raster	device)	is	stored	in
pageWidth	and	pageHeight,	e.g.	(320,	200)	for	a	low	resolution	Amiga	display.
This	information	might	be	used	to	scale	an	image	or	to	automatically	set
the	display	format	to	suit	the	image.	Note	that	the	image	can	be	larger	than
the	page.

CMAP

The	optional	(but	encouraged)	property	CMAP	stores	color	map	data	as
triplets	of	red,	green,	and	blue	intensity	values.	The	n	color	map	entries
("color	registers")	are	stored	in	the	order	0	through	n-1,	totaling	3n	bytes.
Thus	n	is	the	ckSize/3.	Normally,	n	would	equal	2nPlanes.

A	CMAP	chunk	contains	a	ColorMap	array	as	defined	below.	Note	that	these
typedefs	assume	a	C	compiler	that	implements	packed	arrays	of	3-byte
elements.

			typedef	struct	{

						UBYTE	red,	green,	blue;							/*	color	intensities	0..255	*/

			}	ColorRegister;																	/*	size	=	3	bytes	*/

			typedef	ColorRegister	ColorMap[n];		/*	size	=	3n	bytes	*/

The	color	components	red,	green,	and	blue	represent	fractional	intensity
values	expressed	in	256ths	in	the	range	0	through	255	(e.g.,	24/256).
White	is	(255,	255,	255--i.e.,	hex	0xFF,	0xFF,	0xFF)	and	black	is	(0,	0,	0).
If	your	machine	has	less	color	resolution,	use	the	higher	order	color	bits
when	displaying	by	simply	shifting	the	CMAP	R,	G,	and	B	values	to	the	right.
When	writing	a	CMAP,	storage	of	less	than	8	bits	each	of	R,	G,	and	B	was
previously	accomplished	by	left	justifying	the	significant	bits	within	the
stored	bytes	(i.e.,	a	4-bit	per	gun	value	of	0xF,	0xF,	0xF	was	stored	as
0xF0,	0xF0,	0xF0).	This	provided	correct	color	values	when	the	ILBM	was
redisplayed	on	the	same	hardware	since	the	zeros	were	shifted	back	out.

However,	if	color	values	stored	by	the	above	method	were	used	as-is	when

redisplaying	on	hardware	with	more	color	resolution,	diminished	color
could	result.	For	example,	a	value	of	(0xF0,	0xF0,	0xF0)	would	be	pure
white	on	4-bit-per-gun	hardware	(i.e.,	0xF,	0xF,	0xF),	but	not	quite	white
(0xF0,	0xF0,	0xF0)	on	8-bit-per-gun	hardware.

Therefore,	when	storing	CMAP	values,	it	is	now	suggested	that	you	store	full
8	bit	values	for	R,	G,	and	B	which	correctly	scale	your	color	values	for
eight	bits.	For	4-bit	RGB	values,	this	can	be	as	simple	as	duplicating	the	4-
bit	values	in	both	the	upper	and	lower	parts	of	the	bytes--i.e.,	store	(0x1,
0x7,	0xF)	as	(0x11,	0x77,	0xFF).	This	will	provide	a	more	correct	color
rendition	if	the	image	is	displayed	on	a	device	with	8	bits	per	gun.

When	reading	in	a	CMAP	for	8-bit-per-gun	display	or	manipulation,	you	may
want	to	assume	that	any	CMAP	which	has	0	values	for	the	low	bits	of	all	guns
for	all	registers	was	stored	shifted	rather	than	scaled,	and	provide	your
own	scaling.	Use	defaults	if	the	color	map	is	absent	or	has	fewer	color
registers	than	you	need.	Ignore	any	extra	color	registers.

The	example	type	Color4	represents	the	format	of	a	color	register	in
working	memory	of	an	Amiga	computer,	which	has	4	bit	video	DACs.
(The	":4"	tells	the	C	compiler	to	pack	the	field	into	4	bits.)

			typedef	struct	{

						unsigned	pad1	:4,	red	:4,	green	:4,	blue	:4;

			}	Color4;			/*	Amiga	RAM	format.	Not	filed.	*/

Remember	that	every	chunk	must	be	padded	to	an	even	length,	so	a	color
map	with	an	odd	number	of	entries	would	be	followed	by	a	0	byte,	not
included	in	the	ckSize.

[Ed:	Information	on	storing	8-bit	grayscale,	24-bit	color,	and	32-bit	color
plus	alpha	ILBMs	can	be	found	in	Appendix	E.	End	ed.]

GRAB

The	optional	property	GRAB	locates	a	"handle"	or	"hotspot"	of	the	image
relative	to	its	upper	left	corner,	e.g.	when	used	as	a	mouse	cursor	or	a
"paint	brush".	A	GRAB	chunk	contains	a	Point2D.

			typedef	struct	{

						WORD	x,	y;		/*	relative	coordinates	(pixels)	*/

			}	Point2D;

DEST

The	optional	property	"DEST"	is	a	way	to	say	how	to	scatter	zero	or	more
source	bitplanes	into	a	deeper	destination	image.	Some	readers	may	ignore
DEST.

The	contents	of	a	DEST	chunk	is	a	DestMerge	structure:

			typedef	struct	{

						UBYTE	depth;						/*	#	bitplanes	in	the	original	source		*/

						UBYTE	pad1;							/*	unused;	for	consistency	put	0	here		*/

						UWORD	planePick;		/*	how	to	map	source	planes	into	destination	*/

						UWORD	planeOnOff;	/*	default	bitplane	data	for	planePick	*/

						UWORD	planeMask;		/*	selects	which	bitplanes	to	store	into	*/

			}	DestMerge;

The	low	order	depth	number	of	bits	in	planePick,	planeOnOff,	and	planeMask
correspond	one-to-one	with	destination	bitplanes.	Bit	0	with	bitplane	0,
etc.	(Any	higher	order	bits	should	be	ignored.)	"1"	bits	in	planePick	mean
"put	the	next	source	bitplane	into	this	bitplane",	so	the	number	of	"1"	bits
should	equal	nPlanes.	"0"	bits	mean	"put	the	corresponding	bit	from
planeOnOff	into	this	bitplane".	Bits	in	planeMask	gate	writing	to	the	destination
bitplane:	"1"	bits	mean	"write	to	this	bitplane"	while	"0"	bits	mean	"leave
this	bitplane	alone".	The	normal	case	(with	no	DEST	property)	is	equivalent
to	planePick	=	planeMask	=	2nPlanes	-	1.

Remember	that	color	numbers	are	formed	by	pixels	in	the	destination
bitmap	(depth	planes	deep)	not	in	the	source	bitmap	(nPlanes	planes	deep).

SPRT

The	presence	of	an	"SPRT"	chunk	indicates	that	this	image	is	intended	as	a
sprite.	It's	up	to	the	reader	program	to	actually	make	it	a	sprite,	if	even
possible,	and	to	use	or	overrule	the	sprite	precedence	data	inside	the	SPRT
chunk:

			typedef	UWORD	SpritePrecedence;

			/*	relative	precedence,	0	is	the	highest	*/

Precedence	0	is	the	highest,	denoting	a	sprite	that	is	foremost.

Creating	a	sprite	may	imply	other	setup.	E.g.	a	2	plane	Amiga	sprite	would
have	transparentColor	=	0.	Color	registers	1,	2,	and	3	in	the	CMAP	would	be

stored	into	the	correct	hardware	color	registers	for	the	hardware	sprite
number	used,	while	CMAP	color	register	0	would	be	ignored.

CAMG

A	CAMG	chunk	is	specifically	for	the	Commodore	Amiga	computer.	All
Amiga-based	reader	and	writer	software	should	deal	with	CAMG.	A	CAMG
chunk	contains	a	single	long	word	(length	=	4)	which	specifies	the	Amiga
display	mode	of	the	picture.

[Ed.:	The	Amiga	has	built-in	support	for	interpreting	the	bits	in	a	CAMG.
Most	of	them	are	only	meaningful	on	an	Amiga,	but	two	bits	in	the	low
word	directly	affect	the	interpretation	of	the	data	in	the	BODY	chunk.
Readers	that	attempt	to	support	all	ILBMs	should	test	for	these	bits	so	that
they	can	correctly	translate	the	BODY.	The	bits	are

			#define	CAMG_HAM	0x800			/*	hold	and	modify	*/

			#define	CAMG_EHB	0x80				/*	extra	halfbrite	*/

HAM	(hold-and-modify)	mode	allows	the	Amiga	to	display	12-bit	and	18-
bit	RGB	images	using	only	6	or	8	bits	per	pixel.	HAM	images	store	pixel
values	in	the	BODY	chunk	as	codes	that	are	divided	into	a	mode	in	the	high
two	bits	and	data	in	the	other	bits.	The	mode	bits	have	the	following
interpretation.

00	-	data	bits	are	an	index	into	the	CMAP	palette
01	-	data	bits	contain	the	blue	level
10	-	data	bits	contain	the	red	level
11	-	data	bits	contain	the	green	level

Unless	a	pixel	is	color-mapped	(mode	00),	only	one	of	its	three	RGB
levels	is	given	in	its	code.	The	other	two	are	assumed	to	be	the	same	as
those	for	the	pixel	to	its	left.	If	the	pixel	is	the	first	one	(the	leftmost)	in	a
scanline,	the	hold	color	is	assumed	to	be	(0,	0,	0).	The	number	of	data	bits
is	4	for	standard	HAM	and	6	for	HAM8,	and	the	corresponding
BitMapHeader	nPlanes	value	will	normally	be	6	or	8.

It	is	possible	for	the	mode	to	be	a	single	bit.	nPlanes	will	then	be	either	5	or
7.	The	single	bit	is	the	low	bit,	while	the	high	bit	is	assumed	to	be	0,
implying	that	only	the	blue	level	can	be	modified.	For	obvious	reasons,

this	is	rarely	if	ever	encountered.

As	described	in	the	CMAP	section,	the	data	bits	should	be	precision-extended
when	the	levels	are	decoded	to	24-bit.	Regardless	of	the	number	of	data
bits,	the	maximum	level	should	translate	to	255	at	8	bits	per	RGB	channel.

The	iff	SDK	sample,	which	reads	and	writes	IFF	ILBM	images,	includes
an	unHam	function	that	shows	how	the	BODY	data	for	a	HAM	image	can	be
translated	into	more	conventional	24-bit	RGB.

Extra-Halfbrite	is	another	Amiga	variant,	now	quite	rare.	EHBs	are	64-
color	pictures	with	32-color	palettes.	Colors	32	to	63	are	"half-bright"
versions	of	colors	0	to	31,	computed	by	bit	shifting	the	RGB	levels	right
by	one.	The	easiest	way	to	read	EHB	images	is	to	extend	the	color	table	to
include	colors	32	to	63	and	then	interpret	the	BODY	data	as	you	would	for
any	other	indexed	color	image.	End	ed.]

3.	Standard	Data	Chunk

Raster	Layout

Raster	scan	proceeds	left-to-right	(increasing	X)	across	scan	lines,	then
top-to-bottom	(increasing	Y)	down	columns	of	scan	lines.	The	coordinate
system	is	in	units	of	pixels,	where	(0,0)	is	the	upper	left	corner.

The	raster	is	typically	organized	as	bitplanes	in	memory.	The
corresponding	bits	from	each	plane,	taken	together,	make	up	an	index	into
the	color	map	which	gives	a	color	value	for	that	pixel.	The	first	bitplane,
plane	0,	is	the	low	order	bit	of	these	color	indexes.

A	scan	line	is	made	of	one	"row"	from	each	bitplane.	A	row	is	one	plane's
bits	for	one	scan	line,	but	padded	out	to	a	word	(2	byte)	boundary	(not
necessarily	the	first	word	boundary).	Within	each	row,	successive	bytes
are	displayed	in	order	and	the	most	significant	bit	of	each	byte	is	displayed
first.

[Ed:	A	conventional	indexed	color	display	stores	the	value	of	a	pixel	in	a
single	byte	(below,	left).	For	a	pixel	at	(x,	y),	the	memory	offset	from	the

start	of	an	image	w	pixels	wide	is	just	wy	+	x	(ignoring	any	scanline
padding),	and	the	value	stored	there	is	an	index	into	a	table	of	RGB	color
records.	In	an	ILBM,	the	bits	of	a	given	pixel	aren't	contiguous	in	memory.
They	are	instead	stored	in	separate	bitplanes,	each	of	which	contains	a
single	bit	from	a	given	pixel	(below,	right).

																																								plane	0:		10000011b

																																								plane	1:		00110010b

																																								plane	2:		10001001b

												pixel:		00111010b											plane	3:		11010100b

																																								plane	4:		01010111b

																																								plane	5:		10011010b

To	retrieve	a	pixel	value	(naïvely),	you	must	read	bytes	at	different
addresses	(six	of	them	in	the	above	example),	mask	off	all	but	one	bit	from
each	of	them,	and	string	the	bits	together.	For	the	pixel	at	(x,	y),	the	byte
offset	into	each	bitplane	is	(wy	+	x)	/	8,	and	the	bit	is	7	-	(x	mod	8).
Bitplane	n	contains	the	n-th	bit	of	the	pixel	value.	End	ed.]

A	"mask"	is	an	optional	"plane"	of	data	the	same	size	(w,	h)	as	a	bitplane.
It	tells	how	to	"cut	out"	part	of	the	image	when	painting	it	onto	another
image."One"	bits	in	the	mask	mean	"copy	the	corresponding	pixel	to	the
destination"	while	"zero"	mask	bits	mean	"leave	this	destination	pixel
alone".	In	other	words,	"zero"	bits	designate	transparent	pixels.

The	rows	of	the	different	bitplanes	and	mask	are	interleaved	in	the	file	(see
below).	This	localizes	all	the	information	pertinent	to	each	scan	line.	It
makes	it	much	easier	to	transform	the	data	while	reading	it	to	adjust	the
image	size	or	depth.	It	also	makes	it	possible	to	scroll	a	big	image	by
swapping	rows	directly	from	the	file	without	random-accessing	to	all	the
bitplanes.

BODY

The	source	raster	is	stored	in	a	BODY	chunk.	This	one	chunk	holds	all
bitplanes	and	the	optional	mask,	interleaved	by	row.

The	BitMapHeader,	in	a	BMHD	property	chunk,	specifies	the	raster's
dimensions	w,	h,	and	nPlanes.	It	also	holds	the	masking	field	which	indicates	if
there	is	a	mask	plane	and	the	compression	field	which	indicates	the
compression	algorithm	used.	This	information	is	needed	to	interpret	the
BODY	chunk,	so	the	BMHD	chunk	must	appear	first.	While	reading	an	ILBM's	BODY,

a	program	may	convert	the	image	to	another	size	by	filling	(with
transparentColor)	or	clipping.

The	BODY's	content	is	a	concatenation	of	scan	lines.	Each	scan	line	is	a
concatenation	of	one	row	of	data	from	each	plane	in	order	0	through
nPlanes-1	followed	by	one	row	from	the	mask	(if	masking	=	hasMask).	If	the
BitMapHeader	field	compression	is	cmpNone,	all	h	rows	are	exactly	(w+15)/16
words	wide.	Otherwise,	every	row	is	compressed	according	to	the
specified	algorithm	and	their	stored	widths	depend	on	the	data
compression.

Reader	programs	that	require	fewer	bitplanes	than	appear	in	a	particular
ILBM	file	can	combine	planes	or	drop	the	high-order	(later)	planes.
Similarly,	they	may	add	bitplanes	and/or	discard	the	mask	plane.

Do	not	compress	across	rows	and	don't	forget	to	compress	the	mask	just
like	the	bitplanes.	Remember	to	pad	any	BODY	chunk	that	contains	an	odd
number	of	bytes	and	skip	the	pad	when	reading.

4.	Nonstandard	Data	Chunks

The	following	data	chunks	were	defined	after	various	programs	began
using	FORM	ILBM	so	they	are	"nonstandard"	chunks.

CRNG

A	CRNG	chunk	contains	"color	register	range"	information.	It's	used	by
Electronic	Arts'	Deluxe	Paint	program	to	identify	a	contiguous	range	of
color	registers	for	a	"shade	range"	and	color	cycling.	There	can	be	zero	or
more	CRNG	chunks	in	an	ILBM,	but	all	should	appear	before	the	BODY	chunk.
Deluxe	Paint	normally	writes	4	CRNG	chunks	in	an	ILBM	when	the	user	asks	it
to	"Save	Picture".

			typedef	struct	{

						WORD		pad1;							/*	reserved	for	future	use;	store	0	here				*/

						WORD		rate;							/*	color	cycle	rate																									*/

						WORD		flags;						/*	see	below																																*/

						UBYTE	low,	high;		/*	lower	and	upper	color	registers	selected	*/

			}	CRange;

The	bits	of	the	flags	word	are	interpreted	as	follows:	if	the	low	bit	is	set

then	the	cycle	is	"active",	and	if	this	bit	is	clear	it	is	not	active.	Normally,
color	cycling	is	done	so	that	colors	move	to	the	next	higher	position	in	the
cycle,	with	the	color	in	the	high	slot	moving	around	to	the	low	slot.	If	the
second	bit	of	the	flags	word	is	set,	the	cycle	moves	in	the	opposite
direction.	As	usual,	the	other	bits	of	the	flags	word	are	reserved	for	future
expansion.	Here	are	the	masks	to	test	these	bits:

			#define	RNG_ACTIVE	1

			#define	RNG_REVERSE	2

The	fields	low	and	high	indicate	the	range	of	color	registers	(color	numbers)
selected	by	this	CRange.

The	field	rate	determines	the	speed	at	which	the	colors	will	step	when
color	cycling	is	on.	The	units	are	such	that	a	rate	of	60	steps	per	second	is
represented	as	214	=	16384.	Slower	rates	can	be	obtained	by	linear	scaling:
for	30	steps/second,	rate	=	8192;	for	1	step/second,	rate	=	16384	/	60,	or
273.

Warning!	One	popular	paint	package	always	sets	the	RNG_ACTIVE	bit,	but
uses	a	rate	of	36	(decimal)	to	indicate	cycling	is	not	active.

CCRT

Commodore's	Graphicraft	program	uses	a	similar	chunk	CCRT	(for	Color
Cyling	Range	and	Timing).	This	chunk	contains	a	CycleInfo	structure.

			typedef	struct	{

						WORD		direction;					/*		0	=	don't	cycle,	1	=	cycle	forwards,		*/

																											/*	-1	=	cycle	backwards																			*/

						UBYTE	start,	end;				/*	lower,	upper	color	registers	selected		*/

						LONG		seconds;							/*	#	seconds	between	changing	colors	plus	*/

						LONG		microseconds;		/*	#	microseconds	between	changing	colors	*/

						WORD		pad;											/*	reserved	for	future	use;	store	0	here		*/

			}	CycleInfo;

This	is	very	similar	to	a	CRNG	chunk.	A	program	would	probably	only	use
one	of	these	two	methods	of	expressing	color	cycle	data.	New	programs
should	use	CRNG.	You	could	write	out	both	if	you	want	to	communicate	this
information	to	both	Deluxe	Paint	and	Graphicraft.

Appendix	A.	ILBM	Regular	Expression

Here's	a	regular	expression	summary	of	the	FORM	ILBM	syntax.	This	could	be
an	IFF	file	or	a	part	of	one.

			ILBM	::=	"FORM"	#{			"ILBM"	BMHD	[CMAP]	[GRAB]	[DEST]	[SPRT]	[CAMG]

																								CRNG*	CCRT*	[BODY]			}

			BMHD	::=	"BMHD"	#{			BitMapHeader			}

			CMAP	::=	"CMAP"	#{			(red	green	blue)*	}	[0]

			GRAB	::=	"GRAB"	#{			Point2D		}

			DEST	::=	"DEST"	#{			DestMerge			}

			SPRT	::=	"SPRT"	#{			SpritePrecendence	}

			CAMG	::=	"CAMG"	#{			LONG		}

			CRNG	::=	"CRNG"	#{			CRange			}

			CCRT	::=	"CCRT"	#{			CycleInfo			}

			BODY	::=	"BODY"	#{			UBYTE*			}	[0]

The	token	"#"	represents	a	ckSize	LONG	count	of	the	following	{braced}
data	bytes.	E.g.	a	BMHD's	"#"	should	equal	sizeof(BitMapHeader).	Literal	strings
are	shown	in	"quotes",	[square	bracket	items]	are	optional,	and	"*"	means
0	or	more	repetitions.	A	sometimes-needed	pad	byte	is	shown	as	"[0]".

The	property	chunks	(BMHD,	CMAP,	GRAB,	DEST,	SPRT,	and	CAMG)	and	any	CRNG	and
CCRT	data	chunks	may	actually	be	in	any	order	but	all	must	appear	before
the	BODY	chunk	since	ILBM	readers	usually	stop	as	soon	as	they	read	the	BODY.
If	any	of	the	6	property	chunks	are	missing,	default	values	are	inherited
from	any	shared	properties	(if	the	ILBM	appears	inside	an	IFF	LIST	with
PROPs)	or	from	the	reader	program's	defaults.	If	any	property	appears	more
than	once,	the	last	occurrence	before	the	BODY	is	the	one	that	counts	since
that's	the	one	that	modifies	the	BODY.

Appendix	B.	ILBM	Box	Diagram

Here's	a	box	diagram	for	a	simple	example:	an	uncompressed	image	320	x
200	pixels	x	3	bitplanes.	The	text	to	the	right	of	the	diagram	shows	the
outline	that	would	be	printed	by	the	IFFCheck	utility	program	for	this
particular	file.

'FORM'	24070
'ILBM'
	
'BMHD'	20	
320,	200,	0,	0,	3,	0,	0,	...

FORM	24070	ILBM

	
.BMHD	20	
	
.CMAP	21	

'CMAP'	21	
0,	0,	0;	32,	0,	0;	64,	0,	0	...

0

'BODY'	24000	
0,	0,	0,	...

	

	

.BODY	24000	
	

The	"0"	after	the	CMAP	chunk	is	a	pad	byte.

Appendix	C.	ByteRun1	Run	Encoding

The	run	encoding	scheme	byteRun1	is	best	described	by	psuedo	code	for	the
decoder	Unpacker	(called	UnPackBits	in	the	Macintosh	toolbox):

			UnPacker:

						LOOP	until	produced	the	desired	number	of	bytes

									Read	the	next	source	byte	into	n

									SELECT	n	FROM

												[0..127]	=>	copy	the	next	n+1	bytes	literally

												[-1..-127]		=>	replicate	the	next	byte	-n+1	times

												-128		=>	noop

												ENDCASE;

									ENDLOOP;

In	the	inverse	routine	Packer,	it's	best	to	encode	a	2	byte	repeat	run	as	a
replicate	run	except	when	preceded	and	followed	by	a	literal	run,	in	which
case	it's	best	to	merge	the	three	into	one	literal	run.	Always	encode	3	byte
repeats	as	replicate	runs.

Remember	that	each	row	of	each	scan	line	of	a	raster	is	separately	packed.

[Ed:	Some	versions	of	Adobe	Photoshop	incorrectly	use	the	n=128	no-op	as
a	repeat	code,	which	breaks	strictly	conforming	readers.	To	read
Photoshop	ILBMs,	allow	the	use	of	n=128	as	a	repeat.	This	is	pretty	safe,	since
no	known	program	writes	real	no-ops	into	their	ILBMs.	The	reason	n=128	is	a
no-op	is	historical:	the	Mac	Packbits	buffer	was	only	128	bytes,	and	a
repeat	code	of	128	generates	129	bytes.	End	ed.]

Appendix	D.	Standards	Committee

The	following	people	contributed	to	the	design	of	this	FORM	ILBM	standard:

Bob	"Kodiak"	Burns,	Commodore-Amiga
R.	J.	Mical,	Commodore-Amiga
Jerry	Morrison,	Electronic	Arts
Greg	Riker,	Electronic	Arts
Steve	Shaw,	Electronic	Arts
Dan	Silva,	Electronic	Arts
Barry	Walsh,	Commodore-Amiga

Appendix	E.	IFF	Hints

Hints	on	ILBM	files	from	Jerry	Morrison,	Oct	1988.	How	to	avoid	some
pitfalls	when	reading	ILBM	files:

Don't	ignore	the	BitMapHeader	masking	field.	A	bitmap	with	a	mask
(such	as	a	partially	transparent	DPaint	brush	or	a	DPaint	picture	with
a	stencil)	will	read	as	garbage	if	you	don't	de-interleave	the	mask.
Don't	assume	all	images	are	compressed.	Narrow	images	aren't
usually	run-compressed	since	that	would	actually	make	them	longer.
Don't	assume	a	particular	image	size.	You	may	encounter	overscan
pictures	and	PAL	pictures.

Different	hardware	display	devices	have	different	color	resolutions:

Device R:G:B	bits maxColor
Mac	SE 1 1
IBM	EGA 2:2:2 3
Atari	ST 3:3:3 7
Amiga 4:4:4 15
CD-I 5:5:5 31
IBM	VGA 6:6:6 63
Mac	II 8:8:8 255

An	ILBM	CMAP	defines	8	bits	of	Red,	Green	and	Blue	(i.e.,	8:8:8	bits	of
R:G:B).	When	displaying	on	hardware	which	has	less	color	resolution,	just
take	the	high	order	bits.	For	example,	to	convert	ILBM's	8-bit	Red	to	the
Amiga's	4-bit	Red,	right	shift	the	data	by	4	bits	(R4	:=	R8	>>	4).

To	convert	hardware	colors	to	ILBM	colors,	the	ILBM	specification	says	just

set	the	high	bits	(R8	:=	R4	<<	4).	But	you	can	transmit	higher	contrast	to
foreign	display	devices	by	scaling	the	data	[0..maxColor]	to	the	full	range
[0..255].	In	other	words,	R8	:=	(Rn	x	255)	/	maxColor.	(Example	#1:	EGA
color	1:2:3	scales	to	85:170:255.	Example	#2:	Amiga	15:7:0	scales	to
255:119:0).	This	makes	a	big	difference	where	macColor	is	less	than	15.
In	the	extreme	case,	Mac	SE	white	(1)	should	be	converted	to	ILBM	white
(255),	not	to	ILBM	gray	(128).

CGA	and	EGA	subtleties

IBM	EGA	colors	in	350	scan	line	mode	are	2:2:2	bits	of	R:G:B,	stored	in
memory	as	xxR'G'B'RGB.	That's	3	low-order	bits	followed	by	3	high-
order	bits.

IBM	CGA	colors	are	4	bits	stored	in	a	byte	as	xxxxIRGB.	(EGA	colors	in
200	scan	line	modes	are	the	same	as	CGA	colors,	but	stored	in	memory	as
xxxIxRGB.)	That's	3	high-order	bits	(one	for	each	of	R,	G,	and	B)	plus
one	low-order	"Intensity"	bit	for	all	3	components	R,	G,	and	B.	Exception:
IBM	monitors	show	IRGB	=	0110	as	brown,	which	is	really	the	EGA
color	R:G:B	=	2:1:0,	not	dark	yellow	2:2:0.

24-bit	ILBMs

When	storing	deep	images	as	ILBMs	(e.g.,	images	with	8	bits	each	of	R,	G,
and	B),	the	bits	for	each	pixel	represent	an	absolute	RGB	value	for	that
pixel	rather	than	an	index	into	a	limited	color	map.	The	order	for	saving
the	bits	is	critical	since	a	deep	ILBM	would	not	contain	the	usual	CMAP	of
RGB	values	(such	a	CMAP	would	be	too	large	and	redundant).

To	interpret	these	"deep"	ILBMs,	it	is	necessary	to	have	a	standard	order	in
which	the	bits	of	the	R,	G,	and	B	values	will	be	stored.	A	number	of
different	orderings	have	already	been	used	in	deep	ILBMs	and	a	default	has
been	chosen	from	them.

The	following	bit	ordering	has	been	chosen	as	the	default	bit	ordering	for
deep	ILBMs.

			Default	standard	deep	ILBM	bit	ordering:

			saved	first	--->	saved	last

			R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	B1	B2	B3	B4	B5	B6	B7

[Ed.:	Recall	from	Section	3	that	the	bits	representing	the	value	at	a	given
pixel	are	divided	into	separate	bitplanes.	A	24-bit	RGB	image	uses	24
bitplanes.	Also	recall	that	images	are	stored	in	the	BODY	one	complete
scanline	at	a	time,	so	one	row	from	each	of	the	24	bitplanes	is	written
before	moving	to	the	next	scanline.	For	each	scanline,	the	red	bitplane
rows	are	stored	first,	followed	by	green	and	blue.	The	first	plane	holds	the
least	significant	bit	of	the	red	value	for	each	pixel,	and	the	last	holds	the
most	significant	bit	of	the	blue	value.

8-bit	Grayscale

The	original	standard	doesn't	prescribe	the	form	of	an	8-bit	grayscale
image,	but	we	can	infer	one	from	the	convention	for	24-bit	color.
Grayscale	images	also	lack	a	CMAP,	and	their	bitplanes	are	saved	in	least	to
most	significant	bit	order.

			Grayscale	ILBM	bit	ordering:

			saved	first	----->	last

			I0	I1	I2	I3	I4	I5	I6	I7

Some	programs	fail	to	recognize	8-bit	ILBMs	with	no	color	table.	For
maximum	portability,	ILBM	writers	can	include	a	CMAP	containing	256	entries,
with	the	RGB	levels	ranging	from	(0,	0,	0)	for	the	first	entry	to	(255,	255,
255)	for	the	last.	Strictly	speaking,	this	creates	an	indexed	color	image	in
which	all	of	the	colors	happen	to	be	shades	of	gray,	but	this	distinction
may	not	make	any	difference	in	practice.

32-bit	RGB	plus	Alpha

A	more	recent	(and	much	less	widely	supported)	extension	of	the	standard
is	the	32-bit	RGBA.	This	adds	an	8-bit	grayscale	alpha	image	to	the	red,
green	and	blue	stored	in	24-bit	ILBMs.	The	alpha	bitplanes	are	stored	after
the	R,	G	and	B	planes	for	each	scanline.

			32-bit	RGBA	ILBM	bit	ordering:

			saved	first	----------------------------------->	last

			R0	...	R7	G0	...	G7	B0	...	B7	A0	A1	A2	A3	A4	A5	A6	A7

End	ed.]

Object	Files

November	9,	2001

This	document	describes	the	LWO2	file	format	for	3D	objects	used	by
LightWave.	The	LWO2	format	is	new	for	LightWave	6.0.	Also	see	the
Object	File	Examples	supplement.

Introduction
Data	Types
Chunks
Envelope	Subchunks
Clip	Subchunks
Surface	Subchunks

Basic	Surface	Parameters
Surface	Blocks

Ordinal	Strings
Block	Headers
Texture	Mapping
Image	Maps
Procedurals
Gradients
Shaders

Chunk	Index

Introduction

The	data	in	LightWave	3D	object	files	comprise	the	points,	polygons	and
surfaces	that	describe	the	geometry	and	appearance	of	an	object.
"Polygons"	here	means	any	of	several	geometric	elements	(faces,	curves
or	patches,	for	example)	defined	by	an	ordered	list	of	points,	and
"surfaces"	refers	to	the	collection	of	attributes,	sometimes	called	materials,
that	define	the	visual	surface	properties	of	polygons.

Object	files	can	contain	multiple	layers,	or	parts,	and	each	part	can	be	a
single	connected	mesh	or	several	disjoint	meshes.	They	may	also	contain
one	or	more	surface	definitions	with	no	points	or	polygons	at	all.	Surface

definitions	can	include	references	to	other	files	(images,	for	example),
plug-ins,	and	envelopes	containing	parameter	values	that	vary	over	time.

This	document	outlines	the	object	file	format	and	provides	a	detailed
reference	for	each	of	the	components.	The	component	descriptions	include
both	a	regular	expression	defining	the	syntax	and	a	discussion	of	the
contents.	See	also	the	Examples	supplement,	a	more	conversational
introduction	to	the	format	that	includes	annotated	listings	of	file	contents
as	well	as	several	sample	files.

Data	Types

The	atomic,	or	lowest-level,	types	used	in	object	files	are	listed	below.	All
of	these	are	written	in	a	byte	order	variously	called	big-endian,	Motorola,
or	network	order,	with	the	most	significant	byte	written	first.	The
shorthand	names	(I2,	F4,	etc.)	will	be	used	throughout	this	document.

ID	Tag
ID4
An	ID	tag	is	a	sequence	of	4	bytes	containing	7-bit	ASCII	values,
usually	upper-case	printable	characters.	These	tags	are	used	to
identify	the	data	that	follows.	FORM,	SURF,	POLS,	and	LWO2	are	all	examples
of	ID	tags.	ID	tags	can	be	interpreted	as	unsigned	integers	for
comparison	purposes.

Signed	Integer
I1,	I2,	I4

Unsigned	Integer
U1,	U2,	U4
Integers	can	be	signed	or	unsigned	and	1,	2	or	4	bytes	in	length.
Signed	integers	are	two's	complement.

Float
F4
4-byte	IEEE	floating-point	values.

String
S0
Names	or	other	character	strings	are	written	as	a	series	of	ASCII

character	values	followed	by	a	zero	(or	null)	byte.	If	the	length	of	the
string	including	the	null	terminating	byte	is	odd,	an	extra	null	is
added	so	that	the	data	that	follows	will	begin	on	an	even	byte
boundary.

Several	useful	composite	datatypes	are	built	from	these	fundamental	types.

Variable-length	Index
VX	::=	index[U2]	|	(index	+	0xFF000000)[U4]

This	is	an	index	into	an	array	of	items	(points	or	polygons),	or	a
collection	of	items	each	uniquely	identified	by	an	integer	(clips	or
envelopes).	A	VX	is	written	as	a	variable	length	2-	or	4-byte	element.
If	the	index	value	is	less	than	65,280	(0xFF00),	then	the	index	is
written	as	an	unsigned	two-byte	integer.	Otherwise	the	index	is
written	as	an	unsigned	four	byte	integer	with	bits	24-31	set.	When
reading	an	index,	if	the	first	byte	encountered	is	255	(0xFF),	then	the
four-byte	form	is	being	used	and	the	first	byte	should	be	discarded	or
masked	out.

Color
COL12	::=	red[F4],	green[F4],	blue[F4]

A	color	is	written	as	a	triple	of	floats	representing	the	levels	of	red,
green	and	blue.	The	nominal	level	range	is	[0.0,	1.0],	but	values
outside	this	range	are	also	possible.

Coordinate
VEC12	::=	X[F4],	Y[F4],	Z[F4]

3D	coordinates	are	written	as	an	XYZ	vector	in	floating	point	format.
The	values	are	distances	along	the	X,	Y,	and	Z	axes.

Percentage
FP4	::=	fraction[F4]

Percentages	are	written	as	floats,	with	1.0	representing	100%.

Angle
ANG4	::=	radians[F4]

Angles	are	specified	as	floating	point	values	in	radians.

Filename
FNAM0	::=	name[S0]

Filenames	are	written	as	strings	in	a	platform-neutral	format.	For

absolute	(fully	qualified)	paths,	the	first	node	represents	a	disk	or
similar	storage	device,	and	its	name	is	separated	from	the	rest	of	the
path	by	a	colon.	Other	nodes	in	the	path	are	separated	by	forward
slashes.	disk:path/file	is	an	absolute	path,	and	path/subpath/file	is	a
relative	path.

Chunks

The	object	file	format	is	derived	from	the	metaformat	for	binary	files
described	in	"EA	IFF	85	Standard	for	Interchange	Format	Files."	The
basic	structural	element	in	an	IFF	file	is	the	chunk.	A	chunk	consists	of	an
ID	tag,	a	size,	and	size	bytes	of	data.	If	the	size	is	odd,	the	chunk	is
followed	by	a	0	pad	byte,	so	that	the	next	chunk	begins	on	an	even	byte
boundary.	(The	pad	byte	isn't	counted	in	the	size.)

CHUNK	::=	tag[ID4],	length[U4],	data[...],	pad[U1]	?

Within	some	chunks,	object	files	use	subchunks,	which	are	just	like
chunks	except	that	the	size	is	a	2-byte	integer.

SUB-CHUNK	::=	tag[ID4],	length[U2],	data[...],	pad[U1]	?

In	this	document,	chunks	will	be	written	as	a	chunk	ID	followed	by	a	data
description	inside	curly	brackets:	ID-tag	{	data	}.	Given	this	notation,	we
can	say	formally	that	an	object	file	is	a	FORM	chunk	of	type	LWO2.

file	::=	FORM	{	'LWO2'[ID4],	data[CHUNK]	*	}

Informally,	object	files	start	with	the	four	bytes	"FORM"	followed	by	a	four-
byte	integer	giving	the	length	of	the	file	(minus	8)	and	the	four	byte	ID
"LWO2".	The	remainder	of	the	data	is	a	collection	of	chunks,	some	of	which
will	contain	subchunks.

To	be	read,	IFF	files	must	be	parsed.	The	order	in	which	chunks	can	occur
in	a	file	isn't	fixed.	Some	chunks,	however,	contain	data	that	depends	on
the	contents	of	other	chunks,	and	this	fixes	a	relative	order	for	the	chunks
involved.	Chunks	and	subchunks	also	depend	on	context	for	their
meaning.	The	CHAN	subchunk	in	an	envelope	chunk	isn't	the	same	thing	as
the	CHAN	subchunk	in	a	surface	block.	And	you	may	encounter	chunks	that
aren't	defined	here,	which	you	should	be	prepared	to	skip	gracefully	if	you

don't	understand	them.	You	can	do	this	by	using	the	chunk	size	to	seek	to
the	next	chunk.

The	following	is	a	list	of	the	defined	chunks	that	can	be	found	in	an	object
file.	Full	descriptions	of	the	contents	of	ENVL,	CLIP	and	SURF	chunks	are
deferred	to	sections	that	follow	the	chunk	list	and	comprise	the	remainder
of	this	document.

Layer
LAYR	{	number[U2],	flags[U2],	pivot[VEC12],	name[S0],	parent[U2]	?	}

Signals	the	start	of	a	new	layer.	All	the	data	chunks	which	follow	will
be	included	in	this	layer	until	another	layer	chunk	is	encountered.	If
data	is	encountered	before	a	layer	chunk,	it	goes	into	an	arbitrary
layer.	If	the	least	significant	bit	of	flags	is	set,	the	layer	is	hidden.	The
parent	index	indicates	the	default	parent	for	this	layer	and	can	be	-1
or	missing	to	indicate	no	parent.

Point	List
PNTS	{	point-location[VEC12]	*	}

Lists	(x,	y,	z)	coordinate	triples	for	a	set	of	points.	The	number	of
points	in	the	chunk	is	just	the	chunk	size	divided	by	12.	The	PNTS
chunk	must	precede	the	POLS,	VMAP	and	VMAD	chunks	that	refer	to	it.
These	chunks	list	points	using	a	0-based	index	into	PNTS.

The	LightWave	coordinate	system	is	left-handed,	with	+X	to	the	right
or	east,	+Y	upward,	and	+Z	forward	or	north.	Object	files	don't
contain	explicit	units,	but	by	convention	the	unit	is	meters.
Coordinates	in	PNTS	are	relative	to	the	pivot	point	of	the	layer.

Vertex	Mapping
VMAP	{	type[ID4],	dimension[U2],	name[S0],

(vert[VX],	value[F4]	#	dimension)*	}

Associates	a	set	of	floating-point	vectors	with	a	set	of	points.	VMAPs
begin	with	a	type,	a	dimension	(vector	length)	and	a	name.	These	are
followed	by	a	list	of	vertex/vector	pairs.	The	vertex	is	given	as	an
index	into	the	most	recent	PNTS	chunk,	in	VX	format.	The	vector
contains	dimension	floating-point	values.	There	can	be	any	number	of
these	chunks,	but	they	should	all	have	different	types	or	names.

Some	common	type	codes	are

PICK
Selection	set.	This	is	a	VMAP	of	dimension	0	that	marks
points	for	quick	selection	by	name	during	modeling.	It	has
no	effect	on	the	geometry	of	the	object.

WGHT
Weight	maps	have	a	dimension	of	1	and	are	generally	used
to	alter	the	influence	of	deformers	such	as	bones.	Weights
can	be	positive	or	negative,	and	the	default	weight	for
unmapped	vertices	is	0.0.

MNVW
Subpatch	weight	maps	affect	the	shape	of	geometry	created
by	subdivision	patching.

TXUV
UV	texture	maps	have	a	dimension	of	2.

RGB,	RGBA

Color	maps,	with	a	dimension	of	3	or	4.
MORF

These	contain	vertex	displacement	deltas.
SPOT

These	contain	absolute	vertex	displacements	(alternative
vertex	positions).

Other	widely	used	map	types	will	almost	certainly	appear	in	the
future.

Polygon	List
POLS	{	type[ID4],	(numvert+flags[U2],	vert[VX]	#	numvert)*	}

A	list	of	polygons	for	the	current	layer.	Possible	polygon	types
include:

FACE
"Regular"	polygons,	the	most	common.

CURV
Catmull-Rom	splines.	These	are	used	during	modeling	and
are	currently	ignored	by	the	renderer.

PTCH
Subdivision	patches.	The	POLS	chunk	contains	the	definition

of	the	control	cage	polygons,	and	the	patch	is	created	by
subdividing	these	polygons.	The	renderable	geometry	that
results	from	subdivision	is	determined	interactively	by	the
user	through	settings	within	LightWave.	The	subdivision
method	is	undocumented.

MBAL
Metaballs.	These	are	single-point	polygons.	The	points	are
associated	with	a	VMAP	of	type	MBAL	that	contains	the	radius	of
influence	of	each	metaball.	The	renderable	polygonal
surface	constructed	from	a	set	of	metaballs	is	inferred	as	an
isosurface	on	a	scalar	field	derived	from	the	sum	of	the
influences	of	all	of	the	metaball	points.

BONE
Line	segments	representing	the	object's	skeleton.	These	are
converted	to	bones	for	deformation	during	rendering.

Each	polygon	is	defined	by	a	vertex	count	followed	by	a	list	of
indexes	into	the	most	recent	PNTS	chunk.	The	maximum	number	of
vertices	is	1023.	The	6	high-order	bits	of	the	vertex	count	are	flag	bits
with	different	meanings	for	each	polygon	type.	(Currently	only	two
flags	are	defined:	the	low	two	bits	are	continuity	control	point	toggles
for	CURV	polygons.	Other	flags	may	be	defined	in	the	future.)	When
reading	POLS,	remember	to	mask	out	the	flags	to	obtain	numverts.

When	writing	POLS,	the	vertex	list	for	each	polygon	should	begin	at	a
convex	vertex	and	proceed	clockwise	as	seen	from	the	visible	side	of
the	polygon.	LightWave	polygons	are	single-sided	(although	double-
sidedness	is	a	possible	surface	property),	and	the	normal	is	defined	as
the	cross	product	of	the	first	and	last	edges.

Tag	Strings
TAGS	{	tag-string[S0]	*	}

Lists	the	tag	strings	that	can	be	associated	with	polygons	by	the	PTAG
chunk.

Polygon	Tag	Mapping
PTAG	{	type[ID4],	(poly[VX],	tag[U2])*	}

Associates	tags	of	a	given	type	with	polygons	in	the	most	recent	POLS

chunk.	The	most	common	polygon	tag	types	are

SURF
The	surface	assigned	to	the	polygon.	The	actual	surface
attributes	are	found	by	matching	the	name	in	the	TAGS	chunk
with	the	name	in	a	SURF	chunk.

PART
The	part	the	polygon	belongs	to.	Parts	are	named	groups	of
polygons	analogous	to	point	selection	sets	(but	a	polygon
can	belong	to	only	one	part).

SMGP
The	smoothing	group	the	polygon	belongs	to.	Shading	is
only	interpolated	within	a	smoothing	group,	not	across
groups.

The	polygon	is	identified	by	an	index	into	the	previous	POLS	chunk,
and	the	tag	is	given	by	an	index	into	the	previous	TAGS	chunk.	Not	all
polygons	will	have	a	value	for	every	tag	type.	The	behavior	for
polygons	lacking	a	given	tag	depends	on	the	type.

Discontinuous	Vertex	Mapping
VMAD	{	type[ID4],	dimension[U2],	name[S0],

(vert[VX],	poly[VX],	value[F4]	#	dimension)*	}

(Introduced	with	LightWave	6.5.)	Associates	a	set	of	floating-point
vectors	with	the	vertices	of	specific	polygons.	VMADs	are	similar	to
VMAPs,	but	they	assign	vectors	to	polygon	vertices	rather	than	points.
For	a	given	mapping,	a	VMAP	always	assigns	only	one	vector	to	a	point,
while	a	VMAD	can	assign	as	many	vectors	to	a	point	as	there	are
polygons	sharing	the	point.

The	motivation	for	VMADs	is	the	problem	of	seams	in	UV	texture
mapping.	If	a	UV	map	is	topologically	equivalent	to	a	cylinder	or	a
sphere,	a	seam	is	formed	where	the	opposite	edges	of	the	map	meet.
Interpolation	of	UV	coordinates	across	this	discontinuity	is
aesthetically	and	mathematically	incorrect.	The	VMAD	substitutes	an
equivalent	mapping	that	interpolates	correctly.	It	only	needs	to	do	this
for	polygons	in	which	the	seam	lies.

VMAD	chunks	are	paired	with	VMAPs	of	the	same	name,	if	they	exist.	The

vector	values	in	the	VMAD	will	then	replace	those	in	the	corresponding
VMAP,	but	only	for	calculations	involving	the	specified	polygons.	When
the	same	points	are	used	for	calculations	on	polygons	not	specified	in
the	VMAD,	the	VMAP	values	are	used.

VMADs	need	not	be	associated	with	a	VMAP.	They	can	also	be	used	simply
to	define	a	(discontinuous)	per-polygon	mapping.	But	not	all
mapping	types	are	valid	for	VMADs,	since	for	some	types	it	makes	no
sense	for	points	to	have	more	than	one	map	value.	TXUV,	RGB,	RGBA	and
WGHT	types	are	supported	for	VMADs,	for	example,	while	MORF	and	SPOT	are
not.	VMADs	of	unsupported	types	are	preserved	but	never	evaluated.

Envelope	Definition
ENVL	{	index[VX],	attributes[SUB-CHUNK]	*	}

An	array	of	keys.	Each	ENVL	chunk	defines	the	value	of	a	single
parameter	channel	as	a	function	of	time.	The	index	is	used	to	identify
this	envelope	uniquely	and	can	have	any	non-zero	value	less	than
0x1000000.	Following	the	index	is	a	collection	of	subchunks	that
describe	the	envelope.	These	are	documented	below,	in	the	Envelope
Subchunks	section.

Image	or	Image	Sequence
CLIP	{	index[U4],	attributes[SUB-CHUNK]	*	}

Describes	an	image	or	a	sequence	of	images.	Surface	definitions
specify	images	by	referring	to	CLIP	chunks.	The	term	"clip"	is	used	to
describe	these	because	they	can	be	numbered	sequences	or
animations	as	well	as	stills.	The	index	identifies	this	clip	uniquely
and	may	be	any	non-zero	value	less	than	0x1000000.	The	filename
and	any	image	processing	modifiers	follow	as	a	variable	list	of
subchunks,	which	are	documented	below	in	the	Clip	Subchunks
section.

Surface	Definition
SURF	{	name[S0],	source[S0],	attributes[SUB-CHUNK]	*	}

Describes	the	shading	attributes	of	a	surface.	The	name	uniquely
identifies	the	surface.	This	is	the	string	that's	stored	in	TAGS	and
referenced	by	tag	index	in	PTAG.	If	the	source	name	is	non-null,	then
this	surface	is	derived	from,	or	composed	with,	the	source	surface.

The	base	attributes	of	the	source	surface	can	be	overridden	by	this
surface,	and	texture	blocks	can	be	added	to	the	source	surface.	The
material	attributes	follow	as	a	variable	list	of	subchunks	documented
below	in	the	Surface	Subchunks	section.

Bounding	Box
BBOX	{	min[VEC12],	max[VEC12]	}

Store	the	bounding	box	for	the	vertex	data	in	a	layer.	Optional.	The
min	and	max	vectors	are	the	lower	and	upper	corners	of	the	bounding
box.

Description	Line
DESC	{	description-line[S0]	}

Store	an	object	description.	Optional.	This	should	be	a	simple	line	of
upper	and	lowercase	characters,	punctuation	and	spaces	which
describes	the	contents	of	the	object	file.	There	should	be	no	control
characters	in	this	text	string	and	it	should	generally	be	kept	short.

Commentary	Text
TEXT	{	comment[S0]	}

Store	comments	about	the	object.	Optional.	The	text	is	just	like	the
DESC	chunk,	but	it	can	be	about	any	subject,	it	may	contain	newline
characters	and	it	does	not	need	to	be	particularly	short.

Thumbnail	Icon	Image
ICON	{	encoding[U2],	width[U2],	data[U1]	*	}

An	iconic	or	thumbnail	image	for	the	object	which	can	be	used	when
viewing	the	file	in	a	browser.	Currently	the	only	suported	encoding	is	0,
meaning	uncompressed	RGB	byte	triples.	The	width	is	the	number	of
pixels	in	each	row	of	the	image,	and	the	height	(number	of	rows)	is
(chunkSize	-	4)/width.	This	chunk	is	optional.

Envelope	Subchunks

The	ENVL	chunk	contains	a	series	of	subchunks	describing	the	keyframes,
intervals	and	global	attributes	of	a	single	envelope.	Note	that	the	PRE,	KEY
and	TCB	IDs	each	include	a	trailing	space	when	written	in	the	file.

Envelope	Type
TYPE	{	user-format[U1],	type[U1]	}

The	type	subchunk	records	the	format	in	which	the	envelope	is
displayed	to	the	user	and	a	type	code	that	identifies	the	components
of	certain	predefined	envelope	triples.	The	user	format	has	no	effect
on	the	actual	values,	only	the	way	they're	presented	in	LightWave's
interface.

02	-	Float
03	-	Distance
04	-	Percent
05	-	Angle

The	predefined	envelope	types	include	the	following.

01,	02,	03	-	Position:	X,	Y,	Z
04,	05,	06	-	Rotation:	Heading,	Pitch,	Bank
07,	08,	09	-	Scale:	X,	Y,	Z
0A,	0B,	0C	-	Color:	R,	G,	B
0D,	0E,	0F	-	Falloff:	X,	Y,	Z

Pre-Behavior
PRE	{	type[U2]	}

The	pre-behavior	for	an	envelope	defines	the	signal	value	for	times
before	the	first	key.	The	type	code	selects	one	of	several	predefined
behaviors.

0	-	Reset
Sets	the	value	to	0.0.

1	-	Constant
Sets	the	value	to	the	value	at	the	nearest	key.

2	-	Repeat
Repeats	the	interval	between	the	first	and	last	keys	(the
primary	interval).

3	-	Oscillate
Like	Repeat,	but	alternating	copies	of	the	primary	interval
are	time-reversed.

4	-	Offset	Repeat

Like	Repeat,	but	offset	by	the	difference	between	the
values	of	the	first	and	last	keys.

5	-	Linear
Linearly	extrapolates	the	value	based	on	the	tangent	at	the
nearest	key.

Post-Behavior
POST	{	type[U2]	}

The	post-behavior	determines	the	signal	value	for	times	after	the	last
key.	The	type	codes	are	the	same	as	for	pre-behaviors.

Keyframe	Time	and	Value
KEY	{	time[F4],	value[F4]	}

The	value	of	the	envelope	at	the	specified	time	in	seconds.	The	signal
value	between	keyframes	is	interpolated.	The	time	of	a	keyframe	isn't
restricted	to	integer	frames.

Interval	Interpolation
SPAN	{	type[ID4],	parameters[F4]	*	}

Defines	the	interpolation	between	the	most	recent	KEY	chunk	and	the
KEY	immediately	before	it	in	time.	The	type	identifies	the	interpolation
algorithm	and	can	be	STEP,	LINE,	TCB	(Kochanek-Bartels),	HERM
(Hermite),	BEZI	(1D	Bezier)	or	BEZ2	(2D	Bezier).	Different	parameters
are	stored	for	each	of	these.

Plug-in	Channel	Modifiers
CHAN	{	server-name[S0],	flags[U2],	data[...]	}

Channel	modifiers	can	be	associated	with	an	envelope.	Each	channel
chunk	contains	the	name	of	the	plug-in	and	some	flag	bits.	Only	the
first	flag	bit	is	defined;	if	set,	the	plug-in	is	disabled.	The	data	that
follows	this,	if	any,	is	owned	by	the	plug-in.

Channel	Name
NAME	{	channel-name[S0]	}

An	optional	name	for	the	envelope.	LightWave	itself	ignores	the
names	of	surface	envelopes,	but	plug-ins	can	browse	the	envelope
database	by	name.

The	source	code	in	the	sample/envelope	directory	of	the	LightWave	plug-
in	SDK	demonstrates	interpolation	and	extrapolation	of	envelopes	and
shows	how	the	contents	of	the	SPAN	subchunks	define	TCB,	Bezier	and
Hermite	curves.

Clip	Subchunks

The	CLIP	chunk	contains	a	series	of	subchunks	describing	a	single,	possibly
time-varying	image.	The	first	subchunk	has	to	be	one	of	the	source
chunks:	STIL,	ISEQ,	ANIM,	XREF	or	STCC.

Still	Image
STIL	{	name[FNAM0]	}

The	source	is	a	single	still	image	referenced	by	a	filename	in	neutral
path	format.

Image	Sequence
ISEQ	{	num-digits[U1],	flags[U1],	offset[I2],	reserved[U2],	start[I2],

end[I2],	prefix[FNAM0],	suffix[S0]	}

The	source	is	a	numbered	sequence	of	still	image	files.	Each	filename
contains	a	fixed	number	of	decimal	digits	that	specify	a	frame
number,	along	with	a	prefix	(the	part	before	the	frame	number,	which
includes	the	path)	and	a	suffix	(the	part	after	the	number,	typically	a
PC-style	extension	that	identifies	the	file	format).	The	prefix	and
suffix	are	the	same	for	all	files	in	the	sequence.

The	flags	include	bits	for	looping	and	interlace.	The	offset	is	added	to
the	current	frame	number	to	obtain	the	digits	of	the	filename	for	the
current	frame.	The	start	and	end	values	define	the	range	of	frames	in
the	sequence.

Plug-in	Animation
ANIM	{	filename[FNAM0],	server-name[S0],	flags[U2],	data[...]	}

This	chunk	indicates	that	the	source	imagery	comes	from	a	plug-in
animation	loader.	The	loader	is	defined	by	the	server	name,	a	flags
value,	and	the	server's	data.

Reference	(Clone)
XREF	{	index[U4],	string[S0]	}

The	source	is	a	copy,	or	instance,	of	another	clip,	given	by	the	index.
The	string	is	a	unique	name	for	this	instance	of	the	clip.

Color-cycling	Still
STCC	{	lo[I2],	hi[I2],	name[FNAM0]	}

A	still	image	with	color-cycling	is	a	source	defined	by	a	neutral-
format	name	and	cycling	parameters.	lo	and	hi	are	indexes	into	the
image's	color	table.	Within	this	range,	the	color	table	entries	are
shifted	over	time	to	cycle	the	colors	in	the	image.	If	lo	is	less	than	hi,
the	colors	cycle	forward,	and	if	hi	is	less	than	lo,	they	go	backwards.

Except	for	the	TIME	subchunk,	the	subchunks	after	the	source	subchunk
modify	the	source	image	and	are	applied	as	filters	layered	on	top	of	the
source	image.

Time
TIME	{	start-time[FP4],	duration[FP4],	frame-rate[FP4]	}

Defines	source	times	for	an	animated	clip.

Contrast
CONT	{	contrast-delta[FP4],	envelope[VX]	}

RGB	levels	are	altered	in	proportion	to	their	distance	from	0.5.
Positive	deltas	move	the	levels	toward	one	of	the	extremes	(0.0	or
1.0),	while	negative	deltas	move	them	toward	0.5.	The	default	is	0.

Brightness
BRIT	{	brightness-delta[FP4],	envelope[VX]	}

The	delta	is	added	to	the	RGB	levels.	The	default	is	0.

Saturation
SATR	{	saturation-delta[FP4],	envelope[VX]	}

The	saturation	of	an	RGB	color	is	defined	as	(max	-	min)/max,	where	max
and	min	are	the	maximum	and	minimum	of	the	three	RGB	levels.	This
is	a	measure	of	the	intensity	or	purity	of	a	color.	Positive	deltas	turn
up	the	saturation	by	increasing	the	max	component	and	decreasing	the
min	one,	and	negative	deltas	have	the	opposite	effect.	The	default	is	0.

Hue
HUE	{	hue-rotation[FP4],	envelope[VX]	}

The	hue	of	an	RGB	color	is	an	angle	defined	as

r	is	max:	1/3	(g	-	b)/(r	-	min)
g	is	max:	1/3	(b	-	r)/(g	-	min)	+	1/3
b	is	max:	1/3	(r	-	g)/(b	-	min)	+	2/3

with	values	shifted	into	the	[0,	1]	interval	when	necessary.	The	levels
between	0	and	1	correspond	to	angles	between	0	and	360	degrees.
The	hue	delta	rotates	the	hue.	The	default	is	0.

Gamma	Correction
GAMM	{	gamma[F4],	envelope[VX]	}

Gamma	correction	alters	the	distribution	of	light	and	dark	in	an
image	by	raising	the	RGB	levels	to	a	small	power.	By	convention,	the
gamma	is	stored	as	the	inverse	of	this	power.	A	gamma	of	0.0	forces
all	RGB	levels	to	0.0.	The	default	is	1.0.

Negative
NEGA	{	enable[U2]	}

If	non-zero,	the	RGB	values	are	inverted,	(1.0	-	r,	1.0	-	g,	1.0	-	b),	to
form	a	negative	of	the	image.

Plug-in	Image	Filters
IFLT	{	server-name[S0],	flags[U2],	data[...]	}

Plug-in	image	filters	can	be	used	to	pre-filter	an	image	before
rendering.	The	filter	has	to	be	able	to	exist	outside	of	the	special
environment	of	rendering	in	order	to	work	here	(it	can't	depend	on
functions	or	data	that	are	only	available	during	rendering).	Filters	are
given	by	a	server	name,	an	enable	flag,	and	data	bytes	that	belong	to
the	plug-in.

Plug-in	Pixel	Filters
PFLT	{	server-name[S0],	flags[U2],	data[...]	}

Pixel	filters	may	also	be	used	as	clip	modifiers,	and	they	are	stored
and	used	in	a	way	that	is	exactly	like	image	filters.

Surface	Sub-chunks

The	subchunks	found	in	SURF	chunks	can	be	divided	into	two	types.	Basic
surface	parameters	are	stored	in	simple	subchunks	with	no	nested
subchunks,	while	texture	and	shader	data	is	stored	in	surface	blocks
containing	nested	subchunks.	

Basic	Surface	Parameters

The	following	surface	subchunks	define	the	base	characteristics	of	a
surface.	These	are	the	"start"	values	for	the	surface,	prior	to	texturing	and
plug-in	shading,	and	correspond	to	the	options	on	the	main	window	of	the
LightWave	Surface	Editor.	Even	if	textures	and	shaders	completely
obscure	the	base	appearance	of	the	surface	in	final	rendering,	these
settings	are	still	used	for	previewing	and	real-time	rendering.

Base	Color
COLR	{	base-color[COL12],	envelope[VX]	}

The	base	color	of	the	surface,	which	is	the	color	that	lies	under	all	the
other	texturing	attributes.

Base	Shading	Values
DIFF,	LUMI,	SPEC,	REFL,	TRAN,	TRNL	{	intensity[FP4],	envelope[VX]	}

The	base	level	of	the	surface's	diffuse,	luminosity,	specular,
reflection,	transparency,	or	translucency	settings.	Except	for	diffuse,
if	any	of	these	subchunks	is	absent	for	a	surface,	a	value	of	zero	is
assumed.	The	default	diffuse	value	is	1.0.

Specular	Glossiness
GLOS	{	glossiness[FP4],	envelope[VX]	}

Glossiness	controls	the	falloff	of	specular	highlights.	The	intensity	of
a	specular	highlight	is	calculated	as	cosn	a,	where	a	is	the	angle
between	the	reflection	and	view	vectors.	The	power	n	is	the	specular
exponent.	The	GLOS	chunk	stores	a	glossiness	g	as	a	floating	point
fraction	related	to	n	by:	n	=	2(10g	+	2).	A	glossiness	of	20%	(0.2)	gives
a	specular	exponent	of	24,	or	16,	equivalent	to	the	"Low"	glossiness
preset	in	versions	of	LightWave	prior	to	6.0.	Likewise	40%	is	64	or
"Medium,"	60%	is	256	or	"High,"	and	80%	is	1024	or	"Maximum."

The	GLOS	subchunk	is	only	meaningful	when	the	specularity	in	SPEC	is
non-zero.	If	GLOS	is	missing,	a	value	of	40%	is	assumed.

Diffuse	Sharpness
SHRP	{	sharpness[FP4],	envelope[VX]	}

Diffuse	sharpness	models	non-Lambertian	surfaces.	The	sharpness
refers	to	the	transition	from	lit	to	unlit	portions	of	the	surface,	where
the	difference	in	diffuse	shading	is	most	obvious.	For	a	sharpness	of
0.0,	diffuse	shading	of	a	sphere	produces	a	linear	gradient.	A
sharpness	of	50%	(0.5)	corresponds	to	the	fixed	"Sharp	Terminator"
switch	in	versions	of	LightWave	prior	to	6.0.	It	produces	planet-like
shading	on	a	sphere,	with	a	brightly	lit	day	side	and	a	rapid	falloff
near	the	day/night	line	(the	terminator).	100%	sharpness	is	more	like
the	Moon,	with	no	falloff	until	just	before	the	terminator.

Bump	Intensity
BUMP	{	strength[FP4],	envelope[VX]	}

Bump	strength	scales	the	height	of	the	bumps	in	the	gradient
calculation.	Higher	values	have	the	effect	of	increasing	the	contrast	of
the	bump	shading.	The	default	value	is	1.0.

Polygon	Sidedness
SIDE	{	sidedness[U2]	}

The	sidedness	of	a	polygon	can	be	1	for	front-only,	or	3	for	front	and
back.	If	missing,	single-sided	polygons	are	assumed.

Max	Smoothing	Angle
SMAN	{	max-smoothing-angle[ANG4]	}

The	maximum	angle	between	adjacent	polygons	that	will	be	smooth
shaded.	Shading	across	edges	at	higher	angles	won't	be	interpolated
(the	polygons	will	appear	to	meet	at	a	sharp	seam).	If	this	chunk	is
missing,	or	if	the	value	is	<=	0,	then	the	polygons	are	not	smoothed.

Reflection	Options
RFOP	{	reflection-options[U2]	}

Reflection	options	is	a	numeric	code	that	describes	how	reflections
are	handled	for	this	surface	and	is	only	meaningful	if	the	reflectivity

in	REFL	is	non-zero.

0	-	Backdrop	Only
Only	the	backdrop	is	reflected.

1	-	Raytracing	+	Backdrop
Objects	in	the	scene	are	reflected	when	raytracing	is
enabled.	Rays	that	don't	intercept	an	object	are	assigned	the
backdrop	color.

2	-	Spherical	Map
If	an	image	is	provided	in	an	RIMG	subchunk,	the	image	is
reflected	as	if	it	were	spherically	wrapped	around	the	scene.

3	-	Raytracing	+	Spherical	Map
Objects	in	the	scene	are	reflected	when	raytracing	is
enabled.	Rays	that	don't	intercept	an	object	are	assigned	a
color	from	the	image	map.

If	there	is	no	RFOP	subchunk,	a	value	of	0	is	assumed.

Reflection	Map	Image
RIMG	{	image[VX]	}

A	surface	reflects	this	image	as	if	it	were	spherically	wrapped	around
the	scene.	The	RIMG	is	only	used	if	the	reflection	options	in	RFOP	are	set
to	use	an	image	and	the	reflectivity	of	the	surface	in	REFL	is	non-zero.
The	image	is	the	index	of	a	CLIP	chunk,	or	zero	to	indicate	no	image.

Reflection	Map	Image	Seam	Angle
RSAN	{	seam-angle[ANG4],	envelope[VX]	}

This	angle	is	the	heading	angle	of	the	reflection	map	seam.	If
missing,	a	value	of	zero	is	assumed.

Reflection	Blurring
RBLR	{	blur-percentage[FP4],	envelope[VX]	}

The	amount	of	blurring	of	reflections.	The	default	is	zero.

Refractive	Index
RIND	{	refractive-index[F4],	envelope[VX]	}

The	surface's	index	of	refraction.	This	is	used	to	bend	refraction	rays
when	raytraced	refraction	is	enabled	in	the	scene.	The	value	is	the

ratio	of	the	speed	of	light	in	a	vacuum	to	the	speed	of	light	in	the
material	(always	>=	1.0	in	the	real	world).	The	default	is	1.0.

Transparency	Options
TROP	{	transparency-options[U2]	}

The	transparency	options	are	the	same	as	the	reflection	options	in
RFOP,	but	for	refraction.

Refraction	Map	Image
TIMG	{	image[VX]	}

Like	RIMG,	but	for	refraction.

Refraction	Blurring
TBLR	{	blur-percentage[FP4],	envelope[VX]	}

The	amount	of	refraction	blurring.	The	default	is	zero.

Color	Highlights
CLRH	{	color-highlights[FP4],	envelope[VX]	}

Specular	highlights	are	ordinarily	the	color	of	the	incident	light.
Color	highlights	models	the	behavior	of	dialectric	and	conducting
materials,	in	which	the	color	of	the	specular	highlight	tends	to	be
closer	to	the	color	of	the	material.	A	higher	color	highlight	value
blends	more	of	the	surface	color	and	less	of	the	incident	light	color.

Color	Filter
CLRF	{	color-filter[FP4],	envelope[VX]	}

The	color	filter	percentage	determines	the	amount	by	which	rays
passing	through	a	transparent	surface	are	tinted	by	the	color	of	the
surface.

Additive	Transparency
ADTR	{	additive[FP4],	envelope[VX]	}

Additive	transparency	is	a	simple	rendering	trick	that	works
independently	of	the	mechanism	associated	with	the	TRAN	and	related
settings.	The	color	of	the	surface	is	added	to	the	color	of	the	scene
elements	behind	it	in	a	proportion	controlled	by	the	additive	value.

Glow	Effect
GLOW	{	type[U2],	intensity[F4],	intensity-envelope[VX],	size[F4],	size-

envelope[VX]	}

The	glow	effect	causes	a	surface	to	spread	and	affect	neighboring
areas	of	the	image.	The	type	can	be	0	for	Hastings	glow,	and	1	for
image	convolution.	The	size	and	intensity	define	how	large	and	how
strong	the	effect	is.

You	may	also	encounter	glow	information	written	in	a	GVAL	subchunk
containing	only	the	intensity	and	its	envelope	(the	subchunk	length	is
6).

Render	Outlines
LINE	{	flags[U2],	(size[F4],	size-envelope[VX],	(color[COL12],	color-

envelope[VX])?)?	}

The	line	effect	draws	the	surface	as	a	wireframe	of	the	polygon
edges.	Currently	the	only	flag	defined	is	an	enable	switch	in	the	low
bit.	The	size	is	the	thickness	of	the	lines	in	pixels,	and	the	color,	if	not
given,	is	the	base	color	of	the	surface.	Note	that	you	may	encounter
LINE	subchunks	with	no	color	information	(these	will	have	a	subchunk
length	of	8	bytes)	and	possibly	without	size	information	(subchunk
length	2).

Alpha	Mode
ALPH	{	mode[U2],	value[FP4]	}

The	alpha	mode	defines	the	alpha	channel	output	options	for	the
surface.

0	-	Unaffected	by	Surface
The	surface	has	no	effect	on	the	alpha	channel	when
rendered.

1	-	Constant	Value
The	alpha	channel	will	be	written	with	the	constant	value
following	the	mode	in	the	subchunk.

2	-	Surface	Opacity
The	alpha	value	is	derived	from	surface	opacity,	which	is
the	default	if	the	ALPH	chunk	is	missing.

3	-	Shadow	Density
The	alpha	value	comes	from	the	shadow	density.

Vertex	Color	Map
VCOL	{	intensity[FP4],	envelope[VX],	vmap-type[ID4],	name[S0]	}

The	vertex	color	map	subchunk	identifies	an	RGB	or	RGBA	VMAP	that	will
be	used	to	color	the	surface.

Surface	Blocks

A	surface	may	contain	any	number	of	blocks	which	hold	texture	layers	or
shaders.	Each	block	is	defined	by	a	subchunk	with	the	following	format.

BLOK	{	header[SUB-CHUNK],	attributes[SUB-CHUNK]	*	}

Since	this	regular	expression	hides	much	of	the	structure	of	a	block,	it	may
be	helpful	to	visualize	a	typical	texture	block	in	outline	form.

block
header

ordinal	string
channel
enable	flag
opacity...

texture	mapping
center
size...

other	attributes...

The	first	subchunk	is	the	header.	The	subchunk	ID	specifies	the	block
type,	and	the	subchunks	within	the	header	subchunk	define	properties	that
are	common	to	all	block	types.	The	ordinal	string	defines	the	sorting	order
of	the	block	relative	to	other	blocks.	The	header	is	followed	by	other
subchunks	specific	to	each	type.	For	some	texture	layers,	one	of	these	will
be	a	texture	mapping	subchunk	that	defines	the	mapping	from	object	to
texture	space.	All	of	these	components	are	explained	in	the	following
sections.

Ordinal	Strings

Each	BLOK	represents	a	texture	layer	applied	to	one	of	the	surface	channels,

or	a	shader	plug-in	applied	to	the	surface.	If	more	than	one	layer	is	applied
to	a	channel,	or	more	than	one	shader	is	applied	to	the	surface,	we	need	to
know	the	evaluation	order	of	the	layers	or	shaders,	or	in	what	order	they
are	"stacked."	The	ordinal	string	defines	this	order.

Readers	can	simply	compare	ordinal	strings	using	the	C	strcmp	function	to
sort	the	BLOKs	into	the	correct	order.	Writers	of	LWO2	files	need	to	generate
valid	ordinal	strings	that	put	the	texture	layers	and	shaders	in	the	right
order.	See	the	Object	Examples	supplement	for	an	example	function	that
generates	ordinal	strings.

To	understand	how	LightWave	uses	these,	imagine	that	instead	of	strings,
it	used	floating-point	fractions	as	the	ordinals.	Whenever	LightWave
needed	to	insert	a	new	block	between	two	existing	blocks,	it	would	find
the	new	ordinal	for	the	inserted	block	as	the	average	of	the	other	two,	so
that	a	block	inserted	between	ordinals	0.5	and	0.6	would	have	an	ordinal
of	0.55.

But	floating-point	ordinals	would	limit	the	number	of	insertions	to	the
(fixed)	number	of	bits	used	to	represent	the	mantissa.	Ordinal	strings	are
infinite-precision	fractions	written	in	base	255,	using	the	ASCII	values	1
to	255	as	the	digits	(0	isn't	used,	since	it's	the	special	character	that	marks
the	end	of	the	string).

Ordinals	can't	end	on	a	1,	since	that	would	prevent	arbitrary	insertion	of
other	blocks.	A	trailing	1	in	this	system	is	like	a	trailing	0	in	decimal,
which	can	lead	to	situations	like	this,

			0.5				"\x80"

			0.50			"\x80\x01"

where	there's	no	daylight	between	the	two	ordinals	for	inserting	another
block.

Block	Headers

Every	block	contains	a	header	subchunk.

block-header	{	ordinal[S0],	block-attributes[SUB-CHUNK]	*	}

The	ID	of	the	header	subchunk	identifies	the	block	type	and	can	be	one	of

the	following.

IMAP	-	an	image	map	texture
PROC	-	a	procedural	texture
GRAD	-	a	gradient	texture
SHDR	-	a	shader	plug-in

The	header	contains	an	ordinal	string	(described	above)	and	subchunks
that	are	common	to	all	block	types.

Channel
CHAN	{	texture-channel[ID4]	}

This	is	required	in	all	texture	layer	blocks	and	can	have	a	value	of
COLR,	DIFF,	LUMI,	SPEC,	GLOS,	REFL,	TRAN,	RIND,	TRNL,	or	BUMP,	The	texture	layer
is	applied	to	the	corresponding	surface	attribute.	If	present	in	a	shader
block,	this	value	is	ignored.

Enable	State
ENAB	{	enable[U2]	}

True	if	the	texture	layer	or	shader	should	be	evaluated	during
rendering.	If	ENAB	is	missing,	the	block	is	assumed	to	be	enabled.

Opacity
OPAC	{	type[U2],	opacity[FP4],	envelope[VX]	}

Opacity	is	valid	only	for	texture	layers.	It	specifies	how	opaque	the
layer	is	with	respect	to	the	layers	before	it	(beneath	it)	on	the	same
channel,	or	how	the	layer	is	combined	with	the	previous	layers.	The
types	can	be

0	-	Normal
1	-	Subtractive
2	-	Difference
3	-	Multiply
4	-	Divide
5	-	Alpha
6	-	Texture	Displacement
7	-	Additive

Alpha	opacity	uses	the	current	layer	as	an	alpha	channel.	The
previous	layers	are	visible	where	the	current	layer	is	white	and
transparent	where	the	current	layer	is	black.	Texture	Displacement
distorts	the	underlying	layers.	If	OPAC	is	missing,	100%	Additive
opacity	is	assumed.

Displacement	Axis
AXIS	{	displacement-axis[U2]	}

For	displacement	mapping,	defines	the	plane	from	which
displacements	will	occur.	The	value	is	0,	1	or	2	for	the	X,	Y	or	Z	axis.

Texture	Mapping

Image	map	and	procedural	textures	employ	the	TMAP	subchunk	to	define	the
mapping	they	use	to	get	from	object	or	world	coordinate	space	to	texture
space.

TMAP	{	attributes[SUB-CHUNK]	*	}

The	TMAP	subchunk	contains	a	set	of	attribute	chunks	which	describe	the
different	aspects	of	this	mapping.

Position,	Orientation	and	Size
CNTR,	SIZE,	ROTA	{	vector[VEC12],	envelope[VX]	}

These	subchunks	each	consist	of	a	vector	for	the	texture's	size,	center
and	rotation.	The	size	and	center	are	normal	positional	vectors	in
meters,	and	the	rotation	is	a	vector	of	heading,	pitch	and	bank	in
radians.	If	missing,	the	center	and	rotation	are	assumed	to	be	zero.
The	size	should	always	be	specified	if	it	si	to	be	used	for	any	given
mapping.

Reference	Object
OREF	{	object-name[S0]	}

Specifies	a	reference	object	for	the	texture.	The	reference	object	is
given	by	name,	and	the	scene	position,	rotation	and	scale	of	the
object	are	combined	with	the	previous	chunks	to	compute	the	texture
mapping.	If	the	object	name	is	"(none)"	or	OREF	is	missing,	no
reference	object	is	used.

Falloff
FALL	{	type[U2],	vector[VEC12],	envelope[VX]	}

Texture	effects	may	fall	off	with	distance	from	the	texture	center	if
this	subchunk	is	present.	The	vector	represents	a	rate	per	unit	distance
along	each	axis.	The	type	can	be

0	-	Cubic
Falloff	is	linear	along	all	three	axes	independently.

1	-	Spherical
Falloff	is	proportional	to	the	Euclidean	distance	from	the
center.

2	-	Linear	X
3	-	Linear	Y
4	-	Linear	Z

Falloff	is	linear	only	along	the	specified	axis.	The	other	two
vector	components	are	ignored.

Coordinate	System
CSYS	{	type[U2]	}

The	coordinate	system	can	be	0	for	object	coordinates	(the	default	if
the	chunk	is	missing)	or	1	for	world	coordinates.

Image	Maps

Texture	blocks	with	a	header	type	of	IMAP	are	image	maps.	These	use	an
image	to	modulate	one	of	the	surface	channels.	In	addition	to	the	basic
parameters	listed	below,	the	block	may	also	contain	a	TMAP	chunk.

Projection	Mode
PROJ	{	projection-mode[U2]	}

The	projection	defines	how	2D	coordinates	in	the	image	are
transformed	into	3D	coordinates	in	the	scene.	In	the	following	list	of
projections,	image	coordinates	are	called	r	(horizontal)	and	s
(vertical).

0	-	Planar
The	image	is	projected	on	a	plane	along	the	major	axis
(specified	in	the	AXIS	subchunk).	r	and	s	map	to	the	other

two	axes.
1	-	Cylindrical

The	image	is	wrapped	cylindrically	around	the	major	axis.	r
maps	to	longitude	(angle	around	the	major	axis).

2	-	Spherical
The	image	is	wrapped	spherically	around	the	major	axis.	r
and	s	map	to	longitude	and	latitude.

3	-	Cubic
Like	Planar,	but	projected	along	all	three	axes.	The
dominant	axis	of	the	geometric	normal	selects	the
projection	axis	for	a	given	surface	spot.

4	-	Front	Projection
The	image	is	projected	on	the	current	camera's	viewplane.	r
and	s	map	to	points	on	the	viewplane.

5	-	UV
r	and	s	map	to	points	(u,	v)	defined	for	the	geometry	using
a	vertex	map	(identified	in	the	BLOK's	VMAP	subchunk).

Major	Axis
AXIS	{	texture-axis[U2]	}

The	major	axis	used	for	planar,	cylindrical	and	spherical	projections.
The	value	is	0,	1	or	2	for	the	X,	Y	or	Z	axis.

Image	Map
IMAG	{	texture-image[VX]	}

The	CLIP	index	of	the	mapped	image.

Image	Wrap	Options
WRAP	{	width-wrap[U2],	height-wrap[U2]	}

Specifies	how	the	color	of	the	texture	is	derived	for	areas	outside	the
image.

0	-	Reset
Areas	outside	the	image	are	assumed	to	be	black.	The
ultimate	effect	of	this	depends	on	the	opacity	settings.	For
an	additive	texture	layer	on	the	color	channel,	the	final
color	will	come	from	the	preceding	layers	or	from	the	base
color	of	the	surface.

1	-	Repeat
The	image	is	repeated	or	tiled.

2	-	Mirror
Like	repeat,	but	alternate	tiles	are	mirror-reversed.

3	-	Edge
The	color	is	taken	from	the	image's	nearest	edge	pixel.

If	no	wrap	options	are	specified,	1	is	assumed.

Image	Wrap	Amount
WRPW,	WRPH	{	cycles[FP4],	envelope[VX]	}

For	cylindrical	and	spherical	projections,	these	parameters	control
how	many	times	the	image	repeats	over	each	full	interval.

UV	Vertex	Map
VMAP	{	txuv-map-name[S0]	}

For	UV	projection,	which	depends	on	texture	coordinates	at	each
vertex,	this	selects	the	name	of	the	TXUV	vertex	map	that	contains	those
coordinates.

Antialiasing	Strength
AAST	{	flags[U2],	antialising-strength[FP4]	}

The	low	bit	of	the	flags	word	is	an	enable	flag	for	texture	antialiasing.
The	antialiasing	strength	is	proportional	to	the	width	of	the	sample
filter,	so	larger	values	sample	a	larger	area	of	the	image.

Pixel	Blending
PIXB	{	flags[U2]	}

Pixel	blending	enlarges	the	sample	filter	when	it	would	otherwise	be
smaller	than	a	single	image	map	pixel.	If	the	low-order	flag	bit	is	set,
then	pixel	blending	is	enabled.

Sticky	Projection
STCK	{	on-off[U2],	time[FP4]	}

The	"sticky"	or	fixed	projection	time	for	front	projection	image	maps.
When	on,	front	projections	will	be	fixed	at	the	given	time.

Texture	Amplitude
TAMP	{	amplitude[FP4],	envelope[VX]	}

Appears	in	image	texture	layers	applied	to	the	bump	channel.	Texture
amplitude	scales	the	bump	height	derived	from	the	pixel	values.	The
default	is	1.0.

Procedural	Textures

Texture	blocks	of	type	PROC	are	procedural	textures	that	modulate	the	value
of	a	surface	channel	algorithmically.

Axis
AXIS	{	axis[U2]	}

If	the	procedural	has	an	axis,	it	may	be	defined	with	this	chunk	using
a	value	of	0,	1	or	2.

Basic	Value
VALU	{	value[FP4]	#	(1,	3)	}

Procedurals	are	often	modulations	between	the	current	channel	value
and	another	value,	given	here.	This	may	be	a	scalar	or	a	vector.

Algorithm	and	Parameters
FUNC	{	algorithm-name[S0],	data[...]	}

The	FUNC	subchunk	names	the	procedural	and	stores	its	parameters.
The	name	will	often	map	to	a	plug-in	name.	The	variable-length	data
following	the	name	belongs	to	the	procedural.

Gradient	Textures

Texture	blocks	of	type	GRAD	are	gradient	textures	that	modify	a	surface
channel	by	mapping	an	input	parameter	through	an	arbitrary	transfer
function.	Gradients	are	represented	to	the	user	as	a	line	containing	keys.
Each	key	is	a	color,	and	the	gradient	function	is	an	interpolation	of	the
keys	in	RGB	space.	The	input	parameter	selects	a	point	on	the	line,	and
the	output	of	the	texture	is	the	value	of	the	gradient	at	that	point.

Parameter	Name
PNAM	{	parameter[S0]	}

The	input	parameter.	Possible	values	include

"Previous	Layer"
"Bump"
"Slope"
"Incidence	Angle"
"Light	Incidence"
"Distance	to	Camera"
"Distance	to	Object"
"X	Distance	to	Object"
"Y	Distance	to	Object"
"Z	Distance	to	Object"
"Weight	Map"

Item	Name
INAM	{	item-name[S0]	}

The	name	of	a	scene	item.	This	is	used	when	the	input	parameter	is
derived	from	a	property	of	an	item	in	the	scene.

Gradient	Range
GRST,	GREN	{	input-range[FP4]	}

The	start	and	end	of	the	input	range.	These	values	only	affect	the
display	of	the	gradient	in	the	user	interface.	They	don't	affect
rendering.

Repeat	Mode
GRPT	{	repeat-mode[U2]	}

The	repeat	mode.	This	is	currently	undefined.

Key	Values
FKEY	{	(input[FP4],	output[FP4]	#	4)*	}

The	transfer	function	is	defined	by	an	array	of	keys,	each	with	an
input	value	and	an	RGBA	output	vector.	Given	an	input	value,	the
gradient	can	be	evaluated	by	selecting	the	keys	whose	positions
bracket	the	value	and	interpolating	between	their	outputs.	If	the	input
value	is	lower	than	the	first	key	or	higher	than	the	last	key,	the
gradient	value	is	the	value	of	the	closest	key.

Key	Parameters
IKEY	{	interpolation[U2]	*	}

An	array	of	integers	defining	the	interpolation	for	the	span	preceding
each	key.	Possible	values	include

0	-	Linear
1	-	Spline
2	-	Step

Shaders

Shaders	are	BLOK	subchunks	with	a	header	type	of	SHDR.	They	are	applied	to
a	surface	after	all	basic	channels	and	texture	layers	are	evaluated,	and	in
the	order	specified	by	the	ordinal	sequence.	The	only	header	chunk	they
support	is	ENAB	and	they	need	only	one	data	chunk	to	describe	them.

Shader	Algorithm
FUNC	{	algorithm-name[S0],	data[...]	}

Just	like	a	procedural	texture	layer,	a	shader	is	defined	by	an
algorithm	name	(often	a	plug-in),	followed	by	data	owned	by	the
shader.

Chunk	Index

AAST	Image	Map	Antialiasing	Strength
ADTR	Surface	Additive	Transparency
ALPH	Surface	Alpha	Mode
ANIM	Clip	Animation
AXIS	Displacement	Axis
AXIS	Image	Map	Major	Axis
AXIS	Procedural	Texture	Axis

BBOX	Bounding	Box
BLOK	Surface	Block
BRIT	Clip	Brightness
BUMP	Surface	Bump	Intensity

CHAN	Channel	Plug-in

CHAN	Texture	Layer	Channel
CLIP	Image,	Image	Sequence
CLRF	Surface	Color	Filter
CLRH	Surface	Color	Highlights
CNTR	Texture	Center
COLR	Surface	Base	Color
CONT	Clip	Contrast
CSYS	Texture	Coordinate	System

DESC	Description	Line
DIFF	Surface	Diffuse

ENAB	Surface	Block	Enable
ENVL	Envelope

FALL	Texture	Falloff
FKEY	Gradient	Key	Values
FORM	IFF	Format	File
FUNC	Procedural	Texture	Algorithm
FUNC	Surface	Shader	Algorithm

GAMM	Clip	Gamma	Correction
GLOS	Surface	Specular	Glossiness
GLOW	Surface	Glow	Effect
GREN	Gradient	End
GRPT	Gradient	Repeat	Mode
GRST	Gradient	Start

HUE	Clip	Hue

ICON	Thumbnail	Icon	Image
IFLT	Clip	Image	Filter
IKEY	Gradient	Key	Parameters
IMAG	Image	Map	Image
INAM	Gradient	Item	Name
ISEQ	Clip	Image	Sequence

KEY	Keyframe	Time	and	Value

LAYR	Layer
LINE	Surface	Render	Outlines
LUMI	Surface	Luminosity

NAME	Envelope	Channel	Name
NEGA	Clip	Negative

OPAC	Texture	Layer	Opacity
OREF	Texture	Reference	Object
PFLT	Clip	Pixel	Filter
PIXB	Image	Map	Pixel	Blending
PNAM	Gradient	Parameter	Name
PNTS	Point	List
POLS	Polygon	List
POST	Envelope	Post-Behavior
PRE	Envelope	Pre-Behavior
PROJ	Image	Map	Projection	Mode
PTAG	Polygon	Tag	Mapping

RBLR	Reflection	Blurring
REFL	Surface	Reflectivity
RFOP	Surface	Reflection	Options
RIMG	Surface	Reflection	Map	Image
RIND	Surface	Refractive	Index
ROTA	Texture	Rotation
RSAN	Surface	Reflection	Map	Image	Seam	Angle

SPAN	Envelope	Interval	Interpolation
SATR	Clip	Saturation
SHRP	Surface	Diffuse	Sharpness
SIDE	Surface	Polygon	Sidedness
SIZE	Texture	Size
SMAN	Surface	Max	Smoothing	Angle
SPEC	Surface	Specularity
STCC	Clip	Color-cycling	Still
STCK	Sticky	Projection
STIL	Clip	Still	Image
SURF	Surface	Definition

TAGS	Tag	Strings
TAMP	Image	Map	Texture	Amplitude
TBLR	Refraction	Blurring
TEXT	Commentary	Text
TIME	Clip	Time
TIMG	Surface	Refraction	Map	Image
TMAP	Texture	Mapping
TRAN	Surface	Transparency
TRNL	Surface	Translucency
TROP	Surface	Transparency	Options
TYPE	Envelope	Type

VALU	Procedural	Texture	Value
VCOL	Surface	Vertex	Color	Map
VMAD	Discontinuous	Vertex	Map
VMAP	Vertex	Map
VMAP	Image	Map	UV	Vertex	Map

WRAP	Image	Map	Wrap	Options
WRPW	Image	Map	Width	Wrap	Amount
WRPH	Image	Map	Height	Wrap	Amount

XREF	Clip	Reference	(Clone)

Scene	Files

November	9,	2001

This	document	describes	the	LWSC	version	3	file	format	for	3D	scenes
used	by	LightWave	6.0	and	later.	At	this	point,	it's	an	incomplete	rough
draft	that's	missing	descriptions	of	most	of	the	keywords.	But	the
introductory	information	will	allow	you	to	parse	the	file	at	least,	and	the
semantics	of	most	of	the	keywords	can	be	deduced.

If	you've	worked	with	version	1	of	the	format	(version	2	was	an
unreleased	interim	format),	version	3	will	seem	quite	familiar.	Scene	files
are	still	text	files	containing	keyword-value	pairs.	The	most	important
difference	is	in	the	way	keyframe	data	is	stored,	but	obviously	there	are
many	others	comprising	features	not	available	in	LightWave	prior	to	6.0.

Item	Numbers

When	a	scene	file	needs	to	refer	to	specific	items	to	establish	item
relationships	(parenting,	for	example),	it	uses	item	numbers.	Items	are
numbered	in	the	order	in	which	they	appear	in	the	file,	starting	with	0.

Item	numbers	can	be	written	in	one	of	two	ways,	depending	on	which
keyword	they're	used	with.	In	general,	if	the	type	of	the	item	(object,	bone,
light,	camera)	can	be	determined	from	the	keyword	alone,	the	item
number	will	simply	be	the	ordinal,	written	as	a	decimal	integer.	When	the
keyword	can	be	used	with	items	of	more	than	one	type,	the	item	number	is
an	unsigned	integer	written	as	an	8-digit	hexadecimal	string,	the	format
produced	by	the	C-language	"%8X"	print	format	specifier,	and	the	high	bits
identify	the	item	type.

The	first	hex	digit	(most	significant	4	bits)	of	the	hex	item	number	string
identifies	the	item	type.

1	-	Object
2	-	Light
3	-	Camera

4	-	Bone

The	other	digits	make	up	the	item	number,	except	in	the	case	of	bones.	For
bones,	the	next	3	digits	(bits	16-27)	are	the	bone	number	and	the	last	4
digits	(bits	0-15)	are	the	object	number	for	the	object	the	bone	belongs	to.
Some	examples:

10000000	-	the	first	object
20000000	-	the	first	light
4024000A	-	the	37th	bone	(24	hex)	in	the	11th	object	(0A	hex)

Blocks

Information	in	a	scene	file	is	organized	into	blocks,	the	ASCII	text	analog
of	the	chunks	described	in	the	IFF	specification.	Each	block	consists	of	an
identifier	or	name	followed	by	some	data.	The	format	of	the	data	is
determined	by	the	block	name.	Block	names	resemble	C-style	identifiers.
In	particular,	they	never	contain	spaces	or	other	non-alphanumeric
characters.

A	single-line	block	is	delimited	by	the	newline	that	terminates	the	line.
Multiline	blocks	are	delimited	by	curly	braces	(the	{	and	}	characters,
ASCII	codes	123	and	125).	The	name	of	a	multiline	block	follows	the
opening	curly	brace	on	the	same	line.	The	curly	brace	and	the	name	are
separated	by	a	single	space.	The	data	follows	on	one	or	more	subsequent
lines.	Each	line	of	data	is	indented	using	two	spaces.	The	closing	brace	is
on	a	line	by	itself	and	is	not	indented.

Individual	data	elements	are	separated	from	each	other	by	a	single	space.
String	data	elements	are	enclosed	in	double	quotes	and	may	contain
spaces.

Blocks	can	be	nested.	In	other	words,	the	data	of	a	block	can	include	other
blocks.	A	block	that	contains	nested	blocks	is	always	a	multiline	block.	At
each	nesting	level,	the	indention	of	the	data	is	incremented	by	two
additional	spaces.

			SingleLineBlock	data

			{	MultiLineBlock

					data

					{	NestedMultiLineBlock

							data

					}

			}

Envelopes

An	envelope	defines	a	function	of	time.	For	any	animation	time,	an
envelope's	parameters	can	be	combined	to	generate	a	value	at	that	time.
Envelopes	are	used	to	store	position	coordinates,	rotation	angles,	scale
factors,	camera	zoom,	light	intensity,	texture	parameters,	and	anything	else
that	can	vary	over	time.

The	envelope	function	is	a	piecewise	polynomial	curve.	The	function	is
tabulated	at	specific	points,	called	keys.	The	curve	segment	between	two
adjacent	keys	is	called	a	span,	and	values	on	the	span	are	calculated	by
interpolating	between	the	keys.	The	interpolation	can	be	linear,	cubic,	or
stepped,	and	it	can	be	different	for	each	span.	The	value	of	the	function
before	the	first	key	and	after	the	last	key	is	calculated	by	extrapolation.

In	scene	files,	an	envelope	is	stored	in	a	block	named	Envelope	that	contains
one	or	more	nested	Key	blocks	and	one	Behaviors	block.

			{	Envelope

					nkeys

					Key	value	time	spantype	p1	p2	p3	p4	p5	p6

					Key	...

					Behaviors	pre	post

			}

The	nkeys	value	is	an	integer,	the	number	of	Key	blocks	in	the	envelope.
Envelopes	must	contain	at	least	one	Key	block.	The	contents	of	a	Key	block
are	as	follows.

value
The	key	value,	a	floating-point	number.	The	units	and	limits	of	the
value	depend	on	what	parameter	the	envelope	represents.

time
The	time	in	seconds,	a	float.	This	can	be	negative,	zero	or	positive.
Keys	are	listed	in	the	envelope	in	increasing	time	order.

spantype
The	curve	type,	an	integer.	This	determines	the	kind	of	interpolation
that	will	be	performed	on	the	span	between	this	key	and	the	previous

key,	and	also	indicates	what	interpolation	parameters	are	stored	for
the	key.

0	-	TCB	(Kochanek-Bartels)
1	-	Hermite
2	-	1D	Bezier	(obsolete,	equivalent	to	Hermite)
3	-	Linear
4	-	Stepped
5	-	2D	Bezier

p1...p6
Curve	parameters.	The	data	depends	on	the	span	type.

TCB,	Hermite,	1D	Bezier
The	first	three	parameters	are	tension,	continuity	and	bias.
The	fourth	and	fifth	parameters	are	the	incoming	and
outgoing	tangents.	The	sixth	parameter	is	ignored	and
should	be	0.	Use	the	first	three	to	evaluate	TCB	spans,	and
the	other	two	to	evaluate	Hermite	spans.

2D	Bezier
The	first	two	parameters	are	the	incoming	time	and	value,
and	the	second	two	are	the	outgoing	time	and	value.

The	Behaviors	block	contains	two	integers.

pre,	post
Pre-	and	post-behaviors.	These	determine	how	the	envelope	is
extrapolated	at	times	before	the	first	key	and	after	the	last	one.

0	-	Reset
Sets	the	value	to	0.0.

1	-	Constant
Sets	the	value	to	the	value	at	the	nearest	key.

2	-	Repeat
Repeats	the	interval	between	the	first	and	last	keys	(the
primary	interval).

3	-	Oscillate
Like	Repeat,	but	alternating	copies	of	the	primary	interval
are	time-reversed.

4	-	Offset	Repeat
Like	Repeat,	but	offset	by	the	difference	between	the
values	of	the	first	and	last	keys.

5	-	Linear
Linearly	extrapolates	the	value	based	on	the	tangent	at	the
nearest	key.

The	source	code	in	the	sample/envelope	directory	of	the	LightWave	plug-
in	SDK	demonstrates	how	envelopes	are	evaluated.

Scene

FirstFrame	nfirst
LastFrame	nlast
FrameStep	nstep

The	frame	range	and	step	size	for	rendering.	In	the	simplest	case,	the
first	frame	and	frame	step	are	1,	and	the	last	frame	is	the	number	of
frames	to	be	rendered.

PreviewFirstFrame	nfirst
PreviewLastFrame	nlast
PreviewFrameStep	nstep

The	frame	range	and	step	size	for	previewing.	These	may	be
unrelated	to	the	values	for	rendering.	They	also	control	the	visible
ranges	of	certain	interface	elements,	for	example	the	frame	slider	in
the	main	window.

CurrentFrame	nframe
The	frame	displayed	in	the	interface	when	the	scene	is	loaded.

FramesPerSecond	gframes
This	controls	the	duration	of	each	frame.

Objects

LoadObjectLayer	nlayer	sfilename
Begins	a	group	of	statements	about	an	object.	The	layer	number	is	the
index	recorded	in	the	LAYR	chunk	of	the	object	file.

ShowObject	nvisibility	ncolor
Determines	how	the	object	is	displayed	in	the	interface.	The	visibility
codes	are

0	-	hidden
1	-	bounding	box
2	-	vertices	only
3	-	wireframe
4	-	front	face	wireframe
5	-	shaded	solid
6	-	textured	shaded	solid

The	color	used	to	draw	bounding	boxes,	vertices	and	wireframes	can
be	one	of	the	following.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The	default	visibility	and	color	are	stored	in	the	config	file.	If	they
haven't	been	altered	by	the	user,	they	are	textured	shaded	solid	(6)
and	cyan	(3)	in	LightWave	6.5.

ObjectMotion
NumChannels	nchannels
Channel	nindex
{	Envelope	...

The	ObjectMotion	keyword	signals	the	start	of	the	motion	information
for	the	object.	Motions	are	stored	in	envelopes,	one	for	each	motion
channel.	There	are	9	standard	channels,	numbered	from	0	to	8.

0,	1,	2	-	(x,	y,	z)	position
3,	4,	5	-	(heading,	pitch,	bank)	rotation
6,	7,	8	-	(sx,	sy,	sz)	scale	factors	along	each	axis

The	values	of	all	of	these	are	relative	to	the	object's	parent,	if	it	has
one.

UseBonesFrom	1
.

Plugin	sclass	nlistpos	sname
EndPlugin

Lists	an	object	plug-in.	The	class	can	be

MorphAmount
MorphTarget
MorphSurfaces
MTSEMorphing

.

DisplacementMaps
{	TextureBlock	...

.

ClipMaps
{	TextureBlock	...

.

ObjectDissolve
.

DistanceDissolve
.

MaxDissolveDistance
.

AffectedByFog
.

UnseenByRays
.

UnseenByCamera
.

ShadowOptions
.

ExcludeLight
.

PolygonEdgeFlags
.

PolygonEdgeThickness
.

PolygonEdgeColor
.

PolygonEdgesZScale
.

EdgeNominalDistance
.

Animation	Envelopes

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwenvel.h

A	key	is	a	structure	that	holds	the	value	of	an	animation	parameter	at	a
specific	time.	An	envelope	is	an	array	of	keys,	along	with	methods	for
interpolation	(tweening)	and	extrapolation	(what	happens	to	the	parameter
value	before	the	first	key	and	after	the	last	one).	The	Animation	Envelopes
global	returns	functions	that	allow	you	to	create	and	manage	envelopes
and	their	keys,	including	a	function	to	display	an	interface	to	the	user	for
editing	envelopes.

Other	global	mechanisms	are	built	on	top	of	envelopes.	A	channel	contains
the	continuous	value	of	a	parameter	as	a	function	of	time,	and	this	is	based
on	both	the	underlying	envelope	and	on	external	effects,	including	plug-
ins	(channel	and	item	motion	classes,	for	example)	that	can	alter	channel
values.	And	the	Variant	Parameters	global	defines	a	data	type	used	by
XPanel	envelope	controls.

See	also	the	Motions	section	of	the	Layout	commands	page,	as	well	as	the
commands	supported	by	the	Graph	and	Surface	Editors.

Global	Call

			LWEnvelopeFuncs	*envfunc;

			envfunc	=	global(LWENVELOPEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWEnvelopeFuncs.

			typedef	struct	st_LWEnvelopeFuncs	{

						LWEnvelopeID				(*create)						(LWChanGroupID,	const	char	*,	int);

						void												(*destroy)					(LWEnvelopeID);

						LWChanGroupID			(*createGroup)	(LWChanGroupID	parent,	const	char	*);

						void												(*destroyGroup)(LWChanGroupID);

						LWError									(*copy)								(LWEnvelopeID	to,	LWEnvelopeID	from);

						LWError									(*load)								(LWEnvelopeID,	LWLoadState	*);

						LWError									(*save)								(LWEnvelopeID,	LWSaveState	*);

						double										(*evaluate)				(LWEnvelopeID,	LWTime);

						int													(*edit)								(LWChanGroupID,	LWEnvelopeID,

																																								int	flags,	void	*data);

						int													(*envAge)						(LWEnvelopeID);

						LWEnvKeyframeID	(*createKey)			(LWEnvelopeID,	LWTime,	double	value);

						void												(*destroyKey)		(LWEnvelopeID,	LWEnvKeyframeID);

						LWEnvKeyframeID	(*findKey)					(LWEnvelopeID,	LWTime);

						LWEnvKeyframeID	(*nextKey)					(LWEnvelopeID,	LWEnvKeyframeID);

						LWEnvKeyframeID	(*prevKey)					(LWEnvelopeID,	LWEnvKeyframeID);

						int													(*keySet)						(LWEnvelopeID,	LWEnvKeyframeID,

																																								LWKeyTag,	void	*value);

						int													(*keyGet)						(LWEnvelopeID,	LWEnvKeyframeID,

																																								LWKeyTag,	void	*value);

						int													(*setEnvEvent)	(LWEnvelopeID,	LWEnvEventFunc,

																																								void	*data);	

						int													(*egSet)							(LWEnvelopeID,	LWChanGroupID,

																																								int	tag,	void	*value);	

						int													(*egGet)							(LWEnvelopeID,	LWChanGroupID,

																																								int	tag,	void	*value);	

			}	LWEnvelopeFuncs;

env	=	create(group,	name,	type)

Create	a	new	envelope.	The	type	defines	how	the	envelope's	values
are	interpreted	and	displayed	to	the	user	in	the	graph	editor.	It	can	be
one	of	the	following.

LWET_FLOAT
LWET_DISTANCE
LWET_PERCENT
LWET_ANGLE

destroy(env)

Destroy	an	envelope	created	using	create.
group	=	createGroup(parent,	name)

Create	a	new	envelope	group.	An	envelope	group	is	just	a	way	to
organize	related	envelopes.

destroyGroup(group)

Destroy	an	envelope	group	created	using	createGroup.
error	=	copy(to,	from)

Copy	an	envelope.	This	is	meant	to	be	called	from	within	a	handler's
copy	callback.

error	=	load(env,	loadstate)

Load	an	envelope.	This	is	meant	to	be	called	from	within	a	handler's
load	callback.

error	=	save(env,	savestate)

Save	an	envelope.	This	is	meant	to	be	called	from	within	a	handler's
save	callback.

value	=	evaluate(env,	time)

Returns	the	interpolated	value	of	the	envelope.

result	=	edit(group,	env,	flags,	data)

Open	the	graph	editor	window	and	allow	the	user	to	edit	the
envelope.	The	flags	and	data	arguments	are	currently	unused.

age	=	envAge(env)

Returns	an	integer	containing	the	number	of	times	the	envelope	has
been	changed.

key	=	createKey(env,	time,	value)

Create	a	new	key	in	an	envelope.
destroyKey(env,	key)

Delete	a	key	in	an	envelope.
key	=	findKey(env,	time)

Returns	the	key	for	a	given	time.
key	=	nextKey(env,	key)

Returns	the	next	key	in	the	envelope.
key	=	prevKey(env,	key)

Returns	the	previous	key	in	the	envelope.
result	=	keySet(env,	key,	tag,	value)

Set	a	value	associated	with	a	key.	This	can	be	the	value	of	the	key
itself,	the	shape	of	the	key,	or	one	of	the	interpolation	parameters.
The	result	is	true	(non-zero)	if	the	function	succeeds	and	false	(0)	if	it
fails.	The	tag	describing	the	value	can	be	one	of	the	following.

LWKEY_VALUE
The	value	of	the	key.

LWKEY_SHAPE
The	curve	type,	an	integer	corresponding	to	the	options	in	the
graph	editor:

0	-	TCB	(Kochanek-Bartels)
1	-	Hermite
2	-	1D	Bezier	(obsolete,	equivalent	to	Hermit)
3	-	Linear
4	-	Stepped
5	-	2D	Bezier

LWKEY_TENSION
LWKEY_CONTINUITY
LWKEY_BIAS

The	Kochanek-Bartels	blending	parameters.
LWKEY_PARAM_0

LWKEY_PARAM_1
LWKEY_PARAM_2
LWKEY_PARAM_3

The	curve	parameters.	These	are	the	Hermite	coefficients	for
Hermite	curves,	and	the	incoming	and	outgoing	tangents	for	2D
Bezier	curves.

result	=	keyGet(env,	key,	tag,	value)

Get	a	value	associated	with	a	key.	The	result	is	true	(non-zero)	if	the
function	succeeds	and	false	(0)	if	it	fails.	The	tags	are	the	same	as
those	for	keySet,	along	with	LWKEY_TIME,	the	time	of	the	key.

result	=	setEnvEvent(env,	event_func,	data)

Set	a	callback	for	an	envelope.	Whenever	the	envelope	is	modified,
your	event_func	function	will	be	called	with	data	as	its	first	argument.
Currently	the	result	is	false	(0)	if	event_func	is	NULL	and	true	(non-
zero)	otherwise.

When	you	no	longer	need	it,	you	must	unhook	your	event	callback	by
calling	setEnvEvent	again	with	a	NULL	event_func	argument.	(But	if
your	callback	has	already	been	called	for	an	LWEEVNT_DESTROY	event,
don't	try	to	unhook	it,	since	at	that	point	the	envelope	no	longer
exists.)	The	data	argument	should	be	the	same	as	it	was	in	the	original
call.	This	argument	is	used	to	uniquely	identify	the	owner	of	a
callback,	which	is	necessary	because	more	than	one	event	callback
can	be	set	for	a	given	envelope.	For	the	same	reason,	data	should	not
be	NULL.

result	=	egSet(env,	group,	tag,	value)

Set	a	value	associated	with	the	envelope.	The	result	is	true	(non-zero)
if	the	function	succeeds	and	false	(0)	if	it	fails.

LWENVTAG_VISIBLE
Invisible	envelopes	won't	appear	in	the	graph	editor.	You	can	use
these	to	store	internal	variables.	The	value	for	this	tag	is	an
integer	containing	true	(1)	or	false	(0).

LWENVTAG_PREBEHAVE
LWENVTAG_POSTBEHAVE

Pre-	and	post-behavior	setting,	an	integer	corresponding	to	the
options	in	the	graph	editor:

0	-	Reset

1	-	Constant
2	-	Repeat
3	-	Oscillate
4	-	Offset	Repeat
5	-	Linear

result	=	egGet(env,	group,	tag,	value)

Get	a	value	associated	with	an	envelope.	In	addition	to	the	value
types	defined	for	egSet,	you	can	use	LWENVTAG_KEYCOUNT	to	get	the	number
of	keys	defined	for	the	envelope.	The	result	is	true	(non-zero)	if	the
function	succeeds	and	false	(0)	if	it	fails.

Event	Callback

The	setEnvEvent	function	lets	you	set	a	callback	that	LightWave	will	call
whenever	an	envelope	is	modified.	The	callback	looks	like	this.

			typedef	int	(*LWEnvEventFunc)	(void	*data,	LWEnvelopeID	env,

						LWEnvEvent	event,	void	*eventData);

data	is	what	you	passed	as	the	third	argument	to	the	setEnvEvent	function.
The	eventData	depends	on	the	event,	which	can	be	one	of	the	following.

			LWEEVNT_DESTROY

			LWEEVNT_KEY_INSERT

			LWEEVNT_KEY_DELETE

			LWEEVNT_KEY_VALUE

			LWEEVNT_KEY_TIME

For	the	KEY	events,	the	eventData	is	the	LWKeyframeID.	For	the	DESTROY
event,	the	eventData	is	currently	undefined	and	the	LWEnvelopeID	is
invalid.	When	your	callback	is	called	for	a	DESTROY	event,	the	envelope	has
already	been	destroyed,	and	you	should	ensure	that	you	invalidate	any	of
your	own	references	to	the	envelope.

Example

The	envelope	sample	shows	how	envelopes	are	interpolated.	It	also	uses
the	the	envelope	global	functions	to	create	and	examine	the	envelope	to	be
interpolated.

The	following	code	fragment	finds	a	key	for	the	red	level	of	the	first	light
at	5	seconds.	If	the	light	doesn't	have	a	color	envelope,	we	add	it	using	the

AddEnvelope	command,	and	if	there's	no	key	at	5	seconds,	we	create	it.	The
key	value	(the	red	level)	is	set	to	0.75.

In	order	to	do	this,	we	need	to	find	the	item	ID	for	the	first	light,	the
channel	group	for	that	light,	the	red	channel	in	the	channel	group,	the
underlying	envelope	for	the	red	channel,	and	the	key	in	that	envelope	at	5
seconds,	if	it	exists.	In	addition	to	the	envelope	global,	we	use	the	channel
info,	item	info	and	message	globals.

			#include	<lwserver.h>

			#include	<lwenvel.h>

			#include	<lwhost.h>

			LWEnvelopeFuncs	*envf;

			LWChannelInfo	*chinfo;

			LWItemInfo	*iteminfo;

			LWMessageFuncs	*msgf;

			LWItemID	id;

			LWChanGroupID	group;

			LWEnvelopeID	envred;

			LWEnvKeyframeID	key;

			char	buf[128];

			double	val;

			chinfo	=	global(LWCHANNELINFO_GLOBAL,	GFUSE_TRANSIENT);

			envf	=	global(LWENVELOPEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			iteminfo	=	global(LWITEMINFO_GLOBAL,	GFUSE_TRANSIENT);

			msg	=	global(LWMESSAGEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(!chinfo	||	!envf	||	!iteminfo	||	!msgf)

						return	AFUNC_BADGLOBAL;

			id	=	iteminfo->first(LWI_LIGHT,	NULL);

			group	=	iteminfo->chanGroup(id);

			envred	=	findEnv(group,	"Color.R");

			if	(!envred)	{

						sprintf(buf,	"SelectItem	%x",	id);

						local->evaluate(local->data,	buf);

						local->evaluate(local->data,	"AddEnvelope	Color.R");

						envred	=	findEnv(group,	"Color.R");

			}

			if	(!envred)	{

						msgf->info("Couldn't	create	an	envelope	for",

									iteminfo->name(id));

						return	AFUNC_OK;

			}

			val	=	0.75;

			key	=	envf->findKey(envred,	5.0);

			if	(!key)

						key	=	envf->createKey(envred,	5.0,	val);

			if	(key)

						envf->keySet(envred,	key,	LWKEY_VALUE,	&val);

			else	{

						sprintf(buf,	"%s.Color.R",	iteminfo->name(id));

						msg->info("Couldn't	create	a	key	in",	buf);

			}

Our	findEnv	function	simply	loops	through	the	channels	in	a	channel	group
searching	for	a	given	channel	name.	If	a	match	is	found,	it	returns	the
envelope	ID	for	the	channel.

			LWEnvelopeID	findEnv(LWChanGroupID	group,	char	*name)

			{

						LWChannelID	chan;

						chan	=	chinfo->nextChannel(group,	NULL);

						while	(chan)	{

									if	(!strcmp(chinfo->channelName(chan),	name))

												return	chinfo->channelEnvelope(chan);

									chan	=	chinfo->nextChannel(group,	chan);

						}

						return	NULL;

			}

Backdrop	Info

Availability		LightWave	6.0
Component		Layout
Header		lwrender.h

The	backdrop	info	global	returns	a	function	that	evaluates	the	color	of	the
backdrop	in	a	specific	direction	at	a	given	time,	as	well	as	the	type,	colors
and	squeeze	values	for	the	default	solid	backdrop.	The	parameters	are
read-only,	but	you	can	set	them	using	commands.

Global	Call

			LWBackdropInfo	*bkdropinfo;

			bkdropinfo	=	global(LWBACKDROPINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWBackdropInfo.

			typedef	struct	st_LWBackdropInfo	{

						void					(*backdrop)	(LWTime,	const	double	ray[3],	double	color[3]);

						int							type;

						void					(*color)				(LWTime,	double	zenith[3],	double	sky[3],

																														double	ground[3],	double	nadir[3]);

						void					(*squeeze)		(LWTime,	double	*sky,	double	*ground);

			}	LWBackdropInfo;

backdrop(time,	ray,	color)
Sets	the	color	argument	to	the	RGB	levels	of	the	backdrop	color	in	the
ray	direction	at	the	specified	time.	Several	effects	can	cause	this	color
to	differ	entirely	from	the	one	implied	by	the	other	members	of	the
LWBackdropInfo.

type
LWBACK_SOLID	(the	default	backdrop	is	a	single	uniform	color)	or
LWBACK_GRADIENT	(the	default	backdrop	is	a	gradient	derived	from	the
zenith,	sky,	ground	and	nadir	colors).

color(time,	zenith,	sky,	ground,	nadir)
The	arrays	are	filled	with	the	RGB	levels	for	each	of	the	four	gradient
nodes.

squeeze(time,	sky,	ground)
The	squeeze	amount	is	stored	in	the	sky	and	ground	arguments.	A
squeeze	of	1.0	produces	a	linear	interpolation	between	the	horizon
and	the	pole,	while	higher	amounts	cause	the	color	to	vary	more
quickly	near	the	horizon.

Example

This	code	fragment	shows	how	to	obtain	the	backdrop	color	in	a	given
direction.

			#include	<lwserver.h>

			#include	<lwrender.h>

			LWBackDropInfo	*bkdropinfo;

			double	ray[3],	color[3],	dx,	dy,	dz,	d;

			LWTime	t;

			bkdropinfo	=	global(LWBACKDROPINFO_GLOBAL,	GFUSE_TRANSIENT);

			if	(!bkdropinfo)	return	AFUNC_BADGLOBAL;

			...

			/*	normalize	the	direction	ray	*/

			d	=	sqrt(dx	*	dx	+	dy	*	dy	+	dz	*	dz);

			if	(d	>	0)	{

						ray[0]	=	dx	/	d;

						ray[1]	=	dy	/	d;

						ray[2]	=	dz	/	d;

						bkdropinfo->backdrop(t,	ray,	color);

						...

Bone	Info

Availability		LightWave	6.0
Component		Layout
Headerlwrender.h

The	bone	info	global	returns	functions	for	getting	bone-specific
information	about	any	of	the	bones	in	a	scene.	Use	the	item	info	global	to
get	the	bone	list	and	for	generic	item	information.	The	data	returned	by
these	functions	is	read-only,	but	you	can	use	commands	to	set	many	of	the
parameters.

Global	Call

			LWBoneInfo	*boneinfo;

			boneinfo	=	global(LWBONEINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWBoneInfo.

			typedef	struct	st_LWBoneInfo	{

						unsigned	int	(*flags)					(LWItemID);

						void									(*restParam)	(LWItemID,	LWItemParam,	LWDVector	vec);

						double							(*restLength)(LWItemID);

						void									(*limits)				(LWItemID,	double	*inner,	double	*outer);

						const	char	*	(*weightMap)	(LWItemID);

						double							(*strength)		(LWItemID);

						int										(*falloff)			(LWItemID);

						void									(*jointComp)	(LWItemID,	double	*self,	double	*parent);

						void									(*muscleFlex)(LWItemID,	double	*self,	double	*parent);

			}	LWBoneInfo;

boneflags	=	flags(bone)
Returns	a	set	of	flag	bits	combined	using	bitwise-or.	The	flags	are

LWBONEF_ACTIVE
The	bone	is	active.

LWBONEF_LIMITED_RANGE
The	bone	has	a	limited	range.

LWBONEF_SCALE_STRENGTH
The	strength	of	the	bone	is	scaled	by	the	rest	length.

LWBONEF_WEIGHT_MAP_ONLY
Deformation	will	be	based	solely	on	the	weight	map.

LWBONEF_WEIGHT_NORM

The	weight	normalization	option	is	turned	on.	The	relative
strength	of	each	weight	map	value	is	scaled	so	that	the	total	for
all	values	is	1.0.

LWBONEF_JOINT_COMP
LWBONEF_JOINT_COMP_PAR

Joint	compensation	is	enabled	for	the	bone.	This	can	also
account	for	the	rotation	of	the	bone's	parent.

LWBONEF_MUSCLE_FLEX
LWBONEF_MUSCLE_FLEX_PAR

Muscle	flexing	is	enabled	for	the	bone.	Like	joint	compensation,
this	is	a	volume	preserving	adjustment	to	the	deformation
caused	by	the	bone	and	can	include	the	effect	of	the	bone's
parent.

restParam(bone,	param_type,	vector)
Gets	vector	parameters	for	the	rest	position	of	a	given	bone.
Parameters	of	the	animated	bone	can	be	read	from	the	normal	item
info	functions.	See	the	item	info	parameter	list	for	the	values	that	can
be	passed	in	the	param_type	argument.

length	=	restLength(bone)
Returns	the	rest	length	of	the	bone.

limits(bone,	inner_limit,	outer_limit)
For	limited	range	bones,	this	gets	the	inner	and	outer	limit	radii	for
the	bone.

name	=	weightMap(bone)
Returns	the	name	of	the	weight	map	for	the	bone.	The	weight	map	is
a	vertex	map	of	type	LWVMAP_WGHT.	The	object	info	and	scene	objects
globals	provide	functions	for	reading	the	values	in	a	vmap.

bone_strength	=	strength(bone)
Returns	the	bone	strength	setting.

type	=	falloff(bone)
Returns	the	falloff	as	an	index	into	an	options	list.	In	general,	the
falloff	function	is	the	distance	raised	to	the	power	-2type.	A	type	of	0	is
inverse	distance,	1	is	inverse	distance	squared,	2	is	inverse	distance	to

the	fourth	power,	and	so	on.

jointComp(bone,	self,	parent)
Fills	in	self	and	parent	with	the	joint	compensation	amount.

muscleFlex(bone,	self,	parent)
Fills	in	self	and	parent	with	the	muscle	flexing	amount.

History

In	LightWave	7.0,	the	server	name	for	this	global	(LWBONEINFO_GLOBAL)	was
incremented	from	"LW	Bone	Info	2"	to	"LW	Bone	Info	3".	The	following
functions	and	flags	were	added.

			strength

			falloff

			jointComp

			muscleFlex

			LWBONEF_JOINT_COMP

			LWBONEF_JOINT_COMP_PAR

			LWBONEF_MUSCLE_FLEX

			LWBONEF_MUSCLE_FLEX_PAR

Example

This	code	fragment	collects	information	about	the	bones	in	the	scene.

			#include	<lwserver.h>

			#include	<lwrender.h>

			LWItemInfo	*iteminfo;

			LWBoneInfo	*boneinfo;

			LWItemID	object,	bone;

			unsigned	int	flags;

			LWDVector	pos;

			double	restlen;

			iteminfo	=	global(LWITEMINFO_GLOBAL,	GFUSE_TRANSIENT);

			boneinfo	=	global(LWBONEINFO_GLOBAL,	GFUSE_TRANSIENT);

			if	(!iteminfo	||	!boneinfo)	return	AFUNC_BADGLOBAL;

			object	=	iteminfo->first(LWI_OBJECT,	NULL);

			while	(object)	{

						bone	=	iteminfo->first(LWI_BONE,	object);

						while	(bone)	{

									flags	=	boneinfo->flags(bone);

									boneinfo->restParam(bone,	LWIP_POSITION,	pos);

									restlen	=	boneinfo->restLength(bone);

									...

									bone	=	iteminfo->next(bone);

						}

						object	=	iteminfo->next(object);

			}

Camera	Info

Availability		LightWave	6.0
Component		Layout
Header		lwrender.h

The	camera	info	global	returns	functions	for	getting	camera-specific
information	about	any	of	the	cameras	in	a	scene.	Use	the	item	info	global
to	get	the	camera	list	and	for	generic	item	information.	The	information
returned	by	these	functions	is	read-only,	but	you	can	set	camera
parameters	using	commands.

Global	Call

			LWCameraInfo	*caminfo;

			caminfo	=	global(LWCAMERAINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWCameraInfo.

			typedef	struct	st_LWCameraInfo	{

						double							(*zoomFactor)				(LWItemID,	LWTime);

						double							(*focalLength)			(LWItemID,	LWTime);

						double							(*focalDistance)	(LWItemID,	LWTime);

						double							(*fStop)									(LWItemID,	LWTime);

						double							(*blurLength)				(LWItemID,	LWTime);

						void									(*fovAngles)					(LWItemID,	LWTime,	double	*hfov,

																																							double	*vfov);

						unsigned	int	(*flags)									(LWItemID);

						void									(*resolution)				(LWItemID,	int	*w,	int	*h);

						double							(*pixelAspect)			(LWItemID,	LWTime);

						double							(*separation)				(LWItemID,	LWTime);

						void									(*regionLimits)		(LWItemID,	int	*x0,	int	*y0,	int	*x1,

																																							int	*y1);

						void									(*maskLimits)				(LWItemID,	int	*x0,	int	*y0,	int	*x1,

																																							int	*y1);

						void									(*maskColor)					(LWItemID,	LWDVector	color);

			}	LWCameraInfo;

zoom	=	zoomFactor(camera,	time)

Returns	the	zoom	factor.

flen	=	focalLength(camera,	time)
Returns	the	focal	length	in	millimeters.

fdist	=	focalDistance(camera,	time)
Returns	the	distance	from	the	camera	at	which	objects	are	in	focus.

fstop	=	fStop(camera,	time)
Returns	the	f-stop	number.

blurlen	=	blurLength(camera,	time)
Returns	the	blur	length	as	a	fraction	of	the	frame	time.

fovAngles(camera,	time,	hfov,	vfov)
Gets	the	hfov	and	vfov	(horizontal	and	vertical	field	of	view)	angles,
expressed	in	radians.

f	=	flags(camera);
Returns	flags	describing	the	camera,	combined	using	bitwise-or.
LWCAMF_STEREO

LWCAMF_LIMITED_REGION

LWCAMF_MASK

resolution(camera,	width,	height)
Gets	the	image	size	in	pixels	for	the	images	rendered	by	the	camera.

aspect	=	pixelAspect(camera,	time)
Returns	the	pixel	aspect	ratio	of	images	rendered	by	the	camera,
expressed	as	width/height.	Values	greater	than	1.0	mean	short	wide
pixels	and	values	less	than	1.0	mean	tall	thin	pixels.

sep	=	separation(camera,	time)
Returns	the	interocular	distance	(eye	separation)	for	stereoscopic
rendering,	in	meters.

regionLimits(camera,	x0,	y0,	x1,	y1)
Gets	the	limited	region	rectangle	for	the	camera.

maskLimits(camera,	x0,	y0,	x1,	y1)
Gets	the	mask	rectangle	for	the	camera.

maskColor(camera,	color)
Gets	the	color	that	will	be	rendered	in	areas	of	the	image	outside	the
mask	rectangle.

Example

This	code	fragment	collects	information	about	the	first	camera.

			#include	<lwserver.h>

			#include	<lwrender.h>

			LWItemInfo	*iteminfo;

			LWCameraInfo	*caminfo;

			LWItemID	id;

			LWTime	t	=	3.0;										/*	seconds	*/

			double	zoom,	flen,	fdist,	fstop,	blen,	hfov,	vfov;

			iteminfo	=	global(LWITEMINFO_GLOBAL,	GFUSE_TRANSIENT);

			caminfo		=	global(LWCAMERAINFO_GLOBAL,	GFUSE_TRANSIENT);

			if	(iteminfo	&&	caminfo)	{

						id	=	iteminfo->first(LWI_CAMERA,	NULL);

						zoom		=	caminfo->zoomFactor(id,	t);

						flen		=	caminfo->focalLength(id,	t);

						fdist	=	caminfo->focalDistance(id,	t);

						fstop	=	caminfo->fStop(id,	t);

						blen		=	caminfo->blurLength(id,	t);

						fovAngles(id,	t,	&hfov,	&vfov);

			}

Channel	Info

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwenvel.h

A	channel	is	an	animation	parameter	that	varies	as	a	function	of	time.	In
contrast	to	envelopes,	which	are	arrays	of	keys,	channels	may	include	the
effects	of	other	plug-ins	and	calculations.	The	channel	info	global	gives
you	access	to	Layout's	list	of	grouped	channels.	A	channel's	underlying
envelope	data	may	also	be	read	(see	the	Animation	Envelopes	page	for
more	information).

Global	Call

			LWChannelInfo	*chaninfo;

			chaninfo	=	global(LWCHANNELINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	call	returns	a	pointer	to	an	LWChannelInfo.

			typedef	struct	st_LWChannelInfo	{

						LWChanGroupID	(*nextGroup)							(LWChanGroupID	parent,

																																										LWChanGroupID	group);

						LWChannelID			(*nextChannel)					(LWChanGroupID,	LWChannelID);

						const	char	*		(*groupName)							(LWChanGroupID);	

						const	char	*		(*channelName)					(LWChannelID);	

						LWChanGroupID	(*groupParent)					(LWChanGroupID);	

						LWChanGroupID	(*channelParent)			(LWChannelID);	

						int											(*channelType)					(LWChannelID);	

						double								(*channelEvaluate)	(LWChannelID,	LWTime);	

						const	LWEnvelopeID	(*channelEnvelope)	(LWChannelID);	

						int											(*setChannelEvent)	(LWChannelID,

																																										LWChanEventFunc,	void	*);	

						const	char	*		(*server)										(LWChannelID,	const	char	*class,

																																										int	index);

						unsigned	int		(*serverFlags)					(LWChannelID,	const	char	*class,

																																										int	index);

						LWInstance				(*serverInstance)		(LWChannelID,	const	char	*class,

																																										int	index);

						int											(*serverApply)					(LWChannelID,	const	char	*class,

																																										const	char	*name,	int	flags);

						void										(*serverRemove)				(LWChannelID,	const	char	*class,

																																										const	char	*name,	LWInstance);

			}	LWChannelInfo;

group	=	nextGroup(parent_group,	prev_group)

Returns	the	next	channel	group	in	the	group	list.	If	the	parent	is
NULL,	this	returns	groups	from	the	root	of	the	channel	tree,	and	if

the	previous	group	is	NULL,	it	returns	the	first	group.
channel	=	nextChannel(group,	prev_channel)

Returns	the	next	channel	in	the	group.	If	the	previous	channel	is
NULL,	this	returns	the	first	channel	in	the	group.

gname	=	groupName(group)

Returns	the	name	of	the	channel	group.
cname	=	channelName(channel)

Returns	the	name	of	the	channel.
parent	=	groupParent(group)

Returns	the	parent	group	of	a	channel	group.
parent	=	channelParent(channel)

Returns	the	group	a	channel	belongs	to.
type	=	channelType(channel)

Returns	the	value	type	of	the	channel,	which	determines	how	the
value	is	interpreted	and	displayed	to	the	user.	It	can	be	one	of	the
following.
LWET_FLOAT

LWET_DISTANCE

LWET_PERCENT

LWET_ANGLE

value	=	channelEvaluate(channel,	time)

Returns	the	value	of	the	channel	at	the	specified	time.
envelope	=	channelEnvelope(channel)

Returns	the	underlying	envelope	for	a	channel.	The	envelope	can	be
examined	and	modified	using	the	Animation	Envelopes	global.

result	=	setChannelEvent(channel,	event_func,	data)

Set	a	callback	for	a	channel.	Whenever	the	channel's	underlying
envelope	is	modified,	your	event_func	function	will	be	called	with	data
as	its	first	argument.	The	result	is	true	(non-zero)	if	the	function
succeeds	and	false	(0)	if	it	fails.	The	callback	receives	the	same	event
codes	as	the	envelope	global's	setEnvEvent	function,	plus	LWCEVNT_VALUE.

servname	=	server(channel,	class,	index)

Returns	the	name	of	a	plug-in	applied	to	the	channel.	The	class
argument	is	the	class	string,	which	will	often	be	LWCHANNEL_HCLASS	but
may	be	others.	The	index	specifies	the	"slot,"	or	position	in	the	server
list,	and	counts	from	1.

flags	=	serverFlags(channel,	class,	index)

Returns	flags	for	the	plug-in	applied	to	the	channel.	This	is	the
channel-specific	version	of	the	Item	Info	serverFlags	function.

instance	=	serverInstance(channel,	class,	index)

Returns	an	opaque	pointer	to	the	plug-in's	instance	data.	This	is	the
LWInstance	created	and	used	by	the	plug-in's	LWInstanceFuncs
callbacks.

index	=	serverApply(channel,	class,	name,	flags)

Apply	the	plug-in	to	the	channel.	Returns	the	server	list	index,	or	0	if
it	fails.	The	name	is	the	server	name,	the	string	in	the	name	field	of	the
plug-in's	ServerRecord.	The	flags	can	be	any	combination	of	those
returned	by	serverFlags.

serverRemove(channel,	class,	name,	instance)

Remove	the	plug-in	from	the	channel.	The	instance	is	the	pointer
returned	by	serverInstance.

History

In	LightWave	7.0,	the	service	name	for	this	global	was	incremented	from
"Channel	Info"	to	"Channel	Info	2",	and	the	serverFlags,	serverInstance,
serverApply	and	serverRemove	functions	were	added,	along	with	the
LWCEVNT_VALUE	event	code.

Example

The	find_channels	function	finds	all	of	the	channels	belonging	to	a	group
and	prints	the	name	and	type	of	each	channel.	It	calls	itself	recursively	to
examine	the	subgroups	of	the	parent	group.

			#include	<lwserver.h>

			#include	<lwenvel.h>

			static	void	find_channels(LWChannelInfo	*chinfo,

						LWChanGroupID	parent,	int	indent)

			{

						LWChanGroupID	group;

						LWChannelID	chan;

						group	=	chinfo->nextGroup(parent,	NULL);

						while	(group)	{

									printf("%*s(G)	\"%s\"\n",	indent,	"	",

												chinfo->groupName(group));

									find_channels(chinfo,	group,	indent	+	2);

									chan	=	chinfo->nextChannel(group,	NULL);

									while	(chan)	{

												printf("%*s(C)	\"%s\"	type	%d\n",	indent	+	2,	"	",

															chinfo->channelName(chan),

															chinfo->channelType(chan));

												chan	=	chinfo->nextChannel(group,	chan);

									}

									group	=	chinfo->nextGroup(parent,	group);

						}

			}

Color	Picker

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwhost.h

The	color	picker	global	returns	a	function	that	prompts	the	user	for	a	color
selection.	The	request	displays	the	color	dialog	currently	installed	in
LightWave.	This	may	be	the	default	system	dialog	or	a	custom
ColorPicker	plug-in.

The	function	returned	by	the	color	picker	global	calls	the	color	picker
module's	activation	function	directly.	Plug-ins	calling	the	function	act	as
the	host	side	of	the	ColorPicker	plug-in	class.

Global	Call

			LWColorActivateFunc	*colorpick;

			colorpick	=	global(LWCOLORACTIVATEFUNC_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWColorActivateFunc.

			typedef	int	LWColorActivateFunc	(int	version,	LWColorPickLocal	*);

The	return	value	of	this	function	can	be	any	of	the	values	defined	for	the
return	values	of	activation	functions.	Any	value	other	than	AFUNC_OK	must	be
handled	as	an	error.

The	version	is	passed	as	the	version	argument	to	the	color	picker's
activation	function.	This	should	be	set	to	the	value	defined	by	the
LWCOLORPICK_VERSION	symbol	in	lwdialog.h.	Color	picker	plug-ins	with	a
different	activation	version	will	return	AFUNC_BADVERSION.

The	second	argument	to	this	function	is	a	pointer	to	a	structure	that	is
passed	as	the	local	argument	to	the	color	picker's	activation	function.

The	Local	Structure

The	color	picker	function	passes	an	LWColorPickLocal	as	the	local
argument	to	the	activation	function	of	the	color	picker	plug-in.

			typedef	void	LWHotColorFunc	(void	*data,	float	r,	float	g,	float	b);

			typedef	struct	st_LWColorPickLocal	{

						int													result;

						const	char					*title;

						float											red,	green,	blue;

						void											*data;

						LWHotColorFunc	*hotFunc;

			}	LWColorPickLocal;

result

The	result	of	the	request.	This	will	be	1	if	the	user	selected	a	color,	0
if	the	user	cancelled	the	request,	and	a	negative	number	to	indicate	an
error.

title

The	title	string.	This	is	generally	displayed	near	the	top	of	the	color
dialog	and	tells	the	user	the	context	of	the	color	request.

red,	green,	blue

The	initial	color.	If	the	user	selects	a	color,	these	fields	will	be
modified	to	contain	the	selected	color.	The	nominal	range	for	RGB
levels	is	0.0	to	1.0,	but	they	can	be	outside	this	range.

data

A	pointer	to	data	that	will	be	passed	to	your	hot	color	callback.	This
can	point	to	anything	your	callback	requires,	or	NULL.	The	color
picker	ignores	it.

hotFunc(data,	r,	g,	b)

A	color	callback	you	supply.	The	color	picker	calls	this	while	the	user
is	playing	with	any	of	its	color	selection	mechanisms.	This	allows
you	to	update	your	own	display	interactively	as	the	user	selects	a
color.	(The	"hot"	part	of	the	name	refers	to	this	dynamic	interaction.
This	isn't	an	NTSC	color	gamut	test.)	The	callback	should	execute
quickly	enough	that	it	doesn't	bog	down	the	interactivity	of	the	color
picker	with	the	user.

Example

This	code	fragment	asks	the	user	for	a	color.

			#include	<lwserver.h>

			#include	<lwhost.h>

			void	colorcb(MyDisplayData	*data,	float	r,	float	g,	float	b)

			{

						/*	redraw	my	display	with	the	current	color	*/

						...

			}

			LWColorActivateFunc	*colorpick;

			LWColorPickLocal	clrloc;

			MyDisplayData	myhotdata;

			int	result;

			colorpick	=	global(LWCOLORACTIVATEFUNC_GLOBAL,	GFUSE_TRANSIENT);

			if	(!colorpick)	goto	NoColorPick;		/*	global	calls	can	fail	*/

			clrloc.title			=	"Widget	Color";

			clrloc.red					=	current_red;

			clrloc.green			=	current_green;

			clrloc.blue				=	current_blue;

			clrloc.data				=	&myhotdata;

			clrloc.hotFunc	=	colorcb;

			result	=	colorpick(LWCOLORPICK_VERSION,	&clrloc);

			if	(result	==	AFUNC_OK	&&	clrloc.result	>	0)	{

						current_red			=	clrloc.red;

						current_green	=	clrloc.green;

						current_blue		=	clrloc.blue;

						...

Context	Menu	Services

Availability		LightWave	7.0
Component		Layout,	Modeler
Header		lwpanel.h

Context	menu	services	are	a	set	of	functions	for	creating	and	displaying
context	menus	over	your	panels.	A	context	menu	is	a	modal	popup
window	containing	a	list	of	options.	You	typically	display	one	of	these
when	the	user	right-clicks	or	shift-clicks	an	item	in	your	panel.

Global	Call

			ContextMenuFuncs	*cmenuf;

			cmenuf	=	global(LWCONTEXTMENU_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	a	ContextMenuFuncs.

			typedef	struct	st_ContextMenuFuncs	{

						LWContextMenuID	(*cmenuCreate)	(LWPanPopupDesc,	void	*userdata);

						int													(*cmenuDeploy)	(LWContextMenuID,	LWPanelID,

																																								int	item);

						void												(*cmenuDestroy)(LWContextMenuID);

			}	ContextMenuFuncs;

menu	=	cmenuCreate(popdesc,	userdata)
Create	a	context	menu.	The	popdesc	structure,	described	below,
contains	your	menu	parameters	and	callbacks.	The	userdata	is	a
pointer	that	you	want	your	callbacks	to	receive.

selection	=	cmenuDeploy(menu,	panel,	item)
Display	the	context	menu,	typically	in	response	to	some	user	action.
A	context	menu	is	always	displayed	in	association	with	a	particular
panel.	The	item	is	the	0-based	index	of	the	menu	item	that	should	be
selected	when	the	menu	is	first	displayed,	and	the	return	value	is	the
index	of	the	item	selected	by	the	user.	Either	of	these	can	be	-1	to
indicate	no	selection.

cmenuDestroy(menu)
Free	the	menu	and	related	resources	allocated	by	cmenuCreate.

Popup	Descriptor

The	cmenuCreate	function	uses	an	LWPanPopupDesc	structure	to	define	the
menu.	This	is	the	same	structure	used	by	Panels	custom	popup	controls,
but	for	that	purpose,	its	details	are	conveniently	hidden	from	you	by	the
CUSTPOPUP_CTL	macro.

			typedef	struct	st_LWPanPopupDesc	{

						LWType		type;

						int					width;

						int				(*countFn)(void	*userdata);

						char	*	(*nameFn)	(void	*userdata,	int	item);

			}	LWPanPopupDesc;

type
Set	this	to	LWT_POPUP.

width
The	width	of	the	menu	in	pixels.

nitems	=	countFn(userdata)
Your	count	callback,	which	returns	the	number	of	items	in	the	menu.
The	userdata	is	whatever	you	passed	as	the	second	argument	to
cmenuCreate.

itemstring	=	nameFn(userdata,	item)
Your	item	name	callback,	which	returns	the	string	that	should	be
displayed	for	the	item.

Example

The	following	code	fragments	create	and	display	a	simple	context	menu.
First,	we'll	create	a	data	structure	for	our	menu	and	define	the	callbacks.

			typedef	struct	st_MyMenuData	{

						int				count;

						char	**name;

			}	MyMenuData;

			static	char	*itemname[]	=	{

						"New",	"Load",	"Save",	"Copy",	"Paste",	NULL	};

			MyMenuData	menudata	=	{	5,	itemname	};

			int	menuCount(MyMenuData	*data)

			{

						return	data->count;

			}

			int	menuName(MyMenuData	*data,	int	index)

			{

						if	(index	>=	0	&&	index	<	data->count)

									return	data->name[index];

						return	NULL;

			}

Don't	forget	to	initialize	the	global.

			#include	<lwpanel.h>

			

			ContextMenuFuncs	*cmenuf;

			cmenuf	=	global(LWCONTEXTMENU_GLOBAL,	GFUSE_TRANSIENT);

			if	(!cmenuf)	return	AFUNC_BADGLOBAL;

Create	the	menu.	Typically	you'll	do	this	when	you're	creating	the
associated	panel	and	its	controls.

			LWContextMenuID	menu;

			LWPanPopupDesc	desc;

			desc.type				=	LWT_POPUP;

			desc.width			=	200;

			desc.countFn	=	menuCount;

			desc.nameFn		=	menuName;

			

			menu	=	cmenuf->cmenuCreate(&desc,	menudata);

			if	(!menu)	goto	MenuFail;

Display	the	context	menu	in	response	to	some	user	action.

			int	select,	current;

			select	=	cmenuf->cmenuDeploy(menu,	panel,	current);

			if	(select	!=	-1)	{

						current	=	select;

						...

When	you're	done	with	it,	free	the	menu.

			cmenuf->cmenuDestroy(menu);

Directory	Info

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwhost.h

The	function	returned	by	the	directory	info	global	gives	plug-ins	read-only
access	to	LightWave's	internal	directory	list.	This	tells	you	where
LightWave	would	look	first	for	a	given	item.	It	can	be	used	to	set	the
initial	path	for	a	file	request.

Global	Call

			LWDirInfoFunc	*dirinfo;

			dirinfo	=	global(LWDIRINFOFUNC_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWDirInfoFunc.

			typedef	const	char	*	LWDirInfoFunc	(const	char	*dirtype);

The	dirtype	argument	identifies	which	directory	path	should	be	returned	by
the	directory	info	function.	It	can	be	any	of	the	predefined	file	type	strings.
The	paths	returned	may	be	relative	rather	than	absolute.	In	most	cases,
relative	paths	will	be	relative	to	the	content	directory.	Also,	in	some	cases,
the	path	may	be	NULL.

Example

This	code	fragment	initializes	a	path	string	with	the	default	directory	for
images.

			#include	<lwserver.h>

			#include	<lwhost.h>

			#define	MAXFILESZ	260

			char	*imgdir,	path[MAXFILESZ]	=	"";

			LWDirInfoFunc	*dirinfo;

			dirinfo	=	global(LWDIRINFOFUNC_GLOBAL,	GFUSE_TRANSIENT);

			if	(dirinfo)	{

						imgdir	=	dirinfo(LWFTYPE_IMAGE);

						if	(imgdir)

									if	(strlen(imgdir)	<	MAXFILESZ)

												strcpy(path,	imgdir);

			}

			...

Dynamic	Conversion

Availability		LightWave	6.0
Component		Modeler
Header		lwdyna.h

This	global	returns	a	function	that	converts	between	DynaValues	of
different	types.	This	is	most	often	useful	for	converting	between	string	and
numeric	values.	DynaValues	are	used	by	the	command	system	and	by	the
requester	API.

Global	Call

			DynaConvertFunc	*dynacvt;

			dynacvt	=	global(LWDYNACONVERTFUNC_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	a	DynaConvertFunc.

			typedef	int	DynaConvertFunc	(const	DynaValue	*from,	DynaValue	*to,

					const	DynaStringHint	*hint);

from

The	value	to	convert	from.
to

Receives	the	converted	value	of	the	from	argument.	Before	calling	the
conversion	function,	set	the	type	field	of	the	to	argument	to	the	desired
type	for	the	conversion.

hint

Specifies	a	mapping	between	DY_STRING	types	and	certain	kinds	of
numeric	values.	If	the	types	involved	in	the	conversion	don't	require	a
hint,	this	is	ignored	and	may	be	NULL.

If	the	conversion	succeeds,	the	function	returns	DYERR_NONE.	Otherwise	it
returns	an	error	code.	Possible	error	codes	include	DYERR_MEMORY,	DYERR_BADTYPE
and	DYERR_INTERNAL.

String	Hints

If	one	of	the	DynaValues	is	a	string	and	the	other	is	a	choice	or	a	bitfield,
the	conversion	uses	the	hint	argument	as	a	lookup	table	for	translating

between	them.	The	structure	used	to	pass	hints	looks	like	this.

			typedef	struct	st_DynaStringHint	{

						DyChoiceHint			*chc;

						DyBitfieldHint	*bits;

			}	DynaStringHint;

There	are	two	kinds	of	hints	in	a	DynaStringHint	structure,	only	one	of
which	will	be	used	for	a	given	string	conversion.

			typedef	struct	st_DyChoiceHint	{

						const	char	*item;

						int									value;

			}	DyChoiceHint;

The	choice	hint	is	an	array	of	DyChoiceHint	used	when	converting
between	DY_STRING	and	DY_CHOICE	types.	The	item/value	pairs	indicate	a
mapping	between	choice	values	and	strings.	In	other	words,	hint-
>chc[i].item	will	be	converted	to	hint->chc[i].value	and	vice-versa.	The	array
is	terminated	with	a	null	item	string.

			typedef	struct	st_DyBitfieldHint	{

						char	code;

						int		bitval;

			}	DyBitfieldHint;

The	bitfield	hint	is	an	array	of	DyBitfieldHint	used	when	converting
between	an	array	of	characters	(DY_STRING)	and	a	bitfield	(the	bits	in	a
DY_INTEGER).	Bitfields	appear	as	arguments	to	certain	CommandSequence
commands.	In	the	string	representation,	the	presence	of	a	given	character
corresponds	to	a	set	bit	in	a	bitfield,	and	if	that	character	isn't	in	the	string,
the	bit	is	clear.

The	DyBitfieldHint	code	field	contains	a	character,	and	the	bitval	field	is	an
integer	with	a	bit	pattern.	When	converting	from	a	DY_STRING,	if	the	code
character	(upper	or	lower	case)	is	present	in	the	string,	the	bitval	bits	will
be	bitwise-ORed	into	the	conversion	result.	When	converting	from	a
bitfield,	if	the	bitval	pattern	is	present	(value	&	bitval	==	bitval),	the	code
character	is	appended	to	the	string	result.	The	hint	list	is	terminated	with	a
zero	bitval.

Example

This	code	fragment	converts	between	the	string	and	the	bitfield
representations	of	a	set	of	compass	point	flags.

			#include	<lwserver.h>

			#include	<lwdyna.h>

			#define	FLAG_NORTH	(1<<0)

			#define	FLAG_SOUTH	(1<<1)

			#define	FLAG_EAST		(1<<2)

			#define	FLAG_WEST		(1<<3)

			DyBitfieldHint	compass_hint[5]	=	{

						'n',	FLAG_NORTH,

						's',	FLAG_SOUTH,

						'e',	FLAG_EAST,

						'w',	FLAG_WEST,

						0,	0

			};

			DynaStringHint	hint	=	{	NULL,	compass_hint	};

			DynaValue

						dystr	=	{	DY_STRING	},

						dyint	=	{	DY_INTEGER	};

			DynaConvertFunc	*dynacvt;

			int	result;

			dynacvt	=	global(LWDYNACONVERTFUNC_GLOBAL,	GFUSE_TRANSIENT);

			if	(!dynacvt)	return	AFUNC_BADGLOBAL;

			dystr.str.buf	=	"ns";

			result	=	dynacvt(&dystr,	&dyint,	&hint);

			if	(result	==	DYERR_NONE)	{

						...dyint.intv.value	should	contain	FLAG_NORTH	|	FLAG_SOUTH...

Dynamic	Monitor

Availability		LightWave	6.0
Component		Modeler
Header		lwdyna.h

The	Modeler	monitor	global	returns	functions	for	initializing	and
displaying	a	progress	dialog	in	Modeler.	See	also	the	monitor	global	for
Layout.

Global	Call

			DynaMonitorFuncs	*monf;

			monf	=	global(LWDYNAMONITORFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	a	DynaMonitorFuncs.

			typedef	struct	st_DynaMonitorFuncs	{

						LWMonitor	*	(*create)		(const	char	*,	const	char	*);

						void								(*destroy)	(LWMonitor	*);

			}	DynaMonitorFuncs;

mon	=	create(title,	caption)

Create	a	monitor.	This	function	returns	an	LWMonitor	structure
(described	below)	containing	the	actual	progress	display	functions.
The	title	text	is	ordinarily	displayed	at	the	top	of	the	monitor	dialog,
and	the	caption	text	is	displayed	at	the	bottom.	If	create	returns
NULL,	your	plug-in	should	continue	to	run	without	reporting	an
error.	Monitors	are	nice	to	have,	but	aren't	essential.

destroy(mon)

Free	a	monitor	obtained	from	create.

LWMonitor

The	monitor	structure	returned	by	create	is	defined	in	the	lwmonitor.h	header
file.

			typedef	struct	st_LWMonitor	{

						void						*data;

						void					(*init)	(void	*,	unsigned	int);

						int						(*step)	(void	*,	unsigned	int);

						void					(*done)	(void	*);

			}	LWMonitor;

data

An	opaque	pointer	to	private	data.	Pass	this	as	the	first	argument	to
all	of	the	monitor	functions.

init(data,	total)

Initialize	the	monitor.	The	total	argument	is	the	number	of	steps	in
the	task	to	be	monitored.	It's	up	to	you	to	decide	what	constitutes	a
step.

cancelled	=	step(data,	increment)

Advance	the	progress	display	by	the	fraction	total/increment.	When	the
sum	of	the	steps	reaches	total,	the	progress	display	will	indicate	to	the
user	that	the	task	has	finished.	If	step	returns	1,	the	user	has	requested
that	the	task	be	aborted.

done(data)

Remove	the	progress	display.	This	should	always	be	called,	even	if
the	task	doesn't	finish.

Example

This	code	fragment	demonstrates	the	use	of	a	monitor.	Macros	in
lwmonitor.h	allow	you	to	call	the	LWMonitor	functions	without	worrying
about	whether	the	create	call	succeeded.

			#include	<lwserver.h>

			#include	<lwdyna.h>

			DynaMonitorFuncs	*monf;

			LWMonitor	*mon	=	NULL;

			monf	=	global(LWDYNAMONITORFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(monf)

						mon	=	monf->create("Hello",	"Just	fooling	around");

			MON_INIT(mon,	100);

			for	(i	=	0;	i	<	100;	i	+=	2)	{

						...do	something	that	takes	a	long	time...

						if	(MON_INCR(mon,	2))	break;

			}

			MON_DONE(mon);

			...

			if	(monf	&&	mon)

						monf->destroy(mon);

Dynamic	Request

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwdyna.h

The	dynamic	request	global	returns	functions	that	provide	a	simple	user
interface	API.	The	requester	mechanism	predates	both	the	Panels	and
XPanels	systems	and	is	available	primarily	for	backward	compatibility.
Requesters	in	LightWave	6.0	and	later	are	implemented	as	non-modal
xpanels,	so	this	global	can	be	used	as	an	alternative	method	of	creating
those.

Global	Call

			DynaReqFuncs	*reqf;

			reqf	=	global(LWDYNAREQFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	a	DynaReqFuncs.

			typedef	struct	st_DynaReqFuncs	{

						DynaRequestID	(*create)			(const	char	*);

						int											(*addCtrl)		(DynaRequestID,	const	char	*,

																							DyReqControlDesc	*);

						DynaType						(*ctrlType)	(DynaRequestID,	int);

						int											(*valueSet)	(DynaRequestID,	int,	DynaValue	*);

						int											(*valueGet)	(DynaRequestID,	int,	DynaValue	*);

						int											(*post)					(DynaRequestID);

						void										(*destroy)		(DynaRequestID);

						LWXPanelID				(*xpanel)			(DynaRequestID);

			}	DynaReqFuncs;

req	=	create(title)

Create	a	new	dynamic	request	dialog.	The	title	is	displayed	at	the	top
of	the	dialog	window.	You	can	create	as	many	dialogs	as	you	like,	but
only	one	can	be	displayed	at	a	time.	The	requester	ID	returned	by
create	is	passed	as	the	first	argument	to	the	other	requester	functions.

ctl	=	addCtrl(req,	label,	descriptor)

Add	a	control	to	the	dialog.	Controls	are	stacked	vertically	in	the
requester	window	in	the	order	in	which	they're	added,	with	the	first
control	on	top.	The	return	value	is	a	control	index	used	to	identify	the
control	in	calls	to	ctrlType,	valueSet	and	valueGet.	The	descriptor,
explained	below,	contains	the	control	type	and	other	information

necessary	for	its	display.
ctrlType(req,	ctl)

Returns	the	type	of	a	control.
valueSet(req,	ctl,	value)

Initialize	the	value	of	a	control.	Values	are	expressed	as	DynaValues.
This	function	will	return	an	error	code	if	the	DynaValue	type	is
incompatible	with	the	type	of	the	control,	or	if	the	control	doesn't
exist.

valueGet(req,	ctl,	value)

Retrieve	the	value	of	a	control.	This	function	will	return	an	error	code
if	the	DynaValue	type	is	incompatible	with	the	type	of	the	control,	or
if	the	control	doesn't	exist.

result	=	post(req)

Display	the	requester.	This	function	won't	return	until	the	user	has
dismissed	the	requester.	It	returns	1	if	the	user	accepted	the	inputs
and	0	if	he	or	she	cancelled	them.

destroy(req)

Free	the	requester	and	associated	resources	allocated	by	create.
xpanel(req)

Returns	the	panel	ID	for	the	requester.	See	the	XPanels	discussion	for
more	about	this.

Control	Types

These	are	the	kinds	of	controls	you	can	create.

DY_STRING
A	single	line	of	editable	text.	If	you	just	want	to	display	static	text	on
the	requester,	use	a	DY_TEXT	control.

DY_INTEGER
DY_FLOAT
DY_DISTANCE

Numeric	edit	fields.	Distance	controls	display	length	units	and	handle
unit	conversions.	Internally	the	value	is	a	floating-point	number	of
meters.

DY_VINT

DY_VFLOAT
DY_VDIST

Vector	edit	fields.	A	vector	in	this	case	is	an	array	of	three	numbers.

DY_BOOLEAN
DY_CHOICE

Boolean	controls	are	like	checkboxes.	Internally	their	states	are
stored	as	integers	with	values	of	either	0	or	1.	Choice	controls	are	like
radio	buttons,	an	array	of	mutually	exclusive	booleans.	The	internal
representation	is	an	integer	containing	a	zero-based	index	into	the
choice	list.

DY_SURFACE
Lets	the	user	choose	one	of	the	surfaces	currently	in	Modeler's
internal	surface	list.	The	underlying	data	for	a	surface	control	is	a
string	containing	the	surface	name.

DY_FONT
Lets	the	user	choose	one	of	the	fonts	currently	in	Modeler's	internal
font	list.	The	underlying	data	for	a	font	control	is	an	integer	index
into	the	font	list.

DY_TEXT
Static	(read-only)	text.	Use	this	to	write	things	on	the	requester.	If
you	need	a	text	edit	field,	use	a	DY_STRING	control	instead.

DY_LAYERS
Lets	the	users	select	one	or	more	layers.	These	are	represented
internally	by	set	bits	in	an	integer.

Control	Descriptor

The	addCtrl	function	is	passed	a	descriptor	to	tell	it	what	kind	of	control	to
create.	For	most	controls,	the	descriptor	is	just	a	type	code	corresponding
to	the	DynaType	of	the	variable	it	represents	(one	of	the	types	in	the	list
above),	but	for	string,	choice	and	static	text	controls,	some	additional
information	is	required	to	create	the	control.

String

			typedef	struct	st_DyReqStringDesc	{

						DynaType									type;

						int														width;

			}	DyReqStringDesc;

width

The	displayed	width	of	the	edit	field,	in	characters.

Choice

			typedef	struct	st_DyReqChoiceDesc	{

						DynaType									type;

						const	char					**items;

						int														vertical;

			}	DyReqChoiceDesc;

items

An	array	of	strings.	Each	string	is	the	label	for	a	choice.	The	valueGet
call	will	return	an	index	into	this	array	to	indicate	the	selected	item.

vertical

A	non-zero	value	will	cause	the	choices	to	be	arranged	vertically	on
the	requester.	Otherwise,	they're	arranged	horizontally.

Static	Text

			typedef	struct	st_DyReqTextDesc	{

						DynaType									type;

						const	char					**text;

			}	DyReqTextDesc;

text

An	array	of	strings.	Each	string	is	displayed	on	its	own	line	in	the
requester.

The	control	descriptor	is	a	union	that	collects	the	type	code	and	this	extra
information	into	a	single	structure.

			typedef	union	un_DyReqControlDesc	{

						DynaType									type;

						DyReqStringDesc		string;

						DyReqChoiceDesc		choice;

						DyReqTextDesc				text;

			}	DyReqControlDesc;

Example

This	code	fragment	creates	a	requester	asking	for	personal	information.	It
relies	on	functions	called	reqAdd,	reqSet	and	reqGet	to	hide	some	of	the
details.	The	source	for	these	functions	follows.

			#include	<lwserver.h>

			#include	<lwmodeler.h>

			DynaRequestID	req;

			int	ctl[5],	ok;

			char	name[40]	=	"(Your	name	here)";

			int	age	=	30,	gender	=	0;

			double	height	=	1.8;

			double	measure[3]	=	{	0.9144,	0.6096,	0.9144	};

			char	*glabel[]	=	{	"Female",	"Male",	NULL	};

			reqf	=	global(LWDYNAREQFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(!reqf)	return	AFUNC_BADGLOBAL;

			req	=	reqf->create("All	About	Me");

			if	(!req)	goto	ErrorNoReq;

			ctl[0]	=	reqAdd(req,	DY_STRING,	"Name",	NULL,	20);

			ctl[1]	=	reqAdd(req,	DY_INTEGER,	"Age",	NULL,	0);

			ctl[2]	=	reqAdd(req,	DY_CHOICE,	"Gender",	glabel,	1);

			ctl[3]	=	reqAdd(req,	DY_FLOAT,	"Height",	NULL,	0);

			ctl[4]	=	reqAdd(req,	DY_VDIST,	"Measurements",	NULL,	0);

			reqSet(req,	ctl[0],	name);

			reqSet(req,	ctl[1],	&age);

			reqSet(req,	ctl[2],	&gender);

			reqSet(req,	ctl[3],	&height);

			reqSet(req,	ctl[4],	measure);

			ok	=	reqf->post(req);

			if	(ok)	{

						reqGet(req,	ctl[0],	name,	sizeof(name));

						reqGet(req,	ctl[1],	&age,	0);

						reqGet(req,	ctl[2],	&height,	0);

						reqGet(req,	ctl[3],	&gender,	0);

						reqGet(req,	ctl[4],	measure,	0);

			}

			reqf->destroy(req);

The	reqAdd	function	creates	a	requester	control.	Most	control	types	can	be
created	with	only	the	DynaType	and	label,	but	a	few	require	additional
information.	The	text	argument	is	an	array	of	strings	used	to	create
DY_CHOICE	and	DY_TEXT	controls.	The	extra	argument	is	the	string	width	in
characters	for	DY_STRING	controls	and	the	vertical	flag	for	DY_CHOICE	controls.

int	reqAdd(DynaRequestID	req,	DynaType	type,	char	*label,

			char	**text,	int	extra)

{

			DyReqControlDesc	desc;

			desc.type	=	type;

			switch	(type)	{

						case	DY_STRING:

									desc.string.width	=	extra;

									break;

						case	DY_CHOICE:

									desc.choice.items	=	text;

									desc.choice.vertical	=	extra;

									break;

						case	DY_TEXT:

									desc.text.text	=	text;

									break;

						default:

									break;

			}

			return	reqf->addCtrl(req,	title,	&desc);

}

The	reqSet	and	reqGet	functions	can	set	and	get	the	value	of	any	control.	The
val	argument	points	to	a	variable	of	an	appropriate	type	for	the	control.

int	reqSet(DynaRequestID	req,	int	ctl,	void	*val)

{

			DynaValue	dv;

			int	*ivec;

			double	*fvec;

			dv.type	=	reqf->ctrlType(req,	ctl);

			switch	(dv.type)	{

						case	DY_STRING:

						case	DY_SURFACE:

									dv.str.buf	=	(char	*)	val;

									dv.str.bufLen	=	0;

									break;

						case	DY_INTEGER:

						case	DY_BOOLEAN:

						case	DY_FONT:

						case	DY_LAYERS:

						case	DY_CHOICE:

									dv.intv.value	=	dv.intv.defVal	=	*((int	*)	val);

									break;

						case	DY_FLOAT:

						case	DY_DISTANCE:

									dv.flt.value	=	dv.flt.defVal	=	*((double	*)	val);

									break;

						case	DY_VINT:

									ivec	=	(int	*)	val;

									dv.ivec.val[0]	=	ivec[0];

									dv.ivec.val[1]	=	ivec[1];

									dv.ivec.val[2]	=	ivec[2];

									break;

						case	DY_VFLOAT:

						case	DY_VDIST:

									fvec	=	(double	*)	val;

									dv.fvec.val[0]	=	fvec[0];

									dv.fvec.val[1]	=	fvec[1];

									dv.fvec.val[2]	=	fvec[2];

									break;

						default:

									return	0;

			}

			return	reqf->valueSet(req,	ctl,	&dv);

}

int	reqGet(DynaRequestID	req,	int	ctl,	void	*val,	int	len)

{

			DynaValue	dv;

			int	*ivec,	result;

			double	*fvec;

			dv.type	=	reqf->ctrlType(req,	ctl);

			if	(dv.type	==	DY_STRING	||	dv.type	==	DY_SURFACE)	{

						dv.str.bufLen	=	len;

			}

			result	=	reqf->valueGet(req,	ctl,	&dv);

			switch	(dv.type)	{

						case	DY_STRING:

						case	DY_SURFACE:

									strcpy(val,	dv.str.buf);

									break;

						case	DY_INTEGER:

						case	DY_BOOLEAN:

						case	DY_FONT:

						case	DY_LAYERS:

						case	DY_CHOICE:

									*((int	*)	val)	=	dv.intv.value;

									break;

						case	DY_FLOAT:

						case	DY_DISTANCE:

									*((double	*)	val)	=	dv.flt.value;

									break;

						case	DY_VINT:

									ivec	=	(int	*)	val;

									ivec[0]	=	dv.ivec.val[0];

									ivec[1]	=	dv.ivec.val[1];

									ivec[2]	=	dv.ivec.val[2];

									break;

						case	DY_VFLOAT:

						case	DY_VDIST:

									fvec	=	(double	*)	val;

									fvec[0]	=	dv.fvec.val[0];

									fvec[1]	=	dv.fvec.val[1];

									fvec[2]	=	dv.fvec.val[2];

									break;

						default:

									break;

			}

			return	result;

}

File	I/O

This	page	describes	the	mechanism	LightWave	provides	to	move	plug-in
data	into	and	out	of	files.	The	file	I/O	functions	are	used	by	handlers	in
their	load	and	save	callbacks	to	store	and	retrieve	instance	data	in	scene	and
object	files.	These	functions	can	also	be	used	by	any	plug-in	class	to	read
and	write	files	accessed	through	the	File	I/O	global.

Loading

Data	is	loaded	from	files	using	the	functions	in	an	LWLoadState.	The
lwio.h	header	file	also	defines	macros	for	most	of	these	functions.	Both	the
functions	and	the	corresponding	macros	are	listed	in	the	definitions.

			typedef	struct	st_LWLoadState	{

						int			ioMode;

						void	*readData;

						int		(*read)				(void	*data,	char		*,	int	len);

						int		(*readI1)		(void	*data,	char		*,	int	n);

						int		(*readI2)		(void	*data,	short	*,	int	n);

						int		(*readI4)		(void	*data,	long		*,	int	n);

						int		(*readU1)		(void	*data,	unsigned	char		*,	int	n);

						int		(*readU2)		(void	*data,	unsigned	short	*,	int	n);

						int		(*readU4)		(void	*data,	unsigned	long		*,	int	n);

						int		(*readFP)		(void	*data,	float	*,	int	n);

						int		(*readStr)	(void	*data,	char		*,	int	max);

						LWID	(*findBlk)	(void	*data,	const	LWBlockIdent	*);

						void	(*endBlk)		(void	*data);

						int		(*depth)			(void	*data);

			}	LWLoadState;

ioMode

Indicates	whether	the	file	contents	will	be	interpreted	as	binary
(LWIO_BINARY)	or	text	(LWIO_ASCII).	Handler	plug-ins	that	receive	the
LWLoadState	in	their	instance	load	function	can	usually	infer	from
the	ioMode	whether	they're	reading	their	data	from	a	scene	file	or	an
object	file.	If	the	LWLoadState	is	created	by	the	File	I/O	global's
openLoad	function,	the	ioMode	matches	the	one	passed	to	openLoad.	This
global	supports	a	third	ioMode,	LWIO_BINARY_IFF.

In	ASCII	mode,	all	of	the	read	functions	are	line-buffered,	meaning
that	they	won't	wrap	around	to	the	next	line	when	reading	an	array	of
values.	If	you	ask	for	six	numbers	and	the	current	line	contains	only
five,	the	read	functions	will	return	five	values	rather	than	trying	to	get

the	sixth	from	the	following	line.

readData

An	opaque	pointer	to	data	used	by	the	LWLoadState	functions.	Pass
this	as	the	first	argument	to	these	functions.

rn	=	read(readData,	buf,	n)

Read	raw	bytes.	In	binary	mode,	n	bytes	are	read	directly	from	the
file.	In	ASCII	mode,	up	to	n	bytes	of	the	current	line	are	read	from	the
file,	possibly	leaving	more	bytes	to	be	read	later	(the	file	pointer	isn't
moved	to	the	next	line	until	all	of	the	current	line	is	read).	The	return
value	is	the	number	of	bytes	actually	read	(which	may	be	zero	in
ASCII	mode	if	the	current	line	is	empty),	or	-1	for	end	of	data.

rn	=	readI1(readData,	bytebuf,	n)

rn	=	LWLOAD_I1(ls,	bytebuf,	n)

Read	an	array	of	bytes.	These	are	interpreted	as	numbers	rather	than
text	characters.	Returns	the	number	of	bytes	read.

rn	=	readI2(readData,	shortbuf,	n)

rn	=	LWLOAD_I2(ls,	shortbuf,	n)

Read	an	array	of	two-byte	integers.	Returns	the	number	of	short
integers	read.

rn	=	readI4(readData,	longbuf,	n)

rn	=	LWLOAD_I4(ls,	longbuf,	n)

Read	an	array	of	four-byte	integers.	Returns	the	number	of	integers
read.

rn	=	readU1(readData,	ubytebuf,	n)

rn	=	LWLOAD_U1(ls,	ubytebuf,	n)

Read	an	array	of	unsigned	bytes.	These	are	interpreted	as	numbers
rather	than	text	characters.	Returns	the	number	of	bytes	read.

rn	=	readU2(readData,	ushortbuf,	n)

rn	=	LWLOAD_U2(ls,	ushortbuf,	n)

Read	an	array	of	unsigned	two-byte	integers.	Returns	the	number	of
short	integers	read.

rn	=	readU4(readData,	ulongbuf,	n)

rn	=	LWLOAD_U4(ls,	ulongbuf,	n)

Read	an	array	of	unsigned	four-byte	integers.	Returns	the	number	of
integers	read.

rn	=	readFP(readData,	floatbuf,	n)

rn	=	LWLOAD_FP(ls,	floatbuf,	n)

Read	an	array	of	floating	point	numbers.	Returns	the	number	of	floats
read.

len	=	readStr(readData,	strbuf,	maxn)

len	=	LWLOAD_STR(ls,	strbuf,	maxn)

Read	a	string.	Double	quotes	used	to	delimit	the	string	in	a	text	file
are	removed.	Returns	the	length	of	the	string.

id	=	findBlk(readData,	idlist)

id	=	LWLOAD_FIND(ls,	idlist)

Read	ahead,	looking	for	the	next	block.	The	ID	list	is	a	0-terminated
array	of	LWBlockIdent	structures,	and	the	function	returns	when	it
finds	any	one	of	the	blocks	in	the	list.	In	binary	mode,	a	block	is
identified	by	a	4-byte	integer	constructed	using	the	LWID_	macro
defined	in	the	lwtypes.h	header	file.	In	ASCII	mode,	the	block	ID	is	a
string	token.	Returns	0	if	no	blocks	in	the	list	were	found.

endBlk(readData)

LWLOAD_END(ls)

Move	the	file	pointer	to	the	end	of	the	current	block.	Call	this	when
you've	finished	reading	a	block.

d	=	depth(readData)

d	=	LWLOAD_DEPTH(ls)

Returns	the	current	block	nesting	level,	where	0	means	we've	entered
no	blocks.

Saving

Data	is	saved	to	files	using	the	functions	in	an	LWSaveState.

			typedef	struct	st_LWSaveState	{

						int			ioMode;

						void	*writeData;

						void	(*write)				(void	*data,	const	char		*,	int	len);

						void	(*writeI1)		(void	*data,	const	char		*,	int	n);

						void	(*writeI2)		(void	*data,	const	short	*,	int	n);

						void	(*writeI4)		(void	*data,	const	long		*,	int	n);

						void	(*writeU1)		(void	*data,	const	unsigned	char		*,	int	n);

						void	(*writeU2)		(void	*data,	const	unsigned	short	*,	int	n);

						void	(*writeU4)		(void	*data,	const	unsigned	long		*,	int	n);

						void	(*writeFP)		(void	*data,	const	float	*,	int	n);

						void	(*writeStr)	(void	*data,	const	char		*);

						void	(*beginBlk)	(void	*data,	const	LWBlockIdent	*,	int	leaf);

						void	(*endBlk)			(void	*data);

						int		(*depth)				(void	*data);

			}	LWSaveState;

ioMode

Indicates	whether	the	file	contents	will	be	interpreted	as	binary
(LWIO_BINARY)	or	text	(LWIO_ASCII).	Handler	plug-ins	that	receive	the
LWSaveState	in	their	instance	save	function	can	usually	infer	from
the	ioMode	whether	they're	writing	their	data	to	a	scene	file	or	an	object

file.	If	the	LWSaveState	is	created	by	the	File	I/O	global's	openSave
function,	the	ioMode	matches	the	one	passed	to	openSave.	This	global
supports	a	third	ioMode,	LWIO_BINARY_IFF.

In	ASCII	mode,	the	write	functions	are	line-buffered,	meaning	that
each	call	to	a	write	function	results	in	a	single	newline-terminated
line	in	the	file.

writeData

An	opaque	pointer	to	data	used	by	the	LWSaveState	functions.	Pass
this	as	the	first	argument	to	these	functions.

write(writeData,	buf,	len)

Write	raw	bytes.	In	binary	mode,	len	bytes	are	written	directly	to	the
file.	In	ASCII	mode,	the	buf	argument	is	assumed	to	be	a	null-
terminated	string	and	the	length	is	computed	from	that.	This	string	is
written	with	a	newline	at	the	end.

writeI1(writeData,	bytebuf,	n)

LWSAVE_I1(ss,	bytebuf,	n)

Write	an	array	of	bytes.	The	values	are	treated	as	numbers	rather	than
text	characters.

writeI2(writeData,	shortbuf,	n)

LWSAVE_I2(ss,	shortbuf,	n)

Write	an	array	of	two-byte	integers.	In	ASCII	mode,	these	n	numbers
are	all	written	to	a	single	line.	A	newline	is	written	after	the	numbers
unless	you're	currently	inside	a	leaf	block.

writeI4(writeData,	longbuf,	n)

LWSAVE_I4(ss,	longbuf,	n)

Write	an	array	of	four-byte	integers.
writeU1(writeData,	ubytebuf,	n)

LWSAVE_U1(ss,	ubytebuf,	n)

Write	an	array	of	unsigned	bytes.	The	values	are	treated	as	numbers
rather	than	text	characters.	In	text	files,	each	byte	is	written	as	a	pair
of	hexadecimal	digits.

writeU2(writeData,	ushortbuf,	n)

LWSAVE_U2(ss,	ushortbuf,	n)

Write	an	array	of	unsigned	two-byte	integers.	In	text	files,	the	values
are	written	in	hex.

writeU4(writeData,	ulongbuf,	n)

LWSAVE_U4(ss,	ulongbuf,	n)

Write	an	array	of	unsigned	four-byte	integers.	In	text	files,	the	values

are	written	in	hex.
writeFP(writeData,	floatbuf,	n)

LWSAVE_FP(ss,	floatbuf,	n)

Write	an	array	of	floats.
writeStr(writeData,	strbuf)

LWSAVE_STR(ss,	strbuf)

Write	a	string.	In	ASCII	mode,	the	string	may	be	contained	in	double
quote	marks	(which	will	be	removed	when	the	string	is	later	read	by
the	LWLoadState	readStr	function).

beginBlk(writeData,	blockid,	leaf)

LWSAVE_BEGIN(ss,	blockid,	leaf)

Create	a	new	block.	blockid	is	an	LWBlockIdent	that	will	be	used	to
label	the	block.	The	leaf	flag	is	true	if	this	block	will	not	contain	sub-
blocks.

endBlk(writeData)

LWSAVE_END(ss)

End	the	current	block.
d	=	depth(writeData)

d	=	LWSAVE_DEPTH(ss)

Return	the	current	block	nesting	level,	where	zero	means	you've
entered	no	blocks.

Block	Identifiers

The	LWBlockIdent	structure	is	used	to	label	blocks.

			typedef	struct	st_LWBlockIdent	{

						LWID								id;

						const	char	*token;

			}	LWBlockIdent;

id
A	four-byte	code	usually	built	by	the	LWID_	macro	defined	in
lwtypes.h.	Used	when	writing	to	binary	files.	This	is	also	the	value
returned	by	findBlk	for	both	binary	and	ASCII	files,	which	makes	it
useful	as	the	descriminator	in	a	case	statement.

token
A	plain	text	label	used	when	writing	to	ASCII	files.	This	string
should	contain	no	spaces.

When	creating	custom	files	for	your	own	use,	you	may	use	any	ID	and

label	you	like.	Their	only	purpose	is	to	identify	the	data	that	follows	them
when	you	read	the	file	back	in.

Example

Most	of	the	file	I/O	functions	are	straightforward,	so	this	example	code
concentrates	on	the	use	of	the	block	functions	to	write	and	read	block-
structured	data.

LightWave	scene	files	use	blocks	to	create	keyword-value	pairs	and	to
delimit	keyframe	data.	Blocks	also	appear	as	the	subchunks	in	each	SURF
chunk	of	an	object	file.	Block	structure	makes	the	data	self-documenting
and	more	human-readable.	It	also	makes	your	file	format	extensible
without	sacrificing	backward	compatibility.	Older	readers	will
automatically	skip	blocks	they	don't	recognize	and	can	find	blocks	even	if
they've	been	written	in	a	different	order.

We'll	create	a	data	structure	well	suited	to	blocky	storage.	This	structure	is
borrowed	from	an	astronomy	application,	where	it	describes	the
circumstances	of	an	observer.

			#include	<lwserver.h>

			#include	<lwio.h>

			typedef	struct	{

						float				timezone;

						char					tzname[4];

						int						ltim[6];										/*	yr	mon	day	hr	min	sec	*/

						float				location[2];						/*	lat	lon	*/

						int						horizon_type;

						float				temperature;

						float				pressure;

						float				elevation;

						float				epoch;

			}	Observer;

We	need	labels	for	each	of	the	blocks.	These	will	be	used	for	both	saving
and	loading.	The	ID	arrays	are	divided	into	root	blocks	in	the	first	and
subblocks	of	the	horizon	block	in	the	second,	which	is	what	we'll	need
when	we	read	this	data	back	in.	The	#defines	may	seem	like	an	extra	step
now,	but	they'll	come	in	handy	later.

			#define	ID_TZON		LWID_('T','Z','O','N')

			#define	ID_TZNM		LWID_('T','Z','N','M')

			#define	ID_LTIM		LWID_('L','T','I','M')

			#define	ID_LOCA		LWID_('L','O','C','A')

			#define	ID_EPOC		LWID_('E','P','O','C')

			#define	ID_HRZN		LWID_('H','R','Z','N')

			#define	ID_TYPE		LWID_('T','Y','P','E')

			#define	ID_TEMP		LWID_('T','E','M','P')

			#define	ID_PRES		LWID_('P','R','E','S')

			#define	ID_ELEV		LWID_('E','L','E','V')

			static	LWBlockIdent	idroot[]	=	{

						ID_TZON,	"TimeZone",

						ID_TZNM,	"TimeZoneName",

						ID_LTIM,	"LocalTime",

						ID_LOCA,	"Location",

						ID_EPOC,	"Epoch",

						ID_HRZN,	"Horizon",

						0

			};

			static	LWBlockIdent	idhrzn[]	=	{

						ID_TYPE,	"Type",

						ID_TEMP,	"Temperature",

						ID_PRES,	"Pressure",

						ID_ELEV,	"Elevation",

						0

			};

This	is	the	save	function.	Note	that	it	doesn't	care	whether	the
LWSaveState's	ioMode	is	LWIO_ASCII	or	LWIO_BINARY.	It	also	doesn't	care	whether
the	LWSaveState	came	from	a	handler's	save	callback	or	from	the	file	I/O
global's	openSave	function.

			int	write_obs(LWSaveState	*save,	Observer	*obs)

			{

						LWSAVE_BEGIN(save,	&idroot[0],	1);

									LWSAVE_FP(save,	&obs->timezone,	1);

						LWSAVE_END(save);

						LWSAVE_BEGIN(save,	&idroot[1],	1);

									LWSAVE_STR(save,	obs->tzname);

						LWSAVE_END(save);

						LWSAVE_BEGIN(save,	&idroot[2],	1);

									LWSAVE_I4(save,	obs->ltim,	6);

						LWSAVE_END(save);

						LWSAVE_BEGIN(save,	&idroot[3],	1);

									LWSAVE_FP(save,	obs->location,	2);

						LWSAVE_END(save);

						LWSAVE_BEGIN(save,	&idroot[4],	1);

									LWSAVE_FP(save,	&obs->epoch,	1);

						LWSAVE_END(save);

						LWSAVE_BEGIN(save,	&idroot[5],	0);

									LWSAVE_BEGIN(save,	&idhrzn[0],	1);

												LWSAVE_I4(save,	&obs->horizon_type,	1);

									LWSAVE_END(save);

									LWSAVE_BEGIN(save,	&idhrzn[1],	1);

												LWSAVE_FP(save,	&obs->temperature,	1);

									LWSAVE_END(save);

									LWSAVE_BEGIN(save,	&idhrzn[2],	1);

												LWSAVE_FP(save,	&obs->pressure,	1);

									LWSAVE_END(save);

									LWSAVE_BEGIN(save,	&idhrzn[3],	1);

												LWSAVE_FP(save,	&obs->elevation,	1);

									LWSAVE_END(save);

						LWSAVE_END(save);

						return	1;

			}

If	the	ioMode	is	LWIO_ASCII,	the	output	of	the	write_obs	function	looks	like	this.

			TimeZone	4

			TimeZoneName	"EDT"

			LocalTime	2000	4	24	2	5	30

			Location	37.75	-122.55

			Epoch	2000

			{	Horizon

					Type	1

					Temperature	40

					Pressure	30

					Elevation	100

			}

Each	leaf	block	is	a	single	line	containing	a	keyword	(the	LWBlockIdent
token)	and	a	list	of	values.	Non-leaf	blocks	are	delimited	by	curly	brackets
and	indented	to	show	the	block	nesting	level.

A	hex	dump	of	the	same	data	written	to	a	binary	file	would	look	like	the
following.	Each	block	begins	with	the	4-byte	ID	and	a	2-byte	size	field.
All	of	the	numbers	are	in	big-endian	(Internet,	Motorola)	byte	order.

			54	5A	4F	4E	00	04			TZON	4

			40	80	00	00											4.0

			54	5A	4E	4D	00	04			TZNM	4

			45	44	54	00											"EDT"

			4C	54	49	4D	00	18			LTIM	24

			00	00	07	D0											2000

			00	00	00	04											4

			00	00	00	18											24

			00	00	00	02											2

			00	00	00	05											5

			00	00	00	1E											30

			4C	4F	43	41	00	08			LOCA	8

			42	17	00	00											37.75

			C2	F5	19	9A											-122.55

			45	50	4F	43	00	04			EPOC	4

			44	FA	00	00											2000.0

			48	52	5A	4E	00	28			HRZN	40

			54	59	50	45	00	04					TYPE	4

			00	00	00	01													1

			54	45	4D	50	00	04					TEMP	4

			42	20	00	00													40.0

			50	52	45	53	00	04					PRES	4

			41	F0	00	00													30.0

			45	4C	45	56	00	04					ELEV	4

			42	C8	00	00													100.0

The	function	to	read	this	data	just	searches	for	blocks	in	a	loop	and
switches	to	load	each	one.	The	outer	while	loop	reads	root	blocks,	and	the
inner	loop	reads	horizon	blocks	when	the	HRZN	root	block	is	found.

			int	read_obs(LWLoadState	*load,	Observer	*obs)

			{

						LWID	id;

						while	(id	=	LWLOAD_FIND(load,	idroot))	{

									switch	(id)	{

												case	ID_TZON:

															LWLOAD_FP(load,	&obs->timezone,	1);

															break;

												case	ID_TZNM:

															LWLOAD_STR(load,	obs->tzname,	4);

															break;

												case	ID_LTIM:

															LWLOAD_I4(load,	obs->ltim,	6);

															break;

												case	ID_LOCA:

															LWLOAD_FP(load,	obs->location,	2);

															break;

												case	ID_EPOC:

															LWLOAD_FP(load,	&obs->epoch,	1);

															break;

												case	ID_HRZN:

															while	(id	=	LWLOAD_FIND(load,	idhrzn))	{

																		switch	(id)	{

																					case	ID_TYPE:

																								LWLOAD_I4(load,	&obs->horizon_type,	1);

																								break;

																					case	ID_TEMP:

																								LWLOAD_FP(load,	&obs->temperature,	1);

																								break;

																					case	ID_PRES:

																								LWLOAD_FP(load,	&obs->pressure,	1);

																								break;

																					case	ID_ELEV:

																								LWLOAD_FP(load,	&obs->elevation,	1);

																								break;

																		}

																		LWLOAD_END(load);

															}

															break;												

									}

									LWLOAD_END(load);

						}

						return	1;

			}

File	Request

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwhost.h

The	file	request	global	returns	a	function	that	prompts	the	user	for	a	file
selection.	The	request	displays	the	file	dialog	currently	installed	in
LightWave.	This	may	be	the	default	system	dialog	or	a	custom	file	dialog
plug-in.	See	the	File	Request	2	global	for	a	newer	interface	to	the	file
dialog	mechanism.

Global	Call

			LWFileReqFunc	*filereq;

			filereq	=	global(LWFILEREQFUNC_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWFileReqFunc.

			typedef	int	LWFileReqFunc	(const	char	*hail,	char	*name,	char	*path,

						char	*fullName,	int	buflen);

hail

The	title	string.	This	is	generally	displayed	near	the	top	of	the	file
dialog	and	tells	the	user	what	kind	of	file	is	being	requested.

name

The	initial	file	name,	not	including	the	path.	This	can	be	empty,	or	it
can	contain	a	default	name.	It	can	also	contain	file	type	patterns	that
on	most	systems	will	filter	the	names	displayed	in	the	dialog.	Pattern
strings	for	certain	types	of	files	can	be	obtained	from	the	File	Type
Pattern	global.	If	you	construct	your	own	pattern	strings,	remember
that	these	are	platform-specific	and	may	also	be	locale-specific.

Some	systems	display	different	dialogs	for	loading	and	saving.	If	the
first	character	of	the	name	is	'<',	a	load	dialog	will	be	displayed,	and
if	it's	'>',	a	save	dialog	will	be	displayed.	These	initial	characters
won't	appear	as	part	of	the	initial	name	or	file	type	pattern.

If	the	user	selects	a	file,	the	initial	name	is	replaced	with	the	name
(not	including	the	path)	of	the	selected	file.

path

The	initial	path.	Default	paths	for	certain	file	types	can	be	obtained
from	the	Directory	Info	global.	If	you	construct	your	own	path	string,
remember	that	path	lexics	depend	on	the	platform.	If	the	user	selects
a	file,	the	initial	path	is	replaced	with	the	path	of	the	selected	file.

fullName

The	file	request	returns	the	selected	file	name,	including	the	path,	in
this	string.	The	initial	contents	are	ignored.

bufLen

The	size	in	bytes	of	the	name,	path	and	fullName	strings.	Note	that	all	of
them	must	be	at	least	this	size	and	must	be	large	enough	to	hold	the
largest	file	name	string	you	expect	to	process	(a	minimum	of	256
bytes	is	recommended).

Example

This	code	fragment	asks	the	user	for	the	name	of	a	file	to	save.

			#include	<lwhost.h>

			#define	MAXFILESZ	260

			static	char

						node[MAXFILESZ]	=	"",

						path[MAXFILESZ]	=	"",

						name[MAXFILESZ]	=	"";

			LWFileReqFunc	*filereq;

			LWMessageFuncs	*message;

			int	result;

			filereq	=	global(LWFILEREQFUNC_GLOBAL,	GFUSE_TRANSIENT);

			message	=	global(LWMESSAGEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(!filereq	||	!message)	return	AFUNC_BADGLOBAL;

			result	=	filereq("Save	Widget",	node,	path,	name,	MAXFILESZ);

			if	(result)	{

						save_widget(widget,	name);

						message->info("The	widget	has	been	saved	to",	node);

			}

			else

						/*	the	user	cancelled	the	file	dialog	*/

						...

File	Request	2

Availability		LightWave	6.0
Component		Layout,	Modeler
Header	lwhost.h

The	file	request	2	global	returns	a	function	that	prompts	the	user	for	a	file
selection.	The	request	displays	the	file	dialog	currently	installed	in
LightWave.	This	may	be	the	default	system	dialog	or	a	custom	file	dialog
plug-in.	See	the	File	Request	global	for	an	alternative	interface	to	the	file
dialog	mechanism.

The	primary	advantage	of	this	file	request	global	over	the	original	File
Request	is	a	smarter	and	more	flexible	interface	to	the	file	dialog.	The
dialog	is	initialized	by	filling	out	a	structure,	rather	than	through	a	limited
number	of	function	arguments.

Note	that	in	contrast	to	the	original,	this	global	allows	plug-ins	to	call	the
file	request	activation	function	directly.	Plug-ins	calling	this	global	act	as
the	host	side	of	the	FileRequester	plug-in	class.

Global	Call

			LWFileActivateFunc	*filereq;

			filereq	=	global(LWFILEACTIVATEFUNC_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWFileActivateFunc.

			typedef	int	LWFileActivateFunc	(int	version,	LWFileReqLocal	*);

The	return	value	of	this	function	can	be	any	of	the	values	defined	for	the
return	values	of	activation	functions.	Any	value	other	than	AFUNC_OK	must	be
handled	as	an	error.

The	version	is	passed	as	the	version	argument	to	the	file	request	plug-in's
activation	function.	This	should	be	set	to	the	value	defined	by	the
LWFILEREQ_VERSION	symbol	in	lwdialog.h.	File	request	plug-ins	with	a	different
activation	version	will	return	AFUNC_BADVERSION.

The	second	argument	to	this	function	is	a	pointer	to	a	structure	that	is

passed	as	the	local	argument	to	the	file	request	plug-in's	activation
function.

The	Local	Structure

The	file	request	function	passes	an	LWFileReqLocal	as	the	local	argument
to	the	activation	function	of	the	file	request	plug-in.

			typedef	struct	st_LWFileReqLocal	{

						int									reqType;

						int									result;

						const	char	*title;

						const	char	*fileType;

						char							*path;

						char							*baseName;

						char							*fullName;

						int									bufLen;

						int								(*pickName)	(void);

			}	LWFileReqLocal;

reqType

Indicates	the	type	of	file	request.	Possible	values	are
FREQ_LOAD

FREQ_SAVE

FREQ_DIRECTORY

FREQ_MULTILOAD

result

The	result	of	the	request.	This	will	be	1	if	the	user	selected	a	file,	0	if
the	user	cancelled	the	request,	and	a	negative	number	to	indicate	an
error.

title

The	title	string.	This	is	generally	displayed	near	the	top	of	the	file
dialog	and	tells	the	user	what	kind	of	file	is	being	requested.

fileType

A	file	type	string	used	to	filter	the	filenames	displayed	in	the	dialog.
This	is	one	of	the	type	names	listed	in	the	document	for	the	File	Type
Pattern	global,	rather	than	a	literal	filter.

path

The	initial	path.	Default	paths	for	certain	file	types	can	be	obtained
from	the	Directory	Info	global.	If	you	construct	your	own	path	string,
remember	that	path	lexics	depend	on	the	platform.	If	the	user	selects
a	file,	the	initial	path	is	replaced	with	the	path	of	the	selected	file.

baseName

The	initial	file	name,	not	including	the	path.	This	can	be	empty,	or	it

can	contain	a	default	name.	The	initial	name	can	also	contain
wildcards	that	may	be	used	to	filter	the	names	displayed	in	the	dialog.
If	the	user	selects	a	file,	the	initial	name	is	replaced	with	the	name
(not	including	the	path)	of	the	selected	file.

fullName

The	file	request	returns	the	selected	file	name,	including	the	path,	in
this	string.	The	initial	contents	are	ignored.

bufLen

The	size	in	bytes	of	the	baseName,	path	and	fullName	strings.	Note	that	all
of	them	must	be	the	same	size,	and	should	be	large	enough	to	hold
the	largest	file	name	you	expect	to	process	(a	minimum	of	256	bytes
is	recommended).

pickName()

A	callback	function	you	provide	when	making	MULTILOAD	requests.	This
function	will	be	called	for	each	selected	file.	It	returns	0	to	continue
and	any	non-zero	value	to	stop	processing	the	files	in	a	multiple	file
selection.	Each	time	your	pickName	is	called,	your	LWFileReqLocal
structure	will	contain	the	next	name	in	the	list	of	names	selected	by
the	user.	Your	LWFileReqLocal	therefore	needs	to	be	declared	in	a
place	where	it	will	be	visible	to	your	pickName	function.

Example

This	code	fragment	asks	the	user	for	the	name	of	an	image	file	to	save.

			#include	<lwserver.h>

			#include	<lwhost.h>

			#define	MAXFILESZ	260

			static	char

						node[MAXFILESZ]	=	"",

						path[MAXFILESZ]	=	"",

						name[MAXFILESZ]	=	"";

			static	LWFileReqLocal	frloc;

			LWFileActivateFunc	*filereq;

			int	result;

			filereq	=	global(LWFILEACTIVATEFUNC_GLOBAL,	GFUSE_TRANSIENT);

			if	(!filereq)	goto	NoFileReq;		/*	global	calls	can	fail	*/

			frloc.reqType		=	FREQ_SAVE;	

			frloc.title				=	"Save	Image";

			frloc.bufLen			=	MAXFILESZ;

			frloc.pickName	=	NULL;

			frloc.fileType	=	"Images";

			frloc.path					=	path;

			frloc.baseName	=	node;

			frloc.fullName	=	name;

			strcpy(frloc.path,	"MyImages");					/*	a	relative	path	*/

			strcpy(frloc.baseName,	"foo");						/*	a	default	name		*/

			result	=	filereq(LWFILEREQ_VERSION,	&frloc);

			if	(result	==	AFUNC_OK	&&	frloc.result	>	0)	{

						save_image(myimage,	frloc.fullName);

						...

	

File	Type	Pattern

Availability		LightWave	6.0	Component		Layout,	Modeler	
Header		lwhost.h

This	global	returns	a	function	that	allows	plug-ins	to	retrieve	file	name
pattern	strings.	These	can	be	used	to	translate	the	string	in	the	fileType
passed	to	file	request	plug-ins	into	a	literal	filter	string.

Global	Call

			LWFileTypeFunc	*filetypes;

			filetypes	=	global(LWFILETYPEFUNC_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWFileTypeFunc.
			typedef	const	char	*	LWFileTypeFunc	(const	char	*type);

The	type	argument	identifies	the	kind	of	file	you	want	a	pattern	string	for.
It	can	be	any	of	the	following.	
LWFTYPE_ANIMATION	
LWFTYPE_IMAGE	
LWFTYPE_ENVELOPE	
LWFTYPE_MOTION

LWFTYPE_OBJECT	
LWFTYPE_PLUGIN	
LWFTYPE_PREVIEW	
LWFTYPE_PSFONT

LWFTYPE_SCENE	
LWFTYPE_SETTING	
LWFTYPE_SURFACE	
LWFTYPE_CONTENT

The	association	between	a	type	string	and	a	literal	filter	is	usually	stored	in
the	configuration	file.	Pattern	strings	are	platform-specific.	Under
Windows,	the	string	is	a	list	of	wildcard	extensions	separated	by
semicolons,	e.g.	*.iff;*.tga	for	images.	On	the	Mac,	the	string	is	a	list	of	4-
character	file	types,	also	separated	by	semicolons.	The	Unix	string	uses	a
regular	expression.

Example

This	code	fragment	obtains	the	pattern	string	for	image	files.

			#include	<lwserver.h>

			#include	<lwhost.h>

			char	*imgpat;

			LWFileTypeFunc	*filetypes;

			filetypes	=	global(LWFILETYPEFUNC_GLOBAL,	GFUSE_TRANSIENT);

			if	(filetypes)

						imgpat	=	filetypes(LWFTYPE_IMAGE);

			...

Fog	Info

Availability		LightWave	6.0
Component		Layout
Header		lwrender.h

The	fog	info	global	returns	information	about	the	fog	settings	for	the
scene.	The	parameters	are	read-only,	but	you	can	set	them	using
commands.

Global	Call

			LWFogInfo	*foginfo;

			foginfo	=	global(LWFOGINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWFogInfo.

			typedef	struct	st_LWFogInfo	{

						int					type;

						int					flags;

						double	(*minDist)	(LWTime);

						double	(*maxDist)	(LWTime);

						double	(*minAmt)		(LWTime);

						double	(*maxAmt)		(LWTime);

						void			(*color)			(LWTime,	double	col[3]);

			}	LWFogInfo;

type

The	fog	type.	Generally	this	identifies	the	falloff	function	used	to
interpolate	the	fog	level	at	distances	between	minDist	and	maxDist.
Possible	types	are
LWFOG_NONE

LWFOG_LINEAR

LWFOG_NONLINEAR1

LWFOG_NONLINEAR2

flags

Fog-related	flags.	Currently	the	only	flag	defined	for	this	field	is
LWFOGF_BACKGROUND,	which	indicates	that	fog	will	affect	the	backdrop.

amount	=	minDist(time)

Returns	the	distance	from	the	viewer	(typically	the	camera)	at	which
the	fog	effect	is	at	a	minimum.

amount	=	maxDist(time)

Returns	the	distance	at	which	the	fog	effect	reaches	its	maximum.

amount	=	minAmt(time)

Returns	the	minimum	amount	of	fog	(the	amount	at	the	minimum
distance).	Fog	amounts	range	from	0.0	to	1.0.

amount	=	maxAmt(time)

Returns	the	maximum	amount	of	fog.
color(time,	rgb)

The	color	of	the	fog.

Example

This	code	fragment	uses	Fog	Info	to	determine	whether	a	point	at	distance
d	is	in	fog	at	time	t.

			#include	<lwserver.h>

			#include	<lwrender.h>

			LWFogInfo	*foginfo;

			foginfo	=	global(LWFOGINFO_GLOBAL,	GFUSE_TRANSIENT);

			if	(foginfo)	{

						if	(foginfo->type	!=	LWFOG_NONE)	{

									if	(d	>=	foginfo->minDist(t))	{

												...d	is	in	fog

Font	List

Availability		LightWave	6.0
Component		Modeler
Header		lwmodeler.h

The	font	list	global	provides	a	set	of	functions	for	managing	Modeler's
internal	list	of	fonts.

Global	Call

			LWFontListFuncs	*fontf;

			fontf	=	global(LWFONTLISTFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWFontListFuncs.

			typedef	struct	st_LWFontListFuncs	{

						int										(*count)	(void);

						int										(*index)	(const	char	*name);

						const	char	*	(*name)		(int	index);

						int										(*load)		(const	char	*filename);

						void									(*clear)	(int	index);

			}	LWFontListFuncs;

numfonts	=	count()

Returns	the	number	of	fonts	in	the	list.
fontindex	=	index(fontname)

Returns	the	list	index	for	a	named	font,	or	-1	if	a	font	of	that	name
isn't	in	the	list.

fontname	=	name(fontindex)

Returns	the	name	of	a	font	given	its	list	index,	or	NULL	if	the	index
is	less	than	0	or	greater	than	numfonts	-	1.

fontindex	=	load(filename)

Adds	the	Postscript	Type	1	font	to	the	list	and	returns	its	list	index,	or
-1	if	the	font	couldn't	be	loaded.	Since	the	font	list	is	kept	in	an	order
that	may	differ	from	the	order	in	which	fonts	are	added,	a	font	added
by	load	might	be	inserted	anywhere	in	the	list,	not	just	at	the	end,	and
fonts	with	higher	indexes	will	be	shifted	downward	(incrementing
their	indexes).

Note	that	only	Postscript	fonts	can	be	added	to	the	list	in	this	way.

TrueType	fonts	are	made	available	to	Modeler	indirectly,	through
operating	system	calls,	rather	than	directly	by	reading	their	file
contents.

clear(fontindex)

Removes	the	font	at	the	given	index	from	the	list.	Fonts	at	higher
indexes	will	be	shifted	up	(their	indexes	will	decrement)	to	fill	the
gap	left	by	the	removed	font.

Example

This	code	fragment	loads	the	Postscript	font	Helvetica.

			#include	<lwserver.h>

			#include	<lwmodeler.h>

			LWFontListFuncs	*fontf;

			int	index;

			fontf	=	global(LWFONTLISTFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(!fontf)	return	AFUNC_BADGLOBAL;

			/*	You	can	get	the	default	fonts	directory	from	the

						Directory	Info	global.	*/

			index	=	fontf->load("Helvetica.pfd");

Global	Memory
Global	Render	Memory

Availability		LightWave	6.0
Component		Layout
Header		lwrender.h

These	globals	allow	plug-ins	to	allocate	and	share	named	chunks	of
memory.	The	memory	comes	from	a	pool	managed	by	Layout.	"Global
Render	Memory"	is	used	during	rendering	and	is	freed	automatically	when
rendering	ends.	"Global	Memory"	persists	until	the	scene	is	cleared.

Global	Call

			LWGlobalPool	*memfunc;

			memfunc	=	global(LWGLOBALPOOL_RENDER_GLOBAL,	GFUSE_TRANSIENT);

			memfunc	=	global(LWGLOBALPOOL_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWGlobalPool.

			typedef	struct	st_LWGlobalPool	{

						LWMemChunk			(*first)		(void);

						LWMemChunk			(*next)			(LWMemChunk);

						const	char	*	(*ID)					(LWMemChunk);

						int										(*size)			(LWMemChunk);

						LWMemChunk			(*find)			(const	char	*ID);

						LWMemChunk			(*create)	(const	char	*ID,	int	size);

			}	LWGlobalPool;

mem	=	first()

Returns	the	first	memory	chunk	in	the	pool.	This	and	the	next	function
allow	you	to	traverse	the	entire	list	of	memory	chunks	in	the	pool.
Use	them	if	you	need	to	search	for	memory	chunks	using	criteria
more	complex	than	just	the	chunk	ID	string.

mem	=	next(mem)

Returns	the	next	memory	block	in	the	list.
name	=	ID(mem)

Returns	the	chunk	identifier.	This	is	the	name	string	that	was	passed
to	create.

bytes	=	size(mem)

Returns	the	size	in	bytes	of	a	memory	chunk.

mem	=	find(name)

Returns	the	memory	chunk	with	the	given	ID.	Multiple	chunks	may
be	created	with	the	same	ID,	so	this	returns	the	first	one.

mem	=	create(name,	size)

Creates	a	memory	chunk	with	the	given	size	and	ID	and	returns	a
pointer	to	the	memory.	If	you	want	the	name	string	to	uniquely
identify	the	chunk,	you	should	try	to	find	a	chunk	with	your	ID	before
using	the	ID	in	create.

Example

This	code	fragment	allocates	a	render	memory	chunk	named	"my
memory".

			#include	<lwserver.h>

			#include	<lwhost.h>

			#define	COUNT	100

			static	char	name[]	=	"my	widget	memory";

			LWGlobalPool	*memfunc;

			LWMemChunk	mem;

			int	*p,	i;

			memfunc	=	global(LWGLOBALPOOL_RENDER_GLOBAL,	GFUSE_TRANSIENT);

			if	(!memfunc)	goto	NoMemFunc;		/*	global	calls	can	fail	*/

			mem	=	memfunc->find(name);

			if	(!mem)

						mem	=	memfunc->create(name,	COUNT	*	sizeof(int));

			if	(!mem)

						goto	ErrorNoMem;

			p	=	(int	*)	mem;

			for	(i	=	0;	i	<	COUNT;	i++)	{

						p[i]	=	...

Host	Display	Info

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwdisplay.h

The	host	display	global	returns	platform-specific	information	about
LightWave's	interface.	This	is	primarily	useful	when	you	want	to	create	a
platform-dependent	interface	for	your	plug-in.

Global	Call

			HostDisplayInfo	*hdi;

			hdi	=	global(LWHOSTDISPLAYINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	a	HostDisplayInfo,	or	NULL	if
called	in	a	non-interactive	(e.g.	Screamernet)	context.

			typedef	struct	st_HostDisplayInfo	{

				#ifdef	_WIN32

						HANDLE				instance;

						HWND						window;

				#endif

				#ifdef	_XGL

						Display		*xsys;

						Window				window;

				#endif

				#ifdef	_MACOS

						WindowPtr	window;

				#endif

			}	HostDisplayInfo;

The	operating	system	#defines	(_WIN32,	_XGL,	_MACOS)	are	discussed	in	the
section	on	plug-in	compiling.

window

LightWave's	main	window.	This	is	often	used	as	the	parent	window
of	the	plug-in's	main	window.

_WIN32	instance

Under	Microsoft	Windows,	this	is	the	instance	handle	for	the
LightWave	process.	You	won't	need	this	very	often.	If	you	want	a
handle	to	a	resource	(dialog	templates,	icons,	bitmaps)	that's	stored	in
your	plug-in's	.p	file,	you	need	to	use	your	plug-in's	instance	handle,
not	LightWave's.	See	your	Win32	documentation	to	find	out	how	to

get	your	instance	handle	using	the	DllMain	function.
_XGL	xsys

Under	Unix,	this	is	LightWave's	window	session	handle.

Example

This	code	fragment	displays	everyone's	favorite	first	message,	but	using
the	Win32	MessageBox	function	with	LightWave's	main	window	handle	as
the	parent	window.

			#include	<lwserver.h>

			#include	<lwdisplay.h>			/*	includes	windows.h	under	Windows	*/

			HostDisplayInfo	*hdi;

			hdi	=	global(LWHOSTDISPLAYINFO_GLOBAL,	GFUSE_TRANSIENT);

			if	(hdi)	{

						MessageBox(hdi->window,	"Hello,	world!",	"My	Message",	MB_OK);

			}

Image	List

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwimage.h

This	global	provides	access	to	LightWave's	internal	image	list.	Also	see
the	Image	Utility	global.

A	single	image	ID	can	refer	to	image	sequences	and	animations	as	well	as
stills,	and	"image"	is	used	here	to	refer	to	all	of	these.	Most	of	the
functions	that	return	pixel	information	do	so	for	the	current	state	of	the
image,	which	generally	depends	on	the	current	frame	during	rendering	and
on	the	most	recently	rendered	frame	at	other	times.

Global	Call

			LWImageList	*imglist;

			imglist	=	global(LWIMAGELIST_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWImageList.

			typedef	struct	st_LWImageList	{

						LWImageID					(*first)				(void);

						LWImageID					(*next)					(LWImageID);

						LWImageID					(*load)					(const	char	*);

						const	char	*		(*name)					(LWImageID);

						const	char	*		(*filename)	(LWImageID,	LWFrame);

						int											(*isColor)		(LWImageID);

						void										(*needAA)			(LWImageID);

						void										(*size)					(LWImageID,	int	*w,	int	*h);

						LWBufferValue	(*luma)					(LWImageID,	int	x,	int	y);

						void										(*RGB)						(LWImageID,	int	x,	int	y,

																																			LWBufferValue[3]);

						double								(*lumaSpot)	(LWImageID,	double	x,	double	y,

																																			double	spotSize,	int	blend);

						void										(*RGBSpot)		(LWImageID,	double	x,	double	y,

																																			double	spotSize,	int	blend,	double[3]);

						void										(*clear)				(LWImageID);

						LWImageID					(*sceneLoad)(const	LWLoadState	*);

						void										(*sceneSave)(const	LWSaveState	*,	LWImageID);

						int											(*hasAlpha)	(LWImageID);

						LWBufferValue	(*alpha)				(LWImageID,	int	x,	int	y);

						double								(*alphaSpot)(LWImageID,	double	x,	double	y,

																																			double	spotSize,	int	blend);

						LWPixmapID				(*evaluate)	(LWImageID,	LWTime	t);

			}	LWImageList;

image	=	first()

Returns	the	first	image	in	the	list.
image	=	next(prev_image)

Returns	the	image	after	prev_image	in	the	list,	or	NULL	if	prev_image	is
the	last	image	in	the	list.

image	=	load(filename)

Add	the	image	to	the	list	and	return	its	ID.	Animation	files	can	be
loaded	with	this	function,	but	image	sequences	cannot.

iname	=	name(image)

Returns	the	name	of	the	image	as	it	appears	to	the	user.
fname	=	filename(image,	frame)

Returns	the	filename	of	the	image.	This	is	the	value	that	should	be
stored	for	later	retrieval	of	the	image	using	load.

iscol	=	isColor(image)

True	for	images	with	color	data	and	false	for	grayscale	images.
needAA(image)

Called	by	shaders	that	want	to	use	the	image	list	lumaSpot	and	RGBSpot
functions	during	rendering.	This	tells	Layout	to	prefilter	the	image
for	later	spot	evaluation.	Currently	this	function	can	only	be	called
from	a	shader's	init	function.

size(image,	width,	height)

Returns	the	width	and	height	of	the	image	in	pixels.
gray	=	luma(image,	x,	y)

Returns	the	grayscale	value	of	a	pixel.	If	this	is	a	color	image	(isColor
is	true),	the	value	returned	is	the	NTSC/PAL	luminance,	which
combines	the	RGB	levels	using	the	weights	0.2989	red,	0.5866	green,
0.1144	blue.

RGB(image,	x,	y,	color)

Returns	the	red,	green	and	blue	values	of	a	pixel.
gray	=	lumaSpot(image,	x,	y,	spotsize,	blend)

Returns	the	grayscale	value	of	a	spot	on	the	image.	x	and	y	are	the
center	of	the	spot	in	pixels,	and	the	spot	size	is	the	diameter	of	the
spot	in	pixel	units.	The	value	is	the	weighted	average	of	the	pixels
within	the	spot.	If	blend	is	true	and	the	spot	size	is	small,	however,	the
value	will	be	interpolated	from	neighboring	pixels	that	may	be
outside	the	spot.	Currently	this	function	can	only	be	called	during	the
spot	evaluation	function	of	a	shader,	and	needAA	must	have	been	called

previously	from	the	shader's	init	function.
RGBSpot(image,	x,	y,	spotsize,	blend,	color)

Returns	the	color	values	of	a	spot	on	the	image.	Like	lumaSpot,	this
function	can	only	be	called	during	the	spot	evaluation	function	of	a
shader.

clear(image)

Remove	the	image	from	the	image	list.	This	has	the	effect	of
removing	all	references	to	the	image	in	the	scene.

image	=	sceneLoad(loadstate)

Read	an	image	reference	from	a	file	and	add	the	image	to	the	image
list.	This	is	meant	to	be	called	by	a	handler's	load	callback	to	retrieve
an	image	that's	part	of	its	instance	data.	The	reference	will	have	been
written	by	sceneSave.

sceneSave(savestate,	image)

Write	an	image	reference	to	a	file.	This	is	meant	to	be	called	by	a
handler's	save	callback	to	store	a	reference	to	the	image	as	part	of	the
handler's	instance	data.

hasa	=	hasAlpha(image)

True	if	the	image	includes	an	alpha	channel.
a	=	alpha(image,	x,	y)

Returns	the	alpha	value	of	a	pixel.
a	=	alphaSpot(image,	x,	y,	spotsize,	blend)

Returns	the	alpha	value	of	a	spot	(see	lumaSpot	and	RGBSpot).
pixmap	=	evaluate(image,	time)

Returns	a	pixmap	of	the	image	that	can	be	used	with	the	Image
Utility	global.	This	function	creates	a	copy	of	the	image,	similar	to
calling	the	Image	Utility	create	function	and	then	copying	the	pixels
using	Image	List	RGB	and	Image	Utility	setPixel.	But	the	image	is
evaluated,	meaning	that	the	frame	matching	the	time	argument	is
retrieved	for	sequences	and	animations,	and	any	adjustments	and
filters	are	applied.

Example

The	zcomp	sample	includes	a	pixel	filter	that	composites	the	rendered
image	with	a	previously	generated	image	based	on	the	z-depth.	It	uses	the
Image	List	global	to	manage	both	the	image	to	be	composited	and	its	z-

buffer,	which	is	treated	as	a	floating-point	grayscale	image	and	read	using
the	luma	function.

Image	Utility

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwimage.h

This	global	provides	functions	for	creating	and	saving	still	images.	Also
see	the	Image	List	global.

Pixmaps,	used	by	this	global	and	identified	by	LWPixmapID,	differ	from
the	images	in	the	image	list,	which	are	identified	by	LWImageID.	Pixmaps
are	stills,	and	you	can	draw	on	them	and	save	them.	Once	saved	to	a	file,
the	image	can	be	loaded	into	LightWave	using	the	Image	List	load
function.	The	pixmap	returned	by	the	Image	List	evaluate	function	is	a	copy
of	the	image,	and	drawing	on	this	copy	does	not	change	the	original
image.

Global	Call

			LWImageUtil	*imgutil;

			imgutil	=	global(LWIMAGEUTIL_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWImageUtil.

			typedef	struct	st_LWImageUtil	{

						LWPixmapID			(*create)				(int	w,	int	h,	LWImageType);

						void									(*destroy)			(LWPixmapID);

						int										(*save)						(LWPixmapID,	int	saver,	const	char	*name);

						void									(*setPixel)		(LWPixmapID,	int	x,	int	y,	void	*pix);

						void									(*getPixel)		(LWPixmapID,	int	x,	int	y,	void	*pix);

						void									(*getInfo)			(LWPixmapID,	int	*w,	int	*h,	int	*type);

						LWPixmapID			(*resample)		(LWPixmapID,	int	w,	int	h,	int	mode);

						int										(*saverCount)(void);

						const	char	*	(*saverName)	(int	saver);

			}	LWImageUtil;

image	=	create(w,	h,	type)

Create	a	new	image.	The	type	specifies	the	organization	of	the	pixel
data	and	may	be	any	of	the	image	I/O	pixel	types.

destroy(image)

Release	resources	allocated	by	create.	The	image	ID	is	no	longer	valid
after	this	is	called.

result	=	save(image,	saver_index,	filename)

Save	the	image	to	a	file	using	the	specified	format.	The	format	is
determined	by	the	choice	of	image	saver,	which	can	be	one	of
Layout's	built-in	image	savers	or	any	of	the	installed	ImageSaver
class	plug-ins.	Use	the	saverCount	and	saverName	functions	to	determine
what	formats	are	available	and	which	saver	index	to	use.

setPixel(image,	x,	y,	pixel)

Set	the	value	of	a	pixel	in	the	image.	The	format	of	the	pixel	data
depends	on	the	pixel	type	of	the	image.

getPixel(image,	x,	y,	pixel)

Get	the	value	of	a	pixel	in	the	image.
getInfo(image,	w,	h,	type)

Get	the	width,	height	and	pixel	type	of	an	image.
image2	=	resample(image,	w,	h,	mode)

Create	a	new	image	by	resizing	an	existing	image.	The	mode
determines	how	the	existing	pixels	will	be	resampled	and	can	be	one
of	the	following	values.

LWISM_SUBSAMPLING
LWISM_MEDIAN
LWISM_SUPERSAMPLING
LWISM_BILINEAR
LWISM_BSPLINE
LWISM_BICUBIC

count	=	saverCount()

Returns	the	number	of	available	image	savers.
name	=	saverName(saver_index)

Returns	the	name	of	an	image	saver.

Example

This	example	creates	a	rainbow	image,	saves	it,	and	loads	it	into	Layout's
internal	image	list	using	the	image	list	global.

			#include	<lwserver.h>

			#include	<lwimage.h>

			#include	<lwhost.h>

			LWMessageFuncs	*msg;

			LWImageUtil	*imgutil;

			LWImageList	*imglist;

			LWImageID	image;

			LWPixmapID	pixmap;

			int	x,	y,	saver,	nsavers;

			unsigned	char	rgb[3];

			char	*filename	=	"rainbow.tga";

			imgutil	=	global(LWIMAGEUTIL_GLOBAL,	GFUSE_TRANSIENT);

			imglist	=	global(LWIMAGELIST_GLOBAL,	GFUSE_TRANSIENT);

			msg	=	global(LWMESSAGEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(!imgutil	||	!imglist	||	!msg)

						return	AFUNC_BADGLOBAL;

			pixmap	=	imgutil->create(256,	20,	LWIMTYP_RGB24);

			if	(!pixmap)	{

						msg->error("Couldn't	create	the	image.",	NULL);

						return	AFUNC_OK;

			}	

			for	(x	=	0;	x	<	256;	x++)

						for	(y	=	0;	y	<	20;	y++)	{

									hsv2rgb(359.0f	*	x	/	255.0f,	y	/	20.0f,	1.0f,	rgb);

									imgutil->setPixel(pixmap,	x,	y,	rgb);

						}

			

			nsavers	=	imgutil->saverCount();

			for	(saver	=	0;	saver	<	nsavers;	saver++)

						if	(!strcmp("Targa	Format	(.tga)",

									imgutil->saverName(saver)))	break;

			

			if	(saver	==	nsavers)

						msg->error("Couldn't	find	the	Targa	saver.",	NULL);

			else			

						imgutil->save(pixmap,	saver,	filename);

						

			imgutil->destroy(pixmap);

			image	=	imglist->load(filename);

The	hsv2rgb	function	looks	like	this.

			void	hsv2rgb(float	h,	float	s,	float	v,	char	rgb[])

			{

						float	r,	g,	b,	p,	q,	f,	t;

						int	i;

						if	(s	==	0)	{

									rgb[0]	=	rgb[1]	=	rgb[2]	=	(int)(v	*	255);

									return;

						}

						h	/=	60.0f;

						i	=	(int)	h;

						f	=	h	-	i;

						p	=	v	*	(1.0f	-	s);

						q	=	v	*	(1.0f	-	(s	*	f));

						t	=	v	*	(1.0f	-	(s	*	(1.0f	-	f)));

						switch	(i)	{

									case	0:		r	=	v;		g	=	t;		b	=	p;	break;

									case	1:		r	=	q;		g	=	v;		b	=	p;	break;

									case	2:		r	=	p;		g	=	v;		b	=	t;	break;

									case	3:		r	=	p;		g	=	q;		b	=	v;	break;

									case	4:		r	=	t;		g	=	p;		b	=	v;	break;

									case	5:		r	=	v;		g	=	p;		b	=	q;	break;

						}

						rgb[0]	=	(int)(r	*	255);	

						rgb[1]	=	(int)(g	*	255);	

						rgb[2]	=	(int)(b	*	255);	

			}

Info	Messages

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwhost.h

This	global	provides	a	set	of	functions	for	displaying	messages	to	the	user.

Global	Call

			LWMessageFuncs	*msgf;

			msgf	=	global(LWMESSAGEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWMessageFuncs.

			typedef	struct	st_LWMessageFuncs	{

						void	(*info)					(const	char	*,	const	char	*);

						void	(*error)				(const	char	*,	const	char	*);

						void	(*warning)		(const	char	*,	const	char	*);

						int		(*okCancel)	(const	char	*title,	const	char	*,	const	char	*);

						int		(*yesNo)				(const	char	*title,	const	char	*,	const	char	*);

						int		(*yesNoCan)	(const	char	*title,	const	char	*,	const	char	*);

						int		(*yesNoAll)	(const	char	*title,	const	char	*,	const	char	*);

			}	LWMessageFuncs;

All	of	these	functions	allow	you	to	display	one	or	two	lines	of	text.	The
second	line	is	optional	and	may	be	NULL.

The	first	three	functions	are	informational	only.	Depending	on	the	user-
defined	alert	level,	the	arguments	are	displayed	either	in	a	separate	dialog
with	an	OK	button,	or	in	a	status	area	on	the	main	window.	The	remaining
functions	allow	you	to	ask	the	user	questions,	and	they	differ	in	the	choice
of	responses	available	to	the	user.	The	possible	return	values	are

	 3 2 1 0

okCancel - - OK Cancel
yesNo - - Yes No
yesNoCan - Yes No Cancel

yesNoAll
Yes	to
All Yes No Cancel

Example

This	code	fragment	displays	everyone's	favorite	first	message.

			#include	<lwserver.h>

			#include	<lwhost.h>

			LWMessageFuncs	*msgf;

			msgf	=	global(LWMESSAGEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(msgf)	{

						msgf->info("Hello,	world!",	NULL);

			}

Instance	Update

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwhandler.h

A	handler	plug-in	calls	this	to	synchronize	LightWave	with	changes	to	the
plug-in's	instance	data.	LightWave	will	refresh	its	own	interface	and	will
usually	call	the	handler's	evaluation	function	in	the	process.

Global	Call

			LWInstUpdate	*instupdate;

			instupdate	=	global(LWINSTUPDATE_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWInstUpdate.

			typedef	void	LWInstUpdate	(const	char	*class,	LWInstance);

The	arguments	are	the	plug-in	class	of	your	handler	and	the	instance	that
has	changed.

Example

Several	of	the	samples,	including	blotch,	inertia	and	txchan	use	the	update
function.

	

Interface	Info

Availability		LightWave	6.0	Component		Layout	
Header		lwrender.h

The	interface	info	global	returns	information	about	the	state	of	Layout's
user	interface.	The	data	is	read-only,	but	you	can	set	the	parameters	using
selection,	navigation	and	display	commands.

Global	Call

			LWInterfaceInfo	*intinfo;

			intinfo	=	global(LWINTERFACEINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWInterfaceInfo.
			typedef	struct	st_LWInterfaceInfo	{

						LWTime										curTime;

						const	LWItemID	*selItems;

						unsigned	int		(*itemFlags)	(LWItemID);

						LWFrame									previewStart,	previewEnd,	previewStep;

						int													dynaUpdate;

						void										(*schemaPos)	(LWItemID,	double	*x,	double	*y);

						int											(*itemVis)			(LWItemID);

						unsigned	int				displayFlags;

						unsigned	int				generalFlags;

						int													boxThreshold;

						int											(*itemColor)	(LWItemID);

						int													alertLevel;

						int													autoKeyCreate;

			}	LWInterfaceInfo;

curTime

The	current	animation	time	selected	in	the	Layout	interface.

selItems

A	NULL-terminated	array	of	item	IDs	for	the	items	currently	selected
in	the	interface.

flags	=	itemFlags(item)

Returns	a	set	of	bit	flags	for	the	item.	These	can	be	any	combination
of	the	following.	

LWITEMF_SELECTED

LWITEMF_SHOWCHILDREN

LWITEMF_SHOWCHANNELS

LWITEMF_LOCKED

previewStart,	previewEnd,	previewStep

The	range	and	step	size	used	by	the	frame	slider	and	by	Layout
previews.	These	differ	from	the	range	and	step	for	rendering,	which
are	returned	by	the	scene	info	global.

dynaUpdate

Contains	the	current	state	of	Layout's	Dynamic	Update	setting,	which
controls	how	frequently	the	interface	is	updated	while	the	user	makes
changes.	Possible	values	are	

LWDYNUP_OFF

LWDYNUP_DELAYED

LWDYNUP_INTERACTIVE

schemaPos(item,	x,	y)

The	x	and	y	arguments	receive	the	position	of	the	item	in	schematic
viewports.	This	and	the	SchematicPosition	command	can	be	used	by
plug-ins	to	rearrange	the	schematic	views.

visibility	=	itemVis(item)

Returns	a	code	describing	how	an	item	is	drawn	in	the	interface.	For
objects,	this	can	be	one	of	the	following.	

LWOVIS_HIDDEN

LWOVIS_BOUNDINGBOX

LWOVIS_VERTICES

LWOVIS_WIREFRAME

LWOVIS_FFWIREFRAME

LWOVIS_SHADED

LWOVIS_TEXTURED

Other	item	types	are	limited	to	LWIVIS_HIDDEN	and	LWIVIS_VISIBLE.	
displayFlags

Returns	the	state	of	certain	display	options	as	bit	fields	combined
using	bitwise-or.	When	set,	a	bit	indicates	that	the	corresponding
option	is	turned	on	for	the	display.

LWDISPF_MOTIONPATHS

LWDISPF_HANDLES

LWDISPF_IKCHAINS

LWDISPF_CAGES

LWDISPF_SAFEAREAS

LWDISPF_FIELDCHART

generalFlags

Returns	the	state	of	certain	interface	options	as	bit	fields	combined
using	bitwise-or.	When	set,	a	bit	indicates	that	the	corresponding
option	is	turned	on	for	the	interface.	

LWGENF_HIDETOOLBAR

LWGENF_RIGHTTOOLBAR

LWGENF_PARENTINPLACE

LWGENF_FRACTIONALFRAME

LWGENF_KEYSINSLIDER

LWGENF_PLAYEXACTRATE

LWGENF_AUTOKEY

boxThreshold

The	bounding	box	threshold.	Objects	with	a	number	of	points	greater
than	this	threshold	are	drawn	initially	as	bounding	boxes	to	speed	up
interaction.

color_index	=	itemColor(item)

Returns	an	index	into	the	list	of	colors	used	to	drawing	an	item's
wireframe.

	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

alertLevel

The	alert	level	for	information	dialogs.	This	affects	how	the
information	is	displayed.	Possible	values	are

LWALERT_BEGINNER

LWALERT_INTERMEDIATE

LWALERT_EXPERT

	autoKeyCreate
The	auto	key	create	mode	state,	defined	as	one	of	these	values:
LWAKC_OFF	

LWAKC_MODIFIED

LWAKC_ALL.	

History

In	LightWave	7.5,	the	autoKeyCreate	field	was	added,	along	with	the
LWGENF_AUTOKEY	generalFlags	definition.

Example

This	code	fragment	collects	information	about	the	currently	selected	items.

			#include	<lwserver.h>

			#include	<lwrender.h>

			LWInterfaceInfo	*intinfo;

			LWItemInfo	*iteminfo;

			LWTime	t;

			LWItemID	*id;

			int	i,	f,	type;

			intinfo	=	global(LWINTERFACEINFO_GLOBAL,	GFUSE_TRANSIENT);

			iteminfo	=	global(LWITEMINFO_GLOBAL,	GFUSE_TRANSIENT);

			if	(!intinfo	||	!iteminfo)	return	AFUNC_BADGLOBAL;

			t	=	intinfo->curTime;

			id	=	intinfo->selItems;

			for	(i	=	0;	id[i];	i++)	{

						f	=	intinfo->itemFlags(id[i]);

						type	=	iteminfo->type(id[i]);

						switch	(type)	{

									case	LWI_OBJECT:

												...

	

Item	Info

Availability		LightWave	6.0	Component		Layout	
Header		lwrender.h

The	item	info	global	returns	functions	for	traversing	a	list	of	the	items	in	a
scene	and	for	getting	information	about	any	one	of	them.	The	information
available	through	this	global	is	common	to	all	item	types.	Information
specific	to	certain	item	types	is	provided	through	separate	global
functions.

Global	Call

			LWItemInfo	*iteminfo;

			iteminfo	=	global(LWITEMINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWItemInfo.
			typedef	struct	st_LWItemInfo	{

						LWItemID						(*first)							(LWItemType,	LWItemID);

						LWItemID						(*next)								(LWItemID);

						LWItemID						(*firstChild)		(LWItemID	parent);

						LWItemID						(*nextChild)			(LWItemID	parent,	LWItemID	prevChild);

						LWItemID						(*parent)						(LWItemID);

						LWItemID						(*target)						(LWItemID);

						LWItemID						(*goal)								(LWItemID);

						LWItemType				(*type)								(LWItemID);

						const	char	*		(*name)								(LWItemID);

						void										(*param)							(LWItemID,	LWItemParam,	LWTime,

																																					LWDVector);

						unsigned	int		(*limits)						(LWItemID,	LWItemParam,

																																					LWDVector	min,	LWDVector	max);

						const	char	*		(*getTag)						(LWItemID,	int);

						void										(*setTag)						(LWItemID,	int,	const	char	*);

						LWChanGroupID	(*chanGroup)			(LWItemID);

						const	char	*		(*server)						(LWItemID,	const	char	*,	int);

						unsigned	int		(*serverFlags)	(LWItemID,	const	char	*,	int);

						void										(*controller)		(LWItemID,	LWItemParam,	int	type[3]);

						unsigned	int		(*flags)							(LWItemID);

						LWTime								(*lookAhead)			(LWItemID);

						double								(*goalStrength)(LWItemID);

						void										(*stiffness)			(LWItemID,	LWItemParam,	LWDVector);

						unsigned	int		(*axisLocks)			(LWItemID,	LWItemParam);

			}	LWItemInfo;

id	=	first(itemtype,	bone_object)	
Returns	the	ID	of	the	first	item	of	a	given	type,	or	LWITEM_NULL	if	there

are	no	items	of	this	type	in	the	scene.	Valid	item	types	are	
LWI_OBJECT

LWI_LIGHT

LWI_CAMERA

LWI_BONE

If	itemtype	is	LWI_BONE,	the	second	argument	is	the	ID	of	the	boned	object.
Otherwise	it	should	be	LWITEM_NULL.	
id	=	next(item)

Returns	the	next	item	of	the	same	type	as	the	item	argument.	If	there
are	no	more,	this	returns	LWITEM_NULL.	

id	=	firstChild(parent)

Returns	the	first	child	item	of	the	parent	item,	or	LWITEM_NULL	if	the
parent	item	has	no	children.	

id	=	nextChild(parent,	child)

Returns	the	next	child	item	given	a	parent	item	and	the	previous
child,	or	LWITEM_NULL	if	there	are	no	more	children.	

id	=	parent(item)

Returns	the	item's	parent,	if	any,	or	LWITEM_NULL.	

id	=	target(item)

Returns	the	item's	target,	if	any,	or	LWITEM_NULL.	

id	=	goal(item)

Returns	the	item's	goal,	if	any,	or	LWITEM_NULL.	

itemtype	=	type(item)

Returns	the	type	of	an	item.	

itemname	=	name(item)

Returns	the	name	of	the	item	as	it	appears	to	the	user.	

param(item,	param_type,	time,	vector)

Returns	vector	parameters	associated	with	an	item.	This	data	is	read-
only.	The	param_type	argument	identifies	which	parameter	vector	you
want.	The	parameters	are	

LWIP_POSITION

The	keyframed	position	before	parenting.	Equivalently,	if	the	item	is
parented,	this	is	its	position	relative	to	its	parent.

LWIP_W_POSITION

The	keyframed	position	in	world	coordinates	(after	parenting).	
LWIP_ROTATION

The	keyframed	rotation,	in	radians	(relative	to	its	parent's	rotation).	
LWIP_SCALING

The	keyframed	scale	factors	(relative	to	the	parent's	scale).	
LWIP_PIVOT

LWIP_PIVOT_ROT

The	item's	pivot	point	position	and	rotation,	in	its	own	coordinates.
The	pivot	point	is	the	origin	for	the	item's	rotations.

LWIP_RIGHT

LWIP_UP	
LWIP_FORWARD

+X,	+Y	and	+Z	direction	vectors	for	the	item,	in	world	coordinates.
Together	they	form	the	item's	rotation	and	scale	transformation
matrix.	Since	they	include	scaling,	these	vectors	aren't	normalized.	

LWIP_W_RIGHT

LWIP_W_UP	
LWIP_W_FORWARD

+X,	+Y	and	+Z	direction	vectors	for	the	world,	in	item	coordinates.
In	other	words,	these	are	the	inverse	of	the	previous	parameters.	

The	value	is	written	to	the	vector	array	for	the	given	time.	
flags	=	limits(item,	param_type,	minvec,	maxvec)

Get	upper	and	lower	bounds	on	vector	parameters.	These	may	be
limits	set	by	the	user	on	joint	angles	or	ranges	of	movement.	The
function	returns	an	integer	containing	bit	flags	that	indicate	which	of
the	three	vector	components	contain	limits.	The	symbols	for	these
bits	are	

LWVECF_0

LWVECF_1

LWVECF_2

If	the	bit	is	set,	then	the	corresponding	element	of	the	vector	array	contains
a	valid	limit.	If	the	bit	is	0,	the	channel	is	unbounded.
tag	=	getTag(item,	tagnum)

Retrieve	a	tag	string	associated	with	an	item.The	tags	are	numbered
starting	at	1.	getTag	returns	NULL	if	the	tag	number	is	out	of	range.
Tags	strings	are	stored	with	the	item	in	the	scene	file.

setTag(item,	tagnum,	tag)

Associate	a	tag	string	with	an	item.	If	tagnum	is	0,	a	new	tag	is	created

for	the	item.	If	tagnum	is	the	number	of	an	existing	tag,	the	tag	string
for	that	tag	is	replaced.	If	tagnum	is	outside	these	values,	the	setTag	call
is	ignored.

changroup	=	chanGroup(item)

Returns	the	channel	group	associated	with	an	item.	Use	this	with	the
Animation	Envelopes	and	Channel	Info	globals.

servname	=	server(item,	class,	index)

Returns	the	name	of	a	plug-in	applied	to	an	item.	The	class	argument
is	the	class	name,	and	the	index	refers	to	the	position	in	the	server	list
for	that	class.	The	first	server	in	the	list	has	an	index	of	1.	Returns
NULL	if	no	plug-in	matching	the	arguments	can	be	found.	This
function	can	also	be	used	to	query	the	names	of	servers	that	aren't
associated	with	items,	such	as	pixel	and	image	filters	and
volumetrics,	and	for	those	the	item	ID	is	ignored.

flags	=	serverFlags(item,	class,	index)

Returns	flags	for	the	plug-in	identified	by	the	item,	class	name	and
server	list	index.	Currently	the	possible	flags	are	

LWSRVF_DISABLED

LWSRVF_HIDDEN

controller(item,	param_type,	hpb_controllers)

Returns	a	code	indicating	which	mechanism	controls	the	item's
rotation.	The	third	argument	is	an	array	of	three	integers,	one	each	for
heading,	pitch	and	bank,	that	receive	a	controller	code	for	keyframes,
targeting,	alignment	to	a	path,	or	inverse	kinematics.	

LWMOTCTL_KEYFRAMES

LWMOTCTL_TARGETING

LWMOTCTL_ALIGN_TO_PATH

LWMOTCTL_IK

itemflags	=	flags(item)

Returns	certain	item	settings	as	a	set	of	bit	flags.
LWITEMF_ACTIVE

LWITEMF_UNAFFECT_BY_IK

LWITEMF_FULLTIME_IK

LWITEMF_GOAL_ORIENT

LWITEMF_REACH_GOAL

time	=	lookAhead(item)

Returns	the	look-ahead	interval,	in	seconds,	for	motion	channels
controlled	by	LWMOTCTL_ALIGN_TO_PATH.	This	is	the	amount	of	time	by
which	changes	in	orientation	of	the	item	anticipate	changes	in	the

path	direction.

strength	=	goalStrength(item)

Returns	the	item's	IK	goal	strength.

stiffness(item,	param_type,	vector)

Fills	vector	with	the	item's	joint	stiffness	settings	in	heading,	pitch	and
bank.	Use	LWIP_ROTATION	as	the	param_type.

flags	=	axisLocks(item,	param_type)

Returns	bits	indicating	which	channels	are	locked	in	the	UI.	See
limits().

History

LightWave	7.5	added	the	axisLocks	function,	but	LWITEMINFO_GLOBAL	was	not
incremented.	If	you	ask	for	"LW	Item	Info	3",	use	the	Product	Info	global
to	determine	whether	you're	running	in	LightWave	7.0	or	later	before
attempting	to	call	these	functions.

Example

This	code	fragment	traverses	the	object	list,	collecting	names	and	some
parameters.

			#include	<lwserver.h>

			#include	<lwrender.h>

			LWItemInfo	*iteminfo;

			LWItemID	id;

			char	*name;

			LWTime	t	=	3.0;										/*	seconds	*/

			LWDVector	rt,	up,	fd;

			iteminfo	=	global(LWITEMINFO_GLOBAL,	GFUSE_TRANSIENT);

			if	(iteminfo)	{

						id	=	iteminfo->first(LWI_OBJECT,	NULL);

						while	(id)	{

									name	=	iteminfo->name(id);

									iteminfo->param(id,	LWIP_RIGHT,	t,	rt);

									iteminfo->param(id,	LWIP_UP,	t,	up);

									iteminfo->param(id,	LWIP_FORWARD,	t,	fd);

									if	(rt[0]	>	0.0)	{	...

									id	=	iteminfo->next(id);

						}

			}

The	vectors	returned	by	the	param	function	can	be	used	to	transform	points
between	item	and	world	coordinates.	In	the	following	fragments,	p	is	the

position	of	a	point	in	item	coordinates	and	q	is	the	same	point's	position	in
world	coordinates:
			LWDVector	p,	q,	rt,	up,	fd,	wrt,	wup,	wfd,	wpos,	piv;

			LWItemID	id;

			...

			iteminfo->param(id,	LWIP_RIGHT,						t,	rt);

			iteminfo->param(id,	LWIP_UP,									t,	up);

			iteminfo->param(id,	LWIP_FORWARD,				t,	fd);

			iteminfo->param(id,	LWIP_W_POSITION,	t,	wpos);

			iteminfo->param(id,	LWIP_PIVOT,						t,	piv);

To	convert	from	item	to	world	coordinates,	subtract	the	pivot	position	(to
move	the	rotation	origin	to	the	world	origin),	multiply	by	the	matrix
formed	from	the	direction	vectors,	and	offset	the	result	by	the	world
position	of	the	item.
			for	(i	=	0;	i	<	3;	i++)

						q[i]	=	(p[0]	-	piv[0])	*	rt[i]

													+	(p[1]	-	piv[1])	*	up[i]

													+	(p[2]	-	piv[2])	*	fd[i]

													+	wpos[i];

To	transform	from	world	to	item	coordinates,	just	apply	the	same
procedure	in	reverse,	using	the	inverse	direction	vectors.
			iteminfo->param(id,	LWIP_W_RIGHT,			t,	wrt);

			iteminfo->param(id,	LWIP_W_UP,						t,	wup);

			iteminfo->param(id,	LWIP_W_FORWARD,	t,	wfd);

			for	(i	=	0;	i	<	3;	i++)

						p[i]	=	(q[0]	-	wpos[0])	*	wrt[i]

													+	(q[1]	-	wpos[1])	*	wup[i]

													+	(q[2]	-	wpos[2])	*	wfd[i]

													+	piv[i];

Layout	Monitor

Availability		LightWave	7.0
Component		Layout
Header		lwmonitor.h

The	Layout	monitor	global	returns	functions	for	initializing	and	displaying
a	progress	dialog	in	Layout.	This	is	primarily	for	showing	the	progress	of
lengthy	or	complex	operations	in	non-handler	plug-in	classes.	Filters	and
file	importer	classes	have	their	own	monitor	mechanisms.	See	also	the
monitor	global	for	Modeler.

Global	Call

			LWLMonFuncs	*lmonf;

			lmonf	=	global(LWLMONFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWLMonFuncs.

			typedef	struct	st_LWLMonFuncs	{

						LWLMonID	(*create)			(void);

						void					(*setup)				(LWLMonID,	char	*title,	unsigned	int	flags,

																														const	char	*histfile);

						void					(*setwinpos)(LWLMonID,	int	x,	int	y,	int	w,	int	h);

						void					(*init)					(LWLMonID,	unsigned	int	total,	const	char	*);

						int						(*step)					(LWLMonID,	unsigned	int	incr,	const	char	*);

						void					(*done)					(LWLMonID);

						void					(*destroy)		(LWLMonID);

			}	LWLMonFuncs;

mon	=	create()
Create	a	new	monitor	instance.	The	monitor	returned	by	create	is
passed	as	the	first	argument	to	the	other	monitor	functions.

setup(mon,	title,	flags,	histfile)
Configure	the	monitor.	The	title	string	is	the	title	of	the	monitor
window.	The	histfile	is	the	filename	of	a	history	file	where	messages
displayed	to	the	user	will	also	be	written.	This	can	be	NULL	if	you
don't	want	a	history	file.	The	flags	can	be	any	of	the	following
combined	using	bitwise-or.

LMO_NOABORT
By	default,	the	user	can	inform	you	that	your	operation	should

be	stopped.	This	flag	disables	the	Abort	button.
LMO_REVIEW

If	this	is	set,	the	monitor	window	remains	open	after	you	call
done.	This	allows	the	user	to	review	the	messages	displayed
during	the	operation.

LMO_HISTAPPEND
By	default,	the	history	file	is	overwritten	each	time	init	is	called.
This	flag	causes	new	message	strings	to	be	appended	to	the	file
instead.

LMO_IMMUPD
Enables	immediate	update	of	the	monitor	on	every	step.	The
default	is	to	delay	updates	to	avoid	incurring	too	much	overhead
for	rapid	step	events.

setwinpos(mon,	x,	y,	w,	h)
Set	the	position	and	size	of	the	monitor	window.	The	dimensions	are
in	pixels.	If	you	don't	call	this,	Layout	will	select	defaults	for	you.

init(mon,	total,	message)
Open	the	monitor	window.	The	total	is	the	number	of	steps	in	the
operation.	While	step	is	being	called,	Layout	displays	your	progress
to	the	user	as	a	percentage	of	this	total.	The	message	is	the	first	string
displayed	to	the	user.

abort	=	step(mon,	increment,	message)
Advance	the	progress	display	by	the	fraction	total/increment.	When	the
sum	of	the	steps	reaches	the	total,	the	progress	display	will	indicate	to
the	user	that	the	task	has	finished.	An	increment	of	0	is	valid	and	can
be	used	to	change	the	message	without	changing	the	progress
indication.	The	message	can	also	be	NULL,	in	which	case	Layout	may
substitute	a	generic	progress	message.	If	step	returns	1,	the	user	has
requested	that	the	task	be	aborted.

done(mon)
Tell	the	monitor	that	the	task	has	been	completed.	If	the	flags	passed
to	setup	included	LMO_REVIEW,	the	monitor	window	remains	open	and
control	won't	be	returned	from	done	until	the	user	closes	the	window.
Otherwise	done	closes	the	window	and	control	returns	immediately.

destroy(mon)
Free	the	monitor	instance	and	resources	allocated	by	create.	If	it's
open,	the	monitor	window	will	be	closed.

Example

This	code	fragment	creates	and	displays	a	monitor	in	Layout.	Displaying
progress	to	the	user	is	helpful	but	not	essential,	so	in	most	cases	failure	in
some	part	of	the	monitor	processing	shouldn't	cause	your	plug-in	to	fail.

			#include	<lwserver.h>

			#include	<lwgeneric.h>

			#include	<lwmonitor.h>

			#include	<time.h>

			LWLMonFuncs	*monf;

			LWLMonID	mon;

			int	i,	total,	step;

			/*	get	the	global	and	a	monitor	*/

			monf	=	global(LWLMONFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(monf)	{

						mon	=	monf->create();

						if	(mon)

									monf->setup(mon,	"Just	Testing",	LMO_REVIEW,	NULL);

			}

			...

			/*	perform	a	lengthy	task	*/

			if	(monf	&&	mon)	monf->init(mon,	total,	"Starting...");

			for	(i	=	0;	i	<	total;	i	+=	step)	{

						...do	something...

						if	(monf	&&	mon)

									if	(monf->step(mon,	step,	NULL))	{

												monf->step(mon,	0,	"Aborted!");

												break;

									}

			}

			if	(monf	&&	mon)	monf->done(mon);

			...

			/*	no	longer	need	the	monitor	*/

			if	(monf	&&	mon)	monf->destroy(mon);

	

Light	Info

Availability		LightWave	6.0	Component		Layout,	Modeler	
Header		lwrender.h

The	light	info	global	returns	functions	for	getting	light-specific
information	about	any	of	the	lights	in	a	scene.	Use	the	Item	Info	global	to
get	the	light	list	and	for	generic	item	information.	The	information
returned	by	these	functions	is	read-only,	but	you	can	use	commands	to	set
many	of	the	parameters.

Global	Call

			LWLightInfo	*lightinfo;

			lightinfo	=	global(LWLIGHTINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWLightInfo.
			typedef	struct	st_LWLightInfo	{

						void									(*ambient)					(LWTime,	LWDVector	color);

						int										(*type)								(LWItemID);

						void									(*color)							(LWItemID,	LWTime,	LWDVector	color);

						int										(*shadowType)		(LWItemID);

						void									(*coneAngles)		(LWItemID,	LWTime,	double	*radius,

																																					double	*edge);

						unsigned	int	(*flags)							(LWItemID);

						double							(*range)							(LWItemID,	LWTime);

						int										(*falloff)					(LWItemID);

						LWImageID				(*projImage)			(LWItemID);

						int										(*shadMapSize)	(LWItemID);

						double							(*shadMapAngle)(LWItemID,	LWTime);

						double							(*shadMapFuzz)	(LWItemID,	LWTime);

						int										(*quality)					(LWItemID);

						void									(*rawColor)				(LWItemID,	LWTime,	LWDVector	color);

						double							(*intensity)			(LWItemID,	LWTime);

						void									(*shadowColor)		(LWItemID,	LWTime,	LWDVector	color);

			}	LWLightInfo;

ambient(time,	color)

Returns	the	color	of	the	global	ambient	light	for	the	scene	at	the
given	time.	The	RGB	levels	include	the	effect	of	the	user's	intensity
setting	for	the	ambient	light.

lighttype	=	type(light)

Returns	the	type	of	the	light	as	one	of	the	following	values.	

LWLIGHT_DISTANT

LWLIGHT_POINT

LWLIGHT_SPOT

LWLIGHT_LINEAR

LWLIGHT_AREA

color(light,	time,	rgb)

Sets	the	rgb	argument	to	the	color	of	the	light	(with	intensity	factored
in)	at	the	given	time.	Use	the	rawColor	and	intensity	functions	for
separate	access	to	these	settings.

shadowtype	=	shadowType(light)

Returns	the	shadow	type	for	the	light	as	one	of	the	following	values.	
LWLSHAD_OFF

LWLSHAD_RAYTRACE

LWLSHAD_MAP

coneAngles(light,	time,	radius,	edge)

Returns	the	cone	angles	for	spotlights.	radius	receives	an	angle	that	is
half	the	total	light	cone	angle,	and	edge	receives	the	angular	width	of
the	soft	edge.	Both	angles	are	in	radians.

settings	=	flags(light)

Returns	flag	bits	for	settings	related	to	the	light.	
LWLFL_LIMITED_RANGE

LWLFL_NO_DIFFUSE

LWLFL_NO_SPECULAR

LWLFL_NO_CAUSTICS

LWLFL_LENS_FLARE

LWLFL_VOLUMETRIC

LWLFL_NO_OPENGL

LWLFL_FIT_CONE

LWLFL_CACHE_SHAD_MAP

The	FIT_CONE	flag	indicates	that	the	shadow	map	angle	is	set	to	the	light's
spotlight	cone	angle.	
dist	=	range(light,	time)

Returns	the	range	or	nominal	distance	for	the	light.	The	interpretation
of	this	value	depends	on	the	falloff	type.	If	falloff	is	linear,	the	value
is	the	distance	at	which	the	intensity	of	the	light	falls	to	0.	For	inverse
distance	falloff	types,	the	value	is	the	distance	at	which	the	intensity
equals	the	user's	intensity	setting	for	the	light.	When	there's	no	falloff
(the	falloff	function	returns	LWLFALL_OFF,	or	the	LWLFL_LIMITED_RANGE	flag
bit	is	clear),	the	return	value	is	undefined.

falloff_type	=	falloff(light)

Returns	the	falloff	type.	Falloff	scales	the	intensity	of	a	light	as	a
function	of	d	(distance	from	the	light)	and	r	(the	value	returned	by	the

range	function).

LWLFALL_OFF 1	(no	falloff)
LWLFALL_LINEAR 1	-	d	/	r	(or	0	when	d	>	r)
LWFALL_INV_DIST r	/	d
LWFALL_INV_DIST_2 (r	/	d)2

image	=	projImage(light)

Returns	the	image	ID	of	the	projection	image.	Use	the	Image	List
global	to	get	information	about	the	image.

size	=	shadMapSize(light)

The	size	of	the	shadow	map.	Shadow	maps	are	square	arrays	of
pixels,	so	the	amount	of	memory	used	by	a	shadow	map	is
proportional	to	the	square	of	the	size.

angle	=	shadMapAngle(light,	time)

The	angle	subtended	by	the	shadow	map,	in	radians.

fuzziness	=	shadMapFuzz(light,	time)

The	amount	of	fuzziness	at	the	edges	of	shadows	in	the	shadow	map.

index	=	quality(light)

The	quality	level	of	an	extended	(linear	or	area)	light	source,
proportional	to	the	number	of	sample	points	on	the	light.

rawColor(light,	time,	rgb)	
level	=	intensity(light,	time)

These	return	the	separate	components	of	the	light	color	returned	by
the	color	function.

shadowColor(light,	time,	rgb)

Returns	the	shadow	color	for	the	light	in	rgb.

History

In	LightWave	7.5,	the	shadowColor	function	was	added.

Example

This	code	fragment	collects	information	about	the	first	light.

			#include	<lwserver.h>

			#include	<lwrender.h>

			LWItemInfo	*iteminfo;

			LWLightInfo	*ltinfo;

			LWItemID	id;

			LWTime	t	=	3.0;										/*	seconds	*/

			LWDVector	color;

			double	range,	radius,	edge;

			int	lighttype,	shadowtype;

			unsigned	int	flags;

			iteminfo	=	global(LWITEMINFO_GLOBAL,	GFUSE_TRANSIENT);

			ltinfo			=	global(LWLIGHTINFO_GLOBAL,	GFUSE_TRANSIENT);

			if	(iteminfo	&&	ltinfo)	{

						id	=	iteminfo->first(LWI_LIGHT,	NULL);

						lighttype		=	ltinfo->type(id);

						shadowtype	=	ltinfo->shadowType(id);

						flags						=	ltinfo->flags(id);

						ltinfo->color(id,	t,	color);

						if	(type	==	LWLIGHT_SPOT)

									ltinfo->coneAngles(id,	&radius,	&edge);

						if	(flags	&	LWLFL_LIMITED_RANGE)

									range	=	ltinfo->range(id);

			}

Locale	Info

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwhost.h

The	locale	info	global	returns	a	code	indicating	the	(human)	language
setting	of	the	system.

Global	Call

			unsigned	long	locinfo;

			locinfo	=	(unsigned	long)	global(LWLOCALEINFO_GLOBAL,

						GFUSE_TRANSIENT);

The	global	function	ordinarily	returns	a	void	*,	so	this	should	be	cast	to	an
integer	type	to	get	the	return	value.

The	language	ID	is	in	the	low	16	bits	of	the	return	value.	The	high	16	bits
are	reserved	for	future	use.	The	language	ID	can	be	extracted	using	a
macro	defined	in	lwhost.h.

			langid	=	locinfo	&	LWLOC_LANGID;

The	language	IDs	are	identical	to	those	defined	in	the	Microsoft	Win32
API	and	exposed	in	the	Microsoft	Visual	C++	winnt.h	header	file.	Bits	7	-	0
define	the	language	group	and	bits	15	-	8	define	the	sublanguage.	The
plug-in	SDK	header	file	lwserver.h	contains	symbols	for	some	of	the	more
common	language	IDs.

			LANGID_GERMAN						0x0407

			LANGID_USENGLISH			0x0409

			LANGID_UKENGLISH			0x0809

			LANGID_SPANISH					0x040a

			LANGID_FRENCH						0x040c

			LANGID_ITALIAN					0x0410

			LANGID_JAPANESE				0x0411

			LANGID_KOREAN						0x0412

			LANGID_RUSSIAN					0x0419

			LANGID_SWEDISH					0x041D

Note	that	the	low	order	bits	for	USENGLISH	and	UKENGLISH	are	the	same.	Win32
defines	9	flavors	of	English	(as	well	as	16	flavors	of	both	Arabic	and
Spanish,	for	example)	that	are	distinguished	by	sublanguage	code.

Your	plug-in	isn't	required	to	implement	localization,	but	even	if	you	don't
provide	error	messages	or	panel	text	in	multiple	languages,	you	may	still
want	to	localize	things	like	date	formats	or	currency	symbols.

Example

The	following	code	fragment	selects	a	greeting	string	based	on	the	locale.

			#include	<lwserver.h>

			#include	<lwhost.h>

			unsigned	long	locinfo;

			locinfo	=	(unsigned	long)	global(LWLOCALEINFO_GLOBAL,

						GFUSE_TRANSIENT);

			switch	(locinfo	&	LWLOC_LANGID)	{

						case	LANGID_GERMAN:				msg	=	"Guten	Tag";								break;

						case	LANGID_USENGLISH:

						case	LANGID_UKENGLISH:	msg	=	"Good	day";									break;

						case	LANGID_SPANISH:			msg	=	"Buenos	dias";						break;

						case	LANGID_FRENCH					msg	=	"Bonjour";										break;

						case	LANGID_ITALIAN				msg	=	"Buon	giorno";						break;

						case	LANGID_JAPANESE			msg	=	"Konnichi	wa";						break;

						case	LANGID_KOREAN					msg	=	"Annyoung	hase	yo";	break;

						case	LANGID_RUSSIAN				msg	=	"Zdravstvuite";					break;

						case	LANGID_SWEDISH				msg	=	"God	dag";										break;

						...

Comp	Info

Availability		LightWave	6.0
Component		Layout
Header		lwrender.h

The	compositing	info	global	identifies	the	images	being	used	as	the
background,	foreground	and	foreground	alpha	images.	This	data	structure
is	read-only.

Global	Call

			LWCompInfo	*compinfo;

			compinfo	=	global(LWCOMPINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWCompInfo.

			typedef	struct	st_LWCompInfo	{

						LWImageID	bg;

						LWImageID	fg;

						LWImageID	fgAlpha;

			}	LWCompInfo;

bg

The	background	image.
fg

The	foreground	image.
fgAlpha

The	foreground	alpha	image.

Example

This	code	fragment	retrieves	information	about	the	background	image.

			#include	<lwserver.h>

			#include	<lwrender.h>

			#include	<lwimage.h>

			LWCompInfo	*compinfo;

			LWImageList	*imglist;

			char	*name;

			int	width,	height;

			compinfo	=	global(LWCOMPINFO_GLOBAL,	GFUSE_TRANSIENT);

			imglist	=	global(LWIMAGELIST_GLOBAL,	GFUSE_TRANSIENT);

			if	(!compinfo	||	!imglist)	goto	ErrorBadGlobal;

			name	=	imglist->name(compinfo.bg);

			imglist->size(compinfo.bg,	&width,	&height);

			...

Multithreading	Utilities

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwmtutil.h

The	multithreading	global	supplies	a	mutex	(mutual	exclusion)	mechanism
for	managing	threaded	execution	of	your	plug-in.	LightWave	may	invoke
your	plug-in	from	multiple	threads	simultaneously,	which	has	the	effect	of
threading	your	code.	But	when	doing	certain	things,	for	example	when
reading	and	writing	global	data,	the	threads	of	your	code	should	be
executed	one	at	a	time,	rather	than	all	at	once.	The	mutex	mechanism	is	a
way	for	the	threads	of	your	code	to	cooperate	in	waiting	for	one	another.

Think	of	a	mutex	as	a	dressing	room,	a	place	where	a	thread	can	have
some	privacy.	Any	time	your	plug-in	needs	to	do	something
synchronously	(one	thread	at	a	time),	you	ask	to	be	let	into	the	dressing
room	by	calling	lock.	If	another	thread	(another	"you")	is	already	in	that
dressing	room,	your	thread	waits	until	the	other	thread	is	done.	Then	your
thread	gets	the	dressing	room,	and	other	threads	that	want	that	dressing
room	must	wait	for	you	to	finish.	When	you're	finished,	you	call	unlock.

The	LWMTUtilID	returned	by	the	create	function	allows	you	to	use	up	to
10	separate	mutexes.	These	are	numbered	from	0	to	9	and	are	passed	as
the	second	argument	to	lock	and	unlock.	You	might	think	of	these	as	10
different	dressing	rooms.

Multithreading	is	a	complex	topic.	If	you're	unfamiliar	with	it,	you're
encouraged	to	seek	out	a	general	programming	text	that	discusses	the
writing	of	thread-safe	code.

Global	Call

			LWMTUtilFuncs	*mtutil;

			mtutil	=	global(LWMTUTILFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWMTUtilFuncs.

			typedef	struct	st_LWMTUtilFuncs	{

						LWMTUtilID	(*create)	(void);

						void							(*destroy)(LWMTUtilID	mtid);

						int								(*lock)			(LWMTUtilID	mtid,	int	mutexID);

						int								(*unlock)	(LWMTUtilID	mtid,	int	mutexID);

			}	LWMTUtilFuncs;

mtid	=	create()

Returns	an	LWMTUtilID	that	can	be	used	by	the	lock	and	unlock
functions.	The	return	value	is	NULL	if	create	fails.

destroy(mtid)

Free	resources	allocated	by	create.
ok	=	lock(mtid,	index)

Blocks	until	the	mutex	becomes	available.	Returns	true	if	successful,
or	false	if	the	lock	couldn't	be	executed	for	some	reason.	The	index	is
an	integer	from	0	to	9	that	identifies	which	of	the	ten	mutexes	to	lock.
If	another	thread	has	already	called	lock	for	this	mutex,	the	calling
thread	waits	until	the	other	thread	calls	unlock.

ok	=	unlock(mtid,	index)

Release	the	mutex.	If	another	thread	has	been	waiting	for	this	mutex,
that	thread	will	execute.	Returns	true	if	successful,	otherwise	false.

Example

This	code	fragment	outlines	the	sequence	of	steps	you'd	take	to	use	a
mutex.

			#include	<lwmtutil.h>

			LWMTUtilFuncs	*mtutil;

			LWMTUtilID	mtid;

			mtutil	=	global(LWMTUTILFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(!mtutil)

						...global	not	available,	do	this	some	other	way...

			/*	create	the	mutex	*/

			mtid	=	mtutil->create();

			...

			/*	enclose	critical	code	(code	that	must	run	synchronously)	in

						matching	lock()/unlock()	calls	*/

			if	(mtutil->lock(mtid,	0))	{

						...do	something	that	can't	be	threaded...

						mtutil->unlock(mtid,	0);

			}

			...

			/*	free	the	mutex	when	you	no	longer	need	it	*/

			if	(mtid)	mtutil->destroy(mtid);

	

Object	Info

Availability		LightWave	6.0	Component		Layout	
Header		lwrender.h

The	object	info	global	returns	functions	for	getting	object-specific
information	about	any	of	the	objects	in	a	scene.	Use	the	Item	Info	global
to	get	the	object	list	and	for	generic	item	information.	See	also	the	Scene
Objects	global.	The	data	returned	by	the	object	info	functions	is	read-only,
but	you	can	use	commands	to	set	many	of	the	parameters.

Global	Call

			LWObjectInfo	*objinfo;

			objinfo	=	global(LWOBJECTINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWObjectInfo.
			typedef	struct	st_LWObjectInfo	{

						const	char	*	(*filename)				(LWItemID);

						int										(*numPoints)			(LWItemID);

						int										(*numPolygons)	(LWItemID);

						unsigned	int	(*shadowOpts)		(LWItemID);

						double							(*dissolve)				(LWItemID,	LWTime);

						LWMeshInfoID	(*meshInfo)				(LWItemID,	int	frozen);

						unsigned	int	(*flags)							(LWItemID);

						double							(*fog)									(LWItemID,	LWTime);

						LWTextureID		(*dispMap)					(LWItemID);

						LWTextureID		(*clipMap)					(LWItemID);

						void									(*patchLevel)		(LWItemID,	int	*display,	int	*render);

						void									(*metaballRes)	(LWItemID,	double	*display,

																																					double	*render);

						LWItemID					(*boneSource)		(LWItemID);

						LWItemID					(*morphTarget)	(LWItemID);

						double							(*morphAmount)	(LWItemID,	LWTime);

						unsigned	int	(*edgeOpts)				(LWItemID);

						void									(*edgeColor)			(LWItemID,	LWTime,	LWDVector	color);

						int										(*subdivOrder)	(LWItemID);

						double							(*polygonSize)	(LWItemID,	LWTime);

						int										(*excluded)				(LWItemID	object,	LWItemID	light);

						void									(*matteColor)		(LWItemID,	LWTime,	LWDVector	color);

						double							(*thickness)			(LWItemID,	LWTime,	int	type);

						double							(*edgeZScale)		(LWItemID,	LWTime);

			}	LWObjectInfo;

name	=	filename(object)

Returns	the	filename	for	the	object	file.	

count	=	numPoints(object)

Returns	the	number	of	points	in	the	object	mesh.

count	=	numPolygons(object)

Returns	the	number	of	polygons	in	the	object	mesh.	

sopts	=	shadowOpts(object)

Returns	bits	for	shadow	options.	
LWOSHAD_SELF

LWOSHAD_CAST

LWOSHAD_RECEIVE

amount	=	dissolve(object,	time)

Returns	the	object	dissolve	amount	at	the	given	time.

meshinfo	=	meshInfo(object,	frozen)

Returns	a	mesh	info	structure	for	the	object.	This	is	a	complete
description	of	the	object's	geometry.	See	the	Mesh	Info	page	for	a
detailed	discussion	of	mesh	info	structures.	

	

	

If	frozen	is	true,	the	mesh	for	objects	with	subpatches	and	metaballs	will
contain	the	geometry	that	results	from	subdivision	and	isosurface
calculation.	The	pntBasePos	function	will	return	the	same	point	positions	that
Layout	uses	for	object	coordinate	texture	mapping.	These	are	completely
undeformed	positions	in	the	case	of	regular	polygons	and	subpatches,	and
positions	at	freezing	time	for	metaballs	and	partigons.	pntOtherPos	will
return	the	actual	world	coordinates	used	by	Layout.	These	should	only	be
considered	final	if	the	mesh	is	obtained	after	all	object	transformations
have	been	completed.

f	=	flags(object)

Returns	the	state	of	certain	object	settings	as	bits	combined	using
bitwise-or.	Possible	flags	are	

LWOBJF_UNSEEN_BY_CAMERA

LWOBJF_UNSEEN_BY_RAYS

LWOBJF_UNAFFECT_BY_FOG

LWOBJF_MORPH_MTSE

LWOBJF_MORPH_SURFACES

foglevel	=	fog(object,	time)

Returns	the	amount	by	which	the	object	is	affected	by	fog.

texture	=	dispMap(object)

Returns	the	texture	ID	of	the	displacement	image	map	applied	to	the
object.

texture	=	clipMap(object)

Returns	the	texture	ID	of	the	clip	map	applied	to	the	object.
	
patchLevel(object,	display,	render)

Returns	the	interface	and	render	patch	level	for	the	object's
subpatches.

	
metaballRes(object,	display,	render)

Returns	the	interface	and	render	resolution	of	the	object's	metaballs.

boneobj	=	boneSource(object)

Returns	the	object	whose	bones	are	being	used	to	deform	the	given
object.	(An	object	can	be	deformed	by	the	bones	of	another	object.)

morphobj	=	morphTarget(object)

Returns	the	morph	target	of	the	given	object.

amount	=	morphAmount(object,	time)

Returns	the	morph	amount	at	a	given	time.	If	flags	returns	the
LWOBJF_MORPH_MTSE	bit,	Multiple	Target/Single	Envelope	morphing	is
enabled,	and	the	morph	amount	includes	an	index	into	a	chain	of
morph	targets.	Assume	A's	target	is	B,	and	B's	target	is	C.	Morph
amounts	between	0.0	and	1.0	morph	A	to	B,	while	amounts	between
1.0	and	2.0	morph	A	to	C.	The	interpolant	is	the	fractional	part	of	the
morph	amount,	and	the	index	is	the	integer	part.

options	=	edgeOpts(object)

Returns	the	object's	edge	rendering	options,	which	can	be	any	of	the
following	combined	using	bitwise-or.	

LWEDGEF_SILHOUETTE	
LWEDGEF_UNSHARED	
LWEDGEF_CREASE	
LWEDGEF_SURFACE	
LWEDGEF_OTHER

Edge	lines	are	drawn	in	the	indicated	areas.	An	unshared	edge
belongs	to	only	one	polygon.	A	crease	is	an	edge	where	two	polygons
meet	at	an	angle	exceeding	the	max	smoothing	angle	of	the	surface.

A	surface	edge	is	where	the	polygons	on	either	side	have	different
surfaces.

LWEDGEF_SHRINK_DIST

The	thickness	of	the	lines	is	proportional	to	distance	from	the	camera.
edgeColor(object,	time,	color)

The	color	used	to	render	edges	is	written	in	the	color	argument.

index	=	subdivOrder(object)

Returns	the	subdivision	order	as	a	0-based	index	into	a	list	of
options.	

	

	

0	-	First	
1	-	After	Morphing	
2	-	After	Bones	
3	-	After	Displacement	
4	-	After	Motion	
5	-	Last	
	

size	=	polygonSize(object,	time)

Returns	the	polygon	size	setting.	This	is	a	scale	factor	with	a	default
of	1.0.

state	=	excluded(object,	light)

Returns	true	if	the	light	is	excluded	from	the	object.	Light	exclusion
is	a	user	setting	that	prevents	the	light	from	affecting	the	rendering	of
the	object.

matteColor(object,		time,		color)

The	matte	color	set	for	the	object	is	writen	into	the	color	argument.

thick	=	thickness(object,		time,		type)

Returns	the	thickness	for	the	specified	edge	type,	where	type	is	one	of
the	following:
LWTHICK_SILHOUETTE

LWTHICK_UNSHARED

LWTHICK_CREASE

LWTHICK_SURFACE

LWTHICK_OTHER

LWTHICK_LINE

LWTHICK_PARTICLE_HEAD

LWTHICK_PARTICLE_TAIL

zsc	=	edgeZScale(object,		time)

Returns	the	Edge	Z	Scale	setting	for	edge	rendering	of	object.

History

In	LightWave	7.5,	the		following	functions	and	flags	were	added.

			matteColor

			thickness

			edgeZScale

			LWOBJF_UNSEEN_BY_ALPHA

			LWOBJF_MATTE

			LWOBJF_MORPH_SURFACES

Example

The	scenscan,	spreadsheet	and	unwrap	SDK	samples	use	the	Object	Info
global.

The	following	code	fragment	collects	information	about	the	first	object.

			#include	<lwserver.h>

			#include	<lwrender.h>

			LWItemInfo	*iteminfo;

			LWObjectInfo	*objinfo;

			LWItemID	id;

			LWTime	t	=	3.0;										/*	seconds	*/

			char	*fname;

			int	npoints,	npols;

			unsigned	int	shopts;

			double	dissolve;

			iteminfo	=	global(LWITEMINFO_GLOBAL,	GFUSE_TRANSIENT);

			objinfo		=	global(LWOBJECTINFO_GLOBAL,	GFUSE_TRANSIENT);

			if	(iteminfo	&&	objinfo)	{

						id	=	iteminfo->first(LWI_OBJECT,	NULL);

						if	(id)	{

									fname				=	objinfo->filename(id);

									npoints		=	objinfo->numPoints(id);

									npols				=	objinfo->numPolygons(id);

									shopts			=	objinfo->shadowOpts(id);

									dissolve	=	objinfo->dissolve(id,	t);

						}

			}

Panels

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwpanel.h

The	Panels	global	supplies	a	set
of	routines	for	creating	user
interface	windows	from	within
plug-ins.	Also	see	the	related
raster	and	context	menu	globals.

LWPanels	(or	the	newer	XPanels
system)	gives	you	a	way	to	create
interfaces	for	your	plug-ins	that
have	the	LightWave	look	and
feel,	using	a	single	code	base	for
all	of	the	platforms	LightWave
supports.

Creating	a	non-trivial	user
interface	is	a	complex	task	that
demands	an	understanding	of
both	real-time,	event-driven
programming	and	of	human
factors	(the	ergonomics	of	the
mind).	Good	design	marries
function	and	aesthetics,	while	a
good	implementation	seeks	a
balance	between	responsiveness
and	power.

This	page	can't	hope	to	teach	any
of	that,	of	course,	but	it's	worth
mentioning	that	there's	more	to
this	process	than	the	mere
building	blocks	presented	here.

Global	Call
Panel	Callbacks
Drawing	Functions
Controls
Control	Callbacks
Macros

Panel	Life	Cycle
Panel	Attributes
Creating	Controls

Edit	fields
Buttons
Sliders	and	mouse
feedback
Multiple	choice
Color
Files	and	directories
Drawing
XPanels

Control	Values
Control	Attributes

History
Example

If	you've	programmed	interfaces	for	Microsoft	Windows	or	Apple
MacOS,	you're	familiar	with	a	design	method	that	uses	resource	files	to
define	dialogs	"ahead	of	time,"	or	statically.	When	your	code	runs,	you
make	an	operating	system	call	to	load	your	dialog	template	and	use	it	to
create	a	dialog.	Events	are	either	sent	to	a	single,	central	callback	or	are
pulled	by	your	code	from	an	event	queue.

LWPanels	doesn't	use	dialog	templates.	Dialogs,	or	panels,	are	built	"on
the	fly"	by	calling	functions	that	add	and	position	a	panel's	controls..
Panels	are	defined	by	a	sequence	of	function	calls	rather	than	a	list	of
directives	in	a	resource	file.	And	events	may	be	sent	to	many	different
callbacks.	You	tell	LWPanels	where	to	send	them.

If	you're	accustomed	to	designing	dialogs	in	a	visual	environment,	the
LWPanels	approach	may	take	some	getting	used	to.

Other	aspects	of	a	panel's	life	cycle	are	very	similar	to	those	for	Windows
or	MacOS	dialogs.	You	initialize	the	values	of	controls	before	the	panel	is
displayed,	and	you	can	read	back	those	values	at	any	time,	but	in
particular	after	the	panel	is	closed.	Interactive	controls	like	sliders
generate	events	while	the	user	is	modifying	them,	and	you	can	respond	to
those	events	by	changing	the	values	or	the	appearance	of	other	controls.
You	can	draw	on	a	panel,	and	blit	bitmaps	onto	it.

If	you	haven't	written	an	interface	in	another	environment,	your	first
reading	of	this	page	is	likely	to	be	overwhelming.	(In	fact,	that	may	be	true
regardless	of	your	previous	experience.)	Try	looking	at	some	of	the	SDK
samples,	particularly	the	ones	mentioned	by	name	at	the	end	of	this	page,
to	get	an	initial	idea	of	what's	going	on,	and	then	refer	back	to	the
documentation	for	an	explanation	of	anything	you	don't	immediately
understand.

Handlers	whose	interfaces	use	LWPanels	will	almost	always	create	and
display	their	panels	from	within	the	callback	you	put	in	the	options	field	of
the	LWInterface	structure.	(Don't	use	the	panel	field	of	that	structure;	that's
for	xpanels.)

Global	Call

			LWPanelFuncs	*panf;

			panf	=	global(LWPANELFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWPanelFuncs.

			typedef	struct	st_LWPanelFuncs	{

						LWPanelID			(*create)						(char	*,	void	*);

						void								(*destroy)					(LWPanelID);

						int									(*open)								(LWPanelID,	int	flags);

						int									(*handle)						(LWPanelID,	int);

						void								(*draw)								(LWPanelID,	DrMode);

						void								(*close)							(LWPanelID);

						void								(*get)									(LWPanelID,	pTag,	void	*);

						void								(*set)									(LWPanelID,	pTag,	void	*);

						LWControl	*	(*addControl)		(LWPanelID,	char	*type,

																																				LWPanControlDesc	*,	char	*label);

						LWControl	*	(*nextControl)	(LWPanelID,	LWControlID);

						DrawFuncs			*drawFuncs;

						void								*user_data;

						GlobalFunc		*globalFun;

			}	LWPanelFuncs;

panel	=	create(title,	panf)

Create	a	panel.	This	allocates	resources	for	the	panel	but	doesn't
display	it.

destroy(panel)

Free	the	resources	allocated	by	create	and	addControl.	The	panel	ID	is
no	longer	valid	after	this	is	called.	Panels	should	not	be	destroyed
while	open.

result	=	open(panel,	flags)

Display	the	panel.	The	panel	and	its	controls	must	already	be	created,
positioned,	sized,	initialized	and	ready	to	go.	The	flags	are	a
combination	of	the	following.
PANF_BLOCKING

When	this	is	set,	the	panel	is	modal,	meaning	that	it	will	be	the
only	LightWave	window	that	can	receive	user	input.	The	open
function	will	not	return	until	the	panel	has	been	closed.	Without
this	flag,	the	panel	is	non-modal	and	the	open	function	returns
immediately.

PANF_CANCEL

Add	a	Cancel	button	at	the	bottom	of	the	panel.
PANF_FRAME

Add	operating	system-specific	decoration	to	the	panel	window.
This	flag	currently	has	no	effect.

PANF_MOUSETRAP

The	panel	wants	mouse	input,	which	will	be	passed	to	panel
callbacks.

PANF_PASSALLKEYS

The	Enter	and	Escape	keys	normally	close	a	panel.	This	flag
allows	the	panel's	keyboard	callback	to	handle	them	instead.

PANF_ABORT

Changes	the	label	of	the	Cancel	button	to	"Abort".	This	should
be	used	with	the	PANF_CANCEL	flag.

PANF_NOBUTT

Display	no	buttons	(no	Continue	or	Continue/Cancel)	at	the
bottom	of	the	panel.

PANF_RESIZE

Allow	resizing	of	the	panel	window.	When	this	is	set,	the	panel
will	accept	calls	to	the	set	function	with	PAN_W	and	PAN_H	tags.

result	=	handle(panel,	flag)

Process	user	input	for	non-modal	panels.	When	the	panel	is	non-
modal	(opened	without	the	PANF_BLOCKING	flag),	open	returns
immediately.	In	order	to	allow	user	input	processing	to	occur,	the
plug-in	yields	control	by	calling	handle.	If	flag	is	0,	handle	returns	as
soon	as	the	event	queue	is	empty.	It	returns	0	if	the	panel	is	still	open,
or	-1	if	the	user	has	closed	it.	If	flag	is	EVNT_BLOCKING,	handle	won't	return
until	the	user	closes	the	panel.

draw(panel,	drmode)

Redraw	the	panel.	LWPanels	performs	its	own	drawing	and	then	calls
your	panel	draw	callback,	if	you've	set	one.	Any	of	the	drawing
modes	described	later	for	controls	are	also	valid	here,	but	in	most
cases	you'll	use	DR_REFRESH.

close(panel)

Close	a	non-modal	panel.	Typically	users	will	close	your	panels,	so
you	won't	need	to	call	this.	A	closed	panel	can	be	reopened	later.

get(panel,	ptag,	value)

set(panel,	ptag,	value)

Set	and	retrieve	various	panel	attributes.	The	value	is	the	panel
attribute	cast	as	a	void	*.	Many	of	the	attributes	are	pointers	to
callback	functions,	which	are	described	below.	The	ptag	identifies	the
attribute	and	can	be	one	of	the	following.

PAN_X,	PAN_Y,	PAN_W,	PAN_H
Panel	position	and	size	in	pixels.

PAN_TITLE
The	panel	title	passed	to	create.

PAN_PANFUN	(get)

The	LWPanelFuncs	pointer	passed	to	create.
PAN_FLAGS	(get)

The	flags	passed	to	the	open	function.
PAN_USERDATA

Your	data	pointer.	This	is	passed	as	the	second	argument	to	all	of
the	panel	callbacks.

PAN_MOUSEX,	PAN_MOUSEY
The	position	of	the	mouse	at	the	time	of	the	most	recent	event,
relative	to	the	upper	left	corner	of	the	panel.

PAN_QUALIFIERS	(get)
An	integer	containing	bit	flags	that	provide	additional
information	about	the	most	recent	mouse	event.	These	are	the
same	qualifier	bits	that	are	passed	to	mouse	callbacks.

PAN_MOUSEBUTTON,	PAN_MOUSEMOVE
Your	mouse	event	callbacks.

PAN_USERKEYS,	PAN_USERKEYUPS
Your	keyboard	input	callbacks.

PAN_USERDRAW
Your	panel	draw	callback.

PAN_USERACTIVATE,	PAN_USEROPEN,	PAN_USERCLOSE
Callbacks	that	LWPanels	calls	when	the	panel	is	activated
(receives	input	focus	from	the	operating	system),	opened	and
closed,	respectively.

PAN_VERSION	(get)
The	LWPanels	API	version.	Compare	this	to	LWPANELS_API_VERSION,
which	is	defined	in	lwpanel.h.

PAN_RESULT	(set)
Set	this	to	pass	results	when	closing	panels	manually.

PAN_HOSTDISPLAY	(get)
A	pointer	to	a	HostDisplayInfo	for	the	panel.

PAN_TO_FRONT	(set)
Move	the	panel	to	the	top	of	the	window	z-order.

control	=	addControl(panel,	type,	ctrldesc,	label)

Add	a	control	to	a	panel.	Call	this	after	the	panel	has	been	created	but
before	it's	opened.	In	practice,	you'll	seldom	call	this	function
explicitly.	For	each	control	type,	lwpanel.h	supplies	a	macro	that	calls
addControl	with	the	proper	arguments	for	that	control.	Returns	a	pointer
to	an	LWControl	structure,	described	below.	By	default,	each	control

is	positioned	beneath	the	previous	one,	and	the	panel	autosizes	to	fit
all	of	the	controls.	Controls	can	be	moved	after	they're	created,	but
internally	they	remain	in	the	order	in	which	they're	created,	which	for
example	affects	the	drawing	order.

control	=	nextControl(panel,	control)

Enumerate	the	controls	that	have	been	added	to	a	panel.	Get	the	first
control	in	the	list	by	passing	NULL	as	the	second	argument.

drawFuncs

A	pointer	to	a	DrawFuncs	structure,	described	below.
user_data

A	place	to	store	whatever	you	like.
globalFun

Set	this	to	the	GlobalFunc	passed	to	your	activation	function.

Panel	Callbacks

The	LWPanelFuncs	set	function	allows	you	to	install	a	number	of	panel
callbacks	that	LWPanels	will	call	when	certain	events	occur.	You	aren't
required	to	install	any,	so	only	use	them	if	you	need	them.	All	panel
callbacks	receive	as	their	second	argument	the	value	you	set	for
PAN_USERDATA.

panhook(panel,	userdata)
This	is	the	form	of	the	callback	for	PAN_USERACTIVATE,	PAN_USEROPEN	and
PAN_USERCLOSE.

pankey(panel,	userdata,	key)
The	form	for	PAN_USERKEYS	and	PAN_USERKEYUPS.	For	alphanumeric	keys,
the	key	code	is	just	the	ASCII	code.	lwpanel.h	defines	special	codes
for	other	keys.

panmouse(panel,	userdata,	qualifiers,	x,	y)
For	PAN_MOUSEBUTTON	and	PAN_MOUSEMOVE.	The	x	and	y	mouse	positions	are
relative	to	the	upper	left	corner	of	the	panel.	The	qualifiers	are	bit
flags.
IQ_CTRL

IQ_SHIFT

IQ_ALT

IQ_CONSTRAIN

IQ_ADJUST

MOUSE_LEFT

MOUSE_MID

MOUSE_RIGHT

MOUSE_DOWN

pandraw(panel,	userdata,	drawmode)
This	is	for	PAN_USERDRAW.	The	drawmode	is	the	same	as	those	used	for
controls	and	is	described	later.

Drawing	Functions

The	drawFuncs	member	of	LWPanelFuncs	is	a	structure	containing	functions
that	allow	you	to	draw	on	your	panel.	See	also	the	Raster	Functions	global
for	creating	and	efficiently	displaying	bitmaps.	You	can	call	these	at	any
time,	but	in	most	cases	you'll	want	to	be	synchronized	with	the	redrawing
done	by	LWPanels,	and	for	that	you	should	limit	drawing	to	panel	and
control	draw	callbacks.

			typedef	struct	st_DrawFuncs	{

						void	(*drawPixel)			(LWPanelID,	int	color,	int	x,	int	y);

						void	(*drawRGBPixel)(LWPanelID,	int	r,	int	g,	int	b,	int	x,	int	y);

						void	(*drawLine)				(LWPanelID,	int	color,	int	x1,	int	y1,	int	x2,

																													int	y2);

						void	(*drawBox)					(LWPanelID,	int	color,	int	x,	int	y,	int	w,

																													int	h);

						void	(*drawRGBBox)		(LWPanelID,	int	r,	int	g,	int	b,	int	x,	int	y,

																													int	w,	int	h);

						void	(*drawBorder)		(LWPanelID,	int	indent,	int	x,	int	y,	int	w,

																													int	h);

						int		(*textWidth)			(LWPanelID,	char	*text);

						void	(*drawText)				(LWPanelID,	char	*text,	int	color,	int	x,

																													int	y);

						const	LWDisplayMetrics	*(*dispMetrics)();

			}	DrawFuncs;

drawPixel(panel,	color,	x,	y)
drawRGBPixel(panel,	r,	g,	b,	x,	y)

Draw	a	pixel.	The	coordinates	are	relative	to	the	upper-left	corner	of
the	panel.	The	color	is	specified	as	one	of	the	palette	colors	defined	in
lwpanel.h	or	as	levels	of	red,	green	and	blue	between	0	and	255.

drawLine(panel,	color,	x1,	y1,	x2,	y2)
Draw	a	line	connecting	the	endpoints.

drawBox(panel,	color,	x,	y,	w,	h)
drawRGBBox(panel,	r,	g,	b,	x,	y,	w,	h)

Draw	a	solid	rectangle.

drawBorder(panel,	indent,	x,	y,	w,	h)
Draw	a	rectangular	border	similar	to	the	ones	use	to	mark	the	borders
of	controls.	The	indent	is	the	thickness	of	the	border.	If	h	is	0,
drawBorder	creates	a	horizontal	divider.

w	=	textWidth(panel,	str)
Returns	the	pixel	width	of	the	character	string.	Use	this	and	the	font
height	information	in	the	LWDisplayMetrics	structure	to	find	the
rectangular	extent	of	a	line	of	text.

drawText(panel,	str,	color,	x,	y)
Render	a	line	of	text.

dmet	=	dispMetrics()
Returns	an	LWDisplayMetrics	structure.	Except	for	the	screen	size
and	text	height,	most	of	this	structure	is	obsolete.
typedef	struct	st_display_Metrics	{

			int		width,	height;

			int		pixX,	pixY;

			int		maxColors,	depth;

			int		textHeight;

			int		textAscent;

}	display_Metrics;

#define	LWDisplayMetrics	display_Metrics

width,	height
The	size	of	the	screen,	in	pixels.

pixX,	pixY
The	pixel	aspect	ratio.	In	most	cases,	pixX	==	pixY,	indicating
square	pixels.

maxColors,	depth
Palette	size	and	bit	depth	for	indexed	color	displays.	depth	is	0
for	true	color	displays.

textHeight
The	height	of	the	LWPanels	font	in	pixels.

textAscent
Ignore	this.

Controls

For	each	control	you	add	to	a	panel,	the	LWPanelFuncs	addControl	function

returns	a	pointer	to	an	LWControl.

			typedef	struct	st_LWControl	{

						void		(*draw)(LWControlID,	DrMode);

						void		(*get)	(LWControlID,	cTag,	LWValue	*);

						void		(*set)	(LWControlID,	cTag,	LWValue	*);

						void		*priv_data;					

			}	LWControl;

draw(control,	drawmode)
Draw	or	redraw	the	control.	LWPanels	performs	its	own	drawing	and
calls	your	control	draw	callback,	if	you've	set	one	for	this	control.
The	draw	mode	is	one	of	the	following.

DR_RENDER
Draw	the	control	normally.

DR_GHOST
Draw	the	control	with	a	disabled	or	ghosted	appearance.

DR_ERASE
Erase	the	control.

DR_REFRESH
Redraw	the	control	in	its	current	state	(normal,	ghosted	or
erased).

get(control,	ctag,	param)
set(control,	ctag,	param)

Get	and	set	control	attributes,	including	the	value	of	the	control.	The
param	is	a	pointer	to	an	LWValue.	The	ctag	identifies	the	attribute	and
is	one	of	the	following.

CTL_VALUE
The	value	of	the	control.

CTL_LABEL
The	control	label	passed	to	addControl.

CTL_X,	CTL_Y,	CTL_W,	CTL_H
The	rectangular	extent	of	the	control,	in	pixels.	This	may	include
some	padding	used	for	control	spacing	and	alignment.	X	and	Y
are	relative	to	the	upper	left	corner	of	the	panel.

CTL_HOTX,	CTL_HOTY,	CTL_HOTW,	CTL_HOTH
The	extent	of	the	control's	"hot"	area.	Generally	this	excludes
the	label	and	any	padding	but	may	include	the	border

decoration.
CTL_LABELWIDTH

The	width	of	the	label	in	pixels.	Because	of	padding,	this	may
differ	from	W	-	HOTW.

CTL_MOUSEX,	CTL_MOUSEY
The	position	of	the	mouse	at	the	time	of	the	most	recent	control
event,	relative	to	the	upper	left	corner	of	the	panel..

CTL_FLAGS
Flags	marking	the	current	state	of	the	control.	CTLF_DISABLE
indicates	the	control	is	disabled,	or	read-only,	but	still	visible.
Disabled	controls	can	still	trigger	callback	events,	so	that,	for
example,	you	can	display	a	message	explaining	why	the
control's	functionality	is	unavailable.	CTLF_INVISIBLE	indicates	that
the	control	has	been	erased.	CTLF_GHOST	is	a	synonym	for
CTLF_DISABLED.	These	flags	will	affect	the	draw	mode	passed	to
your	control	draw	callbacks.

CTL_USERDATA
Your	data	pointer	for	this	control.	This	is	passed	as	the	second
argument	to	the	control	callbacks.	Note:	For	some	control	types,
calling	set	with	this	tag	(or	calling	the	CON_SETEVENT	macro)	has
important	side	effects.	Even	if	your	userdata	is	NULL	for	those
controls,	you'll	want	to	explicitly	set	it	before	opening	the	panel.

CTL_USERDRAW
Your	control	draw	callback.

CTL_USEREVENT
Your	control	event	callback.

CTL_PANEL,	CTL_PANFUN	(get)
The	panel	and	LWPanelFuncs.

CTL_RANGEMIN,	CTL_RANGEMAX
Slider	limits.

CTL_ACTIVATE	(set)
Set	the	input	focus	to	this	control.	Only	valid	for	edit	fields.

priv_data
An	opaque	pointer	to	data	used	internally	by	LWPanels.

Control	Callbacks

The	LWControl	set	function	allows	you	to	install	callbacks	for	custom

drawing	related	to	the	control	and	for	responding	to	control	events.	These
callbacks	receive	as	their	second	argument	the	value	you	set	for
CTL_USERDATA.

ctlevent(control,	userdata)
This	is	the	form	of	the	callback	for	CTL_USEREVENT.	The	context	of	a
control	event	will	vary	depending	on	the	type	of	control.	Sliders
generate	events	as	the	user	moves	them,	and	button	controls	generate
an	event	when	they're	pressed.

ctldraw(control,	userdata,	drawmode)
This	is	for	CTL_USERDRAW.	The	drawmode	is	one	of	the	modes	listed	for	the
draw	function.	You	can	draw	anywhere	on	the	panel	from	within	this
callback.

In	addition	to	these,	several	control	types	have	type-specific	callbacks.
These	are	described	in	the	following	sections.

Macros

The	lwpanel.h	header	file	defines	a	set	of	macros	that	hide	some	of	the
complexity	of	using	the	LWPanels	system.	These	macros	are	an	integral
part	of	the	LWPanels	API.

The	macros	require	that	your	source	declare	and	initialize	a	few	variables.

			static	LWPanControlDesc	desc;

			static	LWValue

						ival				=	{	LWT_INTEGER	},

						ivecval	=	{	LWT_VINT	},

						fval				=	{	LWT_FLOAT	},

						fvecval	=	{	LWT_VFLOAT	},

						sval				=	{	LWT_STRING	};

These	are	used	as	temporary	variables	while	setting	up	arguments	to	the
panel	functions.

Panel	Life	Cycle

Three	macros	are	provided	for	creating,	displaying	and	destroying	a	panel.

PAN_CREATE(pf,	title)
Calls	the	LWPanelFuncs	create	function.

PAN_POST(pf,	pan)
Calls	the	LWPanelFuncs	open	function	with	the	flags	set	to
PANF_BLOCKING	|	PANF_CANCEL	|	PANF_FRAME.

PAN_KILL(pf,	pan)
Calls	the	LWPanelFuncs	destroy	function.

Panel	Attributes

These	macros	call	the	LWPanelFuncs	get	and	set	functions	for	specific
attributes.	An	advantage	of	using	them	is	that	you	can	use	constants	in
your	source	code.	The	macro	takes	care	of	stuffing	the	value	into	an
appropriate	variable	and	passing	a	pointer	to	that	variable.	The	first	two
arguments	to	all	of	these	functions	are	the	LWPanelFuncs	pointer	and	the
panel.

x	=	PAN_GETX(pf,	pan)
y	=	PAN_GETY(pf,	pan)
w	=	PAN_GETW(pf,	pan)
h	=	PAN_GETH(pf,	pan)

Get	the	position	and	size	of	the	panel	in	pixels.	X	and	Y	are	relative	to
the	upper	left	corner	of	the	screen.

PAN_SETW(pf,	pan,	w)
PAN_SETH(pf,	pan,	h)
MOVE_PAN(pf,	pan,	x,	y)

Set	the	position	and	size	of	the	panel.	Note	that	the	panel
automatically	adjusts	its	size	as	controls	are	added	to	it.

PAN_SETDATA(pf,	pan,	userdata)
PAN_SETDRAW(pf,	pan,	drawFn)
PAN_SETKEYS(pf,	pan,	keyFn)

Set	the	PAN_USERDATA	and	the	panel	draw	and	key	event	callbacks.

version	=	PAN_GETVERSION(pf,	pan)
Returns	the	version	of	LWPanels.

Creating	Controls

After	creating	a	panel	and	before	displaying	it,	your	code	calls	these
macros	to	populate	the	panel	with	the	elements	of	your	interface.	The	first
three	arguments	to	all	of	these	macros	are

the	LWPanelFuncs	returned	by	the	global	call
the	LWPanelID	returned	by	the	create	call	(or	the	PAN_CREATE	macro)
a	string	that	will	be	used	to	label	the	control

All	of	these	macros	ultimately	call	the	LWPanelFuncs	addControl	function
and	return	a	pointer	to	LWControl	for	the	newly	created	control.

Edit	fields

c	=	INT_CTL(pf,	pan,	label)
c	=	INTRO_CTL(pf,	pan,	label)
c	=	IVEC_CTL(pf,	pan,	label)
c	=	IVECRO_CTL(pf,	pan,	label)

Integer	edit	fields.	RO	is	read-only,	and	VEC	is	a	group	of	three	fields.

c	=	FLOAT_CTL(pf,	pan,	label)
c	=	FLOATRO_CTL(pf,	pan,	label)
c	=	FVEC_CTL(pf,	pan,	label)
c	=	FVECRO_CTL(pf,	pan,	label)
c	=	DIST_CTL(pf,	pan,	label)
c	=	DVEC_CTL(pf,	pan,	label)

Floating	point	edit	fields.	The	distance	controls	handle	unit	inputs
and	conversions.

c	=	STR_CTL(pf,	pan,	label,	cw)
c	=	STRRO_CTL(pf,	pan,	label,	cw)

String	edit	fields.	The	cw	argument	is	the	number	of	characters	that
should	be	visible,	or	the	width	of	the	control	in	characters.	The	string
itself	can	be	longer	or	shorter	than	this.	If	the	fixed	width	of	the
integer	and	floating	point	controls	isn't	suitable,	you	can	of	course	use
the	string	controls	and	do	the	numeric	conversion	yourself.

Buttons

c	=	BUTTON_CTL(pf,	pan,	label)

c	=	WBUTTON_CTL(pf,	pan,	label,	w)
Simple	buttons.	In	order	for	these	to	do	anything,	you'll	need	to	set	an
event	callback	that	responds	when	the	button	is	pressed.	The	WBUTTON
version	accepts	a	width	in	pixels.

c	=	BOOL_CTL(pf,	pan,	label)
c	=	BOOLBUTTON_CTL(pf,	pan,	label)
c	=	WBOOLBUTTON_CTL(pf,	pan,	label,	w)

The	first	of	these	displays	a	checkmark,	while	the	other	two	are
buttons	that	are	displayed	in	selected	or	unselected	states.	The
underlying	value	is	an	integer	set	to	0	or	1.

Sliders	and	mouse	feedback

c	=	SLIDER_CTL(pf,	pan,	label,	w,	min,	max)
c	=	UNSLIDER_CTL(pf,	pan,	label,	w,	min,	max)

This	kind	of	slider	is	a	thumb	button	that	moves	in	or	along	a
horizontal	track.	It	has	an	associated	integer	edit	field.	The	UN	version
is	"unbounded,"	meaning	that	values	outside	the	min,	max	range	can	be
entered	in	the	edit	field.	The	width	is	in	pixels.

c	=	HSLIDER_CTL(pf,	pan,	label,	w,	min,	max)
c	=	VSLIDER_CTL(pf,	pan,	label,	h,	min,	max)

Horizontal	and	vertical	sliders,	without	an	associated	edit	field.	The
width	or	height	is	in	pixels.

c	=	MINISLIDER_CTL(pf,	pan,	label,	w,	min,	max)
c	=	PERCENT_CTL(pf,	pan,	label)
c	=	ANGLE_CTL(pf,	pan,	label)

A	minislider	is	a	small	button	that	captures	mouse	drag	but	doesn't
move.	It	has	an	associated	integer	edit	field.	The	w	argument	is	the
visible	width	of	the	edit	field	in	pixels.	The	PERCENT	control	is	a
minislider	with	a	floating	point	edit	field	that	displays	the	percent	(%)
character	after	the	number.	ANGLE	also	has	a	floating	point	edit	field.
The	value	is	displayed	to	the	user	in	degrees,	but	plug-ins	get	and	set
it	in	radians.

c	=	DRAGBUT_CTL(pf,	pan,	label,	w,	h)
c	=	VDRAGBUT_CTL(pf,	pan,	label)

c	=	HDRAGBUT_CTL(pf,	pan,	label)
Drag	buttons	are	minisliders	with	no	associated	edit	field.

c	=	AREA_CTL(pf,	pan,	label,	w,	h)
c	=	DRAGAREA_CTL(pf,	pan,	label,	w,	h)

These	create	a	rectangle	with	a	border.	AREA	controls	generate	mouse
click	events,	and	DRAGAREA	controls	generate	both	click	and	drag	events.
For	AREA,	the	CTL_MOUSEX	and	CTL_MOUSEY	values	contain	click	coordinates
relative	to	the	upper	left	corner	of	the	control.	For	DRAGAREA,	MOUSEX	and
MOUSEY	are	relative	to	the	upper	left	corner	of	the	panel.	Use	the
GETV_IVEC	macro	in	the	DRAGAREA	event	callback	to	get	an	array	of	three
integers	containing	control-relative	mouse	coordinates.

Multiple	choice

c	=	HCHOICE_CTL(pf,	pan,	label,	choices)
c	=	VCHOICE_CTL(pf,	pan,	label,	choices)

An	array	of	mutually	exclusive	boolean	buttons.

c	=	TABCHOICE_CTL(pf,	pan,	label,	choices)
Similar	to	HCHOICE	and	VCHOICE,	but	drawn	to	look	like	file	folder	tabs.
These	are	generally	used	to	switch	between	several	sets	of	controls
occupying	the	same	space,	like	flipping	to	different	tabbed	notebook
pages.	You're	responsible	for	erasing	and	drawing	the	appropriate	sets
of	controls	affected	by	tabbing.

c	=	POPUP_CTL(pf,	pan,	label,	choices)
c	=	WPOPUP_CTL(pf,	pan,	label,	choices,	w)
c	=	POPDOWN_CTL(pf,	pan,	label,	choices)

These	create	scrolling	popup	menus.	The	choices	argument	is	a
NULL-terminated	string	array,	and	the	value	of	the	control	is	a	0-
based	index	into	this	array.	The	W	version	lets	you	set	the	width	in
pixels.	POPUPs	display	the	label	to	the	left	of	the	button	and	the	current
selection	on	the	button	face,	and	when	opened,	the	position	of	the
menu	window	is	shifted	so	that	the	current	selection	is	under	the
mouse	cursor.	POPDOWNs	display	the	label	on	the	button	face	and	always
open	with	the	first	menu	item	under	the	cursor.

c	=	CUSTPOPUP_CTL(pf,	pan,	label,	w,	nameFn,	countFn)

Like	WPOPUP,	but	uses	callbacks	to	fill	in	the	menu	rather	than	a	static
string	array.	The	menu	can	therefore	be	different	each	time	the	user
opens	it.	The	value	of	the	control	is	a	0-based	index	into	the	current
list	of	menu	items.	The	callbacks	are
int	count(void	*userdata)

char	*name(void	*userdata,	int	index)

The	userdata	is	the	CTL_USERDATA	for	the	control.	If	you	have	more	than
one	custom	popup	that	uses	the	same	callbacks,	you	can	use	this	to
distinguish	between	them.	count	returns	the	number	of	menu	items,
and	name	returns	an	item,	given	a	0-based	index.

c	=	ITEM_CTL(pf,	pan,	label,	globalFn,	itemtype)
c	=	WITEM_CTL(pf,	pan,	label,	globalFn,	itemtype,	w)
c	=	PIKITEM_CTL(pf,	pan,	label,	globalFn,	itemtype,	w)

These	are	POPUPs	that	display	a	list	of	scene	items.	The	globalFn	is	the
GlobalFunc	passed	to	your	activation	function.	If	you	set	the
LWPanelFuncs	globalFun	field,	you	can	get	it	from	there.	The	control
value	is	an	LWItemID	cast	as	an	int.	In	addition	to	the	item	types
listed	on	the	Item	Info	page,	lwpanel.h	defines	LWI_IMAGE,	for	a	list	of
images,	and	LWI_ANY,	for	a	list	of	items	of	all	types.	Remember	to
include	lwrender.h.	PIKITEM	behaves	like	POPDOWN.

c	=	CHANNEL_CTL(pf,	pan,	label,	w,	h);
Displays	a	tree	containing	the	channels	currently	in	the	scene.	The
control	value	is	an	LWChannelID	cast	as	an	int.	You'll	need
lwenvel.h	and	the	Channel	Info	global	to	set	and	make	use	of	this
value.

c	=	LISTBOX_CTL(pf,	pan,	label,	w,	ch,	nameFn,	countFn)
A	listbox	is	a	static	rectangle	containing	a	menu	with	a	scrollbar.	ch	is
the	height	of	the	menu	area	of	the	listbox	in	text	lines	(the	number	of
visible	menu	items).	The	callbacks	are	of	the	same	form	as	those	for
CUSTPOPUP.	The	value	of	the	control	is	a	0-based	index	into	the	current
list.	After	the	control	has	been	created,	you	must	call	the	CON_SETEVENT
macro,	or	the	control	set	function	with	the	CTL_USERDATA	tag,	even	if
your	userdata	is	NULL.	LISTBOX	controls	rely	on	this	to	perform	some
internal	initialization.

c	=	MULTILISTBOX_CTL(pf,	pan,	label,	w,	ch,	nameFn,	countFn,
columnFn)

Like	a	listbox,	but	divides	the	text	of	each	item	into	multiple
columns.	The	countFn	callback	is	the	same	as	those	for	LISTBOX	and
CUSTPOPUP.	The	other	two	are	of	the	following	form.
char	*mname(void	*userdata,	int	index,	int	column)

int	colwidth(void	*userdata,	int	index)

The	name	callback	returns	a	string,	given	0-based	indexes	for	the	list
position	and	column.	The	column	callback	returns	the	width	of	each
column	in	pixels.	You	can	have	up	to	ten	columns.	Return	0	when	the
column	index	is	greater	than	or	equal	to	the	number	of	columns	you
want.

After	the	control	has	been	created,	you	must	call	the	CON_SETEVENT
macro,	or	the	control	set	function	with	the	CTL_USERDATA	tag,	even	if
your	userdata	is	NULL.	MULTILISTBOX	controls	rely	on	this	to	perform
some	internal	initialization.

c	=	TREE_CTL(pf,	pan,	label,	w,	h,	infoFn,	countFn,	childFn)
A	tree	control	is	like	a	listbox,	but	with	the	menu	items	organized
hierarchically.	Child	nodes	of	the	tree	can	be	revealed,	hidden	and
sometimes	moved	by	the	user.	The	value	of	a	tree	control	is	a	pointer
to	a	node	in	your	tree	data,	cast	as	an	int.	Trees	don't	prescribe	the
internal	form	of	your	tree	data,	but	you	have	to	be	able	to	answer	the
questions	about	that	data	asked	by	the	callbacks,	which	look	like	this.

void	*child(void	*userdata,	void	*node,	int	i)
Returns	a	pointer	to	the	i-th	child	of	the	node.	node	is	a	pointer
returned	by	a	previous	call	to	this	callback,	or	NULL	for	the
root.

int	count(void	*userdata,	void	*node)

Returns	the	number	of	child	nodes	for	a	given	node.

char	*info(void	*userdata,	void	*node,	int	*flags)
Returns	the	name	of	the	node.	This	is	what	is	displayed	in	the
tree	control.	If	flags	is	non-zero,	store	the	flags	value	in	your
node	data,	and	if	it's	0,	retrieve	it	from	your	data	and	put	it	into
flags.

void	move(void	*userdata,	void	*node,	void	*parent,	int	i)
Called	when	the	user	moves	a	node.	The	node	becomes	the	i-th
child	of	the	parent	node.	This	isn't	in	the	TREE_CTL	macro's
argument	list.	TREE_CTL	sets	this	to	NULL,	which	prevents	the	user
from	moving	your	nodes.	If	you	want	to	allow	the	user	to	move
your	nodes,	use	the	code	in	the	body	of	the	TREE_CTL	macro	to
create	the	control,	putting	your	move	callback	in	desc.tree.moveFn.

Color

c	=	RGB_CTL(pf,	pan,	label)
c	=	MINIRGB_CTL(pf,	pan,	label)
c	=	MINIHSV_CTL(pf,	pan,	label)
c	=	RGBVEC_CTL(pf,	pan,	label)

RGB	(and	HSV)	levels	for	all	of	these	controls	are	integers	in	the
range	0	to	255.	You	can	offer	your	users	more	sophisticated	color
selection	by	creating	a	button	that	calls	the	current	colorpicker.

Files	and	directories

c	=	FILE_CTL(pf,	pan,	label,	cw)
c	=	LOAD_CTL(pf,	pan,	label,	cw)
c	=	SAVE_CTL(pf,	pan,	label,	cw)
c	=	DIR_CTL(pf,	pan,	label,	cw)

These	combine	a	string	edit	field	with	a	button	that	opens	the	file
dialog.	cw	is	the	width	of	the	edit	field	in	characters.	FILE	is	an	older
control	type	preserved	for	backward	compatibility.

c	=	FILEBUTTON_CTL(pf,	pan,	label,	w)
c	=	LOADBUTTON_CTL(pf,	pan,	label,	w)
c	=	SAVEBUTTON_CTL(pf,	pan,	label,	w)
c	=	DIRBUTTON_CTL(pf,	pan,	label,	w)

Just	the	button	for	opening	the	file	dialog.	The	label	appears	inside
the	button.

Drawing

c	=	TEXT_CTL(pf,	pan,	label,	strings)

Use	this	to	put	static	lines	of	text	on	the	panel.

c	=	BORDER_CTL(pf,	pan,	label,	w,	h)
For	drawing	borders.	If	h	is	0,	the	border	is	a	horizontal	divider.

c	=	CANVAS_CTL(pf,	pan,	label,	w,	h)
A	bordered	rectangle	for	convenient	drawing.	The	width	and	height
don't	include	the	border,	so	the	rectangle	(0,	0,	w-1,	h-1)	(relative	to
the	control's	HOTX	and	HOTY)	lies	inside	the	border.

c	=	OPENGL_CTL(pf,	pan,	label,	width,	height)
This	creates	and	initializes	an	OpenGL	window.	LWPanels	takes	care
of	the	platform	specific	setup	for	the	window.	You	can	draw	in	this
window	using	standard	OpenGL	function	calls	during	your	event	and
draw	callbacks	for	the	control.

XPanels

c	=	XPANEL_CTL(pf,	pan,	label,	xpanel)
This	creates	an	xpanel	window	on	your	panel.	Anything	you	can	put
into	an	xpanel	can	be	put	into	an	xpanel	control.

Control	Values

These	macros	call	the	LWControl	get	and	set	functions	with	the	CTL_VALUE
attribute,	which	is	how	you	initialize	and	read	back	the	values	of	your
controls.

			SET_STR(ctl,	buf,	buflen)								GET_STR(ctl,	buf,	buflen)

			SET_INT(ctl,	n)																		GET_INT(ctl,	n)

			SET_FLOAT(ctl,	f)																GET_FLOAT(ctl,	f)

			SET_IVEC(ctl,	x,	y,	z)											GET_IVEC(ctl,	x,	y,	z)

			SETV_IVEC(ctl,	nv)															GETV_IVEC(ctl,	nv)

			SET_FVEC(ctl,	x,	y,	z)											GET_FVEC(ctl,	x,	y,	z)

			SETV_FVEC(ctl,	fv)															GETV_FVEC(ctl,	fv)

Control	Attributes

These	macros	get	and	set	other	control	attributes.

CON_X(ctl)
CON_Y(ctl)

CON_W(ctl)
CON_H(ctl)

Returns	the	position	and	size	of	the	control.

CON_HOTX(ctl)
CON_HOTY(ctl)
CON_HOTW(ctl)
CON_HOTH(ctl)

Returns	the	position	and	size	of	the	control's	"hot"	rectangle.

CON_LW(ctl)
Returns	the	label	width.

CON_PAN(ctl)
CON_PANFUN(ctl)

Returns	the	panel	the	control	belongs	to	and	the	LWPanelFuncs
pointer.

CON_MOUSEX(ctl)
CON_MOUSEY(ctl)

Returns	mouse	coordinates	for	the	most	recent	mouse	event.

MOVE_CON(ctl,	x,	y)
Set	the	positon	of	the	control	relative	to	the	upper	left	corner	of	the
panel.

CON_SETEVENT(ctl,	eventFn,	userdata)
Set	the	control's	event	function	and	CTL_USERDATA.	Note:	For	some
control	types,	calling	this	macro	(or	the	control's	set	function	with	the
CTL_USERDATA	tag)	has	important	side	effects.	Even	if	your	userdata	is
NULL	for	those	controls,	you'll	want	to	explicitly	set	it	before
opening	the	panel.

ERASE_CON(ctl)
REDRAW_CON(ctl)
GHOST_CON(ctl)
RENDER_CON(ctl)
UNGHOST_CON(ctl)

Draw	or	redraw	the	control.

ACTIVATE_CON(ctl)
Activate	the	control	(give	the	control	the	input	focus).	This	is	only
valid	for	edit	field	controls.

History

In	LightWave	7.0,	LWPANELS_API_VERSION	was	incremented	to	19	and	the
PANF_NOBUTT	and	PANF_RESIZE	flags	were	added.

Example

At	least	ten	of	the	SDK	samples	use	the	LWPanels	system.	The	panctl
sample	exercises	LWPanels	by	creating	an	instance	of	every	supported
control	type.	It	also	demonstrates	event	handling	for	some	of	the
interactive	controls.	The	hello	sample	is	the	simplest	example.	It	creates	a
panel	with	a	single	string	control.	The	complete	life	cycle	of	this	panel	is
repeated	in	the	following	code	fragment.

			#include	<lwserver.h>

			#include	<lwpanel.h>

			LWPanelFuncs	*panf;

			LWPanelID	panel;

			LWControl	*ctl;

			LWPanControlDesc	desc;

			LWValue	sval	=	{	LWT_STRING	};

			char	edit[80]	=	"This	is	an	edit	field.";

			panf	=	global(LWPANELFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(!panf)	return	AFUNC_BADGLOBAL;

			panel	=	PAN_CREATE(panf,	"Hello	World!");

			if	(!panel)	return	AFUNC_BADGLOBAL;

			ctl	=	STR_CTL(panf,	panel,	"Edit	Me",	40);

			SET_STR(ctl,	edit,	sizeof(edit));

			if	(panf->open(panel,	PANF_BLOCKING	|	PANF_CANCEL))

						GET_STR(ctl,	edit,	sizeof(edit));

			PAN_KILL(panf,	panel);

Particle	Services

Availability		LightWave	6.0
Component		Layout
Header		lwprtcl.h

The	particles	global	returns	functions	that	allow	you	to	create	particle
systems	and	to	read	and	write	particle	data.	Particles	are	typically	used	by
volumetric	renderers	to	define	the	extent	and	local	density	of	a	volume.
LightWave's	Hypervoxels,	for	example,	uses	them	this	way.

The	host	side	of	the	particles	global	manages	a	database	of	particle
systems.	The	global	supplies	methods	for	adding,	deleting	and	reading
particle	data	in	the	database.	Having	such	a	database	allows	one	plug-in	to
create	particle	systems	that	others	can	later	use.

Global	Call

			LWPSysFuncs	*psysf;

			psysf	=	global(LWPSYSFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWPSysFuncs.

			typedef	struct	st_LWPSysFuncs	{

						LWPSysID			(*create)						(int	flags,	int	type);

						int								(*destroy)					(LWPSysID);

						int								(*init)								(LWPSysID,	int	np);

						void							(*cleanup)					(LWPSysID);

						void							(*load)								(LWPSysID,	LWLoadState	*);

						void							(*save)								(LWPSysID,	LWSaveState	*);

						int								(*getPCount)			(LWPSysID);

						void							(*attach)						(LWPSysID,	LWItemID);

						void							(*detach)						(LWPSysID,	LWItemID);

						LWPSysID	*	(*getPSys)					(LWItemID);

						LWPSBufID		(*addBuf)						(LWPSysID,	LWPSBufDesc);

						LWPSBufID		(*getBufID)				(LWPSysID,	int	bufFlag);

						void							(*setBufData)		(LWPSBufID,	void	*data);

						void							(*getBufData)		(LWPSBufID,	void	*data);

						int								(*addParticle)	(LWPSysID);

						void							(*setParticle)	(LWPSBufID,	int	index,	void	*data);

						void							(*getParticle)	(LWPSBufID,	int	index,	void	*data);

						void							(*remParticle)	(LWPSysID,	int	index);

			}	LWPSysFuncs;

You	can	allocate,	initialize	and	read	particle	data	either	individually	(one
particle	at	a	time)	or	all	at	once.	Which	approach	you	take	will	depend
primarily	on	where	the	data	comes	from	and	how	you	use	it.

psys	=	create(flags,	type)

Create	a	particle	system.	The	flags	indicate	which	buffers	should	be
allocated	for	the	particles	and	can	be	any	of	the	following,	combined
using	bitwise-or.

LWPSB_POS position float[3]

LWPSB_SIZ size float

LWPSB_SCL scale float[3]

LWPSB_ROT rotation float[3]

LWPSB_VEL velocity float[3]

LWPSB_AGE age float

LWPSB_FCE force float

LWPSB_PRS pressure float

LWPSB_TMP temperature float

LWPSB_MAS mass float

LWPSB_LNK link	to	particle	(for	trails) int

LWPSB_ID
ID	(unique	index	for	the
particle)

int

LWPSB_ENB
enable	state
(dead/alive/limbo)

char

LWPSB_RGBA display	color	and	alpha char[4]

LWPSB_CAGE time	since	last	collision float

The	particle	type	can	be	either	LWPST_PRTCL	(single	points)	or	LWPST_TRAIL
(line	segments).	LWPST_TRAIL	particle	systems	should	include	an
LWPSB_LNK	buffer	for	the	second	point	in	each	trail.

result	=	destroy(psys)

Free	the	particle	system.
error	=	init(psys,	nparticles)

Allocate	memory	for	the	particles.	This	is	equivalent	to	calling	the
addParticle	function	nparticles	times.

cleanup(psys)

Frees	the	memory	allocated	by	init	and	addParticle.
load(psys,	loadstate)

Read	the	particle	system	data	from	a	file.	This	will	typically	be	used

by	handler	load	callbacks.
save(psys,	savestate)

Write	the	particle	system	data	to	a	file.	This	will	typically	be	used	by
handler	save	callbacks.

count	=	getPCount(psys)

Returns	the	number	of	particles.
attach(psys,	item)

Associate	a	particle	system	with	an	item	in	the	scene,	usually	an
object.	More	than	one	particle	system	can	be	attached	to	an	item,	and
more	than	one	item	can	share	the	same	particle	system.	Attaching	a
particle	system	to	an	item	makes	it	possible	for	others,	Hypervoxels
in	particular,	to	use	the	getPSys	function	to	find	it.

detach(psys,	item)

Remove	the	association	between	a	particle	system	and	an	item.
psys_array	=	getPSys(item)

Returns	a	NULL-terminated	array	of	particle	system	IDs	that	have
been	associated	with	the	item	by	the	attach	function.

psbuf	=	addBuf(psys,	bufdesc)

Add	a	custom	per-particle	buffer.	Call	this	before	any	calls	to	init	or
addParticle.	(The	predefined	buffer	types	should	be	added	when	create
is	called.)	The	structure	used	to	define	the	buffer	is	described	below.
The	buffer	ID	returned	by	this	function	can	be	used	with	the
functions	that	get	and	set	buffer	data.

psbuf	=	getBufID(psys,	bufbit)

Returns	a	buffer	ID	for	one	of	the	predefined	buffers.	This	is	used
with	the	functions	that	get	and	set	buffer	data.	The	second	argument
is	one	of	the	buffer	flags	passed	to	create.

setBufData(psbuf,	data)

Set	the	buffer	values	for	all	particles.	The	data	is	an	array	of	the
appropriate	type	for	the	buffer,	with	a	number	of	entries	equal	to	the
number	of	particles.	Use	setParticle	to	set	the	buffer	data	for	one
particle	at	a	time.

getBufData(psbuf,	data)

Get	the	buffer	values	for	all	particles.	Use	getParticle	to	get	the	buffer
data	for	one	particle	at	a	time.

index	=	addParticle(psys)

Add	a	particle.
setParticle(psbuf,	index,	data)

Set	the	buffer	value	for	a	particle.	Particles	are	numbered	from	0	to
getPCount	-	1	in	the	order	in	which	they're	added.

getParticle(psbuf,	index,	data)

Get	the	buffer	value	for	a	particle.
	
remParticle(psys,	index)

Remove	a	particle.

Particle	Buffers

The	addBuf	function	uses	a	buffer	descriptor	to	define	the	buffer	to	be
added.

			typedef	struct	st_LWPSBufDesc	{	

						const	char	*name;

						int									dataType;

						int									dataSize;

			}	LWPSBufDesc;

name
A	string	that	names	the	buffer.	In	the	future,	this	may	allow	users	or
plug-ins	to	refer	to	the	buffer	by	name.

dataType
The	data	type	of	the	data	in	the	buffer.
LWPSBT_FLOAT

LWPSBT_INT

LWPSBT_CHAR

dataSize
The	number	of	values	per	particle	in	the	buffer	(and	not	the	number
of	bytes).

Example

The	particle	sample	is	a	displacement	handler	that	demonstrates	the	use	of
the	particle	system	global.	Its	operation	is	similar	to	that	of	the	HVParticle
displacement	handler	Hypervoxels	adds	to	objects	that	lack	particle
systems.

Preview	Functions

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwpreview.h

The	Preview	Functions	global	is	the	plug-in	API	for	LightWave's	VIPER
(Versatile	Interactive	Preview	Render)	window.	VIPER	allows	users	to
preview	the	effects	of	shader,	environment,	volumetric,	pixel	filter	and
image	filter	plug-ins.	It	uses	image	buffers	from	the	most	recent	test	render
to	generate	a	reduced-size	rendering	of	the	scene,	and	it	can	composite	this
with	your	plug-in's	output	while	the	user	changes	your	parameters.

The	previewer	is	an	extension	of	your	plug-in's	interface.	The	API
supplies	functions	that	let	you	subscribe	(install),	set	the	context	(tell
VIPER	that	your	interface	is	the	active	one),	open	the	VIPER	window,
give	VIPER	your	rendering	callbacks,	and	get	the	prerendered	image	and
information	about	the	camera.

This	is	a	low-level	API,	and	you	may	never	need	to	use	it.	Beginning	with
LightWave	7.0,	VIPER	can	preview	your	plug-in	automatically,	without
your	intervention.	It	switches	contexts	transparently	and	calls	your	regular
handler	callbacks	to	render	the	preview.	The	rendering	of	the	preview
occurs	whenever	you	call	the	Instance	Update	global.

Global	Call

			LWPreviewFuncs	*pvf;

			pvf	=	global(LWPREVIEWFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWPreviewFuncs.

			typedef	struct	st_LWPreviewFuncs	{

						PvContextID	(*subscribe)		(char	*title,	void	*userData,

																																			closeFunc	*);

						void								(*unsubscribe)(PvContextID);

						void								(*open)							(PvContextID);

						void								(*close)						(void);

						int									(*isOpen)					(void);

						void								(*setContext)	(PvContextID);

						void								(*setClick)			(PvContextID,	ClickFunc	*);

						void								(*setRender)		(PvContextID,	void	*renderData,

																																			InitFunc	*,	CleanupFunc	*,

																																			EvaluateFunc	*);				

						void								(*setOptions)	(PvContextID,	char	**list,

																																			OptionsFunc	*,	int	selection);				

						void								(*startRender)(PvContextID);

						void								(*stopRender)	(PvContextID);

						void								(*getPixel)			(PvSample	*pixel);

						LWImageID			(*getBitmap)		(int	*width,	int	*height);

						LWItemID				(*getCamera)		(double	pos[3],	double	rot[3],

																																			double	*zoomFactor);

						void								(*getView)				(int	*width,	int	*height,

																																			double	*pixelAspect);

						void								(*setPreset)		(PvContextID,	presetFunc	*);

			}	LWPreviewFuncs;

preview	=	subscribe(title,	userdata,	close_func)
Obtain	a	PvContextID	that	identifies	your	plug-in	instance	to	the
preview	system.	Generally	you'll	call	this	from	your	interface
activation	function.	The	title	is	the	string	that	should	appear	in	the
preview	window's	title	bar	when	the	previewer	is	set	to	your	context.
The	user	data	is	passed	to	your	click,	options	and	close	callbacks.

unsubscribe(context)
Invalidate	your	context	ID	and	free	resources	allocated	by	subscribe.

open(context)
Open	the	preview	window.

close()
Close	the	preview	window.

isopen	=	isOpen()
Returns	TRUE	if	the	preview	window	is	open.

setContext(context)
Set	the	preview	window's	context.	After	this,	the	interface	and
rendering	callbacks	associated	with	the	context	ID	will	be	the	ones
the	previewer	calls	when	responding	to	the	user	and	generating	an
image.

setClick(context,	click_func)
Set	the	callback	that	will	be	called	when	the	user	clicks	on	the
preview	image.

setRender(context,	render_data,	init_func,	cleanup_func,	eval_func)

Set	the	callbacks	that	will	be	called	when	the	previewer	renders	its
display.	The	render	data	will	be	passed	to	each	of	the	callbacks.
Typically,	it's	your	instance	data,	and	the	callbacks	call	your	standard
handler	functions.

setOptions(context,	list,	options_func,	selection)
Set	the	options	that	will	appear	in	the	Options	popup	when	your
context	is	the	active	one.	This	includes	a	NULL-terminated	array	of
strings,	a	callback	that's	called	when	an	option	is	selected	by	the	user,
and	the	index	of	the	option	that	should	initially	appear	selected.

startRender(context)
Force	the	previewer	to	render	an	image.

stopRender(context)
Interrupt	any	rendering	being	done	by	the	previewer.

getPixel(pixel)
Get	information	about	a	pixel	in	the	previewer's	prerendered	buffers.
Fill	in	the	x	and	y	fields	of	the	PvSample	structure	for	the	position	of
the	pixel	in	the	preview	image.	The	previewer	will	return	information
about	the	pixel	in	the	other	fields.

image	=	getBitmap(width,	height)
Returns	an	image	ID	for	the	previewer's	RGBA	buffers.	You	can	use
this	with	the	Image	List	global	to	query	the	image.	The	previewer
writes	the	image	dimensions	in	the	width	and	height	arguments.

camera	=	getCamera(pos,	rot,	zoom)
Get	information	about	the	state	of	the	camera	at	the	time	the
previewer's	buffers	were	generated.	You	can	get	more	detailed
information	from	the	Item	Info	and	Camera	Info	globals,	but	it	may
not	match	the	image	in	the	previewer,	since	the	user	may	have	moved
the	camera	or	changed	its	settings	after	the	previewer	image	was
created.

getView(width,	height,	pixel_aspect)
Get	information	about	the	size	and	pixel	aspect	of	the	previewer
image.

setPreset(context,	preset_func)
Set	the	callback	that	will	be	called	when	the	user	wants	to	create	a
shelf	preset	for	your	plug-in's	settings.

Pixel	Sample

The	getPixel	function	and	the	click	and	evaluate	callbacks	store
information	about	a	pixel	in	a	PvSample.

			typedef	struct	st_PvSample	{

						int									x,	y;

						float							rgbaz[5];

						LWMicropol		mp;

			}	PvSample;

x,	y
The	pixel	coordinates.

rgbaz
The	red,	green,	blue,	alpha	and	depth	value	at	the	pixel.

mp
An	LWMicropol	structure	describing	the	geometry	visible	in	the
pixel.	See	the	explanation	of	this	structure	on	the	Texture	Functions
page.

The	previewer	can	only	fill	in	the	fields	for	which	it	knows	the
values.	These	include	gNorm,	wNorm	(the	same	as	gNorm	in	this	case),	oPos,
wPos,	oAxis,	wAxis	and	the	verts	and	weights	arrays.	If	the	display	and
render	subdivision	levels	differ,	the	point	IDs	in	the	verts	array	may
not	be	valid	(the	previewer	has	the	render	mesh,	but	the	plug-in	may
have	the	display	mesh).

Callbacks

The	previewer	uses	callbacks	both	for	rendering	and	to	allow	your	plug-in
to	respond	to	user	actions.

Interface

			typedef	int		clickFunc(int	count,	void	*userData,	PvSample	*pixel);	

			typedef	void	optionsFunc(int	option,	void	*userData);

			typedef	void	presetFunc(void	*userData,	LWImageID	image);

			typedef	void	closeFunc(void	*userData);

The	click	callback	tells	you	that	the	user	has	clicked	on	the	preview	image
and	gives	you	information	about	the	pixel.	The	options	callback	is	called
when	the	user	has	selected	an	option	from	the	custom	Options	pop-up	on
the	preview	window.	The	first	argument	is	an	index	into	the	array	of
strings	you	passed	to	setOptions.	The	close	callback	is	called	when	the	user
closes	the	preview	window.

The	preset	callback	tells	you	that	the	user	wants	to	add	a	preset	to	the	shelf
for	your	plug-in's	settings.	The	image	is	the	same	one	returned	by	getBitmap.
Use	the	Shelf	Functions	global	to	add	the	preset.

The	user	data	for	all	of	these	is	the	pointer	you	passed	to	subscribe.

Rendering

			typedef	int		initFunc(void	*renderData,	int	manual);

			typedef	void	cleanupFunc(void	*renderData);

			typedef	int		evaluateFunc(void	*renderData,	int	w,	int	h,

																			PvSample	*pixel);

Your	preview	init	function	should	perform	the	same	kinds	of	operations
that	your	handler	init	and	newTime	callbacks	perform,	and	your	preview
cleanup	is	analogous	to	your	handler	cleanup.	The	second	argument	to	the
init	callback	is	TRUE	if	the	user	explicitly	requested	the	render	(by
clicking	on	a	button	in	the	previewer's	window).

The	evaluate	callback	receives	the	width	and	height	of	the	preview	image
and	a	PvSample	for	the	pixel	to	be	evaluated.	Your	evaluate	writes	new
values	in	the	rgbaz	field	of	the	PvSample.	The	PvSample's	LWMicropol	is
read-only	(writing	to	it	has	no	effect).

History

The	setPreset	function	was	added	in	LightWave	7.0,	but	LWPREVIEWFUNCS_GLOBAL
was	not	incremented.	Before	calling	setPreset,	you	can	use	the	Product	Info
global	to	determine	whether	you're	running	in	a	version	of	LightWave
prior	to	7.0.

Product	Info

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwhost.h

The	product	info	global	returns	the	product	(LightWave	or	Inspire),	its	major	and
minor	version	numbers,	and	its	build	number.	Build	numbers	can	be	used	to
distinguish	between	bug-fix	revisions	for	which	the	major	and	minor	version
numbers	weren't	incremented,	which	can	happen	in	particular	when	the	revision
only	affects	one	platform.	See	also	the	compatibility	discussion.

Global	Call

			unsigned	long	prodinfo;

			prodinfo	=	(unsigned	long)	global(LWPRODUCTINFO_GLOBAL,

						GFUSE_TRANSIENT);

The	global	function	ordinarily	returns	a	void	*,	so	this	should	be	cast	to	an	integer
type	to	get	the	return	value.

The	product	ID	is	in	the	low	four	bits	of	the	return	value.	The	build	number	is	in
bits	15	-	4,	the	minor	version	number	is	in	bits	19	-	16,	and	the	major	revision
number	is	in	bits	23	-	20.	All	of	these	components	can	be	extracted	using	macros
defined	in	lwhost.h.

			product	=	prodinfo	&	LWINF_PRODUCT;

			major	=	LWINF_GETMAJOR(prodinfo);

			minor	=	LWINF_GETMINOR(prodinfo);

			build	=	LWINF_GETBUILD(prodinfo);

Currently,	the	product	can	be	LWINF_PRODLWAV	(LightWave),	LWINF_PRODINSP3D	(Inspire),
or	LWINF_PRODOTHER.

Raster	Services

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwpanel.h

Raster	services	are	a	set	of	functions	for	manipulating	bitmaps	(rasters)
used	as	interface	elements	in	your	panels.	A	raster	isn't	visible	until	you
call	blitPanel	to	draw	it	on	a	panel.

Global	Call

			LWRasterFuncs	*rastf;

			rastf	=	global(LWRASTERFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWRasterFuncs.

			typedef	struct	st_LWRasterFuncs	{

						void							(*drawPixel)			(LWRasterID,	int	color,	int	x,	int	y);

						void							(*drawRGBPixel)(LWRasterID,	int	r,	int	g,	int	b,

																																			int	x,	int	y);

						void							(*drawLine)				(LWRasterID,	int	color,	int	x,	int	y,

																																			int	x2,	int	y2);

						void							(*drawBox)					(LWRasterID,	int	color,	int	x,	int	y,

																																			int	w,	int	h);

						void							(*drawRGBBox)		(LWRasterID,	int	r,	int	g,	int	b,

																																			int	x,	int	y,	int	w,	int	h);

						void							(*eraseBox)				(LWRasterID,	int	x,	int	y,	int	w,

																																			int	h);

						void							(*drawBorder)		(LWRasterID,	int	indent,	int	x,	int	y,

																																			int	w,	int	h);

						void							(*drawText)				(LWRasterID,	char	*,	int	color,	int	x,

																																			int	y);

						LWRasterID	(*create)						(int	w,	int	h,	int	flags);

						void							(*destroy)					(LWRasterID);

						void							(*blitPanel)			(LWRasterID,	int	x,	int	y,	LWPanelID,

																																			int	x,	int	y,	int	w,	int	h);

			}	LWRasterFuncs;

drawPixel(raster,	color,	x,	y)
drawRGBPixel(raster,	r,	g,	b,	x,	y)

Set	the	color	of	a	pixel.	The	color	is	either	one	of	the	predefined
colors	in	lwpanel.h	or	8-bit	levels	of	red,	green	and	blue.

drawLine(raster,	color,	x,	y,	x2,	y2)
Draw	a	line	from	(x,	y)	to	(x2,	y2)	inclusive.

drawBox(raster,	color,	x,	y,	w,	h)
drawRGBBox(raster,	r,	g,	b,	x,	y,	w,	h)
eraseBox(raster,	x,	y,	w,	h)

Draw	a	filled	box.	The	color	for	eraseBox	is	the	panel's	background
color.

drawBorder(raster,	indent,	x,	y,	w,	h)
Draw	a	LightWave-style	rectangular	border.	The	indent	controls	the
border	thickness.

drawText(raster,	text,	color,	x,	y)
Draw	a	line	of	text.	The	coordinates	specify	the	upper	left	corner	of
the	first	character	cell.	You	can	get	information	about	the	pixel
dimensions	of	the	text	using	the	LWDisplayMetrics	functions
returned	by	the	Panels	global.

raster	=	create(w,	h,	flags)
Create	a	raster.	No	flags	are	currently	defined,	so	flags	should	be	0.

destroy(raster)
Free	a	raster.

blitPanel(raster,	srcx,	srcy,	panel,	dstx,	dsty,	w,	h)
Transfer	a	raster	image,	or	part	of	one,	to	the	surface	of	a	panel.	srcx
and	srcy	are	the	upper	left	corner	of	the	source	rectangle,	while	dstx
and	dsty	are	the	upper	left	corner	of	the	destination,	relative	to	the
upper	left	corner	of	the	panel	window.

Example

The	binview	SDK	sample	makes	extensive	use	of	the	raster	functions	to
create	and	display	its	own	fixed-pitch	font	glyphs.	It	also	uses	a	raster	to
display	an	icon.

	

Scene	Info

Availability		LightWave	6.0	Component		Layout	
Header		lwrender.h

The	scene	info	global	returns	information	about	the	current	scene.	This
information	is	read-only	and	reflects	the	state	of	the	scene	at	the	time	the
global	function	is	called.	You	can	set	these	parameters	using	commands.

Global	Call

			LWSceneInfo	*sceneinfo;

			sceneinfo	=	global(LWSCENEINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWSceneInfo.
			typedef	struct	st_LWSceneInfo	{

						const	char	*name;

						const	char	*filename;

						int									numPoints;

						int									numPolygons;

						int									renderType;

						int									renderOpts;

						LWFrame					frameStart;

						LWFrame					frameEnd;

						LWFrame					frameStep;

						double						framesPerSecond;

						int									frameWidth;

						int									frameHeight;

						double						pixelAspect;

						int									minSamplesPerPixel;

						int									maxSamplesPerPixel;

						int									limitedRegion[4];

						int									recursionDepth;

						LWItemID			(*renderCamera)	(LWTime);

						int									numThreads;

						const	char	*animFilename;

						const	char	*RGBPrefix;

						const	char	*alphaPrefix;

			}	LWSceneInfo;

name

User's	name	for	the	scene.	

filename

Filename	of	the	scene	file.	

numPoints,	numPolygons

Total	number	of	points	and	polygons	for	all	the	objects	in	the	scene.

renderType

The	render	type,	which	can	be	one	of	the	following.	
LWRTYPE_WIRE

LWRTYPE_QUICK

LWRTYPE_REALISTIC

renderOpts

This	is	a	combination	of	bits	for	different	rendering	options.	The	bit
flags	are	

LWROPT_SHADOWTRACE

LWROPT_REFLECTTRACE

LWROPT_REFRACTTRACE

LWROPT_FIELDS

LWROPT_EVENFIELDS

LWROPT_MOTIONBLUR

LWROPT_DEPTHOFFIELD

LWROPT_LIMITEDREGION

LWROPT_PARTICLEBLUR

LWROPT_ENHANCEDAA

LWROPT_SAVEANIM

LWROPT_SAVERGB

LWROPT_SAVEALPHA

LWROPT_EVENFIELDS	is	set	only	if	field	rendering	is	on	and	the	first	line	of	the
output	image	is	from	the	field	that	comes	first	in	time.	
frameStart,	frameEnd

The	numbers	of	the	first	and	last	frame	defined	for	the	scene.	These
are	the	rendering	limits,	not	to	be	confused	with	the	limits	set	by	the
user	for	previews	(which	you	can	get	from	the	interface	info	global).

frameStep

The	step	size,	in	frames,	during	rendering	(the	user	setting	for	the
Frame	Step).

framesPerSecond

Number	of	frames	per	playback	second.	This	will	ordinarily	be	24	for
film,	30	for	NTSC	video	and	25	for	PAL	video.	Note	that	this	is	the
number	of	frames,	not	fields.

frameWidth,	frameHeight

Rendered	image	size	in	pixels.	

pixelAspect

The	aspect	ratio	of	the	pixels	in	the	image,	expressed	as	width/height.
Values	greater	than	1.0	mean	short	wide	pixels	and	values	less	than
1.0	mean	tall	thin	pixels.	

minSamplesPerPixel,	maxSamplesPerPixel

Limits	on	the	number	of	samples	per	pixel	in	the	final	image.
Because	of	different	rendering	techniques	and	adaptive	sampling	it	is
impossible	to	compute	a	precise	number	of	antialiasing	samples	at
any	pixel,	but	this	gives	a	range	for	the	current	rendering	options.	

limitedRegion

The	extents	of	the	limited	region	area,	in	pixels.	The	extents	are	given
in	the	order	x0,	y0,	x1,	y1.

recursionDepth

The	maximum	recursion	depth	for	raytracing.

camID	=	renderCamera(time)

Returns	the	item	ID	of	the	camera	that	will	render	the	frame	at	the
specified	time.

	
numThreads

The	number	of	threads	of	execution	that	will	be	used	during
rendering.

animFilename

The	name	of	the	current	animation	file.
RGBPrefix	

The	current	RGB	file	saving		prefix

AlphaPrefix

The	current	RGB	file	saving		prefix

Example

This	code	fragment	calculates	the	running	time	and	frame	aspect.

			#include	<lwserver.h>

			#include	<lwrender.h>

			LWSceneInfo	*lwsi;

			double	duration,	frameAspect;

			lwsi	=	global(LWSCENEINFO_GLOBAL,	GFUSE_TRANSIENT);

			if	(lwsi)	{

						duration	=	(lwsi->frameEnd	-	lwsi->frameStart	+	1)

									/	lwsi->framesPerSecond;

						frameAspect	=	lwsi->pixelAspect	*	lwsi->frameWidth

									/	lwsi->frameHeight;

			}

Scene	Objects

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwmeshes.h

The	scene	objects	global	gives	plug-ins	access	to	the	internal
representation	of	each	object	file	loaded	into	the	current	scene	in	Layout
or	the	object	database	in	Modeler.	Functions	are	provided	for	reading
object	geometry	and	the	vertex	map	list.

Although	vertex	maps	are	stored	in	object	files,	LightWave's	internal	vmap
list	isn't	object-specific,	and	this	has	several	consequences.	If	a	vmap	of
the	same	name	and	type	is	stored	in	two	different	object	files,	LightWave
creates	a	single	entry	in	the	vmap	list	when	both	files	are	loaded.	The
vmap	is	shared	by	the	two	objects.	If	both	objects	are	then	removed,	the
vmap	is	not	removed	from	the	list.	And	the	only	way	to	determine	whether
a	vmap	affects	a	given	object	is	to	test	all	of	its	vertices,	using	the	Mesh
Info	pntVGet	function,	to	see	whether	any	of	them	is	mapped.

Global	Call

			LWObjectFuncs	*objfunc;

			objfunc	=	global(LWOBJECTFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWObjectFuncs.

			typedef	struct	st_LWObjectFuncs	{

						int										(*numObjects)		(void);

						const	char	*	(*filename)				(int	obj);

						int										(*maxLayers)			(int	obj);

						int										(*layerExists)	(int	obj,	int	lnum);

						void									(*pivotPoint)		(int	obj,	int	lnum,	LWFVector	pos);

						LWMeshInfo	*	(*layerMesh)			(int	obj,	int	lnum);

						int										(*numVMaps)				(LWID);

						const	char	*	(*vmapName)				(LWID,	int	index);

						int										(*vmapDim)					(LWID,	int	index);

						LWID									(*vmapType)				(int	index);

						const	char	*	(*layerName)			(int	obj,	int	lnum);

						int										(*layerVis)				(int	obj,	int	lnum);

						const	char	*	(*userName)				(int	obj);

						const	char	*	(*refName)					(int	obj);

			}	LWObjectFuncs;

count	=	numObjects()

Returns	a	count	of	the	number	of	objects	in	the	object	database.	This
is	the	number	of	unique	object	files	that	have	been	loaded,	which	in
general	will	be	different	from	the	number	of	animateable	object	items
(clones	and	null	objects,	for	example,	aren't	counted).

name	=	filename(object_index)

Returns	the	filename	for	the	object.	Objects	in	the	database	are
indexed	by	integers	ranging	from	0	to	count	-	1.	Except	during
rendering,	the	index	associated	with	a	given	object	can	change	at	any
time	as	objects	are	added	to	or	removed	from	the	object	database	by
the	user.

maxlayer	=	maxLayers(object_index)

Returns	a	value	one	greater	than	the	highest	indexed,	existing	layer
for	the	object.	This	is	just	the	layer	count	if	all	layers	with	indexes
between	0	and	maxlayer	-	1	exist.

exists	=	layerExists(object_index,	layer_index)

True	if	the	layer	exists.
pivotPoint(object_index,	layer_index,	pos)

Get	the	pivot	point	for	the	object	layer.
mesh	=	layerMesh(object_index,	layer_index)

Returns	a	mesh	info	structure	for	the	object	layer.	These	are	described
on	the	Mesh	Info	page.	For	object	layers	with	subpatches,	the	mesh
returned	by	this	function	does	not	include	geometry	that	would	be
created	by	subdivision	unless	the	subpatches	have	been	frozen.

vmap_count	=	numVMaps(vmtype);

Returns	a	count	of	the	number	of	vertex	maps	of	a	given	type,	or	the
total	of	all	types	in	the	scene	if	vmtype	is	0.	Vmap	type	codes	are	an
extensible	set	of	four-character	identifiers.	The	lwmeshes.h	header
defines	some	of	the	common	vmap	IDs.

LWVMAP_PICK	-	selection	set
LWVMAP_WGHT	-	weight	map
LWVMAP_MNVW	-	SubPatch	weight	map
LWVMAP_TXUV	-	texture	UV	coordinates
LWVMAP_MORF	-	relative	vertex	displacement
LWVMAP_SPOT	-	absolute	vertex	displacement

vmap_name	=	vmapName(vmtype,	vmindex);

Returns	the	name	of	a	vmap.	The	index	ranges	from	0	to	vmap_count	-

1.
dimensions	=	vmapDim(vmtype,	vmindex);

Returns	the	number	of	dimensions,	or	values	per	vertex,	of	a	vmap.
Vmaps	are	typically	2D	or	3D	(two	or	three	coordinate	values	per
vertex),	but	they	can	have	any	number	of	dimensions,	including	0.

vmtype	=	vmapType(vmindex)
Returns	the	LWID	for	the	vmap.	Call	numVMaps	with	a	vmtype	of	0	to	find
the	upper	bound	on	vmindex.

lname	=	layerName(objnum,	lnum)
Returns	the	name	assigned	to	the	layer,	or	NULL	if	the	layer	is
unnamed.

isvis	=	layerVis(objnum,	lnum)
Returns	a	boolean	indicating	whether	the	layer	is	marked	as	visible.

	
name	=	userName(object_index)

Returns	the	name	of	the	object	as	seen	by	the	user.	This	is	typically
the	base	filename	without	the	path	or	extension,	or	"Unnamed	N"	for
unsaved	objects.	These	are	not	guaranteed	to	be	unique.

	
name	=	refName(object_index)

Returns	an	internal	reference	name	for	this	object.	The	reference
name	is	guaranteed	to	be	unique	and	unchanging	for	the	lifetime	of
the	object.	This	is	useful	in	Modeler	as	an	argument	to	commands
requiring	a	filename,	since	some	objects	in	Modeler	may	not	have
been	saved	yet	and	therefore	have	no	filename.

Example

The	inertia	sample	uses	this	global	to	display	a	list	of	vertex	maps	to	the
user.	The	vmap	values	are	used	in	the	displacement	evaluation	to	scale	the
lag.

Shelf	Functions

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwshelf.h

The	shelf	is	a	window	where	users	can	store	and	retrieve	presets	for	your
plug-in.	The	shelf	API	supplies	functions	that	let	you	subscribe	(connect),
set	the	context	(tell	the	shelf	that	your	interface	is	the	active	one),	open	the
shelf	window,	and	add,	load	and	save	presets.

For	some	plug-in	classes,	you	don't	need	to	call	this	global	in	order	to	gain
access	to	the	shelf's	preset	management.	Beginning	with	LightWave	7.0,
the	user	can	load	and	save	presets	for	your	plug-in	through	the	VIPER
(Versatile	Interactive	Preview	Render)	interface.	Presets	can	be	added	to
the	shelf	or	loaded	into	your	plug-in	through	calls	to	your	regular	handler
load	and	save	callbacks.

Global	Call

			LWShelfFuncs	*shelff;

			shelff	=	global(LWSHELFFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWShelfFuncs.

			typedef	struct	st_LWSHELFFUNCS	{

						LWShelfCltID	(*subscribe)(char	*name,	char	*subName,

																																		void	*userData,	int	flags,

																																		LWShelfLoadOkFunc	*,

																																		LWShelfLoadFunc	*,

																																		LWShelfSaveFunc	*);

						void	(*unsubscribe)			(LWShelfCltID);

						void	(*open)										(LWShelfCltID);

						int		(*isOpen)								(LWShelfCltID	clt);

						void	(*close)									(LWShelfCltID);

						void	(*setContext)				(LWShelfCltID);

						int		(*addPreset)					(LWShelfCltID,	LWPixmapID	img,

																															LWShelfParmList	parms);

						void	(*load)										(LWShelfCltID,	char	*filename,

																															int	prompt_user);

						void	(*save)										(LWShelfCltID,	char	*filename,

																															LWImageID	thumimg,	LWShelfParmList);

						int		(*addNamedPreset)(LWShelfCltID	clt,	LWPixmapID	img,

																															LWShelfParmList	parms,	const	char	*name,

																															const	char	*comment);

			}	LWShelfFuncs;

client	=	subscribe(class,	server,	userdata,	flags,	loadok,	load,	save)
Initialize	the	interaction	between	a	plug-in	instance	and	the	shelf.	The
client	ID	returned	by	this	function	is	passed	as	the	first	argument	to
all	of	the	others.	The	user	data,	typically	the	instance	data	for
handlers,	will	be	passed	as	the	first	argument	to	the	three	callbacks.
The	flags	argument	is	a	set	of	flag	bits	combined	using	bitwise-or.
They	indicate	what	kind	of	preset	loading	and	saving	the	plug-in
supports	and	can	be	any	combination	of	the	following.

SHLF_BIN
Saves	to	and	loads	from	binary	files.

SHLF_ASC
Saves	to	and	loads	from	ASCII	(text)	files

SHLF_SEP
Saves	to	and	loads	from	separate	(non-LightWave)	files.

unsubscribe(client)
Conclude	your	instance's	use	of	the	shelf.	You	should	call	this	before
your	instance	is	destroyed.

open(client)
Open	the	preset	shelf	window	and	set	the	context	to	your	plug-in.	The
window	will	display	only	the	presets	for	your	plug-in.

open	=	isOpen(client)
Returns	true	if	the	shelf	window	is	open.

close(client)
Close	the	shelf	window.

setContext(client)
Set	the	shelf	context.

index	=	addPreset(client,	img,	params)
Add	a	preset	to	the	shelf.	The	img	is	the	preset's	thumbnail	in	the	shelf
window,	created	using	the	Image	Utility	functions.	The	params	are
passed	as	a	NULL-terminated	array	of	strings	(tags)	that	you	can	use
in	your	shelf	load	callback	to	tell	which	parameters	in	this	preset
should	be	loaded.	In	the	simplest	case,	params	will	be	NULL.

addPreset	is	implemented	as	a	call	to	addNamedPreset,	which	is	passed	a
default	name	generated	by	the	shelf	system.	New	code	should	call
addNamedPreset	directly.

load(client,	filename,	prompt_user)
save(client,	filename,	thumb_img,	params)

Load	or	save	a	preset	in	an	external	file.	Presets	are	ordinarily	stored
in	a	file	managed	by	the	shelf	system,	but	you	can	use	these	functions
to	load	and	save	presets	in	files	you	name.	For	loading,	if	prompt_user
is	true	and	the	preset	contains	a	parameter	list	(params	was	non-NULL
when	save	was	called	for	the	preset),	the	user	is	prompted	for	input.

index	=	addNamedPreset(client,	img,	params,	name,	comment)
Add	a	named	preset	to	the	shelf.	Like	addPreset,	but	you	can	also
specify	a	name	and	a	comment	that	will	help	the	user	identify	the
preset.

Callbacks

The	last	three	arguments	to	the	subscribe	function	are	callbacks	that	the
shelf	calls	when	a	preset	is	to	be	loaded	or	saved.	The	shelf	system	calls
these	to	actually	load	and	save	the	preset.	For	all	three	callbacks,	the	first
argument	is	the	user	data	you	passed	to	subscribe.

			typedef	int		LWShelfLoadOkFunc	(void	*userdata);

			typedef	void	LWShelfLoadFunc			(void	*userdata,	const	LWLoadState	*,

																																					const	char	*filename,

																																					LWShelfParmList);

			typedef	void	LWShelfSaveFunc			(void	*userdata,	const	LWSaveState	*,

																																					const	char	*filename);

LWShelfLoadOkFunc
Returns	a	code	that	tells	the	shelf	system	whether	to	load	the	preset
and	whether	the	user	should	be	prompted	first.	The	code	can	be	one
of	the	following.

SHLC_NOWAY
Do	not	load.	Your	plug-in	should	tell	the	user	why.

SHLC_DFLT
Display	the	default	confirmation	dialog.

SHLC_FORCE
Load	without	consulting	the	user.

Your	plug-in	can	display	its	own	confirmation	dialog	and	then	return
NOWAY	or	FORCE	as	appropriate,	but	you'll	lose	the	ability	to	use
parameter	lists	to	selectively	load	parameters	from	your	presets.

LWShelfLoadFunc
Load	the	preset.	The	shelf	calls	this	when	the	user	double-clicks	on	a
preset	thumbnail	in	the	shelf	window,	or	when	you	call	the	load
function	to	load	a	preset	from	a	file.	In	the	first	case,	the	filename
argument	will	be	NULL,	and	you'll	read	the	preset's	parameters	by
calling	the	LWLoadState	functions.	Typically,	handlers	pass	this	job
on	to	their	handler	load	callback.	In	the	second	case,	the
LWLoadState	will	be	NULL,	and	you'll	read	the	preset	from	the	file
named	in	filename.	You	can	still	pass	this	on	to	your	handler's	load
callback	by	creating	an	LWLoadState	for	the	preset	file	using	the	File
I/O	global.

The	parameter	list	is	an	array	of	strings.	It	contains	a	subset	of	the
parameter	list	you	passed	to	addPreset,	addNamedPreset	or	save.	The
default	load	confirmation	dialog	presents	the	list	to	the	user	and
allows	the	user	to	select	parameters.	Only	selected	parameters	are
passed	to	your	load	callback.	You	can	use	the	selections	to	load	only
portions	of	a	preset.

LWShelfSaveFunc
Save	the	preset.	The	shelf	calls	this	when	you	call	addPreset,
addNamedPreset	or	save.	When	adding	a	preset	to	the	shelf,	the	filename
argument	will	be	NULL,	and	you'll	store	the	preset's	parameters	by
calling	the	LWSaveState	functions.	Typically,	handlers	pass	this	job
on	to	their	handler	save	callback.	When	saving	a	preset	to	a	file,	the
LWSaveState	will	be	NULL,	and	you'll	write	the	preset	to	the	file
named	in	filename.	You	can	still	pass	this	on	to	your	handler's	save
callback	by	creating	an	LWSaveState	for	the	preset	file	using	the	File
I/O	global.

The	parameter	list	is	an	array	of	strings	representing	parameters	or
groups	of	parameters	in	your	preset	data.	When	the	preset	is	reloaded,
the	user	can	select	from	this	list	of	named	parameters,	and	the	user's
selection	will	be	passed	to	the	load	callback.

Example

The	shelf	SDK	sample	is	a	Master	plug-in	that	demonstrates	the	shelf
functions.	(This	is	all	it	does,	in	fact.)	The	plug-in's	"data"	is	merely	a
color.	The	interface	lets	you	add	color	presets	to	the	shelf	or	save	them	in
separate	files.	You	can	then	load	them	back	into	the	plug-in's	handler
instance.

State	Query

Availability		LightWave	6.0
Component		Modeler
Header		lwmodeler.h

This	global	provides	a	set	of	functions	that	return	information	about	the
current	modeling	environment.

Global	Call

			LWStateQueryFuncs	*query;

			query	=	global(LWSTATEQUERYFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWStateQueryFuncs.

			typedef	struct	st_LWStateQueryFuncs	{

						int										(*numLayers)	(void);

						unsigned	int	(*layerMask)	(EltOpLayer);

						const	char	*	(*surface)			(void);

						unsigned	int	(*bbox)						(EltOpLayer,	double	*minmax);

						const	char	*	(*layerList)	(EltOpLayer,	const	char	*);

						const	char	*	(*object)				(void);

						int										(*mode)						(int);

						const	char	*	(*vmap)						(int,	LWID	*);

			}	LWStateQueryFuncs;

nlayers	=	numLayers()

Returns	the	number	of	data	layers	for	the	current	object.
mask	=	layerMask(oplayer)

Returns	bits	for	the	data	layers	included	in	the	EltOpLayer	selection.
If	bit	i	of	the	mask	is	set,	then	layer	i	+	1	of	the	current	object	belongs
to	the	set	defined	by	the	oplayer	argument.	This	function	is	provided
primarily	for	backward	compatibility.	New	code	should	use	the
layerList	function,	which	is	designed	for	multiple	objects	and	an
unlimited	number	of	layers.

surfname	=	surface()

Returns	the	name	of	the	current	default	surface.
npoints	=	bbox(oplayer,	box)

Returns	the	number	of	points	in	the	layer	selection.	If	box	isn't	NULL,
it	is	an	array	of	six	doubles	that	will	receive	the	bounding	box	of	the
points	in	the	layer	selection,	in	the	order	(x0,	x1,	y0,	y1,	z0,	z1).

layers	=	layerList(oplayer,	objname)

Returns	a	string	containing	layer	numbers	for	the	given	EltOpLayer
and	object.	The	layer	numbers	in	the	string	are	separated	by	spaces,
with	the	highest	numbered	layer	listed	first.	The	object	name	is	its
filename,	or	NULL	for	the	current	object.

objname	=	object()

Returns	the	filename	of	the	current	object.	If	the	geometry	in	the
current	layers	hasn't	been	saved	to	a	file	yet,	this	returns	the	reference
name	(the	name	that	would	be	returned	by	the	Object	Functions
refName	function).	If	no	object	has	been	loaded	into	Modeler,	this
returns	NULL.

m	=	mode(setting)

Returns	the	state	of	a	user	interface	setting.	The	setting	codes	are

LWM_MODE_SELECTION
Returns	the	selection	mode	(points,	polygons,	volume)	as	an
integer.

LWM_MODE_SYMMETRY
Returns	the	state	of	the	symmetry	toggle.

vmapname	=	vmap(index,	lwid)

Returns	the	name	of	the	currently	selected	vertex	map,	and	stores	the
LWID	of	the	vmap	in	the	second	argument.	The	index	can	be	one	of	the
following.
LWM_VMAP_WEIGHT

LWM_VMAP_TEXTURE

LWM_VMAP_MORPH

Example

This	code	fragment	exercises	the	query	functions.

			#include	<lwserver.h>

			#include	<lwmodeler.h>

			LWStateQueryFuncs	*query;

			double	box[6];

			char	*surfname,	*layers,	*objname;

			int	nlayers,	npoints;

			query	=	global(LWSTATEQUERYFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(!query)	return	AFUNC_BADGLOBAL;

			nlayers		=	query->numLayers();

			npoints		=	query->bbox(OPLYR_PRIMARY,	box);

			surfname	=	query->surface();

			objname		=	query->object();

			layers			=	query->layerList(OPLYR_FG,	objname);

Surface	Editor

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwsurfed.h

The	surface	editor	global	allows	you	to	control	the	surface	editing
interface.

Global	Call

			LWSurfEdFuncs	*surfedf;

			surfedf	=	global(LWSURFEDFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWSurfEdFuncs.

			typedef	struct	st_LWSurfEdFuncs	{

						void	(*open)							(int);

						void	(*close)						(void);

						int		(*isOpen)					(void);

						void	(*setSurface)	(LWSurfaceID);

						void	(*setPosition)(int	x,	int	y);

						void	(*getPosition)(int	*x,	int	*y,	int	*w,	int	*h);

			}	LWSurfEdFuncs;

open(int)

Open	the	surface	editor	window.
close()

Close	the	window.
state	=	isOpen()

True	if	the	editor	window	is	open.
setSurface(surfid)

Set	the	current	surface	in	the	editor.
setPosition(x,	y)

Set	the	window's	position	relative	to	the	upper	left	corner	of	the
screen.

getPosition(x,	y,	w,	h)

Get	the	window's	position	and	size	in	pixels.

Surface	Functions

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwsurf.h

This	global	allows	you	to	get	information	about	surfaces	and	surface
parameters.

Global	Call

			LWSurfaceFuncs	*surff;

			surff	=	global(LWSURFACEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWSurfaceFuncs.

			typedef	struct	st_LWSurfaceFuncs	{

						LWSurfaceID			(*create)						(const	char	*objName,

																																						const	char	*surfName);

						LWSurfaceID			(*first)							(void);

						LWSurfaceID			(*next)								(LWSurfaceID);

						LWSurfaceID	*	(*byName)						(const	char	*name,	const	char	*obj);

						LWSurfaceID	*	(*byObject)				(const	char	*name);

						const	char	*		(*name)								(LWSurfaceID);

						const	char	*		(*sceneObject)	(LWSurfaceID);

						int											(*getInt)						(LWSurfaceID,	const	char	*channel);

						double	*						(*getFlt)						(LWSurfaceID,	const	char	*channel);

						LWEnvelopeID		(*getEnv)						(LWSurfaceID,	const	char	*channel);

						LWTextureID			(*getTex)						(LWSurfaceID,	const	char	*channel);

						LWImageID					(*getImg)						(LWSurfaceID,	const	char	*channel);

						LWChanGroupID	(*chanGrp)					(LWSurfaceID);

						const	char	*		(*getColorVMap)(LWSurfaceID	surf);

						void										(*setColorVMap)(LWSurfaceID	surf,

																																						const	char	*vmapName,	int	type);

			}	LWSurfaceFuncs;

surf	=	create(objname,	surfname)

Create	a	new	surface.	The	object	name	is	the	filename,	which	you	can
get	from	the	Object	Info	filename	function	and	Modeler's	State	Query
object	function,	given	the	object's	item	ID.

surf	=	first()

Returns	the	ID	of	the	first	surface	in	the	surfaces	list.
surf	=	next(surf)

Returns	the	ID	of	the	next	surface	in	the	surfaces	list	(the	one
following	the	argument).

surfarray	=	byName(surfname,	objname)

Returns	the	IDs	of	the	(possibly	many)	surfaces	with	a	given	name.
Different	objects	can	have	surfaces	of	the	same	name.	If	objname	is
NULL,	the	array	will	contain	every	surface	ID	named	surfname,
regardless	of	which	object	it	belongs	to.	The	array	of	surface	IDs	is
terminated	by	an	ID	of	NULL.

surfarray	=	byObject(objname)

Returns	the	surfaces	belonging	to	the	object.	The	object	name	is	the
filename.

surfname	=	name(surf)

Returns	the	name	of	a	surface.
scenename	=	sceneObject(surf)

Returns	the	filename	of	the	object	to	which	the	surface	belongs.
val	=	getInt(surf,	channel)

Returns	the	value	of	the	surface	parameter	(evaluates	the	channel)	at
the	current	time.	Use	this	function	for	integer	parameters	and	getFlt
for	floating-point	parameters.	The	channel	is	one	of	the	channel	names
listed	in	lwsurf.h.

valarray	=	getFlt(surf,	channel)

Returns	the	value	of	the	surface	parameter.	The	return	value	in	most
cases	points	to	one	double,	but	for	colors,	it	points	to	three.

envelope	=	getEnv(surf,	channel)

Returns	the	envelope	ID	for	the	surface	parameter.	This	can	be	used
with	the	Animation	Envelopes	global.

texture	=	getTex(surf,	channel)

Returns	a	texture	ID	for	the	surface	parameter	that	can	be	used	with
the	Texture	Functions	global.

image	=	getImg(surf,	channel)

Returns	the	image	associated	with	the	surface	parameter.	This
function	is	limited	to	use	with	surface	channels	that	refer	directly	to
images,	e.g.	SURF_RIMG	and	SURF_TIMG	(reflection	and	refraction	maps).
Images	that	are	part	of	textures	have	to	be	obtained	through	the
Texture	Functions	global.

group	=	chanGrp(surf)

Returns	the	channel	group	for	the	surface.	This	is	the	parent	group	for
envelopes	associated	with	the	surface's	parameters.	It	can	be	used
with	the	Channel	Info	global.	Note:	because	of	a	bug,	this	field	may
be	NULL	in	some	builds	of	LightWave	6.

name	=	getColorVMap(surf)

Returns	the	name	of	the	vertex	color	map	for	the	surface.
setColorVMap(surf,	vmapname,	type)

Set	the	surface's	vertex	color	map.	The	type	can	be	LWVMAP_RGB	(the
vmap	has	a	dimension	of	3	and	contains	red,	green	and	blue	levels)	or
LWVMAP_RGBA	(dimension	of	4,	with	RGB	and	alpha	levels).

Example

The	scenscan	SDK	sample	includes	a	getObjectSurfs	function	that	collects
surface	information	for	all	of	an	object's	surfaces.

For	some	parameters,	you'll	want	to	consult	the	object	file	format
specification,	since	the	form	of	the	data	returned	by	the	get	functions	is	in
some	cases	the	same	as	its	binary	image	in	the	object	file.	This	code
fragment	reads	and	interprets	the	reflection	options.

			#include	<lwserver.h>

			#include	<lwsurf.h>

			LWSurfaceFuncs	*surff;

			LWSurfaceID	surfid;

			LWImageID	rimg;

			double	refl,	rsan,	*dval;

			int	rfop;

			...	assume	surff	and	surfid	have	been	initialized	...

			dval	=	surff->getFlt(surfid,	SURF_REFL);								//	reflectivity

			refl	=	*dval;

			if	(refl	>	0.0f)	{

						rfop	=	surff->getInt(surfid,	SURF_RFOP);					//	options

						switch	(rfop)	{

									case	0:		/*	backdrop	only	*/							...	break;

									case	1:		/*	raytrace	+	backdrop	*/	...	break;

									case	2:		/*	spherical	map	*/							...	break;

									case	3:		/*	raytrace	+	map	*/						...	break;

						}

						if	(rfop	==	2	||	rfop	==	3)	{

									rimg	=	surff->getImg(surfid,	SURF_RIMG);		//	image	map

									dval	=	surff->getFlt(surfid,	SURF_RSAN);		//	seam	angle

									rsan	=	*dval;

						}

			}

System	ID

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwhost.h

The	system	ID	global	returns	the	hardware	key	serial	number.	Each	unique
serial	number	represents	a	LightWave	license,	so	a	plug-in	installed	on	a
particular	machine	can	use	this	value	to	lock	that	installation	to	the
LightWave	license.	But	note	that	your	plug-in	can	be	called	in	contexts	in
which	the	host	doesn't	require	a	hardware	key,	so	exercise	care	when
relying	on	the	value	returned	by	this	function.

Global	Call

			unsigned	long	sysid;

			sysid	=	(unsigned	long)	global(LWSYSTEMID_GLOBAL,

						GFUSE_TRANSIENT);

The	global	function	ordinarily	returns	a	void	*,	so	this	should	be	cast	to	an
integer	type	to	get	the	return	value.

The	serial	number	is	in	the	low	28	bits	of	the	return	value.	The	high	four
bits	indicate	whether	the	plug-in	is	running	in	an	interactive	Layout	or
Modeler	session,	or	in	a	non-interactive	Screamernet	session.	The	two
components	of	the	number	can	be	extracted	using	macros	defined	in
lwhost.h.

			context		=	sysid	&	LWSYS_TYPEBITS;

			serialno	=	sysid	&	LWSYS_SERIALBITS;

The	context	can	be	LWSYS_LAYOUT,	LWSYS_MODELER,	or	LWSYS_SCREAMERNET.

If	the	context	is	LWSYS_SCREAMERNET,	the	serial	number	will	either	be	the	node
number,	or	0	if	no	node	number	is	available.	The	serial	number	can	also	be
0	for	products	other	than	LightWave	that	don't	require	a	hardware	key,	e.g.
Inspire,	regardless	of	the	context.	(The	product	info	global	allows	you	to
identify	the	product	your	plug-in	is	running	in.)

Texture	Editor

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwtxtred.h

This	global	provides	access	to	a	user	interface	for	editing	textures.	If	you
use	XPanels	with	vparms	that	can	be	textured,	the	interaction	with	the
texture	editor	is	handled	for	you,	and	you	don't	need	this	global.	But	if
your	interface	is	built	with	classic	Panels	or	OS-specific	elements,	you	can
use	this	global	to	provide	your	users	with	the	standard	texture	interface.

Global	Call

			LWTxtrEdFuncs	*txedf;

			txedf	=	global(LWTXTREDFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWTxtrEdFuncs.

			typedef	struct	st_LWTxtrEdFuncs	{

						LWTECltID			(*subscribe)			(char	*title,	int	flags,	void	*userData,

																																			LW_TxtrRemoveFunc	*,

																																			LW_TxtrAutoSizeFunc	*,

																																			LW_TxtrEventFunc	*);

						void								(*unsubscribe)	(LWTECltID);

						void								(*open)								(LWTECltID,	LWTextureID,	char	*title);

						void								(*setTexture)		(LWTECltID,	LWTextureID,	char	*title);

						void								(*setPosition)	(LWTECltID,	int,	int);

						void								(*close)							(LWTECltID);

						int									(*isOpen)						(LWTECltID);

						int									(*refresh)					(LWTECltID);

						LWTLayerID		(*currentLayer)(LWTECltID);

						int									(*selectAdd)			(LWTECltID,	LWTextureID);

						int									(*selectRem)			(LWTECltID,	LWTextureID);

						int									(*selectClr)			(LWTECltID);

						LWTextureID	(*selectFirst)	(LWTECltID);

						LWTextureID	(*selectNext)		(LWTECltID,	LWTextureID);

						void								(*setGradientAutoSize)(LWTECltID,

																																			LW_GradAutoSizeFunc	*);

			}	LWTxtrEdFuncs;

client	=	subscribe(title,	flags,	data,	txremove,	txautosz,	txevent)

Returns	an	identifier	that	plug-ins	use	in	later	calls	to	the	texture
editor	functions.	The	callbacks	are	optional	and	are	called	when	the
user	removes	or	autosizes	a	texture,	or	does	anything	with	it	in	the
editor.	The	data	argument	is	passed	to	these	callbacks;	its	contents	are
up	to	you,	and	it	can	be	NULL.	The	flags	determine	what	the	user	can

do	in	the	editor	and	can	be	one	or	more	of	the	following.
TEF_USEBTN

Add	use/remove	buttons	at	the	bottom	of	the	pane.
TEF_OPACITY

Add	layer	opacity	settings.
TEF_BLEND

Add	blend	options	to	the	layer	global	settings.
TEF_TYPE

Add	layer	type	control	on	the	top	of	the	pane.
TEF_LAYERS

Add	layer	list	pane	on	the	left	side	of	the	pane.
TEF_ALL

All	of	the	above	flags.	This	is	the	standard	configuration	for	the
texture	editor.

unsubscribe(client)

Free	resources	allocated	by	subscribe.	This	call	invalidates	the	client
ID.	You'll	need	to	call	subscribe	again	before	calling	the	texture	editor
functions.

open(client,	texture,	title)

Open	the	texture	editor	window.
setTexture(client,	texture,	title)

Initialize	the	texture	editor	with	the	texture	to	be	edited.
setPosition(client,	x,	y)

Move	the	editor	window.	The	coordinates	are	for	the	upper	left	corner
of	the	window.

close(client)

Close	the	texture	editor	window.
isopen	=	isOpen(client)

True	if	the	editor	window	is	currently	open.
result	=	refresh(client)

Redraw	the	editor	window.
tlayer	=	currentLayer(client)

Returns	the	texture	layer	currently	being	edited.
ok	=	selectAdd(client,	texture)

ok	=	selectRem(client,	texture)

ok	=	selectClr(client)

Add	a	texture	to	a	multiselection,	remove	a	texture	from	a
multiselection,	or	clear	the	selection	list.

texture	=	selectFirst(client)

next	=	selectNext(client,	texture)

Enumerate	the	selected	textures.
setGradientAutoSize(client,	gsizecb)

Set	a	callback	for	autosize	requests	from	gradient	texture	layers.

Callbacks

The	callbacks	passed	to	subscribe	and	setGradientAutoSize	allow	you	to	react
to	user	actions	in	the	editor.

			typedef	void	LW_TxtrRemoveFunc	(LWTextureID,	void	*userData);

			typedef	int		LW_TxtrAutoSizeFunc	(LWTextureID,	void	*userData,

						double	bbox[3][2]);

			typedef	int		LW_GradAutoSizeFunc	(LWTxtrParamDesc	*param,

						int	paramNb,	void	*userData);

			typedef	int		LW_TxtrEventFunc	(LWTextureID,	void	*userData,

						int	eventCode);

The	remove	callback	is	called	when	a	texture	is	removed.	The	texture
autosize	callback	is	called	when	the	user	has	requested	that	the	texture	size
be	set	automatically.	The	bounding	box	array	should	be	set	to	the	default
size	of	the	texture.	The	gradient	autosize	callback	is	called	for	automatic
sizing	of	gradient	layers.	The	size	should	be	set	in	the	parameter
description.	See	the	Texture	Functions	global	for	a	description	of	the
LWTxtrParamDesc	structure.

The	event	callback	is	called	when	the	texture	settings	are	modified	by	the
user.	This	gives	you	a	chance	to	update	thumbnails	or	other	aspects	of
your	interface	that	depend	on	the	texture	settings.	The	event	code	can	be
one	of	the	following.

TXEV_ALTER
A	texture	setting	has	changed.

TXEV_TRACK
A	texture	setting	is	being	changed	(a	slider	is	being	manipulated,
for	example).

TXEV_DELETE
A	texture	layer	has	been	deleted.

Example

The	txchan	and	atmosphere	samples	use	Texture	Editor	functions.

	

Texture	Functions

Availability		LightWave	6.0	Component		Layout,	Modeler	
Header		lwtxtr.h

The	Texture	Functions	global	gives	plug-ins	access	to	LightWave's	texture
engine.	A	plug-in	can	create	and	use	textures	to	modulate	its	parameters,
and	it	can	read	and	modify	the	settings	of	existing	textures.

Global	Call

			LWTextureFuncs	*txfunc;

			txfunc	=	global(LWTEXTUREFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWTextureFuncs.
			typedef	struct	st_LWTextureFuncs	{

						LWTxtrContextID	(*contextCreate)(LWTxtrParamFuncs);

						void										(*contextDestroy)	(LWTxtrContextID);

						void										(*contextAddParam)(LWTxtrContextID,

																																									LWTxtrParamDesc);

						LWTextureID			(*create)							(int	returnType,	const	char	*name,

																																							LWTxtrContextID,	void	*userdata);

						void										(*destroy)						(LWTextureID);

						void										(*copy)									(LWTextureID	to,	LWTextureID	from);

						void										(*newtime)						(LWTextureID,	LWTime,	LWFrame);

						void										(*cleanup)						(LWTextureID);

						void										(*load)									(LWTextureID,	const	LWLoadState	*);

						void										(*save)									(LWTextureID,	const	LWSaveState	*);

						double								(*evaluate)					(LWTextureID,	LWMicropolID,	double	*);

						void										(*setEnvGroup)		(LWTextureID,	LWChanGroupID);

						LWTLayerID				(*firstLayer)			(LWTextureID);

						LWTLayerID				(*lastLayer)				(LWTextureID);

						LWTLayerID				(*nextLayer)				(LWTextureID,	LWTLayerID);

						LWTLayerID				(*layerAdd)					(LWTextureID,	int	type);

						void										(*layerSetType)	(LWTLayerID,	int	type);

						int											(*layerType)				(LWTLayerID);

						double								(*layerEvaluate)(LWTLayerID,	LWMicropolID,	double	*);

						LWChanGroupID	(*layerEnvGrp)		(LWTLayerID);

						int											(*setParam)					(LWTLayerID,	int	tag,	void	*data);

						int											(*getParam)					(LWTLayerID,	int	tag,	void	*data);

						void										(*evaluateUV)			(LWTLayerID,	int	wAxis,	int	oAxis,

																																							double	oPos[3],	double	wPos[3],

																																							double	uv[2]);

						double								(*noise)								(double	p[3]);

						void	*								(*userData)					(LWTextureID);

						LWChanGroupID	(*envGroup)					(LWTextureID);

						LWTextureID			(*texture)						(LWTLayerID);

						const	char	*		(*name)									(LWTextureID);

						int											(*type)									(LWTextureID);

						LWTxtrContextID	(*context)				(LWTextureID);

			}	LWTextureFuncs;

It's	helpful	to	divide	these	functions	into	three	categories	according	to
whether	they	deal	with	contexts,	handler	calls,	or	texture	settings.	Plug-ins
that	use	textures	to	modify	their	own	parameters	will	mostly	use	functions
in	the	first	two	groups,	since	typically	the	texture	settings	are	supplied	by
the	user	through	the	Texture	Editor.	The	last	group	is	more	often	useful
when	plug-ins	want	to	query	or	modify	existing	textures.

Contexts

Some	texture	layer	types	use	additional	parameters	to	modify	the	texture
value.	Currently	this	is	a	gradient	thing.	The	texture	context	is	used	to
populate	and	support	the	Input	Parameter	menu	for	gradient	layers	in	the
Texture	Editor.

	
context	=	contextCreate(paramfuncs)

Create	a	texture	context.	The	Texture	Editor	uses	the	callbacks	in	the
paramfuncs	argument	to	get	the	value	of	the	parameters.

contextDestroy(context)

Free	resources	allocated	by	contextCreate.

contextAddParam(context,	param)

Add	a	parameter	to	the	context.	For	gradient	layers,	this	parameter
will	be	added	to	the	Input	Parameter	menu.

Handler	Calls

The	functions	in	this	group	call	the	texture's	handler	callbacks.	See	the
document	for	the	procedural	texture	plug-in	class	for	more	information
about	the	other	side	of	these	calls.	In	most	cases,	you'll	call	these	from
within	your	own	plug-in's	handler	callbacks.	In	all	cases,	however,	these
functions	must	be	called	in	proper	handler	order.	The	newtime	function,	for
example,	must	be	called	before	calling	evaluate.

	
texture	=	create(returntype,	name,	context,	userdata)

Create	a	texture.	The	LWTextureID	returned	by	this	function	is	a
container	that	will	hold	one	or	more	texture	layers.	The	final	value	of
the	texture	is	a	combination	of	the	values	calculated	for	each	layer.

The	data	type	of	the	texture	value	can	be	one	of	the	following.	
TRT_VECTOR

TRT_COLOR

TRT_PERCENT

TRT_SCALAR

TRT_DISPLACEMENT

The	name	is	used	to	identify	the	texture	in	the	user	interface.	The	context	is	a
context	ID	returned	by	contextCreate,	or	NULL	if	you	don't	want	to	add	any
input	parameters	for	the	texture.	The	userdata	is	any	data	you'd	like	to
associate	with	the	texture.	You	can	retrieve	it	using	the	userdata	function.
destroy(texture)

Free	the	texture.

copy(to,	from)

Copy	a	texture.

newtime(texture,	time,	frame)

Prepare	the	texture	to	be	evaluated	at	a	new	render	time.	This	allows
the	texture	to	do	time-dependent	precalculations.

cleanup(texture)

Call	this	when	calculations	using	the	texture	are	completed,	typically
after	the	last	frame	has	been	rendered.

load(texture,	loadstate)

Read	the	texture	from	a	file.

save(texture,	savestate)

Write	the	texture	to	a	file.

alpha	=	evaluate(texture,	micropol,	value)

Evaluate	the	texture.	You	must	initialize	the	LWMicropol	structure,
described	later.	The	result	is	returned	in	value.

Texture	Data

These	functions	are	used	to	get	and	set	the	data	that	defines	a	texture.

	
setEnvGroup(texture,	changroup)

Set	the	channel	group	to	be	used	by	the	texture.	Envelopes	created	for
parameters	in	the	texture's	layers	will	belong	to	this	group.

tlayer	=	firstLayer(texture)	
tlayer	=	lastLayer(texture)	
tlayer	=	nextLayer(texture,	tlayer)

Enumerate	the	texture's	layers.	The	layer	ID	returned	by	these
functions	can	be	passed	to	functions	that	return	the	layer's	data.

tlayer	=	layerAdd(texture,	type)

Add	a	texture	layer.	The	type	is	one	of	the	following.
	

TLT_IMAGE

An	image	map.
TLT_PROC

A	procedural	texture.
TLT_GRAD

A	gradient.

layerSetType(tlayer,	type)

Change	the	layer	type.

type	=	layerType(tlayer)

Returns	the	layer	type.

alpha	=	layerEvaluate(tlayer,	micropol,	value)

Evaluate	the	layer.	Like	the	evaluate	function,	but	it	calculates	the
texture	value	only	for	the	specified	layer.

changroup	=	layerEnvGroup(tlayer)

Returns	the	channel	group	for	the	layer's	enveloped	parameters.

result	=	setParam(tlayer,	tag,	value)	
result	=	getParam(tlayer,	tag,	value)

Set	or	get	a	layer	parameter.	The	tag	identifies	the	parameter	and	its
data	type.

	

TXTAG_POSI	(double	[3])	
TXTAG_ROTA	(double	[3])	
TXTAG_SIZE	(double	[3])

The	origin,	rotation	and	scale	of	the	texture	layer.
TXTAG_FALL	(double	[3])

Falloff,	an	amount	per	unit	distance.
TXTAG_PROJ	(int	*)

Projection	type	for	image	maps,	which	can	be	one	of	the	following.	

TXPRJ_PLANAR

TXPRJ_CYLINDRICAL

TXPRJ_SPHERICAL

TXPRJ_CUBIC

TXPRJ_FRONT

TXPRJ_UVMAP

TXTAG_AXIS	(int	*)

The	texture	axis,	for	image	map	projections	that	require	one.
TXTAG_WWRP	(double	*)

TXTAG_HWRP	(double	*)

Width	and	height	wrap	amount.	Some	projection	types	use	this	to	tile
the	texture	image.

TXTAG_COORD	(int	*)

The	coordinate	system.	This	is	1	for	world	coordinates	(the	texture
doesn't	move	with	the	object),	and	0	for	object	coordinates.

TXTAG_IMAGE	(LWImageID	*)

The	image	for	image	mapped	layers.	The	value	is	a	pointer	to	an
image	ID,	typically	obtained	from	the	Image	List	load	function.

TXTAG_VMAP	(VMapID	*)

The	vertex	map	used,	for	example,	by	UV	mapped	and	weight
mapped	textures.	The	value	is	the	opaque	pointer	returned	by	the
MeshEditOp	pointVSet	function	or	the	mesh	info	pntVLookup	function.

TXTAG_ROBJ	(LWItemID	*)

The	reference	object,	from	which	the	texture	origin,	rotation	and
scale	will	be	taken.	The	item	ID	is	typically	obtained	from	the	Item
Info	first	and	next	functions.

TXTAG_OPAC	(double	*)

Layer	opacity.
TXTAG_AA	(int	*)

Boolean,	whether	texture	antialiasing	is	enabled	for	the	layer.
TXTAG_AAVAL	(double	*)

Antialiasing	threshold.	The	texture	value	will	only	be	antialiased	if	it
differs	from	adjacent	values	by	an	amount	greater	than	this	threshold.

TXTAG_PIXBLEND	(int	*)

Boolean,	whether	pixel	blending	is	enabled.	Pixel	blending	is	a	form
of	antialiasing	that's	active	in	regions	where	the	texture	resolution	is
lower	than	the	output	resolution.

TXTAG_WREPEAT	(int	*)

TXTAG_HREPEAT	(int	*)

Width	and	height	repeat	behavior.
TXRPT_RESET

TXRPT_REPEAT

TXRPT_MIRROR

TXRPT_EDGE

TXTAG_ACTIVE	(int	*)

Boolean,	whether	texture	layer	is	active.

TXTAG_INVERT	(int	*)

Boolean,	whether	texture	layer	is	inverted.

TXTAG_BLEND	(int	*)

Texture	blending	mode:
TXBLN_NORMAL	

TXBLN_SUBTRACT	

TXBLN_DIFFERENCE	

TXBLN_MULTIPLY	

TXBLN_DIVIDE	

TXBLN_ALPHA

TXBLN_DISPLACE	

TXBLN_ADD

evaluateUV(tlayer,	waxis,	oaxis,	opos,	wpos,	uv)

For	texture	layers	that	use	one	of	the	implicit	image	mapping
projections	(planar,	cubic,	cylindrical,	spherical),	returns	the	UV
coordinates	for	a	given	position.	If	the	texture	uses	an	explicit	UV
mapping,	the	UV	coordinates	can	be	obtained	directly	from	the	vertex
map	through	mesh	info	or	MeshEditOp	functions.	

The	w	arguments	are	in	world	coordinates,	and	the	o	arguments	are	in
object	coordinates.	The	axis	arguments	are	the	dominant	axis	for	cubic
mapping	and	can	be	0,	1	or	2	for	the	X,	Y	or	Z	axis.	This	is	usually	chosen
as	the	polygon	normal	component	that's	largest	in	absolute	value.	For
projections	other	than	cubic,	these	arguments	are	ignored.	The	position
arguments	specify	the	position	for	which	the	UV	should	be	returned.

value	=	noise(pos)

Easy	access	to	a	noise	function.

data	=	userData(texture)

Returns	whatever	was	passed	as	the	user	data	argument	to	the	create
function.

changroup	=	envGroup(texture)

Returns	the	channel	group	for	the	texture.

id	=	texture(layer)

Returns	the	texture	ID,	given	any	layer	in	the	texture.

tname	=	name(texture)	
datatype	=	type(texture)	
ctxt	=	context(texture)

These	return	information	about	the	texture.	The	information	is	the
same	as	that	supplied	in	the	first	three	arguments	to	the	create
function.

Parameter	Callbacks

The	argument	to	the	contextCreate	function	is	an	LWTxtrParamFuncs,
which	contains	callbacks	for	evaluating	the	input	parameters.	These
callbacks	are	functions	in	your	plug-in	that	determine	the	value	of	the
parameter.

			typedef	struct	st_LWTxtrParamFuncs	{

						double					(*paramEvaluate)(LWTxtrParamDesc	*,	int	paramnum,

																																				LWMicropol	*,	gParamData);

						gParamData	(*paramTime)				(void	*userData,	LWTxtrParamDesc	*,

																																				int	paramnum,	LWTime,	LWFrame);

						void							(*paramCleanup)	(LWTxtrParamDesc	*,	int	paramnum,

																																				gParamData);

			}	LWTxtrParamFuncs;

value	=	paramEvaluate(pdesc,	pindex,	micropol,	pdata)

Returns	the	value	of	the	parameter.	The	pdesc	is	the	parameter
description	you	passed	to	contextAddParam	for	this	parameter.	The	pindex
is	an	integer	identifying	the	parameter	by	the	order	in	which	it	was
created.	It's	1	for	the	parameter	created	by	your	first	call	to	the
contextAddParam	function,	2	for	the	second	parameter,	and	so	on.	The	0
index	is	reserved	for	the	Previous	Layer	parameter,	which	always
exists.	The	micropol	is	the	micropolygon	passed	to	the	texture.	The
pdata	argument	is	the	user	data	you	returned	from	your	paramTime
callback.

pdata	=	paramTime(userdata,	pdesc,	pindex,	time,	frame)

The	init	function	for	the	parameter.	This	is	called	before	paramEvaluate
so	that	you	can	perform	precalculations	for	your	parameter.	The
userdata	is	the	same	as	that	returned	by	the	userdata	function.

paramCleanup(pdesc,	pindex,	pdata)

The	cleanup	function	for	the	parameter.	This	allows	you	to	free	any
resources	allocated	in	your	paramTime.

Parameter	Descriptor

The	second	argument	to	contextAddParam	is	a	description	of	the	parameter
contained	in	an	LWTxtrParamDesc	structure.	This	structure	is	also	passed
to	your	parameter	callbacks.

			typedef	struct	st_LWTxtrParamDesc{

						char					*name;

						double				start;

						double				end;

						int							type;

						int							flags;

						int							itemType;

						LWItemID		itemID;

						char					*itemName;

			}	LWTxtrParamDesc;

name

The	name	of	the	parameter	as	it	should	appear	in	the	user	interface.

start,	end

The	nominal	limits	of	the	parameter's	value.	These	form	the
endpoints	of	a	gradient.

type

The	data	type	of	the	parameter,	which	can	be	one	of	the	following.	
LWIPT_FLOAT

LWIPT_DISTANCE

LWIPT_PERCENT

LWIPT_ANGLE

flags

Parameter	flags.
	

LWGF_FIXED_MIN

The	minimum	parameter	value	is	fixed.
LWGF_FIXED_MAX

The	maximum	value	is	fixed.
LWGF_FIXED_START

The	start	value	is	fixed.
LWGF_FIXED_END

The	end	value	is	fixed.

itemType,	itemID,	itemName

If	the	parameter	depends	on	a	scene	item,	these	fields	describe	the
item.	The	type	can	be	one	of	the	following.	(If	the	parameter	doesn't
use	an	item,	the	type	should	be	LWGI_NONE.)	

LWGI_NONE

LWGI_OBJECT

LWGI_LIGHT

LWGI_CAMERA

LWGI_BONE

LWGI_VMAP

Micropolygon	Descriptor

The	micropolygon	provides	the	geometry	information	used	to	evaluate	a
texture.	You	need	to	initialize	one	of	these	before	calling	evaluate	or
layerEvaluate.	You	also	receive	one	of	these	in	your	parameter	callbacks.

			typedef	struct	st_LWMicropol	{

						double												oPos[3];

						double												wPos[3];

						double												oScl[3];

						double												gNorm[3];

						double												wNorm[3];

						double												ray[3];

						double												bumpHeight;

						double												txVal;								

						double												spotSize;

						double												raySource[3];									

						double												rayLength;									

						double												cosine;												

						double												oXfrm[9];

						double												wXfrm[9];

						LWItemID										objID;

						LWItemID										srfID;

						LWPntID											verts[4];

						float													weights[4];

						float													vertsWPos[4][3];

						int															polNum;

						int															oAxis;

						int															wAxis;

						int															context;

						LWIlluminateFunc	*illuminate;

						LWRayTraceFunc			*rayTrace;

						LWRayCastFunc				*rayCast;

						LWRayShadeFunc			*rayShade;

						void													*userData;

						LWPolID											polygon;

			}	LWMicropol;

Almost	all	of	the	micropolygon	fields	correspond	to	fields	of	the	same
name	in	LWShaderAccess.	See	the	shader	page	for	descriptions	of	those
fields.

	
oScl

Texture	scale	in	object	coordinates.

ray

The	direction	of	the	incoming	viewing	ray.

txVal

The	initial	value	that	will	be	modified	by	the	texture.

srfID

The	ID	of	the	surface	associated	with	the	texture.	(Note:	This	is
incorrectly	typed	as	an	LWItemID.	Just	cast	the	LWSurfaceID	to
LWItemID	when	setting	this	field.)

context

This	will	be	TCC_ANY	in	most	cases.	The	other	two	are	used	when	the
texture	needs	to	be	evaluated	in	two	separate	steps,	which	is	unusual.	

TCC_ANY

All	layers	will	be	evaluated.
TCC_OBJECT

Only	object	coordinate	layers	will	be	evaluated.
TCC_WORLD

Only	world	coordinate	layers	will	be	evaluated.

History

In	LightWave	7.5,	the	server	name	for	this	global	(LWTEXTUREFUNCS_GLOBAL)	was
incremented	from	"Texture	Functions	2"	to	"Texture	Functions	3",	and	the
TXTAG_ACTIVE,	TXTAG_INVERT	and	TXTAG_BLEND	tags	were	added	to
LWTextureFuncs.

Example

The	txchan	sample	contains	motion,	channel,	image	filter	and	environment
plug-ins,	all	of	which	use	a	texture	to	modulate	their	data.	The	texture
layers	are	defined	by	the	user	and	evaluated	through	the	Texture	Functions
global.

The	following	code	fragment	demonstrates	how	to	extract	UV	values	for
image	maps	associated	with	a	surface.

			#include	<lwserver.h>

			#include	<lwsurf.h>

			#include	<lwtxtr.h>

			LWSurfaceFuncs	*surff;

			LWTextureFuncs	*txtrf;

			LWSurfaceID	surf;

			LWTextureID	tex;

			LWTLayerID	tlayer;

			int	type;

As	always,	you	need	to	get	the	globals	before	you	can	use	them.
			surff	=	global(LWSURFACEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			txtrf	=	global(LWTEXTUREFUNCS_GLOBAL,	GFUSE_TRANSIENT);

Each	surface	has	many	channels	(Color,	Diffuse,	Luminous,	Specular,
etc.),	and	each	channel	can	be	textured.	If	a	channel	is	textured,	the	texture
can	have	many	layers.	It's	at	the	level	of	the	texture	layer	that	you	want	to
look	for	UVs.
			tex	=	surff->getTex(surf,	SURF_COLR);

			if	(tex)	{

						tlayer	=	txtrf->firstLayer(tex);

						while	(tlayer)	{

									type	=	txtrf->layerType(tlayer);

									if	(type	==	TLT_IMAGE)	{

Now	you	have	an	image	texture	layer.	You	can	ask	what	the	projection	is.
												int	proj;

												txtrf->getParam(tlayer,	TXTAG_PROJ,	&proj);

												if	(proj	==	TXPRJ_UVMAP)	{

If	the	projection	type	is	UV,	get	the	vmap.
															void	*vmap;

															txtrf->getParam(tlayer,	TXTAG_VMAP,	&vmap);

Use	this	with	the	mesh	edit	pointVSet	and	pointVEval	functions	to	get	the
UVs.	(You	can	also	use	the	mesh	info	pntVSet,	pntVGet	and	pntVPGet
functions.)
															edit->pointVSet(edit->state,	vmap,	0,	NULL);

															for	each	point

																		edit->pointVEval(edit->state,	pntID,	polID,	uv);

												}

												else	{

If	the	projection	is	not	UV,	use	evaluateUV.
															for	each	point

																		txtrf->evaluateUV(tlayer,	wAxis,	oAxis,	oPos,	wPos,

																					uv);

												}

									}

									tlayer	=	txtrf->layerNext(tlayer);

						}

			}

Time	Info

Availability		LightWave	6.5
Component		Layout
Component		lwrender.h

The	time	info	global	returns	the	time	of	the	frame	currently	being
rendered.

Global	Call

			LWTimeInfo	*timeinfo;

			timeinfo	=	global(LWTIMEINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWTimeInfo.

			typedef	struct	st_LWTimeInfo	{

						LWTime		time;

						LWFrame	frame;

			}	LWTimeInfo;

time

The	time	in	seconds	of	the	frame	currently	being	rendered.
frame

The	frame	number	for	the	current	frame.

Variant	Parameters

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwvparm.h

A	variant	parameter,	or	vparm,	is	a	double-precision	variable	or	3-vector
that	can	vary	as	a	function	of	time.	Vparms	are	used	as	containers	for	the
values	of	XPanel	controls	that	can	be	enveloped	or	textured	(any	control
with	"-env"	in	its	type	name).	That's	the	rationale	for	the	existence	of
vparms,	but	you're	free	to	use	them	for	other	things	as	well.

The	variant	parameters	global	supplies	the	implementation	of	the	vparm
data	type.

Global	Call

			LWVParmFuncs	*vparmf;

			vparmf	=	global(LWVPARMFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWVParmFuncs.

			typedef	struct	st_LWVParmFuncs	{

						LWVParmID			(*create)		(int	envType,	int	texType);

						void								(*destroy)	(LWVParmID);

						void								(*setup)			(LWVParmID,

																																const	char	*channelName,

																																LWChanGroupID	group,

																																LWTxtrContextID	gc,

																																LWVP_EventFunc	*eventFunc,

																																const	char	*pluginName,

																																void	*userData);

						LWError					(*copy)				(LWVParmID	to,	LWVParmID	from);

						LWError					(*load)				(LWVParmID,	const	LWLoadState	*load);

						LWError					(*save)				(LWVParmID,	const	LWSaveState	*save);

						double						(*getVal)		(LWVParmID,	LWTime	t,

																																LWMicropolID	mp,	double	*result);

						int									(*setVal)		(LWVParmID,	double	*value);

						int									(*getState)(LWVParmID);

						void								(*setState)(LWVParmID,	int	state);

						void								(*editEnv)	(LWVParmID);

						void								(*editTex)	(LWVParmID);

						void								(*initMP)		(LWMicropolID	mp);

						void								(*getEnv)		(LWVParmID,	LWEnvelopeID	envlist[3]);

						LWTextureID	(*getTex)		(LWVParmID);

			}	LWVParmFuncs;

vparm	=	create(envtype,	txtype)

Create	a	new	vparm.	The	envelope	type	can	be	one	of	the	following.

LWVP_FLOAT
A	floating-point	number.

LWVP_PERCENT
A	floating-point	number	with	a	nominal	range	of	0.0	to	1.0.	This
value	will	be	represented	to	the	user	as	a	percentage.

LWVP_DIST
A	floating-point	distance.	In	meters	internally,	it	may	appear	in
the	interface	with	a	variety	of	units.

LWVP_ANGLE
An	angle.	In	radians	internally	but	in	degrees	for	users.

LWVP_COLOR
A	floating-point	color	vector.

Each	of	these	types	corresponds	to	an	XPanel	control	type.	To	create
a	3-vector	vparm,	add	LWVPF_VECTOR	to	one	of	the	first	four	types	(the
LWVP_COLOR	type	code	already	includes	the	LWVPF_VECTOR	bit).

The	texture	type	corresponds	to	the	return	type	you	would	specify	in
the	Texture	Functions	create	function	and	can	be	one	of	the	following.

LWVPDT_NOTXTR

LWVPDT_VECTOR

LWVPDT_COLOR

LWVPDT_PERCENT

LWVPDT_SCALAR

LWVPDT_DISPLACEMENT

destroy(vparm)

Free	a	vparm.
setup(vparm,	name,	cgroup,	txcontext,	eventfunc,	plugname,	userdata)

Initialize	a	vparm.	This	must	be	called	for	every	vparm	you	create.
The	name	is	the	name	of	the	envelope	(the	base	name	for	vectors),	and
the	cgroup	is	the	channel	group	in	which	the	envelopes	are	created.
The	event	callback	is	described	below.	The	plug-in	name	(the	name
in	your	ServerRecord's	name	field)	and	user	data	are	used	by
LightWave	to	identify	the	owner	of	a	vparm.	The	user	data	is	also
passed	to	the	event	callback.

error	=	copy(vpto,	vpfrom)

Copy	a	vparm.	This	will	primarily	be	called	by	handler	copy
callbacks.

error	=	load(vparm,	loadstate)

Read	a	vparm	from	a	file.	This	is	meant	to	be	called	by	handler	load
callbacks,	but	it	might	also	be	called	by	plug-ins	using	the	file	I/O
global	to	read	a	file	containing	vparm	data.

error	=	save(vparm,	savestate)

Write	a	vparm	to	a	file.	This	is	meant	to	be	called	by	handler	save
callbacks,	but	might	also	be	used	to	save	the	vparm	to	a	file	created
through	the	file	I/O	global.

result	=	getVal(vparm,	time,	micropol,	value)

Get	the	value	of	a	vparm.	The	micropol	is	used	by	textures.	If	it	is
NULL,	the	texture's	contribution	to	the	value	is	ignored.	See	the
Texture	Functions	global	for	a	description	of	the	LWMicropol
structure.	The	value	argument	should	always	point	to	storage	for	three
doubles,	whether	or	not	the	vparm	is	a	vector.	If	the	vparm	is
textured,	getVal	returns	the	texture	opacity.

result	=	setVal(vparm,	value)

Set	the	value	of	a	vparm.	If	the	value	is	enveloped,	calling	this	has	no
effect.	Returns	the	number	of	elements	processed	(0,	1,	or	3).

state	=	getState(vparm)

Returns	a	set	of	state	bits.	If	the	LWVPSF_ENV	bit	is	set,	an	envelope	exists
for	the	vparm,	and	if	the	LWVPSF_TEX	bit	is	set,	the	vparm	has	a	texture.

setState(vparm,	state)

Create	or	destroy	the	vparm's	underlying	envelope	or	texture.	The
state	argument	uses	the	same	state	bits	as	getState.	If	the	bit	is	clear
(0),	the	envelope	or	texture	is	destroyed,	and	if	the	bit	is	set	(1),	an
envelope	or	texture	is	created	for	the	vparm	using	the	information
previously	specified	in	setup.	Never	call	this	for	a	vparm	associated
with	an	XPanel	control.	The	XPanel	system	takes	care	of	creating	and
destroying	vparm	envelopes	and	textures	automatically.

editEnv(vparm)

Open	the	graph	editor	for	the	vparm.	This	does	nothing	if	the	vparm
isn't	enveloped.	You	won't	need	to	call	this	for	a	vparm	associated
with	an	XPanel	control,	since	the	control	will	give	the	user	a	way	to
call	the	graph	editor	without	your	help.

editTex(vparm)

Open	the	texture	editor	for	the	vparm.	This	has	no	effect	if	no	texture
has	been	created	for	the	vparm.	You	won't	need	to	call	this	for
vparms	used	with	XPanel	controls.

initMP(micropol)

Initialize	a	micropolygon.	The	transformation	matrices	are	set	to	the
identity	matrix.	Most	other	fields	are	set	to	0.

getEnv(vparm,	envarray)

Gets	the	envelope	IDs	of	the	vparm's	envelopes.	The	first	element	of
the	array	will	contain	the	single	ID	for	non-vector	vparms.	If	no
envelopes	exist	for	the	vparm,	the	array	elements	will	be	NULL.

texture	=	getTex(vparm)

Returns	the	texture	ID	for	the	vparm's	texture.

Event	Callback

The	event	callback	you	pass	to	setup	is	used	to	inform	you	of	changes	to
the	underlying	envelopes	and	texture	of	your	vparm,	and	in	one	case	to	ask
you	for	data	needed	by	the	texture.

			typedef	int	LWVP_EventFunc(LWVParmID	vp,	void	*userdata,

						en_lwvpec	eventcode,	void	*eventdata);

The	userdata	is	whatever	you	passed	as	the	last	argument	to	setup.	The
eventcode	will	be	one	of	the	following.

LWVPEC_TXTRACK
Generated	as	the	texture	changes.

LWVPEC_TXUPDATE
Generated	after	the	texture	has	changed.

LWVPEC_TXAUTOSIZE
Request	for	texture	autosize.	For	this	event,	eventdata	is	an	array
of	six	doubles	(x	low,	x	high,	y	low,	y	high,	z	low,	z	high)	that
you're	being	asked	to	initialize	for	the	default	size	of	the	texture.

LWVPEC_ENVTRACK
Generated	as	the	envelope	changes.

LWVPEC_ENVUPDATE
Generated	after	the	envelope	has	changed.

LWVPEC_ENVNEW
An	envelope	has	been	created.

LWVPEC_ENVOLD
An	envelope	is	being	destroyed.

LWVPEC_TEXNEW
A	texture	has	been	created.

LWVPEC_TEXOLD
The	texture	is	being	destroyed.

Currently,	for	all	events	other	than	TXAUTOSIZE,	the	eventdata	will	be	NULL
and	can	be	ignored.

Example

Several	of	the	SDK	samples	(blotch,	inertia,	mandfilt	and	rapts)	use
vparms	as	part	of	their	XPanel	interfaces.	It's	not	a	coincidence	that	all	of
these	are	handlers,	since	handlers	are	more	likely	to	need	time-dependent
parameters.

	

Viewport	Info

Availability		LightWave	7.5	Component		Layout	
Header		lwrender.h

The	viewport	info	global	returns	information	about	the	state	of	Layout's
OpenGL	viewports.	The	data	is	read-only,	but	you	can	set	the	parameters
using	navigation	and	display	commands.

Global	Call

			LWViewportInfo	*vpinfo;

			vpinfo	=	global(LWVIEWPORTINFO_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWViewportInfo.
			typedef	struct	st_LWViewportInfo	{

								int															numViewports;

								int													(*type)		(int);

								unsigned	int				(*flags)	(int);

								void												(*pos)			(int,	LWDVector);

								void												(*xfrm)		(int,	double	mat[9]);

								void												(*clip)		(int,	double	*hither,	double	*yon);

								void												(*rect)		(int,	int	*left,	int	*top,	int	*width,	int	*height);

			}	LWViewportInfo;

numViewports

The	number	of	viewports	visible	in	the	Layout	interface.

view	=	type(i)

The	type	of	view	in	the	ith	viewport.	It	will	be	one	of	the	following:
LVVIEWT_NONE

LVVIEWT_TOP

LVVIEWT_BOTTOM

LVVIEWT_BACK

LVVIEWT_FRONT

LVVIEWT_RIGHT

LVVIEWT_LEFT

LVVIEWT_PERSPECTIVE

LVVIEWT_LIGHT

LVVIEWT_CAMERA

LVVIEWT_SCHEMATIC

	

		

		
	

flags	=	flags(i)

Returns	a	set	of	bit	flags	for	the		ith	viewport.	These	can	be	any
combination	of	the	following.	

LWVIEWF_CENTER

LWVIEWF_WEIGHTSHADE

LWVIEWF_XRAY

pos(i,	spot)

Fills	the	spot	vector	with	the	viewing	position	of	the		ith	viewport.
xfrm(i,	mat[9])

Fills	mat	with	a	3x3	transformation	from	world	coordinates	to	viewport
cordinates	for	the		ith	viewport.

clip(i,	&hither,	&yon)

Fills	hither	and	yon	with	the	near	and	far	Z	clipping	distances	for	the		ith
viewport.	

	

rect(i,	&left,	&top,	&width,	&height)

Fills	left,	top,	width	and	height	with	pixel	coordinates	of	the		ith
viewport.	

XPanels

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwxpanel.h

This	global	is	a	new	addition	to	LightWave's	system	of	platform-
independent	user	interface	components.	To	understand	its	place	in	that
system	and	how	it	differs	from	Panels,	it	may	help	to	know	something
about	the	history	of	user	interfaces	in	LightWave.

XPanels	is	the	third	generation	of	LightWave	interface	APIs.	The	first	was
the	requester	API,	which	in	its	original	Modeler	incarnation	predates	the
plug-in	architecture	itself.	Modeler	requesters	were	always	modal.	You
gave	Modeler	a	list	of	controls	and	their	initial	values,	Modeler	formatted
and	displayed	the	dialog,	and	after	the	user	closed	the	dialog,	you	read	out
the	control	values.	The	original	requester	API	is	now	just	another	way	of
creating	an	xpanel,	and	you	can	use	it	in	Layout	as	well	as	Modeler.

Panels	is	the	second	generation,	and	it's	pretty	bohemian,	like	Algol	was	to
Fortran.	It	introduced	callbacks	so	that	you	can	respond	to	the	user
interactively,	and	it	comes	with	a	list	of	50	or	so	predefined	control	types
and	some	drawing	functions.	You	can	set	the	size	of	a	panel	and	the
positions	of	its	controls,	and	you	can	decorate	your	panels	and	tell	them	to
send	you	a	steady	stream	of	mouse	and	keyboard	events.	As	with
requesters,	controls	are	defined	using	a	sequence	of	function	calls.

XPanels	is	a	return	to	the	Modeler	requester	philosophy	of	automation.
You	give	up	some	control	over	the	appearance	and	behavior	of	your
controls,	but	in	exchange,	things	that	can	require	a	lot	of	code	with	panels,
like	adding	an	E	(envelope)	button	to	a	numeric	edit	field,	along	with	all
of	the	functionality	that	implies,	are	very	easy	to	do	with	xpanels.	And
xpanels	can	be	embedded	in	LightWave's	own	windows.	Unlike	the
previous	interface	models,	the	controls	on	an	xpanel	are	defined	primarily
through	arrays	of	static	data.

Panels	continues	to	support	some	control	types,	such	as	the	OpenGL

control,	that	have	no	xpanel	equivalents,	so	it's	still	your	best	option	in
some	cases.	But	you	aren't	forced	to	choose,	since	Panels	also	allows	you
to	create	xpanel	controls--xpanels	embedded	within	your	panel.

Global	Call

			LWXPanelFuncs	*xpanf;

			xpanf	=	global(LWXPANELFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWXPanelFuncs.

			typedef	struct	st_LWXPanelFuncs	{

						int													version;

						LWXPDrawFuncs		*drawf;

						LWXPanelID					(*create)					(int	type,	LWXPanelControl	*);

						void											(*destroy)				(LWXPanelID);

						void											(*describe)			(LWXPanelID,	LWXPanelDataDesc	*,

																																						LWXPanelGetFunc	*,

																																						LWXPanelSetFunc	*);

						void											(*hint)							(LWXPanelID,	unsigned	long,

																																						LWXPanelHint	*);

						void	*									(*getData)				(LWXPanelID,	unsigned	long);

						void											(*setData)				(LWXPanelID,	unsigned	long,	void	*);

						void	*									(*formGet)				(LWXPanelID,	unsigned	long);

						void											(*formSet)				(LWXPanelID,	unsigned	long,	void	*);

						void											(*viewInst)			(LWXPanelID,	void	*);

						void											(*viewRefresh)(LWXPanelID);

						int												(*post)							(LWXPanelID);

						int												(*open)							(LWXPanelID);

			}	LWXPanelFuncs;

A	panel	is	a	window	or	a	dialog	box	containing	buttons,	edit	fields,
dropdown	lists,	image	rectangles,	and	other	user	interface	elements
collectively	called	controls.	You	create	panels	to	allow	users	to	enter	and
change	settings	that	affect	the	operation	of	your	plug-in.

The	XPanels	system	distinguishes	between	two	kinds	of	panels,	called
forms	and	views.	They	differ	primarily	in	the	method	used	to	move	data
values	into	and	out	of	controls.

A	view	panel	presents	a	"view"	of	a	data	instance,	which	is	a	pointer	to
some	data	owned	by	your	plug-in,	typically	a	handler's	instance	data.	You
pass	this	pointer	to	XPanels	in	the	viewInst	function.	The	callbacks	you
pass	to	the	describe	function	will	be	called	by	XPanels	to	update	this	data.

A	form	panel	isn't	passed	a	data	instance	pointer,	so	you	have	greater
freedom	in	choosing	how	to	represent	your	data	within	your	plug-in.
XPanels	interacts	with	your	data	through	the	formGet	and	formSet	functions

and	your	change	notification	callback.

Because	they	don't	store	a	data	instance	pointer,	forms	have	no	way	to
distinguish	between	multiple	instances	of	the	same	dataset,	making	it	more
difficult	to	use	the	same	panel	with	different	data.	The	significance	of	this
may	grow	as	XPanels	evolves.	In	the	future,	for	example,	users	may	be
able	to	multiselect	every	instance	of	your	plug-in	and	edit	the	parameters
for	all	of	them	simultaneously.

version

The	version	number	of	the	interface.	Certain	control	types	or	hints
may	not	be	available	in	older	interfaces.

drawf

Drawing	functions,	which	are	explained	in	detail	below.	Custom
drawing	on	xpanels	is	limited	to	contexts	in	which	an	LWXPDrArea
region	is	defined.

panel	=	create(type,	controls)

Create	a	new	panel.	The	type	can	be	LWXP_VIEW	or	LWXP_FORM.	The	controls
argument	is	an	array	of	LWXPanelControl	structures	describing	the
controls	on	the	panel.	It	must	have	at	least	panel	lifetime,	meaning
that	the	controls	variable	must	be	valid	as	long	as	the	panel	exists.	The
easiest	way	to	ensure	this	is	to	declare	the	array	static.	See	below	for
more	about	the	controls	list.

destroy(panel)

Free	the	panel	and	related	resources	allocated	by	create.
describe(panel,	datadesc,	getfunc,	setfunc)

Define	the	data	values	for	a	panel.	The	datadesc	argument	is	a	list	of
value	IDs	and	their	types.	Like	the	controls	list	passed	to	create,
datadesc	must	have	at	least	panel	lifetime.	For	view	panels,	the	values
are	updated	interactively	using	your	getfunc	and	setfunc	callbacks.	If
the	panel	is	a	form,	the	getfunc	and	setfunc	arguments	are	ignored	and
should	be	NULL.

hint(panel,	id,	hints)

Apply	a	hint	array	to	the	panel	or	one	of	its	controls.	This	may	be
called	multiple	times,	but	only	while	the	panel	is	closed.	The	hint
array	is	applied	to	the	panel	if	the	ID	is	0.	Otherwise	it's	applied	to
the	control	with	the	corresponding	ID.

data	=	getData(panel,	id)

Returns	the	user	data	for	the	panel	(id	==	0)	or	for	one	of	its	controls,
set	by	a	previous	call	to	setData.

setData(panel,	id,	data)

Set	the	user	data	for	a	panel	(id	==	0)	or	one	of	its	controls.	The	data
pointer	is	passed	to	several	of	the	callbacks.	It's	also	what	getData
returns.

value	=	formGet(panel,	vid)

Read	the	value	of	a	control	on	a	form	panel.	Returns	NULL	if	the
value	is	undefined.

formSet(panel,	vid,	value)

Write	a	value	to	a	control	on	a	form	panel.
viewInst(panel,	instance)

Set	the	instance	data	pointer	for	a	view	panel.	This	is	what	is	passed
to	the	get	and	set	callbacks	you	designate	when	you	call	the	describe
function.

viewRefresh(panel)

Refreshes	a	view	panel	by	reloading	control	values	from	the	instance
data.	Use	this	when	the	instance	data	has	been	modified	by	something
other	than	the	user's	interaction	with	your	interface.	When	called
from	a	form,	viewRefresh	redraws	the	controls.

result	=	post(panel)

Display	the	panel	for	modal	interaction.	Modal	means	that	the	user
must	close	the	panel	before	continuing	to	work	in	LightWave.	This
function	won't	return	until	the	panel	has	been	closed.	It	returns	1	if
the	user	dismisses	the	panel	with	the	"OK"	button	and	0	if	the	user
presses	"Cancel"	(or	if	the	panel	couldn't	be	displayed).	See	the
description	of	the	XpDLOGTYPE	macro	for	more	information	about	the
buttons,	like	"OK"	and	"Cancel,"	that	are	automatically	added	to
modal	panels.

result	=	open(panel)

Display	the	panel	for	non-modal	interaction.	This	function	returns
immediately	and	the	panel	stays	open	until	the	user	closes	it.	Returns
1	if	the	panel	was	opened	successfully,	otherwise	it	returns	0.
Handlers	generally	won't	need	to	call	open	(or	post),	since	LightWave
takes	care	of	opening	the	panel	you	return	in	the	panel	field	of	the
LWInterface	structure.

Describing	Controls	and	Data

Each	of	the	controls	on	a	panel	is	described	by	an	LWXPanelControl
structure.	An	array	of	these	is	passed	as	the	second	argument	to	the	create
function	when	the	panel	is	created.

			typedef	struct	st_LWXPanelControl	{

						unsigned	long			cid;

						const	char					*label;

						const	char					*ctrlclass;

			}	LWXPanelControl;

The	second	argument	to	the	describe	function	is	an	array	of
LWXPanelDataDesc.

			typedef	struct	st_LWXPanelDataDesc	{

						unsigned	long			vid;

						const	char					*name;

						const	char					*datatype;

			}	LWXPanelDataDesc;

The	first	member	of	both	structures	is	an	identifier.	It	can	be	any	positive
integer	greater	than	or	equal	to	0x8000.	Values	less	than	0x8000	are
reserved	for	use	by	XPanels.	The	second	member	is	a	human-readable
description.	For	controls,	this	string	is	used	as	a	label	that	appears	next	to
the	control	on	the	panel.	The	third	member	identifies	the	class	of	the
control	or	the	data	type	of	the	value.

In	most	cases,	your	control	array	and	data	description	array	will	be
parallel,	and	the	value	IDs	in	the	data	description	will	match	the	control
IDs	in	the	control	array.	But	some	control	types	don't	have	an	associated
value,	and	you	might	declare	some	values	to	XPanels	that	aren't	directly
associated	with	any	control.

Control	Types

The	following	definitions	list	the	control	class	(the	string	that	goes	in	the
ctrlclass	field	of	the	LWXPanelControl),	the	data	type	of	the	control's
value	(the	string	that	goes	in	the	datatype	field	of	the	LWXPanelDataDesc),
and	the	C	equivalent	(the	kind	of	variable	your	plug-in	stores	the	value	in).
The	definitions	will	often	refer	to	hints	and	callbacks,	both	of	which	are
described	in	later	sections.

"string"	:	"string"	:	char[]

A	text	edit	field.

"integer"	:	"integer"	:	int
An	integer	edit	field.

"float"	:	"float"	:	double
An	edit	field	for	floating-point	numbers.	Variations	on	the	floating-
point	control	type	are	summarized	in	the	following	table.	Controls
that	include	envelope	(E)	and	texture	(T)	buttons	use	variant
parameters	as	their	underlying	data	type.
"float" "float" double

"float3" "float3" double[3]

"float-env" "float-env" double[]	(vparm)
"float3-env" "float3-env" double[][3]	(vparm)
"distance" "distance" double

"distance3" "distance3" double[3]

"distance-env" "distance-env" double[]	(vparm)
"distance3-env" "distance3-env" double[][3]	(vparm)
"percent" "percent" double

"percent3" "percent3" double[3]

"percent-env" "percent-env" double[]	(vparm)
"percent3-env" "percent3-env" double[][3]	(vparm)
"angle" "angle" double

"angle3" "angle3" double[3]

"angle-env" "angle-env" double[]	(vparm)
"angle3-env" "angle3-env" double[][3]	(vparm)
"color" "color" double[3]

"color-env" "color-env" double[][3]	(vparm)
"time" "time" double

Distance	controls	display	units;	their	internal	values	are	in	meters.
Percent	controls	display	percentages;	their	internal	values	are	the
percent	values	divided	by	100	(100%	is	1.0).	Angle	controls	display
angles	in	degrees	and	store	them	in	radians.	Times	are	stored	as
elapsed	seconds,	but	are	displayed	in	the	units	selected	by	the	user
elsewhere	in	LightWave's	interface.

"vButton"
A	button.	XPanels	calls	the	control's	button	click	callback	whenever

the	user	presses	the	button.

"iBoolean"	:	"integer"	:	int
A	checkbox.

"iSlider"	:	"integer"	:	int
"iSliderText"	:	"integer"	:	int

A	slider	(a	thumb	button	that	can	be	dragged	within	a	horizontal
track).	Use	the	XpMIN	and	XpMAX	hints	to	define	the	range	of	the	slider.
The	Text	version	includes	an	integer	edit	field.

"iChoice"	:	"integer"	:	int
An	array	of	radio	buttons	(mutually	exclusive	boolean	buttons).	The
value	is	a	0-based	index	into	the	list	of	choices.	To	initialize	the
choices,	use	the	XpSTRLIST	hint.

"axis"	:	"axis"	:	0,	1,	2
Radio	buttons	for	selecting	X,	Y	or	Z.

"iPopChoice"	:	"integer"	:	int
A	scrolling	popup	menu.	The	value	is	a	0-based	index.	You	can
initialize	a	popup	with	the	XpSTRLIST	hint	and	a	static	array	of	strings,
or	the	XpPOPFUNCS	hint	and	popup	item	count	and	name	callbacks.

"vPopCmd"
A	popup	menu	that	works	like	a	multiple-choice	button.	Your	popup
command	callback	receives	a	0-based	index.

"sPresetText"	:	"string"	:	char[]
Combines	a	string	edit	field	and	a	popup	menu.	The	user	can	type
into	the	edit	field	or	fill	the	field	with	the	value	associated	with	one	of
the	presets	named	in	the	menu.

"sFileName"	:	"string"	:	char[]
Combines	a	string	edit	field	and	a	button	that	opens	the	file	dialog.
Use	the	XpXREQCFG	macro	to	set	the	mode	(load	or	save),	the	title	string
and	the	file	type	filter.

"iChoTransform"	:	"integer"	:	int

"iPopTransform"	:	"integer"	:	int
Like	iChoice	and	iPopChoice	controls,	but	the	value	isn't	the	menu
index.	It	is	instead	the	value	of	an	array	element	referenced	by	the
index.	The	array	contains	values	that	are	more	useful	to	your	plug-in
than	the	0,	1,	2...	indexes	into	the	menu.	For	the	i-th	menu	item,	the
value	is	map[i],	where	map[]	is	an	integer	array	associated	with	the
control	using	the	XpCHOXFORM	or	XpPOPXFORM	hints.

"dThumbnail"
A	rectangular	area	that	you	can	draw	on	using	the	drawing	functions.
Thumbnails	generate	mouse	events.	The	user	can	click,	double-click,
or	drag	out	a	rectangular	selection.

"sInfo"	:	"string"	:	char[]
A	read-only	text	field.

Hints

The	hint	function	accepts	as	one	of	its	arguments	an	array	of	panel-
building	commands,	called	hints.	These	are	packaged	as	macros	defined	in
the	lwxpanel.h	header	file.	The	macros	are	used	as	initializers	for	the	hint
array	passed	to	hint.	For	example,

			static	LWXPanelHint	hints[]	=	{

						XpLABEL(0,	"My	Panel	Title"),

						XpSTRLIST(MY_POP,	choices_array),

						...

There	are	currently	over	50	hint	macros.

XpH(x)
Cast	the	value	to	an	LWXPanelHint.	This	is	just	a	way	to	get	values
of	different	types	into	a	single	array.

XpEND
Terminate	the	hint	array.	Some	macros	are	also	followed	by	a	sublist
of	hints	which	is	terminated	by	XpEND.

XpCALL(hint_array)
Insert	another	hint	array	into	this	one.

XpLABEL(id,	label)
Set	the	label	string	for	a	control	or	group.	An	ID	of	0	sets	the	label
for	the	panel.

XpVECLABEL(ctlID,	labels)
Set	the	labels	for	each	of	the	three	elements	of	a	vector	control
(integer3,	float3,	etc.).	labels	is	an	array	of	three	strings.

XpSTRLIST(ctlID,	strlist)
Set	the	string	array	for	a	popup	control.

XpCLASS(id,	class)
Change	the	class	of	a	control.	Hints	previously	applied	to	this	control
may	be	lost	if	they're	incompatible	with	the	new	class.

XpADD(ctlID,	class,	valID)
Create	a	control.	You	can	also	create	controls	using	the
LWXPanelControl	array	passed	to	the	create	function	and	the
LWXPanelDataDesc	array	passed	to	describe.

XpDELETE(id)
Remove	a	control	from	the	panel.	This	doesn't	remove	the	control's
value	from	the	data	description.

XpCTRLCFG(ctlID,	options)
Set	class-specific	option	flags	for	a	control.	Currently	this	is	only
used	by	dThumbnail	controls,	which	can	be	configured	using	the
following	bit	flags	combined	using	bitwise-or.
THUM_SML				THUM_SQ						THUM_LAND				THUM_EURO

THUM_MED				THUM_NTSC				THUM_FULL

THUM_LRG				THUM_35MM				THUM_WIDE

THUM_XLG				THUM_PORT				THUM_ANAW

XpXREQCFG(ctlID,	mode,	title,	filter)
Set	options	for	the	file	dialog	opened	by	an	sFileName	control.	The
mode	is	one	of	the	following.
LWXPREQ_LOAD

LWXPREQ_SAVE

LWXPREQ_DIR

The	title	is	the	string	that	will	appear	in	the	title	bar	of	the	dialog.

The	filter	is	a	string	that	identifies	the	file	type.	It's	the	same	string
you'd	pass	to	the	File	Type	global.

XpFOCUS(id)
Identify	the	control	that	should	receive	focus	when	the	panel	is	first
displayed.	An	ID	of	0	indicates	the	panel	should	use	a	default	setting,
usually	the	first	editable	text	field.

XpVALUE(ctlID,	valID)
Associate	a	control	ID	with	a	value	ID.	Ordinarily,	a	control	and	its
value	are	implicitly	bound	together	by	having	the	same	ID	in	the
LWXPanelControl	and	LWXPanelDataDesc	arrays	passed	to	create
and	describe,	but	a	control	and	value	pair	aren't	required	to	share	the
same	ID.

XpRESTORE(id)
XpRESTORE_()
XpRESTORE_ON
XpRESTORE_OFF

Define	what	happens	to	control	values	when	the	user	presses	the
Cancel	button	in	a	modal	LWXP_VIEW	panel.	By	default,	values	are	reset
to	what	they	were	when	the	panel	was	opened.	The	ON	and	OFF	macros
set	this	behavior	for	all	values,	and	the	other	two	toggle	the	behavior
for	a	single	value	or	for	a	list	of	values.

XpLINK_(valID)
XpLINK(valID,	link)

Link	a	value	to	another	value,	or	to	a	list	of	values.	Links	create	a
dependency	relationship.	If	the	link	value	changes,	then	the
dependent	valID	value	is	also	updated.

XpENABLE_(valID)
XpENABLE_MAP_(valID,	map)
XpENABLEMSG_(valID,	msg)
XpENABLEMSG_MAP_(valID,	map,	msg)

Link	the	enable	state	of	the	controls	in	the	trailing	ID	list	to	the	valID
value.	The	trailing	ID	list	actually	contains	value	IDs,	and	the	control
IDs	are	inferred	from	this.	If	the	valID	value	is	true	(non-zero),	the
dependent	controls	are	enabled,	otherwise	they're	disabled.	If	you

supply	a	map	(an	integer	array	containing	boolean	values),	the	enable
state	will	be	based	on	map[value]	rather	than	on	the	value	directly.	If
you	supply	a	message	string,	it	will	be	displayed	whenever	the	user
tries	to	manipulate	a	disabled	control.	The	message	typically	explains
why	the	control	is	disabled:	"Sprinkles	is	only	valid	when	the	flavor
is	vanilla."

XpINTXFORM(ctlID,	count,	ilist)
XpPOPXFORM(ctlID,	count,	ilist)
XpCHOXFORM(ctlID,	count,	ilist)

Set	the	transform	map	for	the	control.	Transform	control	classes	such
as	iPopTrans	and	iChoTrans	provide	a	mechanism	for	mapping	the
control's	underlying	integer	value	into	a	more	useful	value	for	the
client.	ilist	is	an	array	of	32-bit	values	that	XPanels	will	substitute
for	the	base	value	of	the	control.	When	the	base	value	is	0,	XPanels
uses	ilist[0],	and	so	on.

XpMIN(ctlID,	min)
Set	the	minimum	of	a	control's	range.	min	is	always	an	integer,	as	are
the	other	range	parameters	in	the	following	hints.

XpMAX(ctlID,	max)
Set	the	maximum	of	a	control's	range.

XpSTEP(ctlID,	step)
Set	the	increment	of	a	range	adjustment.

XpRANGE(ctlID,	min,	max,	step)
Set	all	three	range	parameters.

XpHARDMINMAX(ctlID,	bmin,	bmax)
Enforce	the	range	limits	in	the	edit	field	component	of	a	slider
control.	bmin	and	bmax	are	booleans	that	set	or	clear	this	for	each	end	of
the	range.	If	the	control	is	enveloped,	the	envelope	values	may	still
fall	outside	the	limits.

XpCLRMINMAX(ctlID,	bmin,	bmax)
Remove	a	minimum	or	maximum	set	by	XpMIN,	XpMAX	or	XpRANGE.

XpSENS(ctlID,	delta)
Set	the	sensitivity	of	a	minislider.	The	delta	scales	the	pixel	to
minislider	translation.	Larger	deltas	cause	the	minislider	value	to
change	more	slowly.

XpTRACK(ctlID,	track)
Indicate	whether	the	control	should	generate	intermediate	(tracking)
events.	If	the	boolean	track	flag	is	true	(non-zero),	events	will	be
generated	for	the	control	as	long	as	the	user	manipulates	it	on	the
interface.	In	particular,	components	such	as	sliders	and	text	fields	will
generate	a	constant	stream	of	events	to	inform	the	client	of	user
actions.	If	this	is	false,	events	are	only	generated	after	the	user	has	set
a	new	value.

XpIMMUPD_(ctlID)
XpIMMUPD(ctlID,	dep)

Create	an	"immediate	update"	dependency	relationship	for	a	control,
such	as	a	slider,	that	can	generate	LWXPEVENT_TRACK	events.	Whenever	the
control	is	being	modified	by	the	user	(and	is	generating	tracking
events),	the	dependent	controls	will	be	updated.

XpDESTROYNOTIFY(func)
Set	the	callback	that	XPanels	will	call	after	the	panel	has	been
destroyed.	The	argument	points	to	an	LWXPanelDestroyNotifyFunc.

XpCHGNOTIFY(func)
Set	the	callback	that	XPanels	will	call	whenever	a	value	is	modified.
The	argument	points	to	an	LWXPanelChangeNotifyFunc.

XpBUTNOTIFY(ctlID,	func)
Set	the	callback	that	XPanels	will	call	when	the	button	control	is
pressed.	The	argument	points	to	an	LWXPanelBtnClickFunc.

XpPOPCMDFUNC(ctlID,	func)
Set	the	callback	that	XPanels	will	call	when	an	item	is	selected	in	a
popup	control.	The	argument	points	to	an	LWXPanelPopCmdFunc.

XpPOPFUNCS(ctlID,	countfunc,	namefunc)
Set	the	callbacks	that	XPanels	will	call	when	the	popup	choice

control	is	opened.	The	arguments	point	to	an	LWXPanelPopCntFunc
and	an	LWXPanelPopNameFunc.	The	callbacks	are	an	alternative	to
providing	a	static	array	of	strings	for	the	popup.

XpDRAWCBFUNC(ctlID,	func)
Set	the	callback	that	XPanels	will	call	when	a	drawable	control	needs
to	be	drawn.	The	argument	points	to	an	LWXPanelControlDrawFunc.
Currently	this	is	restricted	to	use	with	dThumbnail	controls.

XpZOOMCBFUNC(ctlID,	func,	rect)
Set	the	callback	that	XPanels	will	call	when	the	user	clicks	and	drags
the	mouse	within	the	control.	The	function	argument	points	to	an
LWXPanelControlZoomFunc.	rect	is	a	boolean	that	determines
whether	mouse	dragging	is	reported.	Currently	this	is	only	for
dThumbnail	controls.

XpALIAS_(aliasID)
Create	a	new	alias	group,	or	add	controls,	values	or	other	aliases	to	an
existing	alias	group.	An	alias	group	is	just	an	ID	with	its	own	list	of
IDs.	The	groups	created	using	the	ALIAS	tag	define	a	logical	grouping
of	IDs	but	otherwise	do	not	have	any	default	behaviour.	Instead,	alias
group	IDs	are	generally	used	as	arguments	to	other	panel	hints.

XpUNALIAS_(aliasID)
Remove	the	IDs	in	the	trailing	list	from	the	alias	group.	If	the	ID	list
is	empty	(this	hint	is	followed	immediately	by	XpEND),	all	the	elements
of	the	group	are	removed	and	the	group	is	disbanded.

XpGROUP_(groupID)
Create	a	new	group,	or	add	the	trailing	list	of	IDs	to	an	existing
group.	The	trailing	list	may	contain	the	IDs	of	controls,	aliases,	other
groups,	stacks	or	tabs.

XpORDER_(groupID)
Reorder	the	IDs	in	a	group.	If	the	group	ID	is	0,	this	reorders	IDs	for
the	panel.

XpSTACK_(groupID,	valID)
XpSTACK_MAP_(groupID,	valID,	map)

Define	a	control	stack.	Only	one	control	at	a	time	is	visible	in	a	stack
(the	rest	are	"hidden	underneath").	Which	control	is	visible	is
determined	by	the	valID	value.	The	value	must	be	of	integer	type.	A
value	of	0	selects	the	first	control	in	the	group.	If	you	supply	a	map
(an	integer	array),	the	visible	control	depends	on	map[value]	rather	than
the	value	directly.	A	value	of	-1	means	that	no	control	from	this	group
should	be	visible.

XpTABS_(groupID)
Create	a	tab	window.	Additional	tab	windows	will	be	created	for	the
IDs	in	the	trailing	list.	The	text	displayed	on	the	tab	is	taken	from	the
label	assigned	to	the	ID	using	the	XpLABEL	hint.

XpCTRLFRONT(ctlID)
Identify	the	tab	that	should	be	displayed	on	top	of	other	tabs.	By
default,	the	first	tab	is	on	top.

XpORIENT(ctlID,	orientation)
Set	the	control's	orientation,	where	0	is	horizontal	and	1	is	vertical.
The	default	is	horizontal.	Not	all	controls	can	be	oriented.

XpLEFT(groupID)
XpLEFT_()

Attempt	to	left	align	the	first	control	in	a	group	or	the	trailing	list.	If
possible,	subsequent	controls	are	moved	up	beside	the	left-aligned
control.	This	hint	is	ignored	for	some	control	classes	(but	see	the
XpNARROW	hint),	and	space	constraints	can	also	affect	whether	it	can	be
applied.

XpNARROW(groupID)
XpNARROW_()

The	client	may	override	the	default	"move	up"	rules	by	indicating
that	the	controls	in	the	group	or	the	trailing	list	are	narrow.

XpDIVADD(id)
XpDIVADD_(id)

This	suggests	the	panel	should	draw	a	divider	after	the	control	or
group	specified	by	the	ID	list.	The	hint	has	one	fixed	argument	so
that	the	client	can	specify	one	of	the	special	divider	locations,

intended	mostly	for	inline	panels:	0	for	the	top	of	the	panel,	-1	for	the
bottom.

XpDIVREM(id)
XpDIVREM_(id)

This	indicates	that	the	panel	should	not	place	a	divider	after	the
control	or	group.	The	panel	performs	some	built-in	guesswork	on
divider	placement.	Typically,	they're	put	at	"transition	points,"
examples	of	which	include	points	between	a	standalone	control	and	a
group,	between	separate	groups,	and	between	a	group	and	a	tab
group.	It	won't	always	be	easy	to	determine	the	abstract	location	of	a
divider	solely	from	its	appearance.	For	example,	a	divider	may
appear	to	follow	a	control	but	actually	follow	the	group	to	which	the
control	belongs.

XpBORDER(type)
Suggests	the	kind	of	border	the	panel	should	be	drawn	with.	Possible
values	are
LWXPBDR_NONE

LWXPBDR_UP

LWXPBDR_DOWN

XpDLOGTYPE(type)
Modal	panels	include	buttons	that	allow	the	user	to	accept	or	cancel
their	input.	This	macro	specifies	which	buttons	will	be	added.	The
numbers	in	the	following	list	are	the	values	returned	by	the	post
function	when	the	user	dismisses	the	panel	by	pressing	the
corresponding	button.

LWXPDLG_OKCANCEL	-	OK	1,	Cancel	0	(the	default)
LWXPDLG_DONE	-	Done	1
LWXPDLG_OKONLY	-	OK	1
LWXPDLG_YESNO	-	Yes	1,	No	0
LWXPDLG_YESNOALL	-	Yes	1,	No	0,	Yes	To	All	2,	Cancel	3
LWXPDLG_YESNOCAN	-	Yes	1,	No	0,	Cancel	3

Callbacks

Xpanels	and	its	controls	rely	on	callbacks	to	communicate	with	your	plug-
in.	Except	for	the	data	get	and	set	callbacks,	you	tell	XPanels	about	them

using	hints.

Data	get/set

			typedef	void	*LWXPanelGetFunc	(void	*inst,	unsigned	long	vid);

			typedef	int			LWXPanelSetFunc	(void	*inst,	unsigned	long	vid,

						void	*value);

Your	get	and	set	functions	are	passed	as	the	third	and	fourth	arguments	to
the	describe	function	when	you're	creating	an	LWXP_VIEW	panel.	XPanels	calls
the	get	function	to	get	a	value	from	you.	The	function	returns	a	pointer	to
the	value.	XPanels	calls	the	set	function	to	give	you	a	value	when	it	has
changed.	The	set	callback	returns	a	refresh	code	indicating	what,	if	any,
redrawing	should	take	place	on	the	panel.	The	code	can	be	one	of	the
following.

LWXPRC_NONE

LWXPRC_DFLT

LWXPRC_DRAW

LWXPRC_FULL

Destroy	event

			typedef	void	LWXPanelDestroyNotifyFunc	(void	*);

This	is	called	after	the	panel	has	been	destroyed.	Provide	one	of	these	if
you	need	to	do	any	panel-specific	cleanup.	Use	the	XpDESTROYNOTIFY	hint	to
set	the	callback.

Value	change	event

			typedef	void	LWXPanelChangeNotifyFunc	(LWXPanelID	pan,

						unsigned	long	cid,	unsigned	long	vid,	int	event_type);

This	is	called	when	user	interaction	is	changing	the	value	of	a	control,	and
when	your	panel	is	receiving	or	losing	the	input	focus.	Use	the	XpCHGNOTIFY
hint	to	set	the	callback.	The	event	type	is	one	of	the	following.

LWXPEVENT_TRACK

LWXPEVENT_VALUE

LWXPEVENT_HIT

LWXPEVENT_FOCUS

LWXPEVENT_LOSEFOCUS

Typically,	LWXP_FORM	panels	use	the	TRACK	and	VALUE	events	to	dynamically
follow	changes	in	the	values	of	their	controls,	while	LWXP_VIEW	panels	rely

instead	on	their	data	set	callback.

Button	click	event

			typedef	void	LWXPanelBtnClickFunc	(LWXPanelID	pan,	int	cid);

Called	when	the	user	clicks	a	button	control.	Use	the	XpBUTNOTIFY	hint	to	set
the	callback.

Popup	command

			typedef	void	LWXPanelPopCmdFunc	(LWXPanelID	pan,	int	cid,	int	cmd);

Called	when	the	user	selects	an	item	from	a	popup	menu.	Use	the
XpPOPCMDFUNC	hint	to	set	the	callback.

Popup	choice

			typedef	int									LWXPanelPopCntFunc		(void	*userdata);

			typedef	const	char	*LWXPanelPopNameFunc	(void	*userdata,	int	idx);

Called	when	a	popup	is	displayed.	The	count	callback	returns	the	number
of	items	in	the	menu.	The	name	callback	is	then	called	for	each	item	and
returns	the	string	to	be	displayed	for	the	item.	Use	the	XpPOPFUNCS	hint	to	set
these	callbacks.

Draw	event

			typedef	void	LWXPanelControlDrawFunc	(LWXPanelID	pan,

						unsigned	long	cid,	LWXPDrAreaID	*reg,	int	w,	int	h);

Called	when	a	drawable	control	(a	dThumbnail)	needs	to	be	redrawn.	Use
the	XpDRAWCBFUNC	hint	to	set	the	callback.

Zoom	event

			typedef	void	LWXPanelControlZoomFunc	(LWXPanelID	pan,

						unsigned	long	cid,	int	x,	int	y,	int	*region,	int	clickcount);

Called	when	the	user	clicks	and	drags	the	mouse	within	the	control	(a
dThumbnail).	Use	the	XpZOOMCBFUNC	hint	to	set	the	callback.

Drawing	Functions

Drawing	is	limited	to	contexts	in	which	a	valid	LWXPDrAreaID	is
available,	currently	the	draw	callback	of	a	thumbnail	control.

			typedef	struct	st_LWXPDrawFuncs	{

						void	(*drawPixel)				(LWXPDrAreaID,	int	c,	int	x,	int	y);

						void	(*drawRGBPixel)	(LWXPDrAreaID,	int	r,	int	g,	int	b,	int	x,

																														int	y);

						void	(*drawLine)					(LWXPDrAreaID,	int	c,	int	x,	int	y,	int	x2,

																														int	y2);

						void	(*drawBox)						(LWXPDrAreaID,	int	c,	int	x,	int	y,	int	w,

																														int	h);

						void	(*drawRGBBox)			(LWXPDrAreaID,	int	r,	int	g,	int	b,	int	x,

																														int	y,	int	w,	int	h);

						void	(*drawBorder)			(LWXPDrAreaID,	int	indent,	int	x,	int	y,

																														int	w,	int	h);

						int		(*textWidth)				(LWXPDrAreaID,	char	*s);

						int		(*textHeight)			(LWXPDrAreaID,	char	*s);

						void	(*drawText)					(LWXPDrAreaID,	char	*s,	int	c,	int	x,	int	y);

			}	LWXPDrawFuncs;

drawPixel(drawid,	color,	x,	y)
drawRGBPixel(drawid,	r,	g,	b,	x,	y)

Draw	a	pixel.	The	coordinates	are	relative	to	the	upper-left	corner	of
the	drawing	area.	The	color	is	specified	as	one	of	the	palette	colors
defined	in	lwpanel.h	or	as	levels	of	red,	green	and	blue	between	0	and
255.

drawLine(drawid,	color,	x1,	y1,	x2,	y2)
Draw	a	line	connecting	the	endpoints.

drawBox(drawid,	color,	x,	y,	w,	h)
drawRGBBox(drawid,	r,	g,	b,	x,	y,	w,	h)

Draw	a	solid	rectangle.

drawBorder(drawid,	indent,	x,	y,	w,	h)
Draw	a	rectangular	border	similar	to	the	ones	use	to	mark	the	borders
of	controls.	The	indent	is	the	thickness	of	the	border.	If	h	is	0,
drawBorder	creates	a	horizontal	divider.

tw	=	textWidth(drawid,	string)
th	=	textHeight(drawid,	string)

The	pixel	width	and	height	of	the	text	in	the	font	used	by	panels.

drawText(drawid,	string,	color,	x,	y)
Render	a	line	of	text.

Example

Many	of	the	SDK	samples	(including	blotch,	box,	hotvideo,	kepler,
mandfilt,	NoisyChan,	specular,	and	txchan)	use	XPanels	for	their
interfaces.	xpanchan,	xpanlgen	and	xpanxtreme	were	written	specifically
to	demonstrate	XPanels	features.

Plug-in	Classes

LightWave	plug-ins	are	divided	into	categories	called	classes.	For	those
familiar	with	the	formal	classes	supported	by	object-oriented
programming	languages,	this	term	may	have	unintended	implications.	The
class	of	a	plug-in	simply	defines	what	kind	of	plug-in	it	is,	what	it	does,
and	how	it	interacts	with	LightWave.

Class	Index
AnimLoaderHandler
AnimSaverHandler
ChannelHandler
ColorPicker
CommandSequence
CustomObjHandler
DisplacementHandler
EnvironmentHandler
FileRequester

FrameBufferHandler
Global
ImageFilterHandler
ImageLoader
ImageSaver
ItemMotionHandler
LayoutGeneric
LayoutTool
MasterHandler

MeshDataEdit
MeshEditTool
ObjectLoader
ObjReplacementHandler
PixelFilterHandler
ProceduralTextureHandler
SceneConverter
ShaderHandler
VolumetricHandler

Thumbnail	Descriptions

AnimLoaderHandler
AnimSaverHandler

Load	and	save	files	containing	animation	streams,	e.g.	MPEG,
QuickTime	and	AVI	files.

ChannelHandler
Channel	handlers	can	be	applied	to	any	animation	parameter	that	can
vary	over	time.	They	modify	or	replace	the	value	of	the	parameter.

ColorPicker
Provide	a	user	interface	for	selecting	colors.

CommandSequence
Modeler	plug-ins	that	can	do	almost	anything	the	user	can	do	through
the	interface.

CustomObjHandler
Layout	plug-ins	that	add	custom	drawing	to	an	object	in	Layout's
interface.	These	are	often	used	to	add	visual	feedback	for	the
parameters	controlled	by	null	objects,	but	they	can	be	used	with	any
object.

DisplacementHandler
Deform	an	object	during	animation	by	moving	its	points.

EnvironmentHandler
Replace	the	render	backdrop,	for	procedural	sky	and	ground
rendering,	for	example.

FileRequester
Provide	a	user	interface	for	selecting	files	(an	alternative	to	the	host
system's	default	file	dialog).

FrameBufferHandler
Provide	a	display	or	a	device	interface	for	rendered	frames.

Global
Provide	services	to	other	plug-ins.	See	the	globals	section	for
information	about	LightWave's	built-in	globals.

ImageFilterHandler
Image	post-processing	of	rendered	frames.

ImageLoader
ImageSaver

Load	and	save	files	containing	still	images.	Support	for	a	number	of
image	file	formats	is	provided	through	plug-ins	of	these	classes.

ItemMotionHandler
Animate	the	position,	size	and	scale	of	an	item.

LayoutGeneric
Miscellaneous	utilities,	Layout	commands.

LayoutTool
Interactive	custom	tools	in	Layout.

MasterHandler
These	receive	event	notifications	from	Layout	and	can	control	the
behavior	of	other	plug-ins	based	on	those	events.

MeshDataEdit
Modeler	plug-ins	that	create	and	modify	geometry	at	the	point	and
polygon	level.

MeshEditTool
Mesh	editing	with	full	user	interactivity.

ObjectLoader
Load	the	3D	geometry	data	in	non-LightWave	object	files.

ObjReplacementHandler
Replace	the	geometry	of	an	object	during	animation.

PixelFilterHandler
Modify	or	replace	the	value	of	each	pixel	sample	during	rendering.

ProceduralTextureHandler
Procedural	textures	are	just	functions,	like	fractal	noise,	useful	for
adding	detail	to	the	appearance	of	an	object	or	for	modulating	an
item's	motion.

SceneConverter
Loads	the	animation	data	in	non-LightWave	scene	files.

ShaderHandler
Modifies	the	appearance	of	an	object's	surface.

VolumetricHandler
Creates	volumetric	rendering	effects,	including	transmission	and
scattering	through	transparent	media,	and	hypertexturing.

	

Globals

Globals	are	services	that	any	plug-in	can	request	by	calling	the	global
function.	This	is	passed	as	the	second	argument	to	every	plug-in's
activation	function.	Global	services	allow	you	to	construct	platform-
independent	user	interfaces	for	your	plug-ins	and	to	query	and	modify
LightWave's	internal	state.	

Index
Layout Common
Backdrop	Info
Bone	Info	
Camera	Info	
Comp	Info	
Fog	Info	
Global	Memory	
Interface	Info	
Item	Info	
Layout	Monitor	
Object	Info	
Particle	Services	
Scene	Info	
Time	Info	
Viewport	Info	
Modeler

Dynamic	Monitor	
Font	List	
State	Query

Animation
Envelopes	
Channel	Info	
Color	Picker	
Context	Menu
Services	
Directory	Info	
Dynamic
Conversion	
Dynamic	Request	
File	I/O	
File	Request	
File	Request	2	
File	Type	Pattern	
Host	Display	Info	
Image	List	
Image	Utility	
Info	Messages	
Instance	Update

Light	Info	
Locale	Info	
Multithreading
Utilities	
Panels	
Preview	Functions
Product	Info	
Raster	Services	
Scene	Objects	
Shelf	Functions	
Surface	Editor	
Surface	Functions	
System	ID	
Texture	Editor	
Texture	Functions	
Variant
Parameters	
XPanels

The	Global	Function

The	second	argument	to	every	activation	function	is	a	GlobalFunc.

			typedef	void	*	GlobalFunc	(const	char	*serviceName,	int	useMode);

The	service	name	is	a	string	that	tells	the	global	function	which	global

service	is	being	requested.	It	can	be	any	of	the	globals	supplied	with
LightWave	and	listed	in	the	table	above,	or	a	custom	global	provided	by	a
Global	class	plug-in.

The	SDK	header	files	define	symbolic	names	for	the	service	name	strings
of	globals	supplied	with	LightWave.	The	string	for	the	current	version	of
the	Scene	Info	global,	for	example,	is	"LW	Scene	Info	2",	but	rather	than
use	this	string	literal	in	your	source	code,	you	can	use	the	symbolic	name
LWSCENEINFO_GLOBAL,	defined	in	lwrender.h.

			LWSceneInfo	*sceneinfo;

			sceneinfo	=	global(LWSCENEINFO_GLOBAL,	GFUSE_TRANSIENT);

Using	the	symbolic	name	helps	to	ensure	that	your	code	is	always
synchronized	with	the	headers	you're	currently	compiling	with.	They're
also	a	little	easier	to	remember,	since	in	most	cases	the	symbolic	name	is
the	same	as	the	type	of	the	data	object	returned	by	the	global	function.

The	use	mode	tells	LightWave	whether	to	lock	the	code	module	that
supplies	the	global	service.	It	can	be	GFUSE_ACQUIRE	or	GFUSE_TRANSIENT.

During	routine	housekeeping,	LightWave	may	free	memory	by	unloading
plug-ins	that	haven't	been	called	recently,	and	this	can	include	Global	class
plug-ins.	If	you've	requested	a	service	provided	by	a	Global	class	plug-in,
the	data	and	function	pointers	returned	by	the	global	function	would
become	invalid	if	the	Global	plug-in	were	allowed	to	disappear	from
memory.	The	GFUSE_ACQUIRE	mode	locks	the	module,	ensuring	that	it	won't	be
unloaded	from	memory	before	you	use	it.

Globals	obtained	with	GFUSE_ACQUIRE	should	be	unlocked	when	they're	no
longer	needed.	You	unlock	them	by	calling	the	global	function	with	a	use
mode	of	GFUSE_RELEASE.

			global(LWSCENEINFO_GLOBAL,	GFUSE_RELEASE);

Failing	to	unlock	a	global	usually	isn't	fatal,	but	it	prevents	LightWave
from	optimizing	its	use	of	memory.	And	locking	a	module	doesn't	prevent
other	plug-ins	from	using	it.

Use	the	GFUSE_TRANSIENT	mode	when	the	global	doesn't	have	to	be	locked.
GFUSE_TRANSIENT	is	safe	to	use	for	the	global	services	built	into	LightWave
and	when	the	services	provided	by	Global	class	plug-ins	are	used

immediately.

If	the	call	to	the	global	function	succeeds,	the	return	value	is	data,
typically	a	pointer	to	a	structure,	that's	specific	to	the	requested	global
service.	The	documentation	of	the	globals	supplied	with	LightWave
describes	what	each	global	returns.	If	the	global	call	fails,	a	possibility	that
callers	should	always	be	prepared	for,	the	return	value	is	NULL.

Macros,	Constants	and	Enum	Members

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	

Symbol																								Header

ABS()																									lwmath.h

ACTIVATE_CON()																lwpanel.h

AFUNC_BADAPP																		lwserver.h

AFUNC_BADGLOBAL

AFUNC_BADLOCAL

AFUNC_BADVERSION

AFUNC_OK

ANGLE_CTL()																			lwpanel.h

AREA_CTL()

BOOL_CTL()

BOOLBUTTON_CTL()

BORDER_CTL()

BUTTON_CTL()

CANVAS_CTL()

CHANNEL_CTL()

CLAMP()																							lwmath.h

COLOR_BG																						lwpanel.h

COLOR_BLACK

COLOR_DK_GREY

COLOR_DK_YELLOW

COLOR_LT_GREY

COLOR_LT_YELLOW

COLOR_MD_GREY

COLOR_WHITE

CON_H()

CON_HOTH()

CON_HOTW()

CON_HOTX()

CON_HOTY()

CON_LW()

CON_MOUSEX()

CON_MOUSEY()

CON_PAN()

CON_PANFUN()

CON_SETEVENT()

CON_W()

CON_X()

CON_Y()

CSERR_ARGCOUNT																lwcmdseq.h

CSERR_ARGTYPE

CSERR_ARGVALUE

CSERR_BADSEL

CSERR_IO

CSERR_MEMORY

CSERR_NONE

CSERR_OPFAILURE

CSERR_USERABORT

CTL_ACTIVATE																		lwpanel.h

CTL_FLAGS

CTL_H

CTL_HOTH

CTL_HOTW

CTL_HOTX

CTL_HOTY

CTL_LABEL

CTL_LABELWIDTH

CTL_MOUSEX

CTL_MOUSEY

CTL_PANEL

CTL_PANFUN

CTL_RANGEMAX

CTL_RANGEMIN

CTL_USERDATA

CTL_USERDRAW

CTL_USEREVENT

CTL_VALUE

CTL_W

CTL_X

CTL_Y

CTLF_DISABLE

CTLF_GHOST

CTLF_INVISIBLE

CUSTPOPUP_CTL()

DEGREES()																					lwmath.h

DIR_CTL()																					lwpanel.h

DIRBUTTON_CTL()

DIST_CTL()

DR_ERASE

DR_GHOST

DR_REFRESH

DR_RENDER

DRAGAREA_CTL()

DRAGBUT_CTL()

DVEC_CTL()

DY__LAST																						lwdyna.h

DY_BOOLEAN

DY_CHOICE

DY_CUSTOM

DY_DISTANCE

DY_FLOAT

DY_FONT

DY_INTEGER

DY_LAYERS

DY_NULL

DY_STRING

DY_SURFACE

DY_TEXT

DY_VDIST

DY_VFLOAT

DY_VINT

DYERR_BADCTRLID

DYERR_BADSEQ

DYERR_BADTYPE

DYERR_INTERNAL

DYERR_MEMORY

DYERR_NONE

DYERR_TOOMANYCTRL

EDCOUNT_ALL																			lwmeshedt.h

EDCOUNT_DELETE

EDCOUNT_SELECT

EDDF_DELETE

EDDF_SELECT

EDERR_BADARGS

EDERR_BADLAYER

EDERR_BADSURF

EDERR_BADVMAP

EDERR_NOMEMORY

EDERR_NONE

EDERR_USERABORT

EDPF_CCEND

EDPF_CCSTART

EDSELM_CLEARCURRENT

EDSELM_FORCEPOLS

EDSELM_FORCEVRTS

EDSELM_SELECTNEW

EHMODE_PREVIEW																lwenviron.h

EHMODE_REAL

ERASE_CON()																			lwpanel.h

EVNT_ALL

EVNT_BLOCKING

FGETFLT()																					lwxpanel.h

FGETINT()

FILE_CTL()																				lwpanel.h

FILEBUTTON_CTL()

FLOAT_CTL()

FLOATRO_CTL()

FREQ_DIRECTORY																lwdialog.h

FREQ_LOAD

FREQ_MULTILOAD

FREQ_SAVE

FSETFLT()																					lwxpanel.h

FSETINT()

FVEC_CTL()																				lwpanel.h

FVECRO_CTL()

GET_FLOAT()

GET_FVEC()

GET_INT()

GET_IVEC()

GET_STR()

GETV_FVEC()

GETV_IVEC()

GFUSE_ACQUIRE																	lwserver.h

GFUSE_RELEASE

GFUSE_TRANSIENT

GHOST_CON()																			lwpanel.h

HALFPI																								lwmath.h

HCHOICE_CTL()																	lwpanel.h

HDRAGBUT_CTL()

HSLIDER_CTL()

IMG_GREY8																					lwimageio.h

IMG_INDEX8

IMG_RGB24

IMGF_REVERSE

INT_CTL()																					lwpanel.h

INTRO_CTL()

IPSTAT_ABORT																		lwimageio.h

IPSTAT_BADFILE

IPSTAT_FAILED

IPSTAT_NOREC

IPSTAT_OK

IQ_ADJUST																					lwpanel.h

IQ_ALT

IQ_CONSTRAIN

IQ_CTRL

IQ_SHIFT

ITEM_CTL()

IVEC_CTL()

IVECRO_CTL()

LANGID_FRENCH																	lwserver.h

LANGID_GERMAN

LANGID_ITALIAN

LANGID_JAPANESE

LANGID_KOREAN

LANGID_RUSSIAN

LANGID_SPANISH

LANGID_SWEDISH

LANGID_UKENGLISH

LANGID_USENGLISH

LCLICK()																						lwpanel.h

LISTBOX_CTL()

LMO_HISTAPPEND																lwmonitor.h

LMO_IMMUPD

LMO_NOABORT

LMO_REVIEW

LMON_DFLT()

LMON_DONE()

LMON_INCR()

LMON_INIT()

LMON_KILL()

LMON_MSG()

LMON_MSGI()

LMON_MSGS()

LMON_NEW()

LMON_STEP()

LMON_WPOS()

LOAD_CTL()																				lwpanel.h

LOADBUTTON_CTL()

LWALERT_BEGINNER														lwrender.h

LWALERT_EXPERT

LWALERT_INTERMEDIATE

LWANIMLOADER_HCLASS											lwanimlod.h

LWANIMLOADER_ICLASS

LWANIMLOADER_VERSION

LWANIMSAVER_HCLASS												lwanimsav.h

LWANIMSAVER_ICLASS

LWANIMSAVER_VERSION

LWAST_FLOAT

LWAST_UBYTE

LWBACK_GRADIENT															lwrender.h

LWBACK_SOLID

LWBACKDROPINFO_GLOBAL

LWBONEF_ACTIVE

LWBONEF_JOINT_COMP

LWBONEF_JOINT_COMP_PAR

LWBONEF_LIMITED_RANGE

LWBONEF_MUSCLE_FLEX

LWBONEF_MUSCLE_FLEX_PAR

LWBONEF_SCALE_STRENGTH

LWBONEF_WEIGHT_MAP_ONLY

LWBONEF_WEIGHT_NORM

LWBONEINFO_GLOBAL

LWBUF_ALPHA																			lwfilter.h

LWBUF_BLUE

LWBUF_DEPTH

LWBUF_DIFFSHADE

LWBUF_DIFFUSE

LWBUF_GEOMETRY

LWBUF_GREEN

LWBUF_LUMINOUS

LWBUF_MIRROR

LWBUF_MOTION_X

LWBUF_MOTION_Y

LWBUF_RAW_BLUE

LWBUF_RAW_GREEN

LWBUF_RAW_RED

LWBUF_RED

LWBUF_REFL_BLUE

LWBUF_REFL_GREEN

LWBUF_REFL_RED

LWBUF_SHADING

LWBUF_SHADOW

LWBUF_SPECIAL

LWBUF_SPECSHADE

LWBUF_SPECULAR

LWBUF_TRANS

LWCAMERAINFO_GLOBAL											lwrender.h

LWCAMF_LIMITED_REGION

LWCAMF_MASK

LWCAMF_STEREO

LWCEVNT_VALUE																	lwenvel.h

LWCHANNEL_HCLASS														lwchannel.h

LWCHANNEL_ICLASS

LWCHANNEL_VERSION

LWCHANNELINFO_GLOBAL										lwenvel.h

LWCOF_SCHEMA_OK															lwcustobj.h

LWCOFL_SELECTED

LWCOLORACTIVATEFUNC_GLOBAL				lwhost.h

LWCOLORPICK_CLASS													lwdialog.h

LWCOLORPICK_VERSION

LWCOMPINFO_GLOBAL													lwrender.h

LWCONTEXTMENU_GLOBAL										lwpanel.h

LWCSYS_ICON																			lwcustobj.h

LWCSYS_OBJECT

LWCSYS_WORLD

LWCUSTOMOBJ_HCLASS

LWCUSTOMOBJ_ICLASS

LWCUSTOMOBJ_VERSION

LWDIRINFOFUNC_GLOBAL										lwhost.h

LWDISPF_CAGES																	lwrender.h

LWDISPF_FIELDCHART

LWDISPF_HANDLES

LWDISPF_IKCHAINS

LWDISPF_MOTIONPATHS

LWDISPF_SAFEAREAS

LWDISPLACEMENT_HCLASS									lwdisplce.h

LWDISPLACEMENT_ICLASS

LWDISPLACEMENT_VERSION

LWDisplayMetrics														lwpanel.h

LWDK_ALT

LWDK_CHAR()

LWDK_CTRL

LWDK_DELETE

LWDK_END

LWDK_F1

LWDK_F10

LWDK_F11

LWDK_F12

LWDK_F2

LWDK_F3

LWDK_F4

LWDK_F5

LWDK_F6

LWDK_F7

LWDK_F8

LWDK_F9

LWDK_HELP

LWDK_HOME

LWDK_PAD_0

LWDK_PAD_1

LWDK_PAD_2

LWDK_PAD_3

LWDK_PAD_4

LWDK_PAD_5

LWDK_PAD_6

LWDK_PAD_7

LWDK_PAD_8

LWDK_PAD_9

LWDK_PAD_CPAREN

LWDK_PAD_DASH

LWDK_PAD_DECIMAL

LWDK_PAD_ENTER

LWDK_PAD_OPAREN

LWDK_PAD_PLUS

LWDK_PAD_SLASH

LWDK_PAD_STAR

LWDK_PAGEDOWN

LWDK_PAGEUP

LWDK_RETURN

LWDK_SC_DOWN

LWDK_SC_LEFT

LWDK_SC_RIGHT

LWDK_SC_UP

LWDK_SHIFT

LWDK_TOP_0

LWDK_TOP_1

LWDK_TOP_2

LWDK_TOP_3

LWDK_TOP_4

LWDK_TOP_5

LWDK_TOP_6

LWDK_TOP_7

LWDK_TOP_8

LWDK_TOP_9

LWDMF_BEFOREBONES													lwdisplce.h

LWDMF_WORLD

LWDYNACONVERTFUNC_GLOBAL						lwdyna.h

LWDYNAMONITORFUNCS_GLOBAL

LWDYNAREQFUNCS_GLOBAL

LWDYNUP_DELAYED															lwrender.h

LWDYNUP_INTERACTIVE

LWDYNUP_OFF

LWEDGEF_CREASE

LWEDGEF_OTHER

LWEDGEF_SHRINK_DIST

LWEDGEF_SILHOUETTE

LWEDGEF_SURFACE

LWEDGEF_UNSHARED

LWEEVNT_DESTROY															lwenvel.h

LWEEVNT_KEY_DELETE

LWEEVNT_KEY_INSERT

LWEEVNT_KEY_TIME

LWEEVNT_KEY_VALUE

LWENF_TRANSPARENT													lwenviron.h

LWENVELOPEFUNCS_GLOBAL								lwenvel.h

LWENVIRONMENT_HCLASS										lwenviron.h

LWENVIRONMENT_ICLASS

LWENVIRONMENT_VERSION

LWENVTAG_KEYCOUNT													lwenvel.h

LWENVTAG_POSTBEHAVE

LWENVTAG_PREBEHAVE

LWENVTAG_VISIBLE

LWET_ANGLE

LWET_DISTANCE

LWET_FLOAT

LWET_PERCENT

LWEVNT_COMMAND																lwmaster.h

LWEVNT_NOTHING

LWEVNT_SELECT

LWEVNT_TIME

LWFBT_FLOAT																			lwframbuf.h

LWFBT_UBYTE

LWFCF_PREPROCESS														lwfilter.h

LWFILEACTIVATEFUNC_GLOBAL					lwhost.h

LWFILEIOFUNCS_GLOBAL										lwio.h

LWFILEREQ_CLASS															lwdialog.h

LWFILEREQ_VERSION

LWFILEREQFUNC_GLOBAL										lwhost.h

LWFILETYPEFUNC_GLOBAL

LWFOG_LINEAR																		lwrender.h

LWFOG_NONE

LWFOG_NONLINEAR1

LWFOG_NONLINEAR2

LWFOGF_BACKGROUND

LWFOGINFO_GLOBAL

LWFONTLISTFUNCS_GLOBAL								lwmodeler.h

LWFRAMEBUFFER_HCLASS										lwframbuf.h

LWFRAMEBUFFER_ICLASS

LWFRAMEBUFFER_VERSION

LWFTYPE_ANIMATION													lwhost.h

LWFTYPE_ENVELOPE

LWFTYPE_IMAGE

LWFTYPE_MOTION

LWFTYPE_OBJECT

LWFTYPE_PLUGIN

LWFTYPE_PREVIEW

LWFTYPE_PSFONT

LWFTYPE_SCENE

LWFTYPE_SETTING

LWFTYPE_SURFACE

LWGENF_FRACTIONALFRAME								lwrender.h

LWGENF_HIDETOOLBAR

LWGENF_KEYSINSLIDER

LWGENF_PARENTINPLACE

LWGENF_PLAYEXACTRATE

LWGENF_RIGHTTOOLBAR

LWGF_AUTOSIZE																	lwtxtr.h

LWGF_FIXED_END

LWGF_FIXED_MAX

LWGF_FIXED_MIN

LWGF_FIXED_START

LWGI_BONE

LWGI_CAMERA

LWGI_LIGHT

LWGI_NONE

LWGI_OBJECT

LWGI_VMAP

LWGLOBALPOOL_GLOBAL											lwrender.h

LWGLOBALPOOL_RENDER_GLOBAL

LWGLOBALSERVICE_CLASS									lwglobsrv.h

LWGLOBALSERVICE_VERSION

LWHOSTDISPLAYINFO_GLOBAL						lwdisplay.h

LWI_ANY																							lwpanel.h

LWI_BONE																						lwrender.h

LWI_CAMERA

LWI_IMAGE																					lwpanel.h

LWI_LIGHT																					lwrender.h

LWI_OBJECT

LWID_()																							lwtypes.h

LWIMAGEFILTER_HCLASS										lwfilter.h

LWIMAGEFILTER_ICLASS

LWIMAGEFILTER_VERSION

LWIMAGELIST_GLOBAL												lwimage.h

LWIMAGELOADER_CLASS											lwimageio.h

LWIMAGELOADER_VERSION

LWIMAGESAVER_CLASS

LWIMAGESAVER_VERSION

LWIMAGEUTIL_GLOBAL												lwimage.h

LWIMF_AFTERIK																	lwmotion.h

LWIMPAR_ASPECT																lwimageio.h

LWIMPAR_BLACKPOINT

LWIMPAR_FRAMESPERSECOND

LWIMPAR_GAMMA

LWIMPAR_NUMCOLS

LWIMPAR_PIXELWIDTH

LWIMPAR_WHITEPOINT

LWIMTYP_GREY8

LWIMTYP_GREYFP

LWIMTYP_INDEX8

LWIMTYP_RGB24

LWIMTYP_RGBA32

LWIMTYP_RGBAFP

LWIMTYP_RGBFP

LWIMTYP_SPECIAL

LWINF_BUILD																			lwhost.h

LWINF_GETBUILD()

LWINF_GETMAJOR()

LWINF_GETMINOR()

LWINF_MAJORREV

LWINF_MINORREV

LWINF_PRODINSP3D

LWINF_PRODLWAV

LWINF_PRODOTHER

LWINF_PRODUCT

LWINF_RESERVED

LWINIT_PREVIEW																lwrender.h

LWINIT_RENDER

LWINSTUPDATE_GLOBAL											lwhandler.h

LWINTERFACE_VERSION

LWINTERFACEINFO_GLOBAL								lwrender.h

LWIO_ASCII																				lwio.h

LWIO_BINARY

LWIO_BINARY_IFF

LWIO_OBJECT

LWIO_SCENE

LWIP_ASPECT()																	lwimageio.h

LWIP_DONE()

LWIP_FORWARD																		lwrender.h

LWIP_NUMCOLORS()														lwimageio.h

LWIP_PIVOT																				lwrender.h

LWIP_PIVOT_ROT

LWIP_POSITION

LWIP_RIGHT

LWIP_ROTATION

LWIP_SCALING

LWIP_SENDLINE()															lwimageio.h

LWIP_SETMAP()

LWIP_SETPARAM()

LWIP_SETSIZE()

LWIP_UP																							lwrender.h

LWIP_W_FORWARD

LWIP_W_POSITION

LWIP_W_RIGHT

LWIP_W_UP

LWIPT_ANGLE																			lwtxtr.h

LWIPT_DISTANCE

LWIPT_FLOAT

LWIPT_PERCENT

LWISM_BICUBIC																	lwimage.h

LWISM_BILINEAR

LWISM_BSPLINE

LWISM_MEDIAN

LWISM_SUBSAMPLING

LWISM_SUPERSAMPLING

LWITEM_ALL																				lwrender.h

LWITEM_CAUSTICS

LWITEM_NULL

LWITEM_RADIOSITY

LWITEMF_ACTIVE

LWITEMF_FULLTIME_IK

LWITEMF_GOAL_ORIENT

LWITEMF_LOCKED

LWITEMF_REACH_GOAL

LWITEMF_SELECTED

LWITEMF_SHOWCHANNELS

LWITEMF_SHOWCHILDREN

LWITEMF_UNAFFECT_BY_IK

LWITEMINFO_GLOBAL

LWITEMMOTION_HCLASS											lwmotion.h

LWITEMMOTION_ICLASS

LWITEMMOTION_VERSION

LWIVIS_HIDDEN																	lwrender.h

LWIVIS_VISIBLE

LWKEY_BIAS																				lwenvel.h

LWKEY_CONTINUITY

LWKEY_PARAM_0

LWKEY_PARAM_1

LWKEY_PARAM_2

LWKEY_PARAM_3

LWKEY_SHAPE

LWKEY_TENSION

LWKEY_TIME

LWKEY_VALUE

LWLAYOUTGENERIC_CLASS									lwgeneric.h

LWLAYOUTGENERIC_VERSION

LWLAYOUTTOOL_CLASS												lwlaytool.h

LWLAYOUTTOOL_VERSION

LWLFALL_INV_DIST														lwrender.h

LWLFALL_INV_DIST_2

LWLFALL_LINEAR

LWLFALL_OFF

LWLFL_CACHE_SHAD_MAP

LWLFL_FIT_CONE

LWLFL_LENS_FLARE

LWLFL_LIMITED_RANGE

LWLFL_NO_CAUSTICS

LWLFL_NO_DIFFUSE

LWLFL_NO_OPENGL

LWLFL_NO_SPECULAR

LWLFL_VOLUMETRIC

LWLIGHT_AREA

LWLIGHT_DISTANT

LWLIGHT_LINEAR

LWLIGHT_POINT

LWLIGHT_SPOT

LWLIGHTINFO_GLOBAL

LWLMONFUNCS_GLOBAL												lwmonitor.h

LWLOAD_DEPTH()																lwio.h

LWLOAD_END()

LWLOAD_FIND()

LWLOAD_FP()

LWLOAD_I1()

LWLOAD_I2()

LWLOAD_I4()

LWLOAD_ID()

LWLOAD_STR()

LWLOAD_U1()

LWLOAD_U2()

LWLOAD_U4()

LWLOC_LANGID																		lwhost.h

LWLOC_RESERVED

LWLOCALEINFO_GLOBAL

LWLPAT_DASH																			lwcustobj.h

LWLPAT_DOT

LWLPAT_LONGDOT

LWLPAT_SOLID

LWLSHAD_MAP																			lwrender.h

LWLSHAD_OFF

LWLSHAD_RAYTRACE

LWM_MODE_SELECTION												lwmodeler.h

LWM_MODE_SYMMETRY

LWM_VMAP_MORPH

LWM_VMAP_TEXTURE

LWM_VMAP_WEIGHT

LWMAST_LAYOUT																	lwmaster.h

LWMAST_SCENE

LWMASTER_HCLASS

LWMASTER_ICLASS

LWMASTER_VERSION

LWMATH_H																						lwmath.h

LWMESHEDIT_CLASS														lwmeshedt.h

LWMESHEDIT_VERSION

LWMESHEDITTOOL_CLASS										lwmodtool.h

LWMESHEDITTOOL_VERSION

LWMESSAGEFUNCS_GLOBAL									lwhost.h

LWMODCOMMAND_CLASS												lwcmdseq.h

LWMODCOMMAND_VERSION

LWMOTCTL_ALIGN_TO_PATH								lwrender.h

LWMOTCTL_IK

LWMOTCTL_KEYFRAMES

LWMOTCTL_TARGETING

LWMTUTILFUNCS_GLOBAL										lwmtutil.h

LWOBJECTFUNCS_GLOBAL										lwmeshes.h

LWOBJECTIMPORT_CLASS										lwobjimp.h

LWOBJECTIMPORT_VERSION

LWOBJECTINFO_GLOBAL											lwrender.h

LWOBJF_MORPH_MTSE

LWOBJF_MORPH_SURFACES

LWOBJF_UNAFFECT_BY_FOG

LWOBJF_UNSEEN_BY_CAMERA

LWOBJF_UNSEEN_BY_RAYS

LWOBJIM_ABORTED															lwobjimp.h

LWOBJIM_BADFILE

LWOBJIM_FAILED

LWOBJIM_NOREC

LWOBJIM_OK

LWOBJREP_NONE																	lwobjrep.h

LWOBJREP_PREVIEW

LWOBJREP_RENDER

LWOBJREPLACEMENT_HCLASS

LWOBJREPLACEMENT_ICLASS

LWOBJREPLACEMENT_VERSION

LWOSHAD_CAST																		lwrender.h

LWOSHAD_RECEIVE

LWOSHAD_SELF

LWOVIS_BOUNDINGBOX

LWOVIS_FFWIREFRAME

LWOVIS_HIDDEN

LWOVIS_SHADED

LWOVIS_TEXTURED

LWOVIS_VERTICES

LWOVIS_WIREFRAME

LWP_0_DLOG																				lwpanel.h

LWP_0_DOIT

LWP_0_DRAG

LWP_0_STAT

LWP_1_BG

LWP_1_DLOG

LWP_1_DOIT

LWP_1_DRAG

LWP_1_STAT

LWP_2_BG

LWP_2_DLOG

LWP_2_DOIT

LWP_2_DRAG

LWP_2_STAT

LWP_3_BG

LWP_3_DLOG

LWP_3_DOIT

LWP_3_DRAG

LWP_3_STAT

LWP_4_DLOG

LWP_4_DOIT

LWP_4_DRAG

LWP_4_STAT

LWP_5_DLOG

LWP_5_DOIT

LWP_5_DRAG

LWP_5_STAT

LWP_AQUA1

LWP_AQUA2

LWP_AQUA3

LWP_AQUA4

LWP_AQUA5

LWP_AQUA6

LWP_BG

LWP_BLACK

LWP_CANARY1

LWP_CANARY2

LWP_CANARY3

LWP_CANARY4

LWP_CANARY5

LWP_CANARY6

LWP_EDIT_BG

LWP_EDIT_DIS

LWP_EDIT_IMG

LWP_EDIT_SEL

LWP_GRAY1

LWP_GRAY2

LWP_GRAY3

LWP_GRAY4

LWP_GRAY5

LWP_GRAY6

LWP_GRAY7

LWP_GRAY8

LWP_HEADLINE

LWP_HILIGHT

LWP_INFO_BG

LWP_INFO_DIS

LWP_INFO_IMG

LWP_INVERT

LWP_LAVENDER1

LWP_LAVENDER2

LWP_LAVENDER3

LWP_LAVENDER4

LWP_LAVENDER5

LWP_LAVENDER6

LWP_LOWERED

LWP_NONE

LWP_NORMAL

LWP_OLIVE1

LWP_OLIVE2

LWP_OLIVE3

LWP_OLIVE4

LWP_OLIVE5

LWP_OLIVE6

LWP_RAISED

LWP_SHADOW

LWP_WHITE

LWPANEL_H

LWPANELFUNCS_GLOBAL

LWPANELS_API_VERSION

LWPFF_BEFOREVOLUME												lwfilter.h

LWPFF_RAYTRACE

LWPIXELFILTER_HCLASS

LWPIXELFILTER_ICLASS

LWPIXELFILTER_VERSION

LWPOLTYPE_BONE																lwmeshes.h

LWPOLTYPE_CURV

LWPOLTYPE_FACE

LWPOLTYPE_MBAL

LWPOLTYPE_PTCH

LWPREVIEW_H																			lwpreview.h

LWPREVIEWFUNCS_GLOBAL

LWPRODUCTINFO_GLOBAL										lwhost.h

LWPSB_AGE																					lwprtcl.h

LWPSB_CAGE

LWPSB_ENB

LWPSB_FCE

LWPSB_ID

LWPSB_LNK

LWPSB_MAS

LWPSB_POS

LWPSB_PRS

LWPSB_RGBA

LWPSB_ROT

LWPSB_SCL

LWPSB_SIZ

LWPSB_TMP

LWPSB_VEL

LWPSBT_CHAR

LWPSBT_FLOAT

LWPSBT_INT

LWPST_ALIVE

LWPST_DEAD

LWPST_LIMBO

LWPST_PRTCL

LWPST_TRAIL

LWPSYSFUNCS_GLOBAL

LWPTAG_PART																			lwmeshes.h

LWPTAG_SURF

LWPTAG_TXUV

LWRASTERFUNCS_GLOBAL										lwpanel.h

LWROPT_DEPTHOFFIELD											lwrender.h

LWROPT_EVENFIELDS

LWROPT_FIELDS

LWROPT_LIMITEDREGION

LWROPT_MOTIONBLUR

LWROPT_PARTICLEBLUR

LWROPT_REFLECTTRACE

LWROPT_REFRACTTRACE

LWROPT_SHADOWTRACE

LWRTYPE_QUICK

LWRTYPE_REALISTIC

LWRTYPE_WIRE

LWSAF_SHADOW																		lwshader.h

LWSAVE_BEGIN()																lwio.h

LWSAVE_DEPTH()

LWSAVE_END()

LWSAVE_FP()

LWSAVE_I1()

LWSAVE_I2()

LWSAVE_I4()

LWSAVE_ID()

LWSAVE_STR()

LWSAVE_U1()

LWSAVE_U2()

LWSAVE_U4()

LWSCENECONVERTER_CLASS								lwscenecv.h

LWSCENECONVERTER_VERSION

LWSCENEINFO_GLOBAL												lwrender.h

LWSHADER_HCLASS															lwshader.h

LWSHADER_ICLASS

LWSHADER_VERSION

LWSHELF_H																					lwshelf.h

LWSHELFFUNCS_GLOBAL

LWSHF_COLOR																			lwshader.h

LWSHF_DIFFUSE

LWSHF_ETA

LWSHF_LUMINOUS

LWSHF_MIRROR

LWSHF_NORMAL

LWSHF_RAYTRACE

LWSHF_ROUGH

LWSHF_SPECULAR

LWSHF_TRANSLUCENT

LWSHF_TRANSP

LWSRVF_DISABLED															lwrender.h

LWSRVF_HIDDEN

LWSTATEQUERYFUNCS_GLOBAL						lwmodeler.h

LWSURFACEFUNCS_GLOBAL									lwsurf.h

LWSURFEDFUNCS_GLOBAL										lwsurfed.h

LWSYS_LAYOUT																		lwhost.h

LWSYS_MODELER

LWSYS_SCREAMERNET

LWSYS_SERIALBITS

LWSYS_TYPEBITS

LWSYSTEMID_GLOBAL

LWT__LAST																					lwpanel.h

LWT_AREA

LWT_BOOLEAN

LWT_CHOICE

LWT_CUSTOM

LWT_DIRTY_HELPTEXT												lwtool.h

LWT_DIRTY_WIREFRAME

LWT_DISTANCE																		lwpanel.h

LWT_EVENT_ACTIVATE												lwtool.h

LWT_EVENT_DROP

LWT_EVENT_RESET

LWT_FLOAT																					lwpanel.h

LWT_FONT

LWT_INTEGER

LWT_LAYERS

LWT_LWITEM

LWT_MLIST

LWT_NULL

LWT_PERCENT

LWT_POPUP

LWT_RANGE

LWT_STRING

LWT_SURFACE

LWT_TEST_ACCEPT															lwmodtool.h

LWT_TEST_CLONE

LWT_TEST_NOTHING

LWT_TEST_REJECT

LWT_TEST_UPDATE

LWT_TEXT																						lwpanel.h

LWT_TREE

LWT_VDIST

LWT_VFLOAT

LWT_VINT

LWT_XPANEL

LWTEXF_AALIAS																	lwtexture.h

LWTEXF_AXIS

LWTEXF_DISPLACE

LWTEXF_GRAD

LWTEXF_HV_SRF

LWTEXF_HV_VOL

LWTEXF_SELF_COLOR

LWTEXF_SLOWPREVIEW

LWTEXTURE_HCLASS

LWTEXTURE_ICLASS

LWTEXTURE_VERSION

LWTEXTUREFUNCS_GLOBAL									lwtxtr.h

LWTIMEINFO_GLOBAL													lwrender.h

LWTOOLF_ALT_BUTTON												lwtool.h

LWTOOLF_CONS_X

LWTOOLF_CONS_Y

LWTOOLF_CONSTRAIN

LWTOOLF_MULTICLICK

LWTXEF_AXISX																		lwtexture.h

LWTXEF_AXISY

LWTXEF_AXISZ

LWTXEF_COLOR

LWTXEF_DISPLACE

LWTXEF_VECTOR

LWTXTREDFUNCS_GLOBAL										lwtxtred.h

LWVECF_0																						lwrender.h

LWVECF_1

LWVECF_2

LWVEF_COLOR																			lwvolume.h

LWVEF_OPACITY

LWVEF_RAYTRACE

LWVIEW_CAMERA																	lwcustobj.h

LWVIEW_LIGHT

LWVIEW_PERSP

LWVIEW_SCHEMA

LWVIEW_XY

LWVIEW_XZ

LWVIEW_ZY

LWVMAP_MNVW																			lwmeshes.h

LWVMAP_MORF

LWVMAP_PICK

LWVMAP_RGB

LWVMAP_RGBA

LWVMAP_SPOT

LWVMAP_TXUV

LWVMAP_WGHT

LWVOLF_REFLECTIONS												lwvolume.h

LWVOLF_REFRACTIONS

LWVOLF_SHADOWS

LWVOLUMETRIC_HCLASS

LWVOLUMETRIC_ICLASS

LWVOLUMETRIC_VERSION

LWVP_ANGLE																				lwvparm.h

LWVP_COLOR

LWVP_DIST

LWVP_FLOAT

LWVP_PERCENT

LWVPARMFUNCS_GLOBAL

LWVPDT_COLOR

LWVPDT_DISPLACEMENT

LWVPDT_NOTXTR

LWVPDT_PERCENT

LWVPDT_SCALAR

LWVPDT_VECTOR

LWVPEC_ENVNEW

LWVPEC_ENVOLD

LWVPEC_ENVTRACK

LWVPEC_ENVUPDATE

LWVPEC_TEXNEW

LWVPEC_TEXOLD

LWVPEC_TXAUTOSIZE

LWVPEC_TXTRACK

LWVPEC_TXUPDATE

LWVPF_VECTOR

LWVPSF_ENV

LWVPSF_TEX

LWWIRE_ABSOLUTE															lwtool.h

LWWIRE_DASH

LWWIRE_RELATIVE

LWWIRE_SCREEN

LWWIRE_SOLID

LWWIRE_TEXT_C

LWWIRE_TEXT_L

LWWIRE_TEXT_R

LWXP_FORM																					lwxpanel.h

LWXP_VIEW

LWXPANELFUNCS_GLOBAL

LWXPBDR_DOWN

LWXPBDR_NONE

LWXPBDR_UP

LWXPDLG_DONE

LWXPDLG_OKCANCEL

LWXPDLG_OKONLY

LWXPDLG_YESNO

LWXPDLG_YESNOALL

LWXPDLG_YESNOCAN

LWXPEVENT_FOCUS

LWXPEVENT_HIT

LWXPEVENT_LOSEFOCUS

LWXPEVENT_TRACK

LWXPEVENT_VALUE

LWXPRC_DFLT

LWXPRC_DRAW

LWXPRC_FULL

LWXPRC_NONE

LWXPREQ_DIR

LWXPREQ_LOAD

LWXPREQ_SAVE

MAX()																									lwmath.h

MCLICK()																						lwpanel.h

MIN()																									lwmath.h

MINIHSV_CTL()																	lwpanel.h

MINIRGB_CTL()

MINISLIDER_CTL()

MOD_MACHINE																			lwmodule.h

MOD_SYSSYNC

MOD_SYSVER

MON_DONE()																				lwmonitor.h

MON_INCR()

MON_INIT()

MON_STEP()

MOUSE_DOWN																				lwpanel.h

MOUSE_LEFT

MOUSE_MID

MOUSE_RIGHT

MOVE_CON()

MOVE_PAN()

MULTILIST_CTL()

MX_HCHOICE

MX_POPUP

MX_VCHOICE

NODE_FLAG_EXPND

NODE_FLAG_WRITE

NULL																										lwtypes.h

OPENGL_CTL()																		lwpanel.h

OPLYR_ALL																					lwmodeler.h

OPLYR_BG

OPLYR_EMPTY

OPLYR_FG

OPLYR_NONEMPTY

OPLYR_PRIMARY

OPLYR_SELECT

OPSEL_DIRECT

OPSEL_GLOBAL

OPSEL_MODIFY																		lwmeshedt.h

OPSEL_USER																				lwmodeler.h

PALETTE_CTL()																	lwpanel.h

PALETTESIZE()

PAN_CREATE()

PAN_FLAGS

PAN_GETH()

PAN_GETVERSION()

PAN_GETW()

PAN_GETX()

PAN_GETY()

PAN_H

PAN_HOSTDISPLAY

PAN_KILL()

PAN_LWINSTANCE

PAN_MOUSEBUTTON

PAN_MOUSEMOVE

PAN_MOUSEX

PAN_MOUSEY

PAN_PANFUN

PAN_POST()

PAN_QUALIFIERS

PAN_RESULT

PAN_SETDATA()

PAN_SETDRAW()

PAN_SETH()

PAN_SETKEYS()

PAN_SETW()

PAN_TITLE

PAN_TO_FRONT

PAN_USERACTIVATE

PAN_USERCLOSE

PAN_USERDATA

PAN_USERDRAW

PAN_USERKEYS

PAN_USERKEYUPS

PAN_USEROPEN

PAN_VERSION

PAN_W

PAN_X

PAN_Y

PANEL_SERVICES_NAME

PANF_ABORT

PANF_BLOCKING

PANF_CANCEL

PANF_FRAME

PANF_MOUSETRAP

PANF_NOBUTT

PANF_PASSALLKEYS

PANF_RESIZE

PERCENT_CTL()

PI																												lwmath.h

PIKITEM_CTL()																	lwpanel.h

POPDOWN_CTL()

POPUP_CTL()

RADIANS()																					lwmath.h

RCLICK()																						lwpanel.h

REDRAW_CON()

RENDER_CON()

RGB_()

RGB_CTL()

RGBVEC_CTL()

SAVE_CTL()

SAVEBUTTON_CTL()

ServerUserName																lwserver.h

SET_FLOAT()																			lwpanel.h

SET_FVEC()

SET_INT()

SET_IVEC()

SET_STR()

SETV_FVEC()

SETV_IVEC()

SHLC_DFLT																					lwshelf.h

SHLC_FORCE

SHLC_NOWAY

SHLF_ASC

SHLF_BIN

SHLF_SEP

SLIDER_CTL()																		lwpanel.h

SRVTAG_BUTTONNAME													lwserver.h

SRVTAG_CMDGROUP

SRVTAG_DESCRIPTION

SRVTAG_ENABLE

SRVTAG_MENU

SRVTAG_USERNAME

STR_CTL()																					lwpanel.h

STRRO_CTL()

SURF_ADTR																					lwsurf.h

SURF_ALPH

SURF_AVAL

SURF_BUF1

SURF_BUF2

SURF_BUF3

SURF_BUF4

SURF_BUMP

SURF_CLRF

SURF_CLRH

SURF_COLR

SURF_DIFF

SURF_GLOS

SURF_GLOW

SURF_GVAL

SURF_LCOL

SURF_LINE

SURF_LSIZ

SURF_LUMI

SURF_RBLR

SURF_REFL

SURF_RFOP

SURF_RIMG

SURF_RIND

SURF_RSAN

SURF_SHRP

SURF_SIDE

SURF_SMAN

SURF_SPEC

SURF_TBLR

SURF_TIMG

SURF_TRAN

SURF_TRNL

SURF_TROP

SURF_TSAN

SURF_VCOL

SWAP()																								lwmath.h

SYSTEM_Ic()																			lwpanel.h

TABCHOICE_CTL()

TCC_ANY																							lwtxtr.h

TCC_OBJECT

TCC_WORLD

TEF_ALL																							lwtxtred.h

TEF_BLEND

TEF_LAYERS

TEF_OPACITY

TEF_TYPE

TEF_USEBTN

TEXT_CTL()																				lwpanel.h

THUM_35MM																					lwxpanel.h

THUM_ANAW

THUM_EURO

THUM_FULL

THUM_LAND

THUM_LRG

THUM_MED

THUM_NTSC

THUM_PORT

THUM_SML

THUM_SQ

THUM_WIDE

THUM_XLG

TLT_GRAD																						lwtxtr.h

TLT_IMAGE

TLT_PROC

TREE_CTL()																				lwpanel.h

TRT_COLOR																					lwtxtr.h

TRT_DISPLACEMENT

TRT_PERCENT

TRT_SCALAR

TRT_VECTOR

TRUECOLOR()																			lwpanel.h

TWOPI																									lwmath.h

TXEV_ALTER																				lwtxtred.h

TXEV_DELETE

TXEV_TRACK

TXPRJ_CUBIC																			lwtxtr.h

TXPRJ_CYLINDRICAL

TXPRJ_FRONT

TXPRJ_PLANAR

TXPRJ_SPHERICAL

TXPRJ_UVMAP

TXRPT_EDGE

TXRPT_MIRROR

TXRPT_REPEAT

TXRPT_RESET

TXTAG_AA

TXTAG_AAVAL

TXTAG_AXIS

TXTAG_COORD

TXTAG_FALL

TXTAG_HREPEAT

TXTAG_HWRP

TXTAG_IMAGE

TXTAG_OPAC

TXTAG_PIXBLEND

TXTAG_POSI

TXTAG_PROJ

TXTAG_ROBJ

TXTAG_ROTA

TXTAG_SIZE

TXTAG_VMAP

TXTAG_WREPEAT

TXTAG_WWRP

UNGHOST_CON()																	lwpanel.h

UNSLIDER_CTL()

VADD()																								lwmath.h

VADD3()

VADDS()

VADDS3()

VCHOICE_CTL()																	lwpanel.h

VCLR()																								lwmath.h

VCPY()

VCROSS()

VDOT()

VDRAGBUT_CTL()																lwpanel.h

VLEN()																								lwmath.h

VMUL3()

VSCL()

VSCL3()

VSET()

VSLIDER_CTL()																	lwpanel.h

VSUB()																								lwmath.h

VSUB3()

WBOOLBUTTON_CTL()													lwpanel.h

WBUTTON_CTL()

WITEM_CTL()

WPOPUP_CTL()

XCALL_()																						lwserver.h

XCALL_INIT

XpADD()																							lwxpanel.h

XpALIAS_()

XPANEL_CTL()																		lwpanel.h

XpBORDER()																				lwxpanel.h

XpBUTNOTIFY()

XpCALL()

XpCHGNOTIFY()

XpCHOXFORM()

XpCLASS()

XpCLRMINMAX()

XpCTRLCFG()

XpCTRLFRONT()

XpDELETE()

XpDESTROYNOTIFY()

XpDIVADD()

XpDIVADD_()

XpDIVREM()

XpDIVREM_()

XpDLOGTYPE()

XpDRAWCBFUNC()

XpENABLE()

XpENABLE_()

XpENABLE_MAP_()

XpENABLEMSG_()

XpENABLEMSG_MAP_()

XpEND

XpFOCUS()

XpGROUP_()

XpH()

XpHARDMINMAX()

XpIMMUPD()

XpIMMUPD_()

XpINTXFORM()

XpLABEL()

XpLEFT()

XpLEFT_()

XpLINK()

XpLINK_()

XpMAX()

XpMIN()

XpNARROW()

XpNARROW_()

XpNEST()

XpORDER_()

XpORIENT()

XpPOPCMDFUNC()

XpPOPFUNCS()

XpPOPXFORM()

XpRANGE()

XpRESTORE()

XpRESTORE_()

XpRESTORE_OFF

XpRESTORE_ON

XpSENS()

XpSTACK_()

XpSTACK_MAP_()

XpSTEP()

XpSTRLIST()

XpSUBCALL()

XpTABS_()

XPTAG_ADD

XPTAG_ALIAS

XPTAG_AUTORESTORE

XPTAG_BORDER

XPTAG_BUTNOTIFY

XPTAG_CALL

XPTAG_CHGNOTIFY

XPTAG_CLASS

XPTAG_CLRMINMAX

XPTAG_CTRLCFG

XPTAG_CTRLFRONT

XPTAG_DELETE

XPTAG_DESTROYNOTIFY

XPTAG_DIVADD

XPTAG_DIVREM

XPTAG_DLOGTYPE

XPTAG_DRAWCBFUNC

XPTAG_ENABLE

XPTAG_END

XPTAG_FOCUS

XPTAG_GROUP

XPTAG_HARDMINMAX

XPTAG_IMMUPD

XPTAG_INTXFORM

XPTAG_LABEL

XPTAG_LEFT

XPTAG_LINK

XPTAG_MAX

XPTAG_MIN

XPTAG_NARROW

XPTAG_NEST

XPTAG_NULL

XPTAG_ORDER

XPTAG_ORIENT

XPTAG_POPCMDFUNC

XPTAG_POPFUNCS

XPTAG_RANGE

XPTAG_SENS

XPTAG_STACK

XPTAG_STEP

XPTAG_STRLIST

XPTAG_TABS

XPTAG_TRACK

XPTAG_UNALIAS

XPTAG_VALUE

XPTAG_VECLABEL

XPTAG_XREQCFG

XPTAG_ZOOMCBFUNC

XpTRACK()

XpUNALIAS_()

XpVALUE()

XpVECLABEL()

XpXREQCFG()

XpZOOMCBFUNC()

Structure	Members

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	

Symbol																Member	of																	Header

a																					LWPixelRGBA32													lwimageio.h

a																					LWPixelRGBAFP

activate														ServerRecord														lwserver.h

addBuf																LWPSysFuncs															lwprtcl.h

addControl												LWPanelFuncs														lwpanel.h

addCtrl															DynaReqFuncs														lwdyna.h

addCurve														MeshEditOp																lwmeshedt.h

addFace															MeshEditOp

addIPnt															MeshEditOp

addNamedPreset								LWShelfFuncs														lwshelf.h

addParticle											LWPSysFuncs															lwprtcl.h

addPatch														MeshEditOp																lwmeshedt.h

addPoint														MeshEditOp

addPoly															MeshEditOp

addPreset													LWShelfFuncs														lwshelf.h

addQuad															MeshEditOp																lwmeshedt.h

addSample													LWVolumeAccess												lwvolume.h

addTransparency							LWShaderAccess												lwshader.h

addTri																MeshEditOp																lwmeshedt.h

adjust																LWLayoutToolFuncs									lwlaytool.h

adjust																LWToolFuncs															lwtool.h

alertLevel												LWInterfaceInfo											lwrender.h

alpha																	LWImageList															lwimage.h

alphaSpot													LWImageList

ambient															LWLightInfo															lwrender.h

amp																			LWTextureAccess											lwtexture.h

area																		LWPanControlDesc										lwpanel.h

argument														LWModCommand														lwcmdseq.h

aspect																LWAnimLoaderHandler							lwanimlod.h

attach																LWPSysFuncs															lwprtcl.h

ax																				LWToolEvent															lwtool.h

axis																		LWTextureAccess											lwtexture.h

axis																		LWToolEvent															lwtool.h

axis																		LWWireDrawAccess

ay																				LWToolEvent

az																				LWToolEvent

b																					LWPixelRGB24														lwimageio.h

b																					LWPixelRGBA32

b																					LWPixelRGBAFP

b																					LWPixelRGBFP

backdrop														LWBackdropInfo												lwrender.h

baseName														LWFileReqLocal												lwdialog.h

bbox																		LWStateQueryFuncs									lwmodeler.h

begin																	LWAnimFrameAccess									lwanimlod.h

begin																	LWAnimSaverHandler								lwanimsav.h

begin																	LWFrameBufferHandler						lwframbuf.h

begin																	LWImageLoaderLocal								lwimageio.h

beginBlk														LWSaveState															lwio.h

bg																				LWCompInfo																lwrender.h

bits																		DynaStringHint												lwdyna.h

bitval																DyBitfieldHint

blitPanel													LWRasterFuncs													lwpanel.h

blue																		LWColorPickLocal										lwdialog.h

blurLength												LWCameraInfo														lwrender.h

boneSource												LWObjectInfo

bounces															LWShaderAccess												lwshader.h

boxThreshold										LWInterfaceInfo											lwrender.h

buf																			DyValString															lwdyna.h

buf																			LWValString															lwpanel.h

bufLen																DyValString															lwdyna.h

bufLen																LWFileReqLocal												lwdialog.h

bufLen																LWValString															lwpanel.h

build																	LWMeshEditTool												lwmodtool.h

bumpHeight												LWMicropol																lwtxtr.h

bumpHeight												LWShaderAccess												lwshader.h

byName																LWSurfaceFuncs												lwsurf.h

byObject														LWSurfaceFuncs

chan																		LWChannelAccess											lwchannel.h

changeID														LWItemFuncs															lwrender.h

chanGroup													LWItemInfo

chanGrp															LWSurfaceFuncs												lwsurf.h

channelEnvelope							LWChannelInfo													lwenvel.h

channelEvaluate							LWChannelInfo

channelName											LWChannelAccess											lwchannel.h

channelName											LWChannelInfo													lwenvel.h

channelParent									LWChannelInfo

channelType											LWChannelInfo

chc																			DynaStringHint												lwdyna.h

choice																DyReqControlDesc

choice																LWPanControlDesc										lwpanel.h

cid																			LWXPanelControl											lwxpanel.h

circle																LWCustomObjAccess									lwcustobj.h

circle																LWWireDrawAccess										lwtool.h

className													ServerRecord														lwserver.h

cleanup															LWPSysFuncs															lwprtcl.h

cleanup															LWRenderFuncs													lwrender.h

cleanup															LWTextureFuncs												lwtxtr.h

clear																	LWFontListFuncs											lwmodeler.h

clear																	LWImageList															lwimage.h

clipMap															LWObjectInfo														lwrender.h

close																	LWAnimSaverHandler								lwanimsav.h

close																	LWFrameBufferHandler						lwframbuf.h

close																	LWPanelFuncs														lwpanel.h

close																	LWPreviewFuncs												lwpreview.h

close																	LWShelfFuncs														lwshelf.h

close																	LWSurfEdFuncs													lwsurfed.h

close																	LWTxtrEdFuncs													lwtxtred.h

closeLoad													LWFileIOFuncs													lwio.h

closeSave													LWFileIOFuncs

cmenuCreate											ContextMenuFuncs										lwpanel.h

cmenuDeploy											ContextMenuFuncs

cmenuDestroy										ContextMenuFuncs

code																		DyBitfieldHint												lwdyna.h

color																	LWBackdropInfo												lwrender.h

color																	LWEnvironmentAccess							lwenviron.h

color																	LWFogInfo																	lwrender.h

color																	LWLightInfo

color																	LWShaderAccess												lwshader.h

color																	LWVolumeSample												lwvolume.h

colorFL															LWShaderAccess												lwshader.h

colorHL															LWShaderAccess

colRect															LWEnvironmentAccess							lwenviron.h

colWidth														LWPanMultiListBoxDesc					lwpanel.h

command															LWInterface															lwhandler.h

coneAngles												LWLightInfo															lwrender.h

context															LWMicropol																lwtxtr.h

context															LWTextureFuncs

contextAddParam							LWTextureFuncs

contextCreate									LWTextureFuncs

contextDestroy								LWTextureFuncs

controller												LWItemInfo																lwrender.h

copy																		LWEnvelopeFuncs											lwenvel.h

copy																		LWInstanceFuncs											lwhandler.h

copy																		LWTextureFuncs												lwtxtr.h

copy																		LWVParmFuncs														lwvparm.h

cosine																LWMicropol																lwtxtr.h

cosine																LWShaderAccess												lwshader.h

count																	LWFontListFuncs											lwmodeler.h

count																	LWLayoutToolFuncs									lwlaytool.h

count																	LWPanLWItemDesc											lwpanel.h

count																	LWToolFuncs															lwtool.h

countFn															LWPanListBoxDesc										lwpanel.h

countFn															LWPanMultiListBoxDesc

countFn															LWPanPopupDesc

countFn															LWPanTreeDesc

create																DynaMonitorFuncs										lwdyna.h

create																DynaReqFuncs

create																LWEnvelopeFuncs											lwenvel.h

create																LWGlobalPool														lwrender.h

create																LWImageUtil															lwimage.h

create																LWInstanceFuncs											lwhandler.h

create																LWLMonFuncs															lwmonitor.h

create																LWMTUtilFuncs													lwmtutil.h

create																LWPanelFuncs														lwpanel.h

create																LWPSysFuncs															lwprtcl.h

create																LWRasterFuncs													lwpanel.h

create																LWSurfaceFuncs												lwsurf.h

create																LWTextureFuncs												lwtxtr.h

create																LWVParmFuncs														lwvparm.h

create																LWXPanelFuncs													lwxpanel.h

createGroup											LWEnvelopeFuncs											lwenvel.h

createKey													LWEnvelopeFuncs

ctrlclass													LWXPanelControl											lwxpanel.h

ctrlType														DynaReqFuncs														lwdyna.h

curFilename											LWObjReplacementAccess				lwobjrep.h

curFrame														LWObjReplacementAccess

currentLayer										LWTxtrEdFuncs													lwtxtred.h

curTime															LWInterfaceInfo											lwrender.h

curTime															LWObjReplacementAccess				lwobjrep.h

curType															LWObjReplacementAccess

curve																	EDBoundCv																	lwmeshedt.h

cust																		DynaValue																	lwdyna.h

cust																		LWValue																			lwpanel.h

data																		LWColorPickLocal										lwdialog.h

data																		LWGlobalService											lwglobsrv.h

data																		LWLayoutGeneric											lwgeneric.h

data																		LWMasterAccess												lwmaster.h

data																		LWModCommand														lwcmdseq.h

data																		LWMonitor																	lwmonitor.h

data																		LWObjectImport												lwobjimp.h

data																		LWWireDrawAccess										lwtool.h

dataSize														LWPSBufDesc															lwprtcl.h

dataType														LWPSBufDesc

datatype														LWXPanelDataDesc										lwxpanel.h

defVal																DyValFloat																lwdyna.h

defVal																DyValFVector

defVal																DyValInt

defVal																DyValIVector

defVal																LWValFloat																lwpanel.h

defVal																LWValFVector

defVal																LWValInt

defVal																LWValIVector

deleteTmp													LWSceneConverter										lwscenecv.h

deltaRaw														LWToolEvent															lwtool.h

deltaSnap													LWToolEvent

depth																	display_Metrics											lwpanel.h

depth																	LWLoadState															lwio.h

depth																	LWSaveState

descln																LWInstanceFuncs											lwhandler.h

describe														LWXPanelFuncs													lwxpanel.h

destroy															DynaMonitorFuncs										lwdyna.h

destroy															DynaReqFuncs

destroy															LWEnvelopeFuncs											lwenvel.h

destroy															LWImageUtil															lwimage.h

destroy															LWInstanceFuncs											lwhandler.h

destroy															LWLMonFuncs															lwmonitor.h

destroy															LWMeshInfo																lwmeshes.h

destroy															LWMTUtilFuncs													lwmtutil.h

destroy															LWPanelFuncs														lwpanel.h

destroy															LWPSysFuncs															lwprtcl.h

destroy															LWRasterFuncs													lwpanel.h

destroy															LWTextureFuncs												lwtxtr.h

destroy															LWVParmFuncs														lwvparm.h

destroy															LWXPanelFuncs													lwxpanel.h

destroyGroup										LWEnvelopeFuncs											lwenvel.h

destroyKey												LWEnvelopeFuncs

detach																LWPSysFuncs															lwprtcl.h

diffuse															LWShaderAccess												lwshader.h

difSharpness										LWShaderAccess

dir																			LWEnvironmentAccess							lwenviron.h

dir																			LWVolumeAccess												lwvolume.h

dirty																	LWLayoutToolFuncs									lwlaytool.h

dirty																	LWToolFuncs															lwtool.h

dispData														LWCustomObjAccess									lwcustobj.h

displayFlags										LWInterfaceInfo											lwrender.h

dispMap															LWObjectInfo

dispMetrics											DrawFuncs																	lwpanel.h

dissolve														LWObjectInfo														lwrender.h

dist																		LWVolumeSample												lwvolume.h

done																		LWAnimFrameAccess									lwanimlod.h

done																		LWImageLoaderLocal								lwimageio.h

done																		LWImageProtocol

done																		LWLayoutToolFuncs									lwlaytool.h

done																		LWLMonFuncs															lwmonitor.h

done																		LWMonitor

done																		LWObjectImport												lwobjimp.h

done																		LWToolFuncs															lwtool.h

done																		MeshEditOp																lwmeshedt.h

down																		LWLayoutToolFuncs									lwlaytool.h

down																		LWToolFuncs															lwtool.h

draw																		LWControl																	lwpanel.h

draw																		LWLayoutToolFuncs									lwlaytool.h

draw																		LWPanelFuncs														lwpanel.h

draw																		LWToolFuncs															lwtool.h

drawBorder												DrawFuncs																	lwpanel.h

drawBorder												LWRasterFuncs

drawBorder												LWXPDrawFuncs													lwxpanel.h

drawBox															DrawFuncs																	lwpanel.h

drawBox															LWRasterFuncs

drawBox															LWXPDrawFuncs													lwxpanel.h

drawf																	LWXPanelFuncs

drawFuncs													LWPanelFuncs														lwpanel.h

drawLine														DrawFuncs

drawLine														LWRasterFuncs

drawLine														LWXPDrawFuncs													lwxpanel.h

drawPixel													DrawFuncs																	lwpanel.h

drawPixel													LWRasterFuncs

drawPixel													LWXPDrawFuncs													lwxpanel.h

drawRGBBox												DrawFuncs																	lwpanel.h

drawRGBBox												LWRasterFuncs

drawRGBBox												LWXPDrawFuncs													lwxpanel.h

drawRGBPixel										DrawFuncs																	lwpanel.h

drawRGBPixel										LWRasterFuncs

drawRGBPixel										LWXPDrawFuncs													lwxpanel.h

drawText														DrawFuncs																	lwpanel.h

drawText														LWRasterFuncs

drawText														LWXPDrawFuncs													lwxpanel.h

dx																				LWToolEvent															lwtool.h

dy																				LWToolEvent

dynaUpdate												LWInterfaceInfo											lwrender.h

edgeColor													LWObjectInfo

edgeOpts														LWObjectInfo

edit																		LWEnvelopeFuncs											lwenvel.h

editBegin													LWModCommand														lwcmdseq.h

editEnv															LWVParmFuncs														lwvparm.h

editTex															LWVParmFuncs

egGet																	LWEnvelopeFuncs											lwenvel.h

egSet																	LWEnvelopeFuncs

end																			EDBoundCv																	lwmeshedt.h

end																			LWFilterAccess												lwfilter.h

end																			LWMeshEditTool												lwmodtool.h

end																			LWTxtrParamDesc											lwtxtr.h

endBlk																LWLoadState															lwio.h

endBlk																LWSaveState

envAge																LWEnvelopeFuncs											lwenvel.h

envGroup														LWTextureFuncs												lwtxtr.h

eraseBox														LWRasterFuncs													lwpanel.h

error																	LWMessageFuncs												lwhost.h

eta																			LWShaderAccess												lwshader.h

evaluate														LWAnimLoaderHandler							lwanimlod.h

evaluate														LWChannelHandler										lwchannel.h

evaluate														LWCustomObjHandler								lwcustobj.h

evaluate														LWDisplacementHandler					lwdisplce.h

evaluate														LWEnvelopeFuncs											lwenvel.h

evaluate														LWEnvironmentHandler						lwenviron.h

evaluate														LWImageList															lwimage.h

evaluate														LWItemMotionHandler							lwmotion.h

evaluate														LWLayoutGeneric											lwgeneric.h

evaluate														LWMasterAccess												lwmaster.h

evaluate														LWModCommand														lwcmdseq.h

evaluate														LWObjReplacementHandler			lwobjrep.h

evaluate														LWPixelFilterHandler						lwfilter.h

evaluate														LWShaderHandler											lwshader.h

evaluate														LWTextureFuncs												lwtxtr.h

evaluate														LWTextureHandler										lwtexture.h

evaluate														LWVolumetricHandler							lwvolume.h

evaluateUV												LWTextureFuncs												lwtxtr.h

event																	LWLayoutToolFuncs									lwlaytool.h

event																	LWMasterHandler											lwmaster.h

event																	LWToolFuncs															lwtool.h

eventCode													LWMasterAccess												lwmaster.h

eventData													LWMasterAccess

excluded														LWObjectInfo														lwrender.h

execute															LWLayoutGeneric											lwgeneric.h

execute															LWMasterAccess												lwmaster.h

execute															LWModCommand														lwcmdseq.h

failedBuf													LWObjectImport												lwobjimp.h

failedLen													LWObjectImport

falloff															LWBoneInfo																lwrender.h

falloff															LWLightInfo

farClip															LWVolumeAccess												lwvolume.h

fg																				LWCompInfo																lwrender.h

fgAlpha															LWCompInfo

filename														LWImageList															lwimage.h

filename														LWImageLoaderLocal								lwimageio.h

filename														LWImageSaverLocal

filename														LWObjectFuncs													lwmeshes.h

filename														LWObjectImport												lwobjimp.h

filename														LWObjectInfo														lwrender.h

filename														LWSceneConverter										lwscenecv.h

filename														LWSceneInfo															lwrender.h

fileType														LWFileReqLocal												lwdialog.h

find																		LWGlobalPool														lwrender.h

findBlk															LWLoadState															lwio.h

findKey															LWEnvelopeFuncs											lwenvel.h

first																	LWGlobalPool														lwrender.h

first																	LWImageList															lwimage.h

first																	LWItemInfo																lwrender.h

first																	LWSurfaceFuncs												lwsurf.h

firstChild												LWItemInfo																lwrender.h

firstLayer												LWTextureFuncs												lwtxtr.h

flags																	EDPointInfo															lwmeshedt.h

flags																	EDPolygonInfo

flags																	LWBoneInfo																lwrender.h

flags																	LWCameraInfo

flags																	LWChannelHandler										lwchannel.h

flags																	LWCustomObjAccess									lwcustobj.h

flags																	LWCustomObjHandler

flags																	LWDisplacementHandler					lwdisplce.h

flags																	LWEnvironmentHandler						lwenviron.h

flags																	LWFogInfo																	lwrender.h

flags																	LWImageFilterHandler						lwfilter.h

flags																	LWItemInfo																lwrender.h

flags																	LWItemMotionHandler							lwmotion.h

flags																	LWLightInfo															lwrender.h

flags																	LWMasterHandler											lwmaster.h

flags																	LWObjectInfo														lwrender.h

flags																	LWPixelFilterHandler						lwfilter.h

flags																	LWShaderAccess												lwshader.h

flags																	LWShaderHandler

flags																	LWTextureAccess											lwtexture.h

flags																	LWTextureHandler

flags																	LWToolEvent															lwtool.h

flags																	LWTxtrParamDesc											lwtxtr.h

flags																	LWVolumeAccess												lwvolume.h

flags																	LWVolumetricHandler

flt																			DynaValue																	lwdyna.h

flt																			LWValue																			lwpanel.h

focalDistance									LWCameraInfo														lwrender.h

focalLength											LWCameraInfo

fog																			LWObjectInfo

formGet															LWXPanelFuncs													lwxpanel.h

formSet															LWXPanelFuncs

fovAngles													LWCameraInfo														lwrender.h

frame																	LWChannelAccess											lwchannel.h

frame																	LWFilterAccess												lwfilter.h

frame																	LWItemMotionAccess								lwmotion.h

frame																	LWTimeInfo																lwrender.h

frameCount												LWAnimLoaderHandler							lwanimlod.h

frameEnd														LWSceneInfo															lwrender.h

frameHeight											LWSceneInfo

frameRate													LWAnimLoaderHandler							lwanimlod.h

framesPerSecond							LWSceneInfo															lwrender.h

frameStart												LWSceneInfo

frameStep													LWSceneInfo

frameWidth												LWSceneInfo

frustum															LWVolumeAccess												lwvolume.h

fStop																	LWCameraInfo														lwrender.h

fullName														LWFileReqLocal												lwdialog.h

fvec																		DynaValue																	lwdyna.h

fvec																		LWValue																			lwpanel.h

g																					LWPixelRGB24														lwimageio.h

g																					LWPixelRGBA32

g																					LWPixelRGBAFP

g																					LWPixelRGBFP

generalFlags										LWInterfaceInfo											lwrender.h

get																			LWControl																	lwpanel.h

get																			LWPanelFuncs

getBitmap													LWPreviewFuncs												lwpreview.h

getBufData												LWPSysFuncs															lwprtcl.h

getBufID														LWPSysFuncs

getCamera													LWPreviewFuncs												lwpreview.h

getChannel												LWChannelAccess											lwchannel.h

getColorVMap										LWSurfaceFuncs												lwsurf.h

getData															LWXPanelFuncs													lwxpanel.h

getEnv																LWSurfaceFuncs												lwsurf.h

getEnv																LWVParmFuncs														lwvparm.h

getFlt																LWSurfaceFuncs												lwsurf.h

getImg																LWSurfaceFuncs

getInfo															LWImageUtil															lwimage.h

getInt																LWSurfaceFuncs												lwsurf.h

getLine															LWFilterAccess												lwfilter.h

getOpacity												LWVolumeAccess												lwvolume.h

getParam														LWItemMotionAccess								lwmotion.h

getParam														LWTextureFuncs												lwtxtr.h

getParticle											LWPSysFuncs															lwprtcl.h

getPCount													LWPSysFuncs

getPixel														LWImageUtil															lwimage.h

getPixel														LWPreviewFuncs												lwpreview.h

getPosition											LWSurfEdFuncs													lwsurfed.h

getPSys															LWPSysFuncs															lwprtcl.h

getState														LWVParmFuncs														lwvparm.h

getTag																LWItemInfo																lwrender.h

getTex																LWSurfaceFuncs												lwsurf.h

getTex																LWVParmFuncs														lwvparm.h

getVal																LWPixelAccess													lwfilter.h

getVal																LWVParmFuncs														lwvparm.h

getView															LWPreviewFuncs												lwpreview.h

global																LWPanLWItemDesc											lwpanel.h

globalFun													LWPanelFuncs

gNorm																	LWMicropol																lwtxtr.h

gNorm																	LWShaderAccess												lwshader.h

goal																		LWItemInfo																lwrender.h

goalStrength										LWItemInfo

green																	LWColorPickLocal										lwdialog.h

groupName													LWChannelInfo													lwenvel.h

groupParent											LWChannelInfo

h																					LWEnvironmentAccess							lwenviron.h

handle																LWLayoutToolFuncs									lwlaytool.h

handle																LWPanelFuncs														lwpanel.h

handle																LWToolFuncs															lwtool.h

hasAlpha														LWImageList															lwimage.h

height																display_Metrics											lwpanel.h

height																LWFilterAccess												lwfilter.h

height																LWPanAreaDesc													lwpanel.h

height																LWPanTreeDesc

height																LWPanXPanDesc

help																		LWLayoutToolFuncs									lwlaytool.h

help																		LWToolFuncs															lwtool.h

hint																		LWXPanelFuncs													lwxpanel.h

hotFunc															LWColorPickLocal										lwdialog.h

id																				LWBlockIdent														lwio.h

ID																				LWGlobalPool														lwrender.h

id																				LWGlobalService											lwglobsrv.h

illuminate												LWMicropol																lwtxtr.h

illuminate												LWPixelAccess													lwfilter.h

illuminate												LWShaderAccess												lwshader.h

illuminate												LWVolumeAccess												lwvolume.h

index																	LWFontListFuncs											lwmodeler.h

info																		LWDisplacementAccess						lwdisplce.h

info																		LWMessageFuncs												lwhost.h

infoFn																LWPanTreeDesc													lwpanel.h

init																		LWLMonFuncs															lwmonitor.h

init																		LWMonitor

init																		LWPSysFuncs															lwprtcl.h

init																		LWRenderFuncs													lwrender.h

initMP																LWVParmFuncs														lwvparm.h

initUV																MeshEditOp																lwmeshedt.h

inst																		LWAnimLoaderHandler							lwanimlod.h

inst																		LWAnimSaverHandler								lwanimsav.h

inst																		LWChannelHandler										lwchannel.h

inst																		LWCustomObjHandler								lwcustobj.h

inst																		LWDisplacementHandler					lwdisplce.h

inst																		LWEnvironmentHandler						lwenviron.h

inst																		LWFrameBufferHandler						lwframbuf.h

inst																		LWHandler																	lwhandler.h

inst																		LWImageFilterHandler						lwfilter.h

inst																		LWInterface															lwhandler.h

inst																		LWItemHandler													lwrender.h

inst																		LWItemMotionHandler							lwmotion.h

inst																		LWMasterHandler											lwmaster.h

inst																		LWObjReplacementHandler			lwobjrep.h

inst																		LWPixelFilterHandler						lwfilter.h

inst																		LWRenderHandler											lwrender.h

inst																		LWShaderHandler											lwshader.h

inst																		LWTextureHandler										lwtexture.h

inst																		LWVolumetricHandler							lwvolume.h

instance														HostDisplayInfo											lwdisplay.h

instance														LWLayoutTool														lwlaytool.h

instance														LWMeshEditTool												lwmodtool.h

instance														LWTool																				lwtool.h

intensity													LWLightInfo															lwrender.h

intv																		DynaValue																	lwdyna.h

intv																		LWValue																			lwpanel.h

ioMode																LWLoadState															lwio.h

ioMode																LWSaveState

isColor															LWImageList															lwimage.h

isOpen																LWPreviewFuncs												lwpreview.h

isOpen																LWShelfFuncs														lwshelf.h

isOpen																LWSurfEdFuncs													lwsurfed.h

isOpen																LWTxtrEdFuncs													lwtxtred.h

item																		DyChoiceHint														lwdyna.h

item																		LWAnimSaverHandler								lwanimsav.h

item																		LWChannelHandler										lwchannel.h

item																		LWCustomObjHandler								lwcustobj.h

item																		LWDisplacementHandler					lwdisplce.h

item																		LWEnvironmentHandler						lwenviron.h

item																		LWFrameBufferHandler						lwframbuf.h

item																		LWImageFilterHandler						lwfilter.h

item																		LWItemHandler													lwrender.h

item																		LWItemMotionAccess								lwmotion.h

item																		LWItemMotionHandler

item																		LWMasterHandler											lwmaster.h

item																		LWObjReplacementHandler			lwobjrep.h

item																		LWPixelFilterHandler						lwfilter.h

item																		LWRenderHandler											lwrender.h

item																		LWShaderHandler											lwshader.h

item																		LWTextureHandler										lwtexture.h

item																		LWVolumetricHandler							lwvolume.h

itemColor													LWInterfaceInfo											lwrender.h

itemFlags													LWInterfaceInfo

itemID																LWTxtrParamDesc											lwtxtr.h

itemName														LWTxtrParamDesc

items																	DyReqChoiceDesc											lwdyna.h

items																	LWPanChoiceDesc											lwpanel.h

itemType														LWPanLWItemDesc

itemType														LWTxtrParamDesc											lwtxtr.h

itemVis															LWInterfaceInfo											lwrender.h

ivec																		DynaValue																	lwdyna.h

ivec																		LWValue																			lwpanel.h

jointComp													LWBoneInfo																lwrender.h

keyGet																LWEnvelopeFuncs											lwenvel.h

keySet																LWEnvelopeFuncs

label																	LWXPanelControl											lwxpanel.h

lastLayer													LWTextureFuncs												lwtxtr.h

layer																	EDPointInfo															lwmeshedt.h

layer																	EDPolygonInfo

layer																	LWObjectImport												lwobjimp.h

layerAdd														LWTextureFuncs												lwtxtr.h

layerEnvGroup									LWTextureFuncs

layerEvaluate									LWTextureFuncs

layerExists											LWObjectFuncs													lwmeshes.h

layerList													LWStateQueryFuncs									lwmodeler.h

layerMask													LWStateQueryFuncs

layerMesh													LWObjectFuncs													lwmeshes.h

layerName													LWObjectFuncs

layerNum														MeshEditOp																lwmeshedt.h

layerSetType										LWTextureFuncs												lwtxtr.h

layerType													LWTextureFuncs

layerVis														LWObjectFuncs													lwmeshes.h

leafFn																LWPanTreeDesc													lwpanel.h

lFlags																LWObjectImport												lwobjimp.h

limitedRegion									LWSceneInfo															lwrender.h

limits																LWBoneInfo

limits																LWItemInfo

line																		LWCustomObjAccess									lwcustobj.h

lineTo																LWWireDrawAccess										lwtool.h

list																		LWPanLWItemDesc											lwpanel.h

listbox															LWPanControlDesc

load																		LWEnvelopeFuncs											lwenvel.h

load																		LWFontListFuncs											lwmodeler.h

load																		LWImageList															lwimage.h

load																		LWInstanceFuncs											lwhandler.h

load																		LWPSysFuncs															lwprtcl.h

load																		LWShelfFuncs														lwshelf.h

load																		LWTextureFuncs												lwtxtr.h

load																		LWVParmFuncs														lwvparm.h

loadScene													LWLayoutGeneric											lwgeneric.h

lock																		LWMTUtilFuncs													lwmtutil.h

lookAhead													LWItemInfo																lwrender.h

lookup																LWLayoutGeneric											lwgeneric.h

lookup																LWMasterAccess												lwmaster.h

lookup																LWModCommand														lwcmdseq.h

luma																		LWImageList															lwimage.h

lumaSpot														LWImageList

luminous														LWShaderAccess												lwshader.h

lwitem																LWPanControlDesc										lwpanel.h

maskColor													LWCameraInfo														lwrender.h

maskLimits												LWCameraInfo

max																			LWPanRangeDesc												lwpanel.h

maxAmt																LWFogInfo																	lwrender.h

maxColors													display_Metrics											lwpanel.h

maxDist															LWFogInfo																	lwrender.h

maxLayers													LWObjectFuncs													lwmeshes.h

maxSamplesPerPixel				LWSceneInfo															lwrender.h

meshInfo														LWObjectInfo

metaballRes											LWObjectInfo

min																			LWPanRangeDesc												lwpanel.h

minAmt																LWFogInfo																	lwrender.h

minDist															LWFogInfo

minSamplesPerPixel				LWSceneInfo

mirror																LWShaderAccess												lwshader.h

mode																		LWEnvironmentAccess							lwenviron.h

mode																		LWStateQueryFuncs									lwmodeler.h

monitor															LWFilterAccess												lwfilter.h

monitor															LWImageLoaderLocal								lwimageio.h

monitor															LWImageSaverLocal

monitor															LWObjectImport												lwobjimp.h

morphAmount											LWObjectInfo														lwrender.h

morphTarget											LWObjectInfo

move																		LWLayoutToolFuncs									lwlaytool.h

move																		LWToolFuncs															lwtool.h

moveFn																LWPanTreeDesc													lwpanel.h

moveTo																LWWireDrawAccess										lwtool.h

mp																				PvSample																		lwpreview.h

multiList													LWPanControlDesc										lwpanel.h

muscleFlex												LWBoneInfo																lwrender.h

name																		LWFontListFuncs											lwmodeler.h

name																		LWImageList															lwimage.h

name																		LWItemInfo																lwrender.h

name																		LWPSBufDesc															lwprtcl.h

name																		LWSceneInfo															lwrender.h

name																		LWSurfaceFuncs												lwsurf.h

name																		LWTextureFuncs												lwtxtr.h

name																		LWTxtrParamDesc

name																		LWXPanelDataDesc										lwxpanel.h

name																		ServerRecord														lwserver.h

nameFn																LWPanListBoxDesc										lwpanel.h

nameFn																LWPanMultiListBoxDesc

nameFn																LWPanPopupDesc

nearClip														LWVolumeAccess												lwvolume.h

needAA																LWImageList															lwimage.h

newFilename											LWObjReplacementAccess				lwobjrep.h

newFrame														LWObjReplacementAccess

newTime															LWObjReplacementAccess

newTime															LWRenderFuncs													lwrender.h

newtime															LWTextureFuncs												lwtxtr.h

newType															LWObjReplacementAccess				lwobjrep.h

next																		LWGlobalPool														lwrender.h

next																		LWImageList															lwimage.h

next																		LWItemInfo																lwrender.h

next																		LWSurfaceFuncs												lwsurf.h

nextChannel											LWChannelInfo													lwenvel.h

nextChild													LWItemInfo																lwrender.h

nextControl											LWPanelFuncs														lwpanel.h

nextGroup													LWChannelInfo													lwenvel.h

nextKey															LWEnvelopeFuncs

nextLayer													LWTextureFuncs												lwtxtr.h

noise																	LWTextureFuncs

numLayers													LWStateQueryFuncs									lwmodeler.h

numObjects												LWObjectFuncs													lwmeshes.h

numPnts															EDPolygonInfo													lwmeshedt.h

numPoints													LWMeshInfo																lwmeshes.h

numPoints													LWObjectInfo														lwrender.h

numPoints													LWSceneInfo

numPolygons											LWMeshInfo																lwmeshes.h

numPolygons											LWObjectInfo														lwrender.h

numPolygons											LWSceneInfo

numThreads												LWSceneInfo

numVMaps														LWObjectFuncs													lwmeshes.h

o																					LWVolumeAccess												lwvolume.h

oAxis																	LWMicropol																lwtxtr.h

object																LWStateQueryFuncs									lwmodeler.h

objectID														LWObjReplacementAccess				lwobjrep.h

objID																	LWMicropol																lwtxtr.h

objID																	LWShaderAccess												lwshader.h

octaves															LWTextureAccess											lwtexture.h

oDist																	LWVolumeAccess												lwvolume.h

okCancel														LWMessageFuncs												lwhost.h

opacity															LWVolumeSample												lwvolume.h

open																		LWAnimSaverHandler								lwanimsav.h

open																		LWFrameBufferHandler						lwframbuf.h

open																		LWPanelFuncs														lwpanel.h

open																		LWPreviewFuncs												lwpreview.h

open																		LWShelfFuncs														lwshelf.h

open																		LWSurfEdFuncs													lwsurfed.h

open																		LWTxtrEdFuncs													lwtxtred.h

open																		LWXPanelFuncs													lwxpanel.h

openLoad														LWFileIOFuncs													lwio.h

openSave														LWFileIOFuncs

oPos																		LWDisplacementAccess						lwdisplce.h

oPos																		LWMicropol																lwtxtr.h

oPos																		LWShaderAccess												lwshader.h

options															LWInterface															lwhandler.h

oScl																		LWMicropol																lwtxtr.h

oXfrm																	LWMicropol

oXfrm																	LWShaderAccess												lwshader.h

p																					LWEnvironmentAccess							lwenviron.h

panel																	LWInterface															lwhandler.h

panel																	LWLayoutToolFuncs									lwlaytool.h

panel																	LWToolFuncs															lwtool.h

param																	LWItemInfo																lwrender.h

paramCleanup										LWTxtrParamFuncs										lwtxtr.h

paramEvaluate									LWTxtrParamFuncs

paramTime													LWTxtrParamFuncs

parent																LWItemInfo																lwrender.h

parent																LWObjectImport												lwobjimp.h

patchLevel												LWObjectInfo														lwrender.h

path																		LWFileReqLocal												lwdialog.h

pause																	LWFrameBufferHandler						lwframbuf.h

pickName														LWFileReqLocal												lwdialog.h

pivot																	LWObjectImport												lwobjimp.h

pivotPoint												LWObjectFuncs													lwmeshes.h

pixelAspect											LWCameraInfo														lwrender.h

pixelAspect											LWSceneInfo

pixX																		display_Metrics											lwpanel.h

pixY																		display_Metrics

pnt																			EDPointInfo															lwmeshedt.h

pntBasePos												LWMeshInfo																lwmeshes.h

pntMove															MeshEditOp																lwmeshedt.h

pntOtherPos											LWMeshInfo																lwmeshes.h

pntSelect													MeshEditOp																lwmeshedt.h

pntVGet															LWMeshInfo																lwmeshes.h

pntVIDGet													LWMeshInfo

pntVLookup												LWMeshInfo

pntVMap															MeshEditOp																lwmeshedt.h

pntVPGet														LWMeshInfo																lwmeshes.h

pntVPIDGet												LWMeshInfo

pntVPMap														MeshEditOp																lwmeshedt.h

pntVSelect												LWMeshInfo																lwmeshes.h

point																	LWCustomObjAccess									lwcustobj.h

point																	LWDisplacementAccess						lwdisplce.h

point																	LWObjectImport												lwobjimp.h

pointCount												MeshEditOp																lwmeshedt.h

pointInfo													MeshEditOp

points																EDPolygonInfo

pointScan													MeshEditOp

pointVEval												MeshEditOp

pointVGet													MeshEditOp

pointVPGet												MeshEditOp

pointVSet													MeshEditOp

pol																			EDPolygonInfo

polFlag															MeshEditOp

polFlags														LWMeshInfo																lwmeshes.h

polNum																LWMicropol																lwtxtr.h

polNum																LWShaderAccess												lwshader.h

polPnts															MeshEditOp																lwmeshedt.h

polSelect													MeshEditOp

polSize															LWMeshInfo																lwmeshes.h

polSurf															MeshEditOp																lwmeshedt.h

polTag																LWMeshInfo																lwmeshes.h

polTag																LWObjectImport												lwobjimp.h

polTag																MeshEditOp																lwmeshedt.h

polType															LWMeshInfo																lwmeshes.h

polVertex													LWMeshInfo

polyCount													MeshEditOp																lwmeshedt.h

polygon															LWMicropol																lwtxtr.h

polygon															LWObjectImport												lwobjimp.h

polygon															LWShaderAccess												lwshader.h

polygonSize											LWObjectInfo														lwrender.h

polyInfo														MeshEditOp																lwmeshedt.h

polyNormal												MeshEditOp

polyScan														MeshEditOp

polyTag															MeshEditOp

popup																	LWPanControlDesc										lwpanel.h

portAxis														LWToolEvent															lwtool.h

position														EDPointInfo															lwmeshedt.h

posRaw																LWToolEvent															lwtool.h

posSnap															LWToolEvent

post																		DynaReqFuncs														lwdyna.h

post																		LWXPanelFuncs													lwxpanel.h

previewEnd												LWInterfaceInfo											lwrender.h

previewStart										LWInterfaceInfo

previewStep											LWInterfaceInfo

prevKey															LWEnvelopeFuncs											lwenvel.h

priv																		LWInstanceFuncs											lwhandler.h

priv																		LWMeshInfo																lwmeshes.h

priv_data													LWAnimFrameAccess									lwanimlod.h

priv_data													LWControl																	lwpanel.h

priv_data													LWImageLoaderLocal								lwimageio.h

priv_data													LWImageProtocol

priv_data													LWImageSaverLocal

process															LWImageFilterHandler						lwfilter.h

projImage													LWLightInfo															lwrender.h

ptr																			LWValPointer														lwpanel.h

ptr																			LWValue

pxRaw																	LWToolEvent															lwtool.h

pxScale															LWWireDrawAccess

pxSnap																LWToolEvent

pyRaw																	LWToolEvent

pySnap																LWToolEvent

quad																		LWCustomObjAccess									lwcustobj.h

quality															LWLightInfo															lwrender.h

r																					LWPixelRGB24														lwimageio.h

r																					LWPixelRGBA32

r																					LWPixelRGBAFP

r																					LWPixelRGBFP

range																	LWLightInfo															lwrender.h

range																	LWPanControlDesc										lwpanel.h

rawColor														LWLightInfo															lwrender.h

ray																			LWMicropol																lwtxtr.h

ray																			LWVolumeAccess												lwvolume.h

rayCast															LWMicropol																lwtxtr.h

rayCast															LWPixelAccess													lwfilter.h

rayCast															LWShaderAccess												lwshader.h

rayCast															LWVolumeAccess												lwvolume.h

rayColor														LWVolumeAccess

rayLength													LWMicropol																lwtxtr.h

rayLength													LWShaderAccess												lwshader.h

rayShade														LWMicropol																lwtxtr.h

rayShade														LWPixelAccess													lwfilter.h

rayShade														LWShaderAccess												lwshader.h

rayShade														LWVolumeAccess												lwvolume.h

raySource													LWMicropol																lwtxtr.h

raySource													LWShaderAccess												lwshader.h

rayTrace														LWMicropol																lwtxtr.h

rayTrace														LWPixelAccess													lwfilter.h

rayTrace														LWShaderAccess												lwshader.h

rayTrace														LWVolumeAccess												lwvolume.h

read																		LWLoadState															lwio.h

readData														LWLoadState

readFailure											LWSceneConverter										lwscenecv.h

readFP																LWLoadState															lwio.h

readI1																LWLoadState

readI2																LWLoadState

readI4																LWLoadState

readID																LWLoadState

readStr															LWLoadState

readU1																LWLoadState

readU2																LWLoadState

readU4																LWLoadState

recursionDepth								LWSceneInfo															lwrender.h

red																			LWColorPickLocal										lwdialog.h

reflectionBlur								LWShaderAccess												lwshader.h

refName															LWObjectFuncs													lwmeshes.h

refractionBlur								LWShaderAccess												lwshader.h

refresh															LWTxtrEdFuncs													lwtxtred.h

regionLimits										LWCameraInfo														lwrender.h

remParticle											LWPSysFuncs															lwprtcl.h

remPoint														MeshEditOp																lwmeshedt.h

remPoly															MeshEditOp

rend																		LWCustomObjHandler								lwcustobj.h

rend																		LWDisplacementHandler					lwdisplce.h

rend																		LWEnvironmentHandler						lwenviron.h

rend																		LWPixelFilterHandler						lwfilter.h

rend																		LWRenderHandler											lwrender.h

rend																		LWShaderHandler											lwshader.h

rend																		LWTextureHandler										lwtexture.h

rend																		LWVolumetricHandler							lwvolume.h

renderCamera										LWSceneInfo															lwrender.h

renderOpts												LWSceneInfo

renderType												LWSceneInfo

replacement_color					LWShaderAccess												lwshader.h

replacement_percentage	LWShaderAccess

reqType															LWFileReqLocal												lwdialog.h

resample														LWImageUtil															lwimage.h

resolution												LWCameraInfo														lwrender.h

restLength												LWBoneInfo

restParam													LWBoneInfo

result																LWColorPickLocal										lwdialog.h

result																LWFileReqLocal

result																LWImageLoaderLocal								lwimageio.h

result																LWImageSaverLocal

result																LWObjectImport												lwobjimp.h

RGB																			LWImageList															lwimage.h

rgbaz																	PvSample																		lwpreview.h

RGBSpot															LWImageList															lwimage.h

roughness													LWShaderAccess												lwshader.h

save																		LWEnvelopeFuncs											lwenvel.h

save																		LWImageUtil															lwimage.h

save																		LWInstanceFuncs											lwhandler.h

save																		LWPSysFuncs															lwprtcl.h

save																		LWShelfFuncs														lwshelf.h

save																		LWTextureFuncs												lwtxtr.h

save																		LWVParmFuncs														lwvparm.h

saverCount												LWImageUtil															lwimage.h

saverName													LWImageUtil

saveScene													LWLayoutGeneric											lwgeneric.h

scanPoints												LWMeshInfo																lwmeshes.h

scanPolys													LWMeshInfo

sceneLoad													LWImageList															lwimage.h

sceneObject											LWSurfaceFuncs												lwsurf.h

sceneSave													LWImageList															lwimage.h

schemaPos													LWInterfaceInfo											lwrender.h

selectAdd													LWTxtrEdFuncs													lwtxtred.h

selectClr													LWTxtrEdFuncs

selectFirst											LWTxtrEdFuncs

selectNext												LWTxtrEdFuncs

selectRem													LWTxtrEdFuncs

selItems														LWInterfaceInfo											lwrender.h

sendData														LWImageSaverLocal									lwimageio.h

sendLine														LWImageProtocol

separation												LWCameraInfo														lwrender.h

server																LWChannelInfo													lwenvel.h

server																LWItemInfo																lwrender.h

serverApply											LWChannelInfo													lwenvel.h

serverDefs												ModuleDescriptor										lwmodule.h

serverFlags											LWChannelInfo													lwenvel.h

serverFlags											LWItemInfo																lwrender.h

serverInstance								LWChannelInfo													lwenvel.h

serverRemove										LWChannelInfo

set																			LWControl																	lwpanel.h

set																			LWPanelFuncs

setAlpha														LWFilterAccess												lwfilter.h

setBufData												LWPSysFuncs															lwprtcl.h

setChannel												LWChannelAccess											lwchannel.h

setChannelEvent							LWChannelInfo													lwenvel.h

setClick														LWPreviewFuncs												lwpreview.h

setColor														LWCustomObjAccess									lwcustobj.h

setColorVMap										LWSurfaceFuncs												lwsurf.h

setContext												LWPreviewFuncs												lwpreview.h

setContext												LWShelfFuncs														lwshelf.h

setData															LWXPanelFuncs													lwxpanel.h

setEnvEvent											LWEnvelopeFuncs											lwenvel.h

setEnvGroup											LWTextureFuncs												lwtxtr.h

setGradientAutoSize			LWTxtrEdFuncs													lwtxtred.h

setMap																LWImageProtocol											lwimageio.h

setOptions												LWPreviewFuncs												lwpreview.h

setParam														LWImageProtocol											lwimageio.h

setParam														LWItemMotionAccess								lwmotion.h

setParam														LWTextureFuncs												lwtxtr.h

setParticle											LWPSysFuncs															lwprtcl.h

setPattern												LWCustomObjAccess									lwcustobj.h

setPixel														LWImageUtil															lwimage.h

setPosition											LWSurfEdFuncs													lwsurfed.h

setPosition											LWTxtrEdFuncs													lwtxtred.h

setPreset													LWPreviewFuncs												lwpreview.h

setRender													LWPreviewFuncs

setRGB																LWFilterAccess												lwfilter.h

setRGBA															LWPixelAccess

setSize															LWImageProtocol											lwimageio.h

setState														LWVParmFuncs														lwvparm.h

setSurface												LWSurfEdFuncs													lwsurfed.h

setTag																LWItemInfo																lwrender.h

setTexture												LWCustomObjAccess									lwcustobj.h

setTexture												LWTxtrEdFuncs													lwtxtred.h

setup																	LWLMonFuncs															lwmonitor.h

setup																	LWVParmFuncs														lwvparm.h

setUVs																LWCustomObjAccess									lwcustobj.h

setVal																LWPixelAccess													lwfilter.h

setVal																LWVParmFuncs														lwvparm.h

setwinpos													LWLMonFuncs															lwmonitor.h

shadMapAngle										LWLightInfo															lwrender.h

shadMapFuzz											LWLightInfo

shadMapSize											LWLightInfo

shadowOpts												LWObjectInfo

shadowType												LWLightInfo

shutdown														ModuleDescriptor										lwmodule.h

size																		LWGlobalPool														lwrender.h

size																		LWImageList															lwimage.h

size																		LWTextureAccess											lwtexture.h

source																LWDisplacementAccess						lwdisplce.h

source																LWVolumeAccess												lwvolume.h

sourceID														LWShaderAccess												lwshader.h

specular														LWShaderAccess

spline																LWWireDrawAccess										lwtool.h

spotSize														LWMicropol																lwtxtr.h

spotSize														LWShaderAccess												lwshader.h

spotSize														LWTextureAccess											lwtexture.h

squeeze															LWBackdropInfo												lwrender.h

srfID																	LWMicropol																lwtxtr.h

start																	EDBoundCv																	lwmeshedt.h

start																	LWFilterAccess												lwfilter.h

start																	LWLayoutToolFuncs									lwlaytool.h

start																	LWToolFuncs															lwtool.h

start																	LWTxtrParamDesc											lwtxtr.h

startRender											LWPreviewFuncs												lwpreview.h

startup															ModuleDescriptor										lwmodule.h

state																	MeshEditOp																lwmeshedt.h

step																		LWLMonFuncs															lwmonitor.h

step																		LWMonitor

stiffness													LWItemInfo																lwrender.h

stopRender												LWPreviewFuncs												lwpreview.h

str																			DynaValue																	lwdyna.h

str																			LWValue																			lwpanel.h

strength														LWBoneInfo																lwrender.h

stride																LWVolumeSample												lwvolume.h

string																ServerTagInfo													lwserver.h

string																DyReqControlDesc										lwdyna.h

string																LWPanControlDesc										lwpanel.h

subdivOrder											LWObjectInfo														lwrender.h

subscribe													LWPreviewFuncs												lwpreview.h

subscribe													LWShelfFuncs														lwshelf.h

subscribe													LWTxtrEdFuncs													lwtxtred.h

surface															EDPolygonInfo													lwmeshedt.h

surface															LWObjectImport												lwobjimp.h

surface															LWStateQueryFuncs									lwmodeler.h

sx																				LWPixelAccess													lwfilter.h

sx																				LWShaderAccess												lwshader.h

sy																				LWPixelAccess													lwfilter.h

sy																				LWShaderAccess												lwshader.h

sysMachine												ModuleDescriptor										lwmodule.h

sysSync															ModuleDescriptor

sysVersion												ModuleDescriptor

tag																			ServerTagInfo													lwserver.h

tagInfo															ServerRecord

target																LWItemInfo																lwrender.h

test																		LWMeshEditTool												lwmodtool.h

text																		DyReqTextDesc													lwdyna.h

text																		LWCustomObjAccess									lwcustobj.h

text																		LWPanTextDesc													lwpanel.h

text																		LWWireDrawAccess										lwtool.h

text																		DyReqControlDesc										lwdyna.h

text																		LWPanControlDesc										lwpanel.h

textAscent												display_Metrics

textHeight												display_Metrics

textHeight												LWXPDrawFuncs													lwxpanel.h

texture															LWTextureFuncs												lwtxtr.h

textWidth													DrawFuncs																	lwpanel.h

textWidth													LWXPDrawFuncs													lwxpanel.h

time																		LWChannelAccess											lwchannel.h

time																		LWItemMotionAccess								lwmotion.h

time																		LWTimeInfo																lwrender.h

title																	LWColorPickLocal										lwdialog.h

title																	LWFileReqLocal

tmpScene														LWSceneConverter										lwscenecv.h

token																	LWBlockIdent														lwio.h

tool																		LWLayoutTool														lwlaytool.h

tool																		LWMeshEditTool												lwmodtool.h

tool																		LWTool																				lwtool.h

top																			LWPanListBoxDesc										lwpanel.h

top																			LWPanMultiListBoxDesc

tPos																		LWTextureAccess											lwtexture.h

translucency										LWShaderAccess												lwshader.h

transparency										LWShaderAccess

tree																		LWPanControlDesc										lwpanel.h

triangle														LWCustomObjAccess									lwcustobj.h

txGrad																LWTextureAccess											lwtexture.h

txRGBA																LWTextureAccess

txVal																	LWMicropol																lwtxtr.h

type																		DyReqChoiceDesc											lwdyna.h

type																		DyReqStringDesc

type																		DyReqTextDesc

type																		DyValCustom

type																		DyValFloat

type																		DyValFVector

type																		DyValInt

type																		DyValIVector

type																		DyValString

type																		EDPolygonInfo													lwmeshedt.h

type																		LWAnimSaverHandler								lwanimsav.h

type																		LWBackdropInfo												lwrender.h

type																		LWFogInfo

type																		LWFrameBufferHandler						lwframbuf.h

type																		LWImageProtocol											lwimageio.h

type																		LWImageSaverLocal

type																		LWItemInfo																lwrender.h

type																		LWLightInfo

type																		LWMasterHandler											lwmaster.h

type																		LWPanAreaDesc													lwpanel.h

type																		LWPanChoiceDesc

type																		LWPanListBoxDesc

type																		LWPanLWItemDesc

type																		LWPanMultiListBoxDesc

type																		LWPanPopupDesc

type																		LWPanRangeDesc

type																		LWPanStringDesc

type																		LWPanTextDesc

type																		LWPanTreeDesc

type																		LWPanXPanDesc

type																		LWTextureFuncs												lwtxtr.h

type																		LWTxtrParamDesc

type																		LWValCustom															lwpanel.h

type																		LWValFloat

type																		LWValFVector

type																		LWValInt

type																		LWValIVector

type																		LWValPointer

type																		LWValString

type																		DynaValue																	lwdyna.h

type																		DyReqControlDesc

type																		LWPanControlDesc										lwpanel.h

type																		LWValue

unlock																LWMTUtilFuncs													lwmtutil.h

unsubscribe											LWPreviewFuncs												lwpreview.h

unsubscribe											LWShelfFuncs														lwshelf.h

unsubscribe											LWTxtrEdFuncs													lwtxtred.h

up																				LWLayoutToolFuncs									lwlaytool.h

up																				LWToolFuncs															lwtool.h

useItems														LWItemFuncs															lwrender.h

user_data													LWPanelFuncs														lwpanel.h

userData														EDPointInfo															lwmeshedt.h

userData														EDPolygonInfo

userData														LWMicropol																lwtxtr.h

userData														LWTextureFuncs

userName														LWObjectFuncs													lwmeshes.h

val																			DyValCustom															lwdyna.h

val																			DyValFVector

val																			DyValIVector

val																			LWValCustom															lwpanel.h

val																			LWValFVector

val																			LWValIVector

value																	DyChoiceHint														lwdyna.h

value																	DyValFloat

value																	DyValInt

value																	LWChannelAccess											lwchannel.h

value																	LWValFloat																lwpanel.h

value																	LWValInt

valueGet														DynaReqFuncs														lwdyna.h

valueSet														DynaReqFuncs

version															LWXPanelFuncs													lwxpanel.h

vertical														DyReqChoiceDesc											lwdyna.h

vertical														LWPanChoiceDesc											lwpanel.h

verts																	LWMicropol																lwtxtr.h

verts																	LWShaderAccess												lwshader.h

vertsWPos													LWMicropol																lwtxtr.h

vertsWPos													LWShaderAccess												lwshader.h

vid																			LWXPanelDataDesc										lwxpanel.h

view																		LWCustomObjAccess									lwcustobj.h

viewDir															LWCustomObjAccess

viewInst														LWXPanelFuncs													lwxpanel.h

viewPos															LWCustomObjAccess									lwcustobj.h

viewRefresh											LWXPanelFuncs													lwxpanel.h

visItems														LWPanListBoxDesc										lwpanel.h

visItems														LWPanMultiListBoxDesc

vmap																		LWObjectImport												lwobjimp.h

vmap																		LWStateQueryFuncs									lwmodeler.h

vmapDim															LWObjectFuncs													lwmeshes.h

vmapName														LWObjectFuncs

vmapPDV															LWObjectImport												lwobjimp.h

vmapType														LWObjectFuncs													lwmeshes.h

vmapVal															LWObjectImport												lwobjimp.h

vmapVec															EDPointInfo															lwmeshedt.h

warning															LWMessageFuncs												lwhost.h

wAxis																	LWMicropol																lwtxtr.h

weightMap													LWBoneInfo																lwrender.h

weights															LWMicropol																lwtxtr.h

weights															LWShaderAccess												lwshader.h

width																	display_Metrics											lwpanel.h

width																	DyReqStringDesc											lwdyna.h

width																	LWFilterAccess												lwfilter.h

width																	LWPanAreaDesc													lwpanel.h

width																	LWPanListBoxDesc

width																	LWPanLWItemDesc

width																	LWPanMultiListBoxDesc

width																	LWPanPopupDesc

width																	LWPanRangeDesc

width																	LWPanStringDesc

width																	LWPanTreeDesc

width																	LWPanXPanDesc

window																HostDisplayInfo											lwdisplay.h

wNorm																	LWMicropol																lwtxtr.h

wNorm																	LWShaderAccess												lwshader.h

wNorm0																LWShaderAccess

wPos																		LWMicropol																lwtxtr.h

wPos																		LWShaderAccess												lwshader.h

wPos																		LWTextureAccess											lwtexture.h

write																	LWAnimSaverHandler								lwanimsav.h

write																	LWFrameBufferHandler						lwframbuf.h

write																	LWSaveState															lwio.h

writeData													LWSaveState

writeFP															LWSaveState

writeI1															LWSaveState

writeI2															LWSaveState

writeI4															LWSaveState

writeID															LWSaveState

writeStr														LWSaveState

writeU1															LWSaveState

writeU2															LWSaveState

writeU4															LWSaveState

wXfrm																	LWMicropol																lwtxtr.h

wXfrm																	LWShaderAccess												lwshader.h

x																					PvSample																		lwpreview.h

xpan																		LWPanXPanDesc													lwpanel.h

xpanel																DynaReqFuncs														lwdyna.h

xpanel																LWPanControlDesc										lwpanel.h

xsys																		HostDisplayInfo											lwdisplay.h

y																					PvSample																		lwpreview.h

yesNo																	LWMessageFuncs												lwhost.h

yesNoAll														LWMessageFuncs

yesNoCan														LWMessageFuncs

zoomFactor												LWCameraInfo														lwrender.h

Structures	and	Typedefs

	

Symbol																								Header

ActivateFunc																		lwserver.h

cleanupFunc																			lwpreview.h

clickFunc

closeFunc

ControlDesc																			lwpanel.h

cTag

display_Metrics

DrawFuncs

DrMode

DyBitfieldHint																lwdyna.h

DyChoiceHint

DynaConvertFunc

DynaMonitorFuncs

DynaReqFuncs

DynaRequestID

DynaStringHint

DynaType

DynaValue

DyReqChoiceDesc

DyReqControlDesc

DyReqStringDesc

DyReqTextDesc

DyValCustom

DyValFloat

DyValFVector

DyValInt

DyValIVector

DyValString

EDBoundCv																					lwmeshedt.h

EDError

EDPointInfo

EDPointScanFunc

EDPolygonInfo

EDPolyScanFunc

EDStateRef

EltOpLayer																				lwmodeler.h

EltOpSelect

evaluateFunc																		lwpreview.h

GlobalFunc																				lwserver.h

gParamData																				lwtxtr.h

HostDisplayInfo															lwdisplay.h

ImageValue																				lwimageio.h

initFunc																						lwpreview.h

InputMode																					lwpanel.h

LW_TxtrAutoSizeFunc											lwtxtred.h

LW_TxtrEventFunc

LW_TxtrRemoveFunc

LWAnimFrameAccess													lwanimlod.h

LWAnimLoaderHandler

LWAnimSaverHandler												lwanimsav.h

LWBackdropInfo																lwrender.h

LWBlockIdent																		lwio.h

LWBoneInfo																				lwrender.h

LWBRCltID																					lwvbshelf.h

LWBRFileThumFunc

LWBRFuncs

LWBRLoadSettings

LWBRPreMultiFunc

LWBRPreThumFunc

LWBRShelfClosed

LWBRStrList

LWBufferValue																	lwtypes.h

LWCameraInfo																		lwrender.h

LWChanEventFunc															lwenvel.h

LWChanGroupID

LWChannelAccess															lwchannel.h

LWChannelHandler

LWChannelID

LWChannelID																			lwenvel.h

LWChannelInfo

LWColorActivateFunc											lwhost.h

LWColorPickLocal														lwdialog.h

LWCommandCode																	lwtypes.h

LWCompInfo																				lwrender.h

LWControl																					lwpanel.h

LWControlID

LWCtlDrawHook

LWCtlEventHook

LWCustomObjAccess													lwcustobj.h

LWCustomObjHandler

LWDirInfoFunc																	lwhost.h

LWDisplacementAccess										lwdisplce.h

LWDisplacementHandler

LWDualKey																					lwpanel.h

LWDVector																					lwtypes.h

LWEnvelopeFuncs															lwenvel.h

LWEnvelopeID

LWEnvEvent

LWEnvEventFunc

LWEnvironmentAccess											lwenviron.h

LWEnvironmentHandler

LWEnvironmentMode

LWEnvKeyframeID															lwenvel.h

LWEnvTag

LWError																							lwtypes.h

LWFileActivateFunc												lwhost.h

LWFileIOFuncs																	lwio.h

LWFileReqFunc																	lwhost.h

LWFileReqLocal																lwdialog.h

LWFileTypeFunc																lwhost.h

LWFilterAccess																lwfilter.h

LWFilterContext

LWFogInfo																					lwrender.h

LWFontListFuncs															lwmodeler.h

LWFrame																							lwtypes.h

LWFrameBufferHandler										lwframbuf.h

LWFVector																					lwtypes.h

LWGlobalPool																		lwrender.h

LWGlobalService															lwglobsrv.h

LWHandler																					lwhandler.h

LWHotColorFunc																lwdialog.h

LWID																										lwtypes.h

LWIlluminateFunc														lwrender.h

LWImageFilterHandler										lwfilter.h

LWImageID																					lwtypes.h

LWImageList																			lwimage.h

LWImageLoaderLocal												lwimageio.h

LWImageParam

LWImageProtocol

LWImageProtocolID

LWImageSaverLocal

LWImageType

LWImageUtil																			lwimage.h

LWInstance																				lwtypes.h

LWInstanceFuncs															lwhandler.h

LWInstUpdate

LWInterface

LWInterfaceInfo															lwrender.h

LWItemFuncs

LWItemHandler

LWItemID

LWItemInfo

LWItemMotionAccess												lwmotion.h

LWItemMotionHandler

LWItemParam																			lwrender.h

LWItemType

LWKeyTag																						lwenvel.h

LWLayoutGeneric															lwgeneric.h

LWLightInfo																			lwrender.h

LWLoadState																			lwio.h

LWMasterAccess																lwmaster.h

LWMasterHandler

LWMemChunk																				lwrender.h

LWMeshEditTool																lwmodtool.h

LWMeshInfo																				lwmeshes.h

LWMeshInfoID

LWMessageFuncs																lwhost.h

LWMicropol																				lwtxtr.h

LWMicropolID

LWModCommand																		lwcmdseq.h

LWMonitor																					lwmonitor.h

LWMTUtilFuncs																	lwmtutil.h

LWMTUtilID

LWObjectFuncs																	lwmeshes.h

LWObjectImport																lwobjimp.h

LWObjectInfo																		lwrender.h

LWObjReplacementAccess								lwobjrep.h

LWObjReplacementHandler

LWPanAreaDesc																	lwpanel.h

LWPanChoiceDesc

LWPanControlDesc

LWPanDrawHook

LWPanelFuncs

LWPanelID

LWPanHook

LWPanKeyHook

LWPanListBoxDesc

LWPanLWItemDesc

LWPanMouseHook

LWPanMultiListBoxDesc

LWPanPopupDesc

LWPanRangeDesc

LWPanStringDesc

LWPanTextDesc

LWPanTreeDesc

LWPanXPanDesc

LWPixelAccess																	lwfilter.h

LWPixelFilterHandler

LWPixelID																					lwimageio.h

LWPixelRGB24

LWPixelRGBA32

LWPixelRGBAFP

LWPixelRGBFP

LWPntID																							lwmeshes.h

LWPntScanFunc

LWPolID

LWPolScanFunc

LWPreviewFuncs																lwpreview.h

LWPSBufDesc																			lwprtcl.h

LWPSBufID

LWPSTFuncs																				lwvbshelf.h

LWPSTID

LWPSysFuncs																			lwprtcl.h

LWPSysID

LWRasterFuncs																	lwpanel.h

LWRasterID

LWRayCastFunc																	lwrender.h

LWRayShadeFunc

LWRayTraceFunc

LWRenderFuncs

LWRenderHandler

LWSaveState																			lwio.h

LWSceneConverter														lwscenecv.h

LWSceneInfo																			lwrender.h

LWShaderAccess																lwshader.h

LWShaderHandler

LWShelfCltID																		lwshelf.h

LWShelfParmList

LWShelfLoadOkFunc

LWShelfLoadFunc

LWShelfSaveFunc

LWShelfFuncs

LWStateQueryFuncs													lwmodeler.h

LWSurfaceFuncs																lwsurf.h

LWSurfaceID

LWSurfEdFuncs																	lwsurfed.h

LWTECltID																					lwtxtred.h

LWTextureAccess															lwtexture.h

LWTextureFuncs																lwtxtr.h

LWTextureHandler														lwtexture.h

LWTextureID																			lwtxtr.h

LWTime																								lwtypes.h

LWTLayerID																				lwtxtr.h

LWTool																								lwtool.h

LWToolEvent

LWToolFuncs

LWTxtrContextID															lwtxtr.h

LWTxtrEdFuncs																	lwtxtred.h

LWTxtrParamDesc															lwtxtr.h

LWTxtrParamFuncs

LWType																								lwpanel.h

LWValCustom

LWValFloat

LWValFVector

LWValInt

LWValIVector

LWValString

LWValue

LWVolumeAccess																lwvolume.h

LWVolumeSample

LWVolumetricHandler

LWVParmFuncs																		lwenvel.h

LWVParmID

LWWireDrawAccess														lwtool.h

LWXPanelBtnClickFunc										lwxpanel.h

LWXPanelChangeNotifyFunc

LWXPanelControl

LWXPanelControlDrawFunc

LWXPanelControlZoomFunc

LWXPanelDataDesc

LWXPanelDestroyNotifyFunc

LWXPanelFuncs

LWXPanelGetFunc

LWXPanelHint

LWXPanelID

LWXPanelPopCmdFunc

LWXPanelPopCntFunc

LWXPanelPopNameFunc

LWXPanelSetFunc

LWXPDrAreaID

LWXPDrawFuncs

MeshEditBegin																	lwmeshedt.h

MeshEditOp

ModuleDescriptor														lwmodule.h

MxType																								lwpanel.h

optionsFunc																			lwpreview.h

pTag																										lwpanel.h

PvContextID																			lwpreview.h

PvSample

ServerRecord																		lwserver.h

ServerUserName

6.0B	Changes

May	11,	2000

This	is	a	list	of	the	changes	in	the	LightWave	6.0B	patch	that	affect	the
SDK.	In	most	cases,	the	changes	are	additions	to	global	services	that	won't
affect	the	operation	of	existing	code.	In	some	cases,	however,	you	will
have	to	recompile,	and	in	a	few,	it	may	be	necessary	to	rewrite	a	small
amount	of	your	code	that	was	written	prior	to	the	release	of	the	patch.

lwenvel.h

Added	server	function	to	the	Channel	Info	global.

lwfilter.h

Added	LWBUF_MOTION_X	and	LWBUF_MOTION_Y	for	vector	blur	feature.	The
buffers	will	be	filled	in	with	the	image	coordinate	movement	at	each
pixel	during	the	time	the	shutter	was	open.	For	example,	if	part	of	an
object	has	moved	11	pixels	right	and	6	pixels	down	since	the
previous	frame,	and	the	blur	length	is	50%,	the	motion	buffers	will
contain	5.5	and	3.0	in	that	part	of	the	frame.	Camera	motion	is	also
taken	into	account.	This	information	can	be	used	by	filters	to	perform
a	Photoshop-style	vector	motion	blur.

lwgeneric.h

Generic	plug-ins	are	now	first	activated	with	a	version	number	of	4.
If	that	doesn't	work,	the	saveScene	function	is	replaced	with	one	that
saves	old	format	scenes,	and	version	numbers	3,	2,	and	1	are	tried.

lwhost.h

Added	new	dialog	types	to	Message	Functions	global,	incremented
the	service	name.	(3/23)
The	new	Locale	Info	global	has	been	implemented	(but	the	old
Language	ID	global	is	still	supported	as	well).

lwimage.h

Added	sceneLoad	and	sceneSave	to	Image	List	global,	now	"Image	List
2".
Changed	LWImageID	to	LWPixmapID	in	Image	Utility	functions.

lwmaster.h

Added	LWMAST_LAYOUT	type	for	masters	that	survive	scene	clearing.

lwmodeler.h

mode	and	vmap	functions	added	to	the	state	query	global,	incremented
the	service	name.

lwpanel.h

fixed	PAN_SETDATA,	PAN_SETDRAW,	PAN_SETKEYS;	touched	up	PAN_SETH,	MOVE_PAN;
added	PAN_SETW.

lwpreview.h

Changed	close	to	accept	void	arg.

lwprtcl.h

New	API.
Removed	obsolete	functions	setDraw,	setMesh,	remParticle.

lwrender.h

Only	items	matching	the	current	edit	mode	are	now	eligible	to	have
their	LWITEMF_SELECTED	bit	set	by	the	Interface	Info	itemFlags	function.
Added	LWIP_PIVOT_ROT	to	let	plug-ins	get	pivot	rotation.
If	the	Item	Info	param	function	is	called	while	the	user	is	dragging
items	in	a	viewport	and	the	time	argument	matches	the	current	time,
the	function	can	now	return	temporary,	non-keyframed	data.	One
benefit	of	this	change	is	that	expressions	can	react	to	interactively
moved	items	even	if	Auto	Key	is	turned	off.
changed	flag	name	to	LWOBJF_UNSEEN_BY_CAMERA.
A	server	function	has	been	added	to	the	Item	Info	global.	It	takes	an
item	ID,	a	class	name,	and	an	index	(which	starts	with	one,	as	in	the
tag	functions).	The	return	value	is	the	name	of	whatever	server	is
applied	in	the	specified	"slot"	(or	NULL	if	there	isn't	one).	Naturally
the	ID	is	ignored	for	classes	like	volumetrics,	filters,	etc.

Added	flags	and	fog	to	Object	Info.
Corrected	"LW	Comp	Info"	to	"LW	Compositing	Info".
Added	renderCamera	to	LWSceneInfo	structure.
Added	type,	color,	and	squeeze	to	LWBackdropInfo	structure.
A	function	to	get	the	ID	of	the	camera	used	for	rendering	has	been
added	to	the	Scene	Info	global.	It	accepts	a	time	argument	in	order	to
be	ready	for	automated	camera	switching	in	the	future.
Added	serverFlags	and	controller	to	Item	Info.
The	first	frame,	last	frame,	and	step	size	used	by	the	frame	slider	and
by	Layout	previews	can	now	be	obtained	through	the	Interface	Info
global.
The	vectors	returned	by	the	Item	Info	param	function	now	take	pivot
rotation	into	account.
Attempts	by	plug-ins	to	look	up	information	about	their	items	while
in	the	process	of	being	created	due	to	cloning	should	no	longer	fail.

lwshader.h

Added	polygonID	to	LWShaderAccess.
Added	vertsWPos	to	LWShaderAccess.

lwshelf.h

New	API.
Removed	closed	notification	function	typedef.
Removed	closed	notification	from	shelf	subscription.
Added	isOpen.

lwsurf.h

The	byName	function	now	has	an	additional	object	name	argument.	If
the	object	name	is	set	to	NULL,	the	function	will	return	all	the
surfaces	that	share	the	same	name,	behaving	as	before.

lwtxtr.h

layerEnvGrp	renamed	layerEnvGroup.
Input	parameter	type	defines	added.
polygonID	added	to	LWMicropol	structure.
setParam	and	getParam	functions	added.
Added	evaluateUV,	which	sets	the	UV	values	given	the	3D	position	of

the	point	in	world	and	local	coordinates,	plus	the	world	and	local
dominant	axis.	This	does	the	coordinate	transfromation	and
projection	from	3D	to	2D.
Added	new	tags	to	set	and	get	images	and	vmaps.
Added	vertsWPos	to	LWMicropol.
Added	setEnvGroup	and	envGroup	functions.
Added	layerType	function.
Added	tags	for	getting	and	setting	opacity,	reference	object,	repeat
options,	pixel	blending,	AA,	AA	strength.

lwtxtred.h

setParam	and	getParam	functions	removed	(put	into	lwtxtr.h).
Added	refresh,	which	refreshes	the	editor	if	some	parameters	have
been	changed	without	user	interaction.	The	clientID	should	be	NULL
if	trying	to	update	surface	textures	(=	default	client).	That's	what
texture	guide	is	doing.
Added	currentLayer,	which	gets	the	currently	selected	layer	in	the
texture	editor.	If	client	is	NULL,	uses	surface's	texture	editor.

lwvolume.h

Removed	adaptive	flag.
The	flags	function	of	each	volumetric	plug-in	is	now	called	to
determine	whether	to	include	it	in	reflection,	refraction,	or	shadow
computations.
The	LWVEF_RAYTRACE	bit	in	the	LWVolumeAccess	structure	is	now	set
when	evaluating	volumetric	plug-ins	for	a	ray.

lwxpanel.h

Added	focus	event	code.
Added	refresh	codes.
Added	XpXREQCFG,	XpBORDER,	XpDLGTYPE	hints.

Commands:	Layout

The	usage	string	for	the	AddPlugins	command	now	shows	that	it	accepts
a	filename	argument.
The	AddToSelection	and	RemoveFromSelection	commands	have	been	added
to	allow	plug-ins	and	scripts	to	create	and	manage	multiple

selections.	They	accept	a	hexadecimal	item	ID	as	an	argument,	and
the	usual	selection	rules	apply	(for	example,	if	only	one	item	of	the
current	type	is	selected,	it	can't	be	deselected).
Other	new	commands	include	SubdivisionOrder	and	ResolutionMultiplier,
which	work	just	like	the	identically	named	scene	file	lines.
A	RemoveServer	command	has	been	added.	Like	ApplyServer,	it	takes	a
class	name	argument,	but	it	differs	in	that	it	takes	an	index	rather	than
a	server	name	(in	case	there	are	multiple	instances	of	the	same
server).	Consistent	with	the	Item	Info	server	function,	these	indices
count	from	one.	Item-specific	plug-ins	like	motion	and	displacement
handlers	are	removed	from	the	current	item.

Commands:	Modeler

The	SaveCommandList	command	in	Layout	has	been	duplicated	in
Modeler.
A	new	batch	command	maketesball2	has	been	added	which	takes	the
new	segments	parameter	for	tesselated	spheres.	The	old	maketesball
command	still	works	using	the	old	level	parameter.	The	segments
parameter	directly	sets	the	number	of	segments	along	the	the	edges
between	the	12	polyhedral	vertices.	Power	of	two	segment	values	are
equivalent	to	the	old	level	values:	1	=	level	0,	2	=	level	1,	4	=	level	2,
8	=	level	3,	16	=	level	4,	32	=	level	5,	etc.
A	new	maketext2	batch	command	has	been	added	which	accepts
alignment	settings.	It	also	takes	fonts	as	zero-based	indices,	fixing	a
long	lived	bug.
Added	more	arguments	to	the	bevel	batch	command	to	bring	it	more
in	line	with	the	options	of	the	Bevel	tool.
There	are	new	plug-in	commands	for	selecting	the	current	object	and
for	setting	the	vmap	for	the	current	morph,	texture	or	weight	map.

Commands:	Surfaces

The	Surf_SetSurf	command	now	has	an	additional	object	name
argument.	This	specifies	in	which	object	library	the	surface	should	be
set	(there	can	be	multiple	surfaces	with	the	same	name	in	different
objects).
Surf_RemoveShader	command	now	works	this	way:	Removes	all	shaders
that	use	the	specified	name,	and	if	name	is	NULL,	removes	all

shaders.

Commands:	Envelopes

Added	Env_ApplyServer	<classname>	<servername>.
Added	Env_RemoveServer	<clasname>	<index>.

Sample	Code

modlib:	Added	object	name	argument	to	mgGetSurfacesByName	in
surface.c.
rapts:	Changed	layerEnvGrp	to	layerEnvGroup.

Miscellaneous

A	new	Plug-in	Options	panel	has	been	added.	It	contains	the	controls
for	generic	and	master	plug-ins	that	used	to	be	on	the	General
Options	panel,	as	well	as	an	Add	Plug-ins	button	and	some	UI	ranch
space	for	the	masters.
There	is	now	a	dedicated	options	button	which	calls	ServerInterface	for
the	current	animation	saver.	This	is	intended	to	be	the	official	way	to
edit	compression	settings,	etc.	Saver	plug-ins	whose	interfaces	are	in
their	load	or	open	functions	should	be	rewritten.
The	DirectoryType	config	file	entry	for	images	is	now	used	as	the
default	location	for	image	loading,	replacing	the	ImagesDirectory
line.	Several	other	old	config	file	lines	have	also	been	discontinued	in
favor	of	new	DirectoryType	entries.
Envelopes	for	displacement	and	clip	map	channels	are	now	added	to
the	envelope	groups	of	the	objects	they	belong	to.	This	makes	them
appear	in	the	right	place	in	the	Graph	Editor	hierarchy.

6.5	Changes

November	4,	2000

This	is	a	list	of	the	changes	in	the	LightWave	6.5	patch	that	affect	the
SDK.	In	most	cases,	the	changes	won't	require	you	to	rewrite	or	recompile
your	existing	code.	The	most	significant	exception	is	for	variant
parameters,	which	have	been	updated	to	support	parameters	modulated	by
textures.

lwenvel.h

Definitions	of	variant	parameters	have	been	moved	to	a	new	header,
lwvparm.h.

lwfilter.h

New	buffers	(LWBUF_REFL_RED,	LWBUF_REFL_GREEN	and	LWBUF_REFL_BLUE)	have
been	added	to	the	list	of	buffers	available	to	image	filters	and	pixel
filters.	These	contain	the	RGB	levels	for	reflections	calculated	by
raytracing	and	environment	mapping.

lwimage.h

LWIMAGELIST_GLOBAL	(Image	List)	has	been	incremented	to	"LW	Image
List	3".
Added	LWImageList	functions:	hasAlpha,	alpha,	alphaSpot,	evaluate.

lwio.h

Added	File	I/O	type	LWIO_BINARY_IFF.	This	type	supports	4-byte	chunk
sizes	for	block	reading	and	writing	of	IFF	files.

lwmeshedt.h

LWMESHEDIT_VERSION	(MeshDataEdit)	has	been	incremented	to	4.
Added	MeshEditOp	functions	pointVPGet,	pointVEval,	pntVPMap.	These	are
for	per-polygon	vertex	mapping.
The	second	argument	to	initUV	is	now	float	*	rather	than	float[2]	so
that	initUV	can	be	used	to	initialize	per-polygon	UVs.

lwmeshes.h

Added	vertex	map	types	for	color	vmaps:	LWVMAP_RGB	and	LWVMAP_RGBA.
Added	LWMeshInfo	function	pntVPGet	for	per-polygon	vertex
mapping.

lwobjimp.h

LWOBJECTIMPORT_VERSION	(ObjectLoader)	has	been	incremented	to	3.
Added	LWObjectImport	function	vmapPDV	for	per-polygon	vertex
mapping.
The	second	argument	to	pivot	and	the	third	argument	to	vmapVal	are
now	const.

lwrender.h

New	illuminate	special	item	types	LWITEM_RADIOSITY	and	LWITEM_CAUSTICS
allow	callers	of	illuminate	to	get	information	about	global	illumination
at	a	spot.
LWOBJECTINFO_GLOBAL	(Object	Info)	has	been	incremented	to	"LW	Object
Info	3".
The	texture	IDs	of	the	displacement	and	clip	maps	of	each	object	can
now	be	obtained	using	the	new	dispMap	and	clipMap	Object	Info
functions.
LWINTERFACEINFO_GLOBAL	(Interface	Info)	has	been	incremented	to	"LW
Interface	Info	2"
New	Interface	Info	function	schemaPos	returns	the	positions	of	items	in
schematic	viewports.	(Use	the	new	SchematicPosition	command	to	set
them.)
New	Interface	Info	field	dynaUpdate	contains	Layout's	Dynamic	Update
setting,	which	can	be	LWDYNUP_OFF,	LWDYNUP_DELAYED	or	LWDYNUP_INTERACTIVE.
Added	a	Time	Info	global	that	returns	the	frame	and	time	for	the
image	currently	being	rendered.

lwserver.h

ServerUserName	has	been	replaced	by	ServerTagInfo,	which	among
other	things	allows	plug-ins	to	specify	how	they	should	be	added	to
LightWave's	menu	system.

lwshelf.h

New	LWShelfFuncs	function	addNamedPreset.

lwsurf.h

LWSURFACEFUNCS_GLOBAL	(Surface	Functions)	incremented	to	"Surface
Functions	2".
Added	surface	channel	SURF_VCOL	for	color	vertex	maps.
Added	Surface	Functions	routines	getColorVMap	and	setColorVMap.

lwtexture.h

LWTEXTURE_VERSION	(ProceduralTextureHandler)	has	been	incremented	to
5.
Texture	class	plug-ins	can	now	return	RGBA	levels,	in	support	of
which	added	LWTextureAccess	field	txRGBA[4],	LWTextureHandler
flag	LWTEXF_SELF_COLOR	and	LWTextureAccess	flag	LWTXEF_COLOR.

lwtxtr.h

New	LWTxtrParamDesc	flag	LWGF_AUTOSIZE	for	gradient	textures	that
can	automatically	adjust	their	min	and	max.

lwtxtred.h

LWTXTREDFUNCS_GLOBAL	(Texture	Editor)	has	been	incremented	to	"Texture
Editor	2".
New	callback	type	LW_GradAutoSizeFunc	for	gradient	autosizing.
New	Texture	Editor	functions	for	supporting	multiselection	(selectAdd,
selectRem,	selectClr,	selectFirst,	selectNext)	and	automatic	ranges	for
gradient	textures	(setGradientAutoSize).

lwvparm.h

New	header	(variant	parameters	were	formerly	defined	in	lwenvel.h).
Added	LWVPDT	texture	data	types.
Added	arguments	(texture	context,	event	callback,	plug-in	name	and
userdata)	to	the	LWVParmFuncs	create	function.
Added	a	micropolygon	argument	to	getVal	for	texture	evaluation.
New	functions	getState,	setState,	editTex,	initMP,	getEnv	and	getTex.
getState	and	setState	replace	the	hasEnv	and	setEnvState	functions,	which
have	been	removed.	The	new	functions	support	textures	in	addition	to
envelopes.

lwxpanel.h

Added	XpENABLE	hint	(XPanels).

Commands:	Layout

SaveSceneCopy	and	SaveObjectCopy	save	a	copy	of	the	scene	or	the	object	in
a	file	with	a	new	name	without	affecting	the	current	name	in	Layout.
PreviousSibling	and	NextSibling	allow	easy	navigation	among	a	set	of
items	that	share	the	same	parent.
AddEnvelope	and	RemoveEnvelope	allow	plug-ins	and	scripts	to	"press	the	E
button"	for	a	Layout	parameter.	Each	command	takes	a	channel	name
as	its	argument	(the	same	names	that	appear	when	channels	are
expanded	in	the	Scene	Editor).
By	passing	AutoConfirm	an	argument	greater	than	zero,	plug-ins	and
scripts	can	use	this	command	to	automatically	respond	affirmatively
to	all	confirmation	requesters	before	commands	are	issued	to	clear
items,	etc.	This	feature	should	be	used	with	care,	and	it	should	be
turned	off	by	passing	it	a	zero	before	control	is	returned	to	the	user.
EditPlugins	opens	the	new	dialog	for	displaying,	adding,	and	deleting
servers.
SaveObject	and	SaveTransformed	now	accept	a	filename	argument.
CommandInput	now	accepts	a	command	argument.
MaskPosition	allows	plug-ins	and	scripts	to	set	exact	pixel	values	for	the
left,	top,	width,	and	height	of	the	camera	mask.	One	potential	use	is
to	create	scene	files	for	portions	of	a	frame	which	can	be	rendered
separately	and	then	perfectly	recombined	by	summing	the	resulting
images	(assuming	the	mask	color	is	black).
SchematicPosition	sets	the	X	and	Y	of	the	current	item's	schematic	node.
This	and	the	schemaPos	function	added	to	the	Interface	Info	global
allow	plug-ins	to	arrange	items	in	Schematic	viewports.
Antialiasing	takes	an	argument	from	0	to	4,	as	in	scene	files.
Other	new	commands:
TopView														CacheRadiosity											RayTraceShadows

BottomView											CacheCaustics												RayTraceReflection

BackView													EnableVolumetricLights			RayTraceRefraction

FrontView												RadiosityTolerance							MorphTarget

RightView												EnhancedAA															IncludeLight

LeftView													FogType																		ExcludeLight

SchematicView								FogMinDistance											PolygonEdgeColor

CenterItem											FogMaxDistance											CacheShadowMap

FitAll															FogMinAmount													MaskColor

FitSelected										FogMaxAmount													LightIntensityTool

ShowSafeAreas								FogColor																	EnableVIPER

ShowFieldChart							AddPartigon

Commands:	Modeler

The	revert	command	reloads	an	existing	object	file.

Miscellaneous

When	items	are	moved,	rotated,	or	scaled,	using	either	the	mouse	or
the	numeric	fields,	the	appropriate	position,	rotation,	or	scale
commands	are	now	added	to	the	command	history,	which	in	turn
generates	events	for	master	plug-ins.
The	newTime	callbacks	of	shaders,	volumetrics,	and	pixel	filters	are
now	called	only	after	all	geometry	has	been	finalized.	This	fixes	a
problem	that	occurs	when	plug-ins	of	one	of	those	classes	depend	on
the	results	of	displacement	plug-ins.
There	can	now	be	any	number	of	custom	object	plug-ins	per	object,
and	they	are	added	using	a	server	pane	rather	than	a	popup.
RGB	and	alpha	image	savers	are	now	recorded	in	scene	files	by	name
rather	than	by	index,	preventing	problems	caused	by	different
machines	having	different	saver	lists.	Image	saver	indices	in	existing
scene	files	will	continue	to	work	as	before.
When	the	newTime	functions	of	shaders,	environment	plug-ins,
volumetric	plug-ins	and	lights,	pixel	filters,	custom	object	and
displacement	plug-ins	are	called,	inverse	kinematics	have	already
been	computed.	Therefore,	the	Item	Info	param	function	now	simply
returns	existing	vectors	in	such	cases	(assuming	the	time	argument
matches	the	current	time),	allowing	those	plug-ins	to	properly
account	for	IK.
When	a	subpatch	object	is	being	deformed	and	its	Subdivision	Order
is	later	than	the	deformation,	the	interior	patch	points	are	no	longer
deformed.	In	particular,	the	evaluate	functions	of	displacement	plug-
ins	will	no	longer	be	called	for	the	patch	points.

6.5B	Changes

May	8,	2001

This	is	a	list	of	the	changes	in	the	LightWave	6.5B	patch	that	affect	the
SDK.	As	with	previous	changes,	these	in	most	cases	won't	require	you	to
rewrite	or	recompile	your	existing	code.

Structures	associated	with	the	CustomObjHandler	class	and	the	Particle
Services,	Object	Info	and	Interface	Info	globals	were	changed,	but	the
custom	object	version	number	and	the	global	name	strings	weren't
incremented.	This	was	discovered	too	close	to	the	release	of	6.5B	to	be
remedied.	In	all	cases,	the	changes	involve	members	added	to	the	ends	of
structures,	so	they	have	no	effect	on	existing	plug-ins.	New	plug-ins	that
need	to	distinguish	between	the	old	and	new	structures	can	use	the
program	build	numbers	returned	by	the	Product	Info	global.

lwcustobj.h

A	text	function	was	added	to	LWCustomObjAccess	(Custom
Objects).
Added	LWVIEW_SCHEMA	to	the	codes	for	the	view	field	of	the
LWCustomObjAccess	structure.
Added	LWCOF_SCHEMA_OK	to	the	flags	that	can	be	returned	from	the
LWCustomObjHandler	flags	callback

lwhost.h

Added	preprocessor	symbols	for	some	of	the	file	type	strings	used
with	the	File	Type	and	Directory	Info	globals.

lwmaster.h

Added	LWEVNT_TIME	to	the	event	codes	that	can	be	passed	to	the	Master
class	event	callback.	This	event	notice	is	sent	whenever	the	frame
slider	is	moved,	which	includes	playing	the	scene,	but	not	playing
back	a	preview.

lwmath.h

Bracketed	MIN,	MAX	and	ABS	macros	within	preprocessor	conditionals	so
that	they	won't	conflict	with	versions	of	the	macros	that	might	be
defined	elsewhere.

lwmeshes.h

Incremented	LWOBJECTFUNCS_GLOBAL	(Scene	Objects)	to	"Scene	Objects	3"
Added	userName	and	refName	functions	to	the	LWObjectFuncs	structure.
These	return,	respectively,	the	name	of	the	object	as	seen	by	the	user,
and	an	unambiguous	internal	name	for	the	object	that	can	be	used	to
refer	to	it	in	commands.

lwpanel.h

Added	LWValPointer	to	the	data	types	in	the	LWValue	union	used	by
Panels.	Besides	being	more	type-friendly,	this	change	is	in
anticipation	of	64-bit	operating	systems	on	which	ints	and	pointers
may	not	be	the	same	size.
LWValPointer	used	in	the	definitions	of	the	CON_PAN,	CON_PANFUN	and
CON_SETEVENT	macros.

lwprtcl.h

The	LWPSB_ENB	buffer	(Particle	Services)	now	encodes	three	states
(LWPST_DEAD,	LWPST_ALIVE,	LWPST_LIMBO)	instead	of	two	(on/off).
Added	LWPSB_CAGE	(collision	age)	buffer	containing	the	time	since	the
last	collision.
Added	remParticle	function	to	LWPSysFuncs.

lwrender.h

Incremented	LWSCENEINFO_GLOBAL	(Scene	Info)	to	"LW	Scene	Info	3".
Added	numThreads	to	LWSceneInfo.
Added	LWROPT_PARTICLEBLUR	option	for	the	LWSceneInfo	renderOpts
function.
Added	patchLevel	and	metaballRes	functions	to	LWObjectInfo	(Object
Info).
Added	LWLFL_NO_OPENGL	to	the	flags	for	LWLightInfo	(Light	Info).
Incremented	LWCAMERAINFO_GLOBAL	(Camera	Info)	to	"LW	Camera	Info	2".
Added	flags,	resolution,	pixelAspect,	separation,	regionLimits,	maskLimits	and
maskColor	functions	to	LWCameraInfo.

Added	LWCAMF_STEREO,	LWCAMF_LIMITED_REGION	and	LWCAMF_MASK	camera	info
flags.
Added	itemVis	function	and	displayFlags	and	generalFlags	fields	to	the
LWInterfaceInfo	(Interface	Info)	structure.

lwserver.h

Added	LANGID_KOREAN	definition.

lwtxtr.h

Added	itemName	to	LWTxtrParamDesc	(Texture	Functions)

lwxpanel.h

Added	XPTAG_NULL	define,	which	replaces	NULL	in	the	Xp	macros	for
XPanels.

Commands:	Layout

The	arguments	to	the	new	AddPosition,	AddRotation	and	AddScale	are
relative	rather	than	absolute.	These	are	useful	for	multiple	selections
and	should	also	improve	the	reusability	of	scripts	generated	by	macro
recorders.
An	EditServer	command	has	been	added	which	opens	a	plug-in's
interface.	The	syntax	is	the	same	as	the	RemoveServer	command,	with
class	name	and	index	arguments.	If	the	index	isn't	specified,	the	last
plug-in	in	the	list	is	used,	making	it	easy	for	a	script	to	add	a	plug-in
and	immediately	open	its	interface	without	having	to	know	its	index.
The	AutoConfirm	command	now	recognizes	an	argument	value	of	-1,
which	will	automatically	respond	negatively	to	all	Yes/No	or
OK/Cancel	dialogs.
The	AddEnvelope	and	RemoveEnvelope	commands	now	operate	on	all	three
parts	of	a	color	envelope	as	a	unit	(".R",	".G",	and	".B"	suffixes	are
ignored).
Other	new	commands:
ShadowExclusion								GradientBackdrop						ParentInPlace

NoiseReduction									ZenithColor											FractionalFrames

RadiosityIntensity					SkyColor														PolygonEdgeFlags

CausticIntensity							GroundColor											BoneFalloffType

VolumetricRadiosity				NadirColor												ShadowMapSize

DynamicUpdate

Commands:	Modeler

The	new	meshedit	command	allows	plug-ins	to	execute	MeshDataEdit
class	plug-ins.

Commands:	Common

The	Surf_SetSurf	command	was	using	the	display	name	rather	than	the
filename	to	identify	objects.	This	has	been	corrected.

Miscellaneous

The	mesh	info	pntBasePos	and	pntOtherPos	functions	obtained	from	the
Object	Info	global	now	provide	better	information	for	frozen	meshes.
The	revised	pntBasePos	returns	the	same	point	positions	that	Layout
uses	for	object	coordinate	texture	mapping.	These	are	completely
undeformed	positions	in	the	case	of	regular	polygons	and	subpatches,
and	positions	at	freezing	time	for	metaballs	and	partigons.	pntOtherPos
now	returns	the	actual	world	coordinates	used	by	Layout.	The	new
behavior	of	these	functions	should	remove	the	need	to	use	"helper"
displacement	plug-ins	to	gather	vertex	positions.
An	Alert	Level	popup	has	been	added	to	the	General	Options	panel.
At	the	Intermediate	and	Advanced	levels,	messages	displayed	using
the	message	global's	info,	warn	and	error	functions	may	appear	in	the
status	line	rather	than	in	separate	dialog	windows.
The	changeID	handler	callback	is	now	called	when	all	lights	or	all
cameras	are	cleared	at	once.
The	illuminate	raytracing	function	was	returning	0	if	the	position	was
partially	shadowed,	which	can	happen	when	the	light	is	a	linear	or
area	light.	The	return	value	is	now	1.0	in	such	cases,	and	the	partial
shadowing	is	accounted	for	in	the	returned	color.
The	source	member	of	the	LWVolumeAccess	structure	is	now	set	to
the	camera	ID	for	directly	viewed	volumetrics,	to	the	light	ID	for
shadow	rays,	and	to	LWITEM_NULL	for	other	types	of	rays.
The	Z	buffer	given	to	image	filters	no	longer	has	unfilled	holes	when
unenhanced	antialiasing	is	used	with	adaptive	sampling	and	without
motion	blur	or	depth	of	field.
Previously,	if	an	object	replacement	plug-in	tried	to	replace	an	object
that	had	been	cloned	with	an	object	of	the	same	filename,	the	change

was	ignored,	since	two	objects	with	the	same	name	weren't	allowed
to	have	different	geometry.	This	has	been	fixed	by	freeing	and
replacing	all	instances	of	the	object	in	such	cases,	just	as	manual
object	replacement	does.
Objects	loaded	by	object	import	plug-ins	no	longer	cause	a	crash
when	the	scene	is	later	saved.
Custom	object	plug-ins	were	unable	to	draw	points	unless	one	of	the
other	drawing	functions	had	been	called	first.	This	has	been	fixed.
Custom	objects	using	the	LWCSYS_ICON	mode	are	no	longer	affected	by
object	scaling.
When	the	Item	Info	param	function	was	called	during	a	custom	object
plug-in's	evaluate	function,	and	FSPE	was	turned	on,	the	interactive
(non-keyframed)	position	of	the	item	being	queried	could	be
forgotten.	This	has	been	fixed	(but	it's	generally	more	efficient	for
plug-ins	to	call	param	during	their	newTime	functions).
When	an	object	is	cloned,	the	clones	are	now	named	earlier	in	the
copying	process	so	that	custom	object	and	displacement	plug-ins	can
look	up	the	names	from	inside	their	create	functions.
The	viewports	are	now	updated	whenever	a	custom	object,
displacement	or	item	motion	plug-in	is	added,	edited,	or	removed.
Keyframe	shifting	and	scaling	now	work	by	looping	through	all
members	of	the	envelope	group	of	each	affected	item,	including
envelopes	added	by	plug-ins.
Manual	operation	of	the	envelope	(E)	button	for	color	settings	is	now
properly	recorded	in	the	command	history.
Item	selections	made	by	clicking	in	the	viewports	or	the	Scene	Editor
or	by	using	the	current	item	popups	are	now	recorded	in	the
command	history	so	that	master	plug-ins	are	notified	when	these
selection	changes	occur.
Master	plug-ins	whose	flags	functions	return	LWMAST_LAYOUT	are	no
longer	cleared	with	the	scene.
The	MeshEditOp	pntVMap	function	no	longer	crashes	when	passed
polygons	created	during	the	same	mesh	edit.
The	MeshEditOp	polygon	creation	functions	no	longer	crash	when
passed	null	vertex	pointers.	They	instead	return	an	error.

7.0	Changes

September	24,	2001

This	is	a	list	of	the	changes	in	the	LightWave	7.0	release	that	affect	the
SDK.	The	changes	include	a	new	Layout	tool	class	and	two	new	globals,
as	well	as	extensive	enhancement	of	many	of	the	info	globals	defined	in
lwrender.h.	Layout	supports	51	new	commands	of	its	own	plus	another	46
that	it	now	propagates	to	the	various	editors.

One	change	and	one	bug	fix	were	made	to	the	SDK	for	the	LightWave
7.0B	patch.	These	have	been	marked	here	with	"[B]".

Structures	associated	with	the	ShaderHandler	class	and	the	Preview
Functions	and	Item	Info	globals	were	changed,	but	the	shader	version
number	and	the	global	name	strings	weren't	incremented.	In	all	cases,	the
changes	involve	members	added	to	the	ends	of	structures,	so	they	have	no
effect	on	existing	plug-ins.	New	plug-ins	can	use	the	Product	Info	global
to	verify	that	they're	running	in	at	least	LightWave	7.0	before	they	use	the
new	structure	members.

lwcustobj.h

LWCUSTOMOBJ_VERSION	(CustomObjHandler)	has	been	incremented.
A	quad	function	for	drawing	solid	quad	polygons	has	been	added	to
LWCustomObjAccess.
Quads	can	be	image-mapped	using	new	setTexture	and	setUVs
functions.	setTexture	accepts	a	square	image	in	GL_RGBA	format,	and
setUVs	sets	the	UV	coordinates	at	the	corners	of	a	quad.
The	text	function	accepts	a	new	justification	argument,	0	for	left,	1
for	center,	2	for	right.
The	color	argument	to	setColor	now	takes	a	fourth	array	element	for
the	color's	alpha	level.
Since	custom	objects	can	draw	semi-transparent	primitives,	viewPos
and	viewDir	vectors	have	been	added	so	that	plug-ins	can	depth-sort
their	primitives.

lwdisplay.h

The	header	now	defines	_WIN32_WINNT.

lwdisplce.h

LWDISPLACEMENT_VERSION	(DisplacementHandler)	has	been	incremented
because	of	changes	to	LWMeshInfo.

lwenvel.h

LWCHANNELINFO_GLOBAL	(Channel	Info)	has	been	incremented	to	"Channel
Info	2".
serverApply	and	serverRemove	functions	have	been	added	to
LWChannelInfo.	Also	added	were	serverFlags	and	serverInstance
functions	that	return	the	flags	and	instance	data	of	a	channel	handler.
A	new	event	code,	LWCEVNT_VALUE,	has	been	added	to	signal	changes	to
channels.

lwlaytool.h

This	is	a	new	header	file	containing	the	definition	of	a	new	plug-in
class,	LayoutTool.

lwmaster.h

An	LWEVNT_SELECT	event	code	has	been	added	(MasterHandler).

lwmeshes.h

A	polFlags	function	has	been	added	to	LWMeshInfo.
pntVIDGet	and	pntVPIDGet	functions	have	been	added	to	LWMeshInfo.
These	are	like	pntVGet	and	pntVPGet,	but	they	don't	require	a	preceeding
call	to	pntVSelect,	making	them	more	reliable	when	called	from
threaded	code.
Because	of	LWMeshInfo	changes,	LWOBJECTFUNCS_GLOBAL	(Scene	Objects)
has	been	incremented	to	"Scene	Objects	4".

lwmonitor.h

A	new	global	(Layout	Monitor)	has	been	created	to	provide	a
standard	monitor	for	Layout.	The	server	name	is	LWLMONFUNCS_GLOBAL.

lwpanel.h

A	new	global	(Context	Menu)	has	been	created	to	provide	context
menus	in	Panels.	The	server	name	is	LWCONTEXTMENU_GLOBAL.
LWPANELS_API_VERSION	(Panels)	has	been	incremented.	Panels	using	the
new	PANF_NOBUTT	flag	will	not	have	Continue	or	Cancel	buttons.
PANF_RESIZE	panels	can	be	resized.

lwpreview.h

A	setPreset	function	has	been	added	to	LWPreviewFuncs	(Preview
Functions).

lwrender.h

Due	to	an	error,	LWSCENEINFO_GLOBAL	(Scene	Info)	was	defined	as	"LW
Scene	Info	2"	in	the	public	version	of	lwrender.h	released	with
LightWave	6.5B.	It	should	have	been	"LW	Scene	Info	3".	The	correct
definition	has	been	restored	in	the	LightWave	7.0	headers.
Four	functions	(flags,	lookAhead,	goalStrength	and	stiffness)	have	been
added	to	LWItemInfo	(Item	Info).
LWOBJECTINFO_GLOBAL	(Object	Info)	has	been	incremented	to	"LW	Object
Info	4".
Eight	new	functions	(boneSource,	morphTarget,	morphAmount,	edgeOpts,
edgeColor,	subdivOrder,	polygonSize	and	excluded)	have	been	added	to
LWObjectInfo.	The	excluded	function	returns	TRUE	if	the	object	has
been	excluded	from	the	given	light.
The	LWObjectInfo	flags	function	returns	new	flags
LWOBJF_UNAFFECT_BY_FOG,	LWOBJF_MORPH_MTSE	and	LWOBJF_MORPH_SURFACES.
LWBONEINFO_GLOBAL	(Bone	Info)	has	been	incremented	to	"LW	Bone	Info
3".
Four	new	functions	(strength,	falloff,	jointComp	and	muscleFlex)	have
been	added	to	LWBoneInfo.
The	LWBoneInfo	flags	function	returns	new	flags	LWBONEF_JOINT_COMP,
LWBONEF_JOINT_COMP_PAR,	LWBONEF_MUSCLE_FLEX	and	LWBONEF_MUSCLE_FLEX_PAR.
LWLIGHTINFO_GLOBAL	(Light	Info)	has	been	incremented	to	"LW	Light	Info
3".
Eight	new	functions	(falloff,	projImage,	shadMapSize,	shadMapAngle,
shadMapFuzz,	quality,	rawColor,	intensity)	have	been	added	to
LWLightInfo.
The	coneAngles	function	now	includes	a	time	argument	(since	the
angles	can	be	enveloped)	and	returns	values	in	radians	rather	than

degrees.
A	time	argument	has	been	added	to	the	LWLightInfo	range	function.
The	LWLightInfo	flags	function	returns	new	flags	LWLFL_FIT_CONE	and
LWLFL_CACHE_SHAD_MAP.
LWINTERFACEINFO_GLOBAL	(Interface	Info)	has	been	incremented	to	"LW
Interface	Info	3".
The	LWInterfaceInfo	itemColor	function	returns	the	color	used	to	draw
the	item	in	the	interface.	The	new	boxThreshold	field	contains	the
bounding	box	threshold,	and	alertLevel	contains	LWALERT_BEGINNER,
LWALERT_INTERMEDIATE	or	LWALERT_EXPERT.

lwshader.h

replacement_percentage	and	replacement_color	fields	have	been	added	to
LWShaderAccess	(ShaderHandler).	Use	these	to	set	the	surface	color
when	your	shader	calculates	lighting	and	you	therefore	don't	want
LightWave	to	overwrite	your	color.
[B]	reflectionBlur	and	refractionBlur.	fields	have	been	added	to	the
shader	access	structure.

lwsurf.h

Two	new	channel	definitions	for	reflection	and	refraction	blurring
have	been	added	(Surface	Functions).

lwtool.h

A	text	function	and	pxScale	(pixel	scale)	field	have	been	added	to
LWWireDrawAccess.

lwtxtr.h

LWTEXTUREFUNCS_GLOBAL	(Texture	Functions)	has	been	incremented	to
"Texture	Functions	2",	and	four	new	functions	have	been	added	to
LWTextureFuncs.	texture	returns	a	texture	ID,	given	the	ID	of	a
texture	layer.	name,	type	and	context	return	information	about	a	texture.

lwvparm.h

Due	to	an	error,	the	public	version	of	lwvparm.h	(Variant	Parameters)
released	with	LightWave	6.5	and	6.5B	contained	an	incorrect
definition	of	the	LWVParmFuncs	getEnv	function.	This	definition

showed	getEnv	taking	a	single	argument	and	returning	a	single
envelope	ID.	The	correct	definition	shows	getEnv	returning	void.	It
writes	up	to	three	envelope	IDs	in	an	array	passed	as	the	second
argument.	This	definition	has	been	restored	in	the	current	header.

Commands:	Layout

The	file	written	by	SaveCommandList	now	includes	Graph	Editor,	Image
Editor	and	Surface	Editor	commands,	and	Layout	now	dispatches
those	commands	to	their	respective	components.
The	Refresh	command	now	defers	its	work	until	the	system	is	idle,	for
improved	interactivity.	A	RefreshNow	command	has	been	added	for
cases	in	which	synchronous	updates	are	desired.	The	new	Redraw	and
RedrawNow	commands	are	similar	except	that	they	don't	cause	motions
and	geometry	to	be	recomputed.
The	PluginOptions	command	has	been	replaced	by	MasterPlugins,	to
reflect	the	fact	that	the	name	of	the	panel	it	invokes	has	changed	in
the	interface.
Other	new	commands:
RecentScenes											ItemActive													PolygonSize

ReplaceObjectLayer					ItemLock															UnaffectedByFog

SquashTool													ItemVisibility									BoneStrengthMultiply

ShowTargetLines								ItemColor														BoneMinRange

BoundingBoxThreshold			RadiosityType										BoneMaxRange

VIPER																		RecentContentDirs						BoneJointComp

Presets																AlertLevel													BoneJointCompParent

EnableDeformations					AddButton														BoneJointCompAmounts

MatchGoalOrientation			Generics															BoneMuscleFlex

KeepGoalWithinReach				ClearAudio													BoneMuscleFlexParent

LimitH																	LoadAudio														BoneMuscleFlexAmounts

LimitP																	PlayAudio														LightQuality

LimitB																	RayTraceTransparency			ShadowMapFuzziness

HStiffness													LoadObjectLayer								ShadowMapFitCone

PStiffness													MorphMTSE														ShadowMapAngle

BStiffness													MorphSurfaces

Commands:	Modeler

The	new	setcontent	command	sets	the	content	directory.

Commands:	Common

New	(or	newly	available)	Graph	Editor	commands	include:
GE_OpenWindow									GE_DeleteSelKeys								GE_MoveKeys

GE_SetWindowPos							GE_ReduceKeys											GE_CreateExpression

GE_SetWindowSize						GE_LockKeys													GE_AttachExpression

GE_ApplyServer								GE_CopySelKeys										GE_AttachExpressionID

GE_RemoveServer							GE_PasteKeys												GE_SetGroup

GE_GetLayoutSel							GE_LeaveFootprints						GE_SetEnv

GE_SelectAllCurves				GE_PickupFootprints					GE_SetEnvID

GE_FilterSelection				GE_BacktrackFootprints		GE_LoadExpressions

GE_BakeCurves									GE_CopyTimeslice								GE_SaveExpressions

GE_SnapKeysToFrames			GE_PasteTimeslice							GE_ClearBin

GE_SelectAllKeys						GE_MatchFootprintAtFrame

The	newly	available	Image	Editor	commands	are:
IE_OpenWindow

IE_SetClipTable

IE_SetWindowPos

The	surface	system	supports	a	new	Surf_SetBakerImage	command.

Miscellaneous

When	the	user	changes	the	item	order,	plug-ins	are	now	notified	of
the	new	IDs	only	after	the	item	data	have	actually	been	rearranged.
Globals	that	take	item	IDs	as	arguments	should	now	behave	correctly
when	called	from	within	a	handler's	changeID	callback.
In	LWSN,	master	plug-ins	now	receive	a	LoadScene	command	event	at
the	end	of	scene	loading.	Since	the	issuing	of	commands	is	not
supported	in	LWSN,	the	LWMasterAccess	structure	contains	dummy
functions	in	this	situation.
Attempts	by	plug-ins	to	trace	rays	during	Wireframe	or	Quickshade
renders	were	causing	crashes.	This	has	been	fixed	(the	ray	tracing
functions	now	always	return	-1	in	those	modes).
The	Directory	Info	global	now	returns	the	correct	result	for	"Content"
in	Modeler.
Low	and	high	angles	are	now	returned	by	the	Item	Info	limits
function	even	if	the	corresponding	limits	are	turned	off.
A	condition	that	could	cause	mesh	info	queries	to	fail	after	an	object
is	cleared	from	the	scene	has	been	fixed.
All	enabled	environment	plug-ins	are	now	evaluated	(although	this
can	be	a	waste	of	time	since	each	one	will	overwrite	the	results	of	the
previous	one).
The	PreviousItem	and	NextItem	commands	now	skip	over	locked	items.
When	Adaptive	Sampling	is	on	and	Antialiasing	is	off,	the
minSamplesPerPixel	from	the	Scene	Info	global	is	now	zero,	since	some
pixels	may	be	totally	skipped.
The	Item	Info	controller	function	now	returns	correct	values.
Button	names	specified	by	generic	plug-ins	are	now	used	if	present.

The	envelope	commands	are	now	safe	to	use	when	there	is	no	current
item.
Object	serial	numbers	are	now	computed	during	rather	than	after
cloning	so	that	plug-ins	can	get	the	final	object	names	as	they	are
created.
Since	they	may	draw	semi-transparent	primitives,	custom	objects	are
now	processed	after	all	other	3D	elements	(including	the	grid).
[B]	During	scene	file	loading,	newline	characters	after	plug-in
server	names	were	not	being	read	before	the	plug-ins	loaded	their
data.	This	has	been	fixed.

	

7.5	Changes

May	1,	2002

This	is	a	list	of	the	changes	in	the	LightWave	7.5	release	that	affect	the
SDK.	The	changes	include	a	new	Layout	tool	class	and	a	new	globals,	as
well	as	enhancement	of	many	of	the	info	globals	defined	in	lwrender.h.	

Structures	associated	with	the	Item	Info,	Object	Info,	Light	Info,	Scene
Info,	and	Interface	Info,	globals	were	changed,	but	the	shader	version
number	and	the	global	name	strings	weren't	incremented.	In	all	cases,	the
changes	involve	members	added	to	the	ends	of	structures,	so	they	have	no
effect	on	existing	plug-ins.	New	plug-ins	can	use	the	Product	Info	global
to	verify	that	they're	running	in	at	least	LightWave	7.0	before	they	use	the
new	structure	members.

lwcustobj.h

	
A	bit	definitions	for	the	flags	function	return	value	has	been	added.	
The	LWCOF_VIEWPORT_INDEX	flag	tells	layout	to	use	the	viewport	number
instead	of	its	type	in	the	LWCustomObjAccess	view	element	
The	LWCOF_NO_DEPTH_BUFFER	flag	prevent	textured	quads	from	being
obscured	by	OpenGL	drawing	that	is	done	in	front	of	them.
The	text	function	justification	argument	values	are	now	defined.

lwfilter.h

	
A	new	flag	tor	the	PixelFiltel,	LWPFF_EVERYPIXEL,	has	been	added.	It	tells
layout	to	call	this	filter	for	every	pixel,	despite	adaptive	sampling
settings.

lwhost.h

	
A	formal	define	for	the	content	directory	string	passed	to	the
Directory	Info	global,	LWFTYPE_CONTENT,	has	been	added.

lwenvel.h		

A	new	event	code,	LWCEVNT_TRACK,	has	been	added	to	signal	temporary
changes	to	channels	done	during	interactive	editing.	Caution	should
be	used	when	handling	these	events,	ad	they	will	be	plentiful,	and
ambitious	callbacks	could	result	in	significant	performance
degradation.
A	new	event	code,	LWCEVNT_CREATE,	has	been	added	to	signal	the	addition
of	a	channel	to	a	group.
A	new	event	code,	LWCEVNT_RENAME,	has	been	added	to	signal	than	a
channel	group	has	been	renamed.

lwlaytool.h

	
The	new	plug-in	class,	LayoutTool	actually	works	now.

lwmaster.h

	
An	LWEVNT_RENDER_DONE	event	code	has	been	added	(MasterHandler).

lwmodtool.h	
	

Per-vertex	and	per-polygon	custom	allocation	available	to	MeshEdits
is	now	available	to	MeshEditTools	via	the	bit	definitions	in	the	return
values	of	the	Test	function.	These	bits	are	conveniently	defined	by	the
LWT_VMEM()	and	LWT_PMEM()	preprocessor	macros,	which	take	the	memory
size	as	arguments.

lwtxtr.h

	
The	LWTEXTUREFUNCS_GLOBAL	global	(Texture	Functions)	has	incremented
to	"Texture	Functions	3"	due	to	the	new	tags	supported	by	getParam
and	setParam.
New	tag	definitions	were	added:	TXTAG_ACTIVE,	TXTAG_INVERT	and
TXTAG_BLEND.
The	possible	blend	modes	have	been	enumerated:	

typedef	enum	LWTextureBlendMode	{	
				TXBLN_NORMAL=0,	
				TXBLN_SUBTRACT,	
				TXBLN_DIFFERENCE,	
				TXBLN_MULTIPLY,	
				TXBLN_DIVIDE,	
				TXBLN_ALPHA,	
				TXBLN_DISPLACE,	
				TXBLN_ADD		}

lwserver.h

	
New	server	tag	SRVTAG_SELECTCMD	has	been	added	to	generate	a	command
upon	selection	of	the	item	to	which	the	plugin	is	applied.

lwrender.h	
		
	

A	function	to	retrieve	the	state	of	the	UI	motion	locks	(axisLocks)	has
been	added	to	LWItemInfo	(Item	Info).
Three	new	functions	(matteColor,	thickness,	and	edgeZScale)	have	been
added	to	LWObjectInfo.	The	thickness	function	uses	one	of	the
following	types:	

LWTHICK_SILHOUETTE		
LWTHICK_UNSHARED		
LWTHICK_CREASE		
LWTHICK_SURFACE		
LWTHICK_OTHER		
LWTHICK_LINE		
LWTHICK_PARTICLE_HEAD		
LWTHICK_PARTICLE_TAIL	

The	LWObjectInfo	flags	function	returns	new	flags	LWOBJF_MATTE,	and
LWOBJF_UNSEEN_BY_ALPHA.
Three	new	functions	(animFilename,	RGBPrefix,	and	alphaPrefix)	have
been	added	to	LWSceneInfo.
A	new	function,	shadowColor,	has	been	added	to	LWLightInfo.
Four	new	bit	definitions	are	available	in	the	LWSceneInfo	renderOpts:

LWROPT_ENHANCEDAA,	LWROPT_SAVEANIM,	LWROPT_SAVERGB,	and	LWROPT_SAVEALPHA..
The	LWInterfaceInfo	structure	now	contains	autoKeyCreate,	with	values
defined	as	LWAKC_OFF,	LWAKC_MODIFIED,	and	LWAKC_ALL.		The	generalFlags	can
now	reveal	the	AutoKey	state	in	the	LWGENF_AUTOKEY	bit.
A	new	global	(Viewport	Info)	has	been	added	to	facilitate	custom
drawing	and	tool	handle	processing.	The	server	name	is
LWVIEWPORTINFO_GLOBAL.

Miscellaneous	
	

The	Item	Info	first	function	now	returns	LWITEM_NULL	when	called	with
LWI_BONE	type	and	LWITEM_NULL	as	the	id	of	the	parent	object,	instead	of
returning	the	id	of	the	first	bone	in	the	scene..

Articles

This	is	an	area	of	the	documentation	where	I'd	like	to	put	tutorials,
informal	discussions	and	FAQ	answers,	most	of	which	I'm	hoping	will	be
contributed	by	other	plug-in	authors	as	time	goes	on.	I've	included	a	page
from	my	web	site	as	an	example,	but	the	pages	here	don't	have	to	be
elaborate	or	technical.	They	just	have	to	try	to	be	helpful.

Boxes:	An	Introductory	Modeler	Tutorial
Part	1	-	Plug-in	Basics
Part	2	-	User	Interface
Part	3	-	Mesh	Editing
Part	4	-	Tools

Converting	from	World	to	Screen	Coordinates

Commands

Commands	are	the	natural	counterparts	of	globals.	While	globals	are	used
primarily	to	read	information	about	LightWave's	state,	commands	are	used
to	change	its	state	by	loading	and	saving	files,	setting	parameters,	and
performing	operations.	Most	commands	available	to	plug-ins	are	parallels
of	actions	users	can	take	through	LightWave's	interface.

With	one	exception	described	below,	commands	can	only	be	issued	from
plug-ins	of	specific	classes:	LayoutGeneric	and	MasterHandler	in	Layout,
and	CommandSequence	in	Modeler.	Layout	and	Modeler	have	command
sets	unique	to	each	of	them,	but	they	also	support	a	common	set	of
commands	that	operate	on	components	they	share,	such	as	the	surface	and
graph	editors	and	the	image	display.

Modeler
Layout
Common

Two	Methods

There	are	two	ways	to	issue	commands,	the	"lookup/execute"	method	and
the	"evaluate"	method.	Although	both	methods	are	available	in	both
Layout	and	Modeler,	the	first	is	native	to	Modeler	and	the	second	to
Layout,	and	there	are	minor	differences	in	the	way	they're	implemented	in
each	program.

cmdcode	=	lookup(data,	cmdname)
result	=	execute(data,	cmdcode,	argc,	argv,	[opsel],	cmdresult)

The	lookup	function	returns	an	integer	code	corresponding	to	the
command	name.	The	command	is	issued	by	passing	the	command
code	to	the	execute	function.	Command	codes	are	constant	for	a	given
session,	so	lookup	only	needs	to	be	called	once	per	command,	after
which	the	codes	can	be	cached	and	then	used	in	any	number	of	calls
to	execute.	The	command's	arguments	are	passed	in	an	array	of
DynaValues.

Modeler's	version	of	execute	takes	an	additional	opsel	argument	that
determines	which	geometry	will	be	affected	by	the	command.	It	can
be	any	one	of	the	EltOpSelect	codes	except	OPSEL_MODIFY.	Modeler's
execute	returns	0	(CSERR_NONE)	if	it	succeeds,	or	an	error	code	if	it	fails.
Layout's	execute	returns	1	if	it	succeeds	and	0	if	it	fails.

result	=	evaluate(data,	cmdstring)
The	evaluate	function	uses	a	single	string	to	issue	the	command.	The
command's	name	and	its	arguments	are	delimited	by	spaces.

The	evaluate	method	usually	requires	you	to	write	less	code,	particularly	if
you	wrap	it	in	a	function	that	builds	the	command	string.	The	following
does	this	for	a	LayoutGeneric.

			static	int	lwcommand(LWLayoutGeneric	*local,	const	char	*cmdname,

						const	char	*fmt,	...)

			{

						static	char	cmd[512],	arg[512];

						if	(fmt)	{

									va_list	ap;

									va_start(ap,	fmt);

									vsprintf(arg,	fmt,	ap);

									va_end(ap);

									sprintf(cmd,	"%s	%s",	cmdname,	arg);

									return	local->evaluate(local->data,	cmd);

						}

						else

									return	local->evaluate(local->data,	cmdname);

			}

The	fmt	argument	is	a	printf	format	string,	and	the	variable	number	of
arguments	that	follow	it	correspond	to	the	arguments	you'd	pass	to	printf.

In	Modeler,	however,	the	lookup/execute	method	has	a	couple	of
advantages.	It	runs	slightly	faster,	since	Modeler	doesn't	have	to	perform
the	lookup	or	the	"unstringizing"	of	the	arguments	itself,	and	it	allows	you
to	specify	a	selection	criterion.

Layout	Command	Global

Layout	makes	available	a	global	that	allows	plug-ins	of	any	class,	not	just
generics	and	masters,	to	issue	commands.	Currently,	this	global	isn't	a
first-class	citizen	of	the	plug-in	API.	It	isn't	prototyped	in	the	SDK
headers,	and	it	doesn't	have	its	own	document	page.	This	is	primarily
because	there	are	lots	of	ways	it	could	be	used	unsafely,	some	of	which	are

difficult	to	anticipate.

You	can	use	this	global	by	adding	something	like	the	following	to	your
code.

			#define	LWCOMMANDFUNC_GLOBAL	"LW	Command	Interface"

			typedef	int	(*LWCommandFunc)(const	char	*cmd);

			LWCommandFunc	*evaluate;

			evaluate	=	global(LWCOMMANDFUNC_GLOBAL,	GFUSE_TRANSIENT);

Note	that	if	this	global,	or	something	like	it,	is	eventually	elevated	to	first-
class	status,	its	prototype	will	likely	be	different	from	the	above.

A	common	use	for	this	global	is	the	application	of	dependent	plug-ins.	The
HyperVoxels	volumetric,	for	example,	uses	it	from	within	its	interface	to
apply	or	remove	its	related	custom	object	plug-in.

But	be	careful.	Test	your	use	of	this	global	thoroughly.	Issuing	commands
at	the	wrong	time	or	in	the	wrong	context	can	easily	cause	a	crash.	In
particular,	never	issue	commands	during	rendering,	and	don't	remove
yourself,	or	the	item	you're	applied	to.

	

Common	Elements

This	page	discusses	the	components	that	are	common	to	all	plug-ins.
These	are	the	structural	components	that	form	the	bridge	between
LightWave	and	your	plug-ins.	They	have	funny	names	and	do	possibly
unfamiliar	things,	so	we	need	to	introduce	some	terminology.

The	host	is	the	program,	Layout	or	Modeler,	for	example,	that	runs	your
plug-ins.

A	plug-in	module	is	a	file,	usually	with	a	.p	extension,	that	contains	one	or
more	LightWave	plug-ins.	Any	number	of	plug-ins	can	be	compiled
together	into	a	single	module.	It's	common	for	an	image	loader	and	an
image	saver	to	be	together	in	the	same	file,	for	example.

Every	plug-in	file	needs	a	server	description	that	lists	the	plug-ins	in	the
file,	and	every	plug-in	needs	a	special	entry	point	function,	its	activation
function.	Both	of	these	are	defined	in	the	lwserver.h	header	file.	Each	plug-
in	file	also	contains	initialization	and	cleanup	functions	called	Startup	and
Shutdown.

Server	Description

The	server	description	lists	what	your	plug-in	file	contains.	It's	the	first
thing	the	host	examines	when	it	loads	your	module.	The	list	appears	in
your	source	code	as	an	array	of	ServerRecords.

			typedef	struct	st_ServerRecord	{

						const	char					*className;

						const	char					*name;

						ActivateFunc			*activate;

						ServerTagInfo		*tagInfo;

			}	ServerRecord;

className

A	string	containing	the	class	of	the	plug-in.	The	class	identifies	what
kind	of	plug-in	this	is.	The	header	files	for	classes	contain	#defines	for
each	class	name.	These	are	also	listed	in	the	documentation	for	each
class.

name

A	string	containing	the	name	by	which	LightWave	will	uniquely
identify	your	plug-in.	This	is	the	name	LightWave	uses	internally	and
saves	in	scene	and	object	files.	It's	also	the	name	displayed	to	the	user
if	the	plug-in	doesn't	supply	at	least	one	user	name.	The	name	must
be	a	string	of	ASCII	characters	in	the	range	33	to	127	(note	that	this
excludes	spaces).	Case	is	significant.

Although	this	allows	punctuation	and	other	special	characters	to	appear	in
the	name,	you're	strongly	encouraged	to	limit	names	to	those	that	would
be	legal	identifiers	in	the	C	language.	C	identifiers	contain	letters,
numbers	and	the	underscore	character	(ASCII	0x5F).	Image	saver	names,
which	by	convention	end	with	the	default	filename	extension	in
parentheses,	are	an	exception	to	this	rule.	

The	use	of	non-alphanumeric	initial	characters	to	force	your	plug-ins	to
appear	first,	or	together,	in	lexicographically	sorted	lists	is	discouraged.
This	practice	may	interfere	with	LightWave's	internal	name	processing	and
may	conflict	with	conventions	that	evolve	in	the	future.

Each	class	has	its	own	name	space,	so	plug-ins	of	different	classes	can
have	the	same	name.	Although	you'll	probably	want	to	avoid	giving
unrelated	plug-ins	the	same	name,	you	must	use	the	same	name	for	the
interface	class	associated	with	a	handler.	This	is	how	the	host	matches	a
handler	with	its	interface.

activate

The	activation	function.	See	below.

tagInfo

An	array	of	tag	strings	that	describe	the	plug-in.	Among	other	things,
this	is	where	you	list	the	name	that	will	be	displayed	to	your	users	in
LightWave's	interface.

Server	Tags

The	ServerRecord's	tagInfo	field	is	an	array	of	ServerTagInfo	structures.

			typedef	struct	st_ServerTagInfo	{

						const	char			*string;

						unsigned	int		tag;

			}	ServerTagInfo;

Each	tag	contains	two	codes	combined	using	bitwise-or.	The	high	word	is
the	tag	type,	and	the	low	word	is	the	language	ID.	Not	all	of	the	tags	are
supported	yet.	Currently	defined	tag	types	include	the	following.

	
SRVTAG_USERNAME

The	name	displayed	to	the	user	in	LightWave's	interface.	Multiple
user	names	for	different	locales	can	be	provided	by	combining	this
type	code	with	different	language	IDs.	LightWave	attempts	to	select
the	name	that's	most	appropriate	for	the	locale	of	the	user's	machine.
Unlike	the	internal	server	name,	there	are	no	restrictions	on	what	the
string	may	contain.

Japanese	strings	should	be	encoded	as	JIS	on	Windows	and	EUC	on	Unix.

SRVTAG_BUTTONNAME

The	string	that	will	appear	on	a	button	or	in	a	popup	list	used	to
invoke	your	plug-in.	This	is	usually	an	abbreviated	version	of	your
user	name.

SRVTAG_CMDGROUP

The	LightWave	interface	organizes	commands,	including	plug-ins,
into	command	groups.	The	command	group	you	specifiy	determines
the	heading	under	which	users	will	find	your	plug-in	on	menu	and
key	customization	dialogs.	The	command	group	can	be	a	predefined
group,	or	a	new	group	created	simply	by	listing	its	name.	

SRVTAG_SELECTCMD

The	string	in	this	tag	will	be	executed	as	a	command	when	an	item
with	this	plug-in	applied	is	selected	in	Layout.	This	is	useful	for
activating	special	tools	for	certain	custom	objects,	among	other
things.

In	general,	the	predefined	group	names	are	lowercase	versions	of	the
group	names	displayed	in	the	interface.	When	using	one	of	these	groups,
the	language	ID	should	be	0.	Predefined	group	names	are	automatically
translated	to	the	locale	of	the	user's	machine.	The	following	is	a	partial	list

of	the	predefined	command	groups.	
	
Both Layout Modeler

display	
file	
preferences	
windows	
selection	
additional

bones	
cameras	
effects	
items	
lights	
motion	
objects	
previews	
rendering	
time

create	
construct	
edit	
mappings	
modify	
polygons	
texture

SRVTAG_MENU

For	plug-ins	that	can	be	activated	as	commands	or	tools	(all	Modeler
classes,	plus	generics	in	Layout),	the	menu	string	specifies	the
location	of	the	plug-in's	node	in	LightWave's	menu	system.	Like
command	groups,	the	menu	string	can	refer	to	predefined	or	custom
nodes.	They	can	also	specify	a	"path"	resembling	a	filename,	with
optional	root	menu	nodes	followed	by	a	colon	and	other	nodes
separated	by	forward	slashes,	and	the	nodes	can	be	a	mix	of
predefined	and	custom.	The	path	

			"tools/objects/Quadrics"

for	example,	would	create	a	(custom)	"Quadrics"	popup	on	the
(predefined)	"Tools"	tab,	while	
			"polygon/Metaballs"

would	create	a	"Metaballs"	group.	In	general,	the	menu	tag	path	has	the
form	
			"[menu:]tab[/group[/group...]]"

and	the	menu	info	tag	can	contain	many	of	these	strings	separated	by
commas.	The	string	
			"multiply/replicate,LMB:Ultra	Studio"

would	place	the	command	or	tool	into	the	standard	location	in	the	main
menu	and	into	a	custom	group	in	the	left	mouse	button	popup.	It's	even
possible	to	place	commands	into	the	bottom	command	bar	in	Modeler,	but

this	isn't	recommended,	since	the	screen	real	estate	there	is	limited.

The	predefined	menu	hierarchy	hadn't	been	finalized	at	the	time	this
document	was	last	updated.

SRVTAG_DESCRIPTION

A	line	of	text	describing	the	plug-in.	This	might	be	displayed	in	the
interface	as	hint	text	or	as	a	description	next	to	the	user	name	in
customization	dialogs.

SRVTAG_ENABLE

A	string	defining	the	conditions	under	which	the	plug-in	should	be
active.	This	is	currently	used	for	Modeler	tools	and	commands	to
determine	the	enable	state	of	the	plug-in's	button.	Possible	values
include	

"pnt"	-	active	points	
"pol"	-	active	polygons	
"spnt"	-	directly	selected	points	
"spol"	-	directly	selected	polygons

Compound	conditions,	which	would	combine	these	into	boolean
expressions,	aren't	supported	yet	but	may	be	in	the	future.

The	language	ID	is	a	code	indicating	the	language	for	the	name	string.	The
language	IDs	are	identical	to	those	defined	in	the	Microsoft	Win32	API
and	exposed	in	the	Microsoft	Visual	C++	winnt.h	header	file.	Bits	7	-	0
define	the	language	group	and	bits	15	-	8	define	the	sublanguage.
lwserver.h	contains	symbols	for	some	of	the	more	common	language	IDs.

0x0407	LANGID_GERMAN	
0x0409	LANGID_USENGLISH	
0x0809	LANGID_UKENGLISH	
0x040a	LANGID_SPANISH	
0x040c	LANGID_FRENCH	
0x0410	LANGID_ITALIAN	
0x0411	LANGID_JAPANESE	
0x0412	LANGID_KOREAN	
0x0419	LANGID_RUSSIAN	
0x041D	LANGID_SWEDISH

Activation	Function

The	activation	function	is	the	entry	point	for	the	service	provided	by	your
plug-in.	For	some	plug-in	classes,	this	may	be	the	only	function	the	host
calls	in	your	plug-in	(other	than	the	startup	and	shutdown	functions).	For
others,	the	activation	function	is	where	the	host	finds	out	about	the	plug-
in's	callback	functions.

			XCALL_(int)

			MyActivate(long	version,	GlobalFunc	*global,	void	*local,

						void	*serverData);

version

A	class-specific	version	number.	As	development	of	LightWave
continues,	the	interaction	between	the	host	and	a	given	plug-in	class
is	sometimes	redefined.	This	number	tells	you,	among	other	things,
what	version	of	the	local	data	the	host	has	passed.	See	the
compatibility	discussion	for	more	information	on	using	this	value.	In
most	cases,	though,	you'll	test	this	value	against	the	version	number
defined	in	the	header	file	for	your	plug-in's	class	and	return
AFUNC_BADVERSION	if	they	don't	match.

global

A	function	that	gives	your	plug-in	access	to	services	provided	by	the
host	and	by	Global	class	plug-ins.	See	the	pages	about	the	global
function	and	Global	plug-ins	for	more	information.

local

Class-specific	data.	Each	plug-in	class	receives	different	data	through
this	argument.	The	documentation	for	each	class,	in	fact,	is	primarily
concerned	with	describing	the	class's	local	argument.	For	handler
classes,	this	points	to	a	structure	that	the	plug-in	needs	to	fill.	The
host	gets	pointers	to	other	functions	in	your	plug-in	this	way.

serverData

The	data	pointer	returned	by	the	startup	function.	Unless	you
replaced	the	default	startup	function,	you	should	ignore	this
argument.	In	particular,	don't	try	to	dereference	the	pointer,	since	on
most	systems	it	contains	an	invalid	(although	non-NULL)	address.

The	activation	function	returns	a	code	that	tells	the	host	whether	the	plug-
in	was	activated	successfully.

	
AFUNC_BADVERSION

The	version	argument	differs	from	what	your	plug-in	supports.	In
some	cases	the	host	will	try	again	with	a	lower	version	number.

AFUNC_BADGLOBAL

A	call	to	the	global	function	failed.

AFUNC_BADLOCAL

Your	plug-in	doesn't	like	something	in	the	local	data.

AFUNC_BADAPP

The	host	is	a	program	you	don't	support.

AFUNC_OK

Return	this	when	none	of	the	other	values	is	appropriate.

Startup	and	Shutdown

These	two	optional	entry	points	allow	the	module	to	initialize	itself	when
it	is	first	loaded	and	to	clean	itself	up	before	being	unloaded.

			void	*Startup(void);

			void	Shutdown(void	*serverData);

Most	plug-in	files	don't	require	module-level	initialization	and	cleanup.
They	use	the	empty	startup	and	shutdown	functions	supplied	by	the	SDK
linker	library.

The	startup	function	is	called	when	the	plug-in	is	first	loaded	by	the	host.
The	return	value	is	the	data	passed	to	the	activation	and	shutdown
functions	as	the	serverData	argument.	Returning	NULL	from	the	startup
function	indicates	failure,	so	even	if	a	module	has	no	real	server	data,	it
should	still	return	something.	The	module's	shutdown	function	is	called
just	before	the	host	unloads	the	module.	Any	allocated	server	data	should
be	freed	at	this	point.

Calling	Convention

Functions	in	the	plug-in	are	called	directly	by	LightWave,	and	this	is	a
potentially	funky	thing	in	some	systems	since	they	may	be	different
environments.	The	lwserver.h	header	file	defines	an	XCALL_	macro	that
establishes	the	calling	convention	for	each	platform	and	compiler.	XCALL_	is

applied	to	anything	that	preceeds	the	function	name	in	definitions.

			XCALL_(static	const	char	*)	DescLn(LWInstance	instance)

			{	...

All	functions	in	your	plug-in	that	can	be	called	by	LightWave	need	the
XCALL_	treatment,	with	the	exception	of	the	startup	and	shutdown	functions.

Compatibility

This	page	discusses	four	different	varieties	of	plug-in	compatibility.

Backward	compatibility	is	the	ability	to	use	the	same	code,	including
the	latest	SDK	headers	and	source,	with	both	current	and	older
versions	of	LightWave.
Forward	compatibility	deals	with	writing	code	that	won't	break	in
future	versions	of	LightWave.
Compatibility	across	platforms	allows	you	to	use	one	code	base	to
support	more	than	one	operating	system	or	CPU	type.
Product	compatibility	means	being	able	to	use	the	same	code	in
products	that	may	be	derived	from	LightWave	or	share	some	of	its
plug-in	API	(application	programming	interface).

Of	these,	backward	compatibility	is	likely	to	be	the	greatest	concern.
Forward	compatibility	and	compatibility	across	platforms	are	largely
automatic	for	the	plug-in	author,	as	long	as	he	or	she	writes	to	the
specification	in	this	documentation	and	uses	the	facilities	provided	by	the
SDK	rather	than	platform-specific	code.	The	requirements	for	product
compatibility	are	difficult	to	predict	at	the	moment,	since	no	concrete
examples	of	the	need	for	it	exist	yet,	but	globals	for	determining	the
product	and	version	number	are	available,	and	we'll	introduce	them	here.

This	discussion	necessarily	delves	into	some	grubby	details,	so	it'll	be
easier	to	follow	if	you're	already	familiar	with	the	SDK.	But	if	you're	not,
links	to	the	information	you	need	are	provided.

SDK	Versions

The	plug-in	SDK	continues	to	evolve.	Changes	to	it	will	appear	with	each
release	of	LightWave.	The	SDK	itself	isn't	versioned,	however.	Each	class
and	global	has	its	own	version	number.	Your	plug-in	remains	both	forward
and	backward	compatible	with	SDK	changes	by	using,	for	classes,	the
version	number	passed	as	the	first	argument	to	your	activation	function,
and	for	globals,	increments	embedded	in	the	global's	service	name	string.

The	SDK	defines	symbolic	names	for	the	versions	of	each	class.	The
version	number	for	shaders,	for	example,	is	LWSHADER_VERSION,	which	as	of
this	writing	is	defined	as	4.	Your	shader's	activation	function	will	usually
compare	this	to	the	version	number	passed	as	the	first	argument	to	the
function	and	return	AFUNC_BADVERSION	if	the	two	numbers	don't	match.

			XCALL_(int)

			MyActivate(long	version,	GlobalFunc	*global,	LWShaderHandler	*local,

						void	*serverData);

			{

						if	(version	!=	LWSHADER_VERSION)

									return	AFUNC_BADVERSION;

This	ensures	that	the	LWShaderHandler	being	passed	to	you	in	the	local
argument	is	the	same	as	the	LWShaderHandler	in	your	copy	of	the
lwshader.h	SDK	header	file.	The	lwshader.h	header	contains	the	line

			#define	LWSHADER_VERSION	4

as	well	as	the	definition	of	the	structures	used	by	shaders,	including
LWShaderHandler	and	LWShaderAccess.	When	you	compile	your	plug-in
using	this	header,	the	compiler	renders	the	version	checking	code	in	your
activation	function	as

			if	(version	!=	4)	...

You	test	for	version	4	because	that's	the	version	of	the	shader	API	defined
in	your	copy	of	the	header,	and	the	version	of	the	shader-related	structures
compiled	into	your	plug-in.

LightWave	will	call	your	activation	function	with	every	version	of
LWShaderHandler	it	supports,	until	it	runs	out	of	versions	or	one	of	the
calls	succeeds.	Forward	compatibility	is	therefore	automatic,	as	long	as
LightWave	continues	to	support	version	4	of	LWShaderHandler.

But	what	happens	when	you	update	your	copy	of	the	SDK	headers?
LWSHADER_VERSION	may	have	been	incremented,	yet	you	want	to	continue	to
support	LightWave	6.x,	which	itself	supports	shaders	no	later	than	version
4.

First,	your	activation	function	must	accept	a	range	of	versions.	LightWave
starts	by	calling	your	activation	function	with	the	highest	version	it
supports,	then	with	successively	lower	versions.	(The	exception	is	the

interface	activation	for	handlers,	which	for	historical	reasons	starts	at	1
and	counts	up.)	Your	plug-in	is	therefore	activated	with	the	highest	version
supported	by	both	the	plug-in	and	the	LightWave	it's	running	in.

			XCALL_(int)

			MyActivate(long	version,	GlobalFunc	*global,	LWShaderHandler	*local,

						void	*serverData);

			{

						if	(version	>	LWSHADER_VERSION	||	version	<	4)

									return	AFUNC_BADVERSION;

Then	you	have	to	decide	how	to	handle	the	different	versions	of
LWShaderHandler	and	other	shader-related	structures	in	the	rest	of	your
code.	In	many	cases,	changes	to	the	API	of	a	class	are	incremental.
Existing	structure	members	are	retained,	and	new	members	are	appended,
making	it	possible	to	use	the	most	recent	versions	of	the	data	structures
with	previous	versions	of	the	API.	You	just	need	to	remember	not	to	use
new	members	when	you've	been	activated	with	an	older	version	number.

The	documentation	includes	a	history	of	the	changes	made	to	the	headers
with	each	revision	of	LightWave.	Look	for	this	in	both	the	changes	lists
and	in	sections	labeled	"History"	on	the	pages	for	each	class.	Using	this
information,	you	can	see	how	the	current	data	structures	differ	from	those
in	previous	versions.

Globals	work	in	a	similar	way.	The	SDK	headers	define	symbolic	names
for	the	strings	you	pass	to	the	global	function.	LWMESSAGEFUNCS_GLOBAL,	for
example,	is	the	symbolic	name	of	the	messages	global.

			LWMessageFuncs	*msgf;

			msgf	=	global(LWMESSAGEFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(msgf)	{	...

By	using	the	symbolic	name,	you	ensure	that	the	LWMessageFuncs
structure	returned	by	the	global	function	is	the	same	as	the
LWMessageFuncs	defined	in	your	copy	of	the	lwhost.h	SDK	header.

The	name	strings	underlying	the	symbols	often	contain	trailing	numbers	or
other	incrementing	characters.	As	of	this	writing,	the	string	for	the
messages	global,	for	example,	is	"Info	Messages	2".	If	the
LWMessageFuncs	structure	changes	in	the	future,	the	new	string	will	most
likely	be	"Info	Messages	3",	but	LightWave	will	continue	to	support	"Info
Messages	2".	Again,	your	plug-in's	forward	compatibility	with	future

versions	of	LightWave	is	automatic.

For	backwards	compatibility,	you	can	request	earlier	versions	of	globals
when	the	most	recent	version,	or	the	version	defined	in	your	copy	of	the
headers,	isn't	available.	As	with	class-related	structures,	the	data	structures
for	globals	in	many	cases	evolve	in	backward-compatible	ways.	The
LWMessageFuncs	structure	for	the	original	"Info	Messages"	global	looks
like	this.

			typedef	struct	st_LWMessageFuncs	{

						void	(*info)					(const	char	*,	const	char	*);

						void	(*error)				(const	char	*,	const	char	*);

						void	(*warning)		(const	char	*,	const	char	*);

			}	LWMessageFuncs;

The	"Info	Messages	2"	global	adds	several	functions	to	the	end	of	the
structure.

			typedef	struct	st_LWMessageFuncs	{

						void	(*info)					(const	char	*,	const	char	*);

						void	(*error)				(const	char	*,	const	char	*);

						void	(*warning)		(const	char	*,	const	char	*);

						int		(*okCancel)	(const	char	*ttl,	const	char	*,	const	char	*);

						int		(*yesNo)				(const	char	*ttl,	const	char	*,	const	char	*);

						int		(*yesNoCan)	(const	char	*ttl,	const	char	*,	const	char	*);

						int		(*yesNoAll)	(const	char	*ttl,	const	char	*,	const	char	*);

			}	LWMessageFuncs;

The	version	2	definition	is	backward-compatible	with	the	pointer	returned
from	a	request	for	the	original	"Info	Messages"	global,	as	long	as	you
remember	not	to	use	the	fields	added	for	"Info	Messages	2".

Before	LightWave	6.0

The	revision	of	the	plug-in	API	for	LightWave	6.0	was	the	most
substantial	since	the	plug-in	architecture	was	first	introduced	in	1995.
Prior	to	6.0,	API	revisions	were	incremental	and	had	very	little	effect	on
existing	source	code.	New	globals	were	made	available,	and	new	members
were	appended	to	existing	class	structures.	Plug-in	authors	could	take
advantage	of	the	new	features	without	changing	much	of	their	code	and
without	sacrificing	backward	compatibility	with	older	versions	of
LightWave.

This	is	also	true	within	versions	from	6.0	onward.	But	there	is	a	great
divide	at	6.0,	and	the	most	difficult	backward	compatibility	challenge

involves	bridging	this	divide.	(This	is	a	problem	only	for	new	source	code.
The	situation	for	existing	binaries	is	quite	a	bit	simpler.	With	a	few
exceptions,	plug-in	binaries	built	with	the	pre-6.0	SDK	will	run	in
LightWave	6.0	but	won't	have	access	to	any	of	the	new	features.	Binaries
built	with	the	current	SDK	will	not	run	in	versions	of	LightWave	prior	to
6.0.)

With	6.0,	the	API	doubled	in	size,	and	in	keeping	with	the	complete
overhaul	of	LightWave	itself,	many	familiar	API	structures	were	renamed,
rearranged	or	removed.	It's	no	longer	possible	to	write	plug-ins	to	both	the
current	and	5.x	APIs	using	the	same	code	base	and	a	single	set	of	SDK
headers.	In	some	cases	it	simply	won't	make	sense	to	continue	to	work
within	the	limitations	of	the	5.x	SDK,	particularly	as	time	passes	and	older
versions	of	LightWave	fade	from	view.	But	with	that	caveat	in	mind,	it's
still	possible	to	write	a	single	plug-in	that	uses	new	SDK	features	yet	runs
in	LightWave	5.x.

One	way	to	do	this	is	to	segregate	any	code	that	requires	a	particular	API
version.	Your	activation	functions	might	look	like	the	following.

			XCALL_(static	int)

			Activate(long	version,	GlobalFunc	*global,	void	*local,

						void	*serverData)

			{

						unsigned	long	prodinfo,	major;

						prodinfo	=	(unsigned	long)	global(LWPRODUCTINFO_GLOBAL,

									GFUSE_TRANSIENT);

						major	=	LWINF_GETMAJOR(prodinfo);

						if	(major	<	6)

									return	Activate5(version,	global,	local,	serverData);

						else

									return	Activate6(version,	global,	local,	serverData);

			}

The	Product	Info	global	is	used	here	to	distinguish	between	major	versions
of	LightWave.	Activate5	is	the	activation	function	you	would	have	written,
had	this	been	an	exclusively	5.x	plug-in,	and	Activate6	is	the	6.0	version.
Activate	covers	both	functions	and	is	the	activation	function	that	should	be
listed	in	the	ServerRecord.	Activate5	and	Activate6	reside	in	two	different	.c
files,	each	of	which	includes	the	appropriate	version	of	the	headers	and
contains	the	version-sensitive	callbacks.	The	code	that	doesn't	depend	on
the	API	version	can	be	called	from	both	of	these	files.

In	the	6	SDK,	the	ServerRecord	structure	was	extended	to	include	a	tagInfo

member,	and	the	value	of	the	sysVersion	member	of	the	ModuleDescriptor
structure	was	incremented.	(These	structures	are	defined	in	lwserver.h	and
lwmodule.h	in	the	6.0	SDK,	and	in	splug.h	and	serv_w.c	in	the	5.x	SDK.)
The	change	in	sysVersion	prevents	plug-ins	linked	with	the	6	SDK	library
from	being	loaded	by	earlier	versions	of	LightWave	that	don't	know	about
tagInfo.	Your	5.x/6	hybrid	plug-in	must	therefore	be	linked	with	the	5.x
SDK	library,	and	it	can't	include	tagInfo	in	its	ServerRecords.

Product	Info	and	System	ID

The	Product	Info	global	returns	the	identity	of	the	host	(e.g.	LightWave),
its	major	and	minor	version	numbers,	and	the	build	number.	The	System
ID	global	tells	you	which	specific	program	you're	running	in	(e.g.,	Layout,
Modeler	or	Screamernet).	If	your	plug-in	uses	features	that	only	appear	in
certain	versions	of	LightWave,	or	in	LightWave	but	not	in	other	programs
that	may	share	the	LightWave	SDK,	or	in	Layout	but	not	Modeler,	you	can
use	these	two	globals	so	that	you	can	either	bracket	the	affected	code	or
fail	gracefully.

Note	that	this	is	only	necessary	when	the	class	version	number	or	the
global	service	name	aren't	sufficient	by	themselves	to	ensure
compatibility,	as	in	the	5.x	example	above.	The	need	also	arises	in	cases
where	the	LightWave	programmers,	proving	they	are	only	human,	forget
to	increment	a	version	number	when	they	make	a	change	to	a	header.

Returning	to	our	shader	example,	LightWave	7.0	added	four	fields	to	the
LWShaderAccess	structure	without	a	corresponding	change	to
LWSHADER_VERSION.	As	the	History	section	of	the	shader	page	points	out,	you'll
need	to	use	the	Product	Info	global	to	ensure	that	you're	running	in	at	least
LightWave	7.0	before	you	try	to	read	or	write	those	new	LWShaderAccess
fields.

The	least	convenient	but	most	reliable	version	indicator	is	the	build
number.	You	may	occasionally	need	this	in	order	to	identify	minor	patches
that	retain	the	same	major	and	minor	version	numbers.	Older	versions	of	a
given	LightWave	component	will	always	have	smaller	build	numbers,	so
that	you	can	reliably	use	inequalities	to	test	whether	the	current	program	is
at	least	as	old	or	new	as	a	specific	build.	The	build	numbers	for
LightWave	Layout	and	Modeler	are	displayed	in	their	About	boxes.

Platforms

LightWave	is	available	on	more	than	one	operating	system.	You	can	build
a	version	of	your	plug-in	for	each	of	these	operating	systems	and
platforms	without	the	use	of	any	platform-specific	source	code.
LightWave	supports	this	by	providing	services	for	file	I/O	and	user
interface	construction	(panels,	xpanels,	requesters,	messages,	file	dialogs,
color	dialogs,	previews,	presets	and	monitors,	for	example)	that	hide
details	specific	to	each	platform.	You	just	need	to	recompile.

The	SDK	requires	you	to	define	certain	preprocessor	symbols	to
distinguish	between	platforms.	The	lwdisplay.h	header	uses	these,	for
example,	to	selectively	compile	different	versions	of	the	structure	returned
by	the	Host	Display	Info	global.	Under	Windows,	your	plug-in	receives	an
HWND	for	the	LightWave	component's	main	window,	while	on	the	Mac,
it	receives	a	WindowPtr.	Which	one	you	get	will	depend	on	whether	you
define	_WIN32	or	_MACOS	when	you	compile.

Although	platform	independence	is	usually	a	good	thing,	the	SDK	by	no
means	requires	it.	Plug-ins	aren't	exotic	objects	on	any	platform.	They're
shared	libraries	on	the	Mac	and	DLLs	in	Windows,	and	they	can	do
everything	that	other	dynamically	linked	code	can	do	on	those	platforms.

Under	Windows,	your	plug-in	can	include	an	entry	point	function,	usually
called	DllMain.	The	entry	point	is	a	function	Windows	calls	when
LightWave	loads	your	plug-in	(or	when	any	process	or	thread	links	to	a
DLL).	In	order	to	gain	access	to	resources	(dialog	box	templates,	bitmaps,
icons,	version	data)	you've	linked	into	your	.p	file,	you	need	to	know	your
module	handle,	which	you	receive	as	the	first	argument	to	your	entry	point
function.

			#ifdef	_WIN32

			static	HINSTANCE	hdll;

			BOOL	WINAPI	DllMain(HINSTANCE	hInstance,	ULONG	reason,

						LPVOID	reserved)

			{

						if	(reason	==	DLL_PROCESS_ATTACH)

									hdll	=	hInstance;

						return	TRUE;

			}

			#endif	/*	_WIN32	*/

Later,	you	can	pass	hdll	as	the	first	argument	to	Win32	functions	like

LoadIcon	and	DialogBox.

Parting	Tips

Always	check	the	activation	version	(the	first	argument	to	the
activation	function).
Always	check	the	value	returned	by	the	global	function.	It	may	be
NULL	if	the	global	you've	requested	doesn't	exist	in	the	LightWave
that's	running	you.
You	can	use	the	lookup	function	to	see	whether	a	command	is
available.
Write	to	the	spec.	Don't	make	assumptions	about	undocumented
LightWave	internals.	Don't	try	to	dereference	opaque	pointers	or	read
past	the	ends	of	buffers,	and	don't	rely	on	buffers	being	contiguous	or
persistent,	or	in	the	same	form	internally	as	they	are	in	the	SDK.
When	possible,	follow	LightWave	conventions.
Use	the	Product	Info	and	System	ID	globals	to	find	out	what	program
is	calling	you.
Use	platform-independent	services	for	file	I/O	and	user	interfaces.

Compiling	LightWave	Plug-ins

LightWave	plug-ins	on	all	platforms	are	ordinary	operating	system	objects
(they're	DLLs	under	Windows,	for	example),	so	building	them	is	pretty
straightforward.	You'll	need	to	define	a	couple	of	preprocessor	symbols
and	export	one	variable	name,	and	you'll	need	to	compile	and	link	with	a
bit	of	code	supplied	with	the	SDK.	LightWave	plug-ins	are	ordinarily
given	a	".p"	filename	extension,	although	this	isn't	required.

Preprocessor	Symbols

The	SDK	header	files	rely	on	preprocessor	symbols	to	identify	the
operating	system	and	CPU	of	the	host	system.	These	are	currently	used	to
define	system-specific	versions	of	the	XCALL_	macro	and	the	HostDisplayInfo
structure	(don't	worry	if	you	don't	know	what	those	are	yet),	and	they
determine	what	is	stored	in	the	system	identification	fields	of	the	module
descriptor.	The	operating	system	defines	are

			_WIN32			/*	Microsoft	Windows	*/

			_MACOS			/*	Macintosh	*/

			_XGL					/*	Unix	*/

and	the	CPU	defines	are.

			X86				/*	Intel	and	Intel-compatible	*/

			ALPHA		/*	Alpha	AXP	*/

			PPC				/*	PowerPC	*/

			MIPS			/*	MIPS	*/

You	need	one	symbol	from	the	first	list	and	one	from	the	second,	and	you
need	to	pass	them	to	the	compiler	as	preprocessor	defines.

Exported	Variable

The	linker	needs	to	export	the	symbol	_mod_descrip.	LightWave	looks	for
this	module	descriptor	data	structure	by	name	when	it	attempts	to	load	a
plug-in.	Symbol	export	is	handled	differently	in	different	development
environments,	but	it's	often	a	linker	command	line	option.

SDK	Library

The	SDK	ships	with	source	code	files	defining	the	_mod_descrip	structure,
default	Startup	and	Shutdown	functions,	and	a	default	names	array.	Each	plug-
in	you	create	must	include	servmain.c	and	must	be	linked	with	server.lib.

Before	compiling	any	plug-ins,	you'll	need	to	build	server.lib	for	your
system.	Create	a	statically	linked	library	containing	servdesc.c,	username.c,
startup.c,	and	shutdown.c,	all	of	which	you	should	find	in	the	SDK/source
directory.	Name	the	library	server.lib.	Define	the	operating	system	and
CPU	preprocessor	symbols	described	previously	when	compiling	the
library	source.

You	may	want	to	create	more	than	one	version	of	server.lib	with	different
compiler	settings	(debug	and	release	versions,	for	instance).

Debugging	Notes

Don't	forget	that	before	you	can	run	or	debug	your	plug-in	for	the	first
time,	you	need	to	add	it	to	the	plug-in	list	in	LightWave.

In	general,	you	must	quit	and	restart	LightWave	each	time	you	rebuild
your	plug-in	and	want	to	run	it.	Your	plug-in	is	cached	in	memory	for	the
life	of	a	LightWave	session,	so	LightWave	won't	see	the	changes	to	your
plug-in	until	it	quits	and	restarts.

LightWave	Modeler	supports	a	debug	command	line	switch.	When	started
with	the	-d	switch,	Modeler	adds	an	"Unload	Plug-ins"	command.	(This
appears	in	the	Modeler/Plug-ins	menu	with	the	default	configuration,	but
may	not	appear	in	custom	menu	configurations.)	Activating	this	command
forces	Modeler	to	unload	all	unlocked	plug-in	modules,	so	that	when	you
execute	your	plug-in	again	it	will	be	reloaded	from	disk.

Beginning	in	LightWave	6.5,	Modeler's	-d	switch	can	take	an	argument	(-
dfilename)	which	tells	it	where	to	write	debug	information.	This	can	be
useful	for	figuring	out	why	plug-ins	aren't	loading,	or	for	looking	at	trace
information	generated	by	XPanels.

Microsoft	Windows

Plug-in	modules	under	Windows	are	Win32	dynamic	link	libraries
(DLLs).	You	don't	need	to	create	an	import	library	(.lib)	or	an	export	file

(.exp)	for	plug-in	DLLs,	but	you	will	need	to	export	_mod_descrip.	One	way
to	do	this	is	to	include	a	module	definition	(.def)	file	containing	an	EXPORT
_mod_descrip	directive.	You	can	use	the	default	source\serv.def	file	provided
with	the	SDK	for	this.

Win32	DLLs	have	a	standard	entry	point	function	named	DllMain.	You	don't
need	to	provide	a	DllMain	for	your	LightWave	plug-ins	unless,	for	example,
the	user	interface	is	built	with	Windows	interface	components	that	require
the	DLL's	instance	handle.	(But	consider	building	your	interface	using	the
platform-independent	components	provided	with	the	plug-in	SDK.)

The	alignment	of	structure	members	in	your	DLL	must	match
LightWave's.

Data	type Address	must	be...
char any
short	(16-bit) even
int,	long	(32-bit) divisible	by	4
float divisible	by	4
double divisible	by	8
structures aligned	for	the	largest	member
unions aligned	for	the	first	member

The	recipes	for	specific	compilers	discuss	what,	if	anything,	you	need	to
do	to	ensure	that	your	plug-in's	data	is	properly	aligned.

If	you	decide	to	use	makefiles	to	build	your	plug-ins,	they	should	contain
lines	resembling	the	following:

			LWSDK_FLAGS	=	-D_X86_	-D_WIN32

			.c.obj:

						$(CC)	$(CFLAGS)	$(LWSDK_FLAGS)	$*.c	$(LWSDK_SRC)servmain.c

			.obj.p:

						$(LINKER)	-dll	-out:$@	-def:$(LWSDK_INCL)serv.def	$*.obj	\

							$(LWSDK_LIB)server.lib	$(OTHER_LIBS)

In	other	words,	define	the	symbols	_X86_	(or	_ALPHA_)	and	_WIN32,	include
servmain.c	in	the	list	of	source	code	files,	include	the	module	definition	file
serv.def	so	that	_mod_descrip	is	exported,	and	link	with	server.lib.

Microsoft	Visual	C++

To	build	an	MSVC	version	of	the	SDK	library,

Create	a	new	project	workspace,	or	insert	a	new	project	into	an
existing	workspace.	The	project	type	should	be	"Static	Library."
Name	the	project	"server".
Settings	dialog,	C/C++	tab,	add	_X86_	(or	_ALPHA_)	and		_WIN32	to	the
preprocessor	definitions	field.
In	the	field	for	additional	include	directories,	type	the	path	to	the
plug-in	SDK	include	directory.
Add	servdesc.c,	username.c,	startup.c,	and	shutdown.c	to	the	project.	These
are	located	in	the	SDK\source	directory.
Build	server.lib.

To	create	a	plug-in,

Create	a	new	project	workspace,	or	insert	a	new	project	into	an
existing	workspace.	The	project	type	should	be	"Dynamic-Link
Library."
Settings	dialog,	C/C++	tab,	add	_X86_	(or	_ALPHA_)	and		_WIN32	to	the
preprocessor	definitions	field.
In	the	field	for	additional	include	directories,	type	the	path	to	the
plug-in	SDK	include	directory.
Add	your	source	files	to	the	project.	Also	add	servmain.c,	server.lib	and
serv.def.

Accept	the	default	settings	for	the	calling	convention	(__cdecl),	alignment
(8	byte)	and	runtime	library	(multithreaded	or	multithreaded	debug,	for	the
release	and	debug	versions,	respectively).	If	you've	built	both	debug	and
release	versions	of	server.lib	(and	this	is	recommended),	make	sure	you	list
the	appropriate	one	for	the	debug	and	release	versions	of	your	plug-in.

You're	ready	to	build	your	plug-in.	To	debug	it,

Settings	dialog,	Debug	tab,	enter	the	full	path	to	lightwav.exe	or
modeler.exe,	as	appropriate,	in	the	field	labeled	"Executable	for	debug
session."
Set	the	working	directory	to	the	directory	containing	the	LightWave
executables.

Build	a	debug	version	of	your	plug-in.

Hit	F5	to	begin	debugging.	The	debugger	will	warn	you	that	the
LightWave	executable	doesn't	contain	any	debugging	information,	but
that's	okay.	Your	plug-in	does	have	this	information,	which	the	debugger
will	find	as	soon	as	your	plug-in	is	started	by	LightWave.

Borland	C++	4.52
Information	provided	by	Michal	Koc.

Before	creating	any	plug-ins,	you'll	need	to	build	a	Borland	version	of	the
SDK	library.

Create	a	new	project
Set	the	Target	Type	to	Static	Library	(for	.dll)	[.lib]
In	Standard	Libraries,	mark	Static
Set	the	Platform	to	Win32
Set	the	Target	Model	to	GUI
Add	nodes	with	the	files	servdesc.c,	username.c,	startup.c,	and	shutdown.c
Options/Project/Directories,	set	the	include	and	lib	paths
Options/Project/Compiler/Defines,	add	_X86_	and	_WIN32
Options/Project/Compiler/Code	Generation,	set	fastthis
Options/Project/32-bit	Compiler,	set	Processor	and	Data	alignment	to
8	bytes
Compile

To	build	a	plug-in,

Create	a	new	project
Set	the	Target	Type	to	Dynamic	Library	[.dll]
In	Standard	Libraries,	mark	Dynamic
Set	the	Platform	to	Win32
Set	the	Target	Model	to	GUI
Add	nodes	with	servmain.c,	server.lib,	and	your	source	files;	remove
unused	nodes
Options/Project/Directories,	set	include	and	lib	paths
Options/Project/Compiler/Defines,	add	_X86_	and	_WIN32
Options/Project/Compiler/Code	Generation,	set	fastthis
Options/Project/32-bit	Compiler,	set	Processor	and	Data	aligment	to
8	bytes

Compile

GNU	gcc/Mingw32
Information	provided	by	Dan	Maas

You	can	build	LightWave	plug-ins	with	Win32	GNU	distributions.	The
procedure	given	here	was	developed	and	tested	with	the	Mingw32
distribution.

Before	creating	any	plug-ins,	you'll	need	to	build	a	GNU	version	of	the
SDK	library.	(Some	of	the	command	lines	below	wrap	to	a	second	line
here,	but	they	should	be	entered	on	a	single	line.)

cd	to	the	SDK	source	directory.
Compile	the	library	sources.

gcc	-c	-D_WIN32	-D_X86_	-O6	-I$(LWSDK_INCL)	servmain.c	servdesc.c	username.c

startup.c	shutdown.c

Assemble	the	library.

ar	r	libserver.a	servdesc.o	username.o	startup.o	shutdown.o

To	build	a	plug-in,

Compile	your	source	files.

gcc	-c	-D_WIN32	-D_X86_	-O6	-I$(LWSDK_INCL)	myplug.c

Link	to	the	SDK	library	and	generate	a	DLL.

dllwrap	-o	myplug.p	--export-all	--dllname	myplug.p	myplug.o

$(LWSDK_LIB)servmain.o	$(LWSDK_LIB)libserver.a

An	equivalent	makefile	would	look	like	this:

			LWSDK_CFLAGS	=	-D_WIN32	-D_X86_	-O6

			%.o:	%.c

			gcc	$(LWSDK_CFLAGS)	-I$(LWSDK_INCL)	-c	$<

			myplug.p:	myplug.o

						dllwrap	-o	$@	--export-all	--dllname	$@	\

						myplug.o	$(LWSDK_LIB)servmain.o	$(LWSDK_LIB)libserver.a

Watcom	C++	10.0a

(On	June	30,	1999,	Sybase,	Inc.,	sent	an	"end	of	life"	letter	to	registered
owners	of	Watcom	C/C++	announcing	that	version	11.0	of	the	compiler
would	be	its	last.	Watcom	is	therefore	unlikely	to	play	a	role	in	future
LightWave	plug-in	development.	This	section	remains	useful,	however,	as
an	illustration	of	the	incompatibilities	you	may	encounter	with	some
compilers.)

In	Watcom	terminology,	plug-ins	are	NT	DLLs,	so	that	should	be	your
target	type.	server.lib	should	also	be	built	as	an	NT	object.

To	build	a	plug-in,

Add	the	SDK	include	directory	to	the	include	path	[-i]
Disable	stack	depth	checking	[-s]
Add	macro	definitions	[-d]	_X86_	and	_WIN32
Change	char	default	to	signed	[-j]
Use	8-byte	structure	alignment	[-zp8]
Use	the	32-bit	flat	memory	model	[-mf]	(the	default)
Use	the	stack-based	calling	convention	[-5s]
Export	[exp]	_mod_descrip

There's	an	important	mismatch	in	calling	conventions	that	apparently	can't
be	solved	with	a	compiler	switch	or	a	pragma.	When	using	the	stack-based
calling	convention,	which	plug-ins	must,	Watcom	10.0a	expects	functions
that	return	floating-point	numbers	to	put	them	in	specific	registers,	while
LightWave's	code	leaves	them	at	the	top	of	the	FPU	stack.	You'll
encounter	this	whenever	a	plug-in	compiled	with	Watcom	needs	to	call	a
plug-in	SDK	function	that	returns	a	double.

What	happens	can	be	illustrated	with	a	little	assembly-ish	pseudocode.
Given

			double	routine(void);

			double	result;

			result	=	routine();

the	different	ways	the	function	call	is	handled	are

			Microsoft:		call	routine

															fstp	result										;	pop	ST(0)	into	result

			Watcom:					call	routine

															mov	result,			eax				;	move	edx:eax	into	result

															mov	result+4,	edx

When	compiled	in	Microsoft	Visual	C++,	routine	leaves	its	return	value	at
the	top	of	the	FPU	stack,	which	is	popped	into	result.	In	Watcom	10.0a,
routine	leaves	its	return	value	in	the	register	pair	edx:eax,	which	is	then	moved
into	result.

The	workaround	for	this	involves	adding	a	bit	of	inline	assembly	language
to	each	source	file	that	contains	a	call	to	a	LightWave	function	returning	a
double.	At	the	beginning	of	each	such	file,	put

			static	double	fac;						/*	floating	point	accumulator	*/

			extern	void	sdk_fstp(void);

			#pragma	aux	sdk_fstp	=	"fstp	fac"

			#define	SDK_DBLRTN(x)	\

						sdk_fstp();										\

						x	=	fac;

This	uses	Watcom	inline	assembly	to	load	the	contents	of	ST(0)	into	a
fixed	memory	location,	from	which	the	value	can	be	copied.	Calls	that
would	look	like	this

			result	=	objInfo->dissolve(objID,	t);

must	be	changed	to

			objInfo->dissolve(objID,	t);

			SDK_DBLRTN(result);

The	SDK	function	is	called	without	assigning	its	return	value.	The
assembly	instruction	fstp	fac	is	inserted	after	the	call	to	retrieve	the	return
value,	then	fac	is	copied	into	result.

Macintosh

Plug-in	modules	on	the	Mac	are	PowerPC	shared	libraries	of	type	shlb.

Metrowerks	CodeWarrior

Before	compiling	any	plug-ins,	you'll	need	to	build	a	CodeWarrior	version
of	the	SDK	library.

Create	a	new,	empty	project.
Target	Settings/Linker,	choose	Mac	OS	PPC	Linker.

PPC	Target/Project	Type,	choose	Library.
PPC	Target,	name	the	file	server.lib.
PPC	Processor,	set	alignment	to	PowerPC	(the	default).
Define	the	_MACOS	and	_PPC_	preprocessor	symbols.
Access	Paths/Systems	Paths,	add	the	SDK	include	directory.
Add	servdesc.c,	username.c,	startup.c,	and	shutdown.c.	These	are	located	in
the	SDK	source	directory.
Build.

To	create	a	plug-in	project,

Create	a	new,	empty	project.
Target	Settings/Linker,	choose	Mac	OS	PPC	Linker.
PPC	Target/Project	Type,	choose	Shared	Library.
Define	the	_MACOS	and	_PPC_	preprocessor	symbols.
Access	Paths/Systems	Paths,	add	the	SDK	include	directory.
PPC	PEF/Export	Symbols,	choose	the	method	you'll	use	to	export
_mod_descrip.	See	the	CodeWarrior	shared	library	documentation	for	an
explanation	of	the	available	methods.
C/C++	Language,	turn	on	Relaxed	Pointer	Type	Rules	and	Enums
Always	Int.
Add	your	source	code	files	to	the	project,	along	with	servmain.c.
Add	server.lib	and	MSL	Runtime-PPC.Lib	to	the	project.	If	the	plug-in	calls
Mac	Toolbox	routines,	you'll	also	need	to	add	InterfaceLib	(or	CarbonLib
if	you're	compiling	for	OS	X),	but	consider	building	your	interface
using	the	platform-independent	components	provided	with	the	plug-
in	SDK	instead.

You	can	globally	define	_MACOS	and	_PPC_	by	putting	them	in	a	.h	file	and
using	that	file	as	the	C/C++	Language	Prefix	File	(in	Language	Settings).
To	export	_mod_descrip,	you	can	create	a	text	file	containing	simply
"_mod_descrip".	Call	the	file	server.exp.	In	PPC	PEF/Export	Symbols,
choose	the	"Use	.exp	file"	method,	and	then	add	server.exp	to	the	project.

In	later	versions	of	CodeWarrior,	you	may	find	that	the	compiler	won't
accept	any	sort	of	conversion	between	char	*	and	const	char	*.	To	work
around	this,	you	can	add	the	following	pragma:

			#pragma	old_argmatch	on

Building	plug-ins	for	OS	X	isn't	much	different	from	building	them	for
previous	operating	systems	on	the	Mac,	but	you	must	link	with	CarbonLib
instead	of	InterfaceLib,	and	your	code	must	be	Carbon	compliant.	See	the
Carbon	Porting	Guide	(an	Adobe	Acrobat	PDF)	at	Apple's	Developer
website.

CodeWarrior	up	to	version	6.2	cannot	debug	on	OS	X.	Debugging	in
MacOS	9	is	sufficient	in	most	cases,	but	if	you	need	to	debug	in	X,	you
can	use	gdb	in	a	terminal	window.

As	of	this	writing,	LightWave	for	OS	X	is	a	CFM	application.	When	a
CFM	app	is	run,	OS	X	actually	runs	a	mach-o	wrapper	app	that	loads	the
program.	The	wrapper	is	called	LaunchCFMApp,	located	in

			/System/Library/Frameworks/Carbon.framework/Versions/A/Support/

			LaunchCFMApp

To	begin	debugging,	use	gdb	to	run	LaunchCFMApp.

			localhost%	gdb	/System.../LaunchCFMApp

In	gdb,	type	run	followed	by	the	name	and	path	for	the	LightWave
component	in	which	your	plug-in	runs.

Macintosh	Programmer's	Workshop
Information	provided	by	Mark	Nutter

Before	building	any	plugins,	you'll	need	to	build	an	MPW	version	of	the
SDK	library:

In	the	MPW	worksheet,	select	"Set	Directory..."	from	the	Directory
menu	and	set	the	working	directory	to	the	source	directory	of	the
SDK.
Select	"Create	Build	Commands..."	from	the	Build	menu.
Enter	server.lib	as	the	Program	Name.
Select	"Static	Library"	as	the	Program	Type.
Check	"PowerPC	Only"	as	the	Target.
Add	servdesc.c,	startup.c,	shutdown.c	and	username.c	as	the	Source	Files.
These	are	in	the	SDK	source	directory.
Click	the	Include	Search	Paths	button	and	Add	the	SDK	include
directory.

http://developer.apple.com/techpubs/macosx/Carbon/pdf/CarbonPortingGuide.pdf
http://developer.apple.com

Click	the	PowerPC	Options	button	and	enter	-d	_MACOS	-d	_PPC_	in	the
"C	Options"	field.
Click	the	Create	Make	button	to	generate	a	makefile	for	server.lib.
Select	Build	(Cmd-B)	from	the	Build	menu.	The	program	name
should	come	up	as	server.lib	by	default.	Click	OK	to	build	server.lib.
You	will	get	a	warning	that	"serverData"	is	not	used	within	function
"Shutdown",	which	you	can	ignore.

To	build	a	plugin:

Select	"Set	Directory..."	from	the	Directory	menu	and	set	the	working
directory	to	the	directory	containing	your	plug-in's	source	files.
Select	"Create	Build	Commands..."	from	the	Build	menu.
Enter	your	plug-in's	name	as	the	Program	Name.
Select	"Shared	Library"	as	the	Program	Type.
Check	"PowerPC	Only"	as	the	Target.
Add	the	source	files	for	your	plug-in.	Also	add	servmain.c	(in	the	SDK
source	directory)	and	the	server.lib	you	created.
Click	the	Include	Search	Paths	button	and	Add	the	SDK	include
directory.
Click	the	PowerPC	Options	button	and	enter	-d	_MACOS	-d	_PPC_	-
typecheck	relaxed	in	the	"C	Options"	field.
Click	the	Exported	Symbols	button	and	enter	_mod_descrip	in	the
Export	Symbols	box.
Click	the	CreateMake	button	to	create	your	makefile.
Build	(Cmd-B).

Unix

Plug-in	modules	under	Unix	are	shared	object	modules,	or	DSO	files.
When	compiling,	remember	to	define	both	_XGL	and	the	preprocessor
symbol	for	your	CPU.	_mod_descrip	must	be	exported	from	the	DSO,	and
servmain.o	must	be	among	the	objects	passed	to	the	linker.	The	link	line
should	include	any	other	libraries	that	the	plug-in	would	need	as	a	stand-
alone	program.

			.o.p:

						ld	-shared	-exported_symbol	_mod_descrip	-L$(SDK_LIB)	\

							$(SDK_LIB)servmain.o	$*.o	-o	$@	-lserver.lib	$(OTHER_LIBS)

DynaValues	and	LWValues

The	DynaValue	data	type	defined	in	lwdyna.h	is	a	union	of	containers	for
values	of	various	base	types.	DynaValues	are	used	as	function	arguments,
with	commands	and	requesters,	for	example,	when	the	function	must
accept	values	of	multiple	types.	LWValues	are	a	variation	on	DynaValues
used	by	Panels	and	defined	in	lwpanel.h.

The	DynaValue	typedef	looks	like	this.

			typedef	union	un_DynaValue	{

						DynaType						type;

						DyValString			str;

						DyValInt						intv;

						DyValFloat				flt;

						DyValIVector		ivec;

						DyValFVector		fvec;

						DyValCustom			cust;

			}	DynaValue;

The	elements	of	this	union	each	support	a	different	base	type,	and	each
base	type	can	underlie	several	DynaTypes.	(Two	DynaTypes,	DY_NULL	and
DY_TEXT,	have	no	underlying	value.)

Strings

			typedef	struct	st_DyValString	{											DY_STRING

						DynaType			type;																							DY_SURFACE

						char						*buf;

						int								bufLen;

			}	DyValString;

bufLen	is	the	size	of	buf	in	characters.	For	the	DY_SURFACE	type,	buf	contains	the
surface	name.

Integers

			typedef	struct	st_DyValInt	{														DY_INTEGER

						DynaType			type;																							DY_BOOLEAN

						int								value;																						DY_CHOICE

						int								defVal;																					DY_FONT

			}	DyValInt;																															DY_LAYERS

The	value	in	defVal	is	used	by	requesters	to	reset	control	values.	The	value
for	DY_CHOICE	and	DY_FONT	is	a	0-based	index	into	a	list.	The	value	for	DY_LAYERS

is	a	set	of	bitfields	corresponding	to	layer	numbers.

Floating-Point	Numbers

			typedef	struct	st_DyValFloat	{												DY_FLOAT

						DynaType			type;																							DY_DISTANCE

						double					value;

						double					defVal;

			}	DyValFloat;

DY_DIST	values	are	distances	in	meters.

Integer	Vectors

			typedef	struct	st_DyValIVector	{										DY_VINT

						DynaType			type;

						int								val[3];

						int								defVal;

			}	DyValIVector;

Floating-Point	Vectors

			typedef	struct	st_DyValFVector	{										DY_VFLOAT

						DynaType			type;																							DY_VDIST

						double					val[3];

						double					defVal;

			}	DyValFVector;

Custom	Values

			typedef	struct	st_DyValCustom	{											DY_CUSTOM

						DynaType			type;

						int								val[4];

			}	DyValCustom;

DY_CUSTOM	is	used	to	encode	values	that	don't	fit	one	of	the	standard	types.
The	interpretation	of	the	values	in	the	val	array	will	depend	on	the	context
in	which	this	type	is	used.

The	Dynamic	Conversion	global	provides	a	facility	for	converting
between	DynaValues	of	different	types.

LWValues

Panels	adds	a	generic	pointer	type	to	the	list	of	types,	but	in	all	other
respects,	LWValues	differ	from	DynaValues	in	name	only.	Structurally
they're	equivalent.

			typedef	union	un_LWValue	{

						LWType								type;

						LWValString			str;

						LWValInt						intv;

						LWValFloat				flt;

						LWValIVector		ivec;

						LWValFVector		fvec;

						LWValPointer		ptr;

						LWValCustom			cust;

			}	LWValue;

Although	lwpanel.h	defines	others,	only	five	LWTypes	are	needed	to
describe	the	values	of	all	LWPanels	controls.

			LWT_STRING

			LWT_INTEGER

			LWT_FLOAT

			LWT_VINT

			LWT_VFLOAT

File	Formats

This	section	documents	the	file	formats	that	are	native	to	LightWave.	The
binary	formats	are	all	based	on	the	EA	IFF	85	metaformat,	which	defines	a
syntax	for	binary	data	storage.

Scenes
Objects
IFF	(ILBM)	Images
Flexible	Precision	Images
EA	IFF	85

Handlers

Formally,	handlers	are	plug-in	classes	that	manage	persistent	instance	data
through	callbacks	identified	in	the	activation	function.	Handlers	don't
simply	run	and	exit.	They	tell	LightWave	in	their	activation	functions
where	they	can	be	reached,	and	then	they	hang	around,	waiting	for
LightWave	to	call	them.

Instance	Functions

An	instance	is	a	block	of	data	you	create	to	describe	a	specific	invocation
of	your	handler	plug-in.	An	ItemMotionHandler,	for	example,	can	be
invoked	for	any	number	of	items	in	the	scene,	and	might	even	be	invoked
more	than	once	for	a	given	item,	but	for	each	slot	it	occupies,	the	plug-in
will	create	and	use	an	instance	specifically	for	that	item	slot.	The	instance
data	is	where	the	plug-in	settings	for	that	invocation	are	stored,	and	every
one	of	the	plug-in's	callbacks	receives	this	data	as	one	of	its	arguments.

The	instance	callbacks	are	where	your	plug-in	creates,	destroys,	copies,
loads,	saves	and	describes	each	instance	data	block.	They're	collected
together	in	an	LWInstanceFuncs	structure	which	is	part	of	the	local	data
passed	to	your	activation	function.	Your	activation	function	needs	to	fill	in
this	structure	to	tell	LightWave	where	your	instance	callbacks	are.

			typedef	struct	st_LWInstanceFuncs	{

						void									*priv;

						LWInstance			(*create)		(void	*priv,	void	*context,	LWError	*);

						void									(*destroy)	(LWInstance);

						LWError						(*copy)				(LWInstance,	LWInstance	from);

						LWError						(*load)				(LWInstance,	const	LWLoadState	*);

						LWError						(*save)				(LWInstance,	const	LWSaveState	*);

						const	char	*	(*descln)		(LWInstance);

			}	LWInstanceFuncs;

priv

Passed	as	the	first	argument	to	create.	Set	this	to	point	to	data	you'd
like	your	create	function	to	have.

instance	=	create(priv,	context,	error)

Create	an	instance.	Called,	for	example,	when	the	user	selects	your
plug-in	on	the	interface	and	when	Layout	loads	a	scene	or	an	object
file	that	refers	to	your	plug-in.	Typically,	you'll	use	malloc	to	allocate

memory	for	a	data	structure,	fill	in	some	of	the	structure's	fields	with
default	values,	and	return	the	pointer	to	this	structure.	priv	is	the	same
as	the	priv	field	of	the	LWInstanceFuncs	structure	and	contains
whatever	your	activation	function	put	there.	The	context	varies
depending	on	the	plug-in	class,	but	this	is	often	an	item	ID	for	the
item	this	instance	will	be	associated	with.	If	you	can't	create	an
instance,	set	error	to	an	error	message	string	and	return	NULL.

destroy(instance)

Destroy	an	instance.	Called,	for	example,	when	the	user	deselects
your	plug-in	and	when	the	scene	is	cleared.	Typically	you'll	free	any
memory	and	resources	obtained	in	create	when	this	instance	was
created.

copy(dest,	source)

Copy	the	contents	of	the	source	instance	to	dest.	If	your	instance	data
contains	pointers,	you	may	have	to	allocate	memory	for	the	pointer
fields	in	dest.

load(instance,	loadstate)

Read	instance	data	from	a	file.	LightWave	provides	an	LWLoadState
containing	functions	used	to	read	the	data.	See	the	File	I/O	page.

save(instance,	savestate)

Write	instance	data	to	a	file	using	the	LWSaveState	functions.	See	the
File	I/O	page.

descln(instance)

Provide	a	human-readable	description	of	the	instance	data.	This	is	a
single	string	displayed	to	the	user	on	the	LightWave	interface	and
should	be	short	enough	to	fit	there.	It	can	contain	anything,	but
typically	it	contains	shorthand	descriptions	of	the	most	important
settings.	This	serves	as	a	reminder	to	the	user,	who	would	otherwise
have	to	open	your	plug-in's	interface	to	check	these	settings.

Item	Handler	Extensions

Handler	classes	that	work	on	items	in	the	scene	provide	a	pair	of	callbacks
that	allow	them	to	manage	dependencies	on	other	items.

			typedef	struct	st_LWItemFuncs	{

						const	LWItemID	*		(*useItems)	(LWInstance);

						void														(*changeID)	(LWInstance,	const	LWItemID	*);

			}	LWItemFuncs;

idlist	=	useItems(instance)

Returns	an	array	of	items	this	instance	depends	on.	If	your	plug-in's
behavior	is	based	on	the	parameters	of	other	items	(such	as	the
positions	of	objects),	you'll	want	to	be	re-evaluated	after	those
parameters	change,	and	you	use	this	function	to	inform	Layout	of
that.	The	array	is	terminated	by	LWITEM_NULL.	The	function	can	return
NULL	if	the	instance	doesn't	use	any	items.	It	can	also	return
LWITEM_ALL	to	indicate	that	it	wants	to	be	evaluated	after	any	change
occurs.

changeID(instance,	idlist)

Notification	about	a	change	in	item	IDs.	This	function	is	called	if	the
IDs	of	items	are	going	to	change	for	any	reason.	The	null-terminated
item	array	passed	to	this	function	is	of	the	form	"old-1,	new-1,	old-2,
new-2,	..."	where	the	old	ID	is	the	value	that	is	changing	and	the	new
ID	is	its	new	value.	Clients	should	be	careful	to	renumber	each	item
only	once.

The	changeID	callback	may	also	be	called	when	an	item's	data,	such	as
the	geometry	of	an	object,	has	changed,	and	when	called	for	this
reason,	the	old	and	new	item	IDs	will	be	the	same.

Handlers	with	an	LWItemFuncs	in	their	local	data	are	ordinarily	called	by
Layout,	but	some	handler	classes	(currently	image	and	pixel	filters,
shaders	and	textures)	can	also	be	called	by	Modeler	for	previewing.	When
called	by	Modeler,	the	LWItemFuncs	pointer	will	be	NULL.	Handlers
must	test	the	value	of	the	LWItemFuncs	pointer	before	attempting	to	fill	in
the	useItems	and	changeID	fields.

Render	Handler	Extensions

Certain	handlers	involved	directly	in	rendering	also	provide	callbacks	for
the	start	and	end	of	a	render	session	and	the	start	of	a	new	sampling	pass.

			typedef	struct	st_LWRenderFuncs	{

						LWError	(*init)				(LWInstance,	int);

						void				(*cleanup)	(LWInstance);

						LWError	(*newTime)	(LWInstance,	LWFrame,	LWTime);

			}	LWRenderFuncs;

errormsg	=	init(instance,	mode)

Prepare	the	instance	for	a	new	rendering	session.	This	is	called	before
the	first	frame	of	a	rendering	session	is	begun.	The	mode	will	be

either	LWINIT_PREVIEW	or	LWINIT_RENDER.	Returns	a	string	containing	an
error	message	if	an	error	occurs,	otherwise	returns	NULL.

cleanup(instance)

Called	after	the	last	frame	of	a	rendering	session	is	completed.
errormsg	=	newTime(instance,	frame,	time)

Called	at	the	start	of	a	new	sampling	pass.	This	may	be	called	more
than	once	for	the	same	frame	but	for	slightly	different	times.	Returns
an	error	message	string	or	NULL.

Example

This	activation	function	is	for	an	environment	handler.	The	local	data
includes	both	the	item	and	render	extensions.	All	of	the	names	on	the	right
side	of	the	equals	sign	are	functions	your	plug-in	provides.

			XCALL_(static	int)

			Handler(long	version,	GlobalFunc	*global,

						LWEnvironmentHandler	*local,	void	*serverData)

			{

						if	(version	!=	LWENVIRONMENT_VERSION)

									return	AFUNC_BADVERSION;

						local->inst->create			=	Create;

						local->inst->destroy		=	Destroy;

						local->inst->copy					=	Copy;

						local->inst->load					=	Load;

						local->inst->save					=	Save;

						local->inst->descln			=	Descln;

						if	(local->item)	{

									local->item->useItems	=	UseItems;

									local->item->changeID	=	ChangeID;

						}

						local->rend->init					=	Init;

						local->rend->cleanup		=	Cleanup;

						local->rend->newTime		=	NewTime;

	

						local->evaluate	=	Evaluate;

						local->flags				=	Flags;

						return	AFUNC_OK;

			}

The	Interface	Class

Each	handler	class	has	an	associated	interface	class	with	its	own	activation
function.	As	mentioned	in	the	server	description	documentation,
LightWave	matches	handlers	with	their	interfaces	by	finding	matching
name	strings	in	the	ServerRecord	array	for	a	plug-in	file.

The	interface	activation	function	receives	the	instance	data	as	the	first
field	of	an	LWInterface	structure.	This	is	the	pointer	returned	by	the
handler's	create	function.	The	interface	activation	fills	in	the	other	fields	of
the	LWInterface	to	tell	LightWave	how	the	plug-in	wants	its	interface	to
be	presented	to	the	user.

			typedef	struct	st_LWInterface	{

						LWInstance		inst;

						LWXPanelID		panel;

						LWError				(*options)	(LWInstance);

						LWError				(*command)	(LWInstance,	const	char	*);

			}	LWInterface;

inst

An	instance	returned	by	the	handler's	create	function.	This	is	read-
only.

panel

An	xpanel	containing	the	controls	for	a	user	interface.	The	xpanel	is
created	by	calling	the	functions	returned	by	the	XPanels	global.	If
this	is	NULL,	LightWave	will	use	the	options	callback	instead.	Some
classes	receive	real	estate	on	LightWave's	panels	for	displaying	their
non-modal	xpanel	interfaces,	so	for	those	classes,	the	plug-in's
interface	is	"always	on,"	rather	than	being	explicitly	invoked	by	the
user.

error	=	options(instance)

A	callback	that	typically	displays	a	modal	panel.	This	is	equivalent	to
the	way	the	interface	activation	function	itself	worked	in	versions	of
LightWave	prior	to	6.0.	LightWave	calls	this	whenever	the	user
explicitly	opens	the	interface	for	the	associated	handler,	often	by
double-clicking	on	the	handler's	name	in	a	list.	If	options	is	NULL,
LightWave	uses	the	panel	to	display	the	plug-in's	interface.	(Exactly
one	of	the	panel	and	options	fields	should	be	non-NULL.)

error	=	command(instance,	cmdstring)

A	callback	that	processes	batch	commands.	This	isn't	used	in
LightWave	6.0	and	can	safely	be	set	to	NULL.

Example

The	avisave	sample	plug-in	uses	the	options	function	to	display	the
standard	Windows	codec	selection	dialog.	This	is	also	the	approach	to	take
if	you're	going	to	display	a	classic	panels	interface.

			XCALL_(int)

			Interface(long	version,	GlobalFunc	*global,	LWInterface	*local,

						void	*serverData)

			{

						if	(version	!=	LWINTERFACE_VERSION)

									return	AFUNC_BADVERSION;

						local->panel			=	NULL;

						local->options	=	Options;

						local->command	=	NULL;

						return	AFUNC_OK;

			}

Options	uses	the	Win32	ICCompressorChoose	function	to	display	the	dialog.	The
window	handle	of	Layout's	main	window,	obtained	from	the	Host	Display
Info	global,	is	passed	as	the	parent	window	for	the	dialog.

			XCALL_(static	LWError)

			Options(SampleAVI	*avi)

			{

						...

						result	=	ICCompressorChoose(hdi->window,

									ICMF_CHOOSE_ALLCOMPRESSORS,	NULL,	NULL,	&cv,

									"SampleAVI	Options");

						...

						return	NULL;

			}

The	NoisyChan	sample	creates	an	LWXP_VIEW	xpanel	that	draws	its	controls
in	the	lower	right	corner	of	Layout's	graph	editor	window.

			XCALL_(static	int)

			NoisyChannel_UI(long	version,	GlobalFunc	*global,	LWInterface	*UI,

						void	*serverData)

			{

						if	(version	!=	LWINTERFACE_VERSION)

									return	AFUNC_BADVERSION;

						GGlobal	=	global;

						UI->panel			=	NoisyXPanel(global,	UI->inst);

						UI->options	=	NULL;

						UI->command	=	NULL;

						return	AFUNC_OK;

			}

The	NoisyXPanel	function	creates	the	xpanel.

			LWXPanelID	NoisyXPanel(GlobalFunc	*global,	NoisyData	*dat)

			{

						LWXPanelFuncs	*lwxpf	=	NULL;

						LWXPanelID					panID	=	NULL;

						static	LWXPanelHint	hint[]	=	{

									XpLABEL(0,"Noisy	Channel"),

									XpEND

						};

						lwxpf	=	(LWXPanelFuncs*)(*global)(LWXPANELFUNCS_GLOBAL,

									GFUSE_TRANSIENT);

						if	(lwxpf)	{

									panID	=	(*lwxpf->create)(LWXP_VIEW,	ctrl_list);

									if	(panID)	{

												(*lwxpf->hint)				(panID,	0,	hint);

												(*lwxpf->describe)(panID,	data_descrip,	NoiseData_get,

															NoiseData_set);

												(*lwxpf->viewInst)(panID,	dat);

												(*lwxpf->setData)	(panID,	0,	dat);

									}

						}

						return	panID;

			}

Image	I/O

This	page	describes	the	mechanism	LightWave	uses	to	move	images	to
and	from	external	files.	The	mechanism	is	defined	in	the	lwimageio.h
header	file.	The	LWImageProtocol	structure	and	the	pixel	type	codes	are
used	by	the	ImageLoader,	ImageSaver,	and	AnimLoaderHandler	classes.

The	image	protocol	is	used	somewhat	differently	depending	on	which
direction	the	image	data	is	flowing.	Loader	plug-ins	simply	call	the	image
protocol	functions,	but	saver	plug-ins	provide	these	functions	as	callbacks
that	LightWave	calls.	Savers	fill	in	the	image	protocol	structure	in	their
activation	functions.

Because	of	the	dual	nature	of	the	image	protocol	structure,	there	are	places
in	the	definitions	where	it's	convenient	to	refer	to	the	source	and	the
destination	of	an	image	transfer.	For	loaders,	the	source	is	the	plug-in	and
the	destination	is	LightWave.	For	savers,	the	source	is	LightWave	and	the
destination	is	the	plug-in.

Image	Protocol

Image	data	is	transferred	using	calls	to	the	functions	in	an
LWImageProtocol.	The	lwimageio.h	header	file	defines	macros	that	loaders
can	use	to	slightly	simplify	calls	to	these	functions.	Both	the	functions	and
the	corresponding	macros	are	listed	in	the	definitions.

			typedef	struct	st_LWImageProtocol	{

						int			type;

						void	*priv_data;

						int		(*done)					(void	*,	int);

						void	(*setSize)		(void	*,	int	w,	int	h);

						void	(*setParam)	(void	*,	LWImageParam,	int,	float);

						int		(*sendLine)	(void	*,	int,	const	LWPixelID);

						void	(*setMap)			(void	*,	int,	const	unsigned	char[3]);

			}	LWImageProtocol,	*LWImageProtocolID;

type
The	pixel	type	code,	described	below.	This	identifies	the	kind	of	data
that	will	be	sent	in	sendLine.

priv_data

The	first	argument	to	the	protocol	functions.	This	is	a	pointer	to	data
owned	by	the	destination.	Loaders	just	need	to	pass	this	along	to	the
protocol	functions	(the	macros	hide	this	from	you).	Savers	set	this
field	to	point	to	anything	they	like,	typically	a	structure	that	holds
data	needed	to	process	the	save.

result	=	done(priv_data,	error)
result	=	LWIP_DONE(protocol,	error)

Called	when	there's	no	more	image	data	to	send.	The	incoming	error
code	and	the	outgoing	result	can	be	any	of	the	result	codes	defined
below.

setSize(priv_data,	width,	height)
LWIP_SETSIZE(protocol,	width,	height)

Set	the	pixel	dimensions	of	the	image.	The	width	and	height	are	the
number	of	pixels	in	a	scanline	and	the	number	of	scanlines,
respectively.	This	is	called	before	the	first	call	to	sendLine.

setParam(priv_data,	paramid,	intparam,	floatparam)
LWIP_SETPARAM(protocol,	paramid,	intparam,	floatparam)

Set	other	image	parameters.	In	most	cases,	only	one	of	the	two
parameter	arguments	will	be	used,	while	the	other	should	be	set	to	0
by	sources	and	ignored	by	destinations.	The	parameter	ID	can	be	one
of	the	following.

LWIMPAR_ASPECT	(float)
The	pixel	aspect	ratio,	defined	as	width/height.	This	will	most
often	be	1.0	(square	pixels,	the	default),	but	D1	NTSC	images,
for	example,	use	a	pixel	aspect	of	0.9,	meaning	that	each	pixel	is
0.9	times	as	wide	as	it	is	high.

LWIMPAR_NUMCOLS	(int)
The	number	of	entries	in	the	color	table	of	an	indexed-color
image	(an	image	of	type	LWIMTYP_INDEX8).	Valid	values	are	between
2	and	256.

LWIMPAR_PIXELWIDTH	(float)
The	physical	size	of	a	pixel	in	millimeters.	Savers	can	combine
this	with	the	pixel	aspect	to	record	a	DPI	setting	for	file	formats
that	support	it.

LWIMPAR_FRAMESPERSECOND	(float)

The	playback	rate	in	frames	per	second.
LWIMPAR_BLACKPOINT	(float)

The	black	point	of	the	image.	The	black	point	and	white	point
define	a	nominal	minimum	and	maximum	intensity	for	an
image.	These	are	used,	for	example,	when	displaying	the	image
on	a	device	with	limited	dynamic	range.

LWIMPAR_WHITEPOINT	(float)
The	white	point	of	the	image.

LWIMPAR_GAMMA	(float)
The	nonlinearity	of	the	intensity	encoding	in	the	image.

The	only	parameter	that	loaders	are	required	to	set	is	the
LWIMPAR_NUMCOLS	value	for	LWIMTYP_INDEX8	images.

result	=	sendLine(priv_data,	y,	scanline_pixels)
result	=	LWIP_SENDLINE(protocol,	y,	scanline_pixels)

Send	one	scanline	from	the	image.	Loaders	must	call	setSize	before
the	first	call	to	sendLine.	Scanlines	are	numbered	from	the	top	of	the
image,	starting	at	0.	Loaders	don't
have	to	send	scanlines	in	a	particular	order,	but	savers	will	receive
scanlines	in	top	to	bottom
order	(or	bottom	to	top	if	they	specified	the	IMGF_REVERSE	flag	in	their
sendData	call).	A	scanline	begins	with	the	leftmost	pixel.	The	structure
of	the	pixel	data	depends	on	the	pixel	type.	Returns	IPSTAT_OK	or	an
error	code.

setMap(priv_data,	index,	rgb)
LWIP_SETMAP(protocol,	index,	rgb)

Set	the	color	of	an	entry	in	the	color	table	of	an	indexed-color	image.
Loaders	need	to	call	setParam	with	a	LWIMPAR_NUMCOLS	parameter	before
calling	setMap	for	the	first	time,	but	setMap	may	be	called	any	time	after
that	and	before	the	first	sendLine.	The	index	identifies	the	color	table
entry,	which	is	numbered	from	0	to	numcolors-1.

Pixel	Data

The	structure	of	the	data	in	a	scanline	will	vary,	depending	on	the	pixel
type.	Each	scanline	is	an	array	of	either	unsigned	bytes	or	floats.	Bytes	can
contain	any	unsigned	value	between	0	and	255.	The	nominal	range	for

float	values	is	0.0	to	1.0,	but	values	outside	that	range	may	also	appear.

Each	pixel's	data	is	contiguous--the	scanline	contains	all	of	the	channel
values	for	the	first	pixel,	followed	by	the	values	for	the	second,	and	so	on.
The	lwimageio.h	header	file	defines	structures	for	many	of	the	pixel	types.
You	can	use	these	to	cast	the	void	*	argument	in	sendLine	to	a	pointer	of	the
appropriate	type	for	the	pixel	data.

For	each	pixel	type,	the	data	is	organized	as	follows.

LWIMTYP_RGB24

Each	scanline	is	an	array	of	unsigned	char	in	RGBRGB...	order.	The
corresponding	typedef	is	LWPixelRGB24.

LWIMTYP_GREY8

Each	scanline	is	an	array	of	unsigned	char,	with	one	byte	per	grayscale
pixel.

LWIMTYP_INDEX8

Each	scanline	is	an	array	of	unsigned	char,	with	one	byte	per	pixel
containing	color	map	indexes.

LWIMTYP_GREYFP

Each	scanline	is	an	array	of	float,	with	one	float	per	pixel.
LWIMTYP_RGBFP

Each	scanline	is	an	array	of	float	in	RGBRGB...	order.	The	corresponding
typedef	is	LWPixelRGBFP.

LWIMTYP_RGBA32

Each	scanline	is	an	array	of	unsigned	char	in	RGBARGBA...	order	and
contains	both	RGB	color	and	alpha	channel	values.	The
corresponding	typedef	is	LWPixelRGBA32.

LWIMTYP_RGBAFP

Each	scanline	is	an	array	of	float	in	RGBARGBA...	order	and	contains	both
RGB	color	and	alpha	channel	values.	The	corresponding	typedef	is
LWPixelRGBAFP.

Error	Handling

There	are	two	ways	that	sources	and	destinations	can	notify	each	other	of
an	error.	The	destination	can	return	error	codes	from	the	sendLine	and	done
functions,	and	the	source	can	pass	an	error	code	to	the	destination's	done
function.

If	a	loader	encounters	an	error	while	reading	a	file,	it	should	stop	sending
data	to	LightWave	and	call	done,	setting	the	error	argument	to	IPSTAT_FAILED.

If	a	saver's	done	callback	is	called	with	a	non-zero	error	argument,	the	saver
should	perform	whatever	cleanup	it	thinks	is	appropriate,	which	may
include	removing	the	partially	saved	file,	and	return	the	same	error	code
from	done.

If	a	saver	encounters	an	error	while	writing	a	file,	it	should	return
IPSTAT_FAILED	from	its	sendLine	and	done	callbacks.	Note	that	the	first	sendLine
call	is	a	saver's	first	opportunity	to	signal	an	error	to	LightWave,	so	its
callbacks	will	continue	to	be	called	after	the	error	is	detected	and	until
sendLine	is	called.	It's	a	good	idea	for	savers	to	include	an	error	field	in	their
priv_data	so	that	their	callbacks	can	respond	appropriately	until
LightWave	can	be	told	that	something's	gone	wrong.

Example

See	the	ancounter	animation	loader	and	the	iff	image	loader	and	saver
samples.

Introduction

This	is	the	documentation	for	the	LightWave	3D	Server	Development	Kit
(SDK)	for	versions	of	LightWave	beginning	with	6.0.	Although	it	will
refer	specifically	to	LightWave,	other	NewTek	products	may	also	support
LightWave	plug-ins.	Documentation	for	versions	prior	to	6.0	and
strategies	for	supporting	multiple	versions	and	products	are	discussed	on
the	compatibility	page.

I'll	refer	to	myself	in	the	first	person	in	this	introduction,	just	so	you	know
that	the	documentation	was	in	fact	written	by	a	human	being,	but	to	give
you	fair	warning,	this	is	a	technical	reference	with	more	than	a	few	dry
spots.	It	makes	significant	demands	on	the	reader,	and	depending	on	your
degree	of	familiarity	with	LightWave,	the	C	language,	and	3D	graphics
programming,	many	parts	might	be	completely	opaque	the	first	time
through.

That's	normal.	Don't	be	discouraged	by	it.	The	information	covered	in	this
documentation	is	inherently	difficult.	It's	not	just	you.

Because	of	this,	I've	tried	very	hard	to	be	clear,	concise	and	accurate.	I've
built	on	the	work	of	others	whose	knowledge	of	this	material	comes
directly	from	writing	the	host	side	of	the	plug-in	API	(application
programming	interface),	and	some	of	those	same	people	have	made	an
effort	to	explain	the	difficult	parts	to	me.	I've	corrected	a	number	of
mistakes	pointed	out	by	readers	of	earlier	drafts,	but	inevitably,	errors	and
omissions	remain,	and	chances	are	you'll	find	at	least	one.

In	the	following	sections,	I	recommend	books	that	provide	the	background
you'll	need,	review	a	particular	programming	concept	that	may	be
unfamiliar	to	some,	and	give	a	quick	tour	of	the	plug-in	system	with	links
to	important	parts	of	the	documentation.	For	developers	with	pre-6.0	plug-
in	experience,	I'll	also	highlight	some	of	the	major	changes	that	first
appeared	in	LightWave	6.0.

Ernie	Wright
December	2001

Programming	Prerequisites

These	pages	document	the	C	language	interface	to	LightWave.	They
assume	that	you're	comfortable	with	writing	C	code,	so	they	won't	teach
you	C.	Specifically,	they	won't	discuss	abstract	dynamic	library	concepts
or	the	writing	of	re-entrant,	thread-safe	code.	They	also	won't	teach	you
3D	graphics	programming	or,	for	lack	of	a	better	term,	the	LightWave	user
paradigm.	All	of	this	information	is	available	from	other,	better	sources.

My	favorite	book	for	learning	C	programming	is

Al	Kelley	and	Ira	Pohl,	A	Book	on	C,	4th	ed.,	Addison-Wesley,	ISBN
0201183994

You	might	also	want	a	good	algorithms	book.	I	have

Robert	Sedgewick,	Algorithms	in	C,	Addison-Wesley,	ISBN
0201514257

3D	graphics	relies	heavily	on	trigonometry	and	linear	algebra,	but	in	most
cases	you	don't	need	an	advanced	knowledge	of	those	subjects.	You	do
need	to	know	what	sine,	cosine	and	tangent	are,	and	you	need	to	know
how	to	do	vector	and	matrix	arithmetic.	Many	of	the	books	below	include
an	appendix	that	reviews	the	basics.	For	greater	depth,	visit	the	nearest
university	bookstore	and	pick	up	whatever	textbook	they're	using	for	the
introductory	courses.

Any	good	introductory	textbook	on	graphics	programming	should	provide
an	adequate	foundation	for	understanding	the	fundamental	concepts	of
computer	graphics.	I	like

F.S.	Hill,	Computer	Graphics,	Macmillan,	ISBN	0023548606
Alan	Watt,	Fundamentals	of	Three-Dimensional	Computer
Graphics,	Addison-Wesley,	ISBN	0201154420

but	there	are	others.	Note	that	both	of	these	are	more	than	10	years	old.
That's	okay,	though.	The	fundamentals	really	haven't	changed	much	in	that
amount	of	time.	For	more	advanced	texts,	the	canon	would	include

Andrew	Glassner	(series	ed.),	Graphics	Gems,	vol.	I	-	V,	Academic

Press,	ISBNs	0122861663,	0120644819,	0124096735,	0123361559,
0125434553
James	Foley	et	al.,	Computer	Graphics:	Principles	and	Practice,	2nd
ed.	in	C,	Addison-Wesley,	ISBN	0201848406
Alan	Watt	and	Mark	Watt,	Advanced	Animation	and	Rendering
Techniques:	Theory	and	Practice,	Addison-Wesley,	ISBN
0201544121
David	Ebert	et	al.,	Texturing	and	Modeling,	2nd	ed.,	Academic
Press,	ISBN	0122287304
James	Murray	and	William	vanRyper,	Encyclopedia	of	Graphics
File	Formats,	2nd	ed.,	O'Reilly	&	Associates,	ISBN	1565921615
William	Press	et	al.,	Numerical	Recipes	in	C,	2nd	ed.,	Cambridge
University	Press,	ISBN	0521431085
Jackie	Neider	et	al.,	OpenGL	Programming	Guide	(the	red	book),
Addison-Wesley,	ISBN	0201632748

Also	consider	the	two	compilation	volumes	of	Jim	Blinn's	articles	in	IEEE
Computer	Graphics	and	Applications	and	the	often	ground-breaking
papers	in	the	annual	ACM	SIGGRAPH	Proceedings.	In	addition	to	these,
you'll	also	occasionally	find	chapters	and	articles	specific	to	writing
LightWave	plug-ins	in	trade	books	and	magazines,	some	of	which	are
written	by	members	of	the	LightWave	programming	team.	Don't	forget	the
LightWave	user	manual,	the	best	source	of	information	about	how	the
program	works.	And,	of	course,	you'll	find	supplementary	material	at
every	level	of	complexity	on	the	Internet.

But	in	the	event	none	of	this	has	failed	to	dissuade	you	from	learning	to
program	by	writing	LightWave	plug-ins,	I	will	review	one	programming
concept	that's	fundamental	to	the	way	plug-ins	work	and	which	may	not	be
easily	understood	solely	by	osmosis.	If	you	already	know	what	a	callback
is,	feel	free	to	skip	ahead.

Function	pointers

LightWave	plug-ins	make	extensive	use	of	function	pointers.	For	people	of
my	programming	generation	who	grew	up	on	BASIC,	FORTRAN	and
Pascal,	function	pointers	seem	a	bit	exotic	at	first	glance.	In	a	linear,	self-
contained	program,	there	are	relatively	few	reasons	to	use	them.	But
function	pointers	are	just	another	kind	of	variable,	and	they	become	quite

useful	when	two	separate	modules	need	to	execute	each	other's	code.

The	type	definition	for	a	particular	function	pointer	might	look	like	this:

			typedef	int	(*FooFunc)(int,	double);

This	says	that	FooFunc	is	a	function	that	returns	an	int	(note:	not	an	int	*)
and	takes	an	int	and	a	double	as	arguments.	Given	this	definition,	you	can
now	declare	variables	of	type	FooFunc	*,

			FooFunc	*foo;

You	can	write	a	FooFunc	function,

			int	myfoo(int	count,	double	size);

			{

						return	(int)(size	*	count);

			}

and	assign	this	to	your	FooFunc	variable,

			foo	=	myfoo;

You	can	also	pass	FooFuncs	as	arguments	to	other	functions.

			int	bar(FooFunc	*foo);

Equivalently,	you	can	explicitly	prototype	the	foo	function	in	bar's	function
header.

			int	bar(int	(*foo)(int,	double));

The	standard	C	runtime	library	contains	at	least	two	functions	that	take
function	pointers	as	arguments,	bsearch	and	qsort,	both	usually	prototyped
in	stdlib.h.	The	prototypes	look	something	like	this:

			void	*bsearch(const	void	*key,	const	void	*a,	size_t	n,	size_t	size,

						int	(*compar)(const	void	*,	const	void	*));

			void	qsort(void	*a,	size_t	n,	size_t	size,

						int	(*compar)(const	void	*,	const	void	*));

For	both	of	these,	you	write	the	comparison	function	that	ranks	two
elements	from	the	array	you're	sorting	or	searching,	and	you	pass	this
function	as	an	argument	to	bsearch	or	qsort.	You	can	sort	or	search	almost
anything	using	these	functions,	as	long	as	you	can	write	an	appropriate
comparison	function.

Callbacks

The	comparison	function	for	bsearch	and	qsort	is	an	example	of	a	callback,
a	function	you	write	for	other	modules	to	call.	The	C	runtime	calls	your
comparison	function	whenever	it	needs	to	rank	two	elements	from	your
array.

Callbacks	are	common	in	user	interface	code	for	modern	windowed
environments,	where	they're	used	to	handle	"events"	triggered	by	user
actions.	LightWave's	built-in	user	interface	facility	uses	callbacks	in
exactly	this	way,	but	callbacks	are	also	used	elsewhere	in	the	plug-in	API.
Layout	handler	class	plug-ins	contain	callbacks	that	are	called	at	certain
points	during	rendering,	and	Modeler	plug-ins	use	callbacks	to	enumerate
the	points	and	polygons	of	an	object.

You	refer	to	callbacks,	of	course,	by	using	function	pointers.

A	Quick	Tour

This	section	is	a	brief,	informal	overview	of	the	plug-in	system	and	the
way	plug-ins	work.	It	points	to	other	areas	of	the	documentation	so	that
you	know	where	the	details	are	explained.	You	might	also	want	to	read
through	Part	1	of	the	Box	tutorial	in	the	Articles	section.	It	covers	much	of
the	same	ground	by	a	different	route,	taking	you	step	by	step	through	the
creation	of	a	simple	plug-in.

If	you're	a	plug-in	oldtimer	from	the	days	before	LightWave	6.0	and	you
just	want	to	get	caught	up,	feel	free	to	skip	ahead.

Plug-ins	are	dynamically	linked	libraries	of	code	that	extend	LightWave's
capabilities.	LightWave	ships	with	dozens	of	plug-ins,	and	the	source	code
for	many	of	these	is	included	in	the	plug-in	SDK.

Plug-ins	are	divided	into	different	types,	called	classes.	These	aren't	actual
C++	classes,	although	the	idea	is	pretty	much	the	same.	The	different
classes	plug	into	LightWave	at	different	points	and	do	different	things.
There	are	classes	for

loading	and	saving	images,	movies,	objects	and	scenes
moving	items	and	modifying	parameter	channels

rendering	surfaces,	textures,	volumes	and	environments
image	processing
creating	and	manipulating	geometry
custom	color	picker	and	file	dialogs
displaying	rendered	output
command-based	scene	alterations
controlling	other	plug-ins,	and
providing	services	accessible	to	other	plug-ins.

All	plug-ins	have	access	to	functions	that	provide	information	or	services.
These	are	called	globals,	and	they	can	be	used	to	get	item	positions,	object
geometry,	surface	settings,	camera	parameters,	system	and	locale
information,	and	a	lot	of	other	data.	Globals	are	also	used	to	build
platform-independent	user	interfaces	and	to	display	common	interface
elements	like	file	dialogs,	color	pickers,	messages,	and	envelope	and
texture	editors.	You	can	even	write	your	own	globals.

A	few	plug-in	classes	can	also	issue	commands.	Most	commands	parallel
actions	the	user	can	take	through	the	LightWave	interface.	While	globals
are	used	primarily	to	read	parameters,	commands	are	used	to	set	them.

More	than	half	of	the	plug-in	classes	are	handler	classes.	Unlike	plug-ins
that	run	when	they're	invoked	and	then	exit,	handlers	have	a	persistent
lifetime.	They	supply	callbacks	that	LightWave	can	call	at	the	appropriate
time	to	perform	their	tasks.	Most	handlers	are	involved	in	rendering	and
are	called	at	each	frame	to,	for	example,	move	objects,	paint	surfaces,	or
append	the	frame	to	a	movie		file.	A	few	handlers	respond	to	user	interface
events	and	manage	interface	objects.

Handlers	can	be	applied,	or	invoked,	multiple	times.	An	item	motion
handler,	for	example,	can	control	the	motion	of	several	different	items	in	a
scene.	Each	invocation	of	a	handler	is	called	an	instance,	and	for	each
instance,	a	handler	will	create	some	data	that	it	uses	to	keep	track	of	that
instance.	The	instance	data	is	normally	where	handlers	hold	user	settings
and	precalculated	parameters,	but	it	can	be	anything	useful	to	the	handler.

Handlers	provide	callbacks	for	loading	and	saving	their	instance	data	in
scene	and	object	files.	The	actual	reading	and	writing	of	data	in	these	files
is	accomplished	through	file	I/O	functions	provided	by	LightWave.	A

global	allows	plug-ins	of	any	class	to	use	these	same	functions	with	other
files,	which	can	be	useful	for	creating	and	reading	platform-independent
configuration	files	for	your	plug-in,	for	example.

The	file	I/O	functions	are	one	of	several	mechanisms	shared	by	multiple
classes	with	similar	needs.	Two	more	are	the	image	I/O	system	used	by
image	and	animation	loaders	and	image	savers,	and	the	raytracing
functions	used	by	shaders,	volume	renderers	and	filters.

Every	plug-in	has	an	activation	function.	This	is	the	entry	point	for	the
plug-in,	the	function	LightWave	calls	to	begin	the	interaction	between	the
program	and	your	plug-in.	For	non-handlers,	this	is	where	all	of	the	work
of	the	plug-in	is	done,	but	for	handlers,	this	is	only	where	the	plug-in	tells
LightWave	how	to	find	the	plug-in's	callbacks.	The	activation	function	has
the	same	form	for	all	plug-in	classes,	with	a	single	argument	that	differs
for	each	class.

A	plug-in	file	can	contain	more	than	one	plug-in.	Each	file	contains	an
array	of	server	records,	one	for	each	plug-in	in	the	file.	The	server	record
for	a	plug-in	lists	the	name	and	the	class	of	the	plug-in	and	the	address	of
the	plug-in's	activation	function.	The	server	record	array	is	an	external
data	structure,	a	data	block	in	the	file	that	the	operating	system	can	locate
by	name.	When	LightWave	first	loads	a	plug-in,	it	asks	the	operating
system	to	return	the	address	of	the	server	record	array,	and	then	it	finds	in
that	array	the	addresses	of	the	activation	functions	the	file	contains.	It	can
later	call	the	activation	function	and,	for	handlers,	obtain	the	addresses	of
other	functions	in	the	file.

Most	plug-ins	provide	a	user	interface,	and	they	normally	display	it	as	part
of	their	activation	function	processing.	Handler	classes	have	associated
interface	classes	whose	activation	functions	are	dedicated	to	this	purpose.
You	can	build	your	interfaces	using	platform-specific	elements,	but	the
SDK	provides	a	complete,	platform-independent	system	for	building
interfaces	with	elements	that	have	LightWave's	look	and	feel.	This	system
is	described	on	the	Panels	and	XPanels	pages.

So	that	you	don't	have	to	understand	all	of	this	all	at	once,	start	by	trying
to	compile	the	example	source	that's	included	with	the	SDK.	Once	you're
compiling	successfully,	you	can	experiment	by	altering	the	examples

before	moving	on	to	creating	your	own	plug-ins.

What's	New

If	you've	written	plug-ins	for	versions	of	LightWave	prior	to	6.0,	much	of
the	current	API	will	seem	familiar,	but	a	lot	has	changed.

Classes	-	There	are	new	classes	for	anim	loading,	channels,	custom	nulls
in	Layout,	environment	(backdrop)	rendering,	multiple	plug-in	mastering
in	Layout,	custom	Modeler	tools,	procedural	textures,	and	volumetrics.
Many	of	the	other	classes	have	been	significantly	enhanced,	and	nearly	all
of	them	have	changed	at	least	slightly	to	reflect	the	new	architecture.

Globals	-	The	number	of	globals	has	nearly	doubled,	and	many	of	the
familiar	ones	have	grown	substantially.	Among	the	new	globals	are	a
number	of	user	interface	components,	including	the	XPanels	alternative	to
classic	panels,	standard	access	to	the	current	color	picker,	and	off-screen
bitmaps	that	can	be	blitted	onto	panels.	A	revamped	envelopes	global	is
joined	by	related	channels	and	variant	parameter	globals.	Layout	can	tell
you	about	the	state	of	its	interface,	and	modified	handler	instances	can
update	Layout.

Plug-ins	can	save	images	through	any	installed	image	saver	and	use	file
I/O	functions	for	creating	and	reading	block-structured	files.	They	can
incorporate	any	of	the	installed	procedural	textures	using	globals	for
evaluating	them	and	for	displaying	a	standard	texture	editor	to	the	user.
Globals	are	available	to	help	with	managing	presets	and	displaying
previews.	Layout	now	exposes	detailed	geometry	data	for	every	object	in
the	scene	and	allows	plug-ins	to	read	and	modify	surface	settings	and
manage	particle	system	data.

Handlers	-	The	local	arguments	to	handler	activation	functions	have
changed.	create,	destroy	and	so	on	are	still	in	there,	but	they've	been
reorganized	and	standardized.	The	interface	activation	functions
associated	with	handlers	now	receive	a	structure	rather	than	just	their
instance	data,	and	many	classes	will	be	able	to	use	this	structure	to	draw
their	interface	controls	onto	LightWave's	own	panels.	Some	handlers	can
now	be	run	in	Modeler	to	provide	previews,	and	since	the	world	looks
different	in	Modeler,	this	case	needs	to	be	treated	carefully.

Other	Changes	-	The	ServerRecord	now	includes	an	optional	array	of	tag
strings	for	each	plug-in.	Among	other	things,	these	tags	allow	you	to	list
language-specific	names	for	your	plug-ins.	If	your	plug-in	supplies	a	list
of	names,	the	plug-in	name	LightWave	displays	to	the	user	will	depend	on
the	locale	of	the	user's	system.

The	XCALL_INIT	macro	has	been	deprecated,	meaning	that	it's	no	longer
required.	You	can	still	use	it,	but	it	doesn't	do	anything	on	any	currently
supported	platform	and	isn't	likely	to	return	in	the	future.

All	class	name	and	global	identifier	strings	have	been	assigned
preprocessor	symbols.	For	future	compatibility,	you	should	use	these
symbols,	rather	than	the	string	literals,	in	ServerRecord	references	and
calls	to	the	global	function.

Further	Information

For	updates,	additional	example	source	code,	contact	information,	and
information	about	the	LightWave	plug-in	developers'	Internet	mailing	list,
visit	NewTek's	websites,

http://www.newtek.com
http://www.lightwave-outpost.com

	

http://www.newtek.com
http://www.lightwave-outpost.com

LightWave	Plug-in	Server	Development	Kit

If	you're	thinking	about	writing	plug-ins	for	LightWave,	you've	come	to
the	right	place!

Introduction
Compiling
Common	Elements
Compatibility
Classes
Globals
Handlers
Commands
Shared	Mechanisms

DynaValues
File	I/O
Image	I/O
Mesh	Info
Raytracing

File	Formats
Change	History
Articles
Tables

For	timely	information	about
updates	and	general	discussion	of
LightWave	plug-in	programming,
join	the	plug-in	mailing	list.

See	the	change	history	to	find	out
how	releases	and	patches	have
affected	the	SDK.

In	addition	to	the	documentation,
the	SDK	comprises	header	files,
source	files	(for	the	small	amount	of
server	code	linked	to	every	plug-in),
and	sample	plug-in	source	code.
You	can	peruse	these	here	or
download	them	in	a	Zip	file.

include	directory
sample	directory
source	directory
lwsdk7.zip,	which	contains	all
three	directories

	

http://groups.yahoo.com/group/lw-plugin

Mesh	Info

The	LWMeshInfo	structure	describes	the	geometry	of	an	object.	You	can
get	one	of	these	from	the	Scene	Objects	and	Object	Info	globals	and	from
the	access	structure	passed	to	the	displacement	handler	evaluate	function.
What	it	contains	can	vary	depending	on	how	and	when	you	obtain	it.	This
structure	is	defined	in	the	lwmeshes.h	header	file.

			typedef	int	LWPntScanFunc	(void	*,	LWPntID);

			typedef	int	LWPolScanFunc	(void	*,	LWPolID);

			typedef	struct	st_LWMeshInfo	{

						void									*priv;

						void									(*destroy)					(LWMeshInfoID);

						int										(*numPoints)			(LWMeshInfoID);

						int										(*numPolygons)	(LWMeshInfoID);

						int										(*scanPoints)		(LWMeshInfoID,	LWPntScanFunc	*,	void	*);

						int										(*scanPolys)			(LWMeshInfoID,	LWPolScanFunc	*,	void	*);

						void									(*pntBasePos)		(LWMeshInfoID,	LWPntID,	LWFVector	pos);

						void									(*pntOtherPos)	(LWMeshInfoID,	LWPntID,	LWFVector	pos);

						void	*							(*pntVLookup)		(LWMeshInfoID,	LWID,	const	char	*);

						int										(*pntVSelect)		(LWMeshInfoID,	void	*);

						int										(*pntVGet)					(LWMeshInfoID,	LWPntID,	float	*vector);

						LWID									(*polType)					(LWMeshInfoID,	LWPolID);

						int										(*polSize)					(LWMeshInfoID,	LWPolID);

						LWPntID						(*polVertex)			(LWMeshInfoID,	LWPolID,	int);

						const	char	*	(*polTag)						(LWMeshInfoID,	LWPolID,	LWID);

						int										(*pntVPGet)				(LWMeshInfoID,	LWPntID,	LWPolID,

																																					float	*vector);

						unsigned	int	(*polFlags)				(LWMeshInfoID,	LWPolID);

						int										(*pntVIDGet)			(LWMeshInfoID,	LWPntID,	float	*vector,

																																					void	*);

						int										(*pntVPIDGet)		(LWMeshInfoID,	LWPntID,	LWPolID,

																																					float	*vector,	void	*);

			}	LWMeshInfo;

priv

An	opaque	pointer	to	private	data	used	internally	by	the	mesh	info
functions.

destroy(meshinfo)

Frees	resources	allocated	by	the	process	that	created	this
LWMeshInfo.	Call	this	when	you're	finished	with	the	mesh	info.	Note
that	this	field	may	be	NULL,	indicating	that	you	shouldn't	attempt	to
free	the	mesh	info.	Test	the	value	of	this	field	before	trying	to	use	it.

npts	=	numPoints(meshinfo)

Returns	the	number	of	points	in	the	object.	If	the	object	contains
dynamically	created	geometry,	e.g.	subdivision	patches	or	metaballs,

this	number	may	include	both	the	control	points	and	the	points
created	by	subdividing.

npols	=	numPolygons(meshinfo)

Returns	the	number	of	polygons	in	the	object,	which	may	include
polygons	created	by	subdividing.

result	=	scanPoints(meshinfo,	pointscan_func,	mydata)

Enumerate	the	points	in	the	object.	The	callback	you	supply	is	called
for	each	point	in	the	object.	The	mydata	argument	is	passed	to	the
callback	and	can	be	anything	it	might	require.	Enumeration	stops	if
your	callback	returns	a	non-zero	value,	and	this	value	is	then	returned
by	scanPoints.	Otherwise	it	returns	0.

result	=	scanPolys(meshinfo,	polyscan_func,	mydata)

Enumerate	the	polygons	in	the	object.
pntBasePos(meshinfo,	point,	pos)

Get	the	base,	or	initial,	position	of	a	point.
pntOtherPos(meshinfo,	point,	pos)

Get	an	alternate	position	for	the	point.	This	may	be	the	same	as	the
base	position	or	it	may	be	the	position	of	the	point	after	some
transformation.	The	nature	of	the	alternate	position	depends	on	how
the	mesh	info	was	created.

vmap	=	pntVLookup(meshinfo,	vmap_type,	vmap_name)

Select	a	vertex	map	for	reading	by	pntVGet.	The	vmap	is	given	by	its
four-character	identifier	and	its	name	string.	The	function	returns	a
pointer	that	can	be	used	later	in	pntVSelect	to	quickly	select	this	vmap
again.	The	pointer	is	NULL	if	no	vmap	was	found	with	the	given	ID
and	name.	The	Scene	Objects	global	allows	you	to	examine	the	vmap
database	and	retrieve	the	names	of	existing	vmaps	of	a	given	type.

dim	=	pntVSelect(meshinfo,	vmap)

Select	a	vmap	for	reading	vectors.	The	vmap	is	identified	by	a	pointer
returned	by	pntVLookup.	The	function	returns	the	vmap's	dimension	(the
number	of	values	per	point).

ismapped	=	pntVGet(meshinfo,	point,	val)

Read	the	vmap	vector	for	a	point.	The	vector	is	read	from	the	vmap
selected	by	a	previous	call	to	pntVSelect.	If	the	point	is	mapped	(has	a
vmap	value	in	the	selected	vmap),	the	val	array	is	filled	with	the
vmap	vector	for	the	point,	and	pntVGet	returns	true.	The	val	array	must
have	at	least	as	many	elements	as	the	number	returned	by	pntVSelect.

See	also	pntVIDGet.
type	=	polType(meshinfo,	polygon)

Returns	the	type	of	a	polygon.	"Polygon"	here	refers	to	a	number	of
different	kinds	of	geometric	atoms,	including	things	like	curves	and
bones.	The	polygon	type	codes	are	an	extensible	set	of	four-character
identifiers.	The	header	file	lwmeshes.h	defines	the	most	common	ones.

LWPOLTYPE_FACE	-	face
LWPOLTYPE_CURV	-	higher	order	curve
LWPOLTYPE_PTCH	-	subdivision	control	cage	polygon
LWPOLTYPE_MBAL	-	metaball
LWPOLTYPE_BONE	-	bone

nvert	=	polSize(meshinfo,	polygon)

Returns	the	number	of	vertices	belonging	to	the	polygon.
point	=	polVertex(meshinfo,	polygon,	vert_index)

Returns	the	point	ID	for	a	polygon	vertex.	Vertex	indexes	range	from
0	to	nvert	-	1.

tagname	=	polTag(meshinfo,	polygon,	tagID)

Returns	the	tag	string	of	the	given	type	associated	with	the	polygon.
A	null	string	pointer	means	that	the	polygon	does	not	have	a	tag	of
that	type.	lwmeshes.h	defines	the	most	common	polygon	tags.
LWPTAG_SURF

The	name	of	the	surface	applied	to	the	polygon.
LWPTAG_PART

The	name	of	the	polygon	group	the	polygon	belongs	to.
ismapped	=	pntVPGet(meshinfo,	point,	polygon,	val)

Like	pntVGet,	but	reads	the	per-polygon,	or	discontinuous,	vmap	vector
for	a	polygon	vertex.	See	also	pntVPIDGet.

flags	=	polFlags(meshinfo,	polygon)

Returns	the	flags	associated	with	the	polygon.	the	EDPF_CCSTART	and
EDDF_CCEND	bits	determine	whether	the	first	and	last	points	in
LWPOLTYPE_CURV	polygons	are	control	points	rather	than	actual	vertices.
(The	constants	for	these	flags	are	defined	in	lwmeshedt.h.)

ismapped	=	pntVIDGet(meshinfo,	point,	val,	vmap)

ismapped	=	pntVPIDGet(meshinfo,	point,	polygon,	val,	vmap)

Like	pntVGet	and	pntVPGet,	but	these	take	the	vertex	map	ID	as	an
additional	argument,	so	that	it	isn't	necessary	to	first	call	pntVSelect	to
select	the	vertex	map.	This	is	important	when	your	plug-in	might	be

running	in	multiple	threads,	since	the	thread	may	change	between	the
pntVSelect	call	and	the	pntVGet	or	pntVPGet	calls.

Example

The	SceneScan	sample	uses	an	LWMeshInfo	obtained	from	the	Object
Info	global	to	build	arrays	of	points	and	polygons	for	an	object,	including
vmap	and	surface	data.	See	the	getObjectDB	function	in	objectdb.c.

Raytracing	Functions

Several	plug-in	classes	receive	pointers	to	raytracing	functions	that	allow
them	to	probe	the	scene	from	any	point	of	view.

These	functions	aren't	valid	in	all	contexts,	since	they	depend	on	having
information	about	the	scene	that	may	not	always	exist.	When	the	Surface
Editor	renders	its	preview	thumbnail,	for	example,	it	evaluates	the	active
shaders,	but	in	this	previewing	context,	the	rayCast	and	rayShade	fields	of	the
LWShaderAccess	will	be	NULL.	Always	ensure	that	raytracing	function
pointers	are	valid	before	using	them.

You	may	also	need	to	safeguard	against	infinite	recursion.	A	ray	fired	in
the	evaluation	callback	of	a	shader	or	(particularly)	a	volumetric	may
cause	that	callback	to	be	re-entered.	Shaders	can	use	the	bounce	member	of
the	LWShaderAccess	to	monitor	the	recursion	level.

			typedef	double	LWRayTraceFunc	(const	LWDVector	position,

																					const	LWDVector	direction,	LWDVector	color);

			typedef	int				LWIlluminateFunc	(LWItemID	light,

																					const	LWDVector	position,	LWDVector	direction,

																					LWDVector	color);

			typedef	double	LWRayCastFunc	(const	LWDVector	position,

																					const	LWDVector	direction);

			typedef	double	LWRayShadeFunc	(const	LWDVector	position,

																					const	LWDVector	direction,

																					struct	st_LWShaderAccess	*);

len	=	rayTrace(position,	direction,	color)

Trace	a	ray	from	the	given	location	in	the	given	direction	in	world
coordinates.	The	return	value	is	the	length	of	the	ray	(or	-1.0	if
infinite)	and	the	color	coming	from	that	direction.	The	direction
argument	is	the	outgoing	direction	and	must	be	normalized	(a	unit
vector).

position

The	world	coordinates	of	the	source	of	the	ray.
direction

A	unit-length	vector,	the	outgoing	direction	of	the	ray	in	world
coordinates.

color

Storage	for	the	color	of	the	spot	hit	by	the	ray.
lit	=	illuminate(lightID,	position,	direction,	color)

This	function	obtains	the	light	ray	(color	and	direction)	hitting	the
given	position	from	the	given	light	at	the	current	time	step.	The
return	value	is	zero	if	the	light	does	not	illuminate	the	given	world
coordinate	position	at	all.	The	color	includes	effects	from	shadows	(if
any),	falloff,	spotlight	cones	and	transparent	objects	between	the	light
and	the	point.

lightID

The	light,	given	by	its	LWItemID.
position

The	world	coordinates	of	the	spot	at	which	the	illumination	will
be	tested.

direction

Storage	for	the	direction	of	the	light	ray	computed	by	the
function.

color

Storage	for	the	color	of	the	light	ray.

Two	special	light	IDs,	LWITEM_RADIOSITY	and	LWITEM_CAUSTICS,	allow
shaders	and	pixel	filters	to	account	for	global	illumination.	When
using	these	IDs,	the	direction	argument	becomes	an	input	rather	than
an	output,	specifying	the	desired	sampling	direction.

len	=	rayCast(position,	direction)

This	is	a	quicker	version	of	the	rayTrace	function	which	only	returns
the	distance	to	the	nearest	surface	(or	-1.0).	It	performs	neither
shading	nor	recursive	raytracing.

position

The	world	coordinates	of	the	source	of	the	ray.
direction

A	unit-length	vector,	the	outgoing	direction	of	the	ray	in	world
coordinates.

len	=	rayShade(position,	direction,	shaderAccess)

Trace	a	ray	to	the	nearest	surface	and	evaluate	the	basic	surface
parameters	and	any	shaders	on	that	surface.	The	LWShaderAccess
structure	passed	(and	owned)	by	the	caller	is	filled	in	with	the	result
and	no	more	processing	is	done.

position

The	source	of	the	ray	in	world	coordinates.
direction

A	unit-length	vector,	the	outgoing	direction	of	the	ray	in	world
coordinates.

shaderAccess

A	pointer	to	an	empty	ShaderAccess	structure	that	will	be	filled
in	by	the	function.

Tables

These	pages	list	by	category	a	total	of	2743	symbols	from	the	SDK
headers.	The	symbols	are	cross-referenced	to	the	header	in	which	they're
defined,	and	for	the	classes	and	globals,	to	the	document	page	on	which
they're	described.	To	make	the	pages	a	little	faster,	the	header	is	only	listed
if	it	differs	from	that	of	the	previous	symbol	in	the	list.	If	a	header	isn't
shown	on	the	same	line	as	a	particular	symbol,	look	for	it	on	a	line	above
it.

Classes
Globals
Macros,	Constants	and	Enum	Members
Typedefs
Structure	Members

File	I/O

Availability		LightWave	6.0
Component		Layout,	Modeler
Header		lwio.h

This	global	provides	functions	for	reading	and	writing	data	in	files.	The
state	structures	returned	by	the	open	functions	are	the	same	as	those	passed
to	the	handler	save	and	load	callbacks,	making	it	possible	for	handlers	to
create	and	read	custom	preset	files	with	the	same	code	they	use	to	write
and	read	their	settings	in	scene	and	object	files.	This	is	also	an	easy	way
for	any	kind	of	Layout	plug-in	to	create	block-structured,	platform-
independent	configuration	and	data	files.

Global	Call

			LWFileIOFuncs	*fiof;

			fiof	=	global(LWFILEIOFUNCS_GLOBAL,	GFUSE_TRANSIENT);

The	global	function	returns	a	pointer	to	an	LWFileIOFuncs.	The	structure
returned	by	the	open	functions	is	described	on	the	file	I/O	page.

			typedef	struct	st_LWFileIOFuncs	{

						LWSaveState	*	(*openSave)	(const	char	*name,	int	ioMode);

						void										(*closeSave)(LWSaveState	*save);	

						LWLoadState	*	(*openLoad)	(const	char	*name,	int	ioMode);

						void										(*closeLoad)(LWLoadState	*load);	

			}	LWFileIOFuncs;

sstate	=	openSave(name,	iomode)

Open	a	file	for	writing.	The	mode	can	be	one	of	the	following.

LWIO_ASCII
Create	a	text	file.	Write	operations	will	be	line-buffered.

LWIO_BINARY
Create	a	binary	file.	Block	writes	will	always	use	2-byte	integers
for	block	sizes.

LWIO_BINARY_IFF
Create	a	binary	file.	Block	sizes	will	be	4-byte	integers	for	the
first	two	nesting	levels	and	2-byte	integers	at	deeper	levels,
corresponding	to	the	chunk	and	subchunk	scheme	used	in

LightWave	object	files.
closeSave(sstate)

Close	a	file	opened	by	openSave.
lstate	=	openLoad(name,	iomode)

Open	a	file	for	reading.	The	iomodes	are	the	same	as	those	for	openSave.
closeLoad(lstate)

Close	a	file	opened	by	openLoad.

Example

This	code	fragment	creates	a	text	file	and	writes	the	contents	of	a
structure.	It	uses	the	Observer	structure	and	the	write_obs	function	defined
in	the	Example	section	of	the	file	I/O	page.

			#include	<lwserver.h>

			#include	<lwio.h>

			LWFileIOFuncs	*fiof;

			LWSaveState	*save;

			Observer	obs	=	{

						4.0f,	"EDT",	2000,	4,	24,	2,	5,	30,

						37.75f,	-122.55f,

						1,	40.0f,	30.0f,	100.0f,

						2000.0f

			};

			fiof	=	global(LWFILEIOFUNCS_GLOBAL,	GFUSE_TRANSIENT);

			if	(!fiof)	return	AFUNC_BADGLOBAL;

			if	(save	=	fiof->openSave("testio.txt",	LWIO_ASCII))	{

						write_obs(save,	&obs);

						fiof->closeSave(save);

			}

			if	(save	=	fiof->openSave("testio.bin",	LWIO_BINARY))	{

						write_obs(save,	&obs);

						fiof->closeSave(save);

			}

	

Globals

	
Header												Symbolic	Name																	Document

lwdisplay.h							LWHOSTDISPLAYINFO_GLOBAL						display.html

lwdyna.h										LWDYNACONVERTFUNC_GLOBAL						dynaconv.html

																		LWDYNAMONITORFUNCS_GLOBAL					modmon.html

																		LWDYNAREQFUNCS_GLOBAL									modreq.html

lwenvel.h									LWCHANNELINFO_GLOBAL										chaninfo.html

																		LWENVELOPEFUNCS_GLOBAL								anenvel.html

lwhandler.h							LWINSTUPDATE_GLOBAL											instupdt.html

lwhost.h										LWCOLORACTIVATEFUNC_GLOBAL				colorpik.html

																		LWDIRINFOFUNC_GLOBAL										dirinfo.html

																		LWFILEACTIVATEFUNC_GLOBAL					filereq2.html

																		LWFILEREQFUNC_GLOBAL										filereq.html

																		LWFILETYPEFUNC_GLOBAL									filetype.html

																		LWLOCALEINFO_GLOBAL											locale.html

																		LWMESSAGEFUNCS_GLOBAL									message.html

																		LWPRODUCTINFO_GLOBAL										prodinfo.html

																		LWSYSTEMID_GLOBAL													sysid.html

lwimage.h									LWIMAGELIST_GLOBAL												imglist.html

																		LWIMAGEUTIL_GLOBAL												imgutil.html

lwio.h												LWFILEIOFUNCS_GLOBAL										fileio.html

lwmeshes.h								LWOBJECTFUNCS_GLOBAL										sceneobj.html

lwmodeler.h							LWFONTLISTFUNCS_GLOBAL								fontlist.html

																		LWSTATEQUERYFUNCS_GLOBAL						modstate.html

lwmonitor.h							LWLMONFUNCS_GLOBAL												laymon.html

lwmtutil.h								LWMTUTILFUNCS_GLOBAL										mtutil.html

lwpanel.h									LWCONTEXTMENU_GLOBAL										conmenu.html

																		LWPANELFUNCS_GLOBAL											panel.html

																		LWRASTERFUNCS_GLOBAL										raster.html

lwpreview.h							LWPREVIEWFUNCS_GLOBAL									preview.html

lwprtcl.h									LWPSYSFUNCS_GLOBAL												particle.html

lwrender.h								LWBACKDROPINFO_GLOBAL									bkdpinfo.html

																		LWBONEINFO_GLOBAL													boneinfo.html

																		LWCAMERAINFO_GLOBAL											caminfo.html

																		LWCOMPINFO_GLOBAL													compinfo.html

																		LWFOGINFO_GLOBAL														foginfo.html

																		LWGLOBALPOOL_GLOBAL											gmempool.html

																		LWGLOBALPOOL_RENDER_GLOBAL				gmempool.html

																		LWINTERFACEINFO_GLOBAL								intinfo.html

																		LWITEMINFO_GLOBAL													iteminfo.html

																		LWLIGHTINFO_GLOBAL												lightinf.html

																		LWOBJECTINFO_GLOBAL											objinfo.html

																		LWSCENEINFO_GLOBAL												sceneinf.html

																		LWTIMEINFO_GLOBAL													timeinfo.html

																		LWVIEWPORTINFO_GLOBAL									viewinfo.html

lwshelf.h									LWSHELFFUNCS_GLOBAL											shelf.html

lwsurf.h										LWSURFACEFUNCS_GLOBAL									surface.html

lwsurfed.h								LWSURFEDFUNCS_GLOBAL										surfed.html

lwtxtr.h										LWTEXTUREFUNCS_GLOBAL									txtrfunc.html

lwtxtred.h								LWTXTREDFUNCS_GLOBAL										txtred.html

lwvparm.h									LWVPARMFUNCS_GLOBAL											vparam.html

lwxpanel.h								LWXPANELFUNCS_GLOBAL										xpanel.html

Classes

	

Header												Symbolic	Name																	Document

lwanimlod.h							LWANIMLOADER_HCLASS											animload.html

																		LWANIMLOADER_ICLASS

lwanimsav.h							LWANIMSAVER_HCLASS												animsave.html

																		LWANIMSAVER_ICLASS

lwchannel.h							LWCHANNEL_HCLASS														channel.html

																		LWCHANNEL_ICLASS

lwcmdseq.h								LWMODCOMMAND_CLASS												cs.html

lwcustobj.h							LWCUSTOMOBJ_HCLASS												custobj.html

																		LWCUSTOMOBJ_ICLASS

lwdialog.h								LWFILEREQ_CLASS															freq.html

																		LWCOLORPICK_CLASS													colorpik.html

lwdisplce.h							LWDISPLACEMENT_HCLASS									displace.html

																		LWDISPLACEMENT_ICLASS

lwenviron.h							LWENVIRONMENT_HCLASS										environ.html

																		LWENVIRONMENT_ICLASS

lwfilter.h								LWIMAGEFILTER_HCLASS										imgfilt.html

																		LWIMAGEFILTER_ICLASS

																		LWPIXELFILTER_HCLASS										pxlfilt.html

																		LWPIXELFILTER_ICLASS

lwframbuf.h							LWFRAMEBUFFER_HCLASS										framebuf.html

																		LWFRAMEBUFFER_ICLASS

lwgeneric.h							LWLAYOUTGENERIC_CLASS									generic.html

lwglobsrv.h							LWGLOBALSERVICE_CLASS									globserv.html

lwimageio.h							LWIMAGELOADER_CLASS											imgload.html

																		LWIMAGESAVER_CLASS												imgsave.html

lwlaytool.h							LWLAYOUTTOOL_CLASS												laytool.html

lwmaster.h								LWMASTER_HCLASS															master.html

																		LWMASTER_ICLASS

lwmeshedt.h							LWMESHEDIT_CLASS														me.html

lwmodtool.h							LWMESHEDITTOOL_CLASS										metool.html

lwmotion.h								LWITEMMOTION_HCLASS											itemmot.html

																		LWITEMMOTION_ICLASS

lwobjimp.h								LWOBJECTIMPORT_CLASS										objload.html

lwobjrep.h								LWOBJREPLACEMENT_HCLASS							objrep.html

																		LWOBJREPLACEMENT_ICLASS

lwscenecv.h							LWSCENECONVERTER_CLASS								scenecvt.html

lwshader.h								LWSHADER_HCLASS															shader.html

																		LWSHADER_ICLASS

lwtexture.h							LWTEXTURE_HCLASS														texture.html

																		LWTEXTURE_ICLASS

lwvolume.h								LWVOLUMETRIC_HCLASS											volume.html

																		LWVOLUMETRIC_ICLASS

	6.0B Changes
	6.5 Changes
	6.5B Changes
	7.0 Changes
	7.5 Changes
	Articles
	Commands
	Common Elements
	Compatibility
	Compiling LightWave Plug-ins
	DynaValues and LWValues
	File Formats
	File I/O
	Globals
	Handlers
	Image I/O
	Introduction
	LW SDK
	Mesh Info
	Plug-in Classes
	Raytracing Functions
	Tables

