
Object	Model

Click	on	an	object	to	view	the	description.

javascript:history.back();

Modified	Event

Triggered	when	an	object	or	collection	in	the	drawing	has	been	modified.

See	Also	|	Example

Signature

object.Modified()

Object
All	Land	objects	can	trigger	the	Modified	Event	An
object	expression	that	evaluates	to	a	valid	container
object.

Remarks

This	event	will	be	triggered	whenever	the	object	is	modified.	Modification
includes	whenever	the	value	of	a	property	is	set,	even	if	the	new	value	is
equal	to	the	current	value.

When	coding	in	VBA,	you	must	provide	an	event	handler	for	all	objects
enabled	for	the	Modified	event.	If	you	do	not	provide	a	handler,	VBA	may
terminate	unexpectedly.

No	events	will	be	fired	while	a	modal	dialog	is	being	displayed.

Refer	to	the	Land	ActiveX	and	VBA	Developer's	Guide	for	a	list	of
support	events.

javascript:history.back();
landauto-guide.chm::/html/idh_understanding_big_picture.htm

Methods
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

A

Add	Creates	a	member	object	and	adds	it	to	the	appropriate	collection.

AddCurve	Appends	a	curve	to	the	alignment	or	parcel.

AddLabelAt	Adds	a	contour	label	at	the	specified	location.

AddLine	Appends	a	line	to	a	parcel.

AddSpiral	Appends	a	spiral	to	the	alignment.

AddTangent	Appends	a	tangent	to	the	alignment.

AddToAllElevations	Adds	a	fixed	amount	to	all	elevations	in	the	Surface.

AlignmentFromObjectID	Given	the	object	ID	for	an	entity,	returns	the
Alignment	name.

AreaVolume	Given	an	array	of	points,	returns	the	cut,	fill,	and	net	volume.

ArrayToPointString	Given	an	array	of	point	numbers,	returns	a	string	with
all	of	the	point	numbers.

B

Build	The	Build	method	will	recalculate	the	Surface.

C

ClearOverides	Clears	all	overrides	for	the	project	database	point	group.

Composite	Creates	a	composite	surface	from	two	existing	surfaces.

ConvertToCurrentAreaDisplay	Converts	an	area	value	using	the
LinearUnit	and	AreaDisplayUnit	settings.

javascript:history.back();

ConvertToCurrentVolumeDisplay	Converts	a	volume	value	using	the
LinearUnit	and	VolumeDisplayUnit	settings.

Copy	Copies	a	Prototype	or	Surface.

D

Delete	Deletes	a	specified	object.

DifferenceGrid	Creates	a	surface	from	two	existing	surfaces	using	the
Grid	method.

DoubleToStaFormat	Given	a	double,	returns	a	string	with	the	Station
Format	applied.

E

EastNorthToXy	Given	an	Easting	and	Northing,	will	return	the	AutoCAD
XY

ElevationAt	(civil	engineering	feature)	Given	a	station,	returns	the
elevation	for	a	profile.

ExternalStaToInternal	Given	an	external	Station	value	(one	using	Station
Equations),	returns	the	internal	Station	value.

F

FindAllConnectingEdges	Returns	all	edges	for	a	given	Surface	point.

FindAllFaces	Redefines	the	collection	with	all	faces	on	the	surface.

FindConnectingEdge	Given	a	Surface	point,	retrieves	the	closest	edge.

FindFace	Given	an	Easting	/	Northing	coordinate,	returns	the	Face.

FindPath	Give	two	coordinates,	reads	in	all	of	the	Faces	that	lie	on	that
line.

FindPoint	Given	an	Easting	/	Northing	coordinate,	finds	the	closest
Surface.

G

GetBoundingBox	Gets	the	bounding	box	for	the	surface.

GetDouble	Gets	the	specified	preference	setting.

GetElevation	Given	a	Northing	and	Easting,	return	the	elevation.

GetInteger	Gets	the	specified	preference	setting.

GetLayerName	(civil	engineering	feature)	Returns	the	layer	names	of	the
alignment	cross	section	or	alignment	profile.

GetStaStrWithEquations	Given	an	internal	station	value,	returns	that
station	as	a	formatted	string	with	Station	Equations	applied.

GetStaWithEquations	Given	an	internal	station	value,	returns	that	station
value	with	Station	Equations	applied.

GetString	Gets	the	specified	preference	setting.

H

I

Import	Draws	the	alignment,	cross	section,	existing	ground	profile,	parcel,
or	surface	into	the	current	drawing.

InstantGrade	(civil	engineering	feature)	Given	a	station,	returns	the
instantaneous	grade	and	the	algebraic	difference.

Item	Gets	the	member	object	at	a	given	index	in	a	collection.

J

K

L

LineIntersection	Returns	the	intersection	points	of	a	line	with	the
Alignment.

LoadSetupProfile	Load	the	specified	drawing	setup	profile.

LockPoints	Locks	a	list	of	point	numbers.

M

N

NewProjectBased	Creates	a	new	AutoCAD	Land	Desktop	document.

O

OffsetElevationToXy	(civil	engineering	feature)	Given	an	offset	and
elevation,	return	the	AutoCAD	XY	coordinates.

Open	Opens	an	existing	AutoCAD	Land	Desktop	drawing	or	surface.

OpenProjectBased	Opens	an	existing	AutoCAD	Land	Desktop	drawing
file	(DWG).

P

Paste	The	Paste	method	will	take	another	Surface	an	paste	it	onto	the
given	Surface.

PerpIntersection	Returns	the	perpendicular	intersection	of	a	point	with	an
Alignment.

PointByNumber	Returns	a	point	in	the	project	database	by	number.

PointCodeDescription	(civil	engineering	feature)	Returns	the	description
of	a	cross	section	point	code.

PointLocation	Given	a	station	and	offset,	returns	the	Northings	and
Eastings.

PointNumberFromObjID	Given	a	AutoCAD	object	ID,
PointNumberFromObjID	will	return	the	point	number.

PointStringToArray	Given	a	point	string,	returns	an	array	with	all	of	the
point	numbers.

ProfileByType	(civil	engineering	feature)	Returns	the	Existing	or	Finished
Ground	Profile	by	type.

Q

R

RemoveAll	Remove	all	method	for	Alignments	and	StationEquations.

RemoveAllLabels	Removes	all	contour	labels.

RemoveLabelAt	Removes	the	contour	label	closest	to	the	specified
location.

Rename	Renames	a	surface.

S

SampleElevations	Given	a	start	and	end	point,	returns	an	array	of
derived	points	from	the	Surface.

Save	Writes	objects	to	specific	databases.

SaveAsDefault	Saves	the	DatabasePreferences	to	the	registry.

SaveSetupProfile	Saves	the	current	drawing	settings	to	a	drawing	setup
profile.

SectionByStation	(civil	engineering	feature)	Returns	a	Cross	Section
object	by	specifing	its	station.

SectionVolume	(civil	engineering	feature)	Calculates	the	Cross	Section
volumes.

SetBoundingBox	Sets	the	bounding	box	for	the	surface.

SetDouble	Sets	the	specified	preference	setting.

SetInteger	Sets	the	specified	preference	setting.

SetReferenceCurve	Sets	the	reference	curve	for	the	Curve	Text.

SetString	Sets	the	specified	preference	setting.

StationElevationToXy	(civil	engineering	feature)	Given	an	alignment	cross
section	or	alignment	profile	station	and	elevation,	return	the	AutoCAD	XY
coordinates.

StationOffset	Given	a	Northings	and	Eastings,	returns	the	station,	and	an
offset,	and	the	polar	direction.

T

U

UnlockPoints	Unlocks	a	list	of	point	numbers.

V

W

X

XyToEastNorth	Given	a	AutoCAD	X,	Y,	returns	the	Easting	and	Northing.

XyToOffsetElevation	(civil	engineering	feature)	Given	an	AutoCAD	XY
cooridnates,	return	the	cross	section	offset	and	elevation.

XyToStationElevation	(civil	engineering	feature)	Given	an	AutoCAD	XY
cooridnates,	return	the	profile	station	and	elevation.

Y

Z

javascript:history.back();

Add	Method

Creates	a	member	object	and	adds	it	to	the	appropriate	collection.

See	Also	|	Example

Signature:	Overview

l	Alignments

l	Boundaries

l	BreakLines

l	CogoPoints

l	ContourItems

l	DEMFiles

l	DescriptionKeyFile

l	DescriptionKeyFiles

l	EGProfiles	(Civil	Engineering	Feature)

l	FGProfiles	(Civil	Engineering	Feature)

l	Parcels

l	PointFiles

l	PointGroupNames

l	PointGroups

l	Projects

l	PVIs	(Civil	Engineering	Feature)

l	StationEquations

l	Surfaces

Creates	a	new	Alignment	and	adds	it	to	the	Alignments	collection.

Signature

RetVal	=	object.Add(Name,	StartingStation)

object
Alignments	The	object	or	objects	this	property
applies	to.

Name
String;	input-only
New	alignment	name.

StartingStation
Double;	input-only
The	starting	station.

RetVal
Alignment	object
The	newly	added	Alignment	object.

Remarks

The	new	alignment	must	be	saved	for	any	changes	to	take	affect.	You
can	add	a	new	alignment	to	the	collection	and	then	define	the	underlying
geometry.	Be	advised	that	if	you	save	an	alignment	without	later	adding
any	tangents,	curves	or	spirals,	you	will	not	be	able	to	edit	the	geometry
using	the	alignment	editor.

Adds	a	Boundary	to	the	Surface.

Signature

RetVal	=	object.Add(Type,	bIsBreakLine,	Coordinates[,	Description])

object
Boundaries
The	object	or	objects	this	property	applies	to.

Type
eAeccBoundaryType	enum;	input-only

kBoundaryTypeShow: Boundary	is	visible

kBoundaryTypeHide: Boundary	is	hidden

kBoundaryTypeOuter: Boundary	is	the	outer	most
boundary

kBoundaryTypeUninit: Boundary	in	not	initialized.

bIsBreakLine
Boolean;	input	only
TRUE:		Boundary	is	a	breakline
FALSE:	Boundary	is	not	a	breakline

Coordinates
Variant	(array	of	doubles);	input-only
The	points	in	Easting,	Northing,	Elevation	format.

Description
String;	input	only;	optional
The	description	of	the	Boundary.

RetVal

Boundary	object
The	newly	added	Boundary	object.

Remarks

Outer	boundaries	are	always	visible	and	must	be	the	first	boundary
defined.

Creates	a	new	BreakLine	for	the	Surface.

Signature

RetVal	=	object.Add(Coordinates[,	Description])

object
BreakLines
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(array	of	doubles);	input-only
The	points	in	Easting,	Northing,	Elevation	format.

Description
String;	input-only;	optional
The	description	for	the	BreakLine.

RetVal
BreakLine	object
The	newly	added	BreakLine	object.

Remarks

Add	creates	the	BreakLine	by	adding	it	to	the	Surface.	It	will	also	add	the
BreakLine	to	the	BreakLines	collection.	Only	a	Standard	BreakLine	can
be	added.	The	Surface	must	be	built	for	the	change	to	take	affect.

Creates	a	new	CogoPoint	and	adds	it	to	the	collection	for	the	project

database.

Signature

RetVal	=	object.Add(Coordinates,	Format)

object
CogoPoints
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(2	or	3	element	array	of	doubles);	input-only.
If	the	array	has	2	elements,	no	elevation	will	be
assigned.

Double[0]: Easting,	or	X	based	on	PointStyle

Double[1]: Northing,	or	Y	based	on	PointStyle

Double[2]: Optional:	Elevation	or
kPointNoElevation

Format
eAeccCoordinateFormat	enum;	input-only

kCoordinateFormatENZ: Point	is	in	Easting,
Northing,	elevation

kCoordinateFormatXYZ:
Point	is	in	X,	Y,
elevation.	AutoCAD
coordinates

RetVal
CogoPoint	object
The	newly	added	CogoPoint	object.

Adds	a	ContourItem	to	the	Surface	definition.

Signature

RetVal	=	object.Add(Coordinates)

object
ContourItems
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(array	of	doubles);	input-only
An	array	of	doubles	representing	Easting,	Northing,
Elevation.

RetVal
ContourItem	object
The	newly	added	ContourItem	object.

Adds	a	Digital	Elevation	Model	file	to	the	Surface	definition.

Signature

RetVal	=	object.Add(FullName,	[CoordinateZone])

object
DEMFiles
The	object	or	objects	this	property	applies	to.

FullName
String;	input-only
Full	name	of	the	DEM	file	to	be	added.

CoordinateZone
String;	input-only
The	coordinate	system	syntax	for	the	zone.

RetVal

DEMFile	object
The	newly	added	DEMFile	object.

Creates	a	new	DescriptionKey.

Signature

RetVal	=	object.Add(syntax)

object
DescriptionKeyFile
The	object	or	objects	this	property	applies	to.

syntax
String;	input-only
The	syntax	of	the	new	DescriptionKey

RetVal
DescriptionKey	object
The	newly	added	DescriptionKey	object.

Creates	a	new	DescriptionKeyFiles	and	adds	it	to	the	collection	for	the
project	database.

Signature

RetVal	=	object.Add(Name)

object
DescriptionKeyFiles
The	object	or	objects	this	property	applies	to.

Name
String;	input-only
The	name	of	the	new	DescriptionKeyFiles

RetVal

DescriptionKeyFile	object
The	newly	added	DescriptionKeyFile	object.

Creates	a	new	EGProfile	and	adds	it	to	the	EGProfiles	collection.

Signiture

RetVal	=	Object.Add(Type,	SurfaceName)

object
EGProfiles
The	object	or	objects	this	property	applies	to.

Type
eAeccEGProfilesType	enum;	input-only
The	type	for	the	new	EGProfile.

kEgCenter: Existing	ground	center	profile

kEgLeft: Existing	ground	left	profile

kEgNone: Existing	ground	none

kEgRight: Existing	ground	right	profile

String
String;	input-only
The	name	of	the	surface.

RetVal
EGProfile	object
The	newly	added	EGProfile	object.

Adds	a	Finished	Grade	Profile	to	the	project

Signiture

RetVal	=	Object.Add(Type)

object
FGProfiles
The	object	or	objects	this	property	applies	to.

Type
eAeccFGProfileType	enum;	input-only
The	type	of	finished	grade	profile	to	add.

kFgCenter: Finished	grade	center	profile

kFgDitchLeft: Finished	grade	left	ditch	profile

kFgDitchRight: Finished	grade	right	ditch	profile

kFgLeft1: Finished	grade	left	1	profile

kFgLeft2: Finished	grade	left	2	profile

kFgLeft3: Finished	grade	left	3	profile

kFgLeft4: Finished	grade	left	4	profile

kFgLeft5: Finished	grade	left	5	profile

kFgLeft6: Finished	grade	left	6	profile

kFgLeft7: Finished	grade	left	7	profile

kFgLeft8: Finished	grade	left	8	profile

kFgNone: Finished	grade	none

kFgRight1: Finished	grade	right	1	profile

kFgRight2: Finished	grade	right	2	profile

kFgRight3: Finished	grade	right	3	profile

kFgRight4: Finished	grade	right	4	profile

kFgRight5: Finished	grade	right	5	profile

kFgRight6: Finished	grade	right	6	profile

kFgRight7: Finished	grade	right	7	profile

kFgRight8: Finished	grade	right	8	profile

RetVal
FGProfile	object
The	newly	added	FGProfile	object.

Remarks

A	Finished	Grade	Profile	can	not	start	or	end	with	a	Vertical	Curve.

Creates	a	new	Parcel	and	adds	it	to	the	ExistingParcelAligns	collection.

Signiture

RetVal	=	Object.Add(Name)

object
Parcels
The	object	or	objects	this	property	applies	to.

Name
String;	input-only

The	name	of	the	parcel.

RetVal
Parcel	object
The	newly	added	Parcels	object.

Adds	a	point	file	to	the	PointFiles	collection.

Signature

RetVal	=	object.Add(FullName)

object
PointFiles
The	object	or	objects	this	property	applies	to.

FullName
String;	input-only
Full	name	of	the	point	file	to	be	added.

RetVal
PointFile	object
The	newly	added	PointFile	object.

Remarks

PointFile.Add	does	not	check	for	the	existence	of	the	file.	The	new
PointFile	will	use	the	default	file	format	of	Point	Number,	Easting,
Northing,	Elevation	(space-delimited).	Each	field	in	the	point	file	must	be
seperated	with	a	single	space.

Adds	a	new	PointGroupName	to	the	PointGroupNames	collection.

Signature

RetVal	=	object.Add(Name)

object

PointGroupNames
The	object	or	objects	this	property	applies	to.

Name
String;	input-only
Name	of	the	PointGroupName	to	add.

RetVal
PointGroupName	object
The	newly	added	PointGroupName	object.

Add	a	new	point	group	to	the	project	database.

Signature

RetVal	=	object.Add(Name,	PointList)

object
PointGroups
The	object	or	objects	this	property	applies	to.

GroupName
String;	input-only
The	new	point	group	name.

PointList
String;	input-only
The	point	list.

RetVal
PointGroup	object
The	newly	added	PointGroup	object.

Creates	a	new	project.

Signature

RetVal	=	object.Add(ProjectName,	PrototypeName[,	CreatePDb])

object
Projects
The	object	or	objects	this	property	applies	to.

ProjectName
String;	input-only
The	name	of	the	project	to	delete.

PrototypeName
String;	input-only
The	name	of	the	prototype	to	use	for	the	project.

CreatePDb
Boolean;	input-only;	optional
True:		The	Cogo	Point	database	will	be	created
(default).
False:	The	Cogo	Point	database	will	not	be	created

RetVal
Project	object
The	newly	added	Project	object.

Remarks

The	new	project	is	created	at	the	ProjectPath	directory.	The	default
subfolder	to	save	drawings	in	is	the	\dwg	subfolder.

If	CreatePDb	is	True,	the	Cogo	Point	database	will	be	created.	The
Description	field	size	will	be	32	characters.	Point	Names	will	be	enable
with	a	size	of	16	characters.	The	default	value	for	CreatePDb	is	True.

Adds	a	PVI.

Signiture

RetVal	=	Object.Add(Station,	Elevation,	Curvelength)

object
PVIs
The	object	or	objects	this	property	applies	to.

Station
Double;	input-only
The	Station	for	the	new	PVI.

Elevation
Double;	input-only
The	Elevation	for	the	new	PVI.

CurveLength
Double;	input-only
The	CurveLength	for	the	new	PVI.

RetVal
PVI	object
The	newly	added	PVI	object.

Adds	a	station	equation	into	the	alignment.

Signature

RetVal	=	object.Add(StationBack,	StationAhead,	Type)

object
StationEquations
The	object	or	objects	this	property	applies	to.

StationBack
Double;	input-only
The	back	station	for	the	station	equation.

StationAhead
Double;	input-only
The	ahead	station	for	the	station	equation.

Type
eAeccStationEquationType	enum;	input-only

kIncreasing: Station	numbers	increase	along	the
alignment

kDecreasing: Station	numbers	decrease	along
the	alignment

RetVal
StationEquation	object
The	newly	added	StationEquation	object.

Creates	a	new	Surface	and	adds	it	to	the	Surfaces	collection.

Signature

RetVal	object.Add(SurfaceName)

object
Surfaces
The	object	or	objects	this	property	applies	to.

SurfaceName
String;	input-only
New	surface	name.

RetVal
Surface	object
The	newly	added	Surface	object.

Remarks

If	the	name	of	the	surface	is	blank,	then	a	temporary	surface	will	be
created.	A	temporary	surface	is	useful	for	generating	a	surface	in	an
AutoCAD	drawing.	A	temporary	surface	can	not	be	saved.

AddCurve	Method

Appends	a	curve	to	the	alignment	or	parcel.

See	Also	|	Example

Signature:	Overview

l	Alignment

l	Parcel

Appends	a	curve	to	the	alignment.

Signature

RetVal	=	object.AddCurve(StartEasting,	StartNorthing,	CenterEasting,
CenterNorthing,	EndEasting,	EndNorthing,	bCCWFlag)

object
Alignment	The	object	or	objects	this	property
applies	to.

StartEasting
Double;	input-only
The	Easting	coordinate	for	the	beginning	of	the
curve.

StartNorthing
Double;	input-only
The	Northing	coordinate	for	the	beginning	of	the

javascript:history.back();

curve.

CenterEasting
Double;	input-only
The	Easting	coordinate	for	the	center	of	the	curve.

CenterNorthing
Double;	input-only
The	Northing	coordinate	for	the	center	of	the	curve.

EndEasting
Double;	input-only
The	Easting	coordinate	for	the	end	of	the	curve.

EndNorthing
Double;	input-only
The	Northing	coordinate	for	the	end	of	the	curve.

bCCWFlag
Boolean;	input-only
TRUE:		If	the	curve	is	drawing	in	a	counterclockwise
direction.
FALSE:	If	the	curve	is	drawing	in	a	clockwise
direction.

RetVal
AlignCurve	object
The	Newly	added	AlignCurve	object

Remarks

A	check	will	be	made	to	see	if	the	beginning	of	the	new	curve	is	equal	to
the	end	of	the	previous	entity.	If	the	two	are	not	equal,	an	error
(AECC_E_ALN_INVALID_ENDPOINT)	will	be	generated	and	the	curve
will	not	be	added.

No	check	will	be	made	to	see	if	the	new	curve	is	tangent	to	the	previous
entity.

Appends	a	curve	to	the	parcel.

Signature

RetVal	=	object.AddCurve(StartEasting,	StartNorthing,	CenterEasting,
CenterNorthing,	EndEasting,	EndNorthing,	bCCWFlag)

object
Parcel
The	object	or	objects	this	property	applies	to.

StartEasting
Double;	input-only
The	Easting	coordinate	for	the	beginning	of	the
curve.

StartNorthing
Double;	input-only
The	Northing	coordinate	for	the	beginning	of	the
curve.

CenterEasting
Double;	input-only
The	Easting	coordinate	for	the	center	of	the	curve.

CenterNorthing
Double;	input-only
The	Northing	coordinate	for	the	center	of	the	curve.

EndEasting
Double;	input-only
The	Easting	coordinate	for	the	end	of	the	curve.

EndNorthing
Double;	input-only
The	Northing	coordinate	for	the	end	of	the	curve.

bCCWFlag
Boolean;	input-only

TRUE:		If	the	curve	is	drawing	in	a	counterclockwise
direction.
FALSE:	If	the	curve	is	drawing	in	a	clockwise
direction.

RetVal
ParcelCurve	object
The	Newly	added	ParcelCurve	object.

AddLabelAt	Method

Adds	a	contour	label	at	the	specified	location.

See	Also	|	Example

Signature

object.AddLabelAt(X,	Y)

object
AeccContour	The	object	or	objects	this	property
applies	to.

X
Double;	input-only
The	X	coordinate	of	the	new	label.

Y
Double;	input-only
The	Y	coordinate	of	the	new	label.

Remarks

The	label	will	be	placed	at	the	closest	location	on	the	contour	based	on
the	X,	Y	point.

javascript:history.back();

AddLine	Method

Appends	a	line	to	the	parcel.

See	Also	|	Example

Signature

RetVal	=	object.AddParcel(StartEasting,	StartNorthing,	EndEasting,
EndNorthing)

object
Parcel	The	object	or	objects	this	property	applies	to.

StartEasting
Double;	input-only
The	Easting	coordinate	for	the	beginning	of	the	line.

StartNorthing
Double;	input-only
The	Northing	coordinate	for	the	beginning	of	the
line.

EndEasting
Double;	input-only
The	Easting	coordinate	for	the	end	of	the	line.

EndNorthing
Double;	input-only
The	Northing	coordinate	for	the	end	of	the	line.

RetVal

javascript:history.back();

ParcelLine	object
The	newly	added	ParcelLine	object.

javascript:history.back();

AddSpiral	Method

Appends	a	spiral	to	the	alignment.

See	Also	|	Example

Signature

RetVal	=	object.AddSpiral(StartEasting,	StartNorthing,	PiEasting,	PiNorthing,
EndEasting,	EndNorthing,	LExt,	LOffset,	SpiralType1)

object
Alignment	The	object	or	objects	this	property
applies	to.

StartEasting
Double;	input-only
The	Easting	coordinate	for	the	beginning	of	the
spiral.

StartNorthing
Double;	input-only
The	Northing	coordinate	for	the	beginning	of	the
spiral.

PiEasting
Double;	input-only
The	Easting	coordinate	for	the	PI	of	the	spiral.

PiNorthing
Double;	input-only

The	Northing	coordinate	for	the	PI	of	the	spiral.

EndEasting
Double;	input-only
The	Easting	coordinate	for	the	end	of	the	spiral.

EndNorthing
Double;	input-only
The	Northing	coordinate	for	the	end	of	the	spiral.

LExt
Double;	input-only
The	external	length	of	the	spiral.	0.0	for	a	simple
spiral.

LOffset
Double;	input-only
The	offset	distance.	0.0	for	non-offset	spirals.

SpiralType1
eAeccSpiralType	enum;	input-only

kClothoid: Clothoid	spiral

kSinusoid: Sinusoid	spiral

kCosinusoid: Cosinusoid	spiral

kQuadratic: Quadratic	spiral

RetVal
AlignSpiral	object
The	newly	added	AlignSpiral	object.

Remarks

A	check	will	be	made	to	see	if	the	beginning	of	the	new	spiral	is	equal	to

the	end	of	the	previous	entity.	If	the	two	are	not	equal,	an	error
(AECC_E_ALN_INVALID_ENDPOINT)	will	be	generated	and	the	spiral
will	not	be	added.

No	check	will	be	made	to	see	if	the	new	spiral	is	tangent	to	the	previous
entity.

Lext	represents	the	length	from	the	TS	to	the	External	Point	in	a
compound	spiral	condition.

AddTangent	Method

Appends	a	tangent	to	the	alignment.

See	Also	|	Example

Signature

RetVal	=	object.AddTangent(StartEasting,	StartNorthing,	EndEasting,
EndNorthing)

object
Alignment	The	object	or	objects	this	property
applies	to.

StartEasting
Double;	input-only
The	Easting	coordinate	for	the	beginning	of	the
tangent.

StartNorthing
Double;	input-only
The	Northing	coordinate	for	the	beginning	of	the
tangent.

EndEasting
Double;	input-only
The	Easting	coordinate	for	the	end	of	the	tangent.

EndNorthing
Double;	input-only
The	Northing	coordinate	for	the	end	of	the	tangent.

javascript:history.back();

RetVal
AlignTangent	object
The	newly	added	AlignTangent	object.

Remarks

A	check	will	be	made	to	see	if	the	beginning	of	the	new	tangent	is	equal
to	the	end	of	the	previous	entity.	If	the	two	are	not	equal,	an	error
(AECC_E_ALN_INVALID_ENDPOINT)	will	be	generated	and	the	tangent
will	not	be	added.

AddToAllElevations	Method

Adds	a	fixed	amount	to	all	elevations	in	the	Surface.

See	Also	|	Example

Signature

object.AddToAllElevations(Delta)

object
Surface	The	object	or	objects	this	property	applies
to.

Delta
Double;	input-only
Elevation	to	be	added	/	subtracted	to	all	elevations.

Remarks

AddToAllElevations	effectively	raises	or	lowers	the	surface	by
DeltaElevation.	The	Surface	will	not	be	rebuilt	but	will	be	saved	when
AddToAllElevations	is	called.

Edit	history	must	be	turned	on	when	the	Surface	is	rebuilt	for	the	changes
to	been	seen.

javascript:history.back();

AlignmentFromObjectID	Method

Given	the	object	ID	for	an	entity,	returns	the	Alignment	name.

See	Also	|	Example

Signature

RetVal	=	object.AlignmentFromObjectID(ObjectID)

object
Alignments	The	object	this	property	applies	to.

ObjectID
Long;	read-only
The	Object	ID	for	the	entity.

RetVal
Variant	(array	of	strings)
An	array	of	Alignment	names.

javascript:history.back();

AreaVolume	Method

Given	an	array	of	points	defining	an	area,	returns	the	cut,	fill,	and	net
volume.

See	Also	|	Example

Signature

object.AreaVolume(Tolerance,	Coordinates,	Cut,	Fill,	Net)

object
Surface	The	object	or	objects	this	property	applies
to.

Tolerance
Double;	input-only

Coordinates
Variant	(array	of	doubles);	input-only
A	closed	array	of	3D	points	defining	an	area

Cut
Double;	output-only
The	cut	volume.

Fill
Double;	output-only
The	fill	volume.

Net
Double;	output-only

javascript:history.back();

The	net	volume.

ArrayToPointString	Method

Given	an	array	of	point	numbers,	returns	a	string	with	all	of	the	point
numbers.

See	Also	|	Example

Signature

RetVal	=	object.PointStringToArray(Points)

object
CogoPoints	The	object	or	objects	this	property
applies	to.

Points
Variant	(array	of	longs);	input-only
Each	element	is	a	point	number.

RetVal
String
Comma	delimited	string	of	points	to	be	locked	with
groups	separated	by	hyphens.

Remarks

The	returned	point	string	will	be	condensed;	if	the	array	has	point	1
through	10,	then	the	point	string	returned	is	"1-10".

javascript:history.back();

Build	Method

Builds	Watersheds	or	recalculates	the	Surface.

See	Also	|	Example

Signature:	Overview

l	Surface

l	WaterSheds

The	Build	method	will	recalculate	the	Surface.

Signature

object.Build()

object
Surface	The	object	or	objects	this	property	applies
to.

Remarks

When	changes	are	made	to	a	Surface,	the	Surface	needs	to	be
recalculated.	The	Build	method	will	do	the	recalculation.	The	status	of	a
surface	will	only	be	accurate	when	the	time	between	a	Build	and	an
addition	of	Surface	Input	data	is	greater	than	the	resolution	of	the	file
system.

Builds	the	WaterSheds	for	the	Surface.

javascript:history.back();

Signature

object.Build(MinDepressionDepth,	MinDepressionArea,	bExceedBoth)

object
WaterSheds
The	object	or	objects	this	property	applies	to.

MinDepressionDepth
Double;	input-only
The	minimum	depression	depth	for	each	watershed.

MinDepressionArea
Double;	input-only
The	minimum	depression	area	for	each	watershed.

bExceedBoth
Boolean;	input-only
TRUE:		Both	minimum	depression	conditions	must
be	met.
FALSE:	Either	minimum	depression	setting	must	be
met.

Remarks

Any	change	in	the	Surface	statistics	will	not	occur	until	the	Surface	and
Surfaces	objects	are	released	and	created	again.	For	example,
WaterSheds.Build	may	add	TinPoints	to	the	Surface.	The
NumberOfPoints	for	the	Surface	will	not	be	updated	until	both	the
Surfaces	collection	and	the	Surface	object	are	updated.

ClearOverrides	Method

Clears	all	overrides	for	the	project	database	point	group.

See	Also	|	Example

Signature

object.ClearOverrides()

object
PointGroup	The	object	or	objects	this	property
applies	to.

javascript:history.back();

Composite	Method

Creates	a	composite	surface	from	two	existing	surfaces.

See	Also	|	Example

Signature

RetVal	=	object.Composite(NewSurface,	ParentSurface,	ChildSurface)

object
Surfaces	The	object	or	objects	this	property	applies
to.

NewSurface
String;	input-only
The	name	of	the	new	surface	to	be	created.

ParentSurface
String;	input-only
The	name	of	the	parent	surface.

ChildSurface
String;	input-only
The	name	of	the	child	surface.

RetVal
Surface	object
The	newly	added	Surface	object.

javascript:history.back();

ConvertToCurrentAreaDisplay	Method

Converts	an	area	value	using	the	LinearUnit	and	AreaDisplayUnit
settings.

See	Also	|	Example

Signature

RetVal	=	object.ConvertToCurrentAreaDisplay(Area)

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

Area
Double;	input-only
The	area	to	convert.

RetVal
Double
The	resulting	area.

javascript:history.back();

ConvertToCurrentVolumeDisplay	Method

Converts	a	volume	value	using	the	LinearUnit	and	VolumeDisplayUnit
settings.

See	Also	|	Example

Signature

RetVal	=	object.ConvertToCurrentVolumeDisplay(Volume)

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

Volume
Double;	input-only
The	volume	to	convert.

RetVal
Double
The	resulting	volume.

javascript:history.back();

Copy	Method

Creates	a	copy	of	an	existing	object.

See	Also	|	Example

Signature:	Overview

l	Prototypes

l	Surfaces

Copies	a	prototype.

Signature

RetVal	=	object.Copy(FromName,	ToName)

object
Prototypes	The	object	or	objects	this	property
applies	to.

FromName
String;	input-only
The	name	of	the	prototype	you	wish	to	copy.

ToName
String;	input-only
The	name	of	the	copy.

RetVal

javascript:history.back();

Prototype	object
The	newly	added	Prototype	object.

Remarks

The	new	prototype	is	created	at	the	PrototypePath	directory.

Copies	a	surface.

Signature

RetVal	=	object.Copy(SurfaceName)

object
Surfaces
The	object	or	objects	this	property	applies	to.

SurfaceName
String;	input-only
The	name	of	the	surface	to	be	copied.

RetVal
Surface	object
The	newly	added	Surface	object.

Remarks

The	new	surface	created	will	have	"	Copy	of"	prefixed	to	the	new	surface
name.

javascript:history.back();

Delete	Method

Deletes	a	specified	object.

See	Also	|	Example

Signature:	Overview

l	Alignments

l	Boundaries

l	BreakLines

l	CogoPoints

l	ContourItems

l	DEMFiles

l	DescriptionKeyFile

l	DescriptionKeyFiles

l	EGProfiles	(Civil	Engineering	Feature)

l	FGProfiles	(Civil	Engineering	Feature)

l	Parcels

l	PointFiles

l	PointGroupNames

l	PointGroups

l	Projects

l	Prototypes

l	PVIs	(Civil	Engineering	Feature)

l	StationEquations

l	Surfaces

Deletes	an	Alignment	and	removes	it	from	the	Alignments	collection.

Signature

object.Delete(Name)

object
Alignments	The	object	or	objects	this	property
applies	to.

Name
String;	input-only	
The	alignment	name	to	delete.

Remarks

Delete	will	remove	the	alignment	from	the	database	and	the	drawing.	If
the	deleted	alignment	was	set	current	there	will	not	be	any	alignment	set
current	after	the	delete	has	taken	place.

Given	a	Boundary	identifier,	deletes	that	Boundary	from	the	Surface.

Signature

object.Delete(Id)

object
Boundaries	
The	object	or	objects	this	property	applies	to.

Id
Long;	input-only	
The	identifier	of	the	boundary.

Deletes	the	BreakLine	from	the	Surface.

Signature

object.Delete(Id)

object
BreakLines	
The	object	or	objects	this	property	applies	to.

Id
Long;	input-only	
The	Id	of	the	breakline	to	delete.

Remarks

Delete	removes	the	BreakLine	from	the	Surface.	It	will	also	remove	the
BreakLine	from	the	BreakLines	collection.	The	Surface	must	be	built	for
the	change	to	take	affect.

Deletes	the	point	from	the	project	database.

Signature

object.Delete(PointNumber)

object
CogoPoints	
The	object	or	objects	this	property	applies	to.

PointNumber
Long;	input-only	
The	Cogo	Point	number	to	be	deleted.

Deletes	a	Digital	Elevation	Model	file	from	the	Surface.

Signature

object.Delete(FullName)

object
DEMFiles	
The	object	or	objects	this	property	applies	to.

FullName
String;	input-only
Full	name	of	the	DEM	file	to	be	deleted.

Deletes	a	ContourItem	from	the	Surface.

Signature

object.Delete(Id)

object
ContourItems	
The	object	or	objects	this	property	applies	to.

Id
Long;	input-only	
The	Id	of	the	ContourItem	to	be	deleted.

Deletes	the	DescriptionKey.

Signature

object.Delete(syntax)

object
DescriptionKeyFile	
The	object	or	objects	this	property	applies	to.

syntax
String;	input-only	
The	syntax	of	the	DescriptionKey	to	delete.

Deletes	the	DescriptionKeyFile	and	removes	it	from	the	collection	for	the
project	database.

Signature

object.Delete(Name)

object
DescriptionKeyFiles	
The	object	or	objects	this	property	applies	to.

Name
String;	input-only	
The	name	of	the	DescriptionKeyFile	to	delete.

Deletes	a	EGProfile	and	removes	it	from	the	EGProfiles	collection.

Signiture

Object.Delete(Type,	SurfaceName)

object
EGProfiles	
The	object	or	objects	this	property	applies	to.

Type
eAeccEGProfilesType	enum;	input-only	

The	type	to	delete	from	the	EGProfiles	collection.

kEgCenter: Existing	ground	center	profile

kEgLeft: Existing	ground	left	profile

kEgRight: Existing	ground	right	profile

SurfaceName
String;	input-only	
The	name	of	the	surface.

Deletes	a	Finised	Ground	Profile.

Signiture

Object.Delete(Type)

object
FGProfiles	
The	object	or	objects	this	property	applies	to.

Type
eAeccFGProfileType	enum;	input-only	
The	type	of	Finished	Ground	Profile	to	delete.

kFgCenter: Finished	ground	center	profile

kFgDitchLeft: Finished	ground	left	ditch	profile

kFgDitchRight: Finished	ground	right	ditch	profile

kFgLeft1: Finished	ground	left	profile	1

kFgLeft2: Finished	ground	left	profile	2

kFgLeft3: Finished	ground	left	profile	3

kFgLeft4: Finished	ground	left	profile	4

kFgLeft5: Finished	ground	left	profile	5

kFgLeft6: Finished	ground	left	profile	6

kFgLeft7: Finished	ground	left	profile	7

kFgLeft8: Finished	ground	left	profile	8

kFgNone: Finished	ground	none

kFgRight1: Finished	ground	right	profile	1

kFgRight2: Finished	ground	right	profile	2

kFgRight3: Finished	ground	right	profile	3

kFgRight4: Finished	ground	right	profile	4

kFgRight5: Finished	ground	right	profile	5

kFgRight6: Finished	ground	right	profile	6

kFgRight7: Finished	ground	right	profile	7

kFgRight8: Finished	ground	right	profile	8

Deletes	a	Parcel	from	the	Parcels	collection.

Signature

object.Delete(Name)

object
Parcels	
The	object	or	objects	this	property	applies	to.

Name
String;	input-only	
The	name	of	the	Parcel	to	delete.

Deletes	a	point	file	from	the	PointFiles	collection.

Signature

object.Delete(FullName)

object
PointFiles	
The	object	or	objects	this	property	applies	to.

FullName
String;	input-only	
The	full	name	of	the	PointFile	to	delete.

Remarks

Remove	will	not	delete	the	physical	file;	it	only	removes	the	FileName
from	the	Surface	definition.

Deletes	a	PointGroupName	from	the	PointGroupNames	collection.

Signature

object.Delete(Name)

object
PointGroupNames	

The	object	or	objects	this	property	applies	to.

Name
String;	input-only	
The	name	of	the	PointGroupName	to	delete.

Deletes	a	point	group	from	the	project	database.

Signature

object.Delete(Name)

object
PointGroups	
The	object	or	objects	this	property	applies	to.

Name
String;	input-only

Deletes	a	specific	project

Signature

object.Delete(ProjectName)

object
Projects	
The	object	or	objects	this	property	applies	to.

ProjectName
String;	input-only	
The	name	of	the	project	to	delete.

Remarks

The	Delete	method	deletes	everything	in	the	<project	name>	folder,
including	the	drawing	files	if	they	are	located	in	the	project	folder.

No	warning	dialog	is	presented.	The	project	is	deleted,	and	not	moved	to
the	Windows	Recycle	Bin.

Deletes	the	specified	prototype.

Signature

object.Delete(PrototypeName)

object
Prototypes	
The	object	or	objects	this	property	applies	to.

PrototypeName
String;	input-only	
The	name	of	the	prototype	you	wish	to	delete.

Remarks

A	warning	dialog	box	is	displayed,	informing	you	that	all	files	and	folders
within	the	prototype	folder	will	be	deleted.

Deletes	a	PVI.

Signiture

Object.Delete(Station)

object
PVIs	
The	object	or	objects	this	property	applies	to.

Station
Double;	input-only	
The	Station	of	the	PVI	to	delete.

Deletes	a	station	equation	from	the	alignment.

Signature

object.Delete(Index)

object
StationEquations	
The	object	or	objects	this	property	applies	to.

Index
Variant;	input-only	
The	index	location	in	the	collection	for	the	member
item	to	query.The	index	must	be	either	an	integer	or
a	string.	If	an	integer,	the	index	must	be	between	0
and	N-1,	where	N	is	the	number	of	objects	in	the
collection	or	selection	set.

Remarks

If	a	station	equation	is	deleted,	then	the	indices	for	the	StationEquations
collection	will	change.

Deletes	the	Surface	from	the	Project	and	from	the	Surfaces	collection.

Signature

object.Delete(SurfaceName)

object
Surfaces	
The	object	or	objects	this	property	applies	to.

SurfaceName
String;	input-only	
Name	of	the	surface	to	be	deleted.

DifferenceGrid	Method

Creates	a	surface	from	two	existing	surfaces	using	the	Grid	method.

See	Also	|	Example

Signature

RetVal	=	object.DifferenceGrid(NewSurface,	Surface1,	Surface2,	X,	Y,	Rows,
Columns,	OriginX,	OriginY,	Angle)

object
Surfaces	The	object	or	objects	this	property	applies
to.

NewSurface
String;	input-only
The	name	of	the	new	surface	to	be	created.

Surface1
String;	input-only
The	name	of	the	first	surface.

Surface2
String;	input-only
The	name	of	the	second	surface.

X
Double;	input-only
The	width	of	the	grid	cell.

Y

javascript:history.back();

Double;	input-only
The	height	of	the	grid	cell.

Rows
Integer;	input-only
The	number	of	rows	for	the	grid.

Columns
Integer;	input-only
The	number	of	columns	for	the	grid.

OriginX
Double;	input-only
The	X	coordinate	of	the	grid	origin.

OriginY
Double;	input-only
The	Y	coordinate	of	the	grid	origin.

Angle
Double;	input-only
The	rotation	angle	of	the	grid.

RetVal
Surface	object
The	newly	added	Surface	object.

DoubleToStaFormat	Method

Given	a	double,	returns	a	string	with	the	Station	Format	applied

See	Also	|	Example

Signature

RetVal	=	object.DoubleToStaFormat(Station)

object
Alignments	The	object	this	property	applies	to.

Station
Double;	read-only
The	double	to	be	formatted.

RetVal
String
Station	formatted	string.

Remarks

The	Alignments	DoubleToStaFormat	method	differs	somewhat	from	the
Alignment	GetStaStrWithEquations	method.	DoubleToStaFormat	does
not	use	Station	Equations	and	is	not	specific	to	an	Alignment.

javascript:history.back();

EastNorthToXy	Method

Given	an	Easting	and	Northing,	will	return	the	AutoCAD	XY

See	Also	|	Example

Signature

RetVal	=	object.EastNorthToXy(EastNorth)

object
Utility	The	object	or	objects	this	property	applies	to.

EastNorth
Variant	(3	element	array	of	doubles);	input-only
The	Easting	and	Northing.

RetVal
Variant	(3	element	array	of	doubles)
The	coordinates	in	XY.

Remarks

Xy	must	be	declared	as	a	variant	and	not	as	an	array.	To	access	the	X
and	Y,	subscript	the	variant	(var(0),	var(1)).	The	third	element	(elevation)
is	unchanged.

javascript:history.back();

ElevationAt	Method	(Civil	Engineering	Feature)

Given	a	station,	returns	the	elevation..

See	Also	|	Example

Signature

RetVal	=	object.ElevationAt(Station)

object
EGProfile,	FGProfile	The	object	or	objects	this
property	applies	to.

Station
Double,	input-only
The	station	to	query	for.

RetVal
Double
The	elevation	for	the	station.

javascript:history.back();

ExternalStaToInternal	Method

Given	an	external	Station	value	(one	using	Station	Equations),	returns
the	internal	Station	value

See	Also	|	Example

Signature

RetVal	=	object.ExternalStaToInternal(Station)

object
Alignment	The	object	this	property	applies	to.

Station
Double;	read-only
The	external	station.
Variant	(array	of	doubles)

RetVal
Variant
An	array	of	internal	station	values.

Remarks

An	External	Station	value	represents	one	or	more	internal	Station	values.
These	values	are	returned	in	an	array	of	doubles.

javascript:history.back();

FindAllConnectingEdges	Method

Returns	all	edges	for	a	given	Surface	point.

See	Also	|	Example

Signature

RetVal	=	object.FindAllConnectingEdges(Easting,	Northing)

object
Surface	The	object	or	objects	this	property	applies
to.

Easting
Double;	input-only
The	exact	Easting	of	the	Surface	point.

Northing
Double;	input-only
The	exact	Northing	of	the	Surface	point.

RetVal
Variant	(array	of	doubles)
An	array	of	3D	points.

Remarks

FindAllConnectingEdges	expects	the	Easting	/	Northing	to	be	a	Surface
point.	If	not,	the	function	will	return	with	an	error.	The	exact	coordinates
can	be	found	using	the	Surface	FindPoint	method	or	by	using	a	TinPoint

javascript:history.back();

The	first	element	in	the	array	will	be	the	coordinate	passed	in.	The
following	items	in	the	array	are	all	of	the	point	that	radiate	from	the
selected	point.	All	edges	are	returned	in	counter-clockwise	order.

FindAllFaces	Method

Redefines	the	collection	with	all	faces	on	the	surface.

See	Also	|	Example

Signature

object.FindAllFaces()

object
Faces	The	object	or	objects	this	property	applies	to.

Remarks

Use	this	method	to	reset	the	collection	to	all	faces	in	the	surface.	The
SearchType	property	will	be	set	to	kNoSearch	since	no	filter	is	being
applied.

javascript:history.back();

FindConnectingEdge	Method

Given	an	Surface	point,	retrieves	the	closest	edge.

See	Also	|Example

Signature

RetVal	=	object.FindConnectingEdge(Easting,	Northing)

object
Surface	The	object	or	objects	this	property	applies
to.

Easting
Double;	input-only
Easting	of	the	Surface	point.

Northing
Double;	input-only
Northing	of	the	Surface	point.

RetVal
Variant	(6	element	array	of	doubles)
An	array	of	two	3D	points.

Remarks

FindConnectingEdge	will	return	the	closest	edge	to	the	input	point.

javascript:history.back();

FindFace	Method

Given	an	Easting	/	Northing	coordinate,	redefines	the	collection	with	a
single	Face.

See	Also	|	Example

Signature

object.FindFace(Easting,	Northing)

object
Faces	The	object	or	objects	this	property	applies	to.

Easting
Double;	input-only
The	Easting	coordinate	to	query.

Northing
Double;	input-only
The	Northing	coordinate	to	query.

javascript:history.back();

FindPath	Method

Give	two	coordinates,	reads	in	all	of	the	Faces	that	lie	on	that	line.

See	Also	|	Example

Signature

object.FindPath(StartEasting,	StartNorthing,	EndEasting,	EndNorthing)

object
Faces	The	object	or	objects	this	property	applies	to.

StartEasting
Double;	input-only
The	first	point's	Easting	coordinate.

StartNorthing
Double;	input-only
The	first	point's	Northing	coordinate.

EndEasting
Double;	input-only
The	second	point's	Easting	coordinate.

EndNorthing
Double;	input-only
The	second	point's	Northing	coordinate.

Remarks

FindPath	will	act	as	a	filter	for	the	Faces	collection.	Given	two	points,	it

javascript:history.back();

will	return	all	of	the	faces	that	the	line	crosses.	The	Faces	collection	now
contains	only	those	faces.	The	SearchType	will	be	set	to	kSearchByPath.

FindPoint	Method

Given	an	Easting	/	Northing,	returns	the	closest	Surface	point.

See	Also	|	Example

Signature

RetVal	=	object.FindPoint(Easting,	Northing)

object
Surface	The	object	or	objects	this	property	applies
to.

Easting
Double;	input-only
The	Easting	of	the	Surface	point.

Northing
Double;	input-only
The	Northing	of	the	Surface	point.

RetVal
Variant	(3	element	array	of	doubles)
A	3D	point	representing	the	Surface	point.

javascript:history.back();

GetBoundingBox	Method

Gets	the	bounding	box	for	the	surface.

See	Also	|	Example

Signature

object.GetBoundingBox(LowerLeftPoint,	UpperRightPoint)

object
Surface	The	object	or	objects	this	property	applies
to.

LowerLeftPoint
Variant	(3	element	array	of	doubles);	output-only
The	lower	left	coordinate	for	the	bounding	box	in
Easting,	Northing,	Elevation	format.

UpperRightPoint
Variant	(3	element	array	of	doubles);	output-only
The	upper	right	coordinate	for	the	bounding	box	in
Easting,	Northing,	Elevation	format.

Remarks

All	coordinates	for	the	surface	will	lie	within	the	bounding	box.	The
surface	must	be	open	and	built	before	using	the	GetBoundingBox
method.

javascript:history.back();
javascript:history.back();

GetDouble	Method

Gets	the	specified	preference	setting.

See	Also	|	Example

Signature:	Overview

l	PreferencesAlignment

l	PreferencesCogo

l	PreferencesCrossSection	(Civil	Engineering	Feature)

l	PreferencesProfile	(Civil	Engineering	Feature)

l	PreferencesSurface

Gets	the	specified	preference	setting	for	Alignments.

Signature

RetVal	=	object.GetDouble(Setting)

object
PreferencesAlignment	The	object	or	objects	this
property	applies	to.

Setting
eAeccPrefAlignDouble	enum;	input-only.
Specifies	the	setting	to	return.

kOffsetLeftDistOuter: Offset	alignment	-	left
distance	outer

kOffsetRightDistOuter: Offset	alignment	-	right
distance	outer

kOffsetLeftDistSecond: Offset	alignment	-	left
distance	second

kOffsetRightDistSecond: Offset	alignment	-	right
distance	second

kOffsetLeftDistThird: Offset	alignment	-	left
distance	third

kOffsetRightDistThird: Offset	alignment	-	right
distance	third

kOffsetLeftDistInner: Offset	alignment	-	left
distance	inner

kOffsetRightDistInner: Offset	alignment	-	right
distance	inner

kStationTickIncrement: Station	labels	tick
increment

kStationLabelIncrement: Station	labels	increment

kStationLabelOffset: Station	labels	offset

RetVal
Double
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Cogo.

Signature

RetVal	=	object.GetDouble(Setting)

object
PreferencesCogo
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefCogoDouble	enum;	input-only.
Specifies	the	setting	to	return.

kPntCreateDefaultElev: Create	default	elevation

kPntInsertFixedElev: Insert	fixed	elevation

kPntInsertNoActualElev: Insert	no	elevation

kPntMarkerSize: Point	marker	size

kPntTextSize: Point	text	size

kPntTextRotation: Point	text	rotation

RetVal
Double
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Cogo.

Signature

RetVal	=	object.GetDouble(Setting)

object
PreferencesCrossSection
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefCrossSectionDouble	enum;	input-only.
Specifies	the	setting	to	return.

kElevationInc: Elevation	increment

kOffsetInc: Offset	increment

RetVal
Double
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Vertical	Alignments.

Signature

RetVal	=	object.GetDouble(Setting)

object
PreferencesProfile
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefProfileDouble	enum;	input-only.
Specifies	the	setting	to	return.

kLabelInc: Label	increment

kTangentLabelInc: Tangent	label	increment

kVerticalCurveLabelInc: Vertical	curvel	label
increment

kPassingSightDistEye: Passing	sight	eye	height
distance

kPassingSightDistObj: Passing	sight	object
height	distance

kStoppingSightDistEye: Stopping	sight	eye	height
distance

kStoppingSightDist_obj: Stopping	sight	object
height	distance

kKCrest: K	minimum	for	crest

kKSag: K	minimum	for	sag

kOverlap: Overlap

RetVal
Double
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Surfaces.

Signature

RetVal	=	object.GetDouble(Setting)

object
PreferencesSurface
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefSurfaceDouble	enum;	input-only.
Specifies	the	setting	to	return.

kContWeedDist: Contour	weeding
distance

kContWeedAngle: Contour	weeding	angle

kContWeedSuppDist:
Contour
supplementing
distance

kContWeedSuppBulge: Contour
supplementing	bulge

kVertExaggerationFactor: Surface	vertical
exaggeration	factor

kElevRangeBegVal1: Elevation	begin	range	-
range	1

kElevRangeBegVal2: Elevation	begin	range	-
range	2

kElevRangeBegVal3: Elevation	begin	range	-
range	3

kElevRangeBegVal4: Elevation	begin	range	-
range	4

kElevRangeBegVal5: Elevation	begin	range	-
range	5

kElevRangeBegVal6: Elevation	begin	range	-
range	6

kElevRangeBegVal7: Elevation	begin	range	-
range	7

kElevRangeBegVal8: Elevation	begin	range	-
range	8

kElevRangeBegVal9: Elevation	begin	range	-
range	9

kElevRangeBegVal10: Elevation	begin	range	-
range	10

kElevRangeBegVal11: Elevation	begin	range	-
range	11

kElevRangeBegVal12: Elevation	begin	range	-
range	12

kElevRangeBegVal13: Elevation	begin	range	-
range	13

kElevRangeBegVal14: Elevation	begin	range	-
range	14

kElevRangeBegVal15: Elevation	begin	range	-
range	15

kElevRangeBegVal16: Elevation	begin	range	-
range	16

kElevRangeEndVal1: Elevation	end	range	-
range	1

kElevRangeEndVal2: Elevation	end	range	-
range	2

kElevRangeEndVal3:
Elevation	end	range	-
range	3

kElevRangeEndVal4: Elevation	end	range	-
range	4

kElevRangeEndVal5: Elevation	end	range	-
range	5

kElevRangeEndVal6: Elevation	end	range	-
range	6

kElevRangeEndVal7: Elevation	end	range	-
range	7

kElevRangeEndVal8: Elevation	end	range	-
range	8

kElevRangeEndVal9: Elevation	end	range	-
range	9

kElevRangeEndVal10: Elevation	end	range	-
range	10

kElevRangeEndVal11: Elevation	end	range	-
range	11

kElevRangeEndVal12: Elevation	end	range	-
range	12

kElevRangeEndVal13: Elevation	end	range	-
range	13

kElevRangeEndVal14: Elevation	end	range	-
range	14

kElevRangeEndVal15:
Elevation	end	range	-
range	15

kElevRangeEndVal16:
Elevation	end	range	-
range	16

kSurfDisplayBaseElev: Surface	-	display	base
elevation

kContCreateMinElev:
Contours	create	-
minimum	contour
starting	elevation

kContCreateMaxElev:
Contours	create	-
maximum	contour
starting	elevation

kContCreateMinorInterval: Contours	create	-
minor	contour	interval

kContCreateMinorWidth: Contours	create	-
minor	contour	width

kContCreateMajorInterval: Contours	create	-
major	contour	interval

kContCreateMajorWidth: Contours	create	-
major	contour	width

kContLabelElevIncrement: Contours	-	label
elevation	increment

kContLabelSpacingDist: Contours	-	Label
spacing	distance

kWShedMinDepth:
Water	Sheds	-
minimum	depth

Water	Sheds	-

kWShedMinArea: minimum	area

RetVal
Double
The	value	of	the	setting.

GetElevation	Method

Given	a	Northing	and	Easting,	return	the	elevation.

See	Also	|	Example

Signature

RetVal	=	object.GetElevation(Easting,	Northing)

object
Surface	The	object	or	objects	this	property	applies
to.

Easting
Double;	input-only
The	Easting	coordinate	to	query.

Northing
Double;	input-only
The	Northing	coordinate	to	query.

RetVal
Double
The	elevation	for	the	Easting	/	Northing.

Remarks

If	the	coordinates	are	within	the	bounds	of	the	Surface,	the	elevation	will
be	returned.	If	the	coordinates	lie	outside	of	the	Surface	or	lie	in	a	hole	in
the	Surface,	then	-1e20	will	be	returned.

javascript:history.back();
javascript:history.back();

GetInteger	Method

Gets	the	specified	preference	setting.

See	Also	|	Example

Signature:	Overview

l	PreferencesAlignment

l	PreferencesCogo

l	PreferencesCrossSection	(Civil	Engineering	Feature)

l	PreferencesParcel

l	PreferencesProfile	(Civil	Engineering	Feature)

l	PreferencesSurface

Gets	the	specified	preference	setting	for	Alignments.

Signature

RetVal	=	object.GetInteger(Setting)

object
PreferencesAlignment	The	object	or	objects	this
property	applies	to.

Setting

eAeccPrefAlignInt	enum;	input-only.
Specifies	the	setting	to	return.

kStationFmtUseStationFormat: Station	format	-	use

kStationFmtUseNegParen:
Station	format	-	use
negative
parentheses

kStationFmtDropDecimal: Station	format	-
drop	decimal

kStationFmtLeadZeros: Station	format	-	use
lead	zeros

kStationFmtCharPos: Station	format	-
character	position

kStationFmtFieldWidth: Station	format	-
field	width

kStationFmtDecimalPrec: Station	format	-
decimal	precision

kSpiralType: Spiral	type

kOffsetToggle: Offset	toggle

RetVal
Integer
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Cogo.

Signature

RetVal	=	object.GetInteger(Setting)

object
PreferencesCogo
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefCogoInt	enum;	input-only.
Specifies	the	setting	to	return.

kPntCreateNextNum: Next	point	number

kPntInsertAsCreated: Insert	points	into
drawing	as	created

kPntCreateNumSequential: Point	number
sequential

kPntCreateElevMode: Point	-	create
elevation	mode

kPntCreateDescMode: Point	-	create
description	mode

kPntInsertAtElevation: Point	-	insert	at
elevation

kPntInsertAutoLabel: Point	-	insert
autolabel

kPntUpdateAllowMove: Point	update	-	allow
point	move

kPntUpdateDbAfterMove:

Point	update	-
update	database
after	move

kPntUpdateReuniteSym: Point	update	-
reunite	symbol

kPntUpdateCheckDbOnOpen:
Point	update	-
check	database	on
open

kPntCoordDispType: Point	-	coordinate
display	type

kPntCoordEcho: Point	-	echo
coordinates

kDscKeySearchOrder: Description	Key	-
search	order

kDscKeyExtendedSearch:
Description	Key	-
extended	search
order

kDscKeyParamMatch: Description	Key	-
Parameter	match

kPntPrefCmdLineListOn: Point	-	Command
line	list	on

kPntPrefCmdLineGroupOn: Point	-	command
line	group	on

kPntPrefAutoRegen: Point	-	auto	regen

kPntPrefSortListRem: Point	-	sort	list

kPntPrefSortListDuplicate: Point	-	sort	list
duplicate

kPntMarkerAcadPoint:
Point	marker	-
AutoCAD	point

kPntMarkerBox: Point	marker	-	box

kPntMarkerCircle: Point	marker	-	circle

kPntMarkerStyle: Point	marker	-	style

kPntMarkerAlignWithText: Point	marker	-	align
with	text

kPntNumVisible: Point	-	number	is
visible

kPntElevVisible: Point	-	elevation	is
visible

kPntDescVisible: Point	-	description	is
visible

kPntShowFullDesc: Point	-	show	full
description

kPntNumColor: Point	-	number	color

kPntElevColor: Point	-	elevation
color

kPntDescColor: Point	-	description
color

kPntAutoLeader: Point	-	auto	leader

RetVal

Integer
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Cross	Sections.

Signature

RetVal	=	object.GetInteger(Setting)

object
PreferencesCrossSection
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefCrossSectionInt	enum;	input-only.
Specifies	the	setting	to	return.

kDatumLayerOn: Datum	layer	visibility

kEGLabelPrecision Existing	ground	label
precision

kEGLayerOn: Existing	ground	layer
visibility

kElevationLabelInc: Elevation	label
increment

kElevationPrecision: Elevation	precision

kFGLabelPrecision Finished	groung	label
precision

kOffsetLabelInc: Offset	label	increment

kOffsetPrecision: Offset	precision

kROWLinesLayerOn: Right	of	Way	line	layer
visibility

kRowsAboveMax: Rows	above	maximum

kRowsBelowDatum: Rows	below	datum

kSectionGridLayerOn: Section	grid	layer
visibility

kSectionGridTextLayerOn: Section	grid	text	layer
visibility

kTemplateLayerOn: Template	layer	visibility

RetVal
Integer
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Parcels.

Signature

RetVal	=	object.GetInteger(Setting)

object
PreferencesParcel
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefParcelsInt	enum;	input-only.
Specifies	the	setting	to	return.

kDefineAsSized: Define	parcel	as	sized

kCheckAcrossChord: Map	check	across	chord

kTruncateAreaLabels: Truncate	area	labels

kAutoLabelPlacement: Automatic	label	placement

kIncludeParcelLines: Include	parcel	lines	on
import

kNumberLabelsOn: Parcel	number	label
visibility

kSequentialOn: Seqential	parcel
numbering

kNextParcelNumber: Next	parcel	number

kSqUnitLabelsOn: Square	unit	label	visibility

kSqUnitPrecision: Square	unit	precision

kAreaUnitLabelsOn: Area	unit	label	visibility

kAreaUnitPrecision: Area	unit	precision

RetVal
Integer
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Vertical	Alignments.

Signature

RetVal	=	object.GetInteger(Setting)

object
PreferencesProfile
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefProfileInt	enum;	input-only.
Specifies	the	setting	to	return.

kEgPrecision: Existing	ground	label	precision

kFgPrecision: Finished	ground	label	precision

kGridDsp: 0:	Grid	creation	is	off
1:	Grid	creation	is	on

klr_on: 0:	Left	to	right	creation	is	set
1:	Right	to	left	creation	is	set

RetVal
Integer
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Surfaces.

Signature

RetVal	=	object.GetInteger(Setting)

object
PreferencesSurface
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefSurfaceInt	enum;	input-only.
Specifies	the	setting	to	return.

kviewtype: View	type

kRangeNumber: Range	number

kfltdel: Fault	delete

krngs_type: Ranges	type

kRange1Color: Range	color	1

kRange2Color: Range	color	2

kRange3Color: Range	color	3

kRange4Color: Range	color	4

kRange5Color: Range	color	5

kRange6Color: Range	color	6

kRange7Color: Range	color	7

kRange8Color: Range	color	8

kRange9Color: Range	color	9

kRange10Color: Range	color	10

kRange11Color: Range	color	11

kRange12Color: Range	color	12

kRange13Color: Range	color	13

kRange14Color: Range	color	14

kRange15Color: Range	color	15

kRange16Color: Range	color	16

kGraphicsColor: Graphics	color

kContSmoothFactor: Contour	-
smoothing	factor

kContSmoothType: Contour	-
smoothing	type

kContLabelPrecision: Contour	-	label
precision

kContCreateAsPoly: Contour	-	create	as
polyline

kContLabelMultipleToggle: Contour	-	label
multiple

kContStyleMgrLastUsedPage:
Contour	-	style
manager	last	used
page

kWShedExceedBothCriteria: Watershed	-	exceed
both	criteria

kWShedErasePrevious: Watershed	-	erase
previous

kWShedDisplayNumber: Watershed	-	display
number

Watershed	-	use

kWShedSolidFill: solid	fill

RetVal
Integer
The	value	of	the	setting.

javascript:history.back();

GetLayerName	Method	(Civil	Engineering	Feature)

Returns	the	layer	names	of	the	alignment	cross	section	or	alignment
profile.

See	Also	|	Example

Signature:	Overview

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	ProfileBlock	(Civil	Engineering	Feature)

Returns	the	layer	names	of	the	alignment	cross	section.

Signature

RetVal	=	object.GetLayerName(val)

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

val
eAeccCrossSectionBlockLayer	enum;	input-only.
Specifies	the	layer	name	to	return.

kCrossSectionEGTextLayer: Existing	grade	text
layer

kCrossSectionEGLayer: Existing	grade	layer

kCrossSectionFGLayer: Finished	grade	layer

kCrossSectionFGTextLayer: Finished	grade	text
layer

kCrossSectionGridLayer: Grid	layer

kCrossSectionGridTextLayer: Grid	text	layer

RetVal
String
Returns	the	Layer	Name	of	the	CrossSectionBlock.

Returns	the	layer	names	of	the	alignment	profile.

Signature

RetVal	=	object.GetLayerName(val)

object
ProfileBlock
The	object	or	objects	this	property	applies	to.

val
eAeccProfileBlockLayer	enum;	input-only.
Specifies	the	layer	name	to	return.

kBaseVertical: Existing	ground	base	vertical
layer

kBaseHorizontal: Existing	ground	base	horizontal
layer

kDitchLeft: Finished	ground	ditch	left	layer

kDitchRight: Finished	ground	ditch	right	layer

kEGC: Existing	groung	center	surface
layer

kEGCText: Existing	ground	center	surface
text	layer

kEGL: Existing	ground	left	surface
layer

kEGLText: Existing	ground	left	surface	text
layer

kEGR: Existing	ground	right	surface
layer

kEGRText: Existing	ground	right	surface
text	layer

kFGC: Finished	ground	center

kFGCText: Finished	ground	center	text

kFGL1: Finished	ground	left	trans	1
layer

kFGL2: Finished	ground	left	trans	2
layer

kFGL3: Finished	ground	left	trans	3
layer

kFGL4:
Finished	ground	left	trans	4
layer

kFGL5: Finished	ground	left	trans	5
layer

kFGL6: Finished	ground	left	trans	6
layer

kFGL7: Finished	ground	left	trans	7
layer

kFGL8: Finished	ground	left	trans	8
layer

kFGR1: Finished	ground	right	trans	1
layer

kFGR2: Finished	ground	right	trans	2
layer

kFGR3: Finished	ground	right	trans	3
layer

kFGR4: Finished	ground	right	trans	4
layer

kFGR5: Finished	ground	right	trans	5
layer

kFGR6: Finished	ground	right	trans	6
layer

kFGR7: Finished	ground	right	trans	7
layer

kFGR8: Finished	ground	right	trans	8
layer

kGrid: Existing	ground	grid	layer

kGridText: Existing	ground	text	layer

kStationText: Existing	ground	station	text

RetVal
String
Returns	the	Layer	Name	of	the	ProfileBlock.

GetStaStrWithEquations	Method

Given	an	internal	station	value,	returns	that	station	as	a	formatted	string
with	Station	Equations	applied.

See	Also	|	Example

Signature

RetVal	=	object.GetStaStrWithEquations(Station)

object
Alignment	The	object	or	objects	this	property
applies	to.

Station
Double;	input-only
Internal	station	value.

RetVal
String
The	formatted	station	string.

javascript:history.back();

GetStaWithEquations	Method

Given	an	internal	station	value,	returns	that	station	value	with	Station
Equations	applied.

See	Also	|	Example

Signature

RetVal	=	object.GetStaWithEquations(Station)

object
Alignment	The	object	or	objects	this	property
applies	to.

Station
Double;	input-only
Internal	station	value.

RetVal
Double
The	station	number.

javascript:history.back();
javascript:history.back();

GetString	Method

Gets	the	specified	preference	setting.

See	Also	|	Example

Signature:	Overview

l	PreferencesAlignment

l	PreferencesCogo

l	PreferencesCrossSection	(Civil	Engineering	Feature)

l	PreferencesParcel

l	PreferencesProfile	(Civil	Engineering	Feature)

l	PreferencesSurface

Gets	the	specified	preference	setting	for	Alignments.

Signature

RetVal	=	object.GetString(Setting)

object
PreferencesAlignment	The	object	or	objects	this
property	applies	to.

Setting

eAeccPrefAlignString	enum;	input-only.
Specifies	the	setting	to	return.

kStationFmtDecChar: Station	format	-
decimal	character

kStationFmtStaChar: Station	format	-	station
character

kAlignLayerPrefix: Alignment	layer	prefix

kLabelStaEquAhead: Label	station	equation
ahead

kLabelStaEquBack: Label	station	equation
back

kLabelPT: Label	PT

kLabelPC: Label	PC

kLabelCPI: Label	CPI

kLabelPCC: Label	PCC

kLabelPRC: Label	PRC

kLabelTS: Label	TS

kLabelSC: Label	SC

kLabelCS: Label	CS

kLabelST: Label	ST

kLabelSPI: Label	SPI

kLabelCC: Label	CC

kLabelPI: Label	PI

kLabelSS: Label	SS

kOffsetLeftLayerOuter: Offsets	layer	-	left	outer

kOffsetLeftLayerSecond: Offsets	layer	-	left
second

kOffsetLeftLayerThird: Offsets	layer	-	left	third

kOffsetLeftLayerInner: Offsets	layer	-	left	inner

kOffsetLeftNameOuter: Offsets	name	-	left
outer

kOffsetRightNameOuter: Offsets	name	-	right
name

kOffsetLeftNameSecond: Offsets	name	-	left
second

kOffsetRightNameSecond: Offsets	name	-	right
second

kOffsetLeftNameThird: Offsets	name	-	left	third

kOffsetRightNameThird: Offsets	name	-	right
third

kOffsetLeftNameInner: Offsets	name	-	left
inner

kOffsetRightNameInner: Offsets	name	-	right
inner

kOffsetNamePrefix: Offsets	name	-	prefix

kStationLayer: Station	layer

kStationPntLayer: Station	point	layer

kStationEquLayer: Station	equations	layer

RetVal
String
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Cogo.

Signature

RetVal	=	object.GetString(Setting)

object
PreferencesCogo
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefCogoString	enum;	input-only.
Specifies	the	setting	to	return.

kPntCreateDefaultDesc: Point	-	Create	default
description

kDscKeySymPath: Description	Key	symbol
path

kPntTextStyle: Point	-	text	style

RetVal
String
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Cross	Sections.

Signature

RetVal	=	object.GetString(Setting)

object
PreferencesCrossSection
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefCrossSectionString	enum;	input-only.
Specifies	the	setting	to	return.

kDatumLayer: Datum	layer

kEGLayer: Existing	grade	layer

kROWLinesLayer: Right	of	Way	lines	layer

kSectionGridLayer: Section	grid	layer

kSectionGridTextLayer: Section	grid	text	layer

kTemplateLayer: Template	layer

kTemplatePath: Cross	section	template
path

RetVal

String
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Parcels.

Signature

RetVal	=	object.GetString(Setting)

object
PreferencesParcel
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefParcelsString	enum;	input-only.
Specifies	the	setting	to	return.

kNumberPrefix: Parcel	numbering	prefix

kNumberTextStyle: Parcel	numbering	text	style

kSqUnitTextStyle: Square	unit	text	style

kSqUnitSuffix: Square	unit	suffix

kAreaUnitTextStyle: Area	unit	text	style

kAreaUnitSuffix: Area	unit	suffix

kParcelLayer: Parcel	layer

kLabelLayer: Parcel	label	layer

RetVal
String

The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Vertical	Alignments.

Signature

RetVal	=	object.GetString(Setting)

object
PreferencesProfile
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefProfilelString	enum;	input-only.
Specifies	the	setting	to	return.

kTextLayer: Existing	ground	station	text
layer

kVertGridLayer: Existing	ground	vertical	grid
layer

kBaseGridLayer: Existing	ground	base	grid
layer

kEgLayer: Existing	groung	center	layer

kEgLeftLayer: Existing	ground	left	layer

kEgRightLayer: Existing	ground	right	layer

kFgLayer: Finished	ground	center	layer

kGridLayer: Existing	ground	grid	layer

kGridTextLayer: Existing	ground	grid	text	layer

kEgtLayer: Existing	groung	center	text
layer

kEglefttLayer: Existing	ground	left	text	layer

kEgRighttLayer: Existing	ground	right	text	layer

kDitchLeftLayer: Finished	ground	ditch	left	layer

kDitchRightLayer: Finished	ground	ditch	right
layer

kFgtLayer: Finished	ground	text	layer

kBvcs: Beginning	vertical	curve
station	label	text

kBvce: Beginning	vertical	curve
elevation	text

kEvcs: End	vertical	curve	station	label
text

kEvce: End	vertical	curve	elevation
text

kProfileDir: Sample	profile	direction

kFgLeftLayer1: Finished	ground	left	1	trans
layer

kFgLeftLayer2:
Finished	ground	left	2	trans
layer

kFgLeftLayer3: Finished	ground	left	3	trans

layer

kFgLeftLayer4: Finished	ground	left	4	trans
layer

kFgLeftLayer5: Finished	ground	left	5	trans
layer

kFgLeftLayer6: Finished	ground	left	6	trans
layer

kFgLeftLayer7: Finished	ground	left	7	trans
layer

kFgLeftLayer8: Finished	ground	left	8	trans
layer

kFgRightLayer1: Finished	ground	right	1	trans
layer

kFgRightLayer2: Finished	ground	right	2	trans
layer

kFgRightLayer3: Finished	ground	right	3	trans
layer

kFgRightLayer4: Finished	ground	right	4	trans
layer

kFgRightLayer5: Finished	ground	right	5	trans
layer

kFgRightLayer6: Finished	ground	right	6	trans
layer

kFgRightLayer7: Finished	ground	right	7	trans

layer

kFgRightLayer8: Finished	ground	right	8	trans
layer

kPrefix: Profile	layer	prefix

kHighPoint: High	point	label	text

kLowPoint: Low	point	label	text

kPviLabel: Point	of	vertical	intersection
(PVI)	text

kADiff: Algebraic	difference	(A.D.)	text

kKValue: Curve	coefficient	(K)	text

RetVal
String
The	value	of	the	setting.

Gets	the	specified	preference	setting	for	Surfaces.

Signature

RetVal	=	object.GetString(Setting)

object
PreferencesSurface
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefSurfaceString	enum;	input-only.
Specifies	the	setting	to	return.

kSlopeRangeBegVal1: Slope	range	-
begin	1

kSlopeRangeBegVal2: Slope	range	-
begin	2

kSlopeRangeBegVal3: Slope	range	-
begin	3

kSlopeRangeBegVal4: Slope	range	-
begin	4

kSlopeRangeBegVal5: Slope	range	-
begin	5

kSlopeRangeBegVal6: Slope	range	-
begin	6

kSlopeRangeBegVal7: Slope	range	-
begin	7

kSlopeRangeBegVal8: Slope	range	-
begin	8

kSlopeRangeBegVal9: Slope	range	-
begin	9

kSlopeRangeBegVal10: Slope	range	-
begin	10

kSlopeRangeBegVal11: Slope	range	-
begin	11

kSlopeRangeBegVal12: Slope	range	-
begin	12

kSlopeRangeBegVal13: Slope	range	-
begin	13

kSlopeRangeBegVal14: Slope	range	-
begin	14

kSlopeRangeBegVal15: Slope	range	-
begin	15

kSlopeRangeBegVal16: Slope	range	-
begin	16

kSurfaceLayer: Surface	layer

kBoundaryLayer: Boundary	layer

kRange1Layer: Range	layer	1

kRange2Layer: Range	layer	2

kRange3Layer: Range	layer	3

kRange4Layer: Range	layer	4

kRange5Layer: Range	layer	5

kRange6Layer: Range	layer	6

kRange7Layer: Range	layer	7

kRange8Layer: Range	layer	8

kRange9Layer: Range	layer	9

kRange10Layer: Range	layer	10

kRange11Layer: Range	layer	11

kRange12Layer: Range	layer	12

kRange13Layer: Range	layer	13

kRange14Layer: Range	layer	14

kRange15Layer: Range	layer	15

kRange16Layer: Range	layer	16

kBreakLineLayer: BreakLine	layer

kLayerPrefix: Surface	Layer
prefix

kContCreateMinorLayer: Contour	-	create
minor	layer

kContCreateMajorLayer: Contour	-	create
major	layer

kContourStyle: Contour	-	style

kWShedLayerBoundPnt: Watershed	layer	-
bounding	points

kWShedLayerBoundSeg:
Watershed	layer	-
bounding
segments

kWShedLayerNonBound: Watershed	layer	-
nonbound

kWShedLayerDepression: Watershed	layer	-
depression

kWShedLayerFlatArea: Watershed	layer	-
flat	area

kWShedLayerMultiDrain: Watershed	layer	-
multidrain

kWShedLayerLocalMin: Watershed	layer	-
local	minimum

kWShedLayerDrain: Watershed	layer	-
drain

kWShedLayerMultiDrainNotch: Watershed	layer	-
multidrain	notch

RetVal
String
The	value	of	the	setting.

Import	Method

Draws	the	alignment,	cross	section,	existing	ground	profile,	parcel,	or
surface	into	the	current	drawing.

See	Also	|	Example

Signature:	Overview

l	Alignment

l	CrossSection	(Civil	Engineering	Feature)

l	EGProfile	(Civil	Engineering	Feature)

l	Parcel

l	Surface

Draws	an	alignment	into	the	current	drawing.

Signature

object.Import()

object
Alignment	The	object	or	objects	this	property
applies	to.

Remarks

Import	will	draw	the	alignment	in	the	current	drawing	using	the	current

javascript:history.back();

layer.	When	an	alignment	is	imported,	external	data	is	stored	on	the
AutoCAD	entities	and	the	entity	ids	are	stored	externally.	If	you	want	to
be	able	to	select	an	alignment	from	a	drawing,	you	need	to	use	the
Import	command.	If	you	draw	the	alignment	using	your	own	routines,	this
extra	information	will	not	be	supplied.

Draws	an	alignment	cross	section	into	the	current	drawing.

Signature

object.Import(Coordinates[,	bBlockOnly])

object
CrossSection
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(array	of	doubles);	input-only
The	starting	point	in	X,	Y	format.

bBlockOnly
Boolean;	input	only;	optional
True:		Only	the	block	is	inserted..
False:	The	cross	section	is	drawn	along	with	the
block	(default).

Draws	the	existing	ground	profile	as	a	Quick	Profile	in	the	current
drawing.

Signature

object.Import(Coordinates[,	StartingStation][,	EndingStation][,	DatumElevation]
[,	VerticalScale][,	bLeftToRight][,	bBlockOnly)

object
EGProfile
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(2	element	array	of	doubles);	input-only
The	starting	point	in	X,	Y	format.

StartingStation
Double;	input	only;	optional
The	starting	station	of	the	alignment.	The	default	is
the	StartingStation	of	the	Alignment	object.

EndingStation
Double;	input	only;	optional
The	ending	station	of	the	alignment.	The	default	is
the	EndingStation	of	the	Alignment	object.

DatumElevation
Double;	input	only;	optional
The	elevation	of	the	base	line	for	the	profile.	The
default	value	is	calculated	using	the	minimum
elevation	of	the	profile.

VerticalScale
Double;	input	only;	optional
The	vertical	scale	applied	to	the	profile.	The	default
value	is	the	VerticalScale	of	the
DatabasePreferences	object.

bLeftToRight
Boolean;	input	only;	optional
True:		The	profile	is	drawn	left	to	right	(default).
False:	The	profile	is	drawn	right	to	left.

bBlockOnly
Boolean;	input	only;	optional
True:		Only	the	block	is	inserted..
False:	The	profile	is	drawn	along	with	the	block
(default).

Remarks

You	may	import	a	profile	for	center,	left	or	right	existing	ground.	If	you
import	more	than	1	profile	for	a	given	alignment,	you	can	identify	it	using
the	Coordinates	property	of	the	ProfileBlock	object	(note	that	the	Land
Desktop	commands	do	not	support	more	than	one	profile	per	alignment).

Draws	a	parcel	into	the	current	drawing.

Signature

object.Import()

object
Parcel
The	object	or	objects	this	property	applies	to.

Draws	a	surface	in	the	current	drawing	as	3D	surfaces.

Signature

object.Import()

object
Surface
The	object	or	objects	this	property	applies	to.

Remarks

The	Import	function	is	not	supported	for	Volume	Surfaces	(Composite/Diff
Grid).

InstantGrade	Method

Given	a	station,	returns	the	instantaneous	grade	and	the	algebraic
difference.

See	Also	|	Example

Signature:	Overview

l	EGProfile	(Civil	Engineering	Feature)

l	FGProfile	(Civil	Engineering	Feature)

Signature

object.InstantGrade(Station,	Grade)

object
EGProfile	The	object	or	objects	this	property	applies
to.

Station
Double;	input-only
The	station	to	query	for.

Grade
Double;	output-only
The	grade	at	the	station.

Signature

javascript:history.back();

object.InstantGrade(Station,	Grade,	Diff)

object
FGProfile
The	object	or	objects	this	property	applies	to.

Station
Double;	input-only
The	station	to	query	for.

Grade
Double;	output-only
The	grade	at	the	station.

Diff
Double;	output-only
The	algebraic	difference	between	the	two	grades.

Remarks

The	algebraic	difference	will	only	exist	for	a	vertical	curve.

Item	Method

Gets	the	member	object	at	a	given	index	in	a	collection.

See	Also	|	Example

Signature

RetVal	=	object.Item(Index)

object
All	Collections	The	object	or	objects	this	property
applies	to.

Index
Variant;	input-only
The	index	location	in	the	collection	for	the	member
item	to	query.
The	index	must	be	either	an	integer	or	a	string.	If	an
integer,	the	index	must	be	between	0	and	N-1,
where	N	is	the	number	of	objects	in	the	collection	or
selection	set.

RetVal
Object;
The	object	at	the	given	index	location	in	the
collection	or	selection	set.

Remarks

This	method	supports	string	based	iteration.	For	example,	you	could
reference	the	document	named	"siteplan.dwg"	through	the	following

javascript:history.back();

statement:

Set	mydoc	=	Docs.Item("siteplan.dwg")

In	general,	the	index	can	be	passed	in	as	any	integral	type:	integer,	long,
double,	etc.	In	addition,	the	following	collections	support	a	case-sensitive
string	type	as	an	index	(typically	the	name	of	the	collection	member):

	Boundaries
	BreakLines
	ContourItems
	DEMFiles
	DescriptionKeyFile
	DescriptionKeyFiles
	Drawings
	PointGroupNames
	PointFiles
	Projects
	Prototypes
	WaterSheds

Also,	the	following	collections	support	a	case-insensitive	string	type	as	an
index	(typically	the	name	of	the	collection	member):

	Alignments
	Parcels
	PointGroups
	Surfaces

If	a	station	equation	is	deleted,	then	the	indices	for	the	StationEquations
collection	will	change.

LineIntersection	Method

Returns	the	intersection	points	of	a	line	with	the	Alignment.

See	Also	|	Example

Signature

RetVal	=	object.LineIntersection(StartEasting,	StartNorthing,	EndEasting,
EndNorthing)

object
Alignment	The	object	or	objects	this	property
applies	to.

StartEasting
Double;	input-only
Easting	of	the	first	point

StartNorthing
Double;	input-only
Northing	of	the	first	point

EndEasting
Double;	input-only
Easting	of	the	second	point

EndNorthing
Double;	input-only
Northing	of	the	second	point

RetVal

javascript:history.back();

Variant	(array	of	doubles)
The	array	has	the	format	of:	Station,	Direction,
Easting,	Northing.

LoadSetupProfile	Method

Load	the	specified	drawing	setup	profile.

See	Also	|	Example

Signature

object.LoadSetupProfile(ProfileName)

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

ProfileName
String;	input-only
The	profile	name	to	load.

Remarks

The	drawing	setup	files	can	be	found	at	the	path	specified	by	the
DrawingSetupPath	property	of	the	PreferencesFiles	object.

javascript:history.back();

LockPoints	Method

Locks	a	list	of	point	numbers.

See	Also	|	Example

Signature

object.LockPoints(PointString)

object
CogoPoints	The	object	or	objects	this	property
applies	to.

PointString
String;	input-only
Comma	delimited	string	of	points	to	be	locked	with
groups	separated	by	hyphens.

Remarks

Typical	examples	of	the	point	string	format	are:	"1,2,3,5,10"	"1-100,1000-
2000"

javascript:history.back();

NewProjectBased	Method

Creates	a	new	AutoCAD	Land	Desktop	document.

See	Also	|	Example

Signature

RetVal	=	object.NewProjectBased(TemplateName,	DrawingName[,
ProjectName])

object
Document	The	object	or	objects	this	property
applies	to.

TemplateName
String;	input-only
The	file	name	of	the	template.

DrawingName
String;	input-only
The	file	name	for	the	new	drawing.

ProjectName
String;	input-only;	optional
The	name	of	the	Project

RetVal
Document
The	newly	created	Document	object.

Remarks

javascript:history.back();

The	drawing	name	can	be	up	to	255	characters,	including	path	and	file
extension,	and	it	must	be	unique.	You	cannot	create	two	drawings	with
the	same	name	in	the	same	drawing	folder.

It	is	not	necessary	to	add	.dwg	to	the	end	of	the	name;	the	drawing	file
extension	is	created	automatically.	If	a	path	is	not	specified,	the	new
drawing	will	be	created	at	the	current	DrawingPath	for	the	ActiveProject.

It	is	not	necessary	to	add	.dwt	to	the	end	of	the	TemplateFileName;	it	will
be	added	automatically	if	not	specified.	If	the	path	is	not	specified,	the
TemplateDwgPath	of	the	AcadPreferences	object	will	be	used.

If	a	path	for	the	Project	is	not	specified,	the	Path	of	the	ActiveProject
object	is	used.

javascript:history.back();

OffsetElevationToXy	Method	(Civil	Engineering	Feature)

Given	an	offset	and	elevation,	return	the	AutoCAD	XY	coordinates.

See	Also	|	Example

Signature

RetVal	=	object.OffsetElevationToXy(OffsetElevation)

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

OffsetElevation
Variant	(2	element	array	of	doubles);	input-only
The	offset	and	elevation	to	query	for.

Retval
Variant	(2	element	array	of	doubles);	output-only
The	XY	coordinates	for	the	given	offset	and
elevation.

Open	Method

Opens	an	existing	AutoCAD	Land	Desktop	drawing.

See	Also	|	Example

Signature

object.Open(DrawingName)

object
Drawings	The	object	or	objects	this	property	applies
to.

DrawingName
String;	input-only
The	name	of	the	drawing	to	open.

Remarks

It	is	recommended	that	you	save	the	current	drawing	before	calling	this
method.

If	the	drawing	is	associated	with	a	project	name	that	is	different	than	the
Project,	then	you	will	be	prompted	to	choose	a	project.

It	is	not	necessary	to	add	.dwg	to	the	end	of	the	name;	the	drawing	file
extension	will	be	added	automatically	if	not	specified.	It	is	not	necessary
to	specify	a	path;	the	current	Path	for	the	Drawings	collection	will	be	used
if	a	path	is	not	specified.

javascript:history.back();

OpenProjectBased	Method

Opens	an	existing	AutoCAD	Land	Desktop	drawing	file	(DWG).

See	Also	|	Example

Signature

RetVal	=	object.OpenProjectBased(DrawingName[,	ProjectName])

object
Document	The	object	or	objects	this	property
applies	to.

DrawingName
String;	input-only
The	file	name	for	the	drawing.

ProjectName
String;	input-only;	optional
The	name	of	the	project

RetVal
Document
The	newly	opened	Document	object.

Remarks

It	is	recommended	that	you	save	the	current	drawing	before	calling	this
method.

It	is	not	necessary	to	add	.dwg	to	the	end	of	the	name;	the	drawing	file

javascript:history.back();

extension	will	be	added	automatically	if	not	specified.	If	a	path	is	not
specified,	the	path	used	will	be	the	current	DrawingPath	for	the
ActiveProject.

If	a	path	for	the	Project	is	not	specified,	the	Path	of	the	ActiveProject
object	is	used.

Paste	Method

The	Paste	method	will	take	another	Surface	an	paste	it	onto	the	given
Surface.

See	Also	|	Example

Signature

object.Paste(ChildSurface)

object
Surface	The	object	or	objects	this	property	applies
to.

ChildSurface
String;	input-only
Name	of	the	Surface	to	be	added	to	the	given
Surface.

javascript:history.back();

PerpIntersection	Method

Returns	the	perpendicular	intersection	of	a	point	with	an	Alignment.

See	Also	|	Example

Signature

RetVal	=	object.PerpIntersection(Easting,	Northing)

object
Alignment	The	object	or	objects	this	property
applies	to.

Easting
Double;	input-only
Easting	of	the	point

Northing
Double;	input-only
Northing	of	the	point

RetVal
Variant	(array	of	doubles)
The	array	has	the	format	of:	Station,	Direction,
Easting,	Northing.

javascript:history.back();

PointByNumber	Method

Returns	a	point	in	the	project	database	by	number.

See	Also	|	Example

Signature

RetVal	=	object.PointByNumber(Number)

object
CogoPoints	The	object	or	objects	this	property
applies	to.

Number
Long;	input-only
The	point	number	to	query	for.

RetVal
AeccPoint	object
The	point	object.

Remarks

If	the	point	does	not	exist,	then	no	object	will	be	returned.

javascript:history.back();

PointCodeDescription	Method	(Civil	Engineering
Feature)

Returns	the	description	of	a	cross	section	point	code.

See	Also	|	Example

Signature

RetVal	=	object.PointCodeDescription(Code)

object
CrossSections	The	object	or	objects	this	property
applies	to.

Code
Integer;	input-only
The	code	number	to	query	for.

RetVal
String;
The	description	of	the	point	code.

javascript:history.back();

PointLocation	Method

Given	a	station	and	offset,	returns	the	Northings	and	Eastings.

See	Also	|	Example

Signature

object.PointLocation(Station,	Offset,	Easting,	Northing,	Direction)

object
Alignment	The	object	or	objects	this	property
applies	to.

Station
Double;	input-only
The	Station	to	query	for.

Offset
Double;	input-only
The	Offset	to	query	for.

Easting
Double;	output-only
The	Easting	of	the	coordinate.

Northing
Double;	output-only
The	Northing	of	the	coordinate.

Direction
Double;	output-only

javascript:history.back();

The	direction	of	the	queried	point.

Remarks

If	the	Offset	is	to	the	left	of	the	alignment,	it	should	be	negative.	If	the
Offset	is	to	the	right	of	the	alignment,	it	should	be	positive.

PointNumberFromObjID	Method

Given	a	AutoCAD	object	ID,	PointNumberFromObjID	will	return	the	point
number.

See	Also	|	Example

Signature

RetVal	=	object.PointNumberFromObjID(ObjectID)

object
CogoPoints	The	object	or	objects	this	property
applies	to.

ObjectID
Long;	input-only
The	AutoCAD	entity’s	object	ID.	The	object	is	must
be	a	valid	AECC_POINT.

RetVal
Long
The	point	number.

Remarks

The	object	ID	must	be	for	a	valid	AECC_POINT.	If	the	object	is	not	an
AECC_POINT,	then	the	function	will	return	0	which	is	an	invalid	point
number.

javascript:history.back();

PointStringToArray	Method

Given	a	point	string,	returns	an	array	with	all	of	the	point	numbers.

See	Also	|	Example

Signature

RetVal	=	object.PointStringToArray(PointString)

object
CogoPoints	The	object	or	objects	this	property
applies	to.

PointString
String;	input-only
Comma	delimited	string	of	points	to	be	locked	with
groups	separated	by	hyphens.

RetVal
Variant	(array	of	longs)
Each	long	is	a	point	number.

Remarks

Typical	examples	of	the	point	string	format	are:	"1,2,3,5,10"	"1-100,1000-
2000"

javascript:history.back();
javascript:history.back();

ProfileByType	Method

Returns	the	Existing	or	Finished	Ground	Profile	by	type.

See	Also	|	Example

Signature:	Overview

l	EGProfiles	(Civil	Engineering	Feature)

l	FGProfiles	(Civil	Engineering	Feature)

Returns	the	Existing	Ground	Profile	by	type.

Signature

RetVal	=	object.ProfileByType(Type,	SurfaceName)

Object
EGProfiles	The	object	or	objects	this	method
applies	to.

Type
eAeccEGProfileType	enum;	input-only
Returns	the	Existing	Ground	Profile	by	type.

kEgCenter: Existing	ground	center	profile	type

kEgLeft: Existing	ground	left	profile	type

kEgNone: Existing	ground	none	profile	type

kEgNone: Existing	ground	none	profile	type

kEgRight: Existing	ground	right	profile	type

SurfaceName
String;	read-only
The	name	of	the	surface.

RetVal
EGProfile	object;
The	newly	added	EGProfile	object.

Returns	the	Finished	Ground	Profile	by	type.

Signature

RetVal	=	object.ProfileByType(Type)

Object
FGProfiles
The	object	or	objects	this	method	applies	to.

Type
eAeccFGProfileType	enum;	input-only
Returns	the	Finished	Ground	Profile	by	type.

kFgCenter: Finished	ground	profile	center
type

kFgDitchLeft: Finished	ground	ditch	left	type

kFgDitchRight: Finished	ground	ditch	right	type

kFgLeft1: Finished	ground	left	1	trans	type

kFgLeft2: Finished	ground	left	2	trans	type

kFgLeft3: Finished	ground	left	3	trans	type

kFgLeft4: Finished	ground	left	4	trans	type

kFgLeft5: Finished	ground	left	5	trans	type

kFgLeft6: Finished	ground	left	6	trans	type

kFgLeft7: Finished	ground	left	7	trans	type

kFgLeft8: Finished	ground	left	8	trans	type

kFgNone: Finished	ground	none	type

kFgRight1: Finished	ground	right	1	trans	type

kFgRight2: Finished	ground	right	2	trans	type

kFgRight3: Finished	ground	right	3	trans	type

kFgRight4: Finished	ground	right	4	trans	type

kFgRight5: Finished	ground	right	5	trans	type

kFgRight6: Finished	ground	right	6	trans	type

kFgRight7: Finished	ground	right	7	trans	type

kFgRight8: Finished	ground	right	8	trans	type

RetVal
FGProfile	object;
The	newly	added	FGProfile	object.

RemoveAll	Method

Removes	all	method	for	Alignments	and	StationEquations.

See	Also	|	Example

Signature:	Overview

l	Alignment

l	StationEquations

Removes	all	of	the	entities	from	the	alignment.

Signature

object.RemoveAll()

object
Alignment	The	object	or	objects	this	property
applies	to.

Remarks

Before	changing	/	adding	any	entities	for	an	alignment,	all	entities	must
be	removed.

Removes	all	station	equations	from	the	alignment.

Signature

javascript:history.back();

object.RemoveAll()

object
StationEquations
The	object	or	objects	this	property	applies	to.

RemoveAllLabels	Method

Removes	all	contour	labels.

See	Also	|	Example

Signature

object.RemoveAllLabels()

object
AeccContour	The	object	or	objects	this	property
applies	to.

javascript:history.back();

RemoveLabelAt	Method

Removes	the	contour	label	closest	to	the	specified	location.

See	Also	|	Example

Signature

object.RemoveLabelAt(X,	Y)

object
AeccContour	The	object	or	objects	this	property
applies	to.

X
Double;	input-only
The	X	coordinate	of	the	label.

Y
Double;	input-only
The	Y	coordinate	of	the	label.

Remarks

The	label	closest	to	the	X,	Y	point	will	be	removed	from	the	Contour
object.

javascript:history.back();

Rename	Method

Renames	a	surface	or	parcel.

See	Also	|	Example

Signature:	Overview

l	Parcels

l	Surfaces

Renames	a	parcel.

Signature

object.Rename(OldName,	NewName)

object
Parcels	The	object	or	objects	this	property	applies
to.

OldName
String;	input-only
The	name	of	the	surface	to	be	renamed.

NewName
String;	input-only
The	new	name	of	the	parcel.

javascript:history.back();

Renames	a	surface.

Signature

object.Rename(OldName,	NewName)

object
Surfaces
The	object	or	objects	this	property	applies	to.

OldName
String;	input-only
The	name	of	the	surface	to	be	renamed.

NewName
String;	input-only
The	new	name	of	the	surface.

SampleElevations	Method

Given	a	start	and	end	point,	returns	an	array	of	derived	points	from	the
Surface.

See	Also	|	Example

Signature

RetVal	=	object.SampleElevations(StartPoint,	EndPoint)

object
Surface	The	object	or	objects	this	property	applies
to.

StartPoint
Variant	(3	element	array	of	doubles);	input-only
The	starting	point	to	be	queried	in	Easting,	Northing,
Elevation.

EndPoint
Variant	(3	element	array	of	doubles);	input-only
The	ending	point	to	be	queried	in	Easting,	Northing,
Elevation.

RetVal
Variant	(array	of	doubles)
The	sample	points	returned	as	Easting,	Northing,
Elevation,	Easting,	etc.

Remarks

javascript:history.back();

Given	a	starting	and	ending	point,	SampleElevations	will	return	all	of	the
points	between	the	start	and	end.	These	points	occur	when	a	Surface
Edge	is	crossed.	The	net	result	is	that	the	function	returns	a	line	that	is
projected	onto	the	Surface.

SampleElevations	will	return	a	Variant.	This	variant	will	be	an	array	of
doubles.	Every	3	doubles	is	a	point	of	the	format	Easting,	Northing,
Elevation.

Save	Method

Writes	objects	to	specific	databases.

See	Also	|	Example

Signature:	Overview

l	Alignment

l	CogoPoint

l	DescriptionKey

l	PointGroup

Saves	the	Alignment.

Signature

object.Save()

object
Alignment	The	object	or	objects	this	property
applies	to.

Writes	the	CogoPoint	to	the	project	database.

Signature

object.Save()

javascript:history.back();

object
CogoPoint
The	object	or	objects	this	property	applies	to.

Writes	the	DescriptionKey	to	the	project	database.

Signature

object.Save()

object
DescriptionKey
The	object	or	objects	this	property	applies	to.

Writes	the	PointGroup	to	the	project	database.

Signature

object.Save()

object
PointGroup
The	object	or	objects	this	property	applies	to.

SaveAsDefault	Method

Saves	the	DatabasePreferences	to	the	registry.

See	Also	|	Example

Signature

object.SaveAsDefault()

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

javascript:history.back();

SaveSetupProfile	Method

Saves	the	current	drawing	settings	to	a	drawing	setup	profile.

See	Also	|	Example

Signature

object.SaveSetupProfile(ProfileName)

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

ProfileName
String;	input-only
The	profile	name	to	save	to.

Remarks

After	you	change	any	of	the	properties,	use	the	SaveSetupProfile	method
to	save	these	settings	in	a	drawing	setup	profile.	The	new	drawing	setup
profile	will	be	saved	at	the	path	specified	by	the	DrawingSetupPath
property	of	the	PreferencesFiles	object.

javascript:history.back();

SectionByStation	Method	(Civil	Engineering	Feature)

Returns	a	Cross	Section	object	by	specifing	its	station.

See	Also	|	Example

Signature

RetVal	=	object.SectionByStation(Station)

object
CrossSections	The	object	or	objects	this	property
applies	to.

Station
Double;	input-only
The	station	for	the	desired	cross	section.

RetVal
CrossSection	object
The	Cross	Section	object	referenced	by	the	station.

javascript:history.back();
javascript:history.back();

SectionVolume	Method	(Civil	Engineering	Feature)

Calculates	the	cross	section	volumes.

See	Also	|	Example

Signature

object.SectionVolume(Type,	CurveCorrection,	Swell,	Shrink,	CutArea,
CutCenter,	CutVolume,	FillArea,	FillCentroid,	FillVolume)

object
CrossSection	The	object	or	objects	this	property
applies	to.

Type
eAeccCrossSectionVolumeMethod	enum;	input-
only.
Specifies	the	setting	to	return.

kVolumeByAvgEndArea: Volume	by	average	end
area	calculation

kVolumeByPrismodal Volume	by	prismodal
calculation

CurveCorrection
Double;	input-only
Applies	a	correction	factor	to	the	volume	equal	to
the	ratio	of	the	centroid	to	the	radius	of	the	curve.
1	-	curve	correction	on

0	-	curve	correction	off

Swell
Double;	input-only
The	swell	factor

Shrink
Double;	input-only
The	shrink	factor

CutArea
Double;	output-only
The	cut	area

CutCentroid
Double;	output-only
The	cut	centroid

CutVolume
Double;	output-only
The	cut	volume

FillArea
Double;	output-only
The	fill	area

FillCentroid
Double;	output-only
The	fill	centroid

FillVolume
Double;	output-only
The	fill	volume

SetBoundingBox	Method

Sets	the	bounding	box	for	the	surface.

See	Also	|	Example

Signature

object.SetBoundingBox(LowerLeftPoint,	UpperRightPoint)

object
Surface	The	object	or	objects	this	property	applies
to.

LowerLeftPoint
Variant	(3	element	array	of	doubles);	input-only
The	lower	left	coordinate	for	the	bounding	box	in
Easting,	Northing,	Elevation	format.

UpperRightPoint
Variant	(3	element	array	of	doubles);	input-only
The	upper	right	coordinate	for	the	bounding	box	in
Easting,	Northing,	Elevation	format.

Remarks

Calculations	will	be	much	faster	if	a	bounding	box	is	set.	If	no	bounding
box	is	set	for	a	surface,	then	one	will	be	generated	when	the	surface	is
built.

javascript:history.back();

SetDouble	Method

Sets	the	specified	preference	setting.

See	Also	|	Example

Signature

object.SetDouble(Setting,	Value)

object
PreferencesAlignment,
PreferencesCrossSection,	(Civil	Engineering
Feature)
PreferencesCogo,
PreferencesProfile,	(Civil	Engineering	Feature)
PreferencesSurface
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefAlignDouble,
eAeccPrefCogoDouble,
eAeccPrefCrossSectionDouble,
eAeccPrefProfileDouble,
eAeccPrefSurfaceDouble
enum;	input-only
Specifies	the	setting	to	set.

Value
Double;	input-only
The	value	of	the	setting.

javascript:history.back();

Remarks

For	a	listing	of	settings	see	the	GetDouble	method.

SetInteger	Method

Sets	the	specified	preference	setting.

See	Also	|	Example

Signature

object.SetInteger(Setting,	Value)

object
PreferencesAlignment,
PreferencesCogo,
PreferencesCrossSection,	(Civil	Engineering
Feature)
PreferencesParcel,
PreferencesProfile,	(Civil	Engineering	Feature)
PreferencesSurface,
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefAlignInt,
eAeccPrefCogoInt,
eAeccPrefCrossSectionInt,
eAeccPrefParcelInt
eAeccPrefProfileInt,
eAeccPrefSurfaceInt,
enum;	input-only
Specifies	the	setting	to	set.

Value
Integer;	input-only

javascript:history.back();

The	value	of	the	setting.

Remarks

For	a	listing	of	settings	see	the	GetInteger	method.

SetReferenceCurve	Method

Sets	the	reference	curve	for	the	Curve	Text.

See	Also	|	Example

Signature

object.SetReferenceCurve(CircleOrArcEntity)

object
AeccCurveText	The	object	or	objects	this	property
applies	to.

CircleOrArcEntity
AcadEntity	object;	input-only
A	circle	or	arc	entity.

javascript:history.back();

SetString	Method

Sets	the	specified	preference	setting.

See	Also	|	Example

Signature

object.SetString(Setting,	Value)

object
PreferencesAlignment,
PreferencesCogo,
PreferencesCrossSection,	(Civil	Engineering
Features)
PreferencesParcel,
PreferencesProfile,	(Civil	Engineering	Features)
PreferencesSurface,
The	object	or	objects	this	property	applies	to.

Setting
eAeccPrefAlignString,
eAeccPrefCogoString,
eAeccPrefCrossSectionString,
eAeccPrefParcelString
eAeccPrefProfileString,
eAeccPrefSurfaceString,
enum;	input-only
Specifies	the	setting	to	set.

Value
String;	input-only

javascript:history.back();

The	value	of	the	setting.

Remarks

For	a	listing	of	settings	see	the	GetString	method.

StationElevationToXy	Method	(Civil	Engineering
Features)

Given	a	station	and	elevation,	return	the	AutoCAD	XY	coordinates.

See	Also	|	Example

Signature

RetVal	=	object.StationElevationToXy(StaElev)

object
ProfileBlock	The	object	or	objects	this	property
applies	to.

StaElev
Variant	(2	element	array	doubles);	input-only
The	Station	and	Elevation	to	query	for.

Retval
Variant	(2	element	array	doubles);	output-only
The	XY	coordinates	for	the	given	station	and
elevation.

javascript:history.back();

StationOffset	Method

Given	a	Northings	and	Eastings,	returns	the	station,	an	offset,	and	the
polar	direction.

See	Also	|	Example

Signature

object.StationOffset(Easting,	Northing,	Station,	Offset,	Direction)

object
Alignment	The	object	or	objects	this	property
applies	to.

Easting
Double;	input-only
The	Easting	of	the	coordinate	to	query	for.

Northing
Double;	input-only
The	Northing	of	the	coordinate	to	query	for.

Station
Double;	output-only
The	Station	of	the	queried	point.

Offset
Double;	output-only
The	Offset	of	the	queried	point.

Direction

javascript:history.back();

Double;	output-only
The	direction	of	the	queried	point.

Remarks

If	the	Offset	is	to	the	left	of	the	alignment,	it	will	be	negative.	If	the	Offset
is	to	the	right	of	the	alignment,	it	will	be	positive.

UnlockPoints	Method

Unlocks	a	list	of	point	numbers.

See	Also	|	Example

Signature

object.UnlockPoints(PointString)

object
CogoPoints	The	object	or	objects	this	property
applies	to.

PointString
String;	input-only
Comma	delimited	string	of	points	to	be	unlocked
with	groups	separated	by	hyphens.

Remarks

Typical	examples	of	the	point	string	format	are:	"1,2,3,5,10"	"1-100,1000-
2000"

javascript:history.back();

XyToEastNorth	Method

Given	a	AutoCAD	X,	Y,	returns	the	Easting	and	Northing.

See	Also	|	Example

Signature

RetVal	=	object.XyToEastNorth(Xy)

object
Utility	The	object	or	objects	this	property	applies	to.

Xy
Variant	(3	element	array	of	doubles);	input-only
The	X	and	Y	coordinates.

RetVal
Variant	(3	element	array	of	doubles)
The	coordinates	in	Easting	and	Northing.

Remarks

EastNorth	must	be	declared	as	a	variant	and	not	as	an	array.	To	access
the	Easting	and	Northing,	subscript	the	variant	(var(0),	var(1)).	The	third
element	(elevation)	is	unchanged.

javascript:history.back();

XyToOffsetElevation	Method	(Civil	Engineering
Features)

Given	an	AutoCAD	XY	cooridanates,	return	the	cross	section	offset	and
elevation.

See	Also	|	Example

Signature

RetVal	=	object.XyToOffsetElevation(Xy)

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

Xy
Variant	(2	element	array	of	doubles);	input-only
The	X	and	Y	coordinates	to	query	for.

Retval
Variant	(2	element	array	of	doubles);	output-only
The	offset	and	elevation	for	the	given	XY
cooridnates.

javascript:history.back();

XyToStationElevation	Method	(Civil	Engineering
Feature)

Given	an	AutoCAD	XY,	return	the	profile	station	and	elevation.

See	Also	|	Example

Signature

RetVal	=	object.XyToStationElevation(Xy)

object
ProfileBlock	The	object	or	objects	this	property
applies	to.

Xy
Variant	(2	element	array	doubles);	input-only
The	X	and	Y	coordinates	to	query	for.

Retval
Variant	(2	element	array	doubles);	output-only
The	station	and	elevation	for	the	given	XY
cooridnates.

javascript:history.back();

Properties
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

A

A	The	spiral's	A	value.

Active	Specifies	if	the	projects	is	currently	loaded.

ActiveDocument	Specifies	the	active	document	(drawing	file).

ActiveProject	Specifies	the	currently	opened	Land	Desktop	project

AD1	Returns	AD1	which	is	the	radius	at	the	end	of	the	spiral	(SC).

AD2	Returns	AD2	which	is	the	radius	at	the	start	of	the	spiral	(TS).

AlignEntities	The	alignment's	entities	collection.

Alignment	The	collection	of	alignment	preferences	for	the	project.

Alignments	Gets	the	Alignments	collection.

AngularAzimuth	The	format	used	to	display	angles.

AngularDisplayFormat	The	units	used	to	display	angles.

AngularPrecision	Specifies	the	angular	precision	for	the	drawing.

Application	Gets	the	AeccApplication	object.

Area	The	area	of	the	parcel.

Area2D	The	2D	area	of	a	Surface	or	Face.

Area3D	The	3D	area	of	a	Surface	or	Face.

AreaDisplayUnit	The	units	used	to	display	areas.

javascript:history.back();

AreaPrecision	The	precision	used	to	display	areas.

AreaSuffix	The	suffix	displayed	after	an	area.

Application	Gets	the	AeccApplication	object.

Author	Specifies	the	author	of	the	project.

AutoSave	Returns	and	sets	the	AutoSave	for	Alignments,	CogoPoints,
DescriptionKeyFiles,	and	PointGroups.

AverageGrade	Returns	the	BreakLines	collection.

B

BasePoint	Gets	and	sets	the	base	point	for	the	drawing	as	an	XYZ.

BasePointNE	Gets	and	sets	the	base	point	for	the	drawing	as	an	ENZ.

BeginCondition	Returns	the	BeginCondition	for	the	Spiral.

BorderBlockFileName	Specifies	the	block	filename	to	insert	as	a	border.

BorderBottomMargin	Specifies	the	bottom	margin	for	the	border.

BorderLeftMargin	Specifies	the	left	margin	for	the	border.

BorderLineWidth	Specifies	the	line	width	of	the	border.

BorderPath	Specifies	the	directory	in	which	the	border	files	are	located.

BorderRightMargin	Specifies	the	right	margin	for	the	border.

BorderStyle	Specifies	the	border	style	to	use	for	the	drawing.

BorderTopMargin	Specifies	the	top	margin	for	the	border.

Boundaries	Returns	the	Boundaries	collection.

Boundary	Returns	the	boundary	of	the	Watershed.

BreakLines	Returns	the	BreakLines	collection.

C

CCWFlag	The	counter-clockwise	flag	for	the	curve	or	parcel.

CenterEasting	The	Easting	coordinate	for	the	alignment	curves	or	parcel
curves	center.

CenterlineOffset	(Civil	Engineering	Feature)	Returns	the	centerline	offset
of	the	cross	section.

CenterNorthing	The	Northing	coordinate	for	the	alignment	curves	or
parcel	curves	center.

CentroidEasting	The	easting	coordinate	of	the	parcel	centroid.

CentroidNorthing	The	northing	coordinate	of	the	parcel	centroid.

ChordDirection	The	direction	of	the	chord	for	the	curve.

ChordLength	The	chord	length	of	the	alignment	or	parcel	curve.

CivilDataFilesPath	Specifies	the	directory	in	which	the	Civil	Engineering
Feature	data	is	located.

Code	Returns	the	cross	section	point	code	or	description	key	code.

Cogo	The	collection	of	cogo	preferences	for	the	project.

CogoPoints	Gets	the	CogoPoints	collection.

ContourItems	Returns	the	ContourItems	collection.

ContourStyle	Returns	and	set	the	Contour	Style	object	for	this	contour.

ContourStyleName	Returns	the	Contour	Style	name.

ContourStylesPath	Specifies	the	directory	in	which	the	contour	styles	are
located.

CoordinatePrecision	Specifies	the	coordinate	precision	for	the	drawing.

Coordinates	The	coordinate	properties	for	various	objects.

CoordinateZone	Specifies	the	coordinate	zone.

Count	Gets	the	number	of	items	in	the	collection.

Course	Returns	the	Course	of	the	parcel	entity.

CourseIn	Returns	the	Course	In	of	the	Parcel.

CourseOut	Returns	the	Course	Out	of	the	Parcel.

CrossSection	(Civil	Engineering	Feature)	The	collection	of	cross	section
preferences	for	the	project.

CrossSectionBlocks	(Civil	Engineering	Feature)	Gets	the
CrossSectionBlock	object.

CrossSectionPointCodes	(Civil	Engineering	Feature)	Returns	the	cross
sections	point	code	collection.

CrossSections	(Civil	Engineering	Feature)	Returns	the	alignment	cross
sections	collection.

CrossSectionSurfaces	(Civil	Engineering	Feature)	Returns	the	cross
sections	surfaces	collection.

CurrentAlignment	Sets	and	gets	the	current	alignment.

CurrentSurface	Gets	/	sets	the	current	Surface.

CurveCode	(Civil	Engineering	Feature)	Returns	the	superelevation	curve
code.

CurveLabelIncrement	(Civil	Engineering	Feature)	Returns	the	distance
between	vertical	curve	elevation	labels.

CurveLength	(Civil	Engineering	Feature)	Returns	the	Curve	Length	of	the
PVI.

D

DatabaseScale	Specifies	the	database	scale	at	which	the	horizontal	axis
of	the	drawing	is	displayed.

DataPath	Specifies	the	directory	in	which	the	Land	Desktop	data	files	are
installed.

DatumElevation	(Civil	Engineering	Feature)	Returns	the	datum	elevation
for	the	alignment	profile	or	cross	section.

Delta	The	delta	value	for	a	AlignCurve,	AlignSpiral,	or	ParcelCurve.

DEMFiles	Returns	the	DEMFiles	collection.

Description	The	description	properties	for	various	objects.

DescriptionFormat	Specifies	the	description	key	format.

DescriptionKeyFiles	Gets	the	DescriptionKeyFiles	collection.

DescriptionLayer	Specifies	the	description	key	layer.

DescriptionOverride	Specifies	if	the	description	for	the	project	database
point	will	be	overridden	from	the	Point	Group.

DescriptionXDRef	Specifies	the	description	override	for	the	project
database	point	group.

Direction	The	Direction	of	the	ProfileBlock	or	alignment	tangent.

Documents	Gets	the	Document	collection.

DrainsInto	Returns	an	array	of	Ids	that	the	Watershed	drains	into.

DrawingPath	Specifies	the	drawing	path	of	the	project.

Drawings	Gets	the	Drawings	collection.

DrawingSetupPath	Specifies	the	directory	in	which	the	drawing	setup
files	are	located.

E

Easting	The	Easting	coordinates	properties	for	various	objects.

Edges	Returns	the	Edges	collection.

EGPrecision	(Civil	Engineering	Feature)	Returns	the	existing	ground
precision	for	the	alignment	profile	or	cross	section.

EGProfiles	(Civil	Engineering	Feature)	Gets	the	existiing	ground	profiles
collection.

Elevation	The	elevation	property	for	various	objects.

ElevationContours	Returns	the	ElevationContours	collection.

ElevationOverride	Specifies	if	the	elevation	for	the	project	database	point
will	be	overridden	from	the	Point	Group.

ElevationPrecision	Specifies	the	elevation	precision	for	the	drawing.

ElevationXDRef	Specifies	the	elevation	override	for	the	project	database
point	group.

EndDirection	The	ending	direction	of	the	curve.

EndEasting	The	Easting	coordinate	for	the	end	of	the	individual	object
entities.

EndingStation	The	object's	ending	station.

EndNorthing	The	Northing	coordinate	for	the	end	of	the	individual	object
entity.

ExceedBoth	If	true,	then	both	minimum	depression	settings	must	be	met.

ExtEasting	The	Easting	coordinate	for	the	External	point	(Ext).

ExternalSecant	The	external	secant	length	for	the	curve.

ExtNorthing	The	Northing	coordinate	for	the	External	point	(Ext).

F

Faces	Returns	the	Faces	collection.

FacetDeviation	Gets	and	sets	the	facet	deviation.

FGPrecision(Civil	Engineering	Feature)	Returns	the	finished	ground
precision	for	the	alignment	profile	or	cross	section.

FGProfiles	(Civil	Engineering	Feature)	Gets	the	FGProfiles	collection.

File	The	filename	of	the	file	lock.

FileLocks	Gets	the	FileLocks	collection.

Files	Gets	the	PreferencesFiles	object.

FirstTimeDrawingSetup	Selects	how	new	drawings	are	setup.

FirstTimeDrawingSetupFile	The	drawing	setup	file	loaded	automatically
for	a	new	drawing.

Format	The	format	for	the	PointFile.

FormatsPath	Specifies	the	directory	in	which	the	point	import	and	export
formats	are	located.

FullDescription	Returns	the	full	description	for	the	Cogo	Point.

FullName	The	full	name	includes	the	path	and	file	name.

G

GridEasting	The	grid	Easting	for	the	COGO	project	database	point.

GridNorthing	The	grid	Northing	for	the	COGO	project	database	point.

GroupName	Gets	/	sets	the	group	name	for	various	objects.

H

Height	(Civil	Engineering	Feature)	Returns	the	height	of	the	alignment
cross	section.

HelpPath	Specifies	the	directory	in	which	the	help	files	are	installed.

I

Id	The	identification	number	for	the	Boundary,	BreakLine,ContourItem	or
Watershed.

Inputs	Returns	the	SurfaceInputs	object	for	the	surface.

IsBreakLine	Is	the	Boundary	considered	a	BreakLine?

IsNameSupported	Returns	whether	point	names	are	supported	or	not.

IsVisible	Returns	if	the	Face	is	visible.

J

K

K	The	spiral's	K	value.

Keywords	Specifies	the	keywords	for	the	project.

L

Label	The	name	of	the	locked	data	file	or	folder.

LabelPoints	Returns	the	contour	label	points.

LabelStyle	Specifies	the	label	style	override	for	the	project	database	point
group.

LabelStyleOverride	Specifies	if	the	label	style	for	the	project	database
point	will	be	overridden	from	the	Point	Group.

LabelStylePath	Specifies	the	directory	in	which	the	line,	curve,	spiral	and
point	label	style	files	are	located.

LabelStyleXDRef	Specifies	the	label	style	override	for	the	project
database	point	group.

LastUsedDwg	The	last	used	drawing.

LastUsedDwgPath	The	last	used	drawing	path.

LastUsedProj	The	last	used	project.

LastUsedProjPath	The	last	used	project	path.

Latitude	The	latitude	of	the	point.

LayerFile	The	layer	file	to	apply	to	the	drawing.

LayerStandard	The	layer	standard	to	apply	to	the	drawing.

LeftWidth	(Civil	Engineering	Feature)	Returns	the	left	width	of	the
alignment	cross	section.

Length	The	length	of	the	alignment	curve,	spiral	or	tangent	or	parcel
curve	or	line.

LExt	Returns	the	external	length	of	the	spiral.

LinearDisplayUnit	The	format	used	to	display	linear	values.

LinearPrecision	Specifies	the	linear	precision	for	the	drawing.

LinearUnit	The	unit	used	to	display	linear	values.

LockedPointNumbers	Returns	a	list	of	the	locked	points	in	the	current
project	point	database.

LockType	Specifies	the	type	of	lock	on	the	Alignment,	COGO	Point,	or
Surface.

LOffset	The	offset	distance	for	the	spiral.

Longitude	The	longitude	of	the	point.

M

MaskBlockStyles	Gets	the	Masking	Block	Styles	collection	for	the
drawing.

MassGroups	Gets	the	MassGroups	collection	for	the	drawing.

MaxElevation	Returns	the	Maximum	Elevation	of	a	Cross	Section	or
Surface.

MaxFaceArea	The	area	of	the	largest	Face	for	the	Surface.

MaxGrade	The	maximum	grade	for	the	Surface.

MaxOffset	(Civil	Engineering	Feature)	Returns	the	Maximum	Offset	of	the
Cross	Section.

MeanElevation	The	mean	elevation	of	the	Surface.

MeausurementUnit	The	system	of	units	used	to	display	measurements.

MidOrdinate	The	mid	ordinate	for	the	curve.

MinDepressionArea	The	minimum	depression	area	for	all	watersheds.

MinDepressionDepth	The	minimum	depression	depth	for	all	watersheds.

MinElevation	Returns	the	Minimum	Elevation	of	a	Cross	Section	or
Surface.

MinFaceArea	The	area	of	the	smallest	Face	for	the	Surface.

MinGrade	The	minimum	grade	for	the	Surface.

MinOffset	(Civil	Engineering	Feature)	Returns	the	Minimum	Offset	of	the
Cross	Section.

MVBlockStyles	Gets	the	Multiview	Block	Styles	collection	for	the	drawing.

N

aecauto-reference.chm::/html/idh_property_MaskBlockStyles.htm
aecauto-reference.chm::/html/idh_property_MassGroups.htm
aecauto-reference.chm::/html/idh_property_MVBlockStyles.htm

Name	Gets	the	name	of	various	objects.

NameOverride	Specifies	if	the	name	for	the	project	database	point	will	be
overridden	from	the	Point	Group.

NameXDRef	Specifies	the	Name	override	for	the	project	database	point
group.	The	name	will	be	taken	from	the	external	database	reference
(XDRef).

NextPointNumber	Gets	/	sets	the	next	sequential	point	number	for	point
creation.

Normal	Returns	the	Normal	for	the	Face.

Northing	Gets	the	Northing	coordinates	of	various	objects.

NorthRotation	Specifies	the	north	rotation	for	your	drawing	layout.

Number	The	number	property	for	various	objects.

NumberOfFaces	The	number	of	Faces	for	the	Surface.

NumberOfPoints	The	number	of	TinPoints	for	the	Surface.

O

ObjectID	Returns	the	Object	ID	for	the	entity.

Offset	(Civil	Engineering	Feature)	Returns	the	cross	section	point	code
offset.

OffsetElevations	(Civil	Engineering	Feature)	Returns	the	cross	section
surface	offset	and	elevations.

Outputs	Returns	the	SurfaceOutputs	object	for	the	surface.

OverflowPoints	Returns	the	WaterShed	overflow	points.

OverrideDescription	Returns	the	description	that	has	been	overridden	by
the	PointGroup.

OverrideElevation	Returns	the	elevation	that	has	been	overridden	by	the
PointGroup.

OverrideName	Returns	the	point	name	that	has	been	overridden	by	the
PointGroup.

OverrideNew	Toggles	the	display	of	the	Land	Desktop	New	dialog	box.

OverrideOpen	Toggles	the	display	of	the	Land	Desktop	Open	dialog	box.

Owner	The	owner	(AutoCAD	login	name)	of	the	lock	owner.

P

P	The	spiral's	P	value.

Parcel	The	collection	of	parcel	preferences	for	the	project.

ParcelEntities	The	collection	of	geometric	entities	for	the	Parcel.

Parcels	Gets	the	Parcels	collection.

Path	Gets	the	path	of	various	objects.

PerimeterThe	perimeter	of	the	parcel.

PiEasting	The	Easting	coordinate	for	the	curve's	PI.

PiNorthing	The	Northing	coordinate	for	the	curve's	PI.

PointFiles	Returns	the	point	files	collection.

PointGroupNames	Returns	the	PointGroupNames	collection.

PointGroups	Gets	the	PointGroups	collection.

PointList	Specifies	the	list	of	project	database	points	for	the	point	group.

PointNameSize	Returns	maximum	number	of	characters	supported	in
point	name.

PointOnlineTolerance	Returns	the	minimum	distance	between	a	line	and
a	point	not	on	the	line.

PointTolerance	Returns	the	minimum	distance	between	distinct	points.

Precision	The	precision	used	to	truncate	area	labels	when	a	Parcel	is
imported	to	the	drawing.

Preferences	The	preferences	property	of	various	objects.

PreferencesPath	Specifies	the	directory	in	which	the	preference	settings
are	located.

Profile	Gets	the	vertical	profile	settings	for	the	project.

ProfileBlocks	(Civil	Engineering	Feature)	Gets	the	ProfileBlocks	object.

ProfileStyles	Gets	the	ProfileStyles	collection	for	the	drawing.

ProgramPath	Specifies	the	directory	in	which	the	Land	Desktop	is
installed.

ProjectName	The	name	of	the	project	that	the	drawing	belongs	to.

ProjectPath	Gets	the	project	path	of	various	objects.

Projects	Gets	the	Projects	collection.

PrototypeName	Specifies	the	name	of	the	prototype	used	for	the	project.

PrototypePath	Specifies	the	directory	in	which	the	project	prototype	files
are	located.

Prototypes	Gets	the	Prototypes	collection.

PVIs	Gets	the	PVIs	collection.

Q

R

aecauto-reference.chm::/html/idh_property_ProfileStyles.htm

RadialDistance	The	radial	distance	of	the	spiral.

Radius	The	radius	of	the	alignment	or	parcel	curve.

RawDescription	The	raw	description	for	the	COGO	project	database
point.

RevisionNumber	The	revision	number	for	the	Surface.

RightWidth	(Civil	Engineering	Feature)	Returns	the	right	width	of	the
alignment	cross	section.

RotateByDescriptionParam	If	TRUE,	only	the	RotateDescriptionParam	is
rotated.

RotateByFixedFactor	If	TRUE,	rotate	by	the	RotateFactor.

RotateClockwise	The	rotation	direction.

RotateDescriptionParam	The	description	parameter	for	rotation.

RotateFixedFactor	The	rotation	factor.

S

ScaleByDescriptionParam	If	TRUE,	only	the	ScaleDescriptionParam	is
scaled.

ScaleByDrawingScale	If	TRUE,	the	drawing	scale	factor	is	applied.

ScaleByFixedFactor	If	TRUE,	the	fixed	scale	factor	ScaleFactor	is
applied.

ScaleDescriptionParam	The	description	parameter	for	scaling.

ScaleFixedFactor	The	fixed	scale	factor.

ScaleInXY	If	TRUE,	the	symbol	is	scaled	in	the	XY	plane

ScaleInZ	If	TRUE,	the	symbol	is	scaled	in	the	Z	axis.

ScaleOnInsert	Specifies	whether	objects	are	automatically	scaled	when
inserted	into	the	drawing.

SearchType	Returns	how	the	Faces	collection	was	generated.

SheetHeight	Specifies	the	height	of	the	sheet.

SheetWidth	Specifies	the	width	of	the	sheet.

ShortTangent	Returns	the	short	tangent	length	for	compound	and	simple
spirals.

ShowStartupDialog	Toggles	the	display	of	the	startup	dialog.

ShowSubfolders	Determines	whether	drawings	in	subfolders	are
included.

SpeedTablesPath	Specifies	the	directory	in	which	the	speed	tables	are
located.

SpiEasting	The	Easting	coordinate	for	the	spi	point.

SpilTangent	Returns	the	long	tangent	length.

SpiNorthing	The	Northing	coordinate	for	the	spi	point.

SpiralType1	Returns	the	calculation	method	of	the	spiral.

SpiralType2	Returns	whether	the	spiral	is	a	simple,	offset,	or	compound
spiral.

StartDirection	The	starting	direction	of	the	curve	or	spiral.

StartEasting	The	Easting	coordinate	for	the	beginning	of	the	individual
alignment	or	profile	entities.

StartingStation	The	object's	starting	station.

StartNorthing	The	Northing	coordinate	for	the	beginning	of	the	individual
alignment	or	profile	entities.

Station	(Civil	Engineering	Feature)	Returns	the	station	for	the	cross
section,	cross	section	block,	superelevation,	or	PVI.

StationAhead	The	ahead	station	for	the	station	equation.

StationBack	The	back	station	for	the	station	equation.

StationElevations	(Civil	Engineering	Feature)	An	array	of	stations	and
elevations	for	the	VerticalSurface

StationEquations	The	alignment's	station	equations	collection.

StationIncrement	(Civil	Engineering	Feature)	Returns	the	horizontal
distance	between	vertical	grid	lines.

Status	The	status	for	a	surface.

SuperelevationCode	(Civil	Engineering	Feature)	Returns	the
superelevation	code.

Surface	The	collection	of	surface	preferences	for	the	project.

SurfaceName	(Civil	Engineering	Feature)	The	name	of	the	EGProfile
surface.

Surfaces	Gets	the	Surfaces	collection.

SymbolBlock	Specifies	the	symbol	block.

SymbolLayer	Specifies	the	symbol	block	layer.

SymbolManagerPath	Specifies	the	directory	in	which	the	symbol	sets	are
located.

SystemPath	Specifies	the	directory	in	which	the	Land	Desktop	is
installed.

T

TangentLabelIncrement	(Civil	Engineering	Feature)	Returns	the	distance
between	tangent	elevation	labels.

TangentLength	The	tangent	length	of	the	curve.

TempPath	Specifies	the	directory	in	which	the	temporary	files	are	stored.

TextAbove	The	text	above	the	object.

TextBelow	The	text	below	the	object.

TextHeight	The	height	of	the	text	in	the	drawing.

TextOffsetAbove	The	offset	of	the	text	above	the	object.

TextOffsetBelow	The	offset	of	the	text	below	the	object.

TextSize	The	size	of	the	text	above	and	below	the	object.

ThetaExt	Returns	the	external	theta	for	a	compound	spiral.

Time	The	lock	creation	date	and	time.

TinPoints	Returns	the	TinPoints	collection.

TotalX	The	total	X	value	for	the	spiral.

TotalY	The	total	Y	value	for	the	spiral.

Type	The	type	properties	for	Objects.

U

UpperRight	Returns	the	Upper	Right	Coordinates	of	the	ProfileBlock	as
XY.

UsedPointNumbers	Returns	the	list	of	used	point	numbers	in	the	current
project	database.

User	Gets	the	PreferencesUser	object.

Utility	Gets	the	Utility	object.

V

VerticalScale	Specifies	the	scale	at	which	the	vertical	axis	of	the	drawing
is	displayed,	or	the	vertical	scale	for	alignment	profiles	and	cross
sections.

Volume	The	volume	of	the	surface.

VolumeDisplayUnit	The	units	used	to	display	volumes.

VolumePrecision	The	precision	used	to	display	volumes.

VolumeSuffix	The	suffix	displayed	after	an	volume.

W

WaterSheds	Returns	the	WaterSheds	collection.

X

Y

Z

A	Property

The	spiral's	A	value.

See	Also	|	Example

Signature

object.A

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

A
Double;	read-only
The	spiral's	A	value.

javascript:history.back();

Active	Property

Specifies	if	the	projects	is	currently	loaded.

See	Also	|	Example

Signature

object.Active

object
Project	The	object	or	objects	this	property	applies
to.

Active
Boolean;	read-only
TRUE:		The	project	is	loaded.
FALSE:	The	project	is	not	loaded.

Remarks

The	ActiveProject	property	of	the	AeccApplication	object	is	the	only
instance	of	AeccProject	with	this	property	set	to	TRUE.	This	indicates
that	access	to	project	owned	data	in	external	databases,	such	as
CogoPoints,	is	possible.

javascript:history.back();

ActiveDocument	Property

Specifies	the	active	document	(drawing	file).

See	Also	|	Example

Signature

object.ActiveDocument

object
AeccApplication	The	object	or	objects	this	property
applies	to.

ActiveDocument
Document	object;	read-only

Remarks

In	the	Preview,	the	ActiveDocument	property	returns	the	opened
document	(an	AutoCAD	Land	Desktop	drawing).

javascript:history.back();

ActiveProject	Property

Specifies	the	currently	opened	AutoCAD	Land	Desktop	project.

See	Also	|	Example

Signature

object.ActiveProject

object
AeccApplication	The	object	or	objects	this	property
applies	to.

ActiveProject
Project	object;	read-only

Remarks

The	ActiveProject	property	allows	access	to	all	project	data.

javascript:history.back();

AD1	Property

Returns	AD1	which	is	the	radius	at	the	end	of	the	spiral	(SC).

See	Also	|	Example

Signature

object.AD1

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

AD1
Double;	read-only
The	radius	at	the	end	of	the	spiral	(SC).

javascript:history.back();

AD2	Property

Returns	AD2	which	is	the	radius	at	the	start	of	the	spiral	(TS).

See	Also	|	Example

Signature

object.AD2

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

AD2
Double;	read-only
The	radius	at	the	start	of	the	spiral	(TS).

Remarks

AD2	is	the	radius	at	the	start	of	the	spiral	(TS	=	-99999.99	for	infinite
radius,	or	a	value	for	compound	spiral).

javascript:history.back();

AlignEntities	Property

The	alignment's	entities	collection.

See	Also	|	Example

Signature

object.AlignEntities

object
Alignment	The	object	or	objects	this	property
applies	to.

AlignEntities
AlignEntities	collection;	read-only
The	AlignEntities	collection.

javascript:history.back();

Alignment	Property

The	collection	of	alignment	preferences	for	the	project.

See	Also	|	Example

Signature

object.Alignment

object
PreferencesProject	The	object	or	objects	this
property	applies	to.

Alignment
PreferencesAlignment;	read-only
The	PreferencesAlignment	object.

javascript:history.back();

Alignments	Property

Gets	the	Alignments	collection.

See	Also	|	Example

Signature

object.Alignments

object
Project	The	object	or	objects	this	property	applies
to.

Alignments
Alignments	collection;	read-only
The	Alignments	collection.

Remarks

The	Alignments	collection	represents	all	of	the	Alignment	objects	in	this
project.	This	property	is	valid	only	for	the	ActiveProject.

javascript:history.back();
javascript:history.back();

AngularAzimuth	Property

The	format	used	to	display	angles.

See	Also	|	Example

Signature

object.AngularAzimuth

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

AngularAzimuth
Long;	read-write

0: Use	Bearings

1: Use	North	Azimuths

2: Use	South	Azimuths

javascript:history.back();

AngularDisplayFormat	Property

The	units	used	to	display	angles.

See	Also	|	Example

Signature

object.AngularDisplayFormat

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

AngularDisplayFormat
Long;	read-write

1: Use	Degrees/Minutes/Seconds

2: Use	Grads

Remarks

When	you	type	degrees	at	AutoCAD	Land	Desktop	command	prompts,
type	them	in	the	decimal	format	indicated	(DD.MMSS).	Use	a	period	(.)
between	the	degree	value	and	the	minutes	and	seconds.	For	example,	to
enter	67°45’15"	type	the	value	as	67.4515.	If	you	use	bearings,	then	type
the	bearing	quadrant	first,	and	then	the	angle	in	degrees.

AngularPrecision	Property

Specifies	the	angular	precision	for	the	drawing.

See	Also	|	Example

Signature

object.AngularPrecision

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

AngularPrecision
Long;	read-write
The	number	of	decimals	to	the	right	of	the	decimal
point.

Remarks

This	is	used	to	display	minutes	and	seconds.

The	precision	settings	are	used	only	for	labeling	and	listing	values,	not
actual	computations.	AutoCAD	Land	Desktop	commands	always
calculate	all	numbers	up	to	the	highest	internal	precision.

javascript:history.back();

Application	Property

Gets	the	AeccApplication	object.

See	Also	|	Example

Signature

object.Application

object
All	objects	The	object	or	objects	this	property
applies	to.

Application
Application	object,	read-only

Remarks

The	Application	object	represents	the	AutoCAD	Land	Desktop,	and
provides	the	means	to	navigate	to	the	top	of	the	object	hierarchy.	All
objects	in	the	object	model	implement	the	Application	property.

javascript:history.back();

Area	Property

The	area	of	the	parcel.

See	Also	|	Example

Signature

object.Area

object
Parcel	The	object	or	objects	this	property	applies	to.

Area
Double;	read-only
The	area	of	the	parcel.

javascript:history.back();

Area2D	Property

The	2D	area	of	a	Surface	or	Face.

See	Also	|	Example

Signature:	Overview

l	Face

l	Surface

The	2D	area	of	a	Face.

Signature

object.Area2D

object
Face	The	object	or	objects	this	property	applies	to.

Area2D
Double;	read-only
The	2D	face	area.

Remarks

The	2D	face	area	is	the	apparent	triangle	area	if	you	look	at	the	face	from
plan	view.

The	2D	area	of	a	Surface.

javascript:history.back();

Signature

object.Area2D

object
Surface
The	object	or	objects	this	property	applies	to.

Area2D
Double;	read-only
The	2D	surface	area.

Remarks

The	2D	surface	area	is	the	apparent	surface	area	if	you	look	at	the
surface	from	plan	view.	It	is	obtained	by	projecting	the	visible	triangles
onto	the	XY	plane	along	the	Z	axis	and	summing	the	areas	of	the
triangles.

If	areas	on	the	surface	are	hidden	within	boundaries,	then	these	areas
are	not	included	in	the	surface	area.

This	is	an	Extended	Statistic.

Area3D	Property

The	3D	area	of	a	Surface	or	Face.

See	Also	|	Example

Signature:	Overview

l	Face

l	Surface

The	3D	area	of	the	Face.

Signature

object.Area3D

object
Face	The	object	or	objects	this	property	applies	to.

Area3D
Double;	read-only
The	3D	face	area.

Remarks

The	3D	face	area	is	the	true	area	of	the	triangle.

The	3D	area	of	the	Surface.

javascript:history.back();

Signature

object.Area3D

object
Surface
The	object	or	objects	this	property	applies	to.

Area3D
Double;	read-only
The	3D	surface	area.

Remarks

The	3D	surface	area	is	the	true	area	of	the	surface	and	accounts	for
variations	in	the	surface	elevation.	The	3D	area	is	the	sum	of	the	areas	of
each	of	the	visible	triangles	in	the	surface	without	projecting	the	triangles.
The	greater	the	variation	in	elevations,	the	more	the	3D	area	will	differ
from	the	2D	area.

An	example	of	the	difference	between	2D	and	3D	areas	is	a	building	pad.
The	2D	area	is	the	area	that	you	can	see	from	only	the	top	and	doesn't
vary	with	the	height	of	the	building	pad.	The	3D	surface	area	of	the
building	pad	is	the	sum	of	the	areas	of	each	face	of	the	building	pad,
which	would	become	larger	the	higher	the	building	pad	becomes.

This	is	an	Extended	Statistic.

javascript:history.back();

AreaDisplayUnit	Property

The	units	used	to	display	areas.

See	Also	|	Example

Signature

object.AreaDisplayUnit

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

AreaDisplayUnit
AecBuiltInUnit	enum;	read-write

aecUnitSquareInch: Square	inch	unit

aecUnitSquareFoot: Square	foot	unit

aecUnitSquareYard: Square	yard	unit

aecUnitSquareMil: Square	millimeter	unit

aecUnitSquareCentimeter: Square	centimeter	unit

aecUnitSquareDecimeter: Square	decimeter	unit

aecUnitSquareMeters: Square	meter	unit

Remarks

The	AreaDisplayUnit	supports	more	units	than	are	shown	above.	The
units	shown	above	are	those	that	are	supported	by	the	AutoCAD	Land
Desktop.

AreaPrecision	Property

The	precision	used	to	display	areas.

See	Also	|	Example

Signature

object.AreaDisplayUnit

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

AreaPrecision
Long;	read-write
The	display	precision	used	for	areas.

Remarks

The	precision	settings	are	used	only	for	labeling	and	listing	values,	not
actual	computations.	AutoCAD	Land	Desktop	commands	always
calculate	all	numbers	up	to	the	highest	internal	precision.

javascript:history.back();

AreaSuffix	Property

The	suffix	displayed	after	an	area.

See	Also	|	Example

Signature

object.AreaDisplayUnit

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

AreaPrecision
String;	read-write
The	suffix	displayed	after	an	area.

Remarks

The	default	value	is	"	Sq.Ft."	or	"	m2",	depending	on	the	value	of	the
MeasurementUnit	property.	The	value	must	255	characters	or	less	in
length.

javascript:history.back();

Author	Property

Specifies	the	author	of	the	project.

See	Also	|	Example

Signature

object.Author

object
Project	The	object	or	objects	this	property	applies
to.

Author
String;	read-write
The	author	of	the	project.

javascript:history.back();

AutoSave	Property

Returns	and	sets	the	AutoSave	for	Alignments,	CogoPoints,
DescriptionKeyFiles,	and	PointGroups.

See	Also	|	Example

Signature:	Overview

l	Alignments

l	CogoPoints

l	DescriptionKeyFiles

l	PointGroups

Returns	and	sets	the	AutoSave.

Signature

object.AutoSave

object
Alignments	The	object	or	objects	this	property
applies	to.

AutoSave
Boolean;	read-write
TRUE:		AutoSave	is	enabled
FALSE:	AutoSave	is	disabled

javascript:history.back();

Remarks

The	initial	value	for	this	property	is	TRUE.	Each	addition	or	change	is
written	to	the	Alignments	file	immediately.	If	this	property	is	set	to	FALSE,
the	Save	method	must	be	called	to	write	additions	or	changes	to	the
Alignment	file.	The	Add	method	for	Alignments	is	always	executed
immediately,	regardless	of	the	AutoSave	setting.

Returns	and	sets	the	AutoSave.

Signature

object.AutoSave

object
CogoPoints
The	object	or	objects	this	property	applies	to.

AutoSave
Boolean;	read-write
TRUE:		AutoSave	is	enabled
FALSE:	AutoSave	is	disabled

Remarks

The	initial	value	for	this	property	is	TRUE.	Each	addition	or	change	is
written	to	the	CogoPoints	file	immediately.	If	this	property	is	set	to
FALSE,	the	Save	method	must	be	called	to	write	additions	or	changes	to
the	CogoPoints	file.	The	Add	method	for	CogoPoints	is	always	executed
immediately,	regardless	of	the	AutoSave	setting.

Returns	and	sets	the	AutoSave.

Signature

object.AutoSave

object

DescriptionKeyFiles
The	object	or	objects	this	property	applies	to.

AutoSave
Boolean;	read-write
TRUE:		AutoSave	is	enabled
FALSE:	AutoSave	is	disabled

Remarks

The	initial	value	for	this	property	is	TRUE.	Each	addition	or	change	is
written	to	the	DescriptionKeyFiles	file	immediately.	If	this	property	is	set
to	FALSE,	the	Save	method	must	be	called	to	write	additions	or	changes
to	the	DescriptionKeyFiles	file.	The	Add	method	for	DescriptionKeyFiles
and	DescriptionKeyFile	are	always	executed	immediately,	regardless	of
the	AutoSave	setting.

Returns	and	sets	the	AutoSave.

Signature

object.AutoSave

object
PointGroups
The	object	or	objects	this	property	applies	to.

AutoSave
Boolean;	read-write
TRUE:		AutoSave	is	enabled
FALSE:	AutoSave	is	disabled

Remarks

The	initial	value	for	this	property	is	TRUE.	Each	addition	or	change	is
written	to	the	PointGroups	collection	immediately.	If	this	property	is	set	to
FALSE,	the	Save	method	must	be	called	to	write	additions	or	changes	to
the	PointGroups	collection.	The	Add	method	for	PointGroups	is	always

executed	immediately,	regardless	of	the	AutoSave	setting.

AverageGrade	Property

The	average	grade	for	the	Surface.

See	Also	|	Example

Signature

object.AverageGrade

object
Surface	The	object	or	objects	this	property	applies
to.

AverageGrade
Double;	read-only
The	average	grade	for	the	surface.

Remarks

This	is	an	Extended	Statistic.

javascript:history.back();

BasePoint	Property

Gets	and	sets	the	base	point	for	the	drawing	as	an	XY.

See	Also	|	Example

Signature

object.BasePoint

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

BasePoint
Variant	(3	element	array	of	doubles);	read-write
The	base	point	in	WCS	X,	Y,	Z.

Remarks

Set	this	value	to	indicate	the	WCS	X,	Y,	Z	that	corresponds	to	the	value
of	the	BasePointNE	property.	In	the	default	coordinate	system	X,Y	is	0,0
and	the	Northing/Easting	is	0,0.

javascript:history.back();

BasePointNE	Property

Gets	and	sets	the	base	point	for	the	drawing	as	an	ENZ.

See	Also	|	Example

Signature

object.BasePointNE

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

BasePointNE
Variant	(3	element	array	of	doubles);	read-write
The	base	point	in	WCS	X,	Y,	Z.

Remarks

Set	this	value	to	indicate	the	Easting,	Northing	and	elevation	that
corresponds	to	the	value	of	the	BasePoint	property.	In	the	default
coordinate	system	X,Y	is	0,0	and	the	Northing/Easting	is	0,0.

javascript:history.back();
javascript:history.back();

BeginCondition	Property

Returns	the	BeginCondition	for	the	Spiral.

See	Also	|	Example

Signature

object.BeginCondition

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

BeginCondition
eAeccSpiralBegin	enum;	read-only

kSC: Spiral	begins	on	the	SC	point

kTS: Spiral	begins	on	the	TS	point

Remarks

The	BeginCondition	determines	whether	the	spiral	begins	on	its	SC	or	TS
point.

BorderBlockFilename	Property

Specifies	the	block	filename	to	insert	as	a	border.

See	Also	|	Example

Signature

object.BorderBlockFilename

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

BorderBlockFilename
String;	read-write
The	border	block	filename.

Remarks

The	block	names	comply	with	the	following	naming	conventions:
			pf_	are	plan	borders	for	drawings	that	use	feet	as	units
			pm_	are	plan	borders	for	drawings	that	use	meters	as	units
			df_	are	detail	borders	for	drawings	that	use	feet	as	units
			dm_	are	detail	borders	for	drawings	that	use	meters	as	units

javascript:history.back();

BorderBottomMargin	Property

Specifies	the	bottom	margin	for	the	border.

See	Also	|	Example

Signature

object.BorderBottomMargin

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

BorderBottomMargin
Double;	read-write
The	border	bottom	margin.

javascript:history.back();

BorderLeftMargin	Property

Specifies	the	left	margin	for	the	border.

See	Also	|	Example

Signature

object.BorderLeftMargin

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

BorderLeftMargin
Double;	read-write
The	border	left	margin.

javascript:history.back();

BorderLineWidth	Property

Specifies	the	line	width	of	the	border.

See	Also	|	Example

Signature

object.BorderLineWidth

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

BorderLineWidth
Double;	read-write
The	border	line	width.

javascript:history.back();

BorderPath	Property

Specifies	the	directory	in	which	the	border	files	are	located.

See	Also	|	Example

Signature

object.BorderPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

BorderPath
String;	read-write
The	drive	and	path	for	the	drawing	setup	border
.dwg	files.

Remarks

The	project	path	is	C:\My	DataPath\borders.	By	default,	the	data	directory
is	C:\Documents	and	Settings\All	Users\Application
Data\Autodesk\AutoCAD	Land	Desktop	<version	number>\<release
number>\Data.	You	must	exit	AutoCAD	Land	Desktop	and	restart	for	this
change	to	take	effect.

javascript:history.back();

BorderRightMargin	Property

Specifies	the	right	margin	for	the	border.

See	Also	|	Example

Signature

object.BorderRightMargin

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

BorderRightMargin
Double;	read-write
The	border	right	margin.

javascript:history.back();
javascript:history.back();

BorderStyle	Property

Specifies	the	border	style	to	use	for	the	drawing.

See	Also	|	Example

Signature

object.BorderStyle

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

BorderStyle
eAeccBorderStyle	enum;	read-write
The	type	of	the	Border.

kBorderStyleLine: Insert	a	polyline

kBorderStyleUnscaledBlock: Insert	a	block	at	1:1

kBorderStyleScaledBlock: Insert	a	block	using
DatabaseScale

kBorderStyleNone: No	border

BorderTopMargin	Property

Specifies	the	top	margin	for	the	border.

See	Also	|	Example

Signature

object.BorderTopMargin

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

BorderTopMargin
Double;	read-write
The	border	top	margin.

javascript:history.back();

Boundaries	Property

Returns	the	Boundaries	collection.

See	Also	|	Example

Signature

object.Boundaries

object
SurfaceInputs	The	object	or	objects	this	property
applies	to.

Boundaries
Boundaries	collection;	read-only
The	Boundaries	collection.

javascript:history.back();

Boundary	Property

Returns	the	boundary	of	the	Watershed.

See	Also	|	Example

Signature

object.Boundary

object
WaterShed	The	object	or	objects	this	property
applies	to.

Boundary
Variant	(array	of	doubles);	read-only
An	array	of	doubles	representing	the	vertices	of	the
boundary	for	the	WaterShed.

javascript:history.back();

BreakLines	Property

Returns	the	BreakLines	collection.

See	Also	|	Example

Signature

object.BreakLines

object
SurfaceInputs	The	object	or	objects	this	property
applies	to.

BreakLines
BreakLines	collection;	read-only
The	BreakLines	collection.

javascript:history.back();

CCWFlag	Property

The	counter-clockwise	flag	for	the	curve	or	parcel.

See	Also	|	Example

Signature:	Overview

l	AlignCurve

l	ParcelCurve

The	counter-clockwise	flag	for	the	curve.

Signature

object.CCWFlag

object
AlignCurve	The	object	or	objects	this	property
applies	to.

CCWFlag
Boolean;	read-only
TRUE:		The	curve	is	counter-clockwise.
FALSE:	The	curve	is	clockwise.

The	counter-clockwise	flag	for	the	parcel.

Signature

javascript:history.back();

object.CCWFlag

object
ParcelCurve
The	object	or	objects	this	property	applies	to.

CCWFlag
Boolean;	read-only
TRUE:		The	curve	is	counter-clockwise.
FALSE:	The	curve	is	clockwise.

CenterEasting	Property

The	Easting	coordinate	for	the	alignment	curves	or	parcel	curves
centroid.

See	Also	|	Example

Signature:	Overview

l	AlignCurve

l	ParcelCurve

The	Easting	coordinate	for	the	curve's	centroid.

Signature

object.CenterEasting

object
AlignCurve	The	object	or	objects	this	property
applies	to.

CenterEasting
Double;	read-only
The	east	coordinate	for	the	center	of	the	curve.

The	Easting	coordinate	for	the	parcel's	centroid.

Signature

javascript:history.back();

object.CenterEasting

object
ParcelCurve
The	object	or	objects	this	property	applies	to.

CenterEasting
Double;	read-only
The	east	coordinate	for	the	center	of	the	curve.

javascript:history.back();

CenterlineOffset	Property	(Civil	Engineering	Feature)

Returns	the	centerline	offset	of	the	cross	section.

See	Also	|	Example

Signature

object.CenterlineOffset

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

CenterlineOffset
Double;	read-only
The	centerline	offset	of	the	cross	section.

CenterNorthing	Property

The	Northing	coordinate	for	the	alignment	curves	or	parcel	curves	center.

See	Also	|	Example

Signature:	Overview

l	AlignCurve

l	ParcelCurve

The	Northing	coordinate	for	the	curve's	center.

Signature

object.CenterNorthing

object
AlignCurve	The	object	or	objects	this	property
applies	to.

CenterNorthing
Double;	read-only
The	north	coordinate	for	the	center	of	the	curve.

The	Northing	coordinate	for	the	parcel's	center.

Signature

object.CenterNorthing

javascript:history.back();

object
ParcelCurve
The	object	or	objects	this	property	applies	to.

CenterNorthing
Double;	read-only
The	north	coordinate	for	the	center	of	the	curve.

CentroidEasting	Property

Returns	the	centroid	easting	of	the	Parcel.

See	Also	|	Example

Signature

object.CentroidEasting

object
Parcel	The	object	or	objects	this	property	applies	to.

CentroidEasting
Double;	read-only
The	parcel's	centroid	easting	value.

javascript:history.back();

CentroidNorthing	Property

The	northing	coordinate	of	the	parcel	centroid.

See	Also	|	Example

Signature

object.CentroidNorthing

object
Parcel	The	object	or	objects	this	property	applies	to.

CentroidNorthing
Double;	read-only
The	parcel's	centroid	northing	value.

javascript:history.back();

ChordDirection	Property

The	direction	of	the	chord	for	the	curve.

See	Also	|	Example

Signature

object.ChordDirection

object
AlignCurve	The	object	or	objects	this	property
applies	to.

ChordDirection
Double;	read-only
The	angle	of	the	chord	for	the	curve.	The	angle	is	in
radians	and	measured	counter-clockwise	from	the	X
axis	(East).

javascript:history.back();

ChordLength	Property

The	chord	length	of	the	alignment	or	parcel	curve.

See	Also	|	Example

Signature:	Overview

l	AlignCurve

l	ParcelCurve

The	chord	length	of	the	alignment	curve.

Signature

object.ChordLength

object
AlignCurve	The	object	or	objects	this	property
applies	to.

ChordLength
Double;	read-only
The	chord	length	of	the	curve.

The	chord	length	of	the	parcel	curve.

Signature

object.ChordLength

javascript:history.back();

object
ParcelCurve
The	object	or	objects	this	property	applies	to.

ChordLength
Double;	read-only
The	chord	length	of	the	curve.

CivilDataFilesPath	Property

Specifies	the	directory	in	which	the	civil	engineering	feature	data	is
located.

See	Also	|	Example

Signature

object.CivilDataFilesPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

CivilDataFilesPath
String;	read-write
The	drive	and	path	for	the	civil	enginering	feature
data	files.

Remarks

By	default,	this	path	is	C:\Documents	and	Settings\All	Users\Application
Data\Autodesk\AutoCAD	Land	Desktop	<version	number>\<release
number>\Data,	the	same	as	the	default	path	for	the	AutoCAD	Land
Desktop	data	path.	You	must	exit	AutoCAD	Land	Desktop	and	restart	for
this	change	to	take	effect.

javascript:history.back();

Code	Property

Returns	the	cross	section	point	code	or	description	key	code.

See	Also	|	Example

Signature:	Overview

l	CrossSectionPointCode	(Civil	Engineering	Feature)

l	DescriptionKey

Returns	the	cross	section	point	code.

Signature

object.Code

object
CrossSectionPointCode	The	object	or	objects	this
property	applies	to.

Code
Integer;	read-only
Returns	the	cross	section	point	code.

Specifies	the	description	key	syntax.

Signature

object.Code

javascript:history.back();

object
DescriptionKey
The	object	or	objects	this	property	applies	to.

Code
String;	read-only.
Returns	the	code	for	a	description	key,	not	including
the	path.

Cogo	Property

The	collection	of	cogo	preferences	for	the	project.

See	Also	|	Example

Signature

object.Cogo

object
PreferencesProject	The	object	or	objects	this
property	applies	to.

Cogo
PreferencesCogo;	read-only
The	PreferencesCogo	object.

javascript:history.back();

CogoPoints	Property

Gets	the	CogoPoints	collection.

See	Also	|	Example

Signature

object.CogoPoints

object
Project	The	object	or	objects	this	property	applies
to.

CogoPoints
CogoPoints	collection;	read-only
The	CogoPoints	collection.

Remarks

The	CogoPoints	collection	represents	all	of	the	CogoPoint	objects	in	this
project.	This	property	is	valid	only	for	the	ActiveProject.

javascript:history.back();

ContourItems	Property

Returns	the	ContourItems	collection.

See	Also	|	Example

Signature

object.ContourItems

object
SurfaceInputs	The	object	or	objects	this	property
applies	to.

ContourItems
ContourItems	collection;	read-only
The	ContourItems	collection.

javascript:history.back();

ContourStyle	Property

Returns	and	set	the	Contour	Style	object	for	this	contour.

See	Also	|	Example

Signature	

object.ContourStyle

object
AeccContour	The	object	or	objects	this	property
applies	to.

ContourStyle
AeccContourStyle	object;	read-write
A	contour	style	from	the	dictionary.

Remarks

You	can	use	this	property	to	get	the	contour	style	currently	applied	to	this
contour,	or	apply	a	different	style.

The	Contour	Style	object	represents	an	entry	in	the	dictionary	named
"AECC_CONTOUR_STYLES".	The	Contour	Style	object	exposes	a
Name	property,	which	is	the	keyword.	You	can	iterate	through	the
dictionary	as	a	collection	to	determine	the	contour	styles	available	in	the
drawing.

javascript:history.back();

ContourStyleName	Property

Returns	the	Contour	Style

See	Also	|	Example

Signature

object.ContourStyleName

object
AeccContour	The	object	or	objects	this	property
applies	to.

ContourStyleName
String,	read-write
Returns	the	Contour	Style	name.

javascript:history.back();

ContourStylesPath	Property

Specifies	the	directory	in	which	the	contour	styles	are	located.

See	Also	|	Example

Signature

object.ContourStylesPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

ContourStylesPath
String;	read-write
The	drive	and	path	for	the	contour	style	files.

Remarks

By	default,	the	project	path	is	C:\Documents	and	Settings\All
Users\Application	Data\Autodesk\AutoCAD	Land	Desktop	<version
number>\<release	number>\Data\Contours.	You	must	exit	AutoCAD
Land	Desktop	and	restart	for	this	change	to	take	effect.

javascript:history.back();

CoordinatePrecision	Property

Specifies	the	coordinate	precision	for	the	drawing.

See	Also	|	Example

Signature

object.CoordinatePrecision

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

CoordinatePrecision
Long;	read-write
The	number	of	decimals	to	the	right	of	the	decimal
point.

Remarks

This	is	used	to	display	all	Northing/Easting	coordinate	information.

The	precision	settings	are	used	only	for	labeling	and	listing	values,	not
actual	computations.	AutoCAD	Land	Desktop	commands	always
calculate	all	numbers	up	to	the	highest	internal	precision.

javascript:history.back();

Coordinates	Property

The	coordinate	properties	for	various	objects.

See	Also	|	Example

Signature:	Overview

l	AeccContour

l	Boundary

l	BreakLine

l	CogoPoint

l	ContourItem

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	Edge

l	ElevationContour

l	Face

l	ProfileBlock	(Civil	Engineering	Feature)

Returns	the	vertices	of	the	Contour	in	XYZ	as	doubles.

Signature

javascript:history.back();

object.Coordinates

object
AeccContour	The	object	or	objects	this	property
applies	to.

Coordinates
Variant	(three-element	array	of	doubles);	read-write
The	array	of	points.

Returns	the	vertices	of	the	Boundary	in	ENZ	as	doubles.

Signature

object.Coordinates

object
Boundary
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(three-element	array	of	doubles);	read-only
The	array	of	points.

Returns	the	vertices	of	the	BreakLine	in	ENZ	as	doubles

Signature

object.Coordinates

object
BreakLine
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(three-element	array	of	doubles);	read-only
The	array	of	points.

Remarks

To	modify	the	points	for	a	BreakLine,	you	must	deleted	the	BreakLine	and
add	a	new	one.

Returns	the	point	coordinates	in	XYZ	as	doubles.

Signature

object.Coordinates

object
CogoPoint
The	object	or	objects	this	property	applies	to.

Coordinates
Variant:	(3	element	array	of	doubles);	read-only
The	point	coordinate

Returns	the	vertices	of	the	ContourItem	in	ENZ	as	doubles.

Signature

object.Coordinates

object
ContourItem
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(three-element	array	of	doubles);	read-only
The	vertices	of	the	contour.	

Returns	the	alignment	cross	section	coordinates.

Signature

object.Coordinates

object
CrossSectionBlock
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(two-element	array	of	doubles);	read-only
The	array	of	X	and	Y	values.

Remarks

The	coordinates	represent	the	AutoCAD	X	and	Y	position	of	the
alignment	cross	section	where	the	user	selected	the	bottom	insertion
point.

Returns	the	vertices	of	the	Edge	in	ENZ	as	doubles.

Signature

object.Coordinates

object
Edge
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(6	element	array	of	doubles);	read-only
The	point	coordinate	for	the	start	and	end	of	the
edge

Returns	the	vertices	of	the	ElevationContour	in	ENZ	as	doubles.

Signature

object.Coordinates	Points

object

ElevationContour
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(array	of	doubles);	read-only
Contains	an	array	of	doubles	in	the	format	of
Easting,	Northing,	Elevation,	etc.

Returns	the	vertices	of	the	face	in	ENZ	as	doubles.

Signature

object.Coordinates

object
Face
The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(9	element	array	of	doubles);	read-only
The	point	coordinates	for	the	three	points	of	the	face
triangle.

Remarks

Returns	the	coordinates	for	the	face.	The	vertices	are	numbered	0,	1,
and	2.	They	are	returned	in	counter-clockwise	order.

Returns	the	Coordinates	of	the	Alignment	Profile	as	AutoCAD	X	and	Y
values.

Signature

object.Coordinates

object
ProfileBlock

The	object	or	objects	this	property	applies	to.

Coordinates
Variant	(two-element	array	of	doubles);	read-only
The	array	of	X	and	Y	values.

Remarks

The	coordinates	represent	the	AutoCAD	X	and	Y	position	of	the	lower	left
corner	of	the	alignment	profile	where	the	user	selected	the	starting	point.

CoordinateZone	Property

Specifies	the	coordinate	zone.

See	Also	|	Example

Signature:	Overview

l	DatabasePreferences

l	DEMFile

Specifies	the	preferences	coordinate	zone.

Signature

object.CoordinateZone

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

CoordinateZone
String;	read-write
The	coordinate	system	syntax	for	the	zone.

Remarks

Drawings	in	a	project	can	have	the	same	or	different	coordinate	zones
assigned	to	them.	To	work	in	real-world	coordinates,	you	must	establish	a
current	zone	for	the	drawing.

javascript:history.back();

The	coordinate	zone	code	for	the	DEM	file.

Signature

object.CoordinateZone

object
DEMFile
The	object	or	objects	this	property	applies	to.

CoordinateZone
String;	read-only
The	coordinate	zone	code	for	the	DEM	file.

Remarks

The	CoordinateZone	property	is	optional,	and	can	only	be	set	with	the
Add	method	of	the	DEMFiles	collection.

Count	Property

Gets	the	number	of	items	in	the	collection.

See	Also	|	Example

Signature

object.Count

object
All	Collections	The	object	or	objects	this	property
applies	to.

Count
Long;	read-only
The	number	of	items	in	the	collection.

javascript:history.back();

Course	Property

Returns	the	Course	of	the	parcel	entity.

See	Also	|	Example

Signature

object.Course

object
ParcelEntity,	ParcelCurve,	ParcelLine
The	object	or	objects	this	property	applies	to.

Course
Double;	read-only
The	course	In	for	the	parcel.	The	course	angle	is	in
radians	and	measured	counter-clockwise	from	the	X
axis	(East).

javascript:history.back();

CourseIn	Property

Returns	the	Course	In	of	the	Parcel.

See	Also	|	Example

Signature

object.CourseIn

object
ParcelCurve	The	object	or	objects	this	property
applies	to.

CourseIn
Double;	read-only
The	course	In	for	the	parcel.	The	course	angle	is	in
radians	and	measured	counter-clockwise	from	the	X
axis	(East).

javascript:history.back();

CourseOut	Property

Returns	the	Course	Out	of	the	Parcel.

See	Also	|	Example

Signature

object.CourseOut

object
ParcelCurve	The	object	or	objects	this	property
applies	to.

CourseOut
Double;	read-only
The	course	In	for	the	parcel.	The	course	angle	is	in
radians	and	measured	counter-clockwise	from	the	X
axis	(East).

javascript:history.back();

CrossSection	Property	(Civil	Engineering	Feature)

The	collection	of	cross	section	preferences	for	the	project.

See	Also	|	Example

Signature

object.CrossSection

object
PreferencesProject	The	object	or	objects	this
property	applies	to.

CrossSection
PreferencesCrossSection;	read-only
The	PreferencesCrossSection	object.

javascript:history.back();

CrossSectionBlocks	Property

Gets	the	CrossSectionBlocks	object.

See	Also	|	Example

Signature

object.CrossSectionBlocks

object
Document	The	object	or	objects	this	property
applies	to.

CrossSectionBlocks
CrossSectionBlocks	object;	read-only
The	CrossSectionBlocks	object.

javascript:history.back();

CrossSectionPointCodes	Property	(Civil	Engineering
Feature)

Returns	the	cross	sections	point	codes	collection

See	Also	|	Example

Signature

object.CrossSectionPointCodes

object
CrossSection	The	object	or	objects	this	property
applies	to.

CrossSectionPointCodes
CrossSectionPointCodes	collection;	read-only
The	CrossSectionPointCodes	collection.

javascript:history.back();

CrossSections	Property	(Civil	Engineering	Feature)

Gets	the	alignment	cross	sections	collection.

See	Also	|	Example

Signature

object.CrossSections

object
Alignment	The	object	or	objects	this	property
applies	to.

CrossSections
CrossSections	collection;	read-only
The	CrossSections	collection.

javascript:history.back();

CrossSectionSurfaces	Property	(Civil	Engineering
Feature)

Returns	the	cross	sections	surfaces	collection

See	Also	|	Example

Signature

object.CrossSectionSurfaces

object
CrossSection	The	object	or	objects	this	property
applies	to.

CrossSectionSurfaces
CrossSectionSurfaces	collection;	read-only
The	CrossSectionSurfaces	collection.

javascript:history.back();

CurrentAlignment	Property

Sets	and	gets	the	current	alignment.

See	Also	|Example

Signature

object.CurrentAlignment

object
Alignments	The	object	or	objects	this	property
applies	to.

CurrentAlignment
String;	read-write
The	current	alignment	name.

Remarks

All	alignments	initially	are	loaded	with	read	only	permission.	Only	the
current	alignment	can	have	write	permissions.	However,	another	user
could	have	all	ready	locked	that	alignment.	If	this	happens,	read
permissions	will	be	granted	for	the	current	alignment.

By	changing	the	current	alignment,	you	are	a)	locking	/	unlocking
alignments	and	b)	setting	the	current	alignment	in	the	AutoCAD	Land
Desktop	menus.

Setting	CurrentAlignment	to	an	empty	string	removes	the	current
alignment	status.

javascript:history.back();

CurrentSurface	Property

Gets	/	sets	the	current	Surface.

See	Also	|	Example

Signature

object.CurrentSurface

object
Surfaces	The	object	or	objects	this	property	applies
to.

CurrentSurface
String;	read-write
The	current	surface	set	in	project.

Remarks

Only	one	surface	can	be	considered	current	in	project.	This	surface	is
both	opened	and	locked.

javascript:history.back();
javascript:history.back();

CurveCode	Property	(Civil	Engineering	Feature)

Returns	the	superelevation	curve	code.

See	Also	|	Example

Signature

object.CurveCode

object
Superelevation	The	object	or	objects	this	property
applies	to.

CurveCode
eAeccSectionSECurveCode;	read-only

kSERightHandCurve: Right	hand	curve

kSELeftHandCurve: Left	hand	curve

CurveLabelIncrement	Property	(Civil	Engineering
Feature)

Returns	the	distance	between	vertical	curve	elevation	labels.

See	Also	|	Example

Signature

object.CurveLabelIncrement

object
ProfileBlock	The	object	or	objects	this	property
applies	to.

CurveLabelIncrement
Double;	read-only
The	Curve	Label	increment	for	the	Profile.

javascript:history.back();

CurveLength	Property	(Civil	Engineering	Feature)

Returns	the	Curve	Length	of	the	PVI.

See	Also	|	Example

Signature

object.CurveLength

object
PVI	The	object	or	objects	this	property	applies	to.

CurveLength
Double;	read-only
The	Curve	Length	for	the	PVI.

javascript:history.back();

DatabaseScale	Property

Specifies	the	database	scale	at	which	the	horizontal	axis	of	the	drawing
is	displayed.

See	Also	|	Example

Signature

object.DatabaseScale

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

DatabaseScale
Double;	read-write
The	database	(horizontal)	scale.	For	example,	for	a
1:200	scale,	type	200.

Remarks

The	database	(horizontal)	scale	controls	the	size	of	annotation	placed	in
the	drawing,	including	text,	scaled	blocks	and	special	lines.	It	does	not
affect	the	line	lengths	or	point	coordinates	because	they	are	always
defined	in	real	world	coordinates,	not	to	any	scale.	Neither	does	it	affect
any	design	data	in	the	drawing	or	project	files.

If	you	change	the	DatabaseScale	property	in	the	middle	of	a	drawing
session,	then	any	annotation	added	subsequently	is	scaled	accordingly.

javascript:history.back();

DataPath	Property

Specifies	the	directory	in	which	the	AutoCAD	Land	Desktop	data	files	are
installed.

See	Also	|	Example

Signature

object.DataPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

DataPath
String;	read-only
The	drive	and	path	for	the	data	files.

Remarks

This	value	is	read-only	and	cannot	be	changed.

javascript:history.back();

DatumElevation	Property	(Civil	Engineering	Feature)

Returns	the	datum	elevation	for	the	alignment	profile	or	cross	section.

See	Also	|	Example

Signature:	Overview

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	ProfileBlock	(Civil	Engineering	Feature)

Returns	the	datum	elevation	for	the	alignment	cross	section.

Signature

object.DatumElevation

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

DatumElevation
Double;	read-only
The	datum	elevation	for	the	alignment	cross	section.

Returns	the	datum	elevation	for	the	alignment	profile.

Signature

object.DatumElevation

javascript:history.back();

object
ProfileBlock
The	object	or	objects	this	property	applies	to.

DatumElevation
Double;	read-only
The	datum	elevation	for	the	alignment	profile.

Delta	Property

The	delta	value	for	a	AlignCurve,	AlignSpiral,	or	ParcelCurve.

See	Also	|	Example

Signature:	Overview

l	AlignCurve,	AlignSpiral

l	ParcelCurve

The	delta	value	for	the	alignment	curve	or	spiral.

Signature

object.Delta

object
AlignCurve,	AlignSpiral
The	object	or	objects	this	property	applies	to.

Delta
Double;	read-only
The	internal	(included)	angle	for	the	curve	in
radians.

The	delta	value	for	the	parcel	curve.

Signature

javascript:history.back();

object.Delta

object
ParcelCurve
The	object	or	objects	this	property	applies	to.

Delta
Double;	read-only
The	internal	(included)	angle	for	the	curve	in
radians.

DEMFiles	Property

Returns	the	DEMFiles	collection.

See	Also	|	Example

Signature

object.DEMFiles

object
SurfaceInputs	The	object	or	objects	this	property
applies	to.

DEMFiles
DEMFiles	collection;	read-only
The	DEMFiles	collection.

javascript:history.back();

Description	Property

The	description	properties	for	various	objects.

See	Also	|	Example

Signature:	Overview

l	AeccPoint

l	Alignment

l	Boundary

l	BreakLine

l	CrossSectionPointCode	(Civil	Engineering	Feature)

l	PointGroup

l	Project

l	Prototype

l	Surface

The	description	for	the	point	object.

Signature

object.Description

javascript:history.back();

object
AeccPoint	The	object	or	objects	this	property
applies	to.

Description
String;	read-write
The	description	for	the	point	object.

The	alignment	description.

Signature

object.Description

object
Alignment
The	object	or	objects	this	property	applies	to.

Description
String;	read-write
The	description	for	the	alignment.

The	description	for	the	Boundary.

Signature

object.Description

object
Boundary
The	object	or	objects	this	property	applies	to.

Description
String:	read-write
The	description	of	the	boundary.

The	description	for	the	BreakLine

Signature

object.Description

object
BreakLine
The	object	or	objects	this	property	applies	to.

Description
String;	read-write
The	description	for	the	BreakLine.

The	description	for	the	cross	sections	point	code.

Signature

object.Description

object
CrossSectionPointCode
The	object	or	objects	this	property	applies	to.

Description
String;	read-only
The	description	for	the	point	code.

Specifies	the	description	override	for	the	project	database	point	group.

Signature

object.Description

object
PointGroup
The	object	or	objects	this	property	applies	to.

Description
String;	read-write

Remarks

If	the	Description	property	is	set,	then	the	DescriptionXDRef	property	is
cleared.

Specifies	the	prototype	used	for	the	project.

Signature

object.Description

object
Project
The	object	or	objects	this	property	applies	to.

Prototype
String;	read-write
The	prototype	used	for	this	project.

The	prototype	description.

	

Signature

object.Description

object
Prototype
The	object	or	objects	this	property	applies	to.

Description
String;	read-write
The	prototype	description.

Remarks

Use	this	property	to	change	the	description	of	a	prototype.

The	description	for	the	Surface.

Signature

object.Description

object
Surface
The	object	or	objects	this	property	applies	to.

Description
String;	read-write
The	description	for	the	surface.

Remarks

The	Surface	description	can	be	up	to	255	characters.

DescriptionFormat	Property

Specifies	the	description	key	format.

See	Also	|	Example

Signature

object.DescriptionFormat

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

DescriptionFormat
String;	read-write
Returns	and	sets	the	description	format.

javascript:history.back();

DescriptionKeyFiles	Property

Gets	the	DescriptionKeyFiles	collection.

See	Also	|	Example

Signature

object.DescriptionKeyFiles

object
Project	The	object	or	objects	this	property	applies
to.

DescriptionKeyFiles
DescriptionKeyFiles	collection;	read-only
The	DescriptionKeyFiles	collection.

Remarks

The	DescriptionKeyFiles	collection	represents	all	of	the
DescriptionKeyFiles	objects	in	this	project.	This	property	is	valid	only	for
the	ActiveProject.

javascript:history.back();

DescriptionLayer	Property

Specifies	the	description	key	layer.

See	Also	|	Example

Signature

object.DescriptionLayer

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

DescriptionLayer
String;	read-write
Returns	and	sets	the	description	layer.

javascript:history.back();

DescriptionOverride	Property

Specifies	if	the	description	for	the	project	database	point	will	be
overridden	from	the	Point	Group.

See	Also	|	Example

Signature

object.DescriptionOverride

object
PointGroup	The	object	or	objects	this	property
applies	to.

DescriptionOverride
Boolean;	read-write
TRUE:		The	Cogo	project	point	description	will	be
set	by	the	Point	Group.
FALSE:	The	Cogo	project	point	description	will	not
be	set	by	the	Point	Group.

Remarks

When	you	set	this	value	to	FALSE,	the	Description	property	will	be
cleared.

javascript:history.back();

DescriptionXDRef	Property

Specifies	the	description	override	for	the	project	database	point	group.

See	Also	|	Example

Signature

object.DescriptionXDRef

object
PointGroup	The	object	or	objects	this	property
applies	to.

DescriptionXDRef
String;	read-write
The	name	of	the	external	database	reference.

Remarks

The	description	will	be	taken	from	the	external	database	reference
(XDRef).	If	the	DescriptionXDRef	property	is	set,	then	the	Description
property	is	cleared.

javascript:history.back();

Direction	Property

The	Direction	of	the	ProfileBlock	or	alignment	tangent.

See	Also	|	Example

Signature:	Overview

l	AlignTangent

l	ProfileBlock	(Civil	Engineering	Feature)

The	direction	of	the	alignment	tangent.

Signature

object.Direction

object
AlignTangent	The	object	or	objects	this	property
applies	to.

Direction
Double;	read-only
The	polar	direction	of	the	tangent.

The	direction	of	the	alignment	profile.

Signature

object.Direction

javascript:history.back();

object
ProfileBlock
The	object	or	objects	this	property	applies	to.

Direction
String;	read-only
The	direction	of	the	alignment	profile.

Documents	Property

Gets	the	Document	collection.

See	Also	|	Example

Signature

object.Documents

object
AeccApplication	The	object	or	objects	this	property
applies	to.

Documents
Documents	collection;	read-only

Remarks

The	Documents	collection	allows	you	to	access	all	the	documents,	or
drawings,	in	the	current	AutoCAD	Land	Desktop	session.

javascript:history.back();

DrainsInto	Property

Returns	an	array	of	Ids	that	the	Watershed	drains	into.

See	Also	|	Example

Signature

object.DrainsInto

object
WaterShed	The	object	or	objects	this	property
applies	to.

DrainsInto
Variant	(array	of	longs);	read-only
An	array	of	WaterShed	Ids	that	the	current
WaterShed	drains	into.

javascript:history.back();

DrawingPath	Property

Specifies	the	drawing	path	of	the	project.

See	Also	|	Example

Signature

object.DrawingPath

object
Project	The	object	or	objects	this	property	applies
to.

DrawingPath
String;	read-write
The	drawing	path	used	by	the	project.

Remarks

The	initial	value	of	this	property	is	empty	-	the	default	drawing	path	to
save	drawings	in	is	the	\dwg	subfolder.

javascript:history.back();

Drawings	Property

Gets	the	Drawings	collection.

See	Also	|	Example

Signature

object.Drawings

object
Project	The	object	or	objects	this	property	applies
to.

Drawings
Drawings	collection;	read-only
The	Drawings	collection.

Remarks

The	Drawings	collection	represents	all	drawings	in	the	DrawingPath	for
this	project.

javascript:history.back();

DrawingSetupPath	Property

Specifies	the	directory	in	which	the	drawing	setup	files	are	located.

See	Also	|	Example

Signature

object.DrawingSetupPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

DrawingSetupPath
String;	read-write
The	drive	and	path	for	the	drawing	setup	files.

Remarks

By	default,	this	path	is	C:\Documents	and	Settings\All	Users\Application
Data\Autodesk\AutoCAD	Land	Desktop	<version	number>\<release
number>\Data\setup.	You	must	exit	AutoCAD	Land	Desktop	and	restart
for	this	change	to	take	effect.

javascript:history.back();

Easting	Property

The	Easting	coordinates	properties	for	various	objects.

See	Also	|	Example

Signature:	Overview

l	AeccPoint

l	CogoPoint

l	TinPoint

The	Easting	coordinate	of	the	point.

Signature

object.Easting

object
AeccPoint	The	object	or	objects	this	property
applies	to.

Easting
Double;	read-write
The	Easting	coordinate	of	the	point.

Remarks

The	Easting	coordinate	is	derived	from	the	WCS	X	coordinate	with	the
BasePoint	and	NorthRotation	applied.

javascript:history.back();

The	east	coordinate	for	the	point.

Signature

object.Easting

object
CogoPoint
The	object	or	objects	this	property	applies	to.

Easting
Double;	read-write

The	Easting	coordinate	for	the	TinPoint.

Signature

object.Easting

object
TinPoint
The	object	or	objects	this	property	applies	to.

Easting
Double;	read-only
The	Easting	coordinate.

Edges	Property

Returns	the	Edges	collection.

See	Also	|	Example

Signature

object.Edges

object
SurfaceOutputs	The	object	or	objects	this	property
applies	to.

Edges
Edges	collection;	read-only
The	Edges	collection.

javascript:history.back();

EGPrecision	Property	(Civil	Engineering	Feature)

Returns	the	existing	ground	precision	for	the	alignment	profile	or	cross
section.

See	Also	|	Example

Signature:	Overview

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	ProfileBlock	(Civil	Engineering	Feature)

Returns	the	existing	ground	precision	for	the	alignment	cross	section.

Signature

object.EGPrecision

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

EGPrecision
Integer;	read-only
The	existing	ground	precision	for	the	alignment
cross	section.

Returns	the	existing	ground	precision	for	the	alignment	profile.

javascript:history.back();

Signature

object.EGPrecision

object
ProfileBlock
The	object	or	objects	this	property	applies	to.

EGPrecision
Integer;	read-only
The	existing	ground	precision	for	the	alignment
profile.

EGProfiles	Property	(Civil	Engineering	Feature)

Gets	the	existing	ground	profiles	collection.

See	Also	|	Example

Signature

object.EGProfiles

object
Alignment	The	object	or	objects	this	property
applies	to.

EGProfiles
EGProfiles	collection;	read-only
The	EGProfiles	collection.

javascript:history.back();

Elevation	Property

The	elevation	property	for	various	objects.

See	Also	|	Example

Signature:	Overview

l	AeccContour

l	AeccPoint

l	CogoPoint

l	CrossSectionPointCode	(Civil	Engineering	Feature)

l	ElevationContours

l	PointGroup

l	PVI	(Civil	Engineering	Feature)

l	TinPoint

The	elevation	of	the	AeccContour.

Signature

object.Elevation

object
AeccContour	The	object	or	objects	this	property

javascript:history.back();

applies	to.

Elevation
Double;	read-write
The	elevation	of	the	contour.

The	elevation	of	the	AeccPoint.

Signature

object.Elevation

object
AeccPoint
The	object	or	objects	this	property	applies	to.

Elevation
Double;	read-write
The	elevation	of	the	point.

Remarks

The	Elevation	property	is	always	the	same	as	the	WCS	Z	coordinate.

The	elevation	for	the	CogoPoints.

Signature

object.Elevation

object
CogoPoint
The	object	or	objects	this	property	applies	to.

Elevation
Double;	read-write

Remarks

The	Elevation	property	is	the	raw	elevation.	PointGroup	Overrides	will	not
be	applied	to	this	property.

The	elevation	for	the	cross	section	point	code.

Signature

object.Elevation

object
CrossSectionPointCode
The	object	or	objects	this	property	applies	to.

Elevation
Double;	read-only
The	elevation	for	the	cross	section	point	code.

The	elevation	for	the	ElevationContours	collection.

Signature

object.Elevation

object
ElevationContours
The	object	or	objects	this	property	applies	to.

Elevation
Double;	read-write
The	elevation	of	the	Contours	collection.

Remarks

When	the	elevation	is	set,	the	ElevationContours	collection	will	be
regenerated	with	the	contours	for	that	elevation.	All	contours	in	the
collection	are	of	the	same	elevation.

Specifies	the	elevation	override	for	the	project	database	point	group.

Signature

object.Elevation

object
PointGroup
The	object	or	objects	this	property	applies	to.

Elevation
String;	read-write

Remarks

If	the	Elevation	property	is	set,	then	the	ElevationXDRef	property	is
cleared.

Returns	the	Elevation	of	the	PVI.

Signiture

Object.Elevation

object
PVI
The	object	or	objects	this	property	applies	to.

Elevation
Double;	read-only
The	Elevation	for	the	PVI.

The	Elevation	for	the	TinPoint

Signature

object.Elevation

object
TinPoint
The	object	or	objects	this	property	applies	to.

Elevation
Double;	read-only
The	elevation	for	the	point.

ElevationContours	Property

Returns	the	GenerateContours	collection.

See	Also	|	Example

Signature

object.ElevationContours

object
SurfaceOutputs	The	object	or	objects	this	property
applies	to.

ElevationContours
ElevationContours	collection;	read-only
The	ElevationContours	collection.

javascript:history.back();

ElevationOverride	Property

Specifies	if	the	elevation	for	the	project	database	point	will	be	overridden
from	the	Point	Group.

See	Also	|	Example

Signature

object.ElevationOverride

object
PointGroup	The	object	or	objects	this	property
applies	to.

ElevationOverride
Boolean;	read-write
TRUE:		The	Cogo	project	point	elevation	will	be	set
by	the	Point	Group.
FALSE:		The	Cogo	project	point	elevation	will	not	be
set	by	the	Point	Group.

Remarks

When	you	set	this	value	to	FALSE,	the	Elevation	property	will	be	cleared.

javascript:history.back();

ElevationPrecision	Property

Specifies	the	elevation	precision	for	the	drawing.

See	Also	|	Example

Signature

object.ElevationPrecision

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

ElevationPrecision
Long;	read-write
The	number	of	decimals	to	the	right	of	the	decimal
point.

Remarks

The	precision	settings	are	used	only	for	labeling	and	listing	values,	not
actual	computations.	AutoCAD	Land	Desktop	commands	always
calculate	all	numbers	up	to	the	highest	internal	precision.

javascript:history.back();

ElevationXDRef	Property

Specifies	the	elevation	override	for	the	project	database	point	group.

See	Also	|	Example

Signature

object.ElevationXDRef

object
PointGroup	The	object	or	objects	this	property
applies	to.

ElevationXDRef
String;	read-write
The	name	of	the	external	database	reference.

Remarks

The	elevation	will	be	taken	from	the	external	database	reference
(XDRef).	If	the	ElevationXDRef	property	is	set,	then	the	Elevation
property	is	cleared.

javascript:history.back();

EndDirection	Property

The	ending	direction	of	the	curve.

See	Also	|	Example

Signature

object.EndDirection

object
AlignCurve	The	object	or	objects	this	property
applies	to.

EndDirection
Double;	read-only
The	end	angle	of	the	curve.

Remarks

The	direction	is	in	radians	and	measured	counter-clockwise	from	the	X
axis	(East).

javascript:history.back();

EndEasting	Property

The	Easting	coordinate	for	the	end	of	the	individual	object	entities.

See	Also	|	Example

Signature:	Overview

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	ParcelEntity,	ParcelCurve,	ParcelLine

The	Easting	coordinate	for	the	end	of	the	individual	alignment	entities.

Signature

object.EndEasting

object
AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent
The	object	or	objects	this	property	applies	to.

EndEasting
Double;	read-only
The	Easting	coordinate	for	the	end	point.

The	Easting	coordinate	for	the	end	of	the	individual	parcel	entities.

Signature

object.EndEasting

javascript:history.back();

object
ParcelEntity,	ParcelCurve,	ParcelLine
The	object	or	objects	this	property	applies	to.

EndEasting
Double;	read-only
The	Easting	coordinate	for	the	end	point.

EndingStation	Property

The	object's	ending	station.

See	Also	|	Example

Signature:	Overview

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	Alignment

l	ProfileBlock	(Civil	Engineering	Feature)

The	EndingStation	for	individual	entities	in	an	alignment.

Signature

object.EndingStation

object
AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent
The	object	or	objects	this	property	applies	to.

StartingStation
Double;	read-only
The	ending	station	for	the	object.

The	EndingStation	for	the	overall	alignment.

Signature

javascript:history.back();

object.EndingStation

object
Alignment
The	object	or	objects	this	property	applies	to.

EndingStation
Double;	read-only
The	ending	station	for	the	object.

Returns	the	EndingStation	for	the	Profile.

Signature

object.EndStation

object
ProfileBlock
The	object	or	objects	this	property	applies	to.

EndStation
Double;	read-only	The	Ending	Station	for	the	Profile.

EndNorthing	Property

The	Northing	coordinate	for	the	end	of	the	individual	object	entity.

See	Also	|	Example

Signature:	Overview

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	ParcelEntity,	ParcelCurve,	ParcelLine

The	Northing	coordinate	for	the	end	of	the	individual	alignment	entities.

Signature

object.Insert

object
AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent
The	object	or	objects	this	property	applies	to.

EndNorthiing
Double;	read-only
The	Northing	coordinate	for	the	end	point.

The	Northing	coordinate	for	the	end	of	the	individual	parcel	entities.

Signature

object.Insert

javascript:history.back();

object
ParcelEntity,	ParcelCurve,	ParcelLine
The	object	or	objects	this	property	applies	to.

EndNorthiing
Double;	read-only
The	Northing	coordinate	for	the	end	point.

ExceedBoth	Property

If	true,	then	both	minimum	depression	settings	must	be	met.

See	Also	|	Example

Signature

object.ExceedBoth

object
WaterSheds	The	object	or	objects	this	property
applies	to.

ExceedBoth
Boolean;	read-only
TRUE:		Both	minimum	depression	conditions	must
be	met.
FALSE:	Both	minimum	depression	conditions	do	not
need	to	be	met.

javascript:history.back();

ExtEasting	Property

The	Easting	coordinate	for	the	External	point	(Ext).

See	Also	|	Example

Signature

object.ExtEasting

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

ExtEasting
Double;	read-only
The	Easting	coordinate	for	the	External	point.

Remarks

The	External	point	is	used	for	compound	spirals,	where	the	TS	point	is
not	on	the	spiral.	This	would	mark	the	point	where	the	spiral	begins	or
ends.

javascript:history.back();

ExternalSecant	Property

The	external	secant	length	for	the	curve.

See	Also	|	Example

Signature

object.ExternalSecant

object
AlignCurve	The	object	or	objects	this	property
applies	to.

ExternalSecant
Double;	read-only
The	external	secant	length	for	the	curve.

javascript:history.back();

ExtNorthing	Property

The	Northing	coordinate	for	the	External	point	(Ext).

See	Also	|	Example

Signature

object.ExtNorthing

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

ExtNorthing
Double;	read-only
The	Northing	coordinate	for	the	External	point.

Remarks

The	External	point	is	used	for	compound	spirals,	where	the	TS	point	is
not	on	the	spiral.	This	would	mark	the	point	where	the	spiral	begins	or
ends.

javascript:history.back();

Faces	Property

Returns	the	Faces	collection.

See	Also	|	Example

Signature

object.Faces

object
SurfaceOutputs	The	object	or	objects	this	property
applies	to.

Faces
Faces	collection;	read-only
The	Faces	collection.

javascript:history.back();

FacetDeviation	Property

Gets	and	sets	the	facet	deviation.

See	Also	|	Example

Signature

object.FacetDeviation

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

FacetDeviation
Double;	read-write
The	facet	deviation.

javascript:history.back();

FGPrecision	Property	(Civil	Engineering	Feature)

Returns	the	finished	ground	precision	for	the	alignment	profile	or	cross
section.

See	Also	|	Example

Signature:	Overview

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	ProfileBlock	(Civil	Engineering	Feature)

Returns	the	finished	ground	precision	for	the	alignment	cross	section.

Signature

object.FGPrecision

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

FGPrecision
Integer;	read-only
The	finished	ground	precision	for	the	alignment
profile.

Returns	the	finished	ground	precision	for	the	alignment	profile.

javascript:history.back();

Signature

object.FGPrecision

object
ProfileBlock
The	object	or	objects	this	property	applies	to.

FGPrecision
Integer;	read-only
The	finished	ground	precision	for	the	alignment
profile.

FGProfiles	Property	(Civil	Engineering	Feature)

The	proposed	vertical	alignment's	entities	collection.

See	Also	|	Example

Signature

object.ProposedVerticalAligns

object
Alignment	The	object	or	objects	this	property
applies	to.

FGProfiles
FGProfiles	collection;	read-only
The	FGProfiles	collection.

javascript:history.back();

File	Property

The	filename	of	the	file	lock.

See	Also	|	Example

Signature

object.File

object
FileLock	The	object	or	objects	this	property	applies
to.

File
String;	read-only
The	filename	and	path	of	the	lock	file.

javascript:history.back();

FileLocks	Property

Gets	the	FileLocks	collection.

See	Also	|	Example

Signature

object.FileLocks

object
Project	The	object	or	objects	this	property	applies
to.

FileLocks
FileLocks	collection;	read-only
The	FileLocks	collection.

Remarks

The	FileLocks	collection	represents	all	file	locks	for	this	project.

javascript:history.back();

Files	Property

Gets	the	PreferencesFiles	object.

See	Also	|	Example

Signature

object.Files

object
Preferences	The	object	or	objects	this	property
applies	to.

Files
PreferencesFiles	object;	read-only
Gets	the	PreferencesFiles	object.

Remarks

This	object	specifies	the	paths	used	by	the	program.	Some	paths	are
established	during	installation	and	are	exposed	as	read-only	properties.

javascript:history.back();
javascript:history.back();

FirstTimeDrawingSetup	Property

Selects	how	new	drawings	are	setup.

See	Also	|	Example

Signature

object.FirstTimeDrawingSetup

object
PreferencesUser	The	object	or	objects	this	property
applies	to.

FirstTimeDrawingSetup
eAeccFirstTimeDrawingSetup	enum;	read-write
The	type	of	drawing	setup.

kDrawingSetupWizard: Use	the	Drawing	Setup
Wizard

kDrawingSetupCommand: Use	the	Drawing	Setup
command

kAutoloadSetupFile: Automatically	load	a
setup	file

Remarks

The	initial	value	for	this	property	is	kDrawingSetupWizard.

If	you	choose	kAutoloadSetupFile,	the	file	used	is	specified	by	the
FirstTimeDrawingSetupFile	property.

FirstTimeDrawingSetupFile	Property

The	drawing	setup	file	loaded	automatically	for	a	new	drawing.

See	Also	|	Example

Signature

object.FirstTimeDrawingSetupFile

object
PreferencesUser	The	object	or	objects	this	property
applies	to.

FirstTimeDrawingSetupFile
String;	read-write
The	name	of	the	setup	file	that	will	be	loaded.

javascript:history.back();

Format	Property

The	format	for	the	PointFile.

See	Also	|	Example

Signature

object.Format

object
PointFile	The	object	or	objects	this	property	applies
to.

Format
String;	read-only
The	format	for	the	input	file.

Remarks

The	input	file	must	conform	to	the	standard	NEZ	(space-delimited)	file
format.

javascript:history.back();

FormatsPath	Property

Specifies	the	directory	in	which	the	point	import	and	export	formats	are
located.

See	Also	|	Example

Signature

object.FormatPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

FormatPath
String;	read-write
The	drive	and	path	for	the	point	import	and	export
format	files.

Remarks

By	default,	the	project	path	is	C:\Documents	and	Settings\All
Users\Application	Data\Autodesk\AutoCAD	Land	Desktop	<version
number>\<release	number>\Data\Format	Manager.	This	path	is	not
created	during	install.	The	commands	that	support	point	import	and
export	formats	creates	this	path	when	required.	You	must	exit	AutoCAD
Land	Desktop	and	restart	for	this	change	to	take	effect.

javascript:history.back();

FullDescription	Property

Returns	the	full	description	for	the	Cogo	Point.

See	Also	|	Example

Signature

object.FullDescription

object
CogoPoint	The	object	or	objects	this	property
applies	to.

FullDescription
String;	read-only

Remarks

The	FullDescription	includes	DescriptionKey	Overrides.

javascript:history.back();

FullName	Property

The	full	name	includes	the	path	and	file	name.

See	Also	|	Example

Signature:	Overview

l	DescriptionKeyFile

l	Drawing

l	Project

The	full	name	for	the	DescriptionKeyFile	for	a	project.	The	full	name
includes	the	path	and	file	name.

Signature

object.FullName

object
DescriptionKeyFile;
The	object	or	objects	this	property	applies	to.

FullName
String;	read-only

Gets	the	name	of	the	drawing,	including	the	path.

Signature

javascript:history.back();

object.FullName

object
Drawing
The	object	or	objects	this	property	applies	to.

FullName
String;	read-only
The	name	and	path	of	the	application	or	document.

Remarks

This	value	is	read-only	and	cannot	be	changed.

Specifies	the	name	and	path	of	the	project.

Signature

object.FullName

object
Project
The	object	or	objects	this	property	applies	to.

FullName
String;	read-only
The	name	and	path	of	the	project.

Remarks

This	property	returns	the	fully	qualified	path	and	name	of	the	project.

GridEasting	Property

The	grid	Easting	for	the	COGO	project	database	point.

See	Also	|	Example

Signature

object.GridEasting

object
CogoPoint	The	object	or	objects	this	property
applies	to.

GridEasting
Double;	read-only

javascript:history.back();

GridNorthing	Property

The	grid	Northing	for	the	COGO	project	database	point.

See	Also	|	Example

Signature

object.GridNorthing

object
CogoPoint	The	object	or	objects	this	property
applies	to.

GridNorthing
Double;	read-only

javascript:history.back();

GroupName	Property

Gets	/	sets	the	group	name	for	various	objects.

See	Also	|	Example

Signature:	Overview

l	CogoPoint

l	PointGroup

Gets	/	sets	the	group	name	for	the	Point.

Signature

object.GroupName

object
CogoPoint	The	object	or	objects	this	property
applies	to.

GroupName
String;	read-write
Returns	and	sets	the	group	name	for	the
CogoPoints	collection.

Remarks

If	no	GroupName	has	been	set,	then	the	OverrideDescription	and
OverrideName	will	be	empty.	OverrideElevation	will	be	-1E20.	If

javascript:history.back();

GroupName	has	been	set,	then	these	values	will	reflect	the	PointGroup
overrides.	If	the	PointGroup	does	not	have	an	override	for	a	field,	the	field
will	not	change.

Gets	/	sets	the	group	name	for	the	PointGroup.

Signature

object.GroupName

object
PointGroup
The	object	or	objects	this	property	applies	to.

GroupName
String;	read-write
The	group	name	for	the	PointGroup.

javascript:history.back();

Height	Property	(Civil	Engineering	Feature)

Returns	the	height	of	the	alignment	cross	section.

See	Also	|	Example

Signature

object.Height

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

Height
Double;	read-only
The	height	of	the	alignment	cross	section.

HelpPath	Property

Specifies	the	directory	in	which	the	help	files	are	installed.

See	Also	|	Example

Signature

object.HelpPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

HelpPath
String;	read-only
The	drive	and	path	for	the	help	files.

javascript:history.back();

Id	Property

The	identification	number	for	the	Boundary,	BreakLine,	ContourItem	or
Watershed.

See	Also	|	Example

Signature:	Overview

l	Boundary

l	BreakLine

l	ContourItem

l	WaterShed

An	identification	number	for	the	Boundary.

Signature

object.Id

object
Boundary	The	object	or	objects	this	property	applies
to.

Id
Long:	read-only
The	identification	number	of	the	boundary.

Remarks

javascript:history.back();

The	Boundaries	class	uses	the	Boundary	Id	to	delete	and	find	an
instance	of	a	boundary.

The	identification	number	for	the	BreakLine.

Signature

object.Id

object
BreakLine
The	object	or	objects	this	property	applies	to.

Id
Long;	read-only
The	identifier	for	the	BreakLine.

An	identification	number	for	the	ContourItem.

Signature

object.Id

object
ContourItem
The	object	or	objects	this	property	applies	to.

Id
Long:	read-only
The	identification	number	of	the	contour.

Remarks

The	ContourItems	class	uses	the	ContourItem	Id	to	delete	and	find	an
instance	of	a	contour.

An	identification	number	for	the	WaterShed.

Signature

object.Id

object
WaterShed
The	object	or	objects	this	property	applies	to.

Id
Long:	read-only
The	identification	number	of	the	WaterShed.

Inputs	Property

Returns	the	SurfaceInputs	object	for	the	surface.

See	Also	|	Example

Signature

object.Inputs

object
Surface	The	object	or	objects	this	property	applies
to.

Inputs
SurfaceInputs;	read-only
All	inputs	for	the	surface.

javascript:history.back();

IsBreakLine	Property

Is	the	Boundary	considered	a	BreakLine?

See	Also	|	Example

Signature

object.IsBreakLine

object
Boundary	The	object	or	objects	this	property	applies
to.

IsBreakLine
Boolean;	read-write
TRUE:		The	Boundary	will	be	considered	as	a
breakline
FALSE:	The	boundary	will	not	be	considered	as	a
breakline.

Remarks

If	the	Boundary	is	considered	a	breakline,	faces	will	be	generated	along
the	Boundary.

javascript:history.back();

IsNameSupported	Property

Returns	whether	point	names	are	supported	or	not.

See	Also	|	Example

Signature

object.IsNameSupported

object
CogoPoints	The	object	or	objects	this	property
applies	to.

IsNameSupported
Boolean;	read-only
TRUE:		Point	names	are	supported.
FALSE:	Point	names	are	not	supported.

javascript:history.back();

IsVisible	Property

Returns	if	the	Face	is	visible.

See	Also	|	Example

Signature

object.IsVisible

object
Face	The	object	or	objects	this	property	applies	to.

IsVisible
Boolean;	read-only
TRUE:		If	the	Face	is	visible.
FALSE:	If	the	Face	is	not	visible.

Remarks

Portions	of	the	Surface	can	be	made	invisible	by	using	boundaries.	This
does	not	mean	that	the	Face	does	not	exist	in	the	Surface.	It	only	means
that	the	face	is	not	shown	when	importing	the	Surface.

javascript:history.back();

K	Property

The	spiral's	K	value.

See	Also	|	Example

Signature

object.K

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

K
Double;	read-only
The	spiral's	K	value.

javascript:history.back();

Keywords	Property

Specifies	the	keywords	for	the	project.

See	Also	|	Example

Signature

object.Keywords

object
Project	The	object	or	objects	this	property	applies
to.

Keywords
String;	read-write
The	keywords	for	the	project.

javascript:history.back();

Label	Property

The	name	of	the	locked	datafile	or	folder.

See	Also	|	Example

Signature

object.Label

object
FileLock	The	object	or	objects	this	property	applies
to.

Label
String;	read-only
The	label	of	the	file	lock.

javascript:history.back();

LabelPoints	Property

Returns	the	contour	label	points.

See	Also	|	Example

Signature

object.LabelPoints

object
AeccContour	The	object	or	objects	this	property
applies	to.

LabelPoints
Variant	(three-element	array	of	doubles);	read-only
The	array	of	points	for	the	contour	labels.

javascript:history.back();

LabelStyle	Property

Specifies	the	label	style	override	for	the	project	database	point	group.

See	Also	|	Example

Signature

object.LabelStyle

object
PointGroup	The	object	or	objects	this	property
applies	to.

LabelStyle
String;	read-write
The	label	style	override	for	the	project	database
point	group.

javascript:history.back();

LabelStyleOverride	Property

Specifies	if	the	label	style	for	the	project	database	point	will	be	overridden
from	the	Point	Group.

See	Also	|	Example

Signature

object.LabelStyleOverride

object
PointGroup	The	object	or	objects	this	property
applies	to.

LabelStyleOverride
Boolean;	read-write
TRUE:		The	point	group	label	style	will	be
overridden.
FALSE:	The	point	group	label	style	will	not	be
overridden.

javascript:history.back();

LabelStylePath	Property

Specifies	the	directory	in	which	the	line,	curve,	spiral	and	point	label	style
files	are	located.

See	Also	|	Example

Signature

object.LabelStylePath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

LabelStylePath
String;	read-write
The	drive	and	path	for	the	label	style	files.

Remarks

By	default,	the	project	path	is	C:\Documents	and	Settings\All
Users\Application	Data\Autodesk\AutoCAD	Land	Desktop	<version
number>\<release	number>\Data\labels.	You	must	exit	AutoCAD	Land
Desktop	and	restart	for	this	change	to	take	effect.

javascript:history.back();

LabelStyleXDRef	Property

Specifies	the	label	style	override	for	the	project	database	point	group.

See	Also	|	Example

Signature

object.LabelStyleXDRef

object
PointGroup	The	object	or	objects	this	property
applies	to.

LabelStyleXDRef
String;	read-write
The	label	style	override	for	the	project	database
point	group.

javascript:history.back();

LastUsedDwg	Property

The	last	used	drawing.

See	Also	|	Example

Signature

object.LastUsedDwg

object
PreferencesUser	The	object	or	objects	this	property
applies	to.

LastUsedDwg
String;	read-only
The	name	of	the	drawing	that	was	last	used.

javascript:history.back();

LastUsedDwgPath	Property

The	last	used	drawing	path.

See	Also	|	Example

Signature

object.LastUsedDwgPath

object
PreferencesUser	The	object	or	objects	this	property
applies	to.

LastUsedDwgPath
String;	read-only
The	name	of	the	drawing	path	that	was	last	used.

javascript:history.back();

LastUsedProj	Property

The	last	used	project.

See	Also	|	Example

Signature

object.LastUsedProj

object
PreferencesUser	The	object	or	objects	this	property
applies	to.

LastUsedProj
String;	read-only
The	name	of	the	project	that	was	last	used.

javascript:history.back();

LastUsedProjPath	Property

The	last	used	project	path.

See	Also	|	Example

Signature

object.LastUsedProjPath

object
PreferencesUser	The	object	or	objects	this	property
applies	to.

LastUsedProjPath
String;	read-only
The	name	of	the	project	path	that	was	last	used.

javascript:history.back();

Latitude	Property

The	latitude	of	the	point.

See	Also	|	Example

Signature

object.Latitude

object
CogoPoint	The	object	or	objects	this	property
applies	to.

Latitude
Double;	read-only

javascript:history.back();

LayerFile	Property

The	layer	file	to	apply	to	the	drawing.

See	Also	|	Example

Signature

object.LayerFile

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

LayerFile
String;	read-write
The	name	of	the	layer	file.

Remarks

The	layer	file	is	stored	as	a	global	setting	in	the	registry,	and	not	on	a	per-
drawing	basis.	An	entry	is	maintained	for	each	MeasurmentUnit.

javascript:history.back();

LayerStandard	Property

The	layer	standard	to	apply	to	the	drawing.

See	Also	|	Example

Signature

object.LayerStandard

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

LayerStandard
String;	read-write
The	name	of	the	layer	standard.

Remarks

The	layer	standards	are	stored	on	a	per	drawing	basis	in	the	dictionary.

javascript:history.back();
javascript:history.back();

LeftWidth	Property	(Civil	Engineering	Feature)

Returns	the	left	width	of	the	alignment	cross	section.

See	Also	|	Example

Signature

object.LeftWidth

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

LeftWidth
Double;	read-only
The	left	width	of	the	alignment	cross	section.

Length	Property

The	length	of	the	alignment	curve,	spiral	or	tangent	or	parcel	curve	or
line.

See	Also	|	Example

Signature:	Overview

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	ParcelEntity,	ParcelCurve,	ParcelLine

The	length	of	the	alignment	curve,	spiral	or	tangent.

Signature

object.Length

object
AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent
The	object	or	objects	this	property	applies	to.

Length
Double;	read-only
The	length	of	the	alignment	curve,	spiral	or	line.

The	length	of	the	parcel	curve	or	line.

Signature

javascript:history.back();

object.Length

object
ParcelEntity,	ParcelCurve,	ParcelLine
The	object	or	objects	this	property	applies	to.

Length
Double;	read-only
The	length	of	the	parcel	curve	or	line.

LExt	Property

Returns	the	external	length	of	the	spiral.

See	Also	|	Example

Signature

object.LExt

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

LExt
Double;	read-only
The	external	length	of	the	spiral.

Remarks

The	LExt	is	the	external	length	of	the	spiral.	For	a	simple	spiral,	the	value
is	0.0.	This	represents	the	length	from	the	TS	to	the	External	point	in	a
compound	spiral	condition.

javascript:history.back();
javascript:history.back();

LinearDisplayFormat	Property

The	format	used	to	display	linear	values.

See	Also	|	Example

Signature

object.LinearDisplayFormat

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

LinearDisplayFormat
Long;	read-write

1: Scientific

2: Decimal

3: Engineering

4: Architectural

5: Fractional

LinearPrecision	Property

Specifies	the	linear	precision	for	the	drawing.

See	Also	|	Example

Signature

object.LinearPrecision

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

LinearPrecision
Long;	read-write
The	number	of	decimals	to	the	right	of	the	decimal
point.

Remarks

The	precision	settings	are	used	only	for	labeling	and	listing	values,	not
actual	computations.	AutoCADLand	Desktop	commands	always	calculate
all	numbers	up	to	the	highest	internal	precision.

javascript:history.back();
javascript:history.back();

LinearUnit	Property

The	unit	used	to	display	linear	values.

See	Also	|	Example

Signature

object.LinearUnit

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

LinearUnits
AecBuiltInUnit	enum;	read-write

aecUnitInch: Inch	units

aecUnitFoot: Foot	units

aecUnitMillimeter: Millimeter	units

aecUnitCentimeter: Centimeter	units

aecUnitDecimeter: Decimeter	units

aecUnitMeter: Meter	units

Remarks

Use	this	property	to	specify	whether	you	want	to	use	feet	or	meters	in
your	drawing.

The	linear	units	that	you	select	must	be	the	same	for	all	drawings	in	a
project.	You	cannot	mix	foot-based	drawings	with	meter-based	drawings
in	the	same	project.

LockedPointNumbers	Property

Returns	a	list	of	the	locked	points	in	the	current	project	point	database.

See	Also	|	Example

Signature

object.LockedPointNumbers()

object
CogoPoints	The	object	or	objects	this	property
applies	to.

LockedPointNumbers
String;	read-only
Comma	delimited	string	with	all	used	points	with
groups	separated	by	hyphens.

Remarks

Typical	examples	of	the	point	string	format	are:		"1,2,3,5,10"		"1-
100,1000-2000"

javascript:history.back();
javascript:history.back();

LockType	Property

Specifies	the	type	of	lock	on	the	Alignment,	COGO	Point,	or	Surface.

See	Also	|	Example

Signature

object.LockType

object
Alignment,	CogoPoint,	FileLock,	Surface
The	object	or	objects	this	property	applies	to.

LockType
eAeccFileLockType;	read-only

kNoLock: No	lock	exists

kReadLock	: User	can	only	read	the	object

kWriteLock: User	can	read	and	write	the	object

LOffset	Property

The	offset	distance	for	the	spiral.

See	Also	|	Example

Signature

object.LOffset

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

LOffset
Double;	read-only
The	offset	distance	for	the	spiral.

Remarks

If	the	spiral	is	an	offset	spiral	(see	property	SpiralType2),	this	property	is
set.	Otherwise,	it	is	0.0.

javascript:history.back();

Longitude	Property

The	longitude	of	a	point.

See	Also	|	Example

Signature

object.Longitude

object
CogoPoint	The	object	or	objects	this	property
applies	to.

Longitude
Double;	read-only

javascript:history.back();
javascript:history.back();

MaxElevation	Property

Returns	the	Maximum	Elevation	of	a	Cross	Section	or	Surface.

See	Also	|	Example

Signature:	Overview

l	CrossSection	(Civil	Engineering	Feature)

l	Surface

Returns	the	Maximum	Elevation	of	a	Cross	Section.

Signature

RetVal	=	object.MaxElevation

object
CrossSection	The	object	or	objects	this	property
applies	to.

MaxElevation
Double;	read-only
The	Maximum	Elevation	of	the	Cross	Section.

Returns	the	Maximum	Elevation	of	a	Surface.

Signature

RetVal	=	object.MaxElevation

object
Surface
The	object	or	objects	this	property	applies	to.

MaxElevation
Double;	read-only
The	Maximum	Elevation	of	the	Surface.

MaxFaceArea	Property

The	area	of	the	largest	Face	for	the	Surface.

See	Also	|	Example

Signature

object.MaxFaceArea

object
Surface	The	object	or	objects	this	property	applies
to.

MaxFaceArea
Double;	read-only
The	area	of	the	largest	Face.

Remarks

This	is	an	Extended	Statistic.

javascript:history.back();

MaxGrade	Property

The	maximum	grade	for	the	Surface.

See	Also	|	Example

Signature

object.MaxGrade

object
Surface	The	object	or	objects	this	property	applies
to.

MaxGrade
Double;	read-only
The	maximum	grade	for	the	surface.

Remarks

This	is	an	Extended	Statistic.

javascript:history.back();
javascript:history.back();

MaxOffset	Property	(Civil	Engineering	Feature)

Returns	the	Maximum	Offset	of	the	Cross	Section.

See	Also	|	Example

Signature

RetVal	=	object.MaxOffset

object
CrossSection	The	object	or	objects	this	property
applies	to.

MaxOffset
Double;	read-only
The	Maximum	Offset	of	the	Cross	Section.

MeanElevation	Property

The	mean	elevation	of	the	Surface.

See	Also	|	Example

Signature

object.MeanElevation

object
Surface	The	object	or	objects	this	property	applies
to.

MeanElevation
Double;	read-only
The	mean	elevation	of	the	Surface.

Remarks

This	is	an	Extended	Statistic.

javascript:history.back();
javascript:history.back();

MeasurementUnit	Property

The	system	of	units	used	to	display	measurements.

See	Also	|	Example

Signature

object.MeasurementUnit

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

MeasurementUnit
AcMeasurementUnit	enum;	read-only

acEnglish: English	units

acMetric: Metric	units

MidOrdinate	Property

The	mid	ordinate	for	the	curve.

See	Also	|	Example

Signature

object.MidOrdinate

object
AlignCurve	The	object	or	objects	this	property
applies	to.

MidOrdinate
Double;	read-only
The	mid	ordinate	length	for	the	curve.

javascript:history.back();

MinDepressionArea	Property

The	minimum	depression	area	for	all	watersheds.

See	Also	|	Example

Signature

object.MinDepressionArea

object
WaterSheds	The	object	or	objects	this	property
applies	to.

MinDepressionArea
Double;	read-only
The	minimum	depression	area	for	all	watersheds.

javascript:history.back();

MinDepressionDepth	Property

The	minimum	depression	depth	for	all	watersheds.

See	Also	|	Example

Signature

object.MinDepressionDepth

object
WaterSheds	The	object	or	objects	this	property
applies	to.

MinDepressionDepth
Double;	read-only
The	minimum	depression	depth	for	all	watersheds.

javascript:history.back();
javascript:history.back();

MinElevation	Property

Returns	a	Minimum	Elevation	of	a	Cross	Section	or	Surface.

See	Also	|	Example

Signature:	Overview

l	CrossSection	(Civil	Engineering	Feature)

l	Surface

Returns	the	Minimum	Elevation	of	a	Cross	Section.

Signature

RetVal	=	object.MinElevation

object
CrossSection	The	object	or	objects	this	property
applies	to.

MinElevation
Double;	read-only
The	Minimum	Elevation	of	the	Cross	Section.

Returns	the	Minimum	Elevation	of	a	Surface.

Signature

RetVal	=	object.MinElevation

object
Surface
The	object	or	objects	this	property	applies	to.

MinElevation
Double;	read-only
The	Minimum	Elevation	of	the	Surface.

MinFaceArea	Property

The	area	of	the	smallest	Face	for	the	Surface.

See	Also	|	Example

Signature

object.MinFaceArea

object
Surface	The	object	or	objects	this	property	applies
to.

MinFaceArea
Double;	read-only
The	area	of	the	smallest	Face.

Remarks

This	is	an	Extended	Statistic.

javascript:history.back();

MinGrade	Property

The	minimum	grade	for	the	Surface.

See	Also	|	Example

Signature

object.MinGrade

object
Surface	The	object	or	objects	this	property	applies
to.

MinGrade
Double;	read-only
The	minimum	grade	for	the	surface.

Remarks

This	is	an	Extended	Statistic.

javascript:history.back();
javascript:history.back();

MinOffset	Property	(Civil	Engineering	Feature)

Returns	the	Minimum	Offset	of	the	Cross	Section.

See	Also	|	Example

Signature

RetVal	=	object.MinOffset

object
CrossSection	The	object	or	objects	this	property
applies	to.

MinOffset
Double;	read-only
The	Minimum	Offset	of	the	Cross	Section.

Name	Property

Gets	the	name	of	various	objects.

See	Also	|	Example

Signature:	Overview

l	AeccContourStyle

l	Alignment

l	CogoPoint

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	CrossSectionSurface	(Civil	Engineering	Feature)

l	DEMFile

l	DescriptionKeyFile

l	Drawing

l	FGProfiles	(Civil	Engineering	Feature)

l	Parcel

l	PointFile

l	PointGroup

l	PointGroupName

javascript:history.back();

l	ProfileBlock	(Civil	Engineering	Feature)

l	Project

l	Prototype

l	Surface

The	name	of	the	contour	style.

Signature

object.Name

object
AeccContourStyle	The	object	or	objects	this
property	applies	to.

Name
String;	read-only
The	name	of	the	contour	style.

The	name	of	the	alignment.

Signature

object.Name

object
Alignment
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
The	name	of	the	alignment.

The	point	name.

Signature

object.Name

object
CogoPoint
The	object	or	objects	this	property	applies	to.

Name
String;	read-only

Remarks

When	the	project	is	created,	an	option	exists	to	create	Cogo	points	with
Names.	If	the	project	does	not	use	point	names,	then	this	property	will	be
empty	and	can	not	be	set.

Returns	the	name	of	the	cross	sections	alignment	profile.

Signature

object.Name

object
CrossSectionBlock
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
The	name	of	the	cross	sections	alignment	profile.

The	cross	section	surface	name.

Signature

object.Name

object

CrossSectionSurface
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
The	cross	section	surface	name.

The	name	of	theDigital	Elevation	Model	file	to	be	included	in	the	Surface
definition.

Signature

object.Name

object
DEMFile;
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
The	fully	qualified	name	and	path	of	the	input	file.

The	Name	for	the	description	key	file.

Signature

object.Name

object
DescriptionKeyFile;
The	object	or	objects	this	property	applies	to.

Name
String;	read-write
The	name	for	the	description	key	file,	not	including
the	path.

Gets	the	name	of	the	drawing,	not	including	the	path.

Signature

object.Name

object
Drawing
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
The	name	of	the	drawing.

Returns	the	Finished	Grade	Profiles	alignment	name.

Signiture

Object.Name

object
FGProfiles
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
The	name	of	the	Finished	Grade	Profile	alignment.

The	name	of	the	parcel.

Signature

object.Name

object
Parcel
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
The	name	of	the	parcel.

The	name	of	the	file	to	be	included	in	the	Surface	definition.

Signature

object.Name

object
PointFile
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
The	name	of	the	input	file.

Specifies	the	Name	override	for	the	project	database	point	group.

Signature

object.Name

object
PointGroup
The	object	or	objects	this	property	applies	to.

Name
String;	read-write

Remarks

If	the	Name	property	is	set,	then	the	NameXDRef	property	is	cleared.

The	Name	of	the	PointGroup	to	be	used	to	build	the	Surface.

Signature

object.Name

object
PointGroupName
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
Name	of	the	PointGroup.

Remarks

The	PointGroupName	is	a	link	between	Cogo	Point	Groups	and	TM.	By
using	a	PointGroupName,	that	Cogo	Point	Group	will	be	included	in	the
Surface	definition.

No	validation	exists	between	a	PointGroupName	and	a	Cogo	Point
Group.	If	the	PointGroupName.Name	does	not	exist	as	a	Cogo	Point
Group,	no	errors	will	be	generated.

Returns	the	Alignment	name	for	the	Profile.

Signiture

Object.Name

object
ProfileBlock
The	object	or	objects	this	property	applies	to.

Name
String;	read-write
The	Alignment	name	for	the	Profile.

Specifies	the	name	of	the	project.

Signature

object.Name

object
Project
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
The	name	of	the	project.

Remarks

This	property	returns	the	directory	name	only,	not	the	Path.

The	name	of	the	prototype.

Signature

object.Name

object
Prototype
The	object	or	objects	this	property	applies	to.

Name
String;	read-write
The	name	of	the	prototype.

Remarks

Use	this	property	to	rename	a	prototype.

The	Name	of	the	Surface.

Signature

object.Name

object
Surface
The	object	or	objects	this	property	applies	to.

Name
String;	read-only
The	Name	of	the	Surface.

Remarks

Surface	names	are	limited	to	40	characters.

NameOverride	Property

Specifies	if	the	name	for	the	project	database	point	will	be	overridden
from	the	Point	Group.

See	Also	|	Example

Signature

object.NameOverride

object
PointGroup	The	object	or	objects	this	property
applies	to.

NameOverride
Boolean;	read-write
TRUE:		The	Cogo	project	point	name	will	be	set	by
the	Point	Group.
FALSE:	The	Cogo	project	point	name	will	not	be	set
by	the	Point	Group.

Remarks

When	you	set	this	value	to	FALSE,	the	Name	property	will	be	cleared.

javascript:history.back();

NameXDRef	Property

Specifies	the	Name	override	for	the	project	database	point	group.	The
name	will	be	taken	from	the	external	database	reference	(XDRef).

See	Also	|	Example

Signature

object.NameXDRef

object
PointGroup	The	object	or	objects	this	property
applies	to.

NameXDRef
String;	read-write
The	name	of	the	external	database	reference.

Remarks

If	the	NameXDRef	property	is	set,	then	the	Name	property	is	cleared.

javascript:history.back();

NextPointNumber	Property

Gets	/	sets	the	next	sequential	point	number	for	point	creation.

See	Also	|	Example

Signature

object.NextPointNumber

object
CogoPoints	The	object	or	objects	this	property
applies	to.

NextPointNumber
Long;	read-write

Remarks

The	default	number	when	you	begin	a	project	is	1.	An	error	is	returned	if
you	try	to	set	the	property	to	a	value	less	than	1	or	a	used	point	number.

javascript:history.back();

Normal	Property

Returns	the	Normal	for	the	Face.

See	Also	|	Example

Signature

object.Normal

object
Face	The	object	or	objects	this	property	applies	to.

Normal
Variant	(3	element	array	of	doubles);	read-only
Returns	the	normal	for	the	Face.

javascript:history.back();

Northing	Property

Gets	the	Northing	coordinates	of	various	objects.

See	Also	|	Example

Signature:	Overview

l	AeccPoint

l	CogoPoint

l	TinPoint

The	Northing	coordinate	of	the	point.

Signature

object.Northing

object
AeccPoint	The	object	or	objects	this	property
applies	to.

Northing
Double;	read-write
The	Northing	coordinate	of	the	point.

Remarks

The	Easting	coordinate	is	derived	from	the	WCS	X	coordinate	with	the
BasePoint	and	NorthRotation	applied.

javascript:history.back();

The	north	coordinate	for	the	point.

Signature

object.Northing

object
CogoPoint
The	object	or	objects	this	property	applies	to.

Northing
Double;	read-write

The	Northing	coordinate	for	the	TinPoint.

Signature

object.Northing

object
TinPoint
The	object	or	objects	this	property	applies	to.

Northing
Double;	read-only
The	Northing	coordinate.

NorthRotation	Property

Specifies	the	north	rotation	for	your	drawing	layout.

See	Also	|	Example

Signature

object.NorthRotation

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

NorthRotation
Double;	read-write
The	north	rotation	angle.	The	angle	is	in	radians	and
measured	counter-clockwise	from	the	X	axis	(East).

Remarks

The	initial	value	for	this	property	is	0.

If	you	change	the	NorthRotation	in	an	existing	drawing	then	you	must
move	any	objects	in	the	drawing	to	match	the	new	coordinate	system.

javascript:history.back();

Number	Property

The	number	property	for	various	objects.

See	Also	|Example

Signature:	Overview

l	AeccPoint

l	Alignment

l	CogoPoint

l	Parcel

The	AeccPoint	point	number.

Signature

object.Number

object
AeccPoint	The	object	or	objects	this	property
applies	to.

Number
Long;	read-only
The	point	number.

Remarks

javascript:history.back();

The	number	property	must	be	unique	if	the	AeccPoint	is	to	be	imported
into	the	Cogo	database.

The	Alignment	number.

Signature

object.Number

object
Alignment
The	object	or	objects	this	property	applies	to.

Number
Long;	read-only
The	number	of	the	alignment.

The	CogoPoint	number.

Signature

object.Number

object
CogoPoint
The	object	or	objects	this	property	applies	to.

Number
Long;	read-only

Remarks

The	point	number	is	set	with	the	value	of	the	NextPointNumber	property
of	the	CogoPoints	collection	when	the	Add	method	is	invoked,	and
cannot	be	changed.

The	number	of	the	Parcel.

Signature

object.Number

object
Parcel
The	object	or	objects	this	property	applies	to.

Number
Long;	read-only
The	number	of	the	parcel.

NumberOfFaces	Property

The	number	of	Faces	for	the	Surface.

See	Also	|	Example

Signature

object.NumberOfFaces

object
Surface	The	object	or	objects	this	property	applies
to.

NumberOfFaces
Long;	read-only
The	number	of	faces	in	the	surface.

Remarks

This	is	an	Extended	Statistic.

javascript:history.back();

NumberOfPoints	Property

The	number	of	TinPoints	for	the	Surface.

See	Also	|	Example

Signature

object.NumberOfPoints

object
Surface	The	object	or	objects	this	property	applies
to.

NumberOfPoints
Long;	read-only
The	number	of	points	in	the	surface.

javascript:history.back();

ObjectID	Property

Returns	the	Object	ID	for	the	entity.

See	Also	|	Example

Signature

object.ObjectID

object
AlignCurve,	AlignEntity,	AlignSpiral,	AlignTangent
The	object	this	property	applies	to.

ObjectID
Long;	read-only
The	Object	ID	for	the	entity.

Remarks

An	Alignment	can	exist	in	multiple	drawings.	The	Object	ID	for	the	entity
is	for	the	current	drawing	only.

Valid	alignment	ObjectIDs	are	defined	during	an	Import.	The	ObjectIDs
are	valid	until	the	alignment	is	saved.	Alignments	are	automatically	saved
each	time	an	alignment	property	is	modified	when	AutoSave	is	set	to
true,	or	when	an	alignment	Save	is	executed.

javascript:history.back();
javascript:history.back();

Offset	Property	(Civil	Engineering	Feature)

Returns	the	cross	section	point	code	offset.

See	Also	|	Example

Signature

object.Offset

object
CrossSectionPointCode	The	object	or	objects	this
property	applies	to.

Offset
Double;	read-only
The	cross	section	point	code	offset.

javascript:history.back();

OffsetElevations	Property	(Civil	Engineering	Feature)

Returns	the	cross	section	surface	offset	and	elevations.

See	Also	|	Example

Signature

object.OffsetElevations

object
CrossSectionSurface	The	object	or	objects	this
property	applies	to.

OffsetElevations
Variant	(array	of	doubles);	read-only
Returns	the	cross	section	surface	offset	and
elevations.

Outputs	Property

Returns	the	SurfaceOutputs	object	for	the	surface.

See	Also	|	Example

Signature

object.Outputs

object
Surface	The	object	or	objects	this	property	applies
to.

Inputs
SurfaceOutputs;	read-only
All	outputs	for	the	surface.

javascript:history.back();

OverflowPoints	Property

Returns	the	WaterShed	overflow	points.

See	Also	|	Example

Signature

object.OverflowPoints

object
WaterShed	The	object	or	objects	this	property
applies	to.

OverflowPoints
Variant	(3-element	array	of	doubles);	read-only
The	points	that	make	up	the	calculated	watershed.

javascript:history.back();

OverrideDescription	Property

Returns	the	description	that	has	been	overridden	by	the	PointGroup.

See	Also	|	Example

Signature

object.OverrideDescription

object
CogoPoint	The	object	or	objects	this	property
applies	to.

OverrideDescription
String;	read-only

Remarks

If	the	GroupName	has	been	set	for	the	CogoPoints	collection	and	that
PointGroup	has	the	description	override,	this	value	will	be	set.

javascript:history.back();

OverrideElevation	Property

Returns	the	elevation	that	has	been	overridden	by	the	PointGroup.

See	Also	|	Example

Signature

object.OverrideElevation

object
CogoPoint	The	object	or	objects	this	property
applies	to.

OverrideElevation
Double;	read-only

Remarks

If	the	GroupName	has	been	set	for	the	CogoPoints	collection	and	that
PointGroup	has	the	elevation	override,	this	value	will	be	set.

javascript:history.back();

OverrideName	Property

Returns	the	point	name	that	has	been	overridden	by	the	PointGroup.

See	Also	|	Example

Signature

object.OverrideName

object
CogoPoint	The	object	or	objects	this	property
applies	to.

OverrideName
String;	read-only

Remarks

If	the	GroupName	has	been	set	for	the	CogoPoints	collection	and	that
PointGroup	has	the	name	override,	this	value	will	be	set.

javascript:history.back();

OverrideNew	Property

Toggles	the	display	of	the	AutoCAD	Land	Desktop	New	dialog	box.

See	Also	|	Example

Signature

object.OverrideNew

object
PreferencesUser	The	object	or	objects	this	property
applies	to.

OverrideNew
Boolean;	read-write
TRUE:		Displays	the	AutoCAD	Land	Desktop	New
dialog	box.
FALSE:	Displays	the	AutoCAD	New	dialog	box.

Remarks

The	initial	value	for	this	property	is	TRUE.

If	you	set	this	property	to	FALSE	and	use	the	AutoCAD	New	command	to
create	a	new	drawing,	then	you	must	save	the	new	drawing	to	name	it.
Only	named	drawings	can	be	associated	with	a	project.

You	must	exit	AutoCAD	Land	Desktop	and	restart	for	this	change	to	take
effect.

javascript:history.back();

OverrideOpen	Property

Toggles	the	display	of	the	AutoCAD	Land	Desktop	Open	dialog	box.

See	Also	|	Example

Signature

object.OverrideOpen

object
PreferencesUser	The	object	or	objects	this	property
applies	to.

OverrideOpen
Boolean;	read-write
TRUE:		Displays	the	AutoCAD	Land	Desktop	Open
dialog	box.
FALSE:	Displays	the	AutoCAD	open	dialog	box.

Remarks

The	initial	value	for	this	property	is	TRUE.

If	you	set	this	property	to	FALSE	(and	use	the	AutoCAD	Open	command
to	open	a	drawing),	then	you	will	automatically	be	prompted	to	select	a
project	if	the	drawing	isn’t	associated	with	a	project	or	if	the	drawing’s
project	is	not	found.

You	must	exit	AutoCAD	Land	Desktop	and	restart	for	this	change	to	take
effect.

javascript:history.back();

Owner	Property

The	owner	(AutoCAD	login	name)	of	the	lock	owner.

See	Also	|	Example

Signature

object.Owner

object
FileLock	The	object	or	objects	this	property	applies
to.

Owner
String;	read-only
The	owner	of	the	file	lock.

javascript:history.back();

P	Property

The	spiral's	P	value.

See	Also	|	Example

Signature

object.P

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

P
Double;	read-only
The	spiral's	P	value.

javascript:history.back();

Parcel	Property

The	collection	of	parcel	preferences	for	the	project.

See	Also	|	Example

Signature

object.Parcel

object
PreferencesProject	The	object	or	objects	this
property	applies	to.

Parcel
PreferencesParcel;	read-only
The	PreferencesParcel	object.

javascript:history.back();

ParcelEntities	Property

The	collection	of	geometric	entities	for	the	parcel.

See	Also	|	Example

Signature

object.ParcelEntities

object
Parcel	The	object	or	objects	this	property	applies	to.

ParcelEntities
ParcelEntities	collection;	read-only
The	ParcelEntities	collection.

javascript:history.back();

Parcels	Property

Gets	the	Parcels	collection.

See	Also	|	Example

Signature

object.Parcels

object
Project	The	object	or	objects	this	property	applies
to.

Parcels
Parcels	collection;	read-only
The	Parcels	collection.

Remarks

The	Parcels	collection	represents	all	of	the	Parcel	objects	in	this	project.
This	property	is	valid	only	for	the	ActiveProject.

javascript:history.back();

Path	Property

Gets	the	path	of	various	objects.

See	Also	|	Example

Signature:	Overview

l	DescriptionKeyFile

l	DescriptionKeyFiles

l	Drawing

l	Drawings

l	FileLocks

l	Project

The	path	for	the	description	key	files	for	a	project.

Signature

object.Path

object
DescriptionKeyFile,	DescriptionKeyFiles
The	object	or	objects	this	property	applies	to.

Path
String;	read-only

javascript:history.back();

Gets	the	path	of	the	drawing.

Signature

object.Path

object
Drawing
The	object	or	objects	this	property	applies	to.

Path
String;	read-only
The	path	of	the	drawing.

Remarks

This	value	is	read-only	and	cannot	be	changed.

Returns	the	path	at	which	the	drawings	for	this	project	are	located.

Signature

object.Path

object
Drawings
The	object	or	objects	this	property	applies	to.

Path
String;	read-only
The	keyword	for	the	project.

Specifies	the	path	at	which	the	project	locks	are	located.

Signature

object.Path

object
FileLocks
The	object	or	objects	this	property	applies	to.

Path
String;	read-only
The	path	name	to	for	the	collection.

Remarks

Use	this	property	to	find	locks	for	a	given	project.

Specifies	the	path	of	the	project.

Signature

object.Path

object
Project
The	object	or	objects	this	property	applies	to.

Path
String;	read-only
The	path	of	the	project.

Remarks

The	path	of	the	project	contains	the	Name	as	the	last	folder	in	the	path
specification.

Perimeter	Property

The	perimeter	of	the	parcel.

See	Also	|	Example

Signature

object.Perimeter

object
Parcel	The	object	or	objects	this	property	applies	to.

Perimeter
Double;	read-only
The	perimeter	of	the	parcel.

javascript:history.back();

PiEasting	Property

The	Easting	coordinate	for	the	curve's	PI.

See	Also	|	Example

Signature

object.PiEasting

object
AlignCurve	The	object	or	objects	this	property
applies	to.

PiEasting
Double;	read-only
The	east	coordinate	for	the	PI	of	the	curve.

javascript:history.back();

PiNorthing	Property

The	Northing	coordinate	for	the	curve's	PI.

See	Also	|	Example

Signature

object.PiNorthing

object
AlignCurve	The	object	or	objects	this	property
applies	to.

PiNorthing
Double;	read-only
The	north	coordinate	for	the	PI	of	the	curve.

javascript:history.back();

PointFiles	Property

Returns	the	PointFiles	collection.

See	Also	|	Example

Signature

object.PointFiles

object
SurfaceInputs	The	object	or	objects	this	property
applies	to.

PointFiles
PointFiles	collection;	read-only
The	PointFiles	collection.

javascript:history.back();

PointGroupNames	Property

Returns	the	PointGroupNames	collection.

See	Also	|	Example

Signature

object.PointGroupNames

object
SurfaceInputs	The	object	or	objects	this	property
applies	to.

PointGroupNames
PointGroupNames	collection;	read-only
The	PointGroupNames	collection.

javascript:history.back();

PointGroups	Property

Gets	the	PointGroups	collection.

See	Also	|	Example

Signature

object.PoinGroups

object
Project	The	object	or	objects	this	property	applies
to.

PointGroups
PointGroups	collection;	read-only
The	PointGroups	collection.

Remarks

The	PointGroups	collection	represents	all	of	the	PointGroup	objects	in
this	project.	This	property	is	valid	only	for	the	ActiveProject.

javascript:history.back();

PointList	Property

Specifies	the	list	of	project	database	points	for	the	point	group.

See	Also	|	Example

Signature

object.PointList

object
PointGroup	The	object	or	objects	this	property
applies	to.

PointList
String;	read-write
Comma	delimited	string	with	all	used	points	with
groups	separated	by	hyphens.

Remarks

Examples:	"1,2,3,5,10"
"1-100,1000-2000"

javascript:history.back();

PointNameSize	Property

Returns	maximum	number	of	characters	supported	in	point	name.

See	Also	|	Example

Signature

object.PointNameSize

object
CogoPoints	The	object	or	objects	this	property
applies	to.

NextPointNumber
Long;	read-only
Returns	a	long	that	represents	the	maimum	number
of	characters	that	a	point	name	can	hold.

javascript:history.back();

PointOnLineTolerance	Property

Returns	the	minimum	distance	between	a	line	and	a	point	not	on	the	line.

See	Also	|	Example

Signature

object.PointOnLineTolerance

object
Surface	The	object	or	objects	this	property	applies
to.

PointOnLineTolerance
Double;	read-only
The	point	on	line	tolerance	for	the	surface.

javascript:history.back();

PointTolerance	Property

Returns	the	minimum	distance	between	distinct	points.

See	Also	|	Example

Signature

object.PointTolerance

object
Surface	The	object	or	objects	this	property	applies
to.

PointTolerance
Double;	read-only
The	point	tolerance	for	the	surface.

javascript:history.back();

Precision	Property

The	precision	used	to	truncate	area	labels	when	a	Parcel	is	imported	to
the	drawing.

See	Also	|	Example

Signature

object.Precision

object
Parcel	The	object	or	objects	this	property	applies	to.

Precision
Double;	read-only
The	parcel's	Precision	value.

javascript:history.back();

Preferences	Property

The	preferences	property	of	various	objects.

See	Also	|	Example

Signature:	Overview

l	AeccApplication

l	Document

l	Project

Get	the	AeccApplication	Preferences

Signature

object.Preferences

object
AeccApplication	The	object	or	objects	this	property
applies	to.

Preferences
Preferences	object;	read-only

Remarks

The	Preferences	object	holds	the	system	level	options.

javascript:history.back();

Get	the	Preferences	object.

Signature

object.Preferences

object
Document
The	object	or	objects	this	property	applies	to.

Preferences
DatabasePreferences	object;	read-only
The	DatabasePreferences	object.

Remarks

The	DatabasePreferences	object	holds	the	settings	that	are	saved	in	the
AutoCAD	Land	Desktop	drawing.

Get	the	PreferencesProject	object.

Signature

object.Preferences

object
Project
The	object	or	objects	this	property	applies	to.

Preferences
PreferencesProject	object;	read-only
The	PreferencesProject	object.

Remarks

The	Preferences	object	holds	the	project	level	options.	This	property	is
valid	only	for	the	ActiveProject.

PreferencesPath	Property

Specifies	the	directory	in	which	the	preference	settings	are	located.

See	Also	|	Example

Signature

object.PreferencePath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

PreferencePath
String;	read-write
The	drive	and	path	for	the	preferences.

Remarks

The	preference	settings	are	stored	in	the	C:\Documents	and	Settings\All
Users\Application	Data\Autodesk\AutoCAD	Land	Desktop	<version
number>\<release	number>\Data\pref	folder.	The	file	name	is	<AutoCAD
login	name>.dfm.	The	preference	path	settings	are	stored	in	the	sdsk.dfm
file	in	the	program	folder.

You	must	exit	AutoCAD	Land	Desktop	and	restart	for	this	change	to	take
effect.

javascript:history.back();

Profile	Property	(Civil	Engineering	Feature)

The	collection	of	vertical	profile	preferences	for	the	project.

See	Also	|	Example

Signature

object.Profile

object
PreferencesProject	The	object	or	objects	this
property	applies	to.

Profile
PreferencesProfile;	read-only
The	PreferencesProfile	object.

javascript:history.back();

ProfileBlocks	Property

Gets	the	ProfileBlocks	object.

See	Also	|	Example

Signature

object.ProfileBlock

object
Document	The	object	or	objects	this	property
applies	to.

ProfileBlocks
ProfileBlocks	object;	read-only
The	ProfileBlocks	object.

javascript:history.back();

ProgramPath	Property

Specifies	the	directory	in	which	the	AutoCAD	Land	Desktop	is	installed.

See	Also	|	Example

Signature

object.ProgramPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

ProgramPath
String;	read-only
The	drive	and	path	where	the	AutoCAD	Land
Desktop	is	installed.

javascript:history.back();

ProjectName	Property

The	name	of	the	project	that	the	drawing	belongs	to.

See	Also	|	Example

Signature

object.ProjectName

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

ProjectName
String;	read-write
The	project	name.

Remarks

The	value	must	255	characters	or	less	in	length.

javascript:history.back();

ProjectPath	Property

Gets	the	project	path	of	various	objects.

See	Also	|	Example

Signature:	Overview

l	PreferencesFiles

l	Projects

Specifies	the	directory	in	which	the	projects	are	located.

Signature

object.ProjectPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

ProjectPath
String;	read-write
The	drive	and	path	for	projects.

Remarks

By	default,	the	project	path	is	c:\Land	Projects.	You	must	exit	AutoCAD
Land	Desktop	and	restart	for	this	change	to	take	effect.

javascript:history.back();

Specifies	the	directory	in	which	the	projects	are	located.

Signature

object.ProjectPath

object
Projects
The	object	or	objects	this	property	applies	to.

ProjectPath
String;	read-write
The	project	path.

Remarks

The	initial	value	of	this	property	is	the	same	as	the	ProjectPath	property
of	the	PreferencesFiles	object.

The	members	of	this	collection	are	AutoCAD	Land	Desktop	projects
located	at	this	path.

Projects	Property

Gets	the	Projects	collection.

See	Also	|	Example

Signature

object.Properties

object
AeccApplication	The	object	or	objects	this	property
applies	to.

Projects
Projects	collection;	read-only

Remarks

The	Projects	collection	allows	you	to	access	all	the	AutoCAD	Land
Desktop	projects	available	on	the	network.	This	includes	all	project	data
stored	outside	the	drawings.

javascript:history.back();

PrototypeName	Property

Specifies	the	name	of	the	prototype	used	for	the	project.

See	Also	|	Example

Signature

object.PrototypeName

object
Project	The	object	or	objects	this	property	applies
to.

PrototypeName
String;	read-only
The	name	of	the	prototype	used	for	this	project.

javascript:history.back();

PrototypePath	Property

Specifies	the	directory	in	which	the	project	prototype	files	are	located.

See	Also	|	Example

Signature

object.PrototypePath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

PrototypePath
String;	read-write
The	drive	and	path	for	the	project	prototype	files.

Remarks

By	default,	this	path	is	C:\Documents	and	Settings\All	Users\Application
Data\Autodesk\AutoCAD	Land	Desktop	<version	number>\<release
number>\Data\Prototypes.	You	must	exit	AutoCAD	Land	Desktop	and
restart	for	this	change	to	take	effect.

javascript:history.back();

Prototypes	Property

Gets	the	Prototypes	collection.

See	Also	|	Example

Signature

object.Prototypes

object
AeccApplication	The	object	or	objects	this	property
applies	to.

Prototypes
Prototypes	collection;	read-only

Remarks

The	Prototypes	collection	allows	you	to	access	all	the	prototypes
available	for	configuring	your	next	AutoCAD	Land	Desktop	project.

javascript:history.back();

PVIs	Property	(Civil	Engineering	Feature)

Gets	the	PVIs	collection.

See	Also	|	Example

Signature

object.PVIs

object
FGProfile	The	object	or	objects	this	property	applies
to.

PVIs
PVIs	collection;	read-only
The	PVIs	collection.

javascript:history.back();

RadialDistance	Property

The	radial	distance	of	the	spiral.

See	Also	|	Example

Signature

object.RadialDistance

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

RadialDistance
Double;	read-only
The	radial	distance	at	the	SC.

javascript:history.back();

Radius	Property

The	radius	of	the	alignment	or	parcel	curve.

See	Also	|	Example

Signature:	Overview

l	AlignCurve

l	ParcelCurve

The	radius	of	the	alignment	curve.

Signature

object.Radius

object
AlignCurve	The	object	or	objects	this	property
applies	to.

Radius
Double;	read-only
The	radius	of	the	alignment	curve.

The	radius	of	the	parcel	curve.

Signature

object.Radius

javascript:history.back();

object
ParcelCurve
The	object	or	objects	this	property	applies	to.

Radius
Double;	read-only
The	radius	of	the	parcel	curve.

RawDescription	Property

The	raw	description	for	the	COGO	project	database	point.

See	Also	|	Example

Signature

object.RawDescription

object
CogoPoint	The	object	or	objects	this	property
applies	to.

RawDescription
String;	read-write

Remarks

The	RawDescription	for	the	Cogo	point	does	not	include	PointGroup
Overrides	or	DescriptionKeyFile.	If	a	Description	Key	is	used,	then	it	is
based	on	the	RawDescription.

javascript:history.back();

RevisionNumber	Property

The	revision	number	for	the	Surface.

See	Also	|	Example

Signature

object.RevisionNumber

object
Surface	The	object	or	objects	this	property	applies
to.

RevisionNumber
Long;	read-only
The	surface	revision	number.

Remarks

Each	time	the	Surface	is	built,	the	revision	number	is	updated.

javascript:history.back();
javascript:history.back();

RightWidth	Property	(Civil	Engineering	Feature)

Returns	the	rignt	width	of	the	alignment	cross	section.

See	Also	|	Example

Signature

object.RightWidth

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

RightWidth
Double;	read-only
The	right	width	of	the	alignment	cross	section.

RotateByDescriptionParam	Property

If	TRUE,	only	the	RotateDescriptionParam	is	rotated.

See	Also	|	Example

Signature

object.RotateByDescriptionParam

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

RotateByDescriptionParam
Boolean;	read-write
TRUE:		Only	the	RotateDescriptionParam	is	rotated.
FALSE:	Do	not	rotate	by	RotateDescriptionParam
only.

javascript:history.back();

RotateByFixedFactor	Property

If	TRUE,	rotate	by	the	RotateFactor.

See	Also	|	Example

Signature

object.RotateByFixedFactor

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

RotateByFixedFactor
Boolean;	read-write
TRUE:		Rotate	by	the	RotateFixedFactor.
FALSE:	Do	not	rotate	by	RotateFixedFactor	only.

javascript:history.back();

RotateClockwise	Property

The	rotation	direction.

See	Also	|	Example

Signature

object.RotateClockwise

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

RotateClockwise
Double;	read-write
The	rotate	direction.

javascript:history.back();

RotateDescriptionParam	Property

The	description	parameter	for	rotation.

See	Also	|	Example

Signature

object.RotateDescriptionParam

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

RotateDescriptionParam
Integer;	read-write
Returns	and	sets	the	rotate	description	parameter.

javascript:history.back();

RotateFixedFactor	Property

The	rotation	factor.

See	Also	|	Example

Signature

object.RotateFixedFactor

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

RotateFixedFactor
Double;	read-write
The	rotate	fixed	factor.

javascript:history.back();

ScaleByDescriptionParam	Property

If	TRUE,	only	the	ScaleDescriptionParam	is	scaled.

See	Also	|	Example

Signature

object.ScaleByDescriptionParam

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

ScaleByDescriptionParam
Boolean;	read-write
TRUE:		Only	the	ScaleDescriptionParam	is	scaled.
FALSE:	Not	scaled	by	the	ScaleDescriptionParam

javascript:history.back();

ScaleByDrawingScale	Property

If	TRUE,	the	drawing	scale	factor	is	applied.

See	Also	|	Example

Signature

object.ScaleByDrawingScale

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

ScaleByDrawingScale
Boolean;	read-write
TRUE:		Scale	by	the	drawing	scale	factor.
FALSE:	Do	not	scale	by	drawing	scale	factor.

javascript:history.back();

ScaleByFixedFactor	Property

If	TRUE,	the	fixed	scale	factor	ScaleFactor	is	applied.

See	Also	|	Example

Signature

object.ScaleByFixedFactor

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

ScaleByFixedFactor
Boolean;	read-write
TRUE:		Scale	by	the	fixed	scale	factor
ScaleFixedFactor.
FALSE:	Do	not	scale	by	fixed	scale	factor
ScaleFixedFactor.

javascript:history.back();

ScaleDescriptionParam	Property

The	description	parameter	for	scaling.

See	Also	|	Example

Signature

object.ScaleDescriptionParam

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

ScaleDescriptionParam
Integer;	read-write
Returns	and	sets	the	scale	description	parameter.

javascript:history.back();

ScaleFixedFactor	Property

The	fixed	scale	factor.

See	Also	|	Example

Signature

object.ScaleFixedFactor

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

ScaleFixedFactor
Double;	read-write

javascript:history.back();

ScaleInXY	Property

If	TRUE,	the	symbol	is	scaled	in	the	XY	plane

See	Also	|	Example

Signature

object.ScaleXY

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

ScaleXY
Boolean;	read-write
TRUE:		Symbol	is	scaled	in	the	XY	plane.
FALSE:	Do	not	scale	in	the	XY	plane.

javascript:history.back();

ScaleInZ	Property

If	TRUE,	the	symbol	is	scaled	in	the	Z	axis.

See	Also	|	Example

Signature

object.ScaleInZ

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

ScaleInZ
Boolean;	read-write
TRUE:		Symbol	is	scaled	in	the	Z	axis.
FALSE:	Do	not	scale	in	the	Z	axis.

javascript:history.back();

ScaleOnInsert	Property

Specifies	whether	objects	are	automatically	scaled	when	inserted	into	the
drawing.

See	Also	|	Example

Signature

object.ScaleOnInsert

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

ScaleOnInsert
Boolean;	read-write
TRUE:		New	objects	are	scaled	automatically.
FALSE:		New	objects	are	not	scaled	automatically.

javascript:history.back();
javascript:history.back();

SearchType	Property

Returns	how	the	Faces	collection	was	generated.

See	Also	|	Example

Signature

object.SearchType

object
Faces	The	object	or	objects	this	property	applies	to.

SearchType
eAeccSurfaceSearchType	enum;	read-only

kNoSearch: No	filter	has	been	applied

kSearchByPath: Search	by	path	filter

kSearchByBoundary: Search	by	surface	boundary

kSearchByPoint: Search	by	point	filter

	.
	.
	.
	.

Remarks

The	SearchType	property	describes	how	the	Faces	collection	was
generated.	The	filter	returns	only	the	faces	that	exist	between	two	points.

SheetHeight	Property

Specifies	the	height	of	the	sheet.

See	Also	|	Example

Signature

object.SheetHeight

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

SheetHeight
Double;	read-write
The	sheet	height.

Remarks

The	SheetHeight,	SheetWidth	and	DatabaseScale	determine	the
effective	area	on	the	drawing	in	relation	to	the	plotted	drawing.

javascript:history.back();

SheetWidth	Property

Specifies	the	width	of	the	sheet.

See	Also	|	Example

Signature

object.SheetWidth

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

SheetWidth
Double;	read-write
The	sheet	width.

Remarks

The	SheetHeight,	SheetWidth	and	DatabaseScale	determine	the
effective	area	on	the	drawing	in	relation	to	the	plotted	drawing.

javascript:history.back();

ShortTangent	Property

Returns	the	short	tangent	length	for	compound	and	simple	spirals.

See	Also	|	Example

Signature

object.ShortTangent

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

ShortTangent
Double;	read-only
The	short	tangent	length.

javascript:history.back();

ShowStartupDialog	Property

Toggles	the	display	of	the	startup	dialog.

See	Also	|	Example

Signature

object.ShowStartupDialog

object
PreferencesUser	The	object	or	objects	this	property
applies	to.

ShowStartupDialog
Boolean;	read-write
TRUE:		Displays	the	startup	dialog.
FALSE:	Hides	the	startup	dialog.

Remarks

The	initial	value	for	this	property	is	TRUE.	If	this	property	is	set	to	FALSE,
the	OverrideNew	and	OverrideOpen	properties	are	also	set	to	FALSE.

You	must	exit	AutoCAD	Land	Desktop	and	restart	for	this	change	to	take
effect.

javascript:history.back();

ShowSubfolders	Property

Determines	whether	drawings	in	subfolders	are	included.

See	Also	|	Example

Signature

object.ShowSubfolders

object
Drawings	The	object	or	objects	this	property	applies
to.

ShowSubfolders
Boolean;	read-write
TRUE:		Drawings	in	subfolders	are	included	in	the
collection.
FALSE:	Drawings	in	subfolders	are	not	included	in
the	collection.

Remarks

The	Preferences	object	holds	the	project	level	options.

javascript:history.back();

SpeedTablesPath	Property

Specifies	the	directory	in	which	the	speed	tables	are	located.

See	Also	|	Example

Signature

object.SpeedTablesPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

SpeedTablesPath
String;	read-write
The	drive	and	path	for	the	speed	table	files.

Remarks

By	default,	this	path	is	C:\Documents	and	Settings\All	Users\Application
Data\Autodesk\AutoCAD	Land	Desktop	<version	number>\<release
number>\Data\Speed	Tables.	You	must	exit	AutoCAD	Land	Desktop	and
restart	for	this	change	to	take	effect.

javascript:history.back();

SpiEasting	Property

The	Easting	coordinate	for	the	spi	point.

See	Also	|	Example

Signature

object.SpiEasting

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

SpiEasting
Double;	read-only
The	Easting	coordinate	for	the	Spiral	Point	of
Intersection.

javascript:history.back();

SpilTangent	Property

Returns	the	long	tangent	length.

See	Also	|	Example

Signature

object.SpilTangent

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

SpilTangent
Double;	read-only
The	long	tangent	length.

javascript:history.back();

SpiNorthing	Property

The	Northing	coordinate	for	the	spi	point.

See	Also	|	Example

Signature

object.SpiNorthing

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

SpiNorthing
Double;	read-only
The	Northing	coordinate	for	the	Spiral	Point	of
Intersection.

javascript:history.back();
javascript:history.back();

SpiralType1	Property

Returns	the	calculation	method	of	the	spiral.

See	Also	|	Example

Signature

object.SpiralType1

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

SpiralType1
eAeccSpiralType1	enum;	read-only

kClothoid: Clothoid	spiral

kSinusoid: Sinusoid	spiral

kCosinusoid: Cosinusoid	spiral

kQuadratic: Quadratic	spiral

Remarks

Compound	spirals	are	only	supported	when	using	a	Clothoid	spiral	type.
No	matter	what	spiral	type	is	set,	the	command	always	uses	the	Clothoid
spiral	type.

javascript:history.back();

SpiralType2	Property

Returns	whether	the	spiral	is	a	simple,	offset,	or	compound	spiral.

See	Also	|	Example

Signature

object.SpiralType2

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

SpiralType2
eAeccSpiralType2	enum;	read-only

kSimple: Simple	spiral

kOffset: Offset	spiral

kCompound: Compound	spiral

kOffsetCompound: Offset	/	compound	spiral

Remarks

Compound	spirals	are	only	supported	when	using	a	Clothoid	spiral	type.
No	matter	what	spiral	type	is	set,	the	command	always	uses	the	Clothoid
spiral	type.

StartDirection	Property

The	starting	direction	of	the	curve	or	spiral.

See	Also	|	Example

Signature:	Overview

l	AlignCurve

l	AlignSpiral

The	starting	direction	of	the	curve.

Signature

object.StartDirection

object
AlignCurve	The	object	or	objects	this	property
applies	to.

StartDirection
Double;	read-only
The	start	direction	of	the	curve.

Remarks

The	direction	is	in	radians	and	measured	counter-clockwise	from	the	X
axis	(East).

javascript:history.back();

The	starting	direction	of	the	spiral.

Signature

object.StartDirection

object
AlignSpiral
The	object	or	objects	this	property	applies	to.

StartDirection
Double;	read-only
The	direction	taken	from	the	TS	to	the	Spi.	The
angle	is	in	radians	and	measured	counter-clockwise
from	the	X	axis	(East).

Remarks

The	direction	is	measured	in	radians.

StartEasting	Property

The	Easting	coordinate	for	the	beginning	of	the	individual	alignment	or
profile	entities.

See	Also	|	Example

Signature:	Overview

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	ParcelEntity,	ParcelCurve,	ParcelLine

The	Easting	coordinate	for	the	beginning	of	the	individual	alignment
entities.

Signature

object.StartEasting

object
AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent
The	object	or	objects	this	property	applies	to.

StartEasting
Double;	read-only
The	Easting	coordinate	for	the	beginning	point.

The	Easting	coordinate	for	the	beginning	of	the	individual	parcel	entities.

javascript:history.back();

Signature

object.StartEasting

object
ParcelEntity,	ParcelCurve,	ParcelLine
The	object	or	objects	this	property	applies	to.

StartEasting
Double;	read-only
The	Easting	coordinate	for	the	beginning	point.

StartingStation	Property

The	object's	starting	station.

See	Also	|	Example

Signature:	Overview

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	Alignment

l	ProfileBlock	(Civil	Engineering	Feature)

The	StartingStation	for	individual	entities	in	an	alignment.

Signature

object.StartingStation

object
AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent
The	object	or	objects	this	property	applies	to.

StartingStation
Double;	read-only
The	starting	station	for	the	object.

The	StartingStation	for	the	overall	alignment.

Signature

javascript:history.back();

object.StartingStation

object
Alignment
The	object	or	objects	this	property	applies	to.

StartingStation
Double;	read-write
The	starting	station	for	the	object.

Returns	the	StartingStation	for	the	Profile.

Signature

object.StartingStation

object
ProfileBlock
The	object	or	objects	this	property	applies	to.

StartingStation
Double;	read-only	The	starting	station	for	the	Profile.

StartNorthing	Property

The	Northing	coordinate	for	the	beginning	of	the	individual	alignment	or
parcel	entities.

See	Also	|	Example

Signature:	Overview

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	ParcelEntity,	ParcelCurve,	ParcelLine

The	Northing	coordinate	for	the	beginning	of	the	individual	alignment
entities.

Signature

object.StartNorthing

object
AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent
The	object	or	objects	this	property	applies	to.

BeginNorthing
Double;	read-only
The	Northing	coordinate	for	the	beginning	point.

The	Northing	coordinate	for	the	beginning	of	the	individual	parcel	entities.

javascript:history.back();

Signature

object.StartNorthing

object
ParcelEntity,	ParcelCurve,	ParcelLine
The	object	or	objects	this	property	applies	to.

BeginNorthing
Double;	read-only
The	Northing	coordinate	for	the	beginning	point.

Station	Property	(Civil	Engineering	Feature)

Returns	the	station	for	the	cross	section,	cross	section	block,
superelevation,	or	PVI.

See	Also	|	Example

Signature:	Overview

l	CrossSection	(Civil	Engineering	Feature)

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	PVI	(Civil	Engineering	Feature)

l	Superelevation	(Civil	Engineering	Feature)

Returns	the	station	of	the	cross	section.

Signature

object.Station

object
CrossSection	The	object	or	objects	this	property
applies	to.

Station
Double;	read-only
The	station	for	the	cross	section.

javascript:history.back();

Returns	the	station	of	the	cross	section	block.

Signature

object.Station

object
CrossSectionBlock
The	object	or	objects	this	property	applies	to.

Station
Double;	read-only
The	station	for	the	cross	section	block.

Returns	the	Station	of	the	PVI.

Signature

object.Station

object
PVI
The	object	or	objects	this	property	applies	to.

Station
Double;	read-only
The	station	for	the	PVI.

Returns	the	superelevation	station.

Signature

object.Station

object
Superelevation
The	object	or	objects	this	property	applies	to.

Station
Double;	read-only
The	station	for	the	superelevation.

StationAhead	Property

The	ahead	station	for	the	station	equation.

See	Also	|	Example

Signature

object.StationAhead

object
StationEquation	The	object	or	objects	this	property
applies	to.

StationAhead
Double;	read-write
The	ahead	station	for	the	station	equation.

javascript:history.back();

StationBack	Property

The	back	station	for	the	station	equation.

See	Also	|	Example

Signature

object.StationBack

object
StationEquation	The	object	or	objects	this	property
applies	to.

StationBack
Double;	read-write
The	back	station	for	the	station	equation.

javascript:history.back();

StationEquations	Property

The	alignment's	station	equations	collection.

See	Also	|	Example

Signature

object.StationEquations

object
Alignment	The	object	or	objects	this	property
applies	to.

StationEquations
StationEquations	collection;	read-only
The	alignment	station	equations	collection.

javascript:history.back();

StationElevations	Property	(Civil	Engineering	Feature)

An	array	of	stations	and	elevations	for	the	EGProfile.

See	Also	|	Example

Signature

object.StationElevations

object
EGProfile	The	object	or	objects	this	property	applies
to.

StationElevations
Variant	(array	of	doubles);	read-write
An	array	of	doubles	with	the	format	of	Station,
Elevation,	Station,	etc.

javascript:history.back();

StationIncrement	Property	(Civil	Engineering	Feature)

Returns	the	horizontal	distance	between	vertical	grid	lines.

See	Also	|	Example

Signature

object.StationIncrement

object
ProfileBlock	The	object	or	objects	this	property
applies	to.

StationIncrement
Double;	read-only
The	Station	Increment	for	the	Profile.

javascript:history.back();
javascript:history.back();

Status	Property

The	status	for	a	surface.

See	Also	|	Example

Signature

object.Status

object
Surface	The	object	or	objects	this	property	applies
to.

Status
eAeccSurfaceStatus	enum;	read-only

kNoData: Surface	has	no	data

kNotBuilt: Surface	is	not	built

kUpToDate: Surface	is	up	to	date

kOutOfDate: Surface	is	out	of	date

Remarks

The	status	of	a	surface	will	only	be	accurate	when	the	time	between	a
Build	and	an	addition	of	Surface	Input	data	is	greater	than	the	resolution
of	the	file	system.

javascript:history.back();

SuperelevationCode	Property	(Civil	Engineering	Feature)

Returns	the	superelevation	code.

See	Also	|	Example

Signature

object.SuperelevationCode

object
Superelevation	The	object	or	objects	this	property
applies	to.

SuperelevationCode
eAeccSectionSECode	enum;	read-only

kSEFullCrown: Full	crown	superelevation

kSEHalfCrown: Half	crown	superelevation

kSECrownRemoved: Crown	removed

kSEFullSuperelevation: Full	superelevation

kSEReverseCurve: Reverese	curve

kSECompoundCurve: Compound	curve

Superelevations	Property	(Civil	Engineering	Feature)

Gets	the	alignment	superelevations	collection.

See	Also	|	Example

Signature

object.Superelevations

object
Alignment	The	object	or	objects	this	property
applies	to.

Superelevations
SuperElevations	collection;	read-only
The	SuperElevations	collection.

javascript:history.back();

Surface	Property

The	collection	of	surface	preferences	for	the	project.

See	Also	|	Example

Signature

object.Surface

object
PreferencesProject	The	object	or	objects	this
property	applies	to.

Surface
PreferencesSurface;	read-only
The	PreferencesSurface	object.

javascript:history.back();

SurfaceName	Property	(Civil	Engineering	Feature)

The	name	of	the	EGProfile	surface.

See	Also	|	Example

Signature

object.SurfaceName

object
EGProfile	The	object	or	objects	this	property	applies
to.

SurfaceName
String;	read-only
The	name	of	the	EGProfile	surface.

javascript:history.back();

Surfaces	Property

Gets	the	Surfaces	collection.

See	Also	|	Example

Signature

object.Surfaces

object
Project	The	object	or	objects	this	property	applies
to.

Surfaces
Surfaces	collection;	read-only
The	Surfaces	collection.

Remarks

The	Surfaces	collection	represents	all	of	the	Surface	objects	in	this
project.	This	property	is	valid	only	for	the	ActiveProject.

javascript:history.back();

SymbolBlock	Property

Specifies	the	symbol	block.

See	Also	|	Example

Signature

object.SymbolBlock

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

SymbolBlock
String;	read-write
Returns	and	sets	the	symbol	block.

javascript:history.back();

SymbolLayer	Property

Specifies	the	symbol	block	layer.

See	Also	|	Example

	

Signature

object.SymbolLayer

object
DescriptionKey	The	object	or	objects	this	property
applies	to.

SymbolLayer
String;	read-write
Returns	and	sets	the	symbol	layer.

javascript:history.back();

SymbolManagerPath	Property

Specifies	the	directory	in	which	the	symbol	sets	are	located.

See	Also	|	Example

Signature

object.SymbolManagerPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

SymbolManagerPath
String;	read-write
The	drive	and	path	for	the	symbol	sets.

Remarks

By	default,	this	path	is	C:\Documents	and	Settings\All	Users\Application
Data\Autodesk\AutoCAD	Land	Desktop	<version	number>\<release
number>\Data\Symbol	Manager.	You	must	exit	AutoCAD	Land	Desktop
and	restart	for	this	change	to	take	effect.

javascript:history.back();

SystemPath	Property

Specifies	the	directory	in	which	AutoCAD	Land	Desktop	is	installed.

See	Also	|	Example

Signature

object.SystemPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

SystemPath
String;	read-only
The	drive	and	path	where	AutoCAD	Land	Desktop
is	installed.

javascript:history.back();

TangentLabelIncrement	Property	(Civil	Engineering
Feature)

Returns	the	distance	between	tangent	elevation	labels.

See	Also	|	Example

Signature

object.TangentLabelIncrement

object
ProfileBlock	The	object	or	objects	this	property
applies	to.

TangentLabelIncrement
Double;	read-only
The	Tangent	Labeling	Increment	for	the	Profile.

javascript:history.back();

TangentLength	Property

The	tangent	length	of	the	curve.

See	Also	|	Example

Signature:	Overview

l	AlignCurve

l	ParcelCurve

The	tangent	length	of	the	alignment	curve.

Signature

object.TangentLength

object
AlignCurve	The	object	or	objects	this	property
applies	to.

TangentLength
Double;	read-only
The	tangent	length	of	the	curve.

The	tangent	length	of	the	parcel	curve.

Signature

object.TangentLength

javascript:history.back();

object
ParcelCurve
The	object	or	objects	this	property	applies	to.

TangentLength
Double;	read-only
The	tangent	length	of	the	curve.

TempPath	Property

Specifies	the	directory	in	which	the	temporary	files	are	stored.

See	Also	|	Example

Signature

object.TempPath

object
PreferencesFiles	The	object	or	objects	this	property
applies	to.

TempPath
String;	read-write
The	drive	and	path	for	the	temporary	files.

Remarks

By	default,	this	path	is	c:\temp.	You	must	exit	AutoCAD	Land	Desktop
and	restart	for	this	change	to	take	effect.

javascript:history.back();

TextAbove	Property

The	text	above	the	object.

See	Also	|	Example

Signature

object.TextAbove

object
AeccCurveText	The	object	or	objects	this	property
applies	to.

TextAbove
String;	read-write
The	text	above	the	curve	text	object.

javascript:history.back();

TextBelow	Property

The	text	below	the	object.

See	Also	|	Example

Signature

object.TextBelow

object
AeccCurveText	The	object	or	objects	this	property
applies	to.

TextBelow
String;	read-write
The	text	below	the	curve	text	object.

javascript:history.back();

TextHeight	Property

The	height	of	the	text	in	the	drawing.

See	Also	|	Example

Signature

object.TextHeight

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

TextHeight
Double;	read-write
The	text	height	in	inches	or	millimeters.

Remarks

The	default	value	is	0.125	inches,	or	3.175	millimeters,	depending	on	the
setting	of	the	MeasurementUnit	property.

javascript:history.back();

TextOffsetAbove	Property

The	offset	of	the	text	above	the	object.

See	Also	|	Example

Signature

object.TextOffsetAbove

object
AeccCurveText	The	object	or	objects	this	property
applies	to.

TextOffsetAbove
Double;	read-write
The	offset	of	the	text	above	the	curve	text	object.

javascript:history.back();

TextOffsetBelow	Property

The	offset	of	the	text	below	the	object.

See	Also	|	Example

Signature

object.TextOffsetBelow

object
AeccCurveText	The	object	or	objects	this	property
applies	to.

TextOffsetBelow
Double;	read-write
The	offset	of	the	text	below	the	curve	text	object.

javascript:history.back();

TextSize	Property

The	size	of	the	text	above	and	below	the	object.

See	Also	|	Example

Signature

object.TextSize

object
AeccCurveText	The	object	or	objects	this	property
applies	to.

TextSize
Double;	read-write
The	size	of	the	text	above	and	below	the	curve	text
object.

javascript:history.back();

ThetaExt	Property

Returns	the	external	theta	for	a	compound	spiral.

See	Also	|	Example

Signature

object.ThetaExt

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

ThetaExt
Double;	read-only
The	external	theta	for	a	compound	spiral.

javascript:history.back();

Time	Property

The	lock	creation	date	and	time.

See	Also	|	Example

Signature

object.Time

object
FileLock	The	object	or	objects	this	property	applies
to.

Time
String;	read-only
The	date	and	time	of	the	file	lock.

javascript:history.back();

TinPoints	Property

Returns	the	TinPoints	collection.

See	Also	|	Example

Signature

object.TinPoints

object
SurfaceOutputs	The	object	or	objects	this	property
applies	to.

TinPoints
TinPoints	collection;	read-only
The	TinPoints	collection.

javascript:history.back();

TotalX	Property

The	total	X	value	for	the	spiral.

See	Also	|	Example

Signature

object.TotalX

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

TotalX
Double;	read-only
Total	X	value.

javascript:history.back();

TotalY	Property

The	total	Y	value	for	the	spiral.

See	Also	|	Example

Signature

object.TotalY

object
AlignSpiral	The	object	or	objects	this	property
applies	to.

TotalY
Double;	read-only
Total	Y	value.

javascript:history.back();
javascript:history.back();

Type	Property

The	type	properties	for	Objects.

See	Also	|	Example

Signature:	Overview

l	AlignCurve,	AlignEntity,	AlignSpiral,	AlignTangent

l	Boundary

l	BreakLine

l	CrossSectionSurface	(Civil	Engineering	Feature)

l	EGProfile	(Civil	Engineering	Feature)

l	FGProfile	(Civil	Engineering	Feature)

l	ParcelCurve,	ParcelLine

l	StationEquation

l	Surface

l	Watershed

The	type	of	the	alignment	entity.

Signature

object.type

object
AlignCurve,	AlignEntity,	AlignSpiral,	AlignTangent
The	object	this	property	applies	to.

Type
eAeccAlignEntityType	enum;	read-only
The	type	of	the	Alignment.

kCurve: Alignment	Curve

kSpiral: Alignment	Spiral

kTangent: Alignment	Tangent

The	type	of	the	Boundary.

Signature

object.Type

object
Boundary
The	object	or	objects	this	property	applies	to.

Type
eAeccBoundaryType	enum;	read-only
The	type	of	the	Boundary.

kBoundaryTypeShow: Boundary	is	visible

kBoundaryTypeHide: Boundary	is	hidden

kBoundaryTypeOuter: Boundary	is	the	outer
most	boundary

kBoundaryTypeUnInit:
Boundaries	are	not
initalized

Remarks

A	Boundary	can	not	be	changed	to	an	outer	(kBoundaryTypeOuter)
boundary.	If	the	Boundary	is	an	outer,	it	is	always	visible.

The	type	of	the	BreakLine.

Signature

object.Type

object
BreakLine
The	object	or	objects	this	property	applies	to.

Type
eAeccBreakLineType	enum;	read-only
The	type	of	the	BreakLine.

kStandard: Standard	breakline

kProximity: Proximity	breakline

kWallLeft: Left	wall	breakline

kWallRight: Right	wall	breakline

kNonDestructive: Nondestructive	breakline

Returns	the	type	of	the	cross	section	surface.

Signature

Object.Type

object
CrossSectionSurface
The	object	or	objects	this	property	applies	to.

Type
eAeccCrossSectionSurfaceType	enum;	read-only
The	type	od	cross	section	surface.

kExistingGround: 0

kTopSurface: 10

kDatumSurface: 20

kTemplateSurface: 30

kSubassemblySurface: 40

kMatchSurface: 50

Returns	the	type	of	existing	ground	profile.

Signature

Object.Type

object
EGProfile
The	object	or	objects	this	property	applies	to.

Type
eAeccEGProfileType	enum;	read-only
The	VerticalOffset	type.

kEgCenter: Existing	ground	center	type

kEgLeft: Existing	ground	left	type

kEgNone: Existing	ground	none	type

kEgRight: Existing	ground	right	type

Returns	the	type	of	the	Finished	Ground	Profile.

Signature

Object.Type

object
FGProfile
The	object	or	objects	this	property	applies	to.

Type
eAeccFGProfileType	enum;	read-only
Returns	the	type	of	the	Finished	Ground	Profile.

kFgCenter: Finished	ground	profile	center
type

kFgDitchLeftt: Finished	ground	ditch	left	type

kFgDitchRight: Finished	ground	ditch	right	type

kFgLeft1: Finished	ground	left	1	trans	type

kFgLeft2: Finished	ground	left	2	trans	type

kFgLeft3: Finished	ground	left	3	trans	type

kFgLeft4: Finished	ground	left	4	trans	type

kFgLeft5: Finished	ground	left	5	trans	type

kFgLeft6: Finished	ground	left	6	trans	type

kFgLeft7: Finished	ground	left	7	trans	type

kFgLeft8: Finished	ground	left	8	trans	type

kFgNone: Finished	ground	none	type

kFgRight1: Finished	groung	right	1	trans	type

kFgRight2: Finished	groung	right	2	trans	type

kFgRight3: Finished	groung	right	3	trans	type

kFgRight4: Finished	groung	right	4	trans	type

kFgRight5: Finished	groung	right	5	trans	type

kFgRight6: Finished	groung	right	6	trans	type

kFgRight7: Finished	groung	right	7	trans	type

kFgRight8: Finished	groung	right	8	trans	type

Returns	the	parcel	entity	type.

Signature

object.Type

object
ParcelCurve,	ParcelLine
The	object	or	objects	this	property	applies	to.

Type
eAeccParcelEntityType	enum;	read-only
The	type	of	the	parcel	entity.

kParcelCurve: Parcel	entity	is	a	curve

kParcelLine: Parcel	entity	is	a	line

The	type	of	station	equation.

Signature

object.Type

object
StationEquation
The	object	or	objects	this	property	applies	to.

Type
eAeccStationEquationType	enum;	read-write
The	type	of	the	Station	Equation.

kIncreasing: Station	Equation	increases
stationing

kDecreasing: Station	Equation	decreases
stationing

The	Surface	type.

Signature

object.Type

object
Surface

The	object	or	objects	this	property	applies	to.

Type
eAeccSurfaceType	enum;	read-only
The	type	of	the	Surface.

kUnknownSurface: Unknown	surface	type

kTin: Tin	surface	type

kCompositeVolume: Composite	volume	surface
type

kGridVolume: Grid	volume	surface	type

The	type	of	the	WaterShed.

Signature

object.Type

object
WaterShed
The	object	or	objects	this	property	applies	to.

Type
eAeccWaterShedType	enum:	read-only
The	type	of	the	WaterShed.

kBoundaryPoint:

A	watershed	that	includes	a
boundary	point,	the	point
where	the	channel	of	water
drains	off	the	surface

kBoundarySegment:
A	watershed	that	includes
part	of	the	boundary	of	a
surface	as	its	drain	target

kLocalMin: The	watershed	is	a
depression

kFlatArea:

A	flat	area	where	the	water
collects,	passes	over,	or
causes	a	channel	to	split.	An
ambiguous	watershed.

kMultiDrain:

A	watershed	where	the	water
can	go	to	more	than	one
drain	target.	An	ambiguous
watershed

kNonBoundary:

kUnknownSink:
A	watershed	formed	by	a
notch	and	which	drains	to
two	or	more	drain	targets

Remarks

Each	watershed	subarea	that	you	delineate	is	categorized	based	on
drain	target.

UpperRight	Property	(Civil	Engineering	Feature)

Returns	the	Upper	Right	Coordinates	of	the	ProfileBlock	as	XY.

See	Also	|	Example

Signature

object.UpperRight

object
ProfileBlock	The	object	or	objects	this	property
applies	to.

UpperRight
Variant	(two-element	array	of	doubles);	read-only
An	array	of	the	X	and	Y	value,	representing	the
upper	right	coordinates	of	a	profile.	This	and	the
coordinates	of	the	origin	define	the	drawing	limits	of
a	profile.

javascript:history.back();

UsedPointNumbers	Property

Returns	the	list	of	used	point	numbers	in	the	current	project	database.

See	Also	|	Example

Signature

object.UsedPointNumbers()

object
CogoPoints	The	object	or	objects	this	property
applies	to.

UsedPointNumbers
String;	read-only
Comma	delimited	string	with	all	used	points	with
groups	separated	by	hyphens.

Remarks

Typical	examples	of	the	point	string	format	are:	"1,2,3,5,10"	"1-100,1000-
2000"

javascript:history.back();

User	Property

Gets	the	PreferencesUser	object.

See	Also	|	Example

Signature

object.User

object
Preferences	The	object	or	objects	this	property
applies	to.

User
PreferencesUser	object;	read-only
Gets	the	PreferencesUser	object.

Remarks

This	object	specifies	the	options	maintained	on	a	per-user	basis.

javascript:history.back();

Utility	Property

Gets	the	Utility	object.

See	Also	|	Example

Signature

object.Utility

object
Document	The	object	or	objects	this	property
applies	to.

Utility
Utility	object;	read-only
The	Utility	object.

javascript:history.back();

VerticalScale	Property

Specifies	the	scale	at	which	the	vertical	axis	of	the	drawing	is	displayed,
or	the	vertical	scale	for	alignment	profiles	and	cross	sections.

See	Also	|	Example

Signature:	Overview

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	DatabasePreferences

l	ProfileBlock	(Civil	Engineering	Feature)

Specifies	the	vertical	scale	at	which	the	alignment	cross	section	is	drawn.

Signature

object.VerticalScale

object
CrossSectionBlock	The	object	or	objects	this
property	applies	to.

VerticalScale
Double;	read-only
The	vertical	scale	at	which	the	alignment	cross
section	is	drawn.

javascript:history.back();

Specifies	the	scale	at	which	the	vertical	axis	of	the	drawing	is	displayed.

Signature

object.VerticalScale

object
DatabasePreferences
The	object	or	objects	this	property	applies	to.

VerticalScale
Double;	read-write
The	vertical	scale.	For	example,	for	a	1:200	scale,
type	200.

Remarks

The	VerticalScale	is	compared	against	the	DatabaseScale	to	calculate
the	vertical	exaggeration	in	profiles	and	cross	sections.	It	does	not
actually	change	the	scale	that	is	used	when	the	drawing	is	plotted.

Specifies	the	vertical	scale	at	which	the	alignment	profiles	are	drawn.

Signature

object.VerticalScale

object
ProfileBlock
The	object	or	objects	this	property	applies	to.

VerticalScale
Double;	read-only
The	vertical	scale	at	which	the	profile	is	drawn.

Volume	Property

The	volume	of	the	surface.

See	Also	|	Example

Signature

object.Volume

object
Surface	The	object	or	objects	this	property	applies
to.

Volume
Double;	read-only
The	surface	volume.

Remarks

This	is	an	Extended	Statistic.

javascript:history.back();
javascript:history.back();

VolumeDisplayUnit	Property

The	units	used	to	display	volumes.

See	Also	|	Example

Signature

object.VolumeDisplayUnit

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

VolumeDisplayUnit
AecBuiltInUnit	enum;	read-write

aecUnitCubicInch: Cubic	inch	unit

aecUnitCubicFoot: Cubic	foot	unit

aecUnitCubicYard: Cubic	yard	unit

aecUnitCubicMillimeter: Cubic	millimeter	unit

aecUnitCubicCentimeter: Cubic	centimeter	unit

aecUnitCubicMeter: Cubic	meter	unit

VolumePrecision	Property

The	precision	used	to	display	volumes.

See	Also	|	Example

Signature

object.VolumePrecision

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

VolumePrecision
Long;	read-write
The	display	precision	used	for	volumes.

Remarks

The	precision	settings	are	used	only	for	labeling	and	listing	values,	not
actual	computations.	AutoCAD	Land	Desktop	commands	always
calculate	all	numbers	up	to	the	highest	internal	precision.

javascript:history.back();

VolumeSuffix	Property

The	suffix	displayed	after	an	volume.

See	Also	|	Example

Signature

object.VolumeSuffix

object
DatabasePreferences	The	object	or	objects	this
property	applies	to.

VolumeSuffix
String;	read-write
The	suffix	displayed	after	a	volume.

Remarks

The	default	value	is	"	Cu.Ft."	or	"	m3",	depending	on	the	value	of	the
MeasurementUnit	property.	The	value	must	255	characters	or	less	in
length.

javascript:history.back();

Watersheds	Property

Returns	the	WaterSheds	collection

See	Also	|	Example

Signature

object.WaterSheds

object
SurfaceOutputs	The	object	or	objects	this	property
applies	to.

WaterSheds
WaterSheds	collection;	read-only
The	Watersheds	collection.

javascript:history.back();
javascript:history.back();

Objects

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

A

AeccApplication	An	instance	of	the	AutoCAD	Land	Desktop	application.

AeccContour	The	AeccContour	represents	a	contour	entity	in	the
document.

AeccContourStyle	The	AeccContourStyle	represents	a	contour	style
entry	in	the	dictionary.

AeccCurveText	The	AeccCurveText	represents	a	curve	text	entity	in	the
document.

AeccPoint	The	AeccPoint	represents	a	cogo	point	entity	in	the	document.

AlignCurve	The	AlignCurve	object	represents	a	curve	entity	for	the
alignment.

AlignEntities	The	AlignEntities	collection	represents	all	of	the	entities	for
an	Alignment.

AlignEntity	The	AlignEntity	object	is	the	base	class	for	AlignTangent,
AlignCurve	and	AlignSpiral.

Alignment	The	Alignment	object	represents	an	alignment	in	the	project
database.

Alignments	The	Alignments	collection	represents	all	of	the	Alignment
objects	in	the	project	database.

AlignSpiral	The	AlignSpiral	object	represents	a	spiral	entity	for	the
alignment.

AlignTangent	The	AlignTangent	object	represents	a	tangent	entity	for	the
alignment.

B

Boundaries	The	Boundaries	collection	represents	all	of	the	boundaries
for	the	Surface.

Boundary	The	Boundary	object	represents	a	single	boundary	for	the
Surface.

BreakLine	The	BreakLine	object	represents	a	single	breakline	for	the
Surface.

BreakLines	The	BreakLines	collection	represents	all	of	the	breaklines	for
the	Surface.

C

CogoPoint	The	CogoPoint	represents	a	COGO	point	in	the	project
database.

CogoPoints	The	CogoPoints	collection	represents	all	of	the	COGO	points
in	the	project	database.

ContourItem	The	ContourItem	object	represents	a	single	contour	for	the
ContourItems	collection.

ContourItems	The	ContourItems	collection	represents	all	of	the	input
contours	for	the	Surface.

CrossSection	(Civil	Engineering	Feature)	The	CrossSection	object
represents	a	single	section	for	an	alignment

CrossSectionBlock	(Civil	Engineering	Feature)	The	CrossSectionBlock
object	represents	an	alignment	cross	section	in	the	current	drawing.

CrossSectionBlocks	(Civil	Engineering	Feature)	The	CrossSectionBlocks
collection	represents	all	of	the	alignment	cross	sections	that	are	in	the
current	drawing.

CrossSectionPointCode	(Civil	Engineering	Feature)	The
CrossSectionPointCode	object	represents	a	single	point	code	for	a	cross

section.

CrossSectionPointCodes	(Civil	Engineering	Feature)	The
CrossSectionPointCodes	collection	represents	all	of	the	point	codes	for	a
cross	section.

CrossSections	(Civil	Engineering	Feature)	The	CrossSections	collection
represents	all	of	the	cross	sections	for	an	alignment.

CrossSectionSurface	(Civil	Engineering	Feature)	The
CrossSectionSurface	object	represents	a	single	surface	section	for	a
cross	section.

CrossSectionSurfaces	(Civil	Engineering	Feature)	The
CrossSectionSurfaces	collection	represents	all	of	the	surfaces	for	a	cross
section.

D

DatabasePreferences	This	object	specifies	the	current	AutoCAD	Land
Desktop	drawing	specific	settings.

DEMFile	The	DEMFile	object	represents	a	single	Digital	Elevation	Model
file	for	the	Surface.

DEMFiles	The	DEMFiles	collection	represents	all	of	the	Ditial	Elevation
Model	files	for	the	Surface.

DescriptionKey	The	DescriptionKey	object	represents	the	description	key
for	point.

DescriptionKeyFile	The	DescriptionKeyFile	collection	represents	all	of	the
description	keys	in	a	project	description	key	file.	Each	key	is	contained	in
a	particular	description	key	file.

DescriptionKeyFiles	The	DescriptionKeyFiles	collection	represents	all	of
the	description	keys	for	a	project	description	key	file.

Document	An	AutoCAD	Land	Desktop	drawing.

Documents	The	collection	of	all	AutoCAD	Land	Desktop	drawings	open
in	the	current	session.

Drawing	An	AutoCAD	Land	Desktop	project-based	drawing.

Drawings	The	collection	of	all	AutoCAD	Land	Desktop	drawings	in	a
project.

E

Edge	The	Edge	object	represents	a	single	output	edge	for	the	Surface.

Edges	The	Edges	collection	represents	all	of	the	output	edges	for	the
Surface.

EGProfile	(Civil	Engineering	Feature)	The	EGProfile	object	represents
the	station	/	elevation	information	for	a	given	surface.

EGProfiles	(Civil	Engineering	Feature)	The	EGProfiles	collection
represents	all	of	the	existing	ground	vertical	profiles.

ElevationContour	The	ElevationContour	object	represents	a	single
contour	for	the	ElevationContours	collection.

ElevationContours	The	ElevationContours	collection	represents	all	of	the
calculated	contours	at	a	given	elevation	for	the	Surface.

F

Face	The	face	object	represents	a	single	calculated	face	(triangle)	for	the
Surface.

Faces	The	faces	collection	represents	all	of	the	calculated	faces
(triangles)	for	the	Surface.

FGProfile	(Civil	Engineering	Feature)	The	FGProfile	object	represents	a
finished	ground	vertical	PVIs.

FGProfiles	(Civil	Engineering	Feature)	The	FGProfiles	collection
represents	all	of	the	finished	grade	profiles	in	the	project.

FileLock	A	file	lock	in	the	AutoCAD	Land	Desktop	project.

FileLocks	The	collection	of	all	file	locks	for	a	particular	project.

G

H

I

J

K

L

M

N

O

P

Parcel	The	Parcel	object	represents	a	parcel	in	the	current	project
database.

ParcelCurve	The	ParcelCurve	object	represents	a	curve	entity	for	the
parcel.

ParcelEntities	TheParcelEntities	collection	represents	all	of	the	entities
for	a	Parcel.

ParcelEntity	The	ParcelEntity	collection	is	the	base	class	for	ParcelCurve
and	ParcelLine.

ParcelLine	The	ParcelLine	object	represents	a	line	entity	for	the	Parcel.

Parcels	The	Parcels	collection	represents	all	of	the	parcels	that	are	in	the
current	project.

PointFile	The	PointFile	object	represents	a	single	point	file	for	the
Surface.

PointFiles	The	PointFiles	collection	represents	all	of	the	point	files	for	the
Surface.

PointGroup	The	PointGroup	collection	represents	a	Point	Group	in	the
project	database.

PointGroupName	The	PointGroupName	object	represents	a	single
PointGroupName	for	the	PointGroupNames	collection.

PointGroupNames	The	PointGroupNames	collection	represents	all	of	the
PointGroupNames	for	the	Surface.

PointGroups	The	PointGroups	collection	represents	all	of	the	Point
Groups	in	the	project	database.

Preferences	This	object	specifies	the	current	AutoCAD	Land	Desktop
settings.

PreferencesAlignment	This	object	specifies	the	settings	for	Horizontal
Alignments.

PreferencesCogo	This	object	specifies	the	settings	for	Points.

PreferencesCrossSection	(Civil	Engineering	Feature)	This	object
specifies	the	settings	for	Alignment	Cross	Sections.

PreferencesFiles	This	object	specifies	the	paths	used	by	the	AutoCAD
Land	Desktop.

PreferencesParcel	This	object	specifies	the	settings	for	Parcels.

PreferencesProfile	(Civil	Engineering	Feature)	This	object	specifies	the
settings	for	Alignment	Vertical	Profiles.

PreferencesProject	This	object	specifies	the	project	settings.

PreferencesSurface	This	object	specifies	the	settings	for	Surfaces.

PreferencesUser	This	object	specifies	the	options	maintained	on	a	per-
user	basis.

ProfileBlock	(Civil	Engineering	Feature)	The	ProfileBlock	object
represents	a	profile	in	the	current	drawing.

ProfileBlocks	(Civil	Engineering	Feature)	The	ProfileBlocks	collection
represents	all	of	the	profiles	that	are	in	the	current	drawing.

Project	An	AutoCAD	Land	Desktop	project.

Projects	The	collection	of	all	AutoCAD	Land	Desktop	projects	on	the
network.

Prototype	An	AutoCAD	Land	Desktop	project	prototype.

Prototypes	The	collection	of	all	AutoCAD	Land	Desktop	project
prototypes.

PVI	(Civil	Engineering	Feature)	The	PVI	object	represents	a	Point	of
Vertical	Interstection	for	a	Finished	Ground	Profile.

PVIs	(Civil	Engineering	Feature)	The	PVIs	collection	represents	all	of	the
Point	of	Vertical	Intesection	objects	in	the	project.

Q

R

S

StationEquation	The	StationEquation	object	represents	a	station	equation
for	the	alignment.

StationEquations	The	StationEquations	collection	represents	all	of	the
station	equations	for	the	Alignment.

Superelevation	(Civil	Engineering	Feature)	The	Superelevation	object
represents	a	single	superelevation	for	an	alignment.

Superelevations	(Civil	Engineering	Feature)	The	Superelevations

collection	represents	all	of	the	superelevations	for	a	cross	section.

Surface	The	Surface	object	represents	a	Surface	in	the	project	database.

SurfaceInputs	The	SurfaceInputs	object	represents	all	inputs	for	a
Surface.

SurfaceOutputs	The	SurfaceOutputs	object	represents	all	outputs	for	a
Surface.

Surfaces	The	Surfaces	collection	represents	all	of	the	Surface	objects	in
the	project	database.

T

TinPoint	The	TinPoint	represents	a	calculated	point	for	the	Surface.

TinPoints	The	TinPoints	represents	all	of	the	calculated	points	for	the
Surface.

U

Utility	A	series	of	methods	provided	for	utility	purposes.

V

W

WaterShed	The	WaterSheds	collection	represents	all	of	the	WaterShed
items	for	the	Surface.

WaterSheds	The	WaterShed	object	represents	a	single	watershed	item
for	the	WaterSheds	collection.

X

Y

Z

	

	 	 		AeccApplication	Object	

An	instance	of	the	AutoCAD	Land	Desktop	application.

VBA	object	name: AeccApplication

Create	using:

For	VB:
GetObject("Acad.Application")	or
reateObject("Acad.Application")	then
etInterfaceObject("Aecc.Application")

For	AutoCAD	VBA:
not	applicable.	The	application	is	always	available.

Access	via: Application	Property

The	properties	associated	with	the	AeccApplication	object	reflect	the
properties	of	the	main	application	window.	The	methods	control	the
loading	or	listing	of	the	currently	loaded	external	applications	and
interface	objects.

The	active	document	(AutoCAD	Land	Desktop	drawing)	can	be	accessed
using	the	ActiveDocument	property.	The	active	project	(AutoCAD	Land

	

javascript:history.back();

Desktop	project)	can	be	accessed	using	the	ActiveProject	property.

See	the	Application	object	in	the	AutoCAD	ActiveX	and	VBA	Reference
for	information	regarding	additional	Methods,	Properties	and	Events
provided	through	this	object.

Methods

None

Properties

ActiveDocument

ActiveProject

Application

Documents

Preferences

Projects

Prototypes

Events

None

acadauto.chm::/idh_application_object.htm

	

	 	 		AeccContour	Object	

The	AeccContour	represents	a	contour	entity	in	the	document.

VBA	object	name: AeccContour	

Create	using: AcadModelSpace.AddCustomObject("AeccDbContour")		

Access	via: AcadModelSpace.Item	

In	addition	to	the	properties	listed	below,	the	AeccContour	object
supports	all	of	the	members	of	the	AcadEntity	object.

Methods

AddLabelAt

RemoveAllLabels

RemovelabelAt

Properties

Application

ContourStyle

ContourStyleName

Coordinates

Elevation

Events

None

	

javascript:history.back();
acadauto.chm::/idh_acadentity.htm

Elevation

LabelPoints

	

	 	 		AeccContourStyle
Object	

The	AeccContourStyle	represents	a	contour	style	entry	in	the	dictionary.

VBA	object
name: AeccContourStyle	

Create	using: N/A	

Access	via: ThisDrawing.Dictionaries("AECC_CONTOUR_STYLES").Item	

In	addition	to	the	properties	listed	below,	the	AeccContourStyle	object
supports	all	of	the	members	of	the	AcadObject	object.

The	contour	styles	dictionary	is	not	added	to	the	drawing	until	a	contour
object	is	created,	or	when	the	contour	style	manager	is	used.	The
"Standard"	contour	style	is	created	by	default.

Methods

None

Properties

Application

Name

Events

None

	

javascript:history.back();
acadauto.chm::/idh_iacadobject_interface.htm

Name

	

	 	 		AeccCurveText	Object	

The	AeccCurveText	represents	a	curve	text	entity	in	the	document.

VBA	object	name: AeccCurveText	

Create	using: AcadModelSpace.AddCustomObject("AecDbCurveText")		

Access	via: AcadModelSpace.Item	

In	addition	to	the	properties	listed	below,	the	AeccCurveText	object
supports	all	of	the	members	of	the	AcadEntity	object.

Methods

SetReferenceCurve

Properties

Application

TextAbove

TextBelow

TextOffsetAbove

TextOffsetBelow

Events

None

	

javascript:history.back();
acadauto.chm::/idh_iacadentity_interface.htm

TextOffsetBelow

TextSize

	 	

	 	 		AeccPoint	Object	

The	AeccPoint	represents	a	cogo	point	entity	in	the	document.

VBA	object	name: AeccPoint

Create	using: AcadModelSpace.AddCustomObject("AeccDbPoint;")

Access	via: AcadModelSpace.Item

In	order	to	have	AeccPoints	visible	in	the	drawing	using
AddCustomObject()	and	setting	properties,	the	Number	property	is
required	to	be	set.

In	addition	to	the	properties	listed	below,	the	AeccPoint	object	supports
all	of	the	members	of	the	AcadEntity	object.

Methods

Properties

Application

Description

Easting
Events

	

javascript:history.back();

None
Easting

Elevation

Northing

Number

None

	

	 	 		AlignCurve	Object	

The	AlignCurve	object	represents	a	curve	entity	for	the	alignment.

VBA	object	name: AeccAlignCurve

Create	using: Alignment.AddCurve

Access	via: AlignEntities.Item

Properties

Application

CCWFlag

CenterEasting

CenterNorthing

ChordDirection

ChordLength

	

javascript:history.back();

Methods

None

Delta

EndDirection

EndEasting

EndingStation

EndNorthing

ExternalSecant

Length

MidOrdinate

ObjectID

PiEasting

PiNorthing

Radius

StartDirection

StartEasting

StartingStation

StartNorthing

TangentLength

Type

Events

Modified

	

	 	 		AlignEntities	Collection	

The	AlignEntities	collection	represents	all	of	the	entities	for	an	Alignment.

VBA	object	name: AeccAlignEntities

Create	using: N/A

Access	via: Alignment.AlignEntities

This	collection	returns	AlignTangent,	AlignCurve	and	AlignSpiral	objects.
When	you	access	a	member	of	the	collection	using	the	Item	method	or
the	For	Each	statement,	assign	the	result	to	a	VARIANT.	You	can	then
use	the	TypeOf	function	to	determine	which	object	type	(AlignTangent,
AlignCurve	or	AlignSpiral)	to	assign	it	to.

Methods

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	

	 	 		AlignEntity	Collection	

The	AlignEntity	object	is	the	base	class	for	AlignTangent,	AlignCurve	and
AlignSpiral.

VBA	object	name: AeccAlignEntity

Create	using: N/A

Access	via: AlignEntities.Item

All	alignment	entities	are	derived	from	AlignEntity	-	they	all	share	the
methods,	properties	and	events	listed	below.	You	can	use	this	base	class
as	the	object	type	returned	from	the	method	Item	of	the	AlignEntities
collection.	If	you	need	access	to	the	complete	details	of	an	alignment
entity,	use	the	Type	property	(or	TypeOf	function	in	VB)	to	determine
whether	to	assign	the	returned	object	to	an	AlignTangent,	AlignCurve	or
AlignSpiral.

Properties

Application

EndEasting

	

javascript:history.back();

Methods

None

EndEasting

EndingStation

EndNorthing

Length

ObjectID

StartEasting

StartingStation

StartNorthing

Type

Events

Modified

	 	

	 	 		Alignment	Object	

The	Alignment	object	represents	an	Alignment	in	the	project	database.

VBA	object	name: AeccAlignment

Create	using: Alignments.Add

Access	via: Alignments.Item

The	Alignment	object	exposes	alignment	geometry	through	the
AlignEntities	collection.	Each	AlignEntity	(an	AlignTangent	,	AlignCurve	or
AlignSpiral)	exposes	geometric	properties,	as	well	as	the	ObjectID	of	the
corresponding	entity	in	the	current	drawing	(if	any).

Valid	alignment	ObjectIDs	are	defined	during	an	Import	.	The	ObjectIDs
are	valid	until	the	alignment	is	saved.	Alignments	are	automatically	saved
each	time	an	alignment	property	is	modified	when	AutoSave	is	set	to
true,	or	when	an	alignment	Save	is	executed.

Methods
Properties

AlignEntities

	

javascript:history.back();

AddCurve

AddSpiral

AddTangent

ExternalStaToInternal

GetStaStrWithEquations

GetStaWithEquations

Import

LineIntersection

PerpIntersection

PointLocation

RemoveAll

Save

StationOffset

Application

CrossSections	(Civil	Engineering
Feature)

Description

EGProfiles(Civil	Engineering	Feature)

EndingStation

FGProfiles(Civil	Engineering	Feature)

LockType

Name

Number

StartingStation

StationEquations

Superelevations	(Civil	Engineering
Feature)

Events

Modified

	 	

	 	 		Alignments	Collection	

The	Alignments	collection	represents	all	of	the	Alignment	objects	in	the
project	database.

VBA	object	name: AeccAlignments

Create	using: N/A

Access	via: Project.Alignments

All	Alignments	except	for	the	current	Alignment	are	loaded	with	read	only
permissions.	The	current	alignment	can	have	read	or	read-write
permissions.	If	no	other	user	has	control	of	the	current	alignment,	the
read-write	permissions	will	be	given.	If	another	user	has	read-write
permission,	then	only	read	permission	will	be	given.	As	you	switch	the
current	Alignment,	permissions	will	be	updated.	Also,	by	setting	the
current	Alignment,	you	are	also	setting	the	current	Alignment	for	the
AutoCAD	Land	Desktop	menus.

Methods

Add
Properties

Application

	

javascript:history.back();

AlignmentFromObjectID

Delete

DoubleToStaFormat

Item

Application

AutoSave

Count

CurrentAlignment

Events

Modified

	

	 	 		AlignSpiral	Object	

The	AlignSpiral	object	represents	a	spiral	entity	for	the	alignment.

VBA	object	name: AeccAlignSpiral

Create	using: Alignment.AddSpiral

Access	via: AlignEntities.Item

Properties

A

AD1

AD2

Application

BeginCondition

Delta

	

javascript:history.back();

Methods

None

EndEasting

EndingStation

EndNorthing

ExtEasting

ExtNorthing

K

Length

LExt

LOffset

ObjectID

P

RadialDistance

ShortTangent

SpiEasting

SpilTangent

SpiNorthing

SpiralType1

SpiralType2

StartDirection

StartEasting

Events

Modified

StartingStation

StartNorthing

ThetaExt

TotalX

TotalY

Type

	

	 	 		AlignTangent	Object	

The	AlignTangent	object	represents	a	tangent	entity	for	the	alignment.

VBA	object	name: AeccAlignTangent

Create	using: Alignment.AddTangent

Access	via: AlignEntities.Item

Methods

None

Properties

Application

Direction

EndEasting

EndingStation

EndNorthing

Length

Events

Modified

	

javascript:history.back();

ObjectID

StartEasting

StartingStation

StartNorthing

Type

	

	 	 		Boundaries	Collection	

The	Boundaries	collection	represents	all	of	the	boundaries	for	the	current
Surface.

VBA	object	name: AeccBoundaries

Create	using: N/A

Access	via: SurfaceInputs.Boundaries

There	are	three	types	of	boundaries:	outer,	hidden,	and	visible.	If	an
outer	boundary	exists	for	the	Surface,	it	must	be	the	first	boundary	and	it
is	visible.	Also,	a	boundary	can	not	be	changed	from	a	hidden	/	visible
boundary	to	an	outer	boundary.

Methods

Add

Delete

Item

Properties

Application

Count

VerticalScale

Events

Modified

	

javascript:history.back();

	 	

	 	 		Boundary	Object	

The	Boundary	object	represents	a	single	boundary	for	the	Surface.

VBA	object	name: AeccBoundary

Create	using: Boundaries.Add

Access	via: Boundaries.Item

Methods

None

Properties

Application

Coordinates

Description

Id

IsBreakLine

Type

Events

Modified

	

javascript:history.back();

	

	 	 		BreakLine	Object	

The	BreakLine	object	represents	a	single	breakline	for	the	Surface.

VBA	object	name: AeccBreakLines

Create	using: BreakLines.Add

Access	via: BreakLines.Item

Methods

None

Properties

Application

Coordinates

Description

Id

Type

Events

Modified

	

javascript:history.back();

	

	 	 		BreakLines	Collection	

The	BreakLines	collection	represents	all	of	the	breaklines	for	the	Surface.

VBA	object	name: AeccBreakLines

Create	using: N/A

Access	via: SurfaceInputs.BreakLines

Methods

Add

Delete

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	

	 	 		CogoPoint	Object	

The	CogoPoint	represents	a	COGO	point	in	the	project	database.

VBA	object	name: AeccCogoPoint

Create	using: CogoPoints.Add

Access	via: CogoPoints.Item

Properties

Application

Coordinates

Easting

Elevation

FullDescription

GridEasting

	

javascript:history.back();

Methods

Save

GridNorthing

GroupName

Latitude

LockType

Longitude

Name

Northing

Number

OverrideDescription

OverrideElevation

OverrideName

RawDescription

Events

Modified

	

	 	 		CogoPoints	Collection	

The	CogoPoints	collection	represents	all	of	the	COGO	points	in	the
project	database.

VBA	object	name: AeccCogoPoints

Create	using: N/A

Access	via: Project.CogoPoints

The	CogoPoints	collection	represents	all	Cogo	points	for	the	current
project	database.	There	exists	only	one	CogoPoints	collection	for	at	a
time.

Methods

Add

ArrayToPointString

Delete

Item

Properties

Application

AutoSave

Count

	

javascript:history.back();

Item

LockPoints

PointByNumber

PointNumberFromObjID

PointStringToArray

UnlockPoints

IsNameSupported

LockedPointNumbers

NextPointNumber

PointNameSize

UsedPointNumbers

Events

Modified

	

	 	 		ContourItem	Object	

The	ContourItem	object	represents	a	single	contour	for	the	ContourItems
collection.

VBA	object	name: AeccContourItem

Create	using: ContourItems.Add

Access	via: ContourItems.Item

Methods

None

Properties

Application

Coordinates

Id

Events

Modifed

	

javascript:history.back();

	

	 	 		ContourItemsCollection	

The	ContourItems	collection	represents	all	of	the	input	contours	for	the
Surface.

VBA	object	name: AeccContourItems

Create	using: N/A

Access	via: SurfaceInputs.ContourItems

Methods

Add

Delete

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();
javascript:history.back();

	 	

	 	 		CrossSection	Object
(Civil	Engineering	Feature)	

The	CrossSection	object	represents	a	single	section	for	an	alignment.

VBA	object	name: AeccCrossSection

Create	using: N/A

Access	via: CrossSections.Item

Methods

Import

SectionVolume

Properties

Application

CrossSectionPointCodes

CrossSectionSurfaces

MaxElevation

MaxOffset

MinElevation

Events

Modified

	

javascript:history.back();

MinElevation

MinOffset

Station

	 	

	 	 		CrossSectionBlock
Object	(Civil	Engineering	Feature)	

The	CrossSectionBlock	object	represents	an	alignment	cross	section	in
the	current	drawing.

VBA	object	name: AeccCrossSectionBlock

Create	using: N/A

Access	via: CrossSectionBlocks.Item

Methods

GetLayerName

Properties

Application

CenterlineOffset

Coordinates

DatumElevation

EGPrecision

	

javascript:history.back();

GetLayerName

OffsetElevationToXy

XyToOffsetElevation

FGPrecision

Height

LeftWidth

Name

RightWidth

Station

VerticalScale

Events

Modified

javascript:history.back();

	 	

	 	 		CrossSectionBlocks
Collection	(Civil	Engineering	Feature)	

The	CrossSectionBlocks	collection	represents	all	of	the	alignment	cross
sections	that	are	in	the	current	drawing.

VBA	object	name: AeccCrossSectionBlocks

Create	using: N/A

Access	via: Document.CrossSectionBlocks

Methods

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	 	

	 	 		CrossSectionPointCode
Object	(Civil	Engineering	Feature)	

The	CrossSectionPointCode	object	represents	a	single	point	code	for	a
cross	section.

VBA	object	name: AeccCrossSectionPointCode

Create	using: N/A

Access	via: CrossSectionPointCodes.Item

Methods

None

Properties

Application

Code

Description

Elevation

Offset

Events

Modified

	

javascript:history.back();
javascript:history.back();
javascript:history.back();
javascript:history.back();

	 	

	 	 		CrossSectionPointCodes
Collection	(Civil	Engineering	Feature)	

The	CrossSectionPointCodes	collection	represents	all	of	the	point	codes
for	a	cross	section.

VBA	object	name: AeccCrossSectionPointCodes

Create	using: N/A

Access	via: CrossSection.CrossSectionPointCodes

Methods

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();
javascript:history.back();

	 	

	 	 		CrossSections	Collection
(Civil	Engineering	Feature)	

The	CrossSections	collection	represents	all	of	the	cross	sections	for	an
alignment.

VBA	object	name: AeccCrossSections

Create	using: N/A

Access	via: Alignments.CrossSections

Methods

Item

PointCodeDescription

SectionByStation

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	 	

	 	 		CrossSectionSurface
Object	(Civil	Engineering	Feature)	

The	CrossSectionSurface	object	represents	a	single	surface	section	for	a
cross	section.

VBA	object	name: AeccCrossSectionSurface

Create	using: N/A

Access	via: CrossSectionSurfaces.Item

Methods

None

Properties

Application

Name

OffsetElevations

Type

Events

Modified

	

javascript:history.back();
javascript:history.back();
javascript:history.back();
javascript:history.back();

	 	

	 	 		CrossSectionSurfaces
Collection	(Civil	Engineering	Feature)	

The	CrossSectionSurfaces	collection	represents	all	of	the	surfaces	for	a
cross	section.

VBA	object	name: AeccCrossSectionSurfaces

Create	using: N/A

Access	via: CrossSection.CrossSectionSurfaces

Methods

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	 	

	 	 		DatabasePreferences
Object	

This	object	specifies	the	current	AutoCAD	Land	Desktop	drawing	specific
settings.

VBA	object	name: AeccDatabasePreferences

Create	using: N/A

Access	via: Document.Preferences

Database	preferences	represent	all	the	options	that	reside	in	a	drawing.
These	include	settings	in	the	AdCADD	block,	dictionary	and	the
AecBaseSetup	object.

The	DatabasePreferences	object	can	be	referenced	from	the
Preferences	property	on	the	Document	object.

See	the	DatabasePreferences	object	in	the	AutoCAD	ActiveX	and	VBA
Reference	for	information	regarding	additional	Methods,	Properties	and
Events	provided	through	this	object.

	

javascript:history.back();
acadauto.chm::/idh_databasepreferences_object.htm

Methods

ConvertToCurrentAreaDisplay

ConvertToCurrentVolumeDisplay

LoadSetupProfile

SaveAsDefault

Properties

AngularAzimuth

AngularDisplayFormat

AngularPrecision

Application

AreaDisplayUnit

AreaPrecision

AreaSuffix

BasePoint

BasePointNE

BorderBlockFilename

BorderBottomMargin

BorderLeftMargin

BorderLineWidth

BorderRightMargin

BorderStyle

BorderTopMargin

CoordinatePrecision

CoordinateZone

DatabaseScale

Events

None

SaveAsDefault

SaveSetupProfile
ElevationPrecision

FacetDeviation

LayerFile

LayerStandard

LinearDisplayFormat

LinearPrecision

LinearUnit

MeasurementUnit

NorthRotation

ProjectName

ScaleOnInsert

SheetHeight

SheetWidth

TextHeight

VerticalScale

VolumeDisplayUnit

VolumePrecision

VolumeSuffix

	

	 	 		DEMFile	Object	

The	DEMFile	object	represents	a	single	Digital	Elevation	Model	file	for
the	Surface.

VBA	object	name: AeccDEMFile

Create	using: DEMFiles.Add

Access	via: DEMFiles.Item

Methods

None

Properties

Application

CoordinateZone

Name

Events

Modified

	

javascript:history.back();

	

	 	 		DEMFiles	Collection	

The	DEMFiles	collection	represents	all	of	the	Ditial	Elevation	Model	files
for	the	Surface.

VBA	object	name: AeccDEMFiles

Create	using: N/A

Access	via: SurfaceInputs.DEMFiles.

Methods

Add

Delete

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	

	 	 		DescriptionKey	Object	

The	DescriptionKey	object	represents	the	description	key	for	point.

VBA	object	name: AeccDescriptionKey

Create	using: DescriptionKeyFile.Add

Access	via: DescriptionKeyFile.Item

Properties

Application

Code

DescriptionFormat

DescriptionLayer

RotateByDescriptionParam

RotateByFixedFactor

	

javascript:history.back();

Methods

Save

RotateClockwise

RotateDescriptionParam

RotateFixedFactor

ScaleByDescriptionParam

ScaleByDrawingScale

ScaleByFixedFactor

ScaleDescriptionParam

ScaleFixedFactor

ScaleInXY

ScaleInZ

SymbolBlock

SymbolLayer

Events

Modified

	

	 	 		DescriptionKeyFile
Collection	

The	DescriptionKeyFile	collection	represents	all	of	the	description	keys	in
a	project	description	key	file.

VBA	object	name: AeccDescriptionKeyFile

Create	using: DescriptionKeyFiles.Add

Access	via: DescriptionKeyFiles.Item

Methods

Add

Delete

Item

Properties

Application

Count

FullName

Name

Path

Events

Modified

	

javascript:history.back();

	

	 	 		DescriptionKeyFiles
Collection	

The	DescriptionKeyFiles	collection	represents	all	of	the	description	keys
for	a	project	description	key	file.

VBA	object	name: AeccDescriptionKeyFiles

Create	using: N/A

Access	via: Project.DescriptionKeyFiles

Methods

Add

Delete

Item

Properties

Application

AutoSave

Count

Path

Events

Modified

	

javascript:history.back();

	 	

	 	 		Document	Object	

An	AutoCAD	Land	Desktop	drawing.

VBA	object	name: AeccDocument

Create	using: Documents.NewProjectBased

Access	via: Documents.Item

Because	AutoCAD	Land	Desktop	works	with	only	one	document	at	a
time,	and	that	document	represents	one	database,	the	active	document
can	be	thought	of	as	the	current	database	as	well	as	the	current
document.

The	NewProjectBased	and	OpenProjectBased	methods	handle	project-
based	drawings	specific	to	AutoCAD	Land	Desktop	and	override	the
default	AutoCAD	functionality.

The	Preferences	property	provides	access	to	drawing	settings.

See	the	Document	object	in	the	AutoCAD	ActiveX	and	VBA	Reference
for	information	regarding	additional	Methods,	Properties	and	Events

	

javascript:history.back();
acadauto.chm::/idh_document_object.htm

provided	through	this	object.

Methods

NewProjectBased

OpenProjectBased

Properties

Application

CrossSectionBlocks	(Civil	Engineering	Feature)

MaskBlockStyles

MassGroups

MVBlockStyles

Preferences

ProfileBlocks	(Civil	Engineering	Feature)

ProfileStyles

Utility

Events

None

aecauto-reference.chm::/html/idh_property_MaskBlockStyles.htm
aecauto-reference.chm::/html/idh_property_MassGroups.htm
aecauto-reference.chm::/html/idh_property_MVBlockStyles.htm
aecauto-reference.chm::/html/idh_property_ProfileStyles.htm

	 	

	 	 		Documents	Collection	

The	collection	of	all	AutoCAD	Land	Desktop	drawings	open	in	the	current
session.

VBA	object	name: AeccDocuments

Create	using: N/A

Access	via: Application.Documents

The	documents	collection	will	always	have	a	single	item	–	the	currently
opened	drawing.	To	open	a	different	drawing,	use	the	OpenProjectBased
method	from	the	Document	object.

See	the	Documents	object	in	the	AutoCAD	ActiveX	and	VBA	Reference
for	information	regarding	additional	Methods,	Properties	and	Events
provided	through	this	object.

Methods

Item

Properties

Application

Count

Events

None

	

javascript:history.back();
acadauto.chm::/idh_documents_collection.htm

Count

	 	

	 	 		Drawing	Object	

An	AutoCAD	Land	Desktop	project-based	drawing.

VBA	object	name: AeccDrawing

Create	using: N/A

Access	via: Drawings.Item

The	Drawing	object	represents	an	AutoCAD	drawing	that	is	associated
with	a	AutoCAD	Land	Desktop	project.

Methods

None

Properties

Application

FullName

Name

Path

Events

None

	

javascript:history.back();

	 	

	 	 		Drawings	Collection	

The	collection	of	all	AutoCAD	Land	Desktop	drawings	in	a	project.

VBA	object	name: AeccDrawings

Create	using: N/A

Access	via: Project.Drawings

The	collection	of	drawings	at	the	specified	drawing	path.	Unlike	the
Documents	collection,	items	in	the	Drawings	collection	are	not
necessarily	loaded	into	the	application.	Use	the	Drawings	collection	to
enumerate	the	drawings	in	the	project,	select	a	Project-based	drawing	to
open,	or	create	a	new	Project-based	drawing	from	a	template

Methods

Item

Open

Properties

Application

Count

Path

Events

Modified

	

javascript:history.back();

ShowSubfolders

	

	 	 		Edge	Object	

The	Edge	object	represents	a	single	output	edge	for	the	Surface.

VBA	object	name: AeccEdge

Create	using: N/A

Access	via: Edges.Item

Methods

None

Properties

Application

Coordinates

Events

Modified

	

javascript:history.back();

	

	 	 		Edges	Collection	

The	Edges	collection	represents	all	of	the	output	edges	for	the	Surface.

VBA	object	name: AeccEdges

Create	using: N/A

Access	via: SurfaceOutputs.Edges

Methods

None

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	 	

	 	 		EGProfile	Object	(Civil
Engineering	Feature)	

The	EGProfile	object	represents	the	station	/	elevation	information	for	a
given	surface.

VBA	object	name: AeccEGProfile

Create	using: PGProfiles.Add

Access	via: EGProfiles.Item

Methods

ElevationAt

Import

InstantGrade

Properties

Application

StationElevations

SurfaceName

Type

Events

Modified

	

javascript:history.back();

	 	

	 	 		EGProfiles	Collection
(Civil	Engineering	Feature)	

The	EGProfiles	collection	represents	all	of	the	existing	ground	profiles.

VBA	object	name: AeccEGProfiles

Create	using: N/A

Access	via: Alignment.EGProfiles

Methods

Add

Delete

Item

ProfileByType

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	

	 	 		ElevationContour
Object	

The	ElevationContour	object	represents	a	single	contour	for	the
ElevationContours	collection.

VBA	object	name: AeccElevationContour

Create	using: N/A

Access	via: ElevationContours.Item

Methods

None

Properties

Application

Coordinates

Events

Modified

	

javascript:history.back();

	

	 	 		ElevationContours
Collection	

The	ElevationContours	collection	represents	all	of	the	calculated
contours	at	a	given	elevation	for	the	Surface.

VBA	object	name: AeccElevationContours

Create	using: N/A

Access	via: SurfaceOutputs.ElevationContours

Methods

Item

Properties

Application

Count

Elevation

Events

Modified

	

javascript:history.back();

	

	 	 		Face	Object	

The	Face	object	represents	a	single	calculated	face	(triangle)	for	the
Surface.

VBA	object	name: AeccFace

Create	using: N/A

Access	via: Faces.Item

The	Face	object	represents	a	single	face	(triangle)	for	the	current	TIN
Surface.	The	Face	is	a	three-dimensional	(planar)	surface	triangle.

Methods

None

Properties

Application

Area2D

Area3D

Coordinates

Events

Modified

	

javascript:history.back();

IsVisible

Normal

	

	 	 		Faces	Collection	

The	Faces	collection	represents	all	of	the	calculated	faces	(triangles)	for
the	Surface.

VBA	object	name: AeccFaces

Create	using: N/A

Access	via: SurfaceOutputs.Faces

Methods

FindAllFaces

FindFace

FindPath

Item

Properties

Application

Count

SearchType

Events

Modified

	

javascript:history.back();

	 	

	 	 		FGProfile	Object	(Civil
Engineering	Feature)	

The	FGProfile	object	represents	a	finished	ground	vertical	PVIs.

VBA	object	name: AeccFGProfile

Create	using: FGProfiles.Add

Access	via: FGProfiles.Item

Methods

ElevationAt

InstantGrade

Properties

Application

PVIs

Type

Events

Modified

	

javascript:history.back();

	 	

	 	 		FGProfiles	Collection
(Civil	Engineering	Feature)	

The	FGProfiles	collection	represents	all	of	the	finished	grade	profiles	in
the	project.

VBA	object	name: AeccFGProfiles

Create	using: N/A

Access	via: Alignment.FGProfiles

Methods

Add

Delete

Item

ProfileByType

Properties

Application

Count

Name

Events

Modified

	

javascript:history.back();

	 	

	 	 		FileLock	Object	

A	file	lock	in	the	AutoCAD	Land	Desktop	project.

VBA	object	name: AeccFileLock

Create	using: N/A

Access	via: FileLocks.Item

Use	this	object	to	access	properties	of	a	particular	file	lock.

Methods

None

Properties

Application

File

Label

LockType

Owner

Events

Modified

	

javascript:history.back();

Time

	

	 	 		FileLocks	Collection	

The	collection	of	all	file	locks	for	a	particular	project.

VBA	object	name: AeccFileLocks

Create	using: N/A

Access	via: Project.FileLocks

The	collection	of	all	file	locks	for	a	particular	project.	Use	the	FileLocks
collection	to	view	which	files	in	a	project	are	locked,	and	who	currently
owns	the	locks.	The	lock	owner	is	the	person	who	opens	the	file	first,
locking	the	project	files	so	that	other	people	cannot	make	changes	to
them.

The	delete	methods	are	hidden	since	if	used	carelessly	they	can	cause
data	corruption	or	loss	of	data.	However,	advanced	users	may	require
this	functionality	in	the	case	of	a	power	failure	or	system	error.

Methods

Properties

Application Events

	

javascript:history.back();

Item Count

Path

Modified

	

	 	 		Parcel	Object	

The	Parcel	object	represents	a	parcel	in	the	current	project	database.

VBA	object	name: AeccParcel

Create	using: Parcels.Add

Access	via: Parcels.Item

Methods

AddCurve

AddLine

Import

Properties

Application

Area

CentroidEasting

CentroidNorthing

Name

Number

Events

Modified

	

javascript:history.back();

ParcelEntities

Perimeter

Precision

	

	 	 		ParcelCurve	Object	

The	ParcelCurve	object	represents	a	curve	entity	for	the	parcel.

VBA	object	name: AeccParcelCurve

Create	using: Parcel.AddCurve

Access	via: ParcelEntities.Item

Properties

Application

CCWFlag

CenterEasting

CenterNorthing

ChordLength

Course

	

javascript:history.back();

Methods

None

CourseIn

CourseOut

Delta

EndEasting

EndNorthing

Length

Radius

StartEasting

StartNorthing

TangentLength

Type

Events

Modified

	

	 	 		ParcelEntities
Collection	

The	ParcelEntities	collection	represents	all	of	the	entities	for	a	Parcel.

VBA	object	name: AeccParcelEntities

Create	using: N/A

Access	via: Parcel.ParcelEntities

Methods

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	

	 	 		ParcelEntity	Collection	

The	ParcelEntity	collection	is	the	base	class	for	ParcelCurve	and
ParcelLine.

VBA	object	name: AeccParcelEntity

Create	using: N/A

Access	via: ParcelEntities.Item

All	parcel	entities	are	derived	from	a	ParcelEntity	-	they	all	share	the
methods,	properties	and	events	listed	below.	You	can	use	this	base	class
as	the	object	type	returned	from	the	method	Item	of	the	ParcelEntities
collection.	If	you	need	access	to	the	complete	details	of	a	parcel	entity,
use	the	Type	property	(or	TypeOf	function	in	VB)	to	determine	whether	to
assign	the	returned	object	to	an	ParcelCurve	or	ParcelLine.

Properties

Application

Course

	

javascript:history.back();

Methods

None

EndEasting

EndNorthing

Length

StartEasting

StartNorthing

Type

Events

Modified

	

	 	 		ParcelLine	Object	

The	ParcelLine	object	represents	a	line	entity	for	the	Parcel.

VBA	object	name: AeccParcelLine

Create	using: Parcel.AddLine

Access	via: ParcelEntities.Item

Methods

None

Properties

Application

Course

EndEasting

EndNorthing

Length

StartEasting

Events

Modified

	

javascript:history.back();

StartNorthing

Type

	

	 	 		Parcels	Collection	

The	Parcels	collection	represents	all	of	the	parcels	that	are	in	the	current
project.

VBA	object	name: AeccParcels

Create	using: N/A

Access	via: Project.Parcels

Methods

Add

Delete

Item

Rename

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	

	 	 		PointFile	Object	

The	PointFile	object	represents	a	single	point	file	for	the	Surface.

VBA	object	name: AeccPointFile

Create	using: PointFiles.Add

Access	via: PointFiles.Item

Methods

None

Properties

Application

Format

Name

Events

Modified

	

javascript:history.back();

	

	 	 		PointFiles	Collection	

The	PointFiles	collection	represents	all	of	the	point	files	for	the	Surface.

VBA	object	name: AeccPointFiles

Create	using: N/A

Access	via: SurfaceInputs.PointFiles

Methods

Add

Delete

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	

	 	 		PointGroup	Object	

The	PointGroup	collection	represents	a	Point	Group	in	the	project
database.

VBA	object	name: AeccPointGroup

Create	using: PointGroups.Add

Access	via: PointGroups.Item

Properties

Application

Description

DescriptionOverride

DescriptionXDRef

Elevation

ElevationOverride

	

javascript:history.back();

Methods

ClearOverrides

Save

ElevationOverride

ElevationXDRef

GroupName

LabelStyle

LabelStyleOverride

LabelStyleXDRef

Name

NameOverride

NameXDRef

PointList

Events

Modified

	 	

	 	 		PointGroupName
Object	

The	PointGroupName	object	represents	a	single	PointGroupName	for	the
PointGroupNames	collection.

VBA	object	name: AeccPoiintGroupName

Create	using: PointGroupNames.Add

Access	via: PointGroupNames.Item

By	using	PointGroupNames,	you	can	add	Cogo	Point	Groups	to	the
Surface	definition.	A	Cogo	Point	Group	will	contain	a	range	of	Cogo
Points.	By	using	these	objects,	a	Surface	can	be	built	using	ranges	of
Cogo	Points.

No	validation	exists	between	the	PointGroupName	and	a	Cogo	Point
Group.	When	a	PointGroupName	is	added,	AutoCAD	Land	Desktop	does
not	check	to	see	if	the	PointGroupName.Name	actually	exists	as	a	Cogo
Point	Group.

Properties

	

javascript:history.back();

Methods

None

Properties

Application

Name

Events

None

	 	

	 	 		PointGroupNames
Collection	

The	PointGroupNames	collection	represents	all	of	the	PointGroupNames
for	the	current	Surface.

VBA	object	name: AeccPointGroupNames

Create	using: N/A

Access	via: SurfaceInputs.PointGroupNames

By	using	PointGroupNames,	you	can	add	Cogo	Point	Groups	to	the
Surface	definition.	A	Cogo	Point	Group	will	contain	a	range	of	Cogo
Points.	By	using	these	objects,	a	Surface	can	be	built	using	ranges	of
Cogo	Points.

No	validation	exists	between	the	PointGroupName	and	a	Cogo	Point
Group.	When	a	PointGroupName	is	added,	AutoCAD	Land	Desktop	does
not	check	to	see	if	the	PointGroupName.Name	actually	exists	as	a	Cogo
Point	Group.

Methods

	

javascript:history.back();

Methods

Add

Delete

Item

Properties

Application

Count

Events

Modified

	

	 	 		PointGroups	Collection	

The	PointGroups	collection	represents	all	of	the	Point	Groups	in	the
project	database.

VBA	object	name: AeccPointGroups

Create	using: N/A

Access	via: Project.PointGroups

Cogo	PointGroups	allow	the	user	to	work	with	a	subset	of	Cogo	points.
This	subset	can	also	have	the	elevation,	description,	and	name	of	the
points	overridden.	This	would	be	useful	for	when	a	point	would	need
multiple	elevations.

Methods

Add

Delete

Item

Properties

Application

AutoSave

Count

Events

Modified

	

javascript:history.back();

	 	

	 	 		Preferences	Object	

This	object	specifies	the	current	AutoCAD	Land	Desktop	settings.

VBA	object	name: AeccPreferences

Create	using: N/A

Access	via: Application.Preferences

The	Preferences	object	holds	all	the	options	stored	external	to	the
drawing	such	as	User	Preferences.	Options	that	reside	in	the	drawing
can	be	accessed	through	the	DatabasePreferences	object.

The	Preferences	object	is	divided	into	separate	objects,	with	each
representing	a	set	of	related	options.

The	Preferences	object	can	be	referenced	from	the	Preferences	property
on	the	Application	object.

See	the	Preferences	object	in	the	AutoCAD	ActiveX	and	VBA	Reference
for	information	regarding	additional	Methods,	Properties	and	Events
provided	through	this	object.

	

javascript:history.back();
acadauto.chm::/idh_preferences_object.htm

Methods

None

Properties

Application

Files

User

Events

None

	

	 	 		PreferencesAlignment
Object	

This	object	specifies	the	settings	for	Horizontal	Alignments.

VBA	object	name: AeccPreferencesAlignment

Create	using: N/A

Access	via: PreferencesProject.PreferencesAlignment

Methods

GetDouble

GetInterger

GetString

SetDouble

SetInterger

SetString

Properties

Application

Events

Modified

	

javascript:history.back();

SetString

	

	 	 		PreferencesCogo	Object	

This	object	specifies	the	settings	for	Points.

VBA	object	name: AeccPreferencesCogo

Create	using: N/A

Access	via: PreferencesProject.PreferencesCogo

Methods

GetDouble

GetInterger

GetString

SetDouble

SetInterger

SetString

Properties

Application

Events

Modified

	

javascript:history.back();

	

	 	 		PreferencesCrossSection
Object	(Civil	Engineering	Feature)	

This	object	specifies	the	settings	for	Alignment	Cross	Sections.

VBA	object	name: AeccPreferencesCrossSection

Create	using: N/A

Access	via: PreferencesProject.PreferencesCrossSection

Methods

GetDouble

GetInteger

GetString

SetDouble

SetInteger

Properties

Application

Events

Modified

	

javascript:history.back();

SetString

	 	

	 	 		PreferencesFiles	Object	

This	object	specifies	the	paths	used	by	the	AutoCAD	Land	Desktop.

VBA	object	name: AeccPreferencesFiles

Create	using: N/A

Access	via: Preferences.PreferencesFiles

This	object	specifies	the	paths	used	by	the	program.	Some	paths	are
established	during	installation	and	are	exposed	as	read-only	properties.

Paths	are	returned	without	a	trailing	backslash	delimiter	"\".

Changes	to	BorderPath,	CivilDataFilesPath,	ContourStylesPath,
DrawingSetupPath,	FormatsPath,	LabelStylePath,	PreferencesPath,
ProjectPath,	PrototypePath,	SpeedTablesPath,	SymbolManagerPath	and
TempPath	will	not	take	affect	until	you	exit	the	program	and	restart.

See	the	PreferencesFiles	object	in	the	AutoCAD	ActiveX	and	VBA
Reference	for	information	regarding	additional	Methods,	Properties	and
Events	provided	through	this	object.

	

javascript:history.back();
acadauto.chm::/idh_preferencesfiles_object.htm

Methods

None

Properties

Application

BorderPath

CivilDataFilesPath

ContourStylesPath

DataPath

DrawingSetupPath

FormatsPath

HelpPath

LabelStylePath

PreferencesPath

ProgramPath

ProjectPath

PrototypePath

SpeedTablesPath

SymbolManagerPath

SystemPath

TempPath

Events

None

	

	 	 		PreferencesParcel
Object	

This	object	specifies	the	settings	for	Parcels.

VBA	object	name: AeccPreferencesParcel

Create	using: N/A

Access	via: PreferencesProject.PreferencesParcel

Methods

GetInteger

GetString

SetInteger

SetString

Properties

Application

Events

Modified

	

javascript:history.back();

	 	

	 	 		PreferencesProfile
Object	(Civil	Engineering	Feature)	

This	object	specifies	the	settings	for	Alignment	Vertical	Profiles.

VBA	object	name: AeccPreferencesProfile

Create	using: N/A

Access	via: PreferencesProject.PreferencesProfile

Methods

GetDouble

GetInteger

GetString

SetDouble

SetInteger

SetString

Properties

Application

Events

Modified

	

javascript:history.back();

SetString

	 	

	 	 		PreferencesProject
Object	

This	object	specifies	the	project	settings.

VBA	object	name: AeccPreferencesProject

Create	using: N/A

Access	via: Project.Preferences

The	PreferencesProject	object	holds	all	the	options	associated	with
external	data	such	as	Point	Settings,	Alignments,	etc.

The	PreferencesProject	object	can	be	referenced	from	the	Preferences
property	on	the	Project	object.

Properties

Application

Alignment

	

javascript:history.back();

Methods

None

Cogo

CrossSection	(Civil	Engineering	Feature)

Parcel

Profile	(Civil	Engineering	Feature)

Surface

Events

Modified

	

	 	 		PreferencesSurface
Object	

This	object	specifies	the	settings	for	Surfaces.

VBA	object	name: AeccPreferencesSurface

Create	using: N/A

Access	via: PreferencesProject.PreferencesSurface

Methods

GetDouble

GetInterger

GetString

SetDouble

SetInterger

SetString

Properties

Application

Events

Modified

	

javascript:history.back();

SetString

	

	 	 		PreferencesUser	Object	

This	object	specifies	the	options	maintained	on	a	per-user	basis.

VBA	object	name: AeccPreferencesUser

Create	using: N/A

Access	via: Preferences.PreferencesUser

The	User	Preferences	control	program-wide	preferences	such	as	the
AutoCAD	overrides	and	the	drawing	setup	method.

These	settings	are	saved	at	the	PreferencesPath	in	the	file	<AutoCAD
login	name>.dfm.

Changes	to	OverrideNew,	OverrideOpen	and	ShowStartupDialog	will	not
take	affect	until	you	exit	the	program	and	restart.

See	the	PreferencesUser	object	in	the	AutoCAD	ActiveX	and	VBA
Reference	for	information	regarding	additional	Methods,	Properties	and
Events	provided	through	this	object.

	

javascript:history.back();
acadauto.chm::/idh_preferencesuser_object.htm

Methods

None

Properties

Application

FirstTimeDrawingSetup

FirstTimeDrawingSetupFile

LastUsedDwg

LastUsedDwgPath

LastUsedProj

LastUsedProjPath

OverrideNew

OverrideOpen

ShowStartupDialog

Events

None

	 	

	 	 		ProfileBlock	Object
(Civil	Engineering	Feature)	

The	ProfileBlock	object	represents	a	profile	in	the	current	drawing.

VBA	object	name: AeccProfileBlock

Create	using: N/A

Access	via: ProfileBlocks.Item

Methods

Properties

Application

Coordinates

CurveLabelIncrement

DatumElevation

Direction

EGPrecision

	

javascript:history.back();

Methods

GetLayerName

StationElevationToXy

XyToStationElevation

EGPrecision

EndingStation

FGPrecision

Name

StartingStation
StationIncrement

TangentLabelIncrement

UpperRight

VerticalScale

Events

Modified

	 	

	 	 		ProfileBlocks	Collection
(Civil	Engineering	Feature)	

The	ProfileBlocks	collection	represents	all	of	the	profiles	that	are	in	the
current	drawing.

VBA	object	name: AeccProfileBlocks

Create	using: N/A

Access	via: Document.ProfileBlocks

Methods

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	 	

	 	 		Project	Object	

An	AutoCAD	Land	Desktop	project.

VBA	object	name: AeccProject

Create	using: Projects.Add

Access	via: Projects.Item	Application.ActiveProjects

The	Project	object	represents	a	project	in	the	AutoCAD	Land	Desktop.
Projects	are	used	to	manage	and	organize	all	the	data	for	a	job	that	you
are	working	on.	This	data	includes	the	project	point	file,	alignment
database,	parcel	database,	surface	database,	drawing	files,	and	so	on.

AutoCAD	Land	Desktop	works	with	only	one	project	at	a	time.	You	can
query	certain	properties	of	all	Project	objects	in	the	Projects	collection,
but	access	to	project-based	data	(such	as	CogoPoints)	is	only	allowed	in
the	ActiveProject.	The	ActiveProject	object	has	its	Active	property	set	to
TRUE.

Properties

Active

	

javascript:history.back();

Methods

None

Active

Alignments

Application

Author

CogoPoints
Description

DescriptionKeyFiles

DrawingPath

Drawings

FileLocks

FullName

Keywords

Name

Parcels

Path

PointGroups

Preferences

PrototypeName

Surfaces

Events

Modified

	 	

	 	 		Projects	Collection	

The	collection	of	all	AutoCAD	Land	Desktop	projects	on	the	network.

VBA	object	name: AeccProjects

Create	using: N/A

Access	via: Application.Projects

Use	the	Projects	collection	to	find	a	particular	project	by	name,	author	or
keywords.	You	can	also	use	the	Projects	collection	to	create	a	new
project	based	on	a	prototype.

Methods

Add

Delete

Item

Properties

Application

Count

ProjectPath

Events

Modified

	

javascript:history.back();

	 	

	 	 		Prototype	Object	

An	AutoCAD	Land	Desktop	project	prototype.

VBA	object	name: AeccPrototype

Create	using: Prototypes.Copy

Access	via: Prototypes.Item

AutoCAD	Land	Desktop	uses	prototypes	as	a	convenient	way	for	you	to
maintain	standard	settings	for	your	drawings.	Whenever	a	new	drawing	is
attached	to	a	project,	its	default	settings	are	copied	from	this	prototype.
The	settings	are	copied	to	each	drawing	so	that	after	a	drawing	is
created,	its	settings	can	be	modified	independently	of	any	of	the	other
drawings	in	the	project.

Methods

None

Properties

Application

Description

Name

Events

Modified

	

javascript:history.back();

Name

	 	

	 	 		Prototypes	Collection	

The	collection	of	all	AutoCAD	Land	Desktop	project	prototypes.

VBA	object	name: AeccPrototypes

Create	using: N/A

Access	via: Application.Prototypes

The	collection	of	prototypes	at	the	PrototypePath.

Methods

Copy

Delete

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	 	

	 	 		PVI	Object	(Civil
Engineering	Feature)	

The	PVI	object	represents	a	Point	of	Vertical	Interstection	for	a	Finished
Ground	Profile.

VBA	object	name: AeccPVI

Create	using: PVIs.Add

Access	via: PVIs.Item

Methods

None

Properties

Application

CurveLength

Elevation

Station

Events

Modified

	

javascript:history.back();

	 	

	 	 		PVIs	Collection	(Civil
Engineering	Feature)	

The	PVIs	collection	represents	all	of	the	Point	of	Vertical	Intesection
objects	in	the	project.

VBA	object	name: AeccPVIs

Create	using: N/A

Access	via: FGProfile.PVIs

Methods

Add

Delete

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	

	 	 		StationEquation	Object	

The	StationEquation	object	represents	a	station	equation	for	the
alignment.

VBA	object	name: AeccStationEquation

Create	using: StationEquations.Add

Access	via: StationEquations.Item

Methods

None

Properties

Application

StationAhead

StationBack

Type

Events

Modified

	

javascript:history.back();

	

	 	 		StationEquations
Collection	

The	StationEquations	collection	represents	all	of	the	station	equations	for
the	Alignment.

VBA	object	name: AeccStationsEquations

Create	using: N/A

Access	via: Alignment.StationsEquations

Methods

Add

Delete

Item

RemoveAll

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	 	

	 	 		Superelevation	Object
(Civil	Engineering	Feature)	

The	Superelevation	object	represents	a	single	superelevation	for	an
alignment.

VBA	object	name: AeccSuperelevation

Create	using: N/A

Access	via: Superelevations.Item

Methods

None

Properties

Application

CurveCode

Station

SuperelevationCode

Events

Modified

	

javascript:history.back();
javascript:history.back();
javascript:history.back();

	

	 	 		Superelevations
Collection	(Civil	Engineering	Feature)	

The	Superelevations	collection	represents	all	of	the	superelevations	for
an	alignment.

VBA	object	name: AeccSuperelevations

Create	using: N/A

Access	via: Alignment.Superelevations

Methods

Item

Properties

Application

Count

Events

	

javascript:history.back();

Modified

	

	 	 		Surface	Object	

The	Surface	object	represents	a	Surface	in	the	project	database.

VBA	object	name: AeccSurface

Create	using: Surfaces.Add

Access	via: Surfaces.Item

Methods

Properties

Application

Area2D

Area3D

AverageGrade

Description

Inputs

	

javascript:history.back();

AddToAllElevations

AreaVolume

Build

FindAllConnectingEdges

FindConnectingEdge

FindPoint

GetBoundingBox

GetElevation

Import

Paste

SampleElevations

SetBoundingBox

LockType

MaxElevation

MaxFaceArea

MaxGrade

MeanElevation

MinElevation

MinFaceArea

MinGrade

Name

NumberOfFaces

NumberOfPoints

Outputs

PointOnLineTolerance

PointTolerance

RevisionNumber

Status

Type

Volume

Events

Modified

	

	 	 		SurfaceInputs
Collection	

The	SurfaceInputs	object	represents	all	inputs	for	a	Surface.

VBA	object	name: AeccSurfaceInputs

Create	using: N/A

Access	via: Surface.SurfaceInputs

Methods

None

Properties

Application

Boundaries

BreakLines

ContourItems

DEMFiles

PointFiles

Events

Modified

	

javascript:history.back();

PointFiles

PointGroupNames

	

	 	 		SurfaceOutputs	Object	

The	SurfaceOutputs	object	represents	all	outputs	for	a	Surface.

VBA	object	name: AeccSurfaceOutputs

Create	using: N/A

Access	via: Surface.SurfaceOutputs

Methods

None

Properties

Application

Edges

ElevationContours

Faces

TinPoints

WaterSheds

Events

Modified

	

javascript:history.back();

	

	 	 		Surfaces	Collection	

The	Surfaces	collection	represents	all	of	the	Surface	objects	in	the
project	database.

VBA	object	name: AeccSurfaces

Create	using: N/A

Access	via: Project.Surfaces

Methods

Add

Composite

Copy

Delete

DifferenceGrid

Item

Properties

Application

Count

CurrentSurface

Events

Modified

	

javascript:history.back();

Item

Rename

	

	 	 		TinPoint	Object	

The	TinPoint	represents	a	calculated	point	for	the	Surface.

VBA	object	name: AeccTinPoint

Create	using: N/A

Access	via: TinPoints.Item

Methods

None

Properties

Application

Easting

Elevation

Northing

Events

Modified

	

javascript:history.back();

	

	 	 		TinPoints	Collection	

The	TinPoints	represents	all	of	the	calculated	points	for	the	Surface.

VBA	object	name: AeccTinPoints

Create	using: N/A

Access	via: SurfaceOutputs.TinPoints

Methods

Item

Properties

Application

Count

Events

Modified

	

javascript:history.back();

	

	 	 		Utility	Object	

A	series	of	methods	provided	for	utility	purposes.

VBA	object	name: AeccUtility

Create	using: N/A

Access	via: Document.Utility

See	the	Utility	object	in	the	AutoCAD	ActiveX	and	VBA	Reference	for
information	regarding	additional	Methods,	Properties	and	Events
provided	through	this	object.

Methods

EastNorthToXy

XyToEastNorth

Properties

None

Events

None

	

javascript:history.back();
acadauto.chm::/idh_utility_object.htm

	

	 	 		WaterShed	Object	

The	WaterShed	object	represents	a	single	watershed	item	for	the
WaterSheds	collection.

VBA	object	name: AeccWaterShed

Create	using: N/A

Access	via: WaterSheds.Item

Methods

None

Properties

Application

Boundary

DrainsInto

Id

OverflowPoints

Type

Events

Modified

	

javascript:history.back();

Type

	

	 	 		WaterSheds	Collection	

The	WaterSheds	collection	represents	all	of	the	WaterShed	items	for	the
Surface.

VBA	object	name: AeccWaterSheds

Create	using: N/A

Access	via: SurfaceOutputs.WaterSheds

Methods

Build

Item

Properties

Application

Count

ExceedBoth

MinDepressionArea

MinDepressionDepth

Events

Modified

	

javascript:history.back();

A	Example

Sub	Example_A()
				
				'	This	example	returns	the	A	value	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												"The	A	value	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.A
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"A	Example"
				
End	Sub

javascript:history.back();

Active	Example

Sub	Example_Active()
				
				'	This	example	returns	the	Active	setting	for	the	first	Project
				'	in	the	collection
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.Projects.Item(0)
				
				MsgBox	"The	Active	value	for	the	first	Project	in	the	collection	is:	"	&	proj.Active,	_
								vbInformation,	"Active	Example"
				
End	Sub

javascript:history.back();

ActiveDocument	Example

Sub	Example_ActiveDocument()
				
				'	This	example	returns	name	of	the	CurrentDocument.
				Dim	activeDoc	As	AeccDocument
				Set	activeDoc	=	AeccApplication.ActiveDocument
				
				MsgBox	"The	ActiveDocument	is:	"	&	activeDoc.Name,	_
				vbInformation,	"ActiveDocument	Example"
				
End	Sub

javascript:history.back();

ActiveProject	Example

Sub	Example_ActiveProject()
				
				'	This	example	returns	the	name	of	the	ActivProject.
				Dim	activeProj	As	AeccProject
				Set	activeProj	=	AeccApplication.ActiveProject
				
				MsgBox	"The	ActiveProject	is:	"	&	activeProj.Name,	_
				vbInformation,	"ActiveProject	Example"
				
End	Sub

javascript:history.back();

AD1	Example

Sub	Example_AD1()
				
				'	This	example	returns	the	AD1	value	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg;	=	"The	AD1	value	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.AD1
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"AD1	Example"
				
End	Sub

javascript:history.back();

AD2	Example

Sub	Example_AD2()
				
				'	This	example	returns	the	AD2	value	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
							If	alignEnt.Type	=	kSpiral	Then
												alignMsg;	=	"The	AD2	value	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.AD2
							Exit	For
				End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"AD2	Example"
				
End	Sub

javascript:history.back();

Add	Example

Examples:

l	Alignments

l	Boundaries

l	BreakLines

l	CogoPoints

l	ContourItems

l	DEMFiles

l	DescriptionKeyFile

l	DescriptionKeyFiles

l	EGProfiles	(Civil	Engineering	Feature)

l	FGProfiles	(Civil	Engineering	Feature)

l	Parcels

l	PointFiles

l	PointGroupNames

l	PointGroups

l	Projects

l	PVIs	(Civil	Engineering	Feature)

l	StationEquations

l	Surfaces

javascript:history.back();

Sub	Example_Add_Alignments()
				
				'	This	example	adds	an	Alignment	made	up	of	a	tangent,
				'	curve,	and	spiral	entities.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				'	Add	an	Alignment	named	"Example	Alignment"	and	starting	at	Station	50.0
				Set	align	=	aligns.Add("Example	Alignment",	50#)
				
				'	Add	a	tangent,	curve,	and	spiral	to	the	alignment
				Dim	tangent	As	AeccAlignTangent
				Dim	curve	As	AeccAlignCurve
				Dim	spiral	As	AeccAlignSpiral
				
				Set	tangent	=	align.AddTangent(0#,	0#,	150#,	0#)
				Set	spiral	=	align.AddSpiral(150#,	0#,	388.069176379758,	-5.83082052087824E-14,	250#,	100#,	0,	0,	kClothoid)
				Set	curve	=	align.AddCurve(250,	100#,	320.966940499621,	197.983470249737,	200#,	200#,	False)
				
				MsgBox	"The	total	number	of	entities	in	the	Alignment	is:	"	&	align.AlignEntities.count,	_
				vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_Boundaries()
				
				'	This	example	starts	by	displays	the	initial	count	of	the	Boundaries
				'	for	the	first	surface	in	the	collection.	A	new	visible	Boundary	is	added
				'	and	the	count	is	redisplays.	Finally,	the	new	Boundary	is	deleted.	The	count	is
				'	displayed	again,	showing	the	deletion.
				Dim	surf	As	AeccSurface
				Dim	bounds	As	AeccBoundaries
				Dim	Bound	As	AeccBoundary
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	bounds	=	surf.Inputs.Boundaries
				

				MsgBox	"The	Boundaries	Count	is:	"	&	bounds.count,	vbInformation,	"Add	Example"
				
				'	Initialize	variables
				Dim	pnts(0	To	14)	As	Double
				Dim	count	As	Integer
				Dim	index	As	Integer
				Dim	pnt	As	Variant
				
				index	=	0
				
				'	Add	a	new	Boundary	based	on	five	selected	points
				For	count	=	1	To	5
								pnt	=	ThisDrawing.Utility.GetPoint(,	"Select	point"	+	Str(count)	+	"	of	Boundary:	")
								pnts(index)	=	pnt(0):	pnts(index	+	1)	=	pnt(1):	pnts(index	+	2)	=	pnt(2)
								index	=	index	+	3
				Next	count
				
				'	Add	a	new	Boundary
				Set	Bound	=	bounds.Add(kBoundaryTypeShow,	False,	pnts,	"NewBoundary")
				
				MsgBox	"The	BreakLines	Count	after	the	add	is:	"	&	bounds.count,	vbInformation,	"Add	Example"
				
				'	Delete	the	new	Boundary
				bounds.Delete	Bound.Id
				
				MsgBox	"The	Boundaries	Count	after	the	delete	is	"	&	bounds.count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_BreakLines()
				
				'	This	example	starts	by	displays	the	initial	count	of	the	BreakLines
				'	for	the	first	surface	in	the	collection.	A	new	BreakLines	is	added
				'	and	the	count	is	redisplays.	Finally,	the	new	file	is	deleted.	The	count	is
				'	displayed	again,	showing	the	deletion.
				Dim	surf	As	AeccSurface
				Dim	brkLines	As	AeccBreakLines

				Dim	brkLine	As	AeccBreakLine
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	brkLines	=	surf.Inputs.BreakLines
				
				MsgBox	"The	BreakLines	Count	is:	"	&	brkLines.count,	vbInformation,	"Add	Example"
				
				'	Initialize	variables
				Dim	pnts(0	To	14)	As	Double
				Dim	count	As	Integer
				Dim	index	As	Integer
				Dim	pnt	As	Variant
				
				index	=	0
				
				'	Add	a	new	BreakLine	based	on	five	selected	points
				For	count	=	1	To	5
								pnt	=	ThisDrawing.Utility.GetPoint(,	"Select	point"	+	Str(count)	+	"	of	BreakLine:	")
								pnts(index)	=	pnt(0):	pnts(index	+	1)	=	pnt(1):	pnts(index	+	2)	=	pnt(2)
								index	=	index	+	3
				Next	count
				
				Set	brkLine	=	brkLines.Add(pnts,	"NewBreakLine")
				
				MsgBox	"The	BreakLines	Count	after	the	add	is:	"	&	brkLines.count,	vbInformation,	"Add	Example"
				
				'	Delete	the	new	BreakLines
				brkLines.Delete	brkLine.Id
				
				MsgBox	"The	BreakLines	Count	after	the	delete	is	"	&	brkLines.count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_CogoPoints()
				
				'	This	function	adds	a	new	CogoPoint	to	the	CogoPoints	collection.
				Dim	cogoPnts	As	AeccCogoPoints
				Dim	newCogoPnt	As	AeccCogoPoint

				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				'	Get	a	point
				Dim	newPnt	As	Variant
				newPnt	=	ThisDrawing.Utility.GetPoint(,	"Select	point	location:	")
				
				'	Add	CogoPoint
				Set	newCogoPnt	=	cogoPnts.Add(newPnt,	kCoordinateFormatXYZ)
				
				MsgBox	"The	Number	for	the	new	CogoPoint	is:	"	&	newCogoPnt.Number,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_ContourItems()
				
				'	This	example	Adds	a	Contour,	with	an	elevation	of	100,
				'	to	the	first	collection	in	ContourItems.
				Dim	surf	As	AeccSurface
				Dim	conts	As	AeccContourItems
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	conts	=	surf.Inputs.ContourItems
				
				'	Display	the	number	of	ContourItems	in	the	collection	before	the	add
				MsgBox	"The	number	of	ContourItems	in	the	collection	is:	"	&	conts.count,	vbInformation,	"Add	Example"
				
				'	Initialize	variables
				Dim	pnts(0	To	29)	As	Double
				Dim	count	As	Integer
				Dim	index	As	Integer
				Dim	pnt	As	Variant
				
				index	=	0
				
				'Define	a	new	contour	based	upon	10	entered	points
				For	count	=	1	To	10
								pnt	=	ThisDrawing.Utility.GetPoint(,	"Select	point"	+	str(count)	+	"	of	Contour:	")
								pnts(index)	=	pnt(0):	pnts(index	+	1)	=	pnt(1):	pnts(index	+	2)	=	100#

								index	=	index	+	3
				Next	count
				
				'	Add	Contour	to	the	collection
				conts.Add	Points
				
				'	Display	the	number	of	ContourItems	in	the	collection	after	the	add
				MsgBox	"The	number	of	ContourItems	in	the	collection	is:	"	&	conts.count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_DEMFiles()
				
				'	This	example	starts	by	displays	the	initial	count	of	DEMFiles
				'	for	the	first	surface.	A	new	DEMfile	is	added	and	the	count	is	redisplays.
				'	Finally,	the	new	file	is	deleted.	The	count	is	displayed	again,	showing
				'	the	deletion.
				Dim	surf	As	AeccSurface
				Dim	DEMFiles	As	AeccDEMFiles
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	DEMFiles	=	surf.Inputs.DEMFiles
				
				MsgBox	"The	DEMFiles	Count	is:	"	&	DEMFiles.Count,	vbInformation,	"Add	Example"
				
				'Get	the	DEMFile	name	and	format	the	prompt
				Dim	DEMName	As	String
				Dim	prompt	As	String
				
				prompt	=	"Enter	the	name	of	the	DEMFile	for	surface	"	&	surf.Name	&	":	"
				DEMName	=	ThisDrawing.Utility.GetString(False,	prompt)
				
				'	Add	a	new	DEMFile
				DEMFiles.Add	DEMName
				
				MsgBox	"The	DEMFiles	Count	after	the	add	is:	"	&	DEMFiles.Count,	vbInformation,	"Add	Example"
				
				'	Delete	the	new	DEMFile

				DEMFiles.Delete	DEMName
				
				MsgBox	"The	DEMFiles	Count	after	the	delete	is	"	&	DEMFiles.Count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_DescriptionKeyFile()
				
				'	This	example	starts	by	displays	the	initial	count	of	DescriptionKeys
				'	in	the	DEFAULT	DescriptionKey	file.	A	new	DescriptionKey	is	added
				'	and	the	count	is	redisplays.	Finally,	the	new	key	is	deleted.	The
				'	count	is	displayed	again,	showing	the	deletion.
				Dim	dkeyFile	As	AeccDescriptionKeyFile
				Set	dkeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item("DEFAULT")
				
				MsgBox	"The	DescriptionKey	Count	is	"	&	dkeyFile.count,	vbInformation,	"Add	Example"
				
				'	Add	a	new	DescriptionKey
				dkeyFile.Add	"New"
				
				MsgBox	"The	DescriptionKey	Count	is	"	&	dkeyFile.count,	vbInformation,	"Add	Example"
				
				'	Delete	the	new	DescriptionKey
				dkeyFile.Delete	"New"
				
				MsgBox	"The	DescriptionKey	Count	is	"	&	dkeyFile.count,	vbInformation,	"Add	Example"
				
End	Sub

;Sub	Example_Add_DescriptionKeyFiles()
				
				'	This	example	starts	by	displays	the	initial	count	of	DescriptionKeyFiles
				'	on	the	system.	A	new	DescriptionKeyFile	is	added	and	the	count	is	redisplays.
				'	Finally,	the	new	file	is	deleted.	The	count	is	displayed	again,	showing
				'	the	deletion.
				Dim	dKeyFiles	As	AeccDescriptionKeyFiles
				Set	dKeyFiles	=	AeccApplication.ActiveProject.DescriptionKeyFiles

				
				MsgBox	"The	DescriptionKeyFiles	Count	is	"	&	dKeyFiles.count,	vbInformation,	"Add	Example"
				
				'	Add	a	new	DescriptionKeyFile
				dKeyFiles.Add	"NewFile"
				
				MsgBox	"The	DescriptionKeyFiles	Count	is	"	&	dKeyFiles.count,	vbInformation,	"Add	Example"
				
				'	Delete	the	new	DescriptionKeyFile
				dKeyFiles.Delete	"NewFile"
				
				MsgBox	"The	DescriptionKeyFiles	Count	is	"	&	dKeyFiles.count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_EGProfiles()
				
				'	This	example	gets	the	surface	name	from	the	user	and	adds	a	new
				'	existing	ground	profile	for	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	newEGProf	As	AeccEGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				'Get	the	surface	name	and	format	the	prompt
				Dim	surfName	As	String
				Dim	prompt	As	String
				
				prompt	=	"Enter	the	name	of	the	surface	for	alignment	"	&	align.Name	&	":	"
				surfName	=	ThisDrawing.Utility.GetString(False,	prompt)
				
				'Add	the	new	existing	ground	profile
				Set	newEGProf	=	align.EGProfiles.Add(kEgCenter,	surfName)
				
				MsgBox	"The	first	station	for	the	new	existing	ground	profile	is:	"	_
								&	newEGProf.StationElevations(0),	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_FGProfiles()
				
				'	This	example	adds	a	center	type	finished	ground	profile	
				'	to	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	newFGProf	As	AeccFGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				'Add	the	new	finished	ground	profile
				Set	newFGProf	=	align.FGProfiles.Add(kFgCenter)
				
				MsgBox	"The	type	for	the	new	existing	ground	profile	is:	"	_
								&	newFGProf.Type,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_Parcels()
				
				'	This	example	starts	by	displays	the	initial	count	of	Parcels
				'	A	new	Parcel	is	added	and	the	count	is	redisplayed.	Finally,
				'	the	new	Parcel	is	deleted.	The	count	is	displayed	again,	showing
				'	the	deletion.
				
				Dim	parcels	As	AeccParcels
				Set	parcels	=	AeccApplication.ActiveProject.Parcels
				
				MsgBox	"The	Parcel	Count	is:	"	&	parcels.Count,	vbInformation,	"Add	Example"
				
				'	Add	a	new	Parcel
				parcels.Add	"NewParcel"
				
				MsgBox	"The	Parcel	Count	is:	"	&	parcels.Count,	vbInformation,	"Add	Example"
				
				'	Delete	the	new	Parcel
				parcels.Delete	"NewParcel"
				

				MsgBox	"The	Parcel	Count	is:	"	&	parcels.Count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_PointFiles()
				
				'	This	example	starts	by	displays	the	initial	count	of	PointFiles
				'	on	the	system.	A	new	Pointfile	is	added	and	the	count	is	redisplays.
				'	Finally,	the	new	file	is	deleted.	The	count	is	displayed	again,	showing
				'	the	deletion.
				Dim	surf	As	AeccSurface
				Dim	pntFiles	As	AeccPointFiles
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	pntFiles	=	surf.Inputs.PointFiles
				
				MsgBox	"The	PointFiles	Count	is:	"	&	pntFiles.Count,	vbInformation,	"Add	Example"
				
				'	Add	a	new	PointFile
				pntFiles.Add	"NewPointFile"
				
				MsgBox	"The	PointFiles	Count	after	the	add	is:	"	&	pntFiles.Count,	vbInformation,	"Add	Example"
				
				'	Delete	the	new	PointFile
				pntFiles.Delete	"NewPointFile"
				
				MsgBox	"The	PointFiles	Count	after	the	delete	is	"	&	pntFiles.Count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_PointGroupNames()
				
				'	This	example	starts	by	displays	the	initial	count	of	the	PointGroupNames
				'	for	the	first	surface	in	the	collection.	A	new	PointGroupName	is	added
				'	and	the	count	is	redisplays.	Finally,	the	new	file	is	deleted.	The	count	is
				'	displayed	again,	showing	the	deletion.
				Dim	surf	As	AeccSurface
				Dim	pntGrpNames	As	AeccPointGroupNames

				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	pntGrpNames	=	surf.Inputs.PointGroupNames
				
				MsgBox	"The	PointGroupNames	Count	is:	"	&	pntGrpNames.Count,	vbInformation,	"Add	Example"
				
				'	Add	a	new	PointGroupName
				pntGrpNames.Add	"NewPointGroupName"
				
				MsgBox	"The	PointGroupNames	Count	after	the	add	is:	"	&	pntGrpNames.Count,	vbInformation,	"Add	Example"
				
				'	Delete	the	new	PointGroupName
				pntGrpNames.Delete	"NewPointGroupName"
				
				MsgBox	"The	PointGroupNames	Count	after	the	delete	is	"	&	pntGrpNames.Count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_PointGroups()
				
				'	This	function	adds	a	new	PointGroup	named	"New	Group".
				Dim	pntGrps	As	AeccPointGroups
				Dim	newPntGrp	As	AeccPointGroup
				Set	pntGrps	=	AeccApplication.ActiveProject.PointGroups
				
				'	Show	the	number	of	alignments	in	the	project
				MsgBox	"The	initial	Count	of	PointGroups	is:	"	&	pntGrps.Count,	vbInformation,	"Add	Example"
				
				'	Add	PointGroup
				Set	newPntGrp	=	pntGrps.Add("Example	Group",	"1-10,	20-30")
				
				'	Show	the	number	of	alignments	in	the	project	after	the	Add
				MsgBox	"The	Count	of	PointGroups	is:	"	&	pntGrps.Count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_Projects()
				

				'	This	example	creates	a	new	project.
				Dim	projs	As	AeccProjects
				Set	projs	=	AeccApplication.Projects
				
				'	Show	the	number	of	projects
				MsgBox	"The	initial	Count	of	Projects	is:	"	&	projs.Count,	vbInformation,	"Add	Example"
				
				projs.Add	"New	Project",	"Default	(Feet)"
				
				'	Show	the	number	of	projects	after	the	Add
				MsgBox	"The	Count	of	Projects	is:	"	&	projs.Count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_PVIs()
				
				'This	example	adds	a	PVI	in	the	first	finished
				'ground	profile	of	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	FGProf	As	AeccFGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProf	=	align.FGProfiles.Item(0)
				
				MsgBox	"The	number	of	PVIs	in	the	finished	ground	profiles	is:	"	_
								&	FGProf.PVIs.Count,	vbInformation,	"Add	Example"
				
				'Get	the	station,	elevation,	and	curve	length
				Dim	station	As	Double
				Dim	elevation	As	Double
				Dim	curvelength	As	Double
				station	=	ThisDrawing.Utility.GetReal("Enter	a	station	on	finished	grade	profile:	")
				elevation	=	ThisDrawing.Utility.GetReal("Enter	an	elevation	on	finished	grade	profile:	")
				station	=	ThisDrawing.Utility.GetReal("Enter	a	curve	length	on	finished	grade	profile:	")
				
				'Add	the	PVI
				FGProf.PVIs.Add	station,	elevation,	curvelength
				

				MsgBox	"The	number	of	PVIs	in	the	finished	ground	profiles	is:	"	_
								&	FGProf.PVIs.Count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Add_StationEquations()
				
				'	This	example	adds	a	StationEquation	to
				'	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				'	Get	the	first	alignment
				Set	align	=	aligns.Item(0)
				
				'	Set	the	first	alignment	current.
				aligns.CurrentAlignment	=	align.Name
				
				Dim	staEqus	As	AeccStationEquations
				Dim	staEqu	As	AeccStationEquation
				Set	staEqus	=	align.StationEquations
				
				'	Show	the	StationEquation	count	for	the	first	alignment
				MsgBox	"The	StationEquation	count	for	the	first	alignment	is:	"	&	staEqus.count,	_
								vbInformation,	"Add	Example"
				
				'	Add	a	new	StationEquations
				Set	staEqu	=	staEqus.Add(100,	50,	kIncreasing)
				
				'	Show	the	stationEquation	count	after	the	add
				MsgBox	"The	StationEquation	count	for	the	first	alignment	is:	"	&	staEqus.count,	_
								vbInformation,	"Add	Example"
				
					End;	Sub

Sub	Example_Add_Surfaces()

				
				'	This	example	creates	a	new	Surface	and	adds	it	to	the	Surfaces	collection
				
				Dim	surfs	As	AeccSurfaces
				Set	surfs	=	AeccApplication.ActiveProject.Surfaces
				
				Surfs.Add	"New	Surface"
				
				MsgBox	"The	Number	of	Surfaces	has	increased	to	"	&	surfs.Count,	vbInformation,	"Add	Example"
				
End	Sub

AddCurve	Example

Examples:

l	Alignment

l	Parcel

Sub	Example_AddCurve_Alignment()
				
				'	This	example	adds	an	Alignment	made	up	of	a	tangent,
				'	curve,	and	spiral	entities.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				'	Add	an	Alignment	named	"Example	Alignment"	and	starting	at	Station	50.0
				Set	align	=	aligns.Add("Example	Alignment",	50#)
				
				'	Add	a	tangent,	curve,	and	spiral	to	the	alignment
				Dim	tangent	As	AeccAlignTangent
				Dim	curve	As	AeccAlignCurve
				Dim	spiral	As	AeccAlignSpiral
				
				Set	tangent	=	align.AddTangent(0#,	0#,	150#,	0#)
				Set	spiral	=	align.AddSpiral(150#,	0#,	388.069176379758,	-5.83082052087824E-14,	250#,	100#,	0,	0,	kClothoid)
				Set	curve	=	align.AddCurve(250,	100#,	320.966940499621,	197.983470249737,	200#,	200#,	False)
				
				MsgBox	"The	total	number	of	entities	in	the	Alignment	is:	"	&	align.AlignEntities.count	,	vbInformation,	"AddCurve	Example"
				
End	Sub

Sub	Example_AddCurve_Parcel()
				
				'	This	example	adds	a	Parcel	made	up	of	lines	and	an	arc.
				'	The	parcel	is	then	imported	into	the	drawing.

javascript:history.back();

				Dim	parcels	As	AeccParcels
				Dim	parcel	As	AeccParcel
				Set	parcels	=	AeccApplication.ActiveProject.parcels
				
				'	Add	a	new	Parcel
				Set	parcel	=	parcels.Add("New	Parcel")
				
				'	Add	lines	and	a	curve	to	the	Parcel
				parcel.AddLine	50#,	50#,	150#,	50#
				parcel.AddLine	150#,	50#,	150#,	200#
				parcel.AddCurve	150#,	200#,	100#,	200#,	50#,	200#,	True
				parcel.AddLine	50#,	200#,	50#,	50#
				
				'	Import	the	new	Parcel
				parcel.Import
				
				MsgBox	"The	total	number	of	entities	in	the	parcel	is:	"	&	parcel.ParcelEntities.Count,	_
								vbInformation,	"AddCurve	Example"
				
End	Sub

AddLabel	Example

Sub	Example_AddLabelAt()
				
				'	This	example	adds	a	label	to	a	Contour	object	by	selecting	the
				'	contour
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	Contour	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	mode	As	Integer
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_CONTOUR"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				Dim	returnPnt	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Enter	a	point	on	a	contour	line:	")
				ssetObj.SelectAtPoint	returnPnt,	groupCode,	dataCode
				
				Dim	Ent	As	AeccContour
				Set	Ent	=	ssetObj.Item(0)
				Ent.AddLabelAt	returnPnt(0),	returnPnt(1)

javascript:history.back();

				
End	Sub

AddLine	Example

Sub	Example_AddLine()
				
				'	This	example	adds	a	Parcel	made	up	of	lines	and	an	arc.
				'	The	parcel	is	then	imported	into	the	drawing.
				Dim	parcels	As	AeccParcels
				Dim	parcel	As	AeccParcel
				Set	parcels	=	AeccApplication.ActiveProject.parcels
				
				'	Add	a	new	Parcel
				Set	parcel	=	parcels.Add("New	Parcel")
				
				'	Add	lines	and	a	curve	to	the	Parcel
				parcel.AddLine	50#,	50#,	150#,	50#
				parcel.AddLine	150#,	50#,	150#,	200#
				parcel.AddCurve	150#,	200#,	100#,	200#,	50#,	200#,	True
				parcel.AddLine	50#,	200#,	50#,	50#
				
				'	Import	the	new	Parcel
				parcel.Import
				
				MsgBox	"The	total	number	of	entities	in	the	parcel	is:	"	&	parcel.ParcelEntities.Count,	_
								vbInformation,	"AddLine	Example"
				
End	Sub

javascript:history.back();

AddSpiral	Example

Sub	Example_AddSpiral()
				
				'	This	example	adds	an	Alignment	made	up	of	a	tangent,
				'	curve,	and	spiral	entities.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				'	Add	an	Alignment	named	"Example	Alignment"	and	starting	at	Station	50.0
				Set	align	=	aligns.Add("Example	Alignment",	50#)
				
				'	Add	a	tangent,	curve,	and	spiral	to	the	alignment
				Dim	tangent	As	AeccAlignTangent
				Dim	curve	As	AeccAlignCurve
				Dim	spiral	As	AeccAlignSpiral
				
				Set	tangent	=	align.AddTangent(0#,	0#,	150#,	0#)
				Set	spiral	=	align.AddSpiral(150#,	0#,	388.069176379758,	-5.83082052087824E-14,	250#,	100#,	0,	0,	kClothoid)
				Set	curve	=	align.AddCurve(250,	100#,	320.966940499621,	197.983470249737,	200#,	200#,	False)
				
				MsgBox	"The	total	number	of	entities	in	the	Alignment	is:	"	&	align.AlignEntities.count	,	vbInformation,	"AddSpiral	Example"
				
End	Sub

javascript:history.back();

AddTangent	Example

Sub	Example_AddTangent()
				
				'	This	example	adds	an	Alignment	made	up	of	a	tangent,
				'	curve,	and	spiral	entities.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				'	Add	an	Alignment	named	"Example	Alignment"	and	starting	at	Station	50.0
				Set	align	=	aligns.Add("Example	Alignment",	50#)
				
				'	Add	a	tangent,	curve,	and	spiral	to	the	alignment
				Dim	tangent	As	AeccAlignTangent
				Dim	curve	As	AeccAlignCurve
				Dim	spiral	As	AeccAlignSpiral
				
				Set	tangent	=	align.AddTangent(0#,	0#,	150#,	0#)
				Set	spiral	=	align.AddSpiral(150#,	0#,	388.069176379758,	-5.83082052087824E-14,	250#,	100#,	0,	0,	kClothoid)
				Set	curve	=	align.AddCurve(250,	100#,	320.966940499621,	197.983470249737,	200#,	200#,	False)
				
				MsgBox	"The	total	number	of	entities	in	the	Alignment	is:	"	&	align.AlignEntities.count	,	vbInformation,	"AddTangent	Example"
				
End	Sub

javascript:history.back();

AddToAllElevations	Example

Sub	Example_AddToAllElevations()
				
				'	This	example	uses	AddToAllElevations	to	increase	the	elevation	by	20.0	for
				'	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	MeanElevation	for	the	first	surface	before	elevation	increase	is:	"	&	_
								surf.MeanElevation;,	vbInformation,	"AddToAllElevations	Example"
				
				surf.AddToAllElevations	20#
				surf.Build
				
				MsgBox	"The	MeanElevation	for	the	first	surface	after	elevation	increase	is:	"	&	_
								surf.MeanElevation;,	vbInformation,	"AddToAllElevations	Example"
				
End	Sub

javascript:history.back();

AlignEntities	Example

Sub	Example_AlignEntities()
				
				'	This	example	gets	the	count	of	AlignEntities	for	the
				'	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Dim	count	As	Integer
				
				'	Get	the	number	of	entities
				count	=	align.AlignEntities.count
				
				If	count	=	0	Then
								MsgBox;	"The	first	Alignment	in	the	collection	has	no	entities.",	_
												vbInformation;,	"AlignEntities	Example"
				ElseIf	count	=	1	Then
								MsgBox;	"The	first	Alignment	in	the	collection	has	1	entity.",	_
												vbInformation;,	"AlignEntities	Example"
				ElseIf	count	>	1	Then
								MsgBox;	"The	firstAlignment	in	the	collection	has	"	&	count	&	"	entities.",	_
												vbInformation;,	"AlignEntities	Example"
				End	If
				
End	Sub

javascript:history.back();

Alignment	Example

Sub	Example_Alignment()
				
				'	This	example	returns	the	PreferencesAlignment	object	that
				'	is	used	to	access	the	StationLayer	property
				Dim	alignPref	As	AeccPreferencesAlignment
				Set	alignPref	=	AeccApplication.ActiveProject.preferences.Alignment
				
				MsgBox	"The	Alignment	preferences	for	StationLayer	is:	"	&	alignPref.GetString(kStationLayer)
				
End	Sub

javascript:history.back();

AlignmentFromObjectID	Example

Sub	Example_AlignmentFromObjectID()
				
				'	This	example	returns	the	AlignmentFromObjectID	for	a	selected	alignment.
				Dim	aligns	As	AeccAlignments
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				Dim	alignObj	As	AcadObject
				Dim	basePnt	As	Variant
				Dim	alignID	As	Long
				Dim	alignNames	As	Variant
				
				On	Error	Resume	Next
				
				'	The	following	example	prompts	for	a	selection	from	the	user
					RETRY;:
				ThisDrawing.Utility.GetEntity	alignObj,	basePnt,	"Select	an	object"
				
				If	Err	<>	0	Then
								Err.Clear
								MsgBox	"Good	Bye.",	vbInformation,	"AlignmentFromObjectID	Example"
								Exit	Sub
				Else
								alignID	=	alignObj.ObjectID
								alignNames	=	aligns.AlignmentFromObjectID(alignID)
								MsgBox	"The	selected	alignment	is	named:	"	&	alignNames(0),	_
												vbInformation,	"AlignmentFromObjectID	Example"
				End	If
				
				GoTo	RETRY
				
End	Sub

javascript:history.back();

Alignments	Example

Sub	Example_Alignments()
				
				'	This	example	returns	the	tick	increment	for	Alignments	Preferences
				'	in	the	current	project.
				Dim	prefPrj	As	AeccPreferencesProject
				Set	prefPrj	=	AeccApplication.ActiveProject.Preferences
				
				MsgBox	"The	tick	increment	for	Alignments	Preferences	in	the	current	Project	is:	"	&	prefPrj.Alignment.GetDouble(kStationTickIncrement)	_
								,	vbInformation,	"Alignments	Example"
				
End	Sub

javascript:history.back();

AngularAzimuth	Example

Sub	Example_AngularAzimuth()
				
				'	This	example	returns	the	AngularAzimuth	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				'	Convert	the	constant	to	a	string.
				Dim	Style	As	String
				Dim	AngAzm	As	Long
				
				'	Determine	AngularAzimuth	setting
				AngAzm	=	dbPref.AngularAzimuth
				Select	Case	AngAzm
				Case	0
								Style	=	"bearings."
				Case	1
								Style	=	"north	azimuths."
				Case	2
								Style	=	"south	azimuths."
				End	Select
				
				MsgBox	"The	current	value	for	AngularAzimuth	is	"	&	Style,	vbInformation,	"AngularAzimuth	Example"
				
End	Sub

javascript:history.back();

AngularDisplayFormat	Example

Sub	Example_AngularDisplayFormat()
				
				'	This	example	returns	the	AngularDisplayFormat	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				'	Convert	the	constant	to	a	string.
				Dim	strUnits	As	String
				If	dbPref.AngularDisplayFormat	=	1	Then
								strUnits	=	"degrees."
				Else
								strUnits	=	"grads."
				End	If
				
				MsgBox	"The	current	value	for	AngularDisplayFormat	is	"	&	strUnits,	_
								vbInformation,	"AngularDisplayFormat	Example"
				
End	Sub

javascript:history.back();

AngularPrecision	Example

Sub	Example_AngularPrecision()
				
				'	This	example	returns	the	AngularPrecision	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	AngularPrecision	is	"	&	dbPref.AngularPrecision,	_
								vbInformation,	"AngularPrecision	Example"
				
End	Sub

javascript:history.back();

Application	Example

Sub	Example_Application()
				
				'	This	example	uses	the	AeccApplication	property	to	navigate	to	the	top	of
				'	the	object	hierarchy	to	compare	the	current	project	with	the	last	used	project.
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.ActiveProject
				
				MsgBox	"The	current	project	is	"	&	proj.Application.ActiveProject.Name	&	_
								"	and	the	last	used	project	is	"	&	_
								proj.Application.Preferences.User.LastUsedProj,	_
								vbInformation,	"Application	Example"
				
End	Sub

javascript:history.back();

Area	Example

Sub	Example_Area()
				
				'	This	example	returns	the	Area	for	the	first	parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Set	parcel	=	AeccApplication.ActiveProject.parcels.Item(0)
				
				MsgBox	"The	Area	for	the	first	Parcel	in	the	collection	is:	"	_
								&	Format(parcel.Area,	"0.00"),	vbInformation,	"Area	Example"
				
End	Sub

javascript:history.back();

Area2D	Example

Examples:

l	Face

l	Surface

Sub	Example_Area2D_Face()
				
				'	This	example	returns	the	Area2D	value	for	the
				'	first	Face	in	the	collection.
				Dim	face	As	AeccFace
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	face	=	surf.Outputs.Faces.Item(0)
				
				MsgBox	"The	Area2D	value	is	"	&	face.Area2D,	vbInformation,	"Area2D	Example"
				
End	Sub

Sub	Example_Area2D_Surface()
				
				'	This	example	returns	the	Area2D	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	Area2d	for	the	first	surface	is:	"	&	surf.Area2D,	vbInformation,	"Area2D	Example"
				
End	Sub

javascript:history.back();

Area3D	Example

Examples:

l	Face

l	Surface

Sub	Example_Area3D_Face()
				
				'	This	example	returns	the	Area3D	value	for	the
				'	first	Face	in	the	collection.
				Dim	face	As	AeccFace
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	face	=	surf.Outputs.Faces.Item(0)
				
				MsgBox	"The	Area3D	value	is	"	&	face.Area3D,	vbInformation,	"Area3D	Example"
				
End	Sub

Sub	Example_Area3D_Surface()
				
				'	This	example	returns	the	Area3D	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	Area3D	for	the	first	surface	is	"	&	surf.Area3D,	vbInformation,	"Area3D	Example"
				
End	Sub

javascript:history.back();

AreaDisplayUnit	Example

Sub	Example_AreaDisplayUnit()
				
				'	This	example	returns	the	AreaDisplayUnit	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				'	Convert	the	area	display	unit	to	a	string.
				Dim	unit	As	String
				
				Select	Case	dbPref.AreaDisplayUnit
				Case	aecUnitSquareInch
								unit	=	"square	inch."
				Case	aecUnitSquareFoot
								unit	=	"square	foot."
				Case	aecUnitSquareYard
								unit	=	"square	yard."
				Case	aecUnitSquareMil
								unit	=	"square	millimeters."
				Case	aecUnitSquareCentimeters
								unit	=	"square	centimeters."
				Case	aecUnitSquareDecimeters
								unit	=	"square	decimeters."
				Case	aecUnitSquareMeters
								unit	=	"square	meters."
				End	Select
				
				MsgBox	"The	current	value	for	AreaDisplayUnit	is	"	&	unit,	vbInformation,	"AreaDisplayUnit	Example"
				
End	Sub

javascript:history.back();

AreaPrecision	Example

Sub	Example_AreaPrecision()
				
				'	This	example	displays	the	AreaPrecision	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				MsgBox	"The	current	value	for	AreaPrecision	is:	"	&	dbPref.AreaPrecision,	vbInformation,	"AreaPrecision	Example"
				
End	Sub

javascript:history.back();

AreaSuffix	Example

Sub	Example_AreaSuffix()
				
				'	This	example	displays	the	AreaSuffix	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				MsgBox	"The	current	value	for	AreaSuffix	is:	"	&	dbPref.AreaSuffix,	_
								vbInformation,	"AreaSuffix	Example"
				
End	Sub

javascript:history.back();

AreaVolume	Example

Sub	Example_AreaVolume()
				
				'	This	example	returns	the	Cut,	Fill	and	Net	Volumes	of	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				Dim	count	as	Long
				Dim	index	as	Long
				Dim	cut	As	Double
				Dim	fill	As	Double
				Dim	tolerance	As	Double
				Dim	net	As	Double
				Dim	pnt	as	Variant
				Dim	areaPnts(0	To	14)	As	Double
				
				index	=	0
				
				'Define	a	area	based	upon	5	entered	points
				For	count	=	1	To	5
								pnt	=	ThisDrawing.Utility.GetPoint(,	"Select	point"	+	str(count)	+	"	for	area:	")
								areaPnts(index)	=	pnt(0):	areaPnts(index	+	1)	=	pnt(1):	areaPnts(index	+	2)	=	100#
								index	=	index	+	3
				Next	count
				
				'	Get	volume	data
				surf.AreaVolume	1.0,	areaPnts,	cut,	fill,	net
				
				MsgBox	"The	AreaVolumn	data	for	the	first	surface	is:"	&	vbCrLf	&	_
								"			Cut:	"	&	cut	&	vbCrLf	&	_
								"			Fill:	"	&	fill	&	vbCrLf	&	_
								"			Net:	"	&	net,	vbInformation,	"AreaVolumn	Example"
				
End	Sub

javascript:history.back();

ArrayToPointString	Example

Sub	Example_ArrayToPointString()
				
				'	This	examples	returns	a	string	of	point	numbers	in	CogoPoints	format.
				Dim	cogoPnts	As	AeccCogoPoints
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				Dim	pntString	As	String
				Dim	pntArray(0	To	8)	As	Long
				
				'Create	an	array	with	the	point	numbers	1,4,5,6,8,40,10,7,32
				pntArray(0)	=	1:	pntArray(1)	=	4:	pntArray(2)	=	5
				pntArray(3)	=	6:	pntArray(4)	=	8:	pntArray(5)	=	40
				pntArray(6)	=	10:	pntArray(7)	=	7:	pntArray(8)	=	32
				
				'Convert	array	to	string
				pntString	=	cogoPnts.ArrayToPointString(pntArray)
				
				MsgBox	"The	CogoPoints	point	number	string	is	"	&	pntString,	_
								vbInformation,	"ArrayToPointString	Example"
				
End	Sub

javascript:history.back();

Author	Example

Sub	Example_Author()
				
				'	This	example	returns	the	Author	setting	for	the	first	Project
				'	in	the	collection
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.Projects.Item(0)
				
				MsgBox	"The	Author	value	for	the	first	Project	in	the	collection	is:	"	&	proj.Author,	_
								vbInformation,	"Author	Example"
				
End	Sub

javascript:history.back();

AutoSave	Example

Examples:

l	Alignments

l	CogoPoints

l	DescriptionKeyFiles

l	PointGroups

Sub	Example_AutoSave_Alignments()
				
				'	This	example	changes	the	Description	and	StartingStation
				'	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	Aligns.Item(0)
				
				'	Make	the	first	alignment	in	the	collection	current
				aligns.CurrentAlignment	=	align.Name
				
				'	Set	AutoSave	to	FALSE	to	prevent	writing	the	changes
				'	until	they	are	all	made
				aligns.AutoSave	=	False
				
				'	Make	changes
				align.Description	=	"New	Description"
				align.StartingStation	=	20#
				
				'	Save	changes
				align.Save
				
				'	Reset	AutoSave	to	the	default	state	of	TRUE
				aligns.AutoSave	=	True

javascript:history.back();

				
				MsgBox	"The	first	Alignments	Description	is:	"	&	align.Description	&	vbCrLf	&	_
								"The	first	Alignments	StartingStation	is:	"	&	align.StartingStation,	_
								vbInformation,	"AutoSave	Example"
				
End	Sub

Sub	Example_AutoSave_CogoPoints()
				
				'	This	example	changes	the	Northing,	Easting,	and	Elevation
				'	for	the	first	CogoPoint	in	the	collection.
				Dim	cogoPnts	As	AeccCogoPoints
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				Set	cogoPnt	=	cogoPnts.Item(0)
				
				'	Set	AutoSave	to	FALSE	to	prevent	writing	the	changes
				'	until	they	are	all	made
				cogoPnts.AutoSave	=	False
				
				'	Make	changes
				cogoPnt.Northing	=	100#
				cogoPnt.Easting	=	100#
				cogoPnt.Elevation	=	150#
				
				'	Save	changes
				cogoPnt.Save
				
				'	Reset	AutoSave	to	the	default	state	of	TRUE
				cogoPnts.AutoSave	=	True
				
				MsgBox	"The	following	changes	were	made	to	CogoPoint	"	&	cogoPnt.Number	&	":"	&	vbCrLf	&	_
								"			Northing:	"	&	cogoPnt.Northing	&	vbCrLf	&	_
								"			Easting:	"	&	cogoPnt.Easting	&	vbCrLf	&	_
								"			Elevation:	"	&	cogoPnt.Elevation,	vbInformation,	"AutoSave	Example"
				
End	Sub

Sub	Example_AutoSave_DescriptionKeyFiles()
				
				'	This	example	changes	the	layer	settings
				'	for	the	first	DescriptionKey	in	the	collection.
				Dim	dKeyFiles	As	AeccDescriptionKeyFiles
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFiles	=	AeccApplication.ActiveProject.DescriptionKeyFiles
				Set	dKeyFile	=	dKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				'	Set	AutoSave	to	FALSE	to	prevent	writing	the	changes
				'	until	they	are	all	made
				dKeyFiles.AutoSave	=	False
				
				'	Make	changes
				dKey.DescriptionLayer	=	"dKey	Desc"
				dKey.SymbolLayer	=	"dKey	Symb"
				
				'	Save	changes
				dKey.Save
				
				'	Reset	AutoSave	to	the	default	state	of	TRUE
				dKeyFiles.AutoSave	=	True
				
				MsgBox	"The	DescriptionLayer	is:	"	&	dkey.DescriptionLayer	&	vbCrLf	&	_
								"The	SymbolLayer	is:	"	&	dkey.SymbolLayer,	vbInformation,	"AutoSave	Example"
				
End	Sub

Sub	Example_AutoSave_PointGroups()
				
				'	This	example	changes	the	Description	and	Elevation
				'	for	the	first	PointGroup	in	the	collection.
				Dim	pntGrps	As	AeccPointGroups
				Dim	pntGrp	As	AeccPointGroup

				Set	pntGrps	=	AeccApplication.ActiveProject.PointGroups
				Set	pntGrp	=	pntGrps.Item(0)
				
				'	Set	AutoSave	to	FALSE	to	prevent	writing	the	changes
				'	until	they	are	all	made
				pntGrps.AutoSave	=	False
				
				'	Make	changes
				pntGrp.Description	=	"New	Description"
				pntGrp.Elevation	=	100#
				
				'	Save	changes
				pntGrp.Save
				
				'	Reset	AutoSave	to	the	default	state	of	TRUE
				pntGrps.AutoSave	=	True
				
				MsgBox	"The	first	PointGroup	Description	is:	"	&	pntGrp.Description	&	vbCrLf	&	_
								"The	first	PointGroup	Elevation	is:	"	&	pntGrp.Elevation,	vbInformation,	"AutoSave	Example"
				
End	Sub

AverageGrade	Example

Sub	Example_AverageGrade()
				
				'	This	example	returns	the	Average	Grade	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	AverageGrade	for	the	first	surface	is:	"	&	Format(surf.AverageGrade,	"0.00\%),	_
								vbInformation,	"AverageGrade	Example"
				
End	Sub

javascript:history.back();

BasePoint	Example

Sub	Example_BasePoint()
				
				'	This	example	displays	the	BasePoint	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				Dim	varPoint	As	Variant
				Dim	point(0	To	2)	As	Double
				Dim	basePoint	As	String
				
				'	Get	the	base	point
				varPoint	=	dbPref.BasePoint
				point(0)	=	varPoint(0)
				point(1)	=	varPoint(1)
				point(2)	=	varPoint(2)
				
				'	Format	base	point	to	a	string
				basePoint	=	Format(point(0))	+	",	"	+	Format(point(1))	+	",	"	+	Format(point(2))
				MsgBox	"The	current	value	for	BasePoint	is:	"	&	basePoint,	vbInformation,	"BasePoint	Example"
				
End	Sub

javascript:history.back();

BasePointNE	Example

Sub	Example_BasePointNE()
				
				'	This	example	displays	the	BasePointNE	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				Dim	varPoint	As	Variant
				Dim	point(0	To	2)	As	Double
				Dim	basePointNE	As	String
				
				'	Get	the	base	point
				varPoint	=	dbPref.basePointNE
				point(0)	=	varpoint(0)
				point(1)	=	varpoint(1)
				point(2)	=	varpoint(2)
				
				'	Format	base	point	to	a	string
				basePointNE	=	Format(point(0))	+	",	"	+	Format(point(1))	+	",	"	+	Format(point(2))
				
				MsgBox	"The	current	value	for	BasePointNE	is:	"	&	basePointNE,	_
								vbInformation,	"BasePointNE	Example"
				
End	Sub

javascript:history.back();

BeginCondition	Example

Sub	Example_BeginCondition()
				
				'	This	example	returns	the	BeginCondition	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	BeginCondition	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.BeginCondition
								Exit	For
				End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"BeginCondition	Example"
				
End	Sub

javascript:history.back();

BorderBlockFilename	Example

Sub	Example_BorderBlockFilename()
				
				'	This	example	returns	the	BorderBlockFilename	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	BorderBlockFilename	is:	"	&	dbPref.BorderBlockFilename,	_
								vbInformation,	"BorderBlockFilename	Example"
				
End	Sub

javascript:history.back();

BorderBottomMargin	Example

Sub	Example_BorderBottomMargin	()
				
				'	This	example	returns	the	BorderBottomMargin	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	BorderBottomMargin	is:	"	&	dbPref.BorderBottomMargin,	_
								vbInformation,	"BorderBottomMargin	Example"
				
End	Sub

javascript:history.back();

BorderLeftMargin	Example

Sub	Example_BorderLeftMargin()
				
				'	This	example	returns	the	BorderLeftMargin	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	BorderLeftMargin	is:	"	&	dbPref.BorderLeftMargin,	_
								vbInformation,	"BorderLeftMargin	Example"
				
End	Sub

javascript:history.back();

BorderLineWidth	Example

Sub	Example_BorderLineWidth()
				
				'	This	example	returns	the	BorderLineWidth	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	BorderLineWidth	is:	"	&	dbPref.BorderLineWidth,	vbInformation,	"BorderLineWidth	Example"
				
End	Sub

javascript:history.back();

BorderPath	Example

Sub	Example_BorderPath()
				
				'	This	example	returns	the	BorderPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	BorderPath	is:	"	&	prefFiles.BorderPath,	_
								vbInformation,	"BorderPath	Example"
				
End	Sub

javascript:history.back();

BorderRightMargin	Example

Sub	Example_BorderRightMargin	()
				
				'	This	example	returns	the	BorderRightMargin	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	BorderRightMargin	is:	"	&	dbPref.BorderRightMargin,	vbInformation,	"BorderRightMargin	Example"
				
End	Sub

javascript:history.back();

BorderStyle	Example

Sub	Example_BorderStyle()
				
				'	This	example	returns	the	BorderStyle	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				'	Convert	the	constant	to	a	string.
				Dim	strStyle	As	String
				If	dbPref.BorderStyle	=	kBorderStyleLine	Then
								strStyle	=	"line."
				End	If
				If	dbPref.BorderStyle	=	kBorderStyleUnscaledBlock	Then
								strStyle	=	"unscaled	block."
				End	If
				If	dbPref.BorderStyle	=	kBorderStyleScaledBlock	Then
								strStyle	=	"scaled	block."
				End	If
				If	dbPref.BorderStyle	=	kBorderStyleNone	Then
								strStyle	=	"none."
				End	If
				
				MsgBox	"The	current	value	for	BorderStyle	is	"	&	strStyle,	vbInformation,	"BorderStyle	Example"
				
End	Sub

javascript:history.back();

BorderTopMargin	Example

Sub	Example_BorderTopMargin	()
				
				'	This	example	returns	the	BorderTopMargin	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	BorderTopMargin	is:	"	&	dbPref.BorderTopMargin,	_
								vbInformation,	"BorderTopMargin	Example"
				
End	Sub

javascript:history.back();

Boundaries	Example

Sub	Example_Boudaries()
				
				'	This	example	returns	the	number	of	Boundaries	in	the	first
				'	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfIn	As	AeccSurfaceInputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfIn	=	surf.Inputs
				
				MsgBox	"The	number	of	Boundaries	in	the	first	Surface	is:	"	&	surfIn.Boundaries.Count	_
								,	vbInformation,	"Boundaries	Example"
				
End	Sub

javascript:history.back();

Boundary	Example

Sub	Example_Boundary()
				
				'	This	example	returns	the	first	point	in	the	Boundary
				'	for	the	first	WaterShed	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	wShed	As	AeccWaterShed
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	wShed	=	surf.Outputs.WaterSheds.Item(0)
				
				Dim	coords	As	Variant
				
				coords	=	wShed.Boundary
				
				MsgBox	"The	first	Boundary	point	for	the	first	WaterShed	is:	"	&	coords(0)	&	",	"	&	coords(1)	&	",	"	&	coords(2)	_
								,	vbInformation,	"Boundary	Example"
				
End	Sub

javascript:history.back();

Breaklines	Example

Sub	Example_SurfaceInputs_Breaklines()
				
				'	This	example	returns	the	number	of	Breaklines	in	the	first
				'	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfIn	As	AeccSurfaceInputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfIn	=	surf.Inputs
				
				MsgBox	"The	number	of	Breaklines	in	the	first	Surface	is:	"	&	surfIn.Breaklines.Count	_
								,	vbInformation,	"Breaklines	Example"
				
End	Sub

javascript:history.back();

Build	Example

Examples:

l	Surface

l	WaterSheds

Sub	Example_Build_Surfaces()
				
				'	This	example	Builds	the	first	Surface	in	the	collection	after	adding	20.0
				'	to	all	elevations.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				surf.AddToAllElevations	20#
				surf.Build
				
End	Sub

Sub	Example_Build_Watersheds()
				
				'	This	example	Builds	the	Watersheds	after	increasing	the	MinDepressionDepth
				'	by	10.0
				Dim	surf	As	AeccSurface
				Dim	wSheds	As	AeccWaterSheds
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	wSheds	=	surf.Outputs.WaterSheds
				
				Dim	minDepth	As	Double
				Dim	minArea	As	Double
				
				minDepth	=	wSheds.MinDepressionDepth	+	10
				minArea	=	wSheds.MinDepressionArea
				
				wSheds.Build	MinDepressionDepth,	MinDepressionArea,	True

javascript:history.back();

				
End	Sub

CCWFlag	Example

Examples:

l	AlignCurve

l	ParcelCurve

Sub	Example_CCWFlag_AlignCurve()
				
				'	This	example	returns	the	CCWFlag	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	CCWFlag	for	the	first	Curve	in	the	alignment	is:	"	&	alignEnt.CCWFlag
								Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"CCWFlag	Example"
				
End	Sub

Sub	Example_CCWflag_ParcelCurve()
				
				'	This	example	returns	the	CCWFlag	for	the	first	curve	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel

javascript:history.back();

				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				Dim	parcelMsg	As	String
				parcelMsg	=	"There	is	no	Curve	entity	in	the	first	Parcel."
				
				'	Find	first	Curve	in	the	parcel
				For	Each	parcelEnt	In	parcel.ParcelEntities
								If	parcelEnt.Type	=	kParcelCurve	Then
												parcelMsg	=	"The	CCWFlag	for	the	first	Curve	in	the	Parcel	is:	"	&	parcelEnt.CCWFlag
								Exit	For
								End	If
				Next
				
				MsgBox	parcelMsg,	vbInformation,	"CCWFlag	Example"
				
End	Sub

CenterEasting	Example

Examples:

l	AlignCurve

l	ParcelCurve

Sub	Example_CenterEasting_AlignCurve()
				
				'	This	example	returns	the	CenterEasting	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	CenterEasting	for	the	first	Curve	in	the	alignment	is:	"		_
												&	Format(alignEnt.CenterEasting,	"0.00")
								Exit	For
				End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"CenterEasting	Example"
				
End	Sub

Sub	Example_CenterEasting_ParcelCurve()
				
				'	This	example	returns	the	CenterEasting	for	the	first	curve	in	the
				'	first	Parcel	in	the	collection.

javascript:history.back();

				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				Dim	parcelMsg	As	String
				parcelMsg	=	"There	is	no	Curve	entity	in	the	first	Parcel."
				
				'	Find	first	Curve	in	the	parcel
				For	Each	parcelEnt	In	parcel.ParcelEntities
								If	parcelEnt.Type	=	kParcelCurve	Then
												parcelMsg	=	"The	CenterEasting	for	the	first	Curve	in	the	Parcel	is:	"	_
												&	Format(parcelEnt.CenterEasting,	"0.00")
								Exit	For
								End	If
				Next
				
				MsgBox	parcelMsg,	vbInformation,	"CenterEasting	Example"
				
End	Sub

CenterNorthing	Example

Examples:

l	AlignCurve

l	ParcelCurve

Sub	Example_CenterNorthing()
				
				'	This	example	returns	the	CenterNorthing	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	CenterNorthing	for	the	first	Curve	in	the	alignment	is:	"	_
												&	Format(alignEnt.CenterNorthing,	"0.00")
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"CenterNorthing	Example"
				
End	Sub

Sub	Example_CenterNorthing_ParcelCurve()
				
				'	This	example	returns	the	CenterNorthing	for	the	first	curve	in	the
				'	first	Parcel	in	the	collection.

javascript:history.back();

				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				Dim	parcelMsg	As	String
				parcelMsg	=	"There	is	no	Curve	entity	in	the	first	Parcel."
				
				'	Find	first	Curve	in	the	parcel
				For	Each	parcelEnt	In	parcel.ParcelEntities
								If	parcelEnt.Type	=	kParcelCurve	Then
												parcelMsg	=	"The	CenterNorthing	for	the	first	Curve	in	the	Parcel	is:	"	_
												&	Format(parcelEnt.CenterNorthing,	"0.00")
								Exit	For
								End	If
				Next
				
				MsgBox	parcelMsg,	vbInformation,	"CenterNorthing	Example"
				
End	Sub

CentroidEasting	Example

Sub	Example_CentroidEasting()
				
				'	This	example	returns	the	CentroidEasting	and	the	CentroidNorthing
				'	for	the	first	parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Set	parcel	=	AeccApplication.ActiveProject.parcels.Item(0)
				
				MsgBox	"The	CentroidEasting	for	the	first	Parcel	in	the	collection	is:	"		_
								&	Format(parcel.CentroidEasting,	"0.00")	&	vbCrLf	&	_
								"The	CentroidNorthing	for	the	first	Parcel	in	the	collection	is:	"	_
								&	Format(parcel.CentroidNorthing,	"0.00"),	vbInformation,	"CentroidEasting	Example"
				
End	Sub

javascript:history.back();

CentroidNorthing	Example

Sub	Example_CentroidNorthing()
				
				'	This	example	returns	the	CentroidEasting	and	the	CentroidNorthing
				'	for	the	first	parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Set	parcel	=	AeccApplication.ActiveProject.parcels.Item(0)
				
				MsgBox	"The	CentroidEasting	for	the	first	Parcel	in	the	collection	is:	"		_
								&	Format(parcel.CentroidEasting,	"0.00")	&	vbCrLf	&	_
								"The	CentroidNorthing	for	the	first	Parcel	in	the	collection	is:	"	_
								&	Format(parcel.CentroidNorthing,	"0.00"),	vbInformation,	"CentroidNorthing	Example"
				
End	Sub

javascript:history.back();

ChordDirection	Example

Sub	Example_ChordDirection()
				
				'	This	example	returns	the	ChordDirection	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	ChordDirection	for	the	first	Curve	in	the	alignment	is:	"	&	alignEnt.ChordDirection
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"ChordDirection	Example"
				
End	Sub

javascript:history.back();

ChordLength	Example

Examples:

l	AlignCurve

l	ParcelCurve

Sub	Example_ChordLength_AlignCurve()
				
				'	This	example	returns	the	ChordLength	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	ChordLength	for	the	first	Curve	in	the	alignment	is:	"	_
												&	Format(alignEnt.ChordLength,	"0.00")
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"ChordLength	Example"
				
End	Sub

Sub	Example_ChordLength_ParcelCurve()
				
				'	This	example	returns	the	ChordLength	for	the	first	curve	in	the
				'	first	Parcel	in	the	collection.

javascript:history.back();

				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				Dim	parcelMsg	As	String
				parcelMsg	=	"There	is	no	Curve	entity	in	the	first	Parcel."
				
				'	Find	first	Curve	in	the	parcel
				For	Each	parcelEnt	In	parcel.ParcelEntities
								If	parcelEnt.Type	=	kParcelCurve	Then
												parcelMsg	=	"The	ChordLength	for	the	first	Curve	in	the	Parcel	is:	"	_
												&	Format(parcelEnt.ChordLength,	"0.00")
								Exit	For
								End	If
				Next
				
				MsgBox	parcelMsg,	vbInformation,	"ChordLength	Example"
				
End	Sub

CivilDataFilesPath	Example

Sub	Example_CivilDataFilesPath()
				
				'	This	example	returns	the	CivilDataFilesPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	CivilDataFilesPath	is:	"	&	prefFiles.CivilDataFilesPath,	vbInformation,	"CivilDataFilesPath	Example"
				
End	Sub

javascript:history.back();

ClearOverrides	Example

Sub	Example_ClearOverrides()
				
				'	This	function	clears	the	overrides	for	the	first	PoinGroup	in
				'	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				pntGrp.ClearOverrides
				
				MsgBox	"The	overrides	have	been	cleared	for	PointGroup:	"	&	pntGrp.GroupName,	_
								vbInformation,	"ClearOverrides	Example"
				
End	Sub

javascript:history.back();

Code	Example

Examples:

l	CrossSectionPointCode	(Civil	Engineering	Feature)

l	DescriptionKey

Sub	Example_Code_CrossSectionPointCode()
				
				'	This	example	returns	the	point	code	data	for	the	first	cross
				'	section	surface	in	the	collection	for	the	first	cross	section
				'	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Dim	xSectPCode	As	AeccCrossSectionPointCode
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				Set	xSectPCode	=	xSect.CrossSectionPointCodes.Item(0)
				
				'		Get	the	alignment	name
				Dim	alignName	As	String
				alignName	=	align.Name
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				MsgBox	"The	alignment	name	is:	"	&	alignName	&	vbCrLf	&	_
								"The	first	cross	section	is	at	station:	"	&	station	&	vbCrLf	&	_
								"The	data	for	the	first	point	code	is:	"	&	vbCrLf	&	_
								vbTab	&	"Code:	"	&	xSectPCode.Code	&	vbCrLf	&	_
								vbTab	&	"Description:	"	&	xSectPCode.Description	&	vbCrLf	&	_
								vbTab	&	"Elevation:	"	&	Format(xSectPCode.elevation,	"0.00")	&	vbCrLf	&	_

javascript:history.back();

								vbTab	&	"Offset:	"	&	Format(xSectPCode.offset,	"0.00"),	_
								vbInformation,	"Code	Example"
				
End	Sub

Sub	Example_Code_DescriptionKey()
				
				'	This	example	returns	the	Code	for	the	first	DescriptionKey
				'	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	Code	is	"	&	dKey.Code,	vbInformation,	"Code	Example"
				
End	Sub

Cogo	Example

Sub	Example_Cogo()
				
				'	This	example	returns	the	text	size	for	Cogo	Preferences
				'	in	the	current	project.
				Dim	prefPrj	As	AeccPreferencesProject
				Set	prefPrj	=	AeccApplication.ActiveProject.Preferences
				
				MsgBox	"The	text	size	for	Cogo	Preferences	in	the	current	Project	is:	"	&	prefPrj.Cogo.GetDouble(kPntTextSize)	_
								,	vbInformation,	"Cogo	Example"
				
End	Sub

javascript:history.back();

CogoPoints	Example

Sub	Example_CogoPoints()
				
				'	This	example	returns	the	number	of	CogoPoints	in	the	current	project.
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.ActiveProject
				
				MsgBox	"The	number	of	CogoPoints	in	the	current	Project	is:	"	&	proj.CogoPoints.Count,	_
								vbInformation,	"CogoPoints	Example"
				
End	Sub

javascript:history.back();

Composite	Example

Sub	Example_Composite()
				
				'	This	example	creates	a	composite	surface	from	two	existing	surfaces.
				Dim	surfs	As	AeccSurfaces
				Dim	childSurf	As	AeccSurface
				Dim	parentSurf	As	AeccSurface
				Dim	newSurf	As	AeccSurface
				
				Set	surfs	=	AeccApplication.ActiveProject.Surfaces
				Set	childSurf	=	surfs.Item(0)
				Set	parentSurf	=	surfs.Item(1)
				
				Set	newSurf	=	surfs.Composite("New	Surface",	parentSurf.Name,	childSurf.Name)
				
				MsgBox	"The	number	of	faces	in	the	new	surface	is:	"	&	newSurf.NumberOfFaces,	_
								vbInformation,	"Composite	Example"
				
End	Sub

javascript:history.back();

ContourItems	Example

Sub	Example_ContourItems()
				
				'	This	example	returns	the	number	of	ContourItems	in	the	first
				'	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfIn	As	AeccSurfaceInputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfIn	=	surf.Inputs
				
				MsgBox	"The	number	of	ContourItems	in	the	first	Surface	is:	"	&	surfIn.ContourItems.Count,	_
								vbInformation,	"ContourItems	Example"
				
End	Sub

javascript:history.back();

ContourStyle	Example

Sub	Example_ContourStyle()
				
				'	This	example	displays	the	contour	style	for	the	selected	contour.
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	Contour	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_CONTOUR"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				Dim	returnPnt	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Select	a	contour	line:	")
				ssetObj.SelectAtPoint	returnPnt,	groupCode,	dataCode
				
				Dim	objContour	As	AeccContour
				Set	objContour	=	ssetObj.Item(0)
				
				MsgBox	"The	ContourStyle	for	the	selected	contour	is:	"	&	objContour.ContourStyle.Name,	_
								vbInformation,	"ContourStyle	Example"

javascript:history.back();

				
End	Sub

ContourStyleName	Example

Sub	Example_ContourStyleName()
				
				'	This	example	displays	the	ContourStyleName	for	a	selected	contour
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	Contour	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	mode	As	Integer
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_CONTOUR"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				Dim	returnPnt	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Enter	a	point	on	a	contour	line:	")
				ssetObj.SelectAtPoint	returnPnt,	groupCode,	dataCode
				
				Dim	objContour	As	AeccContour
				Set	objContour	=	ssetObj.Item(0)
				MsgBox	"The	ContourStyleName	for	the	selected	contour	is	"	&	objContour.ContourStyleName,	_
								vbInformation,	"ContourStyleName	Example"

javascript:history.back();

				
End	Sub

ContourStylesPath	Example

Sub	Example_ContourStylesPath()
				
				'	This	example	returns	the	ContourStylesPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	ContourStylesPath	is:	"	&	prefFiles.ContourStylesPath,	_
								vbInformation,	"ContourStylesPath	Example"
				
End	Sub

javascript:history.back();

ConvertToCurrentAreaDisplay	Example

Sub	Example_ConvertToCurrentAreaDisplay()
				
				'	This	example	returns	the	value	of	ConvertToCurrentAreaDisplay
				'	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				'	Set	the	area	display	units	to	square	yards
				dbPref.AreaDisplayUnit	=	aecUnitSquareYard
				
				Dim	SourceArea	As	Double
				Dim	TargetArea	As	Double
				
				SourceArea	=	36#	'Square	feet,	assumes	drawing	set	to	foot	units
				TargetArea	=	dbPref.ConvertToCurrentAreaDisplay(SourceArea)
				
				MsgBox	"The	area	to	convert	is	36	square	feet."	&	vbCrLf	&	_
								"The	AreaDisplayUnit	is	set	to	square	yard."	&	vbCrLf	&	_
								"The	value	for	ConvertToCurrentAreaDisplay	is	"	&	TargetArea	&	"	square	yards.",	_
								vbInformation,	"ConvertToCurrentAreaDisplay	Example"
				
End	Sub

javascript:history.back();

ConvertToCurrentVolumeDisplay	Example

Sub	Example_ConvertToCurrentVolumeDisplay()
				
				'	This	example	returns	the	value	of	ConvertToCurrentVolumeDisplay
				'	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				'	Set	the	volume	display	units	to	cubic	yards
				dbPref.VolumeDisplayUnit	=	aecUnitCubicYard
				
				Dim	SourceArea	As	Double
				Dim	TargetArea	As	Double
				
				SourceArea	=	54#	'Cubic	feet,	assumes	drawing	set	to	foot	units
				TargetArea	=	dbPref.ConvertToCurrentVolumeDisplay(SourceArea)
				
				MsgBox	"The	area	to	convert	is	54	cubic	feet."	&	vbCrLf	&	_
								"The	VolumnDisplayUnit	is	set	to	cubic	yard."	&	vbCrLf	&	_
								"The	value	for	ConvertToCurrentVolumeDisplay	is	"	&	TargetArea	&	"	square	yards.",	_
								vbInformation,	"ConvertToCurrentVolumnDisplay	Example"
				
End	Sub

javascript:history.back();

CoordinatePrecision	Example

Sub	Example_CoordinatePrecision()
				
				'	This	example	returns	the	CoordinatePrecision	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	CoordinatePrecision	is:	"	&	dbPref.	CoordinatePrecision,	_
								vbInformation,	"CoordinatePrecision	Example"
				
End	Sub

javascript:history.back();

Coordinates	Example

Examples:

l	AeccContour

l	Boundary

l	Breakline

l	CogoPoint

l	ContourItem

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	Edge

l	ElevationContour

l	Face

l	ProfileBlock	(Civil	Engineering	Feature)

Sub	Example_Coordinates_AeccContour()
				
				'	This	example	displays	the	Coordinates	for	a	selected	contour
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	Contour	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				

javascript:history.back();

				Dim	mode	As	Integer
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_CONTOUR"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				Dim	returnPnt	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Enter	a	point	on	a	contour	line:	")
				ssetObj.SelectAtPoint	returnPnt,	groupCode,	dataCode
				
				Dim	objContour	As	AeccContour
				Set	objContour	=	ssetObj.Item(0)
				Dim	coords	As	Variant
				
				coords	=	objContour.Coordinates
				
				MsgBox	"The	first	point	in	Coordinates	is:	"	&	coords(0)	&	",	"	&	coords(1)	&	",	"	&	coords(2),	_
								vbInformation,	"Coordinates	Example"
				
End	Sub

Sub	Example_Coordinates_Boundary()
				
				'	This	example	returns	the	first	point	in	the	Coordinates
				'	for	the	first	Boundary	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	bound	As	AeccBoundary
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	bound	=	surf.Inputs.Boundaries.Item(0)
				
				Dim	coords	As	Variant

				
				coords	=	bound.Coordinates
				
				MsgBox	"The	first	Coordinate	for	the	Boundary	is:	"	&	coords(0)	&	",	"	&	coords(1)	&	",	"	&	coords(2)	_
								,	vbInformation,	"Coordinates	Example"
				
End	Sub

Sub	Example_Coordinates_BreakLine()
				
				'	This	example	returns	the	first	point	in	the	Coordinates
				'	for	the	first	BreakLine	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	brkLine	As	AeccBreakLine
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	brkLine	=	surf.Inputs.BreakLines.Item(0)
				
				Dim	coords	As	Variant
				
				coords	=	brkLine.Coordinates
				
				MsgBox	"The	first	Coordinate	for	the	BreakLine	is:	"	&	coords(0)	&	",	"	&	coords(1)	&	",	"	&	coords(2)	_
								,	vbInformation,	"Coordinates	Example"
				
End	Sub

Sub	Example_Coordinates_CogoPoint()
				
				'	This	example	returns	the	Coordinate	for	the	first	CogoPoint	in	the	collection
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				Dim	coords	As	Variant
				
				coords	=	cogoPnt.Coordinates
				
				MsgBox	"The	Coordinates	for	the	first	CogoPoint	in	the	collection	is:	"	&	coords(0)	&	",	"	&	coords(1)	&	",	"	&	coords(2)

				
End	Sub

Sub	Example_Coordinates_ContourItem()
				
				'	This	example	returns	the	first	point	in	the	Coordinates
				'	for	the	first	ContourItem	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	cont	As	AeccContourItem
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	cont	=	Surf.Inputs.ContourItems.Item(0)
				
				Dim	coords	As	Variant
				
				coords	=	cont.Coordinates
				
				MsgBox	"The	first	Coordinates	for	the	ContourItem	is:	"	&	coords(0)	&	",	"	&	coords(1)	&	",	"	&	coords(2)	_
								,	vbInformation,	"Coordinates	Example"
				
End	Sub

Sub	Example_Coordinates_CrossSectionBlock()
				
				'	This	example	returns	the	coordinates	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	alignXSects	As	AeccCrossSectionBlocks
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	alignXSect	=	alignXSects.Item(0)
				
				'Get	the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	station	As	String
				station	=	alignXSect.station
				
				'Get	the	coordinates	for	the	first	alignment	cross	section	in	the	collection
				Dim	coords	As	Variant
				coords	=	alignXSect.Coordinates

				
				MsgBox	"The	coordinates	for	the	alignment	cross	section	at	station	"	&	station	&	"	is:	"	&	vbCrLf	&	_
								"X	Value:	"	&	Format(coords(0),	"0.00")	&	vbCrLf	&	_
								"Y	Value:	"	&	Format(coords(1),	"0.00"),	vbInformation,	"Coordinates	Example"
				
End	Sub

Sub	Example_Coordinates_Edge()
				
				'	This	example	returns	the	coordinates	for	the	first
				'	Edge	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	edge	As	AeccEdge
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	edge	=	Surf.Outputs.Edges.Item(0)
				
				Dim	coords	As	Variant
				coords	=	edge.Coordinates
				
				MsgBox	"The	Coordinates	for	the	first	Edge	are:"	&	vbCrLf	&	_
								"FromNorthing:	"	&	coords(0)	&	vbCrLf	&	_
								"FromEasting:	"	&	coords(1)	&	vbCrLf	&	_
								"FromElevation:	"	&	coords(2)	&	vbCrLf	&	_
								"ToNorthing:	"	&	coords(3)	&	vbCrLf	&	_
								"ToEasting:	"	&	coords(4)	&	vbCrLf	&	_
								"ToElevation:	"	&	coords(5),	vbInformation,	"Coordinates	Example"
				
End	Sub

Sub	Example_Coordinates_ElevationContour()
				
				'	This	example	returns	the	first	point	in	the	coordinates	for	the
				'	first	ElevationContour	in	the	collection	at	100.0
				Dim	surf	As	AeccSurface
				Dim	elevContours	As	AeccElevationContours
				Dim	elevContour	As	AeccElevationContour
				Dim	coords	As	Variant

				
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	elevContours	=	Surf.Outputs.ElevationContours
				
				'Create	a	collection	of	ElevationContours	at	100.0
				elevContours.Elevation	=	100#
				
				Set	elevContour	=	elevContours.Item(0)
				
				coords	=	elevContour.Coordinates
				
				MsgBox	"The	first	point	in	Coordinates	is:	"	&	coords(0)	&	",	"	&	coords(1)	&	",	"	&	coords(2),	vbInformation,	"Coordinates	Example"
				
End	Sub

Sub	Example_Coordinates_Face()
				
				'	This	example	returns	the	Coordinates
				'	for	the	first	Face	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	face	As	AeccFace
				Set	Surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	face	=	surf.Outputs.faces.Item(0)
				
				Dim	coord	As	Variant
				
				coord	=	face.Coordinates
				
				MsgBox	"The	points	for	the	first	face	are:	"	&	vbCrLf	&	_
								coord(0)	&	",	"	&	coord(1)	&	",	"	&	coord(2)	&	vbCrLf	&	_
								coord(3)	&	",	"	&	coord(4)	&	",	"	&	coord(5)	&	vbCrLf	&	_
								coord(6)	&	",	"	&	coord(7)	&	",	"	&	coord(8),	vbInformation,	"Coordinates	Example"
				
End	Sub

Sub	Example_Coordinates_ProfileBlock()
				

				'	This	example	returns	the	Coordinate	for	the	first	ProfileBlock
				'	in	the	collection.
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				Dim	coords	As	Variant
				coords	=	alignProf.Coordinates
				
				MsgBox	"The	Coordinates	for	the	first	Alignment	Profile	are:"	&	vbCrLf	&	_
								"X	Value:	"	&	Format(coords(0),	"0.00")	&	vbCrLf	&	_
								"Y	Value:	"	&	Format(coords(1),	"0.00"),	vbInformation,	"Coordinates	Example"
				
End	Sub

CoordinateZone	Example

Examples:

l	DatabasePreferences

l	DEMFile

Sub	Example_CoordinateZone_DatabasePreferences()
				
				'	This	example	returns	the	CoordinateZone	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	CoordinateZone	is:	"	&	dbPref.CoordinateZone,	_
								vbInformation,	"CoordinateZone	Example"
				
End	Sub

Sub	Example_CoordinateZone_DEMFile()
				
				'	This	example	returns	the	CoordinateZone	for	the	first	DEMFile	in	the	
				'	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	DEMFile	As	AeccDEMFile
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	DEMFile	=	surf.Inputs.DEMFiles.Item(0)
				
				MsgBox	"The	CoordinateZone	for	the	first	DEMFile	is:	"	&	DEMFile.CoordinateZone,	_
								vbInformation,	"CoordinateZone	Example"
				
End	Sub

javascript:history.back();

Copy	Example

Examples

l	Prototypes

l	Surfaces

Sub	Example_Copy_Prototypes()
				
				'	This	example	copies	a	the	first	prototype	in	the	collection
				'	to	a	"Copy	of	"	the	first	prototype..
				Dim	prots	As	AeccPrototypes
				Dim	prot	As	AeccPrototype
				Dim	protcopy	As	AeccPrototype
				Set	prots	=	AeccApplication.Prototypes
				Set	prot	=	prots.Item(0)
				
				Dim	source	As	String
				Dim	target	As	String
				
				'	Get	the	source	and	target	prototype	names
				source	=	prot.Name
				target	=	"Copy	of	"	&	source
				
				'	Make	copy	of	prototype
				Set	protcopy	=	prots.Copy(source,	target)
				
				MsgBox	"The	copied	prototype	is	named:	"	&	protcopy.Name,	vbInformation,	"Copy	Example"
				
End	Sub

Sub	Example_Copy_Surfaces()
				
				'	This	example	copies	a	surface.
				Dim	surfs	As	AeccSurfaces

javascript:history.back();

				Dim	surf	As	AeccSurface
				Dim	surfCopy	As	AeccSurface
				Set	surfs	=	AeccApplication.ActiveProject.Surfaces
				Set	surf	=	surfs.Item(0)
				
				Dim	source	As	String
				
				'	Get	name	of	surface	to	copy
				source	=	surf.Name
				
				Set	surfCopy	=	surfs.Copy(source)
				
				MsgBox	"The	copied	surface	is	named:	"	&	surfCopy.Name,	vbInformation,	"Copy	Example"
				
End	Sub

Count	Example

Sub	Example_Count()
				
				'	Use	count	to	retrieve	the	number	of	entities	in	a	collection.
				'	You	might	use	this	value	in	a	loop	structure	to	iterate	through	the	collection.
				MsgBox	"There	are	"	&	AeccApplication.Projects.count	&	"	project(s)	at	the	project	path.",	_
				vbInformation,	"Count	Example"
				
				Dim	objCount	As	Integer
				objCount	=	AeccApplication.Projects.count
				
				Dim	I	As	Integer
				Dim	proj	As	AeccProject
				For	I	=	0	To	objCount	-	1
								Set	proj	=	AeccApplication.Projects.Item(I)
								MsgBox	"The	projects	collection	includes:	"	&	proj.Name,	_
												vbInformation,	"Count	Example"
				Next
				
End	Sub

javascript:history.back();

Course	Example

Sub	Example_Course()
				
				'	This	example	returns	the	Course	for	the	first	entity	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				MsgBox	"The	Course	of	the	first	entity	in	the	Parcel	is:	"	&	parcelEnt.Course,	_
								vbInformation,	"Course	Example"
				
End	Sub

javascript:history.back();

CourseIn	Example

Sub	Example_CourseIn()
				
				'	This	example	returns	the	CourseIn	for	the	first	curve	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				Dim	parcelMsg	As	String
				parcelMsg	=	"There	is	no	Curve	entity	in	the	first	Parcel."
				
				'	Find	first	Curve	in	the	parcel
				For	Each	parcelEnt	In	parcel.ParcelEntities
								If	parcelEnt.Type	=	kParcelCurve	Then
												parcelMsg	=	"The	CourseIn	for	the	first	Curve	in	the	Parcel	is:	"	_
												&	parcelEnt.CourseIn	&	vbCrLf	_
												&	"The	CourseOut	for	the	first	Curve	in	the	Parcel	is:	"	_
												&	parcelEnt.CourseOut
								Exit	For
								End	If
				Next
				
				MsgBox	parcelMsg,	vbInformation,	"CourseIn	Example"
				
End	Sub

javascript:history.back();

CourseOut	Example

Sub	Example_CourseOut()
				
				'	This	example	returns	the	CourseOut	for	the	first	curve	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				Dim	parcelMsg	As	String
				parcelMsg	=	"There	is	no	Curve	entity	in	the	first	Parcel."
				
				'	Find	first	Curve	in	the	parcel
				For	Each	parcelEnt	In	parcel.ParcelEntities
								If	parcelEnt.Type	=	kParcelCurve	Then
												parcelMsg	=	"The	CourseIn	for	the	first	Curve	in	the	Parcel	is:	"	_
												&	parcelEnt.CourseIn	&	vbCrLf	_
												&	"The	CourseOut	for	the	first	Curve	in	the	Parcel	is:	"	_
												&	parcelEnt.CourseOut
								Exit	For
								End	If
				Next
				
				MsgBox	parcelMsg,	vbInformation,	"CourseOut	Example"
				
End	Sub

javascript:history.back();
javascript:history.back();

CrossSection	Example

Sub	Example_CrossSection()
				
				'	This	example	returns	the	datum	layer	for	the	cross	section
				'	preferences	in	the	current	project.
				Dim	prefPrj	As	AeccPreferencesProject
				Set	prefPrj	=	AeccApplication.ActiveProject.Preferences
				
				MsgBox	"The	datum	layer	for	cross	section	preferences	in	the	current	project	is:	"	_
								&	prefPrj.CrossSection.GetString(kDatumLayer),	vbInformation,	"Profile	Example"
				
End	Sub

javascript:history.back();

CrossSectionBlocks	Example

Sub	Example_CrossSectionBlocks()
				
				'	This	example	returns	the	count	of	cross	section	blocks	in
				'	the	current	document.
				Dim	doc	As	AeccDocument
				Set	doc	=	AeccApplication.ActiveDocument
				
				MsgBox	"The	number	of	cross	section	blocks	in	the	current	document	is	"	&		_
								doc.CrossSectionBlocks.Count,	vbInformation,	"CrossSectionBlocks	Example"
				
End	Sub

javascript:history.back();

CrossSectionPointCodes	Example

Sub	Example_CrossSectionPointCodes()
				
				'	This	example	returns	the	count	of	point	codes	for	the
				'	first	cross	section	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				
				MsgBox	"The	number	of	point	codes	in	the	first	cross	section	is:	"	_
								&	xSect.CrossSectionPointCodes.Count,	vbInformation,	"CrossSectionPointCodes	Example"
				
End	Sub

CrossSections	Example

Sub	Example_CrossSections()
				
				'	This	example	returns	the	number	of	cross	sections	for	the
				'	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				MsgBox	"The	number	of	cross	sections	in	first	alignment	is:	"	_
								&	align.CrossSections.Count	,	vbInformation,	"CrossSections	Example"
				
End	Sub

javascript:history.back();
javascript:history.back();

CrossSectionSurfaces	Example

Sub	Example_CrossSectionSurfaces()
				
				'	This	example	returns	the	count	of	surfaces	for	the
				'	first	cross	section	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				
				MsgBox	"The	number	of	surfaces	in	the	first	cross	section	is:	"	_
								&	xSect.CrossSectionSurfaces.Count,	vbInformation,	"CrossSectionSurfaces	Example"
				
End	Sub

CurrentAlignment	Example

Sub	Example_CurrentAlignment()
				
				'	This	example	returns	the	CurrentAlignment	Value.
				Dim	aligns	As	AeccAlignments
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				MsgBox	"The	CurrentAlignment	for	alignments	is	"	&	aligns.CurrentAlignment,	_
								vbInformation,	"CurrentAlignment	Example"
				
End	Sub

javascript:history.back();

CurrentSurface	Example

Sub	Example_CurrentSurface()
				
				'	This	example	returns	the	CurrentSurface	setting.
				Dim	surfs	As	AeccSurfaces
				Set	surfs	=	AeccApplication.ActiveProject.Surfaces
				
				MsgBox	"The	CurrentSurface	is:	"	&	surfs.CurrentSurface,	vbInformation,	"CurrentSurface	Example"
				
End	Sub

javascript:history.back();

CurveCode	Example

Sub	Example_CurveCode()
				
				'	This	example	returns	the	data	for	the	first	superelevation	in	the
				'	superelevation	collection	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	sElev	As	AeccSuperelevation
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	sElev	=	align.Superelevations.Item(0)
				
				'		Get	the	alignment	name
				Dim	alignName	As	String
				alignName	=	align.Name
				
				'	Get	the	superelevation	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(sElev.station)
				
				'	Get	the	superelevation	curve	code
				Dim	crvCode	As	String
				Select	Case	sElev.curveCode
				Case	kSERightHandCurve
								crvCode	=	"Right	Hand	Curve"
				Case	kSELeftHandCurve
								crvCode	=	"Left	Hand	Curve"
				End	Select
				
				'	Get	the	superelevation	code
				Dim	supCode	As	String
				Select	Case	sElev.SuperelevationCode
				Case	kSEFullCrown
								supCode	=	"Full	Crown"
				Case	kSEHalfCrown

javascript:history.back();

								supCode	=	"Half	Crown"
				Case	kSECrownRemoved
								supCode	=	"Crown	Removed"
				Case	kSEFullSuperelevations
								supCode	=	"Full	Superelevation"
				Case	kSEReverseCurve
								supCode	=	"Reverse	Curve"
				Case	kSECompoundCurve
								supCode	=	"Compound	Curve"
				End	Select
				
				MsgBox	"The	alignment	name	is:	"	&	alignName	&	vbCrLf	&	_
								"The	data	for	the	first	superelevation	is:	"	&	vbCrLf	&	_
								vbTab	&	"Station:	"	&	station	&	vbCrLf	&	_
								vbTab	&	"Curve	Code:	"	&	crvCode	&	vbCrLf	&	_
								vbTab	&	"Superelevation	Code:	"	&	supCode,	_
								vbInformation,	"CurveCode	Example"
				
End	Sub

CurveLabelIncrement	Example

Sub	Example_CurveLabelIncrement()
				
				'	This	example	returns	the	CurveLabelIncrement	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	CurveLabelIncrement	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.CurveLabelIncrement,	vbInformation,	"CurveLabelIncrement	Example"
				
End	Sub

javascript:history.back();

CurveLength	Example

Sub	Example_CurveLength()
				
				'	This	example	returns	the	CurveLength	value	for	the	second	PVI	in	the
				'	first	finished	ground	of	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	FGProf	As	AeccFGProfile
				Dim	PVI	As	AeccPVI
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProf	=	align.FGProfiles.Item(0)
				Set	PVI	=	FGProf.PVIs.Item(1)
				
				MsgBox	"The	CurveLength	of	the	second	PVI	is:	"	_
								&	Format(PVI.CurveLength,	"0.000"),	vbInformation,	"CurveLength	Example"
				
End	Sub

javascript:history.back();

DatabaseScale	Example

Sub	Example_DatabaseScale()
				
				'	This	example	returns	the	HorizontalScale	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	DatabaseScale	is:	"	&	dbPref.DatabaseScale,	_
								vbInformation,	"DatabaseScale	Example"
				
End	Sub

javascript:history.back();

DataPath	Example

Sub	Example_DataPath()
				
				'	This	example	returns	the	DataPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	DataPath	is:	"	&	prefFiles.DataPath,	_
								vbInformation,	"DataPath	Example"
				
End	Sub

javascript:history.back();

DatumElevation	Example

Examples:

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	ProfileBlock	(Civil	Engineering	Feature)

Sub	
Example_DatumElevation_CrossSectionBlock()
				
				'	
This	example	returns	the	datum	elevation	for	the
				'	
first	alignment	cross	section	in	the	collection.
				Dim	
alignXSects	As	AeccCrossSectionBlocks
				Dim	
alignXSect	As	AeccCrossSectionBlock
				Set	
alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	
alignXSect	=	alignXSects.Item(0)
				
				'Get	
the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	
station	As	String
				station	
=	alignXSect.station
				
				MsgBox	
"The	datum	elevation	for	the	alignment	cross	section	at	station	"	&	station	&	
"	is:	"	&	_
								Format(alignXSect.DatumElevation,	
"0.00"),	vbInformation,	"DatumElevation	Example"
				

javascript:history.back();

End	
Sub

Sub	
Example_DatumElevation_ProfileBlock()
				
				'	
This	example	returns	the	DatumElevation	for	the	first	ProfileBlock
				'	
in	the	collection
				Dim	
alignProf	As	AeccProfileBlock
				Set	
alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	
"The	DatumElevation	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									
&	alignProf.DatumElevation,	vbInformation,	"DatumElevation	Example"
				
End	
Sub

Delete	Example

Examples:

l	Alignments

l	Boundaries

l	BreakLines

l	CogoPoints

l	ContourItems

l	DEMFiles

l	DescriptionKeyFile

l	DescriptionKeyFiles

l	EGProfiles	(Civil	Engineering	Feature)

l	FGProfiles	(Civil	Engineering	Feature)

l	Parcels

l	PointFiles

l	PointGroupNames

l	PointGroups

l	Projects

l	Prototypes

l	PVIs	(Civil	Engineering	Feature)

l	StationEquations

javascript:history.back();

l	Surfaces

Sub	Example_Delete_Alignments()
				
				'	This	example	deletes	an	Alignment	from	the	Alignments	Collection
				Dim	aligns	As	AeccAlignments
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				'	Show	the	number	of	alignments	in	the	project
				MsgBox	"The	initial	Count	of	Alignments	is:	"	&	aligns.Count,	vbInformation,	"Delete	Example"
				
				'	Add	an	Alignment	named	New	Alignment	and	starting	at	Station	2000
				aligns.Add	"New	Alignment",	2000
				
				'	Show	the	number	of	alignments	in	the	project
				MsgBox	"The	Count	of	Alignments	after	Add	is:	"	&	aligns.Count,	vbInformation,	"Delete	Example"
				
				'	Deletes	the	Alignment	named	New	Alignment
				aligns.Delete	"New	Alignment"
				
				'	Show	the	number	of	alignments	in	the	project
				MsgBox	"The	Count	of	Alignments	after	Delete	is:	"	&	aligns.Count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_Boundaries()
				
				'	This	example	starts	by	displays	the	initial	count	of	the	Boundaries
				'	for	the	first	surface	in	the	collection.	A	new	visible	Boundary	is	added
				'	and	the	count	is	redisplays.	Finally,	the	new	Boundary	is	deleted.	The	count	is
				'	displayed	again,	showing	the	deletion.
				Dim	surf	As	AeccSurface
				Dim	bounds	As	AeccBoundaries
				Dim	Bound	As	AeccBoundary
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	bounds	=	surf.Inputs.Boundaries
				

				MsgBox	"The	Boundaries	Count	is:	"	&	bounds.count,	vbInformation,	"Delete	Example"
				
				'	Initialize	variables
				Dim	pnts(0	To	14)	As	Double
				Dim	count	As	Integer
				Dim	index	As	Integer
				Dim	pnt	As	Variant
				
				index	=	0
				
				'	Add	a	new	Boundary	based	on	five	selected	points
				For	count	=	1	To	5
								pnt	=	ThisDrawing.Utility.GetPoint(,	"Select	point"	+	Str(count)	+	"	of	Boundary:	")
								pnts(index)	=	pnt(0):	pnts(index	+	1)	=	pnt(1):	pnts(index	+	2)	=	pnt(2)
								index	=	index	+	3
				Next	count
				
				'	Add	a	new	Boundary
				Set	Bound	=	bounds.Add(kBoundaryTypeShow,	False,	pnts,	"NewBoundary")
				
				MsgBox	"The	BreakLines	Count	after	the	add	is:	"	&	bounds.count,	vbInformation,	"Delete	Example"
				
				'	Delete	the	new	Boundary
				bounds.Delete	Bound.Id
				
				MsgBox	"The	Boundaries	Count	after	the	delete	is	"	&	bounds.count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_BreakLines()
				
				'	This	example	starts	by	displays	the	initial	count	of	the	BreakLines
				'	for	the	first	surface	in	the	collection.	A	new	BreakLines	is	added
				'	and	the	count	is	redisplays.	Finally,	the	new	file	is	deleted.	The	count	is
				'	displayed	again,	showing	the	deletion.
				Dim	surf	As	AeccSurface
				Dim	brkLines	As	AeccBreakLines

				Dim	brkLine	As	AeccBreakLine
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	brkLines	=	surf.Inputs.BreakLines
				
				MsgBox	"The	BreakLines	Count	is:	"	&	brkLines.count,	vbInformation,	"Delete	Example"
				
				'	Initialize	variables
				Dim	pnts(0	To	14)	As	Double
				Dim	count	As	Integer
				Dim	index	As	Integer
				Dim	pnt	As	Variant
				
				index	=	0
				
				'	Add	a	new	BreakLine	based	on	five	selected	points
				For	count	=	1	To	5
								pnt	=	ThisDrawing.Utility.GetPoint(,	"Select	point"	+	Str(count)	+	"	of	BreakLine:	")
								pnts(index)	=	pnt(0):	pnts(index	+	1)	=	pnt(1):	pnts(index	+	2)	=	pnt(2)
								index	=	index	+	3
				Next	count
				
				Set	brkLine	=	brkLines.Add(pnts,	"NewBreakLine")
				
				MsgBox	"The	BreakLines	Count	after	the	add	is:	"	&	brkLines.count,	vbInformation,	"Delete	Example"
				
				'	Delete	the	new	BreakLines
				brkLines.Delete	brkLine.Id
				MsgBox	"The	BreakLines	Count	after	the	delete	is	"	&	brkLines.count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_CogoPoints()
				
				'	This	examples	displays	the	used	point	numbers,	deletes	a	point	number
				'	and	the	displays	the	used	point	numbers	again	to	confirm	the	deletion.
				Dim	cogoPnts	As	AeccCogoPoints
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints

				
				MsgBox	"Used	point	numbers	are	"	&	cogoPnts.UsedPointNumbers,	_
				vbInformation,	"Delete	Example"
				
				'	Get	a	point	number
				Dim	pntNum	As	Long
				pntNum	=	ThisDrawing.Utility.GetReal("Enter	a	valid	point	number	:	")
				pntNum	=	Fix(pntNum)
				
				'	Delete	the	CogoPoint
				cogoPnts.Delete	pntNum
				
				MsgBox	"Used	point	numbers	are	"	&	cogoPnts.UsedPointNumbers,	_
								vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_ContourItems()
				
				'	This	example	Deletes	the	ContourItem	with	ID	equal	to	one	(1)
				'	from	the	first	collection	of	ContourItems.
				Dim	surf	As	AeccSurface
				Dim	conts	As	AeccContourItems
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	conts	=	surf.Inputs.ContourItems
				
				'	Display	the	number	of	ContourItems	in	the	collection	before	the	delete
				MsgBox	"The	number	of	ContourItems	in	the	collection	is:	"	&	conts.Count,	_
				vbInformation,	"Delete	Example"
				
				'	Delete	ContourItem	with	ID	equal	to	one.
				conts.Delete	1
				
				'	Display	the	number	of	ContourItems	in	the	collection	after	the	delete
				MsgBox	"The	number	of	ContourItems	in	the	collection	is:	"	&	conts.Count,	_
								vbInformation,	"Delete	Example"
				

End	Sub

Sub	Example_Delete_DEMFiles()
				
				'	This	example	starts	by	displays	the	initial	count	of	DEMFiles
				'	for	the	first	surface.	A	new	DEMfile	is	added	and	the	count	is	redisplays.
				'	Finally,	the	new	file	is	deleted.	The	count	is	displayed	again,	showing
				'	the	deletion.
				Dim	surf	As	AeccSurface
				Dim	DEMFiles	As	AeccDEMFiles
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	DEMFiles	=	surf.Inputs.DEMFiles
				
				MsgBox	"The	DEMFiles	Count	is:	"	&	DEMFiles.Count,	vbInformation,	"Delete	Example"
				
				'Get	the	DEMFile	name	and	format	the	prompt
				Dim	DEMName	As	String
				Dim	prompt	As	String
				
				prompt	=	"Enter	the	name	of	the	DEMFile	for	surface	"	&	surf.Name	&	":	"
				DEMName	=	ThisDrawing.Utility.GetString(False,	prompt)
				
				'	Add	a	new	DEMFile
				DEMFiles.Add	DEMName
				
				MsgBox	"The	DEMFiles	Count	after	the	add	is:	"	&	DEMFiles.Count,	vbInformation,	"Delete	Example"
				
				'	Delete	the	new	DEMFile
				DEMFiles.Delete	DEMName
				
				MsgBox	"The	DEMFiles	Count	after	the	delete	is	"	&	DEMFiles.Count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_DescriptionKeyFile()
				
				'	This	example	starts	by	displays	the	initial	count	of	DescriptionKeys

				'	in	the	DEFAULT	DescriptionKey	file.	A	new	DescriptionKey	is	added
				'	and	the	count	is	redisplays.	Finally,	the	new	key	is	deleted.	The
				'	count	is	displayed	again,	showing	the	deletion.
				Dim	dkeyFile	As	AeccDescriptionKeyFile
				Set	dkeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item("DEFAULT")
				
				MsgBox	"The	DescriptionKey	Count	is	"	&	dkeyFile.count,	vbInformation,	"Delete	Example"
				
				'	Add	a	new	DescriptionKey
				dkeyFile.Add	"New"
				
				MsgBox	"The	DescriptionKey	Count	is	"	&	dkeyFile.count,	vbInformation,	"Delete	Example"
				
				'	Delete	the	new	DescriptionKey
				dkeyFile.Delete	"New"
				
				MsgBox	"The	DescriptionKey	Count	is	"	&	dkeyFile.count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_DescriptionKeyFiles()
				
				'	This	example	starts	by	displays	the	initial	count	of	DescriptionKeyFiles
				'	on	the	system.	A	new	DescriptionKeyFile	is	added	and	the	count	is	redisplays.
				'	Finally,	the	new	file	is	deleted.	The	count	is	displayed	again,	showing
				'	the	deletion.
				Dim	dKeyFiles	As	AeccDescriptionKeyFiles
				Set	dKeyFiles	=	AeccApplication.ActiveProject.DescriptionKeyFiles
				
				MsgBox	"The	DescriptionKeyFiles	Count	is	"	&	dKeyFiles.count,	vbInformation,	"Delete	Example"
				
				'	Add	a	new	DescriptionKeyFile
				dKeyFiles.Add	"NewFile"
				
				MsgBox	"The	DescriptionKeyFiles	Count	is	"	&	dKeyFiles.count,	vbInformation,	"Delete	Example"
				
				'	Delete	the	new	DescriptionKeyFile

				dKeyFiles.Delete	"NewFile"
				
				MsgBox	"The	DescriptionKeyFiles	Count	is	"	&	dKeyFiles.count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_EGProfiles()
				
				'	This	example	deletes	the	first	existing	ground	profile
				'	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	EGProf	As	AeccEGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	EGProf	=	align.EGProfiles.Item(0)
				
				MsgBox	"The	number	of	existing	ground	profiles	in	the	first	alignment	is:	"	_
								&	align.EGProfiles.Count,	vbInformation,	"Delete	Example"
				
				Dim	surfName	As	String
				Dim	offset	As	Integer
				surfName	=	EGProf.SurfaceName
				offset	=	EGProf.Type
				
				'	Delete	the	profile
				align.EGProfiles.Delete	offset,	surfName
				
				MsgBox	"The	number	of	existing	ground	profiles	in	the	first	alignment	is:	"	_
								&	align.EGProfiles.Count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_FGProfiles()
				
				'	This	example	deletes	the	first	finished	ground	profile
				'	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	FGProf	As	AeccFGProfile

				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProf	=	align.FGProfiles.Item(0)
				
				MsgBox	"The	number	of	finished	ground	profiles	in	the	first	alignment	is:	"	_
								&	align.fGProfiles.Count,	vbInformation,	"Delete	Example"
				
				Dim	offset	As	Integer
				offset	=	FGProf.Type
				
				'	Delete	the	profile
				align.FGProfiles.Delete	offset
				
				MsgBox	"The	number	of	finished	ground	profiles	in	the	first	alignment	is:	"	_
								&	align.FGProfiles.Count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_Parcels()
				
				'	This	example	starts	by	displaying	the	initial	count	of	Parcels
				'	A	new	Parcel	is	added	and	the	count	is	redisplayed.	Finally,
				'	the	new	Parcel	is	deleted.	The	count	is	displayed	again,	showing
				'	the	deletion.
				
				Dim	parcels	As	AeccParcels
				Set	parcels	=	AeccApplication.ActiveProject.Parcels
				
				MsgBox	"The	Parcel	Count	is:	"	&	parcels.Count,	vbInformation,	"Add	Example"
				
				'	Add	a	new	Parcel
				parcels.Add	"NewParcel"
				
				MsgBox	"The	Parcel	Count	is:	"	&	parcels.Count,	vbInformation,	"Add	Example"
				
				'	Delete	the	new	Parcel
				parcels.Delete	"NewParcel"
				

				MsgBox	"The	Parcel	Count	is:	"	&	parcels.Count,	vbInformation,	"Add	Example"
				
End	Sub

Sub	Example_Delete_PointFiles()
				
				'	This	example	starts	by	displays	the	initial	count	of	PointFiles
				'	on	the	system.	A	new	Pointfile	is	added	and	the	count	is	redisplays.
				'	Finally,	the	new	file	is	deleted.	The	count	is	displayed	again,	showing
				'	the	deletion.
				Dim	surf	As	AeccSurface
				Dim	pntFiles	As	AeccPointFiles
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	pntFiles	=	surf.Inputs.PointFiles
				
				MsgBox	"The	PointFiles	Count	is:	"	&	pntFiles.Count,	vbInformation,	"Delete	Example"
				
				'	Add	a	new	PointFile
				pntFiles.Add	"NewPointFile"
				
				MsgBox	"The	PointFiles	Count	after	the	add	is:	"	&	pntFiles.Count,	vbInformation,	"Delete	Example"
				
				'	Delete	the	new	PointFile
				pntFiles.Delete	"NewPointFile"
				
				MsgBox	"The	PointFiles	Count	after	the	delete	is	"	&	pntFiles.Count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_PointGroupNames()
				
				'	This	example	starts	by	displays	the	initial	count	of	the	PointGroupNames
				'	for	the	first	surface	in	the	collection.	A	new	PointGroupName	is	added
				'	and	the	count	is	redisplays.	Finally,	the	new	file	is	deleted.	The	count	is
				'	displayed	again,	showing	the	deletion.
				Dim	surf	As	AeccSurface
				Dim	pntGrpNames	As	AeccPointGroupNames

				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	pntGrpNames	=	surf.Inputs.PointGroupNames
				
				MsgBox	"The	PointGroupNames	Count	is:	"	&	pntGrpNames.Count,	vbInformation,	"Delete	Example"
				
				'	Add	a	new	PointGroupName
				pntGrpNames.Add	"NewPointGroupName"
				
				MsgBox	"The	PointGroupNames	Count	after	the	add	is:	"	&	pntGrpNames.Count,	vbInformation,	"Delete	Example"
				
				'	Delete	the	new	PointGroupName
				pntGrpNames.Delete	"NewPointGroupName"
				
				MsgBox	"The	PointGroupNames	Count	after	the	delete	is	"	&	pntGrpNames.Count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_Projects()
				
				'	This	example	creates	a	new	project	named	"New	Project"	and	then
				'	deletes	the	project.	A	project	count	is	displayed	during	the	process.
				Dim	projs	As	AeccProjects
				Set	projs	=	AeccApplication.Projects
				
				'	Show	the	number	of	projects
				MsgBox	"The	initial	Count	of	Projects	is:	"	&	projs.Count,	vbInformation,	"Delete	Example"
				
				projs.Add	"New	Project",	"Default	(Feet)"
				
				'	Show	the	number	of	projects	after	the	Add
				MsgBox	"The	Count	of	Projects	after	Add	is:	"	&	projs.Count,	vbInformation,	"Delete	Example"
				
				projs.Delete	"New	Project"
				
				'	Show	the	number	of	projects	after	the	Delete
				MsgBox	"The	Count	of	Projects	after	Delete	is:	"	&	projs.Count,	vbInformation,	"Delete	Example"
				

End	Sub

Sub	Example_Delete_Prototypes()
				
				'	This	example	deletes	the	first	prototype	in	the	collection.
				Dim	prots	As	AeccPrototypes
				Dim	prot	As	AeccPrototype
				Set	prots	=	AeccApplication.Prototypes
				Set	prot	=	prots.Item(0)
				
				'	Get	the	source	prototype	names
				Dim	source	As	String
				source	=	prot.Name
				
				'	Delete	the	prototype
				prots.Delete	source
				
				MsgBox	"The	deleted	prototype	was	named:	"	&	source,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_PointGroups()
				
				'	This	example	adds	and	deletes	a	PointGroup	from	the	PoinGroups	Collection.
				Dim	pntGrps	As	AeccPointGroups
				Set	pntGrps	=	AeccApplication.ActiveProject.PointGroups
				
				'	Show	the	number	of	PointGroups	in	the	project
				MsgBox	"The	initial	Count	of	PointGroups	is:	"	&	pntGrps.Count,	vbInformation,	"Delete	Example"
				
				'	Add	PointGroup
				pntGrps.Add	"New	Group",	"1-100"
				
				'	Show	the	number	of	PointGroups	in	the	project	after	the	Add
				MsgBox	"The	Count	of	PointGroups	is:	"	&	pntGrps.Count,	vbInformation,	"Delete	Example"
				
				'	Deletes	the	PointGroup	named	"New	Group"

				pntGrps.Delete	"New	Group"
				'	Show	the	number	of	PointGroups	in	the	project	after	the	Delete
				MsgBox	"The	Count	of	PointGroups	is:	"	&	pntGrps.Count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_PVIs()
				
				'	This	example	deletes	the	second	PVI	in	the	first	finished
				'	ground	profile	of	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	FGProf	As	AeccFGProfile
				Dim	PVI	As	AeccPVI
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProf	=	align.FGProfiles.Item(0)
				Set	PVI	=	FGProf.PVIs.Item(1)
				
				MsgBox	"The	number	of	PVIs	in	the	finished	ground	profile	is:	"	_
								&	FGProf.PVIs.Count,	vbInformation,	"Delete	Example"
				
				'	Get	the	station	and	the	elevation
				Dim	station	As	Double
				station	=	PVI.station
				
				'	Delete	the	second	PVI
				FGProf.PVIs.Delete	station
				
				MsgBox	"The	number	of	PVIs	in	the	finished	ground	profile	is:	"	_
								&	FGProf.PVIs.Count,	vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_StationEquations()
				
				'	This	example	deletes	the	first	StationEquations	from
				'	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments

				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				'	Get	the	first	alignment
				Set	align	=	aligns.Item(0)
				
				'	Set	the	first	alignment	current.
				aligns.CurrentAlignment	=	align.Name
				
				Dim	staEqus	As	AeccStationEquations
				Set	staEqus	=	align.StationEquations
				
				'	Show	the	StationEquation	count	for	the	first	alignment	before	the	delete
				MsgBox	"The	StationEquation	count	for	the	first	alignment	is:	"	&	staEqus.count,	_
				vbInformation,	"Delete	Example"
				
				'	Delete	the	first	StationEquation
				staEqus.Delete(0)
				
				'	Show	the	StationEquation	count	for	the	first	alignment	after	the	delete
				MsgBox	"The	StationEquation	count	for	the	first	alignment	is:	"	&	staEqus.count,	_
				vbInformation,	"Delete	Example"
				
End	Sub

Sub	Example_Delete_Surfaces()
				
				'	This	example	deletes	the	first	surface	from	the	collection.
				Dim	surfs	As	AeccSurfaces
				Dim	surf	As	AeccSurface
				Set	surfs	=	AeccApplication.ActiveProject.Surfaces
				Set	surf	=	surfs.Item(0)
				
				'	Get	the	name	of	the	first	surface	in	the	collection
				Dim	surfName	As	String
				surfName	=	surf.Name
				

				'	Show	the	Surfaces	count	before	the	delete
				MsgBox	"The	Surface	count	is:	"	&	surfs.Count,	vbInformation,	"Delete	Example"
				
				'	Delete	the	first	StationEquation
				surfs.Delete	(surfName)
				
				'	Show	the	Surfaces	count	after	the	delete
				MsgBox	"The	Surfaces	count	is:	"	&	surfs.Count,	vbInformation,	"Delete	Example"
				
End	Sub

Delta	Example

Examples:

l	AlignCurve

l	AlignSpiral

l	ParcelCurve

Sub	Example_Delta_AlignCurve()
				
				'	This	example	returns	the	Delta	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	Delta	for	the	first	Curve	in	the	alignment	is:	"	_
												&	Format(alignEnt.Delta,	"0.00")
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"Delta	Example"
				
End	Sub

Sub	Example_Delta_AlignSpiral()
				'	This	example	returns	the	Delta	for	the	first	Spiral	found	in	the

javascript:history.back();

				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	Delta	for	the	first	Spiral	in	the	alignment	is:	"	_
												&	Format(alignEnt.Delta,	"0.00")
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"Delta	Example"
				
End	Sub

Sub	Example_Delta_ParcelCurve()
				
				'	This	example	returns	the	Delta	for	the	first	curve	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				Dim	parcelMsg	As	String
				parcelMsg	=	"There	is	no	Curve	entity	in	the	first	Parcel."
				
				'	Find	first	Curve	in	the	parcel
				For	Each	parcelEnt	In	parcel.ParcelEntities
								If	parcelEnt.Type	=	kParcelCurve	Then
												parcelMsg	=	"The	Delta	for	the	first	Curve	in	the	Parcel	is:	"	_

												&	Format(parcelEnt.Delta,	"0.00")
								Exit	For
								End	If
				Next
				
				MsgBox	parcelMsg,	vbInformation,	"Delta	Example"
				
End	Sub

DEMFiles	Example

Sub	Example_DEMFiles()
				
				'	This	example	returns	the	number	of	DEMFiles	in	the	first
				'	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfIn	As	AeccSurfaceInputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfIn	=	surf.Inputs
				
				MsgBox	"The	number	of	DEMFiles	in	the	first	Surface	is:	"	&	surfIn.DEMFiles.Count	_
								,	vbInformation,	"DEMFiles	Example"
				
End	Sub

javascript:history.back();

Description	Example

Examples:

l	AeccPoint

l	Alignment

l	Boundary

l	BreakLine

l	CrossSectionPointCode	(Civil	Engineering	Feature)

l	PointGroup

l	Project

l	Prototype

l	Surface

Sub	Example_Description_AeccPoint()
				
				'	This	example	returns	the	Description	setting	for	the
				'	first	Point	object	in	a	selection	set
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	the	Point	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer

javascript:history.back();

				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_POINT"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				ThisDrawing.Utility.Prompt	vbCrLf	&	"Select	a	point	object..."
				groupCode	=	gpCode
				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode
				
				Dim	objPoint	As	AeccPoint
				Set	objPoint	=	ssetObj.Item(0)
				
				MsgBox	"The	value	for	Description	is:	"	&	objPoint.Description,	_
								vbInformation,	"Description	Example"
				
End	Sub

Sub	Example_Description_Alignment()
				
				'	This	example	returns	the	Description	for	the	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				MsgBox	"The	Description	of	the	first	Alignment	is:	"	&	align.Description,	_
								vbInformation,	"Description	Example"
				
End	Sub

Sub	Example_Description_Boundary()
				
				'	This	example	returns	the	Description
				'	for	the	first	Boundary	in	the	collection.
				Dim	surf	As	AeccSurface

				Dim	bound	As	AeccBoundary
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	bound	=	surf.Inputs.Boundaries.Item(0)
				
				MsgBox	"The	Description	for	the	Boundary	is:	"	&	bound.Description,	_
								vbInformation,	"Description	Example"
				
End	Sub

Sub	Example_Description_BreakLine()
				
				'	This	example	returns	the	Description
				'	for	the	first	BreakLine	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	brkLine	As	AeccBreakLine
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	brkLine	=	surf.Inputs.BreakLines.Item(0)
				
				MsgBox	"The	Description	for	the	BreakLine	is:	"	&	brkLine.Description,	_
								vbInformation,	"Description	Example"
				
End	Sub

Sub	Example_Description_CrossSectionPointCode()
				
				'	This	example	returns	the	point	code	data	for	the	first	cross
				'	section	surface	in	the	collection	for	the	first	cross	section
				'	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Dim	xSectPCode	As	AeccCrossSectionPointCode
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				Set	xSectPCode	=	xSect.CrossSectionPointCodes.Item(0)
				

				'		Get	the	alignment	name
				Dim	alignName	As	String
				alignName	=	align.Name
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				MsgBox	"The	alignment	name	is:	"	&	alignName	&	vbCrLf	&	_
								"The	first	cross	section	is	at	station:	"	&	station	&	vbCrLf	&	_
								"The	data	for	the	first	point	code	is:	"	&	vbCrLf	&	_
								vbTab	&	"Code:	"	&	xSectPCode.Code	&	vbCrLf	&	_
								vbTab	&	"Description:	"	&	xSectPCode.Description	&	vbCrLf	&	_
								vbTab	&	"Elevation:	"	&	Format(xSectPCode.elevation,	"0.00")	&	vbCrLf	&	_
								vbTab	&	"Offset:	"	&	Format(xSectPCode.offset,	"0.00"),	_
								vbInformation,	"Description	Example"
				
End	Sub

Sub	Example_Description_PointGroup()
				
				'	This	function	gets	the	Description	for	the	first	PointGroup
				'	in	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				MsgBox	"The	Description	for	the	first	PointGroup	is:	"	&	pntGrp.Description,	_
								vbInformation,	"Description	Example"
				
End	Sub

Sub	Example_Description_Project()
				
				'	This	example	returns	the	Description	setting	for	the	first	Project
				'	in	the	collection
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.Projects.Item(0)

				
				MsgBox	"The	Description	value	for	the	first	project	in	the	collection	is:	"	&	proj.Description,	_
								vbInformation,	"Description	Example"
				
End	Sub

Sub	Example_Description_Prototype()
				
				'	This	example	returns	the	Description	for	the	first	prototype	in	the	collection.
				Dim	prot	As	AeccPrototype
				Set	prot	=	AeccApplication.Prototypes.Item(0)
				
				MsgBox	"The	Description	of	the	first	prototype	is	"	&	prot.Description,	_
								vbInformation,	"Description	Example"
				
End	Sub

Sub	Example_Description_Surface()
				
				'	This	example	returns	the	Description	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	Description	for	the	first	surface	is:	"	&	surf.Description,	_
								vbInformation,	"Description	Example"
				
End	Sub

DescriptionFormat	Example

Sub	Example_DescriptionFormat()
				
				'	This	example	returns	the	DescriptionFormat	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	DescriptionFormat	is	"	&	dKey.DescriptionFormat,	_
								vbInformation,	"DescriptionFormat	Example"
				
End	Sub

javascript:history.back();

DescriptionKeyFiles	Example

Sub	Example_DescriptionKeyFiles()
				
				'	This	example	returns	the	number	of	DescriptionKeyFiles
				'	in	the	current	project.
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.ActiveProject
				
				MsgBox	"The	number	of	DescriptionKeyFiles	in	the	current	Project	is:	"	&	proj.DescriptionKeyFiles.Count	_
								,	vbInformation,	"DescriptionKeyFiles	Example"
				
End	Sub

javascript:history.back();

DescriptionLayer	Example

Sub	Example_DescriptionLayer()
				
				'	This	example	returns	the	DescriptionLayer	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	DescriptionLayer	is	"	&	dKey.DescriptionLayer,	_
								vbInformation,	"DescriptionLayer	Example"
				
End	Sub

javascript:history.back();

DescriptionOverride	Example

Sub	Example_DescriptionOverride()
				
				'	This	function	gets	the	DescriptionOverride	for	the	first	PointGroup
				'	in	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				If	pntGrp.DescriptionOverride	=	True	Then
								MsgBox	"The	DescriptionOveride	for	the	first	PointGroup	is	turned	on.",	_
												vbInformation,	"DescriptionOverride	Example"
				Else
								MsgBox	"The	DescriptionOveride	for	the	first	PointGroup	is	turned	off.",	_
												vbInformation,	"DescriptionOverride	Example"
				End	If
				
End	Sub

javascript:history.back();

DescriptionXDRef	Example

Sub	Example_DescriptionXDRef()
				
				'	This	function	gets	the	DescriptionXDRef	for	the	first	PointGroup
				'	in	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				MsgBox	"The	DescriptionXDRef	for	the	first	PointGroup	is:	"	&	_
								pntGrp.DescriptionXDRef,	vbInformation,	"DescriptionXDRef	Example"
				
End	Sub

javascript:history.back();

DifferenceGrid	Example

Sub	Example_DifferenceGrid()
				
				'	This	example	creates	a	surface	from	two	existing,	overlapping,
				'	surfaces	using	the	Grid	method.
				Dim	surfs	As	AeccSurfaces
				Dim	diffSurf	As	AeccSurface
				Set	surfs	=	AeccApplication.ActiveProject.Surfaces
				
				Dim	surf0	As	String
				Dim	surf1	As	String
				Dim	surf2	As	String
				Dim	gridx	As	Double
				Dim	gridy	As	Double
				Dim	pnt	As	Variant
				Dim	rows	As	Integer
				Dim	columns	As	Integer
				
				'	Get	the	difference	grid	input
				surf0	=	ThisDrawing.Utility.GetString(True,	"Enter	name	for	new	Surface:	")
				surf1	=	ThisDrawing.Utility.GetString(True,	"Enter	name	of	first	Surface:	")
				surf2	=	ThisDrawing.Utility.GetString(True,	"Enter	name	of	overlapping	Surface:	")
				gridx	=	ThisDrawing.Utility.GetReal("Enter	the	width	of	the	grid:	")
				gridy	=	ThisDrawing.Utility.GetReal("Enter	the	height	of	the	grid:	")
				rows	=	ThisDrawing.Utility.GetInteger("Enter	the	number	of	rows	in	the	grid:	")
				columns	=	ThisDrawing.Utility.GetInteger("Enter	the	number	of	columns	in	the	grid:	")
				pnt	=	ThisDrawing.Utility.GetPoint(,	"Select	lower	left	point	of	grid:	")
				
				'	Create	the	difference	grid
				diffSurf	=	surfs.DifferenceGrid(surf0,	surf1,	surf2,	gridx,	gridy,	rows,	columns,	pnt(0),	pnt(1),	0#)
				
				MsgBox	"The	number	of	faces	in	the	new	surface	is:	"	&	diffSurf.NumberOfFaces,	_
								vbInformation,	"DifferenceGrid	Example"
				
End	Sub

javascript:history.back();

Direction	Example

Examples:

l	AlignTangent

l	ProfileBlock	(Civil	Engineering	Feature)

Sub	Example_Direction_AlignTangent()
				
				'	This	example	returns	the	Direction	for	the	first	Tangent	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Tangent	entity	in	the	first	Alignment."
				
				'	Find	first	Tangent	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kTangent	Then
												alignMsg	=	"The	Direction	for	the	first	Tangent	in	the	alignment	is:	"	&	alignEnt.direction
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"Direction	Example"
				
End	Sub

Sub	Example_Direction_ProfileBlock()
				
				'	This	example	returns	the	Direction	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock

javascript:history.back();

				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	Direction	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.Direction,	vbInformation,	"Direction	Example"
				
End	Sub

Documents	Example

Sub	Example_Documents()
				
				'	This	example	returns	the	number	of	drawings	loaded	
				'	in	the	current	session.
				Dim	docs	As	AeccDocuments
				Set	docs	=	AeccApplication.Documents
				
				MsgBox	"The	number	of	loaded	drawings	is:	"	&	docs.Count,	_
								vbInformation,	"Documents	Example"
				
End	Sub

javascript:history.back();

DoubleToStaFormat	Example

Sub	Example_DoubleToStaFormat()
				
				'	This	example	returns	the	DoubleToStaFormat	string	for	100.0.
				Dim	aligns	As	AeccAlignments
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				MsgBox	"The	DoubleToStaFormat	for	100.0	is	"	&	aligns.DoubleToStaFormat(100#),	_
								vbInformation,	"DoubleToStaFormat	Example"
				
End	Sub

javascript:history.back();

DrainsInto	Example

Sub	Example_DrainsInto()
				
				'	This	example	returns	the	ID	of	the	first	WaterShed	that	is	
				'	drained	into	for	the	first	WaterShed	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	wShed	As	AeccWaterShed
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	wShed	=	surf.Outputs.WaterSheds.Item(0)
				
				MsgBox	"The	first	Watershed	Id	that	is	drained	into	is:	"	&	wShed.Id	_
								,	vbInformation,	"DrainsInto	Example"
				
End	Sub

javascript:history.back();

DrawingPath	Example

Sub	Example_DrawingPath()
				
				'	This	example	returns	the	DrawingPath	setting	for	the	first	Project
				'	in	the	collection
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.Projects.Item(0)
				
				MsgBox	"The	DrawingPath	value	for	the	first	Project	in	the	collection	is:	"	&	proj.DrawingPath,	_
								vbInformation,	"DrawingPath	Example"
				
End	Sub

javascript:history.back();

Drawings	Example

Sub	Example_Drawings()
				
				'	This	example	returns	the	number	of	Drawings
				'	in	the	current	project.
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.ActiveProject
				
				MsgBox	"The	number	of	Drawings	in	the	current	Project	is:	"	&	proj.Drawings.Count	_
								,	vbInformation,	"Drawings	Example"
				
End	Sub

javascript:history.back();

DrawingSetupPath	Example

Sub	Example_DrawingSetupPath()
				
				'	This	example	returns	the	DrawingSetupPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	DrawingSetupPath	is:	"	&	prefFiles.DrawingSetupPath,	_
								vbInformation,	"DrawingSetupPath	Example"
				
End	Sub

javascript:history.back();

Easting	Example

Examples:

l	AeccPoint

l	CogoPoint

l	TinPoint

Sub	Example_Easting_AeccPoint()
				
				'	This	example	returns	the	Easting	setting	for	the
				'	first	Point	object	in	a	selection	set.
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	the	Point	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_POINT"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode

javascript:history.back();

				
				Dim	objPoint	As	AeccPoint
				Set	objPoint	=	ssetObj.Item(0)
				
				MsgBox	"The	setting	for	Easting	is:	"	&	objPoint.Easting,	vbInformation,	"Easting	Example"
				
End	Sub

Sub	Example_Easting_CogoPoint()
				
				'	This	example	returns	a	Cogo	point	East	coordinate.
				Dim	dbPoint	As	AeccCogoPoint
				Set	dbPoint	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	point	Easting	for	the	first	point	in	the	collection	is:	"	&	dbPoint.Easting,	_
								vbInformation,	"Easting	Example"
				
End	Sub

Sub	Example_Easting_TinPoint()
				
				'	This	example	returns	the	Easting	of	the	first
				'	TIN	Point	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	tin	As	AeccTinPoint
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	tin	=	surf.Outputs.TinPoints.Item(0)
				
				MsgBox	"The	Easting	of	the	first	TIN	Point	is:	"	&	tin.Easting,	vbInformation,	"Easting	Example"
				
End	Sub

EastNorthToXy	Example

Sub	Example_EastNorthToXy()
				
				'This	example	returns	the	X	and	Y	for	a	Easting	Northing.
				Dim	util	As	AeccUtility
				Set	util	=	AeccApplication.ActiveDocument.Utility
				
				Dim	var1	As	Variant
				Dim	ptEN(0	To	2)	As	Double
				Dim	ptXY	(0	To	2)	As	Double
				Dim	str	As	String
				
				ptEN(0)	=	1000
				ptEN(1)	=	1000
				ptEN(2)	=	0
				
				'	Convert	point	to	X,	Y
				var1	=	util.EastNorthToXy(ptEN)
				
				ptXY(0)	=	var1(0)
				ptXY(1)	=	var1(1)
				ptXY(2)	=	var1(2)
				
				'	Make	display	string
				str	=	Format(ptXY(0),	"0.00")	+	",	"	+	Format(ptXY(1),	"0.00")	+	",	"	+		Format(ptXY(2),	"0.00")
				MsgBox	"Point:	"	&	str	,	vbInformation,	"EastNorthXy	Example"
				
End	Sub

javascript:history.back();

Edges	Example

Sub	Example_Edges()
				
				'	This	example	returns	the	number	of	Edges	in	the	first
				'	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfOut	As	AeccSurfaceOutputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfOut	=	surf.Outputs
				
				MsgBox	"The	number	of	Edges	in	the	first	Surface	is:	"	&	surfOut.Edges.Count	_
								,	vbInformation,	"Edges	Example"
				
End	Sub

javascript:history.back();

EGPrecision	Example

Examples:

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	ProfileBlock	(Civil	Engineering	Feature)

Sub	Example_EGPrecision_CrossSectionBlock()
				
				'	This	example	returns	the	existing	ground	percision	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	alignXSects	As	AeccCrossSectionBlocks
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	alignXSect	=	alignXSects.Item(0)
				
				'Get	the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	station	As	String
				station	=	alignXSect.station
				
				MsgBox	"The	existing	ground	precision	for	the	alignment	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								alignXSect.EGPrecision,	vbInformation,	"EGPrecision	Example"
				
End	Sub

Sub	Example_EGPrecision_ProfileBlock()
				
				'	This	example	returns	the	EGPrecision	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	EGPrecision	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.EGPrecision,	vbInformation,	"EGPrecision	Example"
				

javascript:history.back();

End	Sub

EGProfiles	Example

Sub	Example_EGProfiles()
				
				'	This	example	returns	the	number	of	existing	ground	profiles	for	the
				'	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				MsgBox	"The	number	of	existing	ground	profiles	in	first	alignment	is:	"	&	_
								align.EGProfiles.Count	,	vbInformation,	"EGProfiles	Example"
				
End	Sub

javascript:history.back();

Elevation	Example

Examples:

l	AeccContour

l	AeccPoint

l	CogoPoint

l	CrossSectionPointCode	(Civil	Engineering	Feature)

l	ElevationContours

l	PointGroup

l	PVI	(Civil	Engineering	Feature)

l	TinPoint

Sub	Example_Elevation_AeccContour()
				
				'	This	example	displays	The	Elevation	for	a	selected	contour.
				
				On	Error	Resume	Next
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	Contour	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0

javascript:history.back();

				dataValue(0)	=	"AECC_CONTOUR"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode
				
				'	Get	first	contour	from	selection	set
				Dim	objContour	As	AeccContour
				Set	objContour	=	ssetObj.Item(0)
				
				MsgBox	"The	Contour	Elevation	is:	"	&	objContour.Elevation,	vbInformation,	"Elevation	Example"
				
End	Sub

Sub	Example_Elevation_AeccPoint()
				
				'	This	example	returns	the	Elevation	setting	for	the
				'	first	Point	object	in	a	selection	set
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	the	Point	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_POINT"

				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode
				
				Dim	objPoint	As	AeccPoint
				Set	objPoint	=	ssetObj.Item(0)
				
				MsgBox	"The	setting	for	Elevation	is:	"	&	objPoint.Elevation,	vbInformation,	"Elevation	Example"
				
End	Sub

Sub	Example_Elevation_CogoPoint()
				
				'	This	example	returns	the	Elevation	for	the	first	CogoPoint	in	the	collection
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	Elevation	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.Elevation,	vbInformation,	"Elevation	Example"
				
End	Sub

Sub	Example_Elevation_CrossSectionPointCode()
				
				'	This	example	returns	the	point	code	data	for	the	first	cross
				'	section	surface	in	the	collection	for	the	first	cross	section
				'	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Dim	xSectPCode	As	AeccCrossSectionPointCode
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)

				Set	xSectPCode	=	xSect.CrossSectionPointCodes.Item(0)
				
				'		Get	the	alignment	name
				Dim	alignName	As	String
				alignName	=	align.Name
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				MsgBox	"The	alignment	name	is:	"	&	alignName	&	vbCrLf	&	_
								"The	first	cross	section	is	at	station:	"	&	station	&	vbCrLf	&	_
								"The	data	for	the	first	point	code	is:	"	&	vbCrLf	&	_
								vbTab	&	"Code:	"	&	xSectPCode.Code	&	vbCrLf	&	_
								vbTab	&	"Description:	"	&	xSectPCode.Description	&	vbCrLf	&	_
								vbTab	&	"Elevation:	"	&	Format(xSectPCode.elevation,	"0.00")	&	vbCrLf	&	_
								vbTab	&	"Offset:	"	&	Format(xSectPCode.offset,	"0.00"),	_
								vbInformation,	"Elevation	Example"
				
End	Sub

Sub	Example_Elevation_ElevationContours()
				
				'	This	example	returns	the	number	of	ElevationContours	at	100.0	for
				'	the	first	surface	in	the	collection
				Dim	surf	As	AeccSurface
				Dim	elevContours	As	AeccElevationContours
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	elevContours	=	Surf.Outputs.ElevationContours
				
				elevContours.Elevation	=	100#
				
				MsgBox	"The	number	of	ElevationContours	at	100.0	is:	"	&	elevContours.Count	_
								,	vbInformation,	"Elevation	Example"
				
End	Sub

Sub	Example_Elevation_PointGroup()
				
				'	This	function	gets	the	Elevation	for	the	first	PointGroup
				'	in	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				MsgBox	"The	Elevation	for	the	first	PointGroup	is:	"	&	_
								pntGrp.Elevation,	vbInformation,	"Elevation	Example"
				
End	Sub

Sub	Example_Elevation_PVI()
				
				'	This	example	returns	the	Elevation	value	for	the	second	PVI	in	the
				'	first	finished	ground	of	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	FGProf	As	AeccFGProfile
				Dim	PVI	As	AeccPVI
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProf	=	align.FGProfiles.Item(0)
				Set	PVI	=	FGProf.PVIs.Item(1)
				
				MsgBox	"The	Elevation	of	the	second	PVI	is:	"	_
								&	Format(PVI.Elevation,	"0.000"),	vbInformation,	"Elevation	Example"
				
End	Sub

Sub	Example_Elevation_TinPoint()
				
				'	This	example	returns	the	Elevation	of	the	first
				'	TIN	Point	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	tin	As	AeccTinPoint
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	tin	=	surf.Outputs.TinPoints.Item(0)
				

				MsgBox	"The	Elevation	of	the	first	TIN	Point	is:	"	&	tin.Elevation,	_
								vbInformation,	"Elevation	Example"
				
End	Sub

ElevationAt	Example

Examples:

l	EGProfile	(Civil	Engineering	Feature)

l	FGProfile	(Civil	Engineering	Feature)

Sub	Example_ElevationAt_EGProfile()
				
				'	This	example	uses	ElevationAt	to	displays	the	elevation	for	a	station,
				'	for	the	first	existing	ground	profile	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	EGProf	As	AeccEGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	EGProf	=	align.EGProfiles.Item(0)
				
				Dim	station	As	Double
				Dim	elevation	As	Double
				
				'Get	the	station	and	the	elevation
				station	=	ThisDrawing.Utility.GetReal("Enter	a	station:	")
				elevation	=	EGProf.ElevationAt(station)
				
				MsgBox	"The	elevation	for	station	"	&	Format(station,	"0.00")	&	"	is:	"	_
								&	Format(elevation,	"0.00"),	vbInformation,	"ElevationAt	Example"
End	Sub

Sub	Example_ElevationAt_FGProfile()
				
				'	This	example	uses	ElevationAt	to	displays	the	elevation	for	a	station,
				'	for	the	finished	ground	profile	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	FGProf	As	AeccFGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProf	=	align.FGProfiles.Item(0)

javascript:history.back();

				
				Dim	station	As	Double
				Dim	elevation	As	Double
				
				'Get	the	station	and	the	elevation
				station	=	ThisDrawing.Utility.GetReal("Enter	a	station:	")
				elevation	=	FGProf.ElevationAt(station)
				
				MsgBox	"The	elevation	for	station	"	&	Format(station,	"0.00")	&	"	is:	"	_
								&	Format(elevation,	"0.000"),	vbInformation,	"ElevationAt	Example"
End	Sub

ElevationContours	Example

Sub	Example_ElevationContours()
				
				'	This	example	returns	the	number	of	ElevationContours	at	100.0,
				'	in	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfOut	As	AeccSurfaceOutputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfOut	=	surf.Outputs
				
				surfOut.ElevationContours.Elevation	=	100#
				
				MsgBox	"The	number	of	ElevationContours	at	100.0	in	the	first	Surface	is:	"	&	_
								surfOut.ElevationContours.Count,	vbInformation,	"ElevationContours	Example"
				
End	Sub

javascript:history.back();

ElevationOverride	Example

Sub	Example_ElevationOverride()
				
				'	This	function	gets	the	Elevation	for	the	first	PointGroup
				'	in	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				If	pntGrp.ElevationOverride	=	True	Then
								MsgBox	"The	ElevationOverride	for	the	first	PointGroup	is	turned	on.",	_
												vbInformation,	"ElevationOverride	Example"
				Else
								MsgBox	"The	ElevationOverride	for	the	first	PointGroup	is	turned	off.",	_
												vbInformation,	"ElevationOverride	Example"
				End	If
				
End	Sub

javascript:history.back();

ElevationPrecision	Example

Sub	Example_ElevationPrecision()
				
				'	This	example	returns	the	ElevationPrecision	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	ElevationPrecision	is:	"	&	dbPref.ElevationPrecision,	_
								vbInformation,	"ElevationPrecision	Example"
				
End	Sub

javascript:history.back();

ElevationXDRef	Example

Sub	Example_ElevationXDRef()
				
				'	This	function	gets	the	ElevationXDRef	for	the	first	PointGroup
				'	in	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				MsgBox	"The	ElevationXDRef	for	the	first	PointGroup	is:	"	&	_
								pntGrp.ElevationXDRef,	vbInformation,	"ElevationXDRef	Example"
				
End	Sub

javascript:history.back();

EndDirection	Example

Sub	Example_EndDirection()
				
				'	This	example	returns	the	EndDirection	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	EndDirection	for	the	first	Curve	in	the	alignment	is:	"	&	alignEnt.EndDirection
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"EndDirection	Example"
				
End	Sub

javascript:history.back();

EndEasting	Example

Examples:

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	ParcelEntity,	ParcelCurve,	ParcelLine

Sub	Example_EndEasting_AlignEntity()
				
				'	This	example	returns	the	EndEasting	for	the	first	entity	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnt	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	alignEnt	=	align.AlignEntities.Item(0)
				
				MsgBox	"The	EndEasting	of	the	first	entity	in	the	Alignment	is:	"	&	alignEnt.EndEasting,	_
								vbInformation,	"EndEasting	Example"
				
End	Sub

Sub	Example_EndEasting_ParcelEntity()
				
				'	This	example	returns	the	EndEasting	for	the	first	entity	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				MsgBox	"The	EndEasting	of	the	first	entity	in	the	Parcel	is:	"	&	parcelEnt.EndEasting,	_
								vbInformation,	"EndEasting	Example"
				
End	Sub

javascript:history.back();

EndingStation	Example

Examples:

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	Alignment

l	ProfileBlock	(Civil	Engineering	Feature)

Sub	Example_EndingStation_AlignEntity()
				
				'	This	example	returns	the	EndingStation	for	the	first	entity	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnt	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	alignEnt	=	align.AlignEntities.Item(0)
				
				MsgBox	"The	EndingStation	of	the	first	entity	in	the	Alignment	is:	"	&	_
								alignEnt.EndingStation,	vbInformation,	"EndingStation	Example"
				
End	Sub

Sub	Example_EndingStation_Alignment()
				
				'	This	example	returns	the	EndingStation	for	the	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				MsgBox	"The	EndingStation	of	the	first	Alignment	is:	"	&	align.EndingStation,	_
								vbInformation,	"EndingStation	Example"
				
End	Sub

Sub	Example_EndingStaion_ProfileBlock()

javascript:history.back();

				
				'	This	example	returns	the	EndingStation	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	EndingStation	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.EndingStation,	vbInformation,	"EndingStation	Example"
				
End	Sub

EndNorthing	Example

Examples:

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	ParcelEntity,	ParcelCurve,	ParcelLine

Sub	Example_EndNorthing_AlignEntity()
				
				'	This	example	returns	the	EndNorthing	for	the	first	entity	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnt	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	alignEnt	=	align.AlignEntities.Item(0)
				
				MsgBox	"The	EndNorthing	of	the	first	entity	in	the	Alignment	is:	"	&	alignEnt.EndNorthing,	_
								vbInformation,	"EndNorthing	Example"
				
End	Sub

Sub	Example_EndNorthing_ParcelEntity()
				
				'	This	example	returns	the	EndNorthing	for	the	first	entity	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				MsgBox	"The	EndNorthing	of	the	first	entity	in	the	Parcel	is:	"	&	parcelEnt.EndNorthing,	_
								vbInformation,	"EndNorthing	Example"
				
End	Sub

javascript:history.back();

ExceedBoth	Example

Sub	Example_ExceedBoth()
				
				'	This	example	returns	the	ExceedBoth	setting	for	the	WaterSheds.
				Dim	surf	As	AeccSurface
				Dim	wSheds	As	AeccWaterSheds
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	wSheds	=	surf.Outputs.WaterSheds
				
				MsgBox	"The	ExceedBoth	setting	for	WaterSheds	is:	"	&	wSheds.ExceedBoth,	_
								vbInformation,	"ExceedBoth	Example"
				
End	Sub

javascript:history.back();

ExtEasting	Example

Sub	Example_ExtEasting()
				
				'	This	example	returns	the	ExtEasting	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	ExtEasting	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.ExtEasting
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"ExtEasting	Example"
				
End	Sub

javascript:history.back();

ExternalSecant	Example

Sub	Example_ExternalSecant()
				
				'	This	example	returns	the	ExternalSecant	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	ExternalSecant	for	the	first	Curve	in	the	alignment	is:	"	&	alignEnt.ExternalSecant
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"ExternalSecant	Example"
				
End	Sub

javascript:history.back();

ExternalStaToInternal	Example

Sub	Example_ExternalStaToInternal()
				
				'	This	example	gets	the	ExternalStaToInternal	of	100.0
				'	for	the	first	Alignment	in	the	collection..
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	intSta	As	Variant
				intSta	=	align.ExternalStaToInternal(100#)
				
				MsgBox	"The	ExternalStaToInternal	of	100.0	for	the	first	Alignment	is:	"	&	intSta(0),	_
								vbInformation,	"ExternalStaToInternal	Example"
				
End	Sub

javascript:history.back();

ExtNorthing	Example

Sub	Example_ExtNorthing()
				
				'	This	example	returns	the	ExtNorthing	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	ExtNorthing	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.ExtNorthing
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"ExtNorthing	Example"
				
End	Sub

javascript:history.back();

Faces	Example

Sub	Example_Faces()
				
				'	This	example	returns	the	number	of	Faces	in	the	first
				'	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfOut	As	AeccSurfaceOutputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfOut	=	surf.Outputs
				
				MsgBox	"The	number	of	Faces	in	the	first	Surface	is:	"	&	surfOut.Faces.Count	_
								,	vbInformation,	"Faces	Example"
				
End	Sub

javascript:history.back();

FacetDeviation	Example

Sub	Example_FacetDeviation()
				
				'	This	example	displays	the	FacetDeviation	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				MsgBox	"The	setting	for	FacetDeviation	is:	"	&	dbPref.FacetDeviation,	_
								vbInformation,	"FacetDeviation	Example"
				
End	Sub

javascript:history.back();

FGPrecision	Example

Examples:

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	ProfileBlock	(Civil	Engineering	Feature)

Sub	Example_FGPrecision_CrossSectionBlock()
				
				'	This	example	returns	the	finished	ground	percision	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	alignXSects	As	AeccCrossSectionBlocks
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	alignXSect	=	alignXSects.Item(0)
				
				'Get	the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	station	As	String
				station	=	alignXSect.station
				
				MsgBox	"The	finished	ground	precision	for	the	alignment	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								alignXSect.FGPrecision,	vbInformation,	"FGPrecision	Example"
				
End	Sub

Sub	Example_FGPrecision_ProfileBlock()
				
				'	This	example	returns	the	FGPrecision	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	FGPrecision	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.FGPrecision,	vbInformation,	"FGPrecision	Example"
				

javascript:history.back();

End	Sub

FGProfiles	Example

Sub	Example_FGProfiles()
				
				'	This	example	returns	the	number	of	finished	ground	pofiles	for	the
				'	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				MsgBox	"The	number	of	finished	groung	profiles	in	first	alignment	is:	"	_
								&	align.FGProfiles.Count	,	vbInformation,	"FGProfiles	Example"
				
End	Sub

javascript:history.back();

File	Example

Sub	Example_File()
				
				'	This	example	returns	the	File	for	the	first	FileLock	in	the	collection.
				Dim	filelock	As	AeccFileLock
				Set	filelock	=	AeccApplication.ActiveProject.fileLocks.Item(0)
				
				MsgBox	"The	File	of	the	first	FileLock	in	the	collection	is:	"	&	filelock.File,	_
								vbInformation,	"File	Example"
				
End	Sub

javascript:history.back();

FileLocks	Example

Sub	Example_FileLocks()
				
				'	This	example	returns	the	number	of	FileLocks
				'	in	the	current	project.
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.ActiveProject
				
				MsgBox	"The	number	of	FileLocks	in	the	current	Project	is:	"	&	proj.FileLocks.Count	_
								,	vbInformation,	"FileLocks	Example"
				
End	Sub

javascript:history.back();

Files	Example

Sub	Example_Files()
				
				'	This	example	returns	the	current	setting	of	PrototypePath
				'	from	the	preferences	object.
				Dim	prefs	As	AeccPreferences
				Set	prefs	=	AeccApplication.Preferences
				
				MsgBox	"The	current	value	for	PrototypePath	is:	"	&	prefs.Files.PrototypePath,	_
								vbInformation,	"Files	Example"
				
End	Sub

javascript:history.back();

FindAllConnectingEdges	Example

Sub	Example_FindAllConnectingEdges()
				
				'	This	example	returns	all	the	connecting	edges	for	a	given	point
				'	in	the	first	surface	in	the	surface	collection
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				'	Get	point	for	calculating	connecting	edges
				Dim	pnt	As	Variant
				pnt	=	ThisDrawing.Utility.GetPoint(,	"Select	point	in	the	surface:	")
				
				'	Get	an	actual	surface	point.
				pnt	=	surf.FindPoint(pnt(0),	pnt(1))
				
				'	Get	edge	points
				Dim	edgePnts	As	Variant
				edgePnts	=	surf.FindAllConnectingEdges(pnt(0),	pnt(1))
				
				Dim	lineObj	As	AcadLine
				Dim	pnt1(0	To	2)	As	Double
				Dim	pnt2(0	To	2)	As	Double
				Dim	pnt3(0	To	2)	As	Double
				
				'	Draw	red	lines	around	first	triangle	definition
				pnt1(0)	=	edgePnts(0)
				pnt1(1)	=	edgePnts(1)
				pnt1(2)	=	edgePnts(2)
				pnt2(0)	=	edgePnts(3)
				pnt2(1)	=	edgePnts(4)
				pnt2(2)	=	edgePnts(5)
				pnt3(0)	=	edgePnts(6)
				pnt3(1)	=	edgePnts(7)
				pnt3(2)	=	edgePnts(8)
				Set	lineObj	=	ThisDrawing.ModelSpace.AddLine(pnt1,	pnt2)

javascript:history.back();

				lineObj.Color	=	acRed
				Set	lineObj	=	ThisDrawing.ModelSpace.AddLine(pnt2,	pnt3)
				lineObj.Color	=	acRed
				Set	lineObj	=	ThisDrawing.ModelSpace.AddLine(pnt3,	pnt1)
				lineObj.Color	=	acRed
				
End	Sub

FindAllFaces	Example

Sub	Example_FindAllFaces()
				
				'	This	example	begins	by	getting	a	faces	collection	for	an	entered
				'	point	in	the	first	surface	in	the	collection.	Then	the	FindAllFaces
				'	is	used	to	get	the	entire	faces	collection.
				Dim	surf	As	AeccSurface
				Dim	faces	As	AeccFaces
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	faces	=	surf.Outputs.faces
				
				'	Return	a	point	using	a	prompt
				Dim	returnPnt	As	Variant
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Select	a	point:	")
				
				'	Find	face	points
				faces.FindFace	returnPnt(0),	returnPnt(1)
				
				MsgBox	"The	number	of	Faces	in	the	collection	after	FindFace	is:	"	&	faces.Count,	_
								vbInformation,	"FindAllFaces	Example"
				
				faces.FindAllFaces
				
				MsgBox	"The	number	of	Faces	in	the	collection	after	FindAllFaces	is:	"	&	faces.Count,	_
								vbInformation,	"FindAllFaces	Example"
				
End	Sub

javascript:history.back();

FindConnectingEdges	Example

Sub	Example_FindConnectingEdge()
				
				'	This	example	returns	the	connecting	edge	for	a	given	point
				'	in	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				'	Get	point	for	calculating	connecting	edges
				Dim	pnt	As	Variant
				pnt	=	ThisDrawing.Utility.GetPoint(,	"Select	point	in	the	surface:	")
				
				'	Get	edge	points
				Dim	edgePnts	As	Variant
				edgePnts	=	surf.FindConnectingEdge(pnt(0),	pnt(1))
				
				Dim	lineObj	As	AcadLine
				Dim	startPnt(0	To	2)	As	Double
				Dim	endPnt(0	To	2)	As	Double
				
				'	Draw	a	red	line	along	edge
				startPnt(0)	=	edgePnts(0)
				startPnt(1)	=	edgePnts(1)
				startPnt(2)	=	edgePnts(2)
				endPnt(0)	=	edgePnts(3)
				endPnt(1)	=	edgePnts(4)
				endPnt(2)	=	edgePnts(5)
				Set	lineObj	=	ThisDrawing.ModelSpace.AddLine(startPnt,	endPnt)
				lineObj.Color	=	acRed
				
End	Sub

javascript:history.back();

FindFace	Example

Sub	Example_FindFace()
				
				'	This	example	returns	a	new	face	collection	for	an	entered	point	in
				'	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	faces	As	AeccFaces
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	faces	=	Surf.Outputs.Faces
				
				MsgBox	"The	number	of	Faces	in	the	collection	before	FindFace	is:	"	&	faces.Count	_
								,	vbInformation,	"FindFace	Example"
				
				'	Return	a	point	using	a	prompt
				Dim	returnPnt	As	Variant
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Select	a	point:	")
				
				'	Find	face	points
				faces.FindFace	returnPnt(0),	returnPnt(1)
				
				MsgBox	"The	number	of	Faces	in	the	collection	after	FindFace	is:	"	&	faces.Count	_
								,	vbInformation,	"FindFace	Example"
				
End	Sub

javascript:history.back();

FindPath	Example

Sub	Example_FindPath()
				
				
				'	This	example	returns	the	face	collection	for	an	entered	path	in
				'	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	faces	As	AeccFaces
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	faces	=	surf.Outputs.faces
				
				MsgBox	"The	number	of	Faces	in	the	collection	before	FindPath	is:	"	&	faces.Count	_
								,	vbInformation,	"FindPath	Example"
				
				'Select	the	path	for	faces
				Dim	pnt1	As	Variant
				Dim	pnt2	As	Variant
				pnt1	=	ThisDrawing.Utility.GetPoint(,	"Select	first	point	on	a	surface:	")
				pnt2	=	ThisDrawing.Utility.GetPoint(pnt1,	"Select	second	point	on	a	surface:	")
				
				faces.FindPath	pnt1(0),	pnt1(1),	pnt2(0),	pnt2(1)
				
				MsgBox	"The	number	of	Faces	in	the	collection	before	FindPath	is:	"	&	faces.Count	_
								,	vbInformation,	"FindPath	Example"
				
End	Sub

javascript:history.back();

FindPoint	Example

Sub	Example_FindPoint()
				
				'	This	example	draws	a	point	at	the	surface	point	for	a	selected	point
				'	in	the	first	surface	in	the	collection.	The	point	id	drawn	with	the	default
				'	point	style.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				'	Get	point	for	calculating	point
				Dim	pnt	As	Variant
				pnt	=	ThisDrawing.Utility.GetPoint(,	"Select	point	in	the	surface:	")
				
				'	Get	surface	point
				Dim	edgePnts	As	Variant
				edgePnts	=	surf.FindPoint(pnt(0),	pnt(1))
				
				Dim	pntObj	As	AcadPoint
				Dim	startPnt(0	To	2)	As	Double
				
				'	Draw	a	red	point	at	found	point
				startPnt(0)	=	edgePnts(0)
				startPnt(1)	=	edgePnts(1)
				startPnt(2)	=	edgePnts(2)
				Set	pntObj	=	ThisDrawing.ModelSpace.AddPoint(startPnt)
				pntObj.Color	=	acRed
				
End	Sub

javascript:history.back();

FirstTimeDrawingSetup	Example

Sub	Example_FirstTimeDrawingSetup()
				
				'	This	example	returns	the	FirstTimeDrawingSetup	setting.
				Dim	prefUser	As	AeccPreferencesUser
				Set	prefUser	=	AeccApplication.Preferences.User
				
				'	Convert	the	constant	to	a	string.
				Dim	strType	As	String
				If	prefUser.FirstTimeDrawingSetup	=	kDrawingSetupWizard	Then
								strType	=	"Wizard"
				End	If
				If	prefUser.FirstTimeDrawingSetup	=	kDrawingSetupCommand	Then
								strType	=	"Command"
				End	If
				If	prefUser.FirstTimeDrawingSetup	=	kAutoloadSetupFile	Then
								strType	=	"Autoload"
				End	If
				
				MsgBox	"The	current	value	for	FirstTimeDrawingSetup	is:	"	&	strType,	_
								vbInformation,	"FirstTimeDrawingSetup	Example"
				
End	Sub

javascript:history.back();

FirstTimeDrawingSetupFile	Example

Sub	Example_FirstTimeDrawingSetupFile()
				
				'	This	example	returns	the	FirstTimeDrawingSetupFile	setting.
				Dim	prefUser	As	AeccPreferencesUser
				Set	prefUser	=	AeccApplication.Preferences.User
				
				MsgBox	"The	current	value	for	FirstTimeDrawingSetupFile	is:	"	&	_
								prefUser.FirstTimeDrawingSetupFile,	vbInformation,	"FirstTimeDrawingSetupFile	Example"
				
End	Sub

javascript:history.back();

Format	Example

Sub	Example_Format()
				
				'	This	example	returns	the	Format	setting	for	the	first	PointFile
				'	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	pntFile	As	AeccPointFile
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	pntFile	=	surf.Inputs.PointFiles.Item(0)
				
				MsgBox	"The	Format	for	the	first	PointFile	in	the	collection	is:	"	&	pntFile.Format	_
								,	vbInformation,	"Format	Example"
				
End	Sub

javascript:history.back();

FormatsPath	Example

Sub	Example_FormatsPath()
				
				'	This	example	returns	the	FormatsPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	FormatsPath	is:	"	&	prefFiles.FormatsPath,	_
								vbInformation,	"FormatsPath	Example"
				
End	Sub

javascript:history.back();

FullDescription	Example

Sub	Example_FullDescription()
				
				'	This	example	returns	the	FullDescription	for	the	first	CogoPoint	in	the	collection.
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	FullDescription	for	the	first	CogoPoint	in	the	collection	is:	"	&	_
								cogoPnt.FullDescription,	vbInformation,	"FullDescription	Example"
				
End	Sub

javascript:history.back();

FullName	Example

Examples:

l	DescriptionKeyFile

l	Drawing

l	Project

Sub	Example_FullName_DescriptionKeyFile()
				
				'	This	example	returns	the	FullName	for	the	first
				'	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				
				MsgBox	"The	value	for	DescriptionKeyFile	FullName	is	"	&	dKeyFile.FullName	_
								,	vbInformation,	"FullName	Example"
				
End	Sub

Sub	Example_FullName_Drawing()
				
				'	This	example	returns	the	FullName	setting	for	the	first	Drawing
				'	in	the	collection
				Dim	dwg	As	AeccDrawing
				Set	dwg	=	AeccApplication.ActiveProject.Drawings(0)
				
				MsgBox	"The	FullName	for	the	first	Drawing	in	the	collection	is:	"	&	dwg.FullName	_
								,	vbInformation,	"FullName	Example"
				
End	Sub

Sub	Example_FullName_Project()
				

javascript:history.back();

				'	This	example	returns	the	FullName	setting	for	the	first	Project
				'	in	the	collection
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.Projects.Item(0)
				
				MsgBox	"The	FullName	value	for	the	first	Project	in	the	collection	is:	"	&	proj.FullName,	_
								vbInformation,	"FullName	Example"
				
End	Sub

GetBoundingBox	Example

Sub	Example_GetBoundingBox()
				
				'	This	example	returns	the	two	points	defining	the	Bounding	Box
				'	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				Dim	pntLL	As	Variant
				Dim	pntUR	As	Variant
				
				'	Build	the	surface	and	get	the	bounding	box	points
				surf.Build
				surf.GetBoundingBox	pntLL,	pntUR
				
				MsgBox	"Lower	left	bounding	box	point:	"	&	pntLL(0)	&	",	"	&	pntLL(1)	&	",	"	&	pntLL(2)	&	_
								vbCrLf	&	_
								"Upper	right	bounding	box	point:	"	&	pntUR(0)	&	",	"	&	pntUR(1)	&	",	"	&	pntUR(2)	_
								,	vbInformation,	"GetBoundingBox	Example"
				
End	Sub

javascript:history.back();

GetDouble	Example

Sub	Example_GetDouble()
				
				'	This	example	uses	GetDouble	to	return	the	ContLabelSpacingDist
				'	for	PreferencesSurface.
				Dim	surfPref	As	AeccPreferencesSurface
				Set	surfPref	=	AeccApplication.ActiveProject.preferences.Surface
				
				MsgBox	"The	value	for	ContLabelSpacingDist	is	"	&	surfPref.GetDouble(kContLabelSpacingDist),	_
								vbInformation,	"GetDouble	Example"
				
End	Sub

javascript:history.back();

GetElevation	Example

Sub	Example_GetElevation()
				
				'	This	example	returns	the	Elevation	for	an	entered	point	for	the	first
				'	surface	in	the	collection.
				Dim	surfs	As	AeccSurfaces
				Dim	surf	As	AeccSurface
				Set	surfs	=	AeccApplication.ActiveProject.Surfaces
				Set	surf	=	surfs.Item(0)
				Dim	returnPnt	As	Variant
				Dim	elev	As	Double
				
				'	Get	a	point
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Select	a	point:	")
				
				'	Get	the	elevation	from	the	selected	point
				elev	=	surf.GetElevation(returnPnt(0),	returnPnt(1))
				
				MsgBox	"The	elevation	from	GetElevation	is	"	&	elev,	vbInformation,	"GetElevation	Example"
				
End	Sub

javascript:history.back();

Getinteger	Example

Sub	Example_GetInteger()
				
				'	This	example	uses	GetInteger	to	return	the	ContLabelPrecision
				'	for	PreferencesSurface.
				Dim	surfPref	As	AeccPreferencesSurface
				Set	surfPref	=	AeccApplication.ActiveProject.preferences.Surface
				
				MsgBox	"The	value	for	ContLabelPrecision	is	"	&	surfPref.GetInteger(kContLabelPrecision),	_
								vbInformation,	"GetInterger	Example"
				
End	Sub

javascript:history.back();

GetLayerName	Example

Examples:

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	ProfileBlock	(Civil	Engineering	Feature)

Sub	Example_GetLayerName_CrossSectionBlock()
				
				'	This	example	uses	GetLayerName	to	get	the	grid	layer	name	for	the
				'	first	cross	section	in	the	first	alignment	profile	in	the	collection.
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSect	=	AeccApplication.ActiveDocument.CrossSectionBlocks.Item(0)
				
				MsgBox	"The	exisiting	ground	layer	for	the	first	alignment	cross	section	in	the	collection	is:	"	_
									&	alignXSect.GetLayerName(kCrossSectionEGLayer),	vbInformation,	"GetLayerName	Example"
				
End	Sub

Sub	Example_GetLayerName_ProfileBlock()
				
				'	This	example	uses	GetLayerName	to	get	the	grid	layer	name	for	the
				'	first	alignment	profile	in	the	collection.
				Dim	alignProf	As	AeccAlignProfile
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	grid	layer	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.GetLayerName(kGrid),	vbInformation,	"GetLayerName	Example"
				
End	Sub

javascript:history.back();

GetStaStrWithEquations	Example

Sub	Example_GetStaStrWithEquation()
				
				'	This	example	gets	the	GetStaStrWithEquations	from	a	user	supplied	station
				'	for	the	first	Alignment	in	the	collection.
				Dim	Align	As	AeccAlignment
				Set	Align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Dim	staEqu	As	String
				Dim	Station	As	Double
				
				'	Get	the	station
				Station	=	ThisDrawing.Utility.GetReal("Enter	the	station:	")
				
				'	Get	the	station	with	Station	Equations	applied
				staEqu	=	Align.GetStaStrWithEquations(Station)
				
				MsgBox	"The	GetStaStrWithEquation	value	for	station	"	&	Station	&	"	is:	"	&	staEqu,	vbInformation,	"GetStaStrWithEquation	Example"
				
End	Sub

javascript:history.back();

GetStaWithEquation	Example

Sub	Example_GetStaWithEquation()
				
				'	This	example	gets	the	GetStaWithEquations	from	a	user	supplied	station
				'	for	the	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Dim	staEqu	As	Double
				Dim	station	As	Double
				
				'	Get	the	station
				station	=	ThisDrawing.Utility.GetReal("Enter	the	station:	")
				
				'	Get	the	station	with	Station	Equations	applied
				staEqu	=	align.GetStaWithEquations(station)
				
				MsgBox	"The	GetStaWithEquation	value	for	station	"	&	station	&	"	is:	"	&	staEqu,	vbInformation,	"GetStaWithEquation	Example"
				
End	Sub

javascript:history.back();

GetString	Example

Sub	Example_GetSting()
				
				'	This	example	uses	GetString	to	return	the	SurfaceLayer
				'	for	PreferencesSurface.
				Dim	surfPref	As	AeccPreferencesSurface
				Set	surfPref	=	AeccApplication.ActiveProject.preferences.Surface
				
				MsgBox	"The	value	for	SurfaceLayer	is	"	&	surfPref.GetString(kSurfaceLayer)	,	vbInformation,	"GetString	Example"
				
End	Sub

javascript:history.back();

GridEasting	Example

Sub	Example_GridEasting()
				
				'	This	example	returns	the	GridEasting	for	the	first	CogoPoint	in	the	collection.
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	GridEasting	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.GridEasting,	_
								vbInformation,	"GridEasting	Example"
				
End	Sub

javascript:history.back();

GridNorthing	Example

Sub	Example_GridNorthing()
				
				'	This	example	returns	the	GridNorthing	for	the	first	CogoPoint	in	the	collection.
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	GridNorthing	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.GridNorthing,	_
								vbInformation,	"GridNorthing	Example"
				
End	Sub

javascript:history.back();

GroupName	Example

Examples:

l	CogoPoint

l	PointGroup

Sub	Example_GroupName_CogoPoint()
				
				'	This	example	returns	the	GroupName	for	the	first	CogoPoint	in	the	collection.
				'	This	example	assumes	the	first	point	in	the	collection	is	in	a	
				'	Point	Group	named	"Example	Group".
				Dim	cogoPnts	As	AeccCogoPoints
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				'	Filter	CogoPoints	collection	on	GroupName
				cogoPnts.GroupName	=	"Example	Group"
				
				Set	cogoPnt	=	cogoPnts.Item(0)
				
				MsgBox	"The	GroupName	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.Groupname,	_
								vbInformation,	"GroupName	Example"
				
End	Sub

Sub	Example_GroupName_PointGroup()
				
				'	This	function	gets	the	GroupName	for	the	first	PointGroup
				'	in	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				MsgBox	"The	GroupName	for	the	first	PointGroup	is:	"	&	_
								pntGrp.GroupName,	vbInformation,	"GroupName	Example"

javascript:history.back();

				
End	Sub

javascript:history.back();

Height	Example

Sub	Example_Height()
				
				'	This	example	returns	the	height	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	alignXSects	As	AeccCrossSectionBlocks
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	alignXSect	=	alignXSects.Item(0)
				
				'Get	the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	station	As	String
				station	=	alignXSect.station
				
				MsgBox	"The	height	for	the	alignment	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								Format(alignXSect.Height,	"0.00"),	vbInformation,	"Height	Example"
				
End	Sub

HelpPath	Example

Sub	Example_HelpPath()
				
				'	This	example	returns	the	HelpPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	HelpPath	is:	"	&	prefFiles.HelpPath,	_
								vbInformation,	"HelpPath	Example"
				
End	Sub

javascript:history.back();

ID	Example

Examples:

l	Boundary

l	Breakline

l	ContourItem

l	WaterShed

Sub	Example_Id_Boundary()
				
				'	This	example	returns	the	Id
				'	for	the	first	Boundary	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	bound	As	AeccBoundary
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	bound	=	surf.Inputs.Boundaries.Item(0)
				
				MsgBox	"The	Id	for	the	Boundary	is:	"	&	bound.Id	_
								,	vbInformation,	"Id	Example"
				
End	Sub

Sub	Example_Id_BreakLine()
				
				'	This	example	returns	the	Id
				'	for	the	first	BreakLine	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	brkLine	As	AeccBreakLine
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	brkLine	=	surf.Inputs.BreakLines.Item(0)
				
				MsgBox	"The	Id	for	the	BreakLine	is:	"	&	brkLine.Id	_
								,	vbInformation,	"Id	Example"

javascript:history.back();

				
End	Sub

Sub	Example_Id_ContourItem()
				
				'	This	example	returns	the	Id
				'	for	the	first	ContourItem	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	cont	As	AeccContourItem
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	cont	=	Surf.Inputs.ContourItems.Item(0)
				
				MsgBox	"The	Id	for	the	ContourItem	is:	"	&	cont.Id	_
								,	vbInformation,	"Id	Example"
				
End	Sub

Sub	Example_Id_Watershed()
				
				'	This	example	returns	the	ID	of	the	first	WaterShed	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	wShed	As	AeccWaterShed
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	wShed	=	surf.Outputs.WaterSheds.Item(0)
				
				MsgBox	"The	Id	for	the	first	WaterShed	in	the	collection	is:	"	&	wShed.Id	_
								,	vbInformation,	"Id	Example"
				
End	Sub

Import	Example

Examples:

l	Alignment

l	CrossSection	(Civil	Engineering	Feature)

l	EGProfile	(Civil	Engineering	Feature)

l	Parcel

l	Surface

Sub	Example_Import_Alignment()
				
				'	This	example	adds	an	Alignment	made	up	of	a	tangent.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				'	Add	an	Alignment	named	"Example	Alignment"	and	starting	at	Station	50.0
				Set	align	=	aligns.Add("Example	Alignment",	50#)
				
				'	Add	a	tangent
				Dim	tangent	As	AeccAlignTangent
				Set	tangent	=	align.AddTangent(0#,	0#,	150#,	0#)
				
				'	Import	the	alignment	to	the	drawing
				align.Import
				
				MsgBox	"The	total	number	of	entities	in	the	Alignment	is:	"	&	align.AlignEntities.Count,	_
								vbInformation,	"Import	Example"
				
End	Sub

Sub	Example_Import_CrossSection()

javascript:history.back();

				
				'	This	example	inserts	the	first	cross	section	in	the
				'	cross	section	collection	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				'	Get	the	insertion	point	for	the	cross	section
				Dim	returnPnt	As	Variant
				returnPnt	=	ThisDrawing.Utility.GetPoint	_
								(,	"Select	bottom	insertion	point	for	the	cross	setion	at	station	"	&	station	&	":")
				
				'	Import	cross	section	with	complete	geometry
				xSect.import	returnPnt,	False
				
End	Sub

Sub	Example_Import_EGProfile()
				
				'	This	example	imports	the	the	first	existing	ground	profile
				'	in	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	EGProf	As	AeccEGProfile
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	EGProf	=	align.EGProfiles.Item(0)
				
				'Set	the	name	of	the	first	alignment	to	the	current	alignment
				aligns.CurrentAlignment	=	align.Name

				
				'Determine	default	starting	and	ending	station
				Dim	min	As	Double
				Dim	asta	As	Variant
				asta	=	EGProf.StationElevations
				min	=	asta(1)
				
				Dim	i	As	Integer
				For	i	=	0	To	UBound(asta)	-	1	Step	2
								If	asta(i	+	1)	<	min	Then
												min	=	asta(i	+	1)
								End	If
				Next
				
				'Get	the	start	point	for	the	existing	ground	profile
				Dim	returnPnt	As	Variant
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Select	a	starting	point:")
				
				On	Error	Resume	Next
				
				'Get	gtating	station
				Dim	startSta	As	Double
				startSta	=	asta(0)
				startSta	=	ThisDrawing.Utility.GetReal("Starting	Station	<"	&	startSta	&	">:	")
				
				'Get	ending	station
				Dim	endSta	As	Double
				endSta	=	asta(UBound(asta)	-	1)
				endSta	=	ThisDrawing.Utility.GetReal("Ending	Station:	<"	&	endSta	&	">:	")
				
				'Get	datum	elevation
				Dim	datumElev	As	Double
				datumElev	=	min
				datumElev	=	ThisDrawing.Utility.GetReal("Datum	Elevation:	<"	&	datumElev	&	">:	")
				
				'Get	vertical	scale
				Dim	vertScale	As	Double

				Dim	pref	As	AeccDatabasePreferences
				Set	pref	=	AeccApplication.ActiveDocument.Preferences
				vertScale	=	pref.VerticalScale
				vertScale	=	ThisDrawing.Utility.GetReal("Vertical	Scale:	<"	&	vertScale	&	">:	")
				
				'Get	direction
				Dim	dir	As	Boolean
				dir	=	True
				Dim	ans	As	String
				ans	=	ThisDrawing.Utility.GetString(0,	"Direction	LeftToRight	(Y/N):	")
				dir	=	Switch(ans	=	"Y",	True,	ans	=	"y",	True,	ans	=	"N",	False,	ans	=	"n",	False
				
				'Get	block	only
				Dim	block	As	Boolean
				block	=	True
				Dim	ans	As	String
				ans	=	ThisDrawing.Utility.GetString(0,	"Block	only	(Y/N):	")
				block	=	Switch(ans	=	"Y",	True,	ans	=	"y",	True,	ans	=	"N",	False,	ans	=	"n",	False
				
				'Import	the	existing	ground	profile
				EGProf.import	returnPnt,	startSta,	endSta,	datumElev,	vertScale,	dir,	block
				
End	Sub

Sub	Example_Import_Parcel()
				
				'	This	example	adds	a	Parcel	made	up	of	lines	and	an	arc.
				'	The	parcel	is	then	imported	into	the	drawing.
				Dim	parcels	As	AeccParcels
				Dim	parcel	As	AeccParcel
				Set	parcels	=	AeccApplication.ActiveProject.parcels
				
				'	Add	a	new	Parcel
				Set	parcel	=	parcels.Add("New	Parcel")
				
				'	Add	lines	and	a	curve	to	the	Parcel
				parcel.AddLine	50#,	50#,	150#,	50#

				parcel.AddLine	150#,	50#,	150#,	200#
				parcel.AddCurve	150#,	200#,	100#,	200#,	50#,	200#,	True
				parcel.AddLine	50#,	200#,	50#,	50#
				
				'	Import	the	new	Parcel
				parcel.Import
				
				MsgBox	"The	total	number	of	entities	in	the	parcel	is:	"	&	parcel.ParcelEntities.Count,	_
								vbInformation,	"Import	Example"
				
End	Sub

Sub	Example_Import_Surface()
				
				'	This	example	draws	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				surf.Import
				
				MsgBox	"The	Name	of	the	first	surface	just	imported	is:	"	&	surf.Name,	_
								vbInformation,	"Import	Example"
				
End	Sub

Inputs	Example

Sub	Example_Inputs()
				
				'	This	example	returns	the	Count	of	Pointfiles	in	the	first	Surface
				'	in	the	collection	by	using	the	Inputs	property.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	number	of	PointFiles	in	the	first	surface	is:	"	&	surf.Inputs.PointFiles.Count	_
								,	vbInformation,	"Inputs	Example"
				
End	Sub

javascript:history.back();

InstantGrade	Example

Examples:

l	EGProfile	(Civil	Engineering	Feature)

l	FGProfile	(Civil	Engineering	Feature)

Sub	Example_InstantGrade_FGProfile()
				
				'	This	example	gets	a	station	from	the	user	and	returns	the	grade	for
				'	the	first	existing	ground	profile	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	EGProf	As	AeccEGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	EGProf	=	align.EGProfiles.Item(0)
				
				Dim	station	As	Double
				Dim	grade	As	Double
				Dim	prompt	As	String
				
				'Format	the	prompt	and	get	the	station
				prompt	=	"Enter	a	station	on	alignment	"	&	align.Name	&	":	"
				station	=	ThisDrawing.Utility.GetReal(prompt)
				
				'Get	the	grade
				EGProf.InstantGrade	station,	grade
				
				MsgBox	"The	grade	at	station	and	format	the	prompt"	&	Format(station,	"0.00")	&	"	is:	"	_
								&	Format(grade,	"0.00")	&	"%.",	vbInformation,	"InstantGrade	Example"
				
End	Sub

Sub	Example_InstantGrade_FGProfile()
				
				'	This	example	gets	a	station	from	the	user	and	returns	the	grade	and	difference

javascript:history.back();

				'	for	the	first	finished	ground	profile	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	FGProf	As	AeccFGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProf	=	align.FGProfiles.Item(0)
				
				Dim	station	As	Double
				Dim	grade	As	Double
				Dim	diff	As	Double
				Dim	prompt	As	String
				
				'Format	the	prompt	and	get	the	station
				prompt	=	"Enter	a	station	on	alignment	"	&	align.Name	&	":	"
				station	=	ThisDrawing.Utility.GetReal(prompt)
				
				'Get	the	grade	and	difference
				FGProf.InstantGrade	station,	grade,	diff
				
				MsgBox	"The	grade	at	station	"	&	Format(station,	"0.00")	&	"	is:	"	_
								&	Format(grade,	"0.00")	&	vbCrLf	&	_
								"%	and	the	difference	is	"	&	Format(diff,	"0.00")	&	"%.",	_
								vbInformation,	"InstantGrade	Example"
				
End	Sub

IsBreakline	Example

Sub	Example_IsBreakline()
				
				'	This	example	returns	the	IsBreakLine	setting
				'	for	the	first	Boundary	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	bound	As	AeccBoundary
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	bound	=	surf.Inputs.Boundaries.Item(0)
				
				MsgBox	"The	IsBreakline	setting	for	the	Boundary	is:	"	&	bound.IsBreakLine	_
								,	vbInformation,	"IsBreakLine	Example"
				
End	Sub

javascript:history.back();

IsNameSupported	Example

Sub	Example_IsNameSupported()
				
				'	This	gets	the	IsNameSupported	for	the	CogoPoints	collection
				Dim	cogoPnts	As	AeccCogoPoints
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				MsgBox	"The	IsNameSupported	for	CogoPoints	is:	"	&	cogoPnts.IsNameSupported,	_
								vbInformation,	"IsNameSupported	Example"
				
End	Sub

javascript:history.back();

IsVisible	Example

Sub	Example_IsVisible()
				
				'	This	example	returns	the	visibility	setting	for	the
				'	first	face	item	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	face	As	AeccFace
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	face	=	surf.Outputs.Faces.Item(0)
				
				'	Checks	if	the	Face	is	visible
				If	face.IsVisible	=	True	Then
								MsgBox	"The	first	Face	in	the	collection	is	Visible!",	vbInformation,	"IsVisible	Example"
				Else
								MsgBox	"The	first	Face	in	the	collection	is	Invisible!",	vbInformation,	"IsVisible	Example"
				End	If
				
End	Sub

javascript:history.back();

Item	Example

Sub	Example_Item()
				
				'	This	example	show	two	uses	of	the	Item	method.
				'	The	first	uses	Item	with	an	index	counter	to	return	an	item	in	a	collection.
				'	The	second	uses	Item	with	a	string	to	return	an	item	in	a	collection.
				
				'	Iterate	through	the	model	space	collection,
				'	get	all	the	items	in	the	collection
				'	and	store	them	in	an	array	called	newObjs.
				Dim	count	As	Integer
				count	=	AeccApplication.Projects.count
				
				ReDim	newObjs(count)	As	AeccProjects
				Dim	index	As	Integer
				For	index	=	0	To	count	–	1
								Set	newObjs(index)	=	AeccApplication.Projects.Item(index)
				Next
				
				'	Get	a	particular	item,	in	this	case	a	project,	based	on	name	"shaker".
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.Projects.Item("shaker")
				
End	Sub

javascript:history.back();

K	Example

Sub	Example_K()
				
				'	This	example	returns	the	K	value	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	K	value	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.K
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"K	Example"
				
End	Sub

javascript:history.back();

Keywords	Example

Sub	Example_Keywords()
				
				'	This	example	returns	the	Keywords	setting	for	the	first	Project
				'	in	the	collection
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.Projects.Item(0)
				
				MsgBox	"The	Keywords	value	for	the	first	Project	in	the	collection	is:	"	&	proj.Keywords,	_
								vbInformation,	"Keywords	Example"
				
End	Sub

javascript:history.back();

Label	Example

Sub	Example_Label()
				
				'	This	example	returns	the	Label	for	the	first	FileLock	in	the	collection.
				Dim	filelock	As	AeccFileLock
				Set	filelock	=	AeccApplication.ActiveProject.fileLocks.Item(0)
				
				MsgBox	"The	Label	of	the	first	FileLock	in	the	collection	is:	"	&	filelock.Label,	_
								vbInformation,	"Label	Example"
				
End	Sub

javascript:history.back();

LabelPoints	Example

Sub	Example_LabelPoints()
				
				'	This	example	displays	a	LabelPoint	for	a	selected	contour.
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	Contour	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	mode	As	Integer
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_CONTOUR"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				Dim	returnPnt	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Select	a	contour	line:	")
				ssetObj.SelectAtPoint	returnPnt,	groupCode,	dataCode
				
				Dim	objContour	As	AeccContour
				Set	objContour	=	ssetObj.Item(0)
				Dim	coords	As	Variant
				
				coords	=	objContour.LabelPoints

javascript:history.back();

				
				MsgBox	"The	first	point	in	LabelPoints	is	"	&	coords(0)	&	",	"	&	coords(0)	&	",	"	&	coords(2),	_
								vbInformation,	"LabelPoints	Example"
				
End	Sub

LabelStyle	Example

Sub	Example_LabelStyle()
				
				'	This	function	gets	the	label	style	override	for	the
				'	project	database	point	group
				Dim	ptGrp	As	AeccPointGroup
				Set	ptGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				'	Initialize	message	to	no	label	style	overide	defined
				Dim	labelMsg	As	String
				labelMsg	=	"There	is	no	label	style	override	for	point	group	"	&	_
								ptGrp.GroupName	&	"."
				
				'	Test	if	label	style	is	defined	and	if	true	define	new	message
				If	ptGrp.LabelStyle		""	Then
				labelMsg	=	"The	label	style	override	for	point	group	"	&	_
								ptGrp.GroupName	&	"	is:	"	&	ptGrp.LabelStyle
				End	If
				
				MsgBox	labelMsg,	vbInformation,	"LabelStyle	Example"
				
End	Sub

javascript:history.back();

LabelStyleOverride	Example

Sub	Example_LabelStyleOverride()
				
				'	This	function	determines	if	the	point	group	label	style	is	overridden.
				Dim	ptGrp	As	AeccPointGroup
				Set	ptGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				MsgBox	"Label	style	override	for	the	project	database	point	group	is	set	to:	"	&	_
								ptGrp.LabelStyleOverride,	vbInformation,	"LabelStyleOverride	Example"
				
End	Sub

javascript:history.back();

LabelStylePath	Example

Sub	Example_LabelStylePath()
				
				'	This	example	returns	the	LabelStylePath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	LabelStylePath	is:	"	&	prefFiles.LabelStylePath,	_
								vbInformation,	"LabelStylePath	Example"
				
End	Sub

javascript:history.back();

LabelStyleXDRef	Example

Sub	Example_LabelStyleXDRef()
				
				'	This	function	gets	the	label	style	XDRef	override	for	the
				'	project	database	point	group
				Dim	ptGrp	As	AeccPointGroup
				Set	ptGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				'	Initialize	message	to	no	label	style	XDRef	overide	defined
				Dim	labelMsg	As	String
				labelMsg	=	"There	is	no	label	style	XDRef	override	for	point	group	"	&	_
								ptGrp.GroupName	&	"."
				
				'	Test	if	XDRef	label	style	is	defined	and	if	true	define	new	message
				If	ptGrp.LabelStyleXDRef		""	Then
				labelMsg	=	"The	label	style	XDRef	override	for	point	group	"	&	_
								ptGrp.GroupName	&	"	is:	"	&	ptGrp.LabelStyleXDRef
				End	If
				
				MsgBox	labelMsg,	vbInformation,	"LabelStyleXDRef	Example"
				
End	Sub

javascript:history.back();

LastUsedDwg	Example

Sub	Example_LastUsedDwg()
				
				'	This	example	returns	the	LastUsedDwg	setting.
				Dim	prefUser	As	AeccPreferencesUser
				Set	prefUser	=	AeccApplication.Preferences.User
				
				MsgBox	"The	current	value	for	LastUsedDrawing	is:	"	&	prefUser.LastUsedDwg,	_
								vbInformation,	"LastUsedDwg	Example"
				
End	Sub

javascript:history.back();

LastUsedDwgPath	Example

Sub	Example_LastUsedDwgPath()
				
				'	This	example	returns	the	LastUsedDwgPath	setting.
				Dim	prefUser	As	AeccPreferencesUser
				Set	prefUser	=	AeccApplication.Preferences.User
				
				MsgBox	"The	current	value	for	LastUsedDwgPath	is:	"	&	prefUser.LastUsedDwgPath,	_
								vbInformation,	"LastUsedDwgPath	Example"
				
End	Sub

javascript:history.back();

LastUsedProj	Example

Sub	Example_LastUsedProj()
				
				'	This	example	returns	the	LastUsedProj	setting.
				Dim	prefUser	As	AeccPreferencesUser
				Set	prefUser	=	AeccApplication.Preferences.User
				
				MsgBox	"The	current	value	for	LastUsedProj	is:	"	&	prefUser.LastUsedProj,	_
								vbInformation,	"LastUsedProj	Example"
				
End	Sub

javascript:history.back();

LastUsedProjPath	Example

Sub	Example_LastUsedProjPath()
				
				'	This	example	returns	the	LastUsedProjPath	setting.
				Dim	prefUser	As	AeccPreferencesUser
				Set	prefUser	=	AeccApplication.Preferences.User
				
				MsgBox	"The	current	value	for	LastUsedProjPath	is:	"	&	prefUser.LastUsedProjPath,	_
								vbInformation,	"LastUsedProjPath	Example"
				
End	Sub

javascript:history.back();

Latitude	Example

Sub	Example_Latitude	()
				
				'	This	example	returns	the	Latitude	and	Longitude
				'	for	the	first	CogoPoint	in	the	collection.
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	Latitude	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.Latitude	&	vbCrLf	&	_
								"The	Longitude	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.Longitude,	vbInformation,	"Latitude	Example"
				
End	Sub

javascript:history.back();

LayerFile	Example

Sub	Example_LayerFile()
				
				'	This	example	displays	the	LayerFile	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				Dim	layerfile	As	String
				layerfile	=	dbPref.LayerFile
				
				'	Test	if	layer	file	is	set
				If	layerfile	=	""	Then
								layerfile	=	"not	set"
				End	If
				
				MsgBox	"The	current	value	for	LayerFile	is:	"	&	layerfile,	vbInformation,	"LayerFile	Example"
				
End	Sub

javascript:history.back();

LayerStandard	Example

Sub	Example_LayerStandard()
				
				'	This	example	displays	the	LayerStandard	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				Dim	laystandard	As	String
				laystandard	=	dbPref.layerstandard
				
				'	Test	if	layer	standard	is	set
				If	laystandard	=	""	Then
								laystandard	=	"not	set"
				End	If
				
				MsgBox	"The	current	value	for	LayerStandard	is:	"	&	laystandard,	_
								vbInformation,	"LayerStandard	Example"
				
End	Sub

javascript:history.back();
javascript:history.back();

LeftWidth	Example

Sub	Example_LeftWidth()
				
				'	This	example	returns	the	left	width	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	alignXSects	As	AeccCrossSectionBlocks
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	alignXSect	=	alignXSects.Item(0)
				
				'Get	the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	station	As	String
				station	=	alignXSect.station
				
				MsgBox	"The	left	width	for	the	alignment	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								Format(alignXSect.LeftWidth,	"0.00"),	vbInformation,	"LeftWidth	Example"
				
End	Sub

Length	Example

Examples:

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	ParcelEntity,	ParcelCurve,	ParcelLine

Sub	Example_Length_AlignEntity()
				
				'	This	example	returns	the	Length	for	the	first	entity	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnt	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	alignEnt	=	align.AlignEntities.Item(0)
				
				MsgBox	"The	Length	of	the	first	entity	in	the	Alignment	is:	"	&	alignEnt.Length,	_
								vbInformation,	"Length	Example"
				
End	Sub

Sub	Example_Length_ParcelEntity()
				
				'	This	example	returns	the	Length	for	the	first	entity	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				MsgBox	"The	Length	of	the	first	entity	in	the	Parcel	is:	"	&	parcelEnt.Length,	_
								vbInformation,	"Length	Example"
				
End	Sub

javascript:history.back();

LExt	Example

Sub	Example_LExt()
				
				'	This	example	returns	the	Lext	value	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	Lext	value	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.LExt
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"LExt	Example"
				
End	Sub

javascript:history.back();

LinearDisplayFormat	Example

Sub	Example_LinearDisplayFormat()
				
				'	This	example	returns	the	LinearDispalyFormat	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				'	Convert	the	linear	display	format	to	a	string.
				Dim	linearformat	As	String
				Select	Case	dbPref.LinearDisplayFormat
				Case	1
								linearformat	=	"Scientific"
				Case	2
								linearformat	=	"Decimal"
				Case	3
								linearformat	=	"Engineering"
				Case	4
								linearformat	=	"Architectural"
				Case	5
								linearformat	=	"Fractional"
				End	Select
				
				MsgBox	"The	current	value	for	LinearDisplayFormat	is:	"	&	linearformat,	vbInformation,	"LinearDisplayFormat	Example"
				
End	Sub

javascript:history.back();

LinearPrecision	Example

Sub	Example_LinearPrecision()
				
				'	This	example	returns	the	LinearPrecision	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	LinearPrecision	is:	"	&	dbPref.LinearPrecision,	vbInformation,	"LinearPrecision	Example"
				
End	Sub

javascript:history.back();

LinearUnit	Example

Sub	Example_LinearUnit()
				
				'	This	example	returns	the	LinearUnit	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				'	Convert	the	volume	display	unit	to	a	string.
				Dim	unit	As	String
				Select	Case	dbPref.LinearUnit
				Case	aecUnitInch
								unit	=	"inch"
				Case	aecUnitFoot
								unit	=	"foot"
				Case	aecUnitYards
								unit	=	"yard"
				Case	aecUnitMil
								unit	=	"millimeters"
				Case	aecUnitCentimeter
								unit	=	"centimeters"
				Case	aecUnitDecimeter
								unit	=	"decimeters"
				Case	aecUnitMeter
								unit	=	"meters"
				End	Select
				
				MsgBox	"The	current	value	for	LinearUnit	is:	"	&	unit,	vbInformation,	"LinearUnit	Example"
				
End	Sub

javascript:history.back();

LineIntersection	Example

Sub	Example_LineIntersection()
				
				'	This	example	gets	the	LineIntersection	from	a	user	supplied	point
				'	for	the	first	Alignment	in	the	collection..
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	pnt1	As	Variant
				Dim	pnt2	As	Variant
				Dim	coords	As	Variant
				
				'	Get	the	points
				pnt1	=	ThisDrawing.Utility.GetPoint(,	"Enter	the	first	point	near	the	first	alignment:	")
				pnt2	=	ThisDrawing.Utility.GetPoint(,	"Enter	the	second	point	near	the	first	alignment:	")
				
				'	Get	the	line	intersection	location
				coords	=	align.LineIntersection(pnt1(0),	pnt1(1),	pnt2(0),	pnt2(1))
				
				MsgBox	"The	LineIntersection	for	the	first	Alignment	is:"	&	vbCrLf	&	_
								"			Station:	"	&	coords(0)	&	vbCrLf	&	_
								"			Direction:	"	&	coords(1)	&	vbCrLf	&	_
								"			Easting:	"	&	coords(2)	&	vbCrLf	&	_
								"			Northing:	"	&	coords(3),	vbInformation,	"LineIntersection	Example"
				
End	Sub

javascript:history.back();

LoadSetupProfile	Example

Sub	Example_LoadSetupProfile()
				
				'	This	example	loads	an	existing	drawing	setup	profile.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.DatabasePreferences
				
				'	If	no	extension	is	supplied,	".set"	is	appended	automatically.
				Pref.LoadSetupProfile("i20.set")
				
End	Sub

javascript:history.back();

LockedPointNumbers	Example

Sub	Example_LockedPointNumbers()
				
				'	This	examples	locks	a	series	of	point	numbers	and
				'	then	unlocks	a	subset	of	those	point	numbers.
				Dim	cogoPnts	As	AeccCogoPoints
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				'	Create	locked	point	string
				Dim	pntString	As	String
				pntString	=	"1,4-8,40,10,12"
				
				'	Lock	points
				cogoPnts.LockPoints	(pntString)
				
				MsgBox	"Locked	point	numbers	are	"	&	cogoPnts.LockedPointNumbers,	_
								vbInformation,	"LockedPointNumbers	Example"
				
				'	Create	unlock	point	string
				pntString	=	"4-8"
				
				'	Unlock	points
				cogoPnts.UnlockPoints	(pntString)
				
				MsgBox	"Locked	point	numbers	are	"	&	cogoPnts.LockedPointNumbers,	_
								vbInformation,	"LockedPointNumbers	Example"
				
End	Sub

javascript:history.back();

LockPoints	Example

Sub	Example_LockPoints()
				
				'	This	examples	locks	a	series	of	point	numbers	and
				'	then	unlocks	a	subset	of	those	point	numbers.
				Dim	cogoPnts	As	AeccCogoPoints
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				'	Create	locked	point	string
				Dim	pntString	As	String
				pntString	=	"1,4-8,40,10,12"
				
				'	Lock	points
				cogoPnts.LockPoints	(pntString)
				
				MsgBox	"Locked	point	numbers	are	"	&	cogoPnts.LockedPointNumbers,	_
								vbInformation,	"LockPoints	Example"
				
				'	Create	unlock	point	string
				pntString	=	"4-8"
				
				'	Unlock	points
				cogoPnts.UnlockPoints	(pntString)
				
				MsgBox	"Locked	point	numbers	are	"	&	cogoPnts.LockedPointNumbers,	_
								vbInformation,	"LockPoints	Example"
				
End	Sub

javascript:history.back();

LockType	Example

Sub	Example_LockType()
				
				'	This	example	returns	the	LockType	setting	for	the	
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				'	Convert	the	lock	type	to	a	string.
				Dim	LockType	As	String
				Select	Case	align.LockType
				Case	kNoLock
								LockType	=	"no	lock	exists."
				Case	kReadLock
								LockType	=	"the	user	can	only	read	the	object."
				Case	kWriteLock
								LockType	=	"the	user	can	read	and	write	the	object."
				End	Select
				
				MsgBox	"The	current	value	for	LockType	is	"	&	LockType	,	vbInformation,	"LockType	Example"
				
End	Sub

javascript:history.back();

LOffset	Example

Sub	Example_LOffset()
				
				'	This	example	returns	the	LOffset	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	LOffset	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.LOffset
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"LOffset	Example"
				
End	Sub

javascript:history.back();

Longitude	Example

Sub	Example_Longitude	()
				
				'	This	example	returns	the	Latitude	and	Longitude
				'	for	the	first	CogoPoint	in	the	collection.
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	Latitude	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.Latitude	&	vbCrLf	&	_
								"The	Longitude	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.Longitude,	vbInformation,	"Longitude	Example"
				
End	Sub

javascript:history.back();

MaxElevation	Example

Examples:

l	CrossSection

l	Surface

Sub	Example_MaxElevation_CrossSection()
				
				'	This	example	returns	the	maximum	elevation	for	the	first	cross	section	in	the
				'	cross	section	collection	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				MsgBox	"The	maximum	elevation	for	the	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								Format(xSect.MaxElevation,	"0.00"),	vbInformation,	"MaxElevation	Example"
				
End	Sub

Sub	Example_MaxElevation_Surface()
				
				'	This	example	returns	the	MaxElevation	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	MaxElevation	for	surface	"	&	surf.Name	&	"		is:	"	&	Format(surf.MaxElevation,	"0.00"),	_
								vbInformation,	"MaxElevation	Example"

javascript:history.back();

				
End	Sub

MaxFaceArea	Example

Sub	Example_MaxFaceArea()
				
				'	This	example	returns	the	MaxFaceArea	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	MaxFaceArea	for	the	first	surface	is:	"	&	Format(surf.MaxFaceArea,	"0.00"),	_
								vbInformation,	"MaxFaceArea	Example"
				
End	Sub

javascript:history.back();

MagGrade	Example

Sub	Example_MaxGrade()
				
				'	This	example	returns	the	MaxGrade	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	MaxGrade	for	the	first	surface	is:	"	&	Format(surf.MaxGrade,	"0.00\%"),	_
								vbInformation,	"MaxGrade	Example"
				
End	Sub

javascript:history.back();

MaxOffset	Example

Sub	Example_MaxOffset()
				
				'	This	example	returns	the	maximum	offset	for	the	first	cross	section	in	the
				'	cross	section	collection	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				MsgBox	"The	maximum	offset	for	the	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								Format(xSect.MaxOffset,	"0.00"),	vbInformation,	"MaxOffset	Example"
				
End	Sub

javascript:history.back();

MeanElelvation	Example

Sub	Example_MeanElevation()
				
				'	This	example	returns	the	MeanElevation	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	MeanElevation	for	the	first	surface	is:	"	&	Format(surf.MeanElevation,	"0.00"),	_
								vbInformation,	"MeanElevation	Example"
				
End	Sub

javascript:history.back();

MeasurementUnit	Example

Sub	Example_MeasurementUnit()
				
				'	This	example	returns	the	MeasurementUnit	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				'	Convert	the	measurement	unit	to	a	string.
				Dim	unit	As	String
				If	dbPref.MeasurementUnit	=	acEnglish	Then
								unit	=	"english"
				Else
								unit	=	"metric"
				End	If
				
				MsgBox	"The	current	value	for	MeasurementUnit	is	"	&	unit,	_
								vbInformation,	"MeasurementUnit	Example"
				
End	Sub

javascript:history.back();

MidOrdinate	Example

Sub	Example_MidOrdinate()
				
				'	This	example	returns	the	MidOrdinate	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	MidOrdinate	for	the	first	Curve	in	the	alignment	is:	"	&	alignEnt.MidOrdinate
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"MidOrdinate	Example"
				
End	Sub

javascript:history.back();

MinDepressionArea	Example

Sub	Example_MinDepressionArea()
				
				'	This	example	returns	the	MinDepressionArea	setting	for	the	WaterSheds.
				Dim	surf	As	AeccSurface
				Dim	wSheds	As	AeccWaterSheds
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	wSheds	=	surf.Outputs.WaterSheds
				
				MsgBox	"The	MinDepressionArea	setting	for	WaterSheds	is:	"	&	wSheds.MinDepressionArea	_
								,	vbInformation,	"MinDepressionArea	Example"
				
End	Sub

javascript:history.back();

MinDepressionDepth	Example

Sub	Example_MinDepressionDepth()
				
				'	This	example	returns	the	MinDepressionDepth	setting	for	the	WaterSheds.
				Dim	surf	As	AeccSurface
				Dim	wSheds	As	AeccWaterSheds
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	wSheds	=	surf.Outputs.WaterSheds
				
				MsgBox	"The	MinDepressionDepth	setting	for	WaterSheds	is:	"	&	wSheds.MinDepressionDepth	_
								,	vbInformation,	"MinDepressionDepth	Example"
				
End	Sub

javascript:history.back();

MinElevation	Example

Examples:

l	CrossSection

l	Surface

Sub	Example_MinElevation_CrossSection()
				
				'	This	example	returns	the	minimum	elevation	for	the	first	cross	section	in	the
				'	cross	section	collection	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				MsgBox	"The	minimum	elevation	for	the	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								Format(xSect.MinElevation,	"0.00"),	vbInformation,	"MinElevation	Example"
				
End	Sub

Sub	Example_MinElevation_Surface()
				
				'	This	example	returns	the	MinElevation	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	MinElevation	for	surface		"	&	surf.Name	&	"	is:	"	&	Format(surf.MinElevation,	"0.00"),	_
								vbInformation,	"MinElevation	Example"

javascript:history.back();

				
End	Sub

MinFaceArea	Example

Sub	Example_MinFaceArea()
				
				'	This	example	returns	the	MinFaceArea	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	MinFaceArea	for	the	first	surface	is:	"	&	Format(surf.MinFaceArea,	"0.00"),	_
								vbInformation,	"MinFaceArea	Example"
				
End	Sub

javascript:history.back();

MinGrade	Example

Sub	Example_MinGrade()
				
				'	This	example	returns	the	MinGrade	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	MinGrade	for	the	first	surface	is	"	&	Format(surf.MinGrade,	"0.00\%"),	_
								vbInformation,	"MinGrade	Example"
				
End	Sub

javascript:history.back();

MinOffset	Example

Sub	Example_MinOffset()
				
				'	This	example	returns	the	minimum	offset	for	the	first	cross	section	in	the
				'	cross	section	collection	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				MsgBox	"The	minimum	offset	for	the	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								Format(xSect.MinOffset,	"0.00"),	vbInformation,	"MinOffset	Example"
				
End	Sub

javascript:history.back();

Modified	Example

class	Module	Code:

Public	WithEvents	cogoPnts	As	AeccCogoPoints
				
Private	Sub	cogoPnts_Modified()
				
				MsgBox	"Points	have	been	modified",	vbInformation,	"Modified	Example"
				
End	Sub

Module	Code:

Option	Explicit
Dim	eh	As	New	EventHandler
				
Sub	example_Modify_Event()
				
				'	This	example	establishes	event	handling	for	the	CogoPoints	object.
				Set	eh.cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
End	Sub

Sub	Example_Modify()
				
				'	This	example	change	toggles	the	raw	description	of	the	first	point
				'	in	the	collection	to	illustrate	the	Modify	event.
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				'	Get	the	points	raw	description
				Dim	strName	As	String
				strName	=	cogoPnt.RawDescription
				
				'	Modify	the	raw	description

javascript:history.back();

				If	cogoPnt.RawDescription	=	"Old	Description"	Then
								cogoPnt.RawDescription	=	"New	Description"
				Else
								cogoPnt.RawDescription	=	"Old	Description"
				End	If
				
				'	Show	the	override	description	on	the	command	line
				ThisDrawing.Utility.Prompt	vbCrLf	&	"The	raw	description	of	the	first	point	is:	"	&	cogoPnt.RawDescription
				
End	Sub

Name	Example

Examples:

l	AeccContourStyle

l	Alignment

l	CogoPoint

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	CrossSectionSurface	(Civil	Engineering	Feature)

l	DEMFile

l	DescriptionKeyFile

l	Drawing

l	FGProfiles	(Civil	Engineering	Feature)

l	Parcel

l	PointFile

l	PointGroup

l	PointGroupName

l	ProfileBlock	(Civil	Engineering	Feature)

l	Project

l	Prototype

l	Surface

Sub	Example_Name_AeccContourStyle()
				

javascript:history.back();

				'	This	example	returns	the	Name	for	the	contour	style	in	the	dictionary
				Dim	objContourStyle	As	AeccContourStyle
				Set	objContourStyle	=	ThisDrawing.Dictionaries("AECC_CONTOUR_STYLES").Item(0)
				
				MsgBox	"The	value	for	the	ContourStyle	Name	is:	"	&	objContourStyle.Name,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_Alignment()
				
				'	This	example	returns	the	Name	for	the	first	Alignment	in	the	collection
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				MsgBox	"The	Name	of	the	first	Alignment	is:	"	&	align.Name,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_CogoPoint()
				
				'	This	example	returns	the	Name	for	the	first	CogoPoint	in	the	collection.
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	Name	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.Name,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_CrossSectionBlock()
				
				'	This	example	returns	the	name	of	the	profile	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	alignXSects	As	AeccCrossSectionBlocks
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	alignXSect	=	alignXSects.Item(0)
				

				'Get	the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	station	As	String
				station	=	alignXSect.station
				
				MsgBox	"The	profile	name	for	the	alignment	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								alignXSect.Name,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_CrossSectionSurface()
				
				'	This	example	returns	the	name	for	the	first	cross
				'	section	surface	in	the	collection	for	the	first	cross	section
				'	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Dim	xSectSurf	As	AeccCrossSectionSurface
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				Set	xSectSurf	=	xSect.CrossSectionSurfaces.Item(0)
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				MsgBox	"The	name	for	the	first	cross	section	surface	for	"	&	vbCrLf	&	_
								"the	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								xSectSurf.Name,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_DEMFile()
				
				'	This	example	returns	the	Name	for	the	first	DEMFile	in	the	
				'	first	surface	in	the	collection.

				Dim	surf	As	AeccSurface
				Dim	DEMFile	As	AeccDEMFile
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	DEMFile	=	surf.Inputs.DEMFiles.Item(0)
				
				MsgBox	"The	Name	for	the	first	DEMFile	is:	"	&	DEMFile.Name,	_
								vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_DescriptionKeyFile()
				
				'	This	function	gets	the	DescriptionKeyFile	name
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				
				MsgBox	"	The	Name	for	the	first	DescriptionKeyFile	in	the	collection	is:	"	&	dKeyFile.Name	_
								,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_Drawing()
				
				'	This	example	returns	the	Name	setting	for	the	first	Drawing
				'	in	the	collection
				Dim	dwg	As	AeccDrawing
				Set	dwg	=	AeccApplication.ActiveProject.Drawings(0)
				
				MsgBox	"The	Name	for	the	first	Drawing	in	the	collection	is:	"	&	dwg.Name	_
								,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_FGProfiles()
				
				'	This	example	returns	the	Name	setting	of	the	FGProfile
				'	for	the	first	alignment	in	the	collection

				Dim	align	As	AeccAlignment
				Dim	FGProfs	As	AeccFGProfiles
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProfs	=	align.FGProfiles
				
				MsgBox	"The	Name	of	the	finshed	ground	profile	for	the	first	Alignment	is:	"	&	_
								FGProfs.Name,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_Parcel()
				
				'	This	example	starts	by	creating	a	Parcel	named	"NewParcel".
				'	The	new	Parcel	name	displayed.	Finally,	the	new	Parcel	is	renamed
				'	to	"OldName"	and	is	displayed	again.
				Dim	parcels	As	AeccParcels
				Dim	parcel	As	AeccParcel
				Set	parcels	=	AeccApplication.ActiveProject.Parcels
				
				'	'	Add	a	new	Parcel	name	"NewParcel"
				Set	parcel	=	parcels.Add("NewParcel")
				
				MsgBox	"The	Parcel	name	is:	"	&	parcel.Name,	vbInformation,	"Name	Example"
				
				'	'	Rename	the	new	Parcel	to	"OldParcel"
				parcels.Rename	"NewParcel",	"OldParcel"
				
				MsgBox	"The	Parcel	name	is:	"	&	parcel.Name,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_PointFile()
				
				'	This	example	returns	the	Name	setting	for	the	first	PointFile
				'	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	pntFile	As	AeccPointFile

				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	pntFile	=	surf.Inputs.PointFiles.Item(0)
				
				MsgBox	"The	Name	for	the	first	PointFile	in	the	collection	is:	"	&	pntFile.Name	_
								,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_PointGroup()
				
				'	This	function	gets	the	Name	for	the	first	PointGroup
				'	in	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				MsgBox	"The	Name	for	the	first	PointGroup	is:	"	&	_
								pntGrp.Name,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_PointGroupName()
				
				'	This	example	returns	the	Name	setting	for	the	first	PointGroupName
				'	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	pntGrpName	As	AeccPointGroupName
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	pntGrpName	=	surf.Inputs.PointGroupNames.Item(0)
				
				MsgBox	"The	Name	for	the	first	PointGroupName	in	the	collection	is:	"	&	pntGrpName.Name	_
								,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_ProfileBlock()
				
				'	This	example	returns	the	Name	for	the	first	ProfileBlock	in	the	collection

				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	Name	of	the	first	ProfileBlock	in	the	collection	is:	"	&	alignProf.Name,	_
								vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_Project()
				
				'	This	example	returns	the	Name	setting	for	the	first	Project
				'	in	the	collection
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.Projects.Item(0)
				
				MsgBox	"The	Name	value	for	the	first	Project	in	the	collection	is:	"	&	proj.Name,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_Prototype()
				
				'	This	example	returns	the	Name	of	the	first	prototype	in	the	collection.
				Dim	prot	As	AeccPrototype
				Set	prot	=	AeccApplication.Prototypes.Item(0)
				
				MsgBox	"The	Name	of	the	first	prototype	in	the	collection	is:	"	&	prot.Name,	vbInformation,	"Name	Example"
				
End	Sub

Sub	Example_Name_Surface()
				
				'	This	example	returns	the	Name	of	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	Name	of	the	first	surface	is:	"	&	surf.Name,	vbInformation,	"Name	Example"
				

End	Sub

NameOverride	Example

Sub	Example_NameOverride()
				
				'	This	function	gets	the	NameOverride	for	the	first	PointGroup
				'	in	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				If	pntGrp.NameOverride	=	True	Then
								MsgBox	"The	NameOverride	for	the	first	PointGroup	is	turned	on.",	_
												vbInformation,	"NameOverride	Example"
				Else
								MsgBox	"The	NameOverride	for	the	first	PointGroup	is	turned	off.",	_
												vbInformation,	"NameOverride	Example"
				End	If
				
End	Sub

javascript:history.back();

NameXDRef	Example

Sub	Example_NameXDRef()
				
				'	This	function	gets	the	Point	group	point	name	XDRef
				Dim	ptGrp	As	AeccPointGroup
				Set	ptGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				MsgBox	"The	point	group	point	NameXDRef	is:	"	&	ptGrp.NameXDRef,	_
								vbInformation,	"NameXDRef	Example"
				
End	Sub

javascript:history.back();

NewProjectBased	Example

Sub	Example_NewProjectBased()
				
				'	This	example	creates	a	new	project-based	drawing.
				Dim	doc	As	AeccDocument
				Dim	newDoc	As	AeccDocument
				Set	doc	=	AeccApplication.ActiveDocument
				
				'	Specify	the	full	path	of	the	new	drawing
				Dim	strNewDwg	As	String
				strNewDwg	=	doc.Path	+	"\New	Drawing"
				
				'	Specify	the	full	path	of	the	template
				Dim	strTemplate	As	String
				strTemplate	=	AeccApplication.Application.Preferences.Files.TemplateDwgPath	+	"\acad.dwt"
				
				Set	newDoc	=	doc.NewProjectBased(strTemplate,	strNewDwg)
				
				MsgBox	"The	new	drawing	is	named:"	&	newDoc.Name,	vbInformation,	"NewProjectBased	Example"
				
End	Sub

javascript:history.back();

NextPointNumber	Example

Sub	Example_NextPointNumber()
				
				'	This	gets	the	NextPointNumber	in	the	CogoPoints	collection
				Dim	cogoPnts	As	AeccCogoPoints
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				MsgBox	"The	NextPointNumber	for	CogoPoints	is:	"	&	cogoPnts.NextPointNumber,	_
								vbInformation,	"NextPointNumber	Example"
				
End	Sub

javascript:history.back();

Normal	Example

Sub	Example_Normal()
				
				'	This	example	returns	the	normal	value	for	the
				'	first	face	item	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	face	As	AeccFace
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	face	=	surf.Outputs.Faces.Item(0)
				
				Dim	norm	As	Variant
				
				norm	=	face.Normal
				
				MsgBox	"The	Normal	value	for	the	first	Face	is	"	&	norm(0)	&	",	"	&	norm(1)	&	",	"	&	norm(2),	_
								vbInformation,	"Normal	Example"
				
End	Sub

javascript:history.back();

Northing	Example

Examples:

l	AeccPoint

l	CogoPoint

l	TinPoint

Sub	Example_Northing_AeccPoint()
				
				'	This	example	returns	the	Northing	setting	for	the
				'	first	Point	object	in	a	selection	set
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	the	Point	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_POINT"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue

javascript:history.back();

				ssetObj.SelectOnScreen	groupCode,	dataCode
				
				Dim	objPoint	As	AeccPoint
				Set	objPoint	=	ssetObj.Item(0)
				
				MsgBox	"The	setting	for	Northing	is:	"	&	objPoint.Northing,	vbInformation,	"Northing	Example"
				
End	Sub

Sub	Example_Northing_CogoPoint()
				
				'	This	example	returns	the	Northing	for	the	first	CogoPoint	in	the	collection
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	Northing	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.Northing,	vbInformation,	"Northing	Example"
				
End	Sub

Sub	Example_Northing_TinPoint()
				
				'	This	example	returns	the	Northing	of	the	first
				'	TIN	Point	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	tin	As	AeccTinPoint
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	tin	=	surf.Outputs.TinPoints.Item(0)
				
				MsgBox	"The	Northing	of	the	first	TIN	Point	is:	"	&	tin.Northing,	_
								vbInformation,	"Northing	Example"
				
End	Sub

NorthRotation	Example

Sub	Example_NorthRotation()
				
				'	This	example	returns	the	NorthRotation	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	NorthRotation	is:	"	&	dbPref.NorthRotation,	_
								vbInformation,	"NorthRotation	Example"
				
End	Sub

javascript:history.back();

Number	Example

Examples:

l	AeccPoint

l	Alignment

l	CogoPoint

l	Parcel

Sub	Example_Number_AeccPoint()
				
				'	This	example	returns	the	Number	setting	for	the
				'	first	Point	object	in	a	selection	set
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	the	Point	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_POINT"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode

javascript:history.back();

				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode
				
				Dim	objPoint	As	AeccPoint
				Set	objPoint	=	ssetObj.Item(0)
				
				MsgBox	"The	setting	for	Number	is:	"	&	objPoint.Number,	vbInformation,	"Number	Example"
				
End	Sub

Sub	Example_Number_Alignment()
				
				'	This	example	returns	the	Number	for	the	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				MsgBox	"The	Number	of	the	first	alignment	is:	"	&	align.Number,	vbInformation,	"Number	Example"
				
End	Sub

Sub	Example_Number_CogoPoint()
				
				'	This	example	returns	the	Number	for	the	first	CogoPoint	in	the	collection.
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	Number	for	the	first	CogoPoint	in	the	collection	is:	"	&	cogoPnt.Number,	vbInformation,	"Number	Example"
				
End	Sub

Sub	Example_Number_Parcel()
				
				'	This	example	returns	the	parcel	Number	for	the	first	parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Set	parcel	=	AeccApplication.ActiveProject.parcels.Item(0)
				
				MsgBox	"The	Number	for	the	first	Parcel	in	the	collection	is:	"	_

								&	parcel.Number,	vbInformation,	"Number	Example"
				
End	Sub

NumberOfFaces	Example

Sub	Example_NumberOfFaces()
				
				'	This	example	returns	the	NumberOfFaces	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	NumberOfFaces	for	the	first	surface	is:	"	&	surf.NumberOfFaces,	_
								vbInformation,	"NumberOfFaces	Example"
				
End	Sub

javascript:history.back();

NumberOfPoints	Example

Sub	Example_NumberOfPoints()
				
				'	This	example	returns	the	NumberOfPoints	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	NumberOfPoints	for	the	first	surface	is:	"	&	surf.NumberOfPoints,	vbInformation,	"NumberOfPoints	Example"
				
End	Sub

javascript:history.back();

ObjectID	Example

Sub	Example_ObjectID()
				
				'	This	example	returns	the	ObjectID	value	for	the	first	Tangent	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Tangent	entitiy	in	the	first	Alignment."
				
				'	Find	first	Tangent	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kTangent	Then
												alignMsg	=	"The	ObjectID	for	the	first	Tangent	in	the	alignment	is:	"	&	alignEnt.ObjectID
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"ObjectID	Example"
				
End	Sub

javascript:history.back();

Offset	Example

Sub	Example_Offset()
				
				'	This	example	returns	the	point	code	data	for	the	first	cross
				'	section	surface	in	the	collection	for	the	first	cross	section
				'	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Dim	xSectPCode	As	AeccCrossSectionPointCode
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				Set	xSectPCode	=	xSect.CrossSectionPointCodes.Item(0)
				
				'		Get	the	alignment	name
				Dim	alignName	As	String
				alignName	=	align.Name
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				MsgBox	"The	alignment	name	is:	"	&	alignName	&	vbCrLf	&	_
								"The	first	cross	section	is	at	station:	"	&	station	&	vbCrLf	&	_
								"The	data	for	the	first	point	code	is:	"	&	vbCrLf	&	_
								vbTab	&	"Code:	"	&	xSectPCode.Code	&	vbCrLf	&	_
								vbTab	&	"Description:	"	&	xSectPCode.Description	&	vbCrLf	&	_
								vbTab	&	"Elevation:	"	&	Format(xSectPCode.elevation,	"0.00")	&	vbCrLf	&	_
								vbTab	&	"Offset:	"	&	Format(xSectPCode.offset,	"0.00"),	_
								vbInformation,	"Offset	Example"
				
End	Sub

javascript:history.back();

OffsetElevations	Example

Sub	Example_OffsetElevations()
				
				'	This	example	returns	the	first	three	offsets	and	elevations	for	the	first	cross
				'	section	surface	in	the	collection	for	the	first	cross	section
				'	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Dim	xSectSurf	As	AeccCrossSectionSurface
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				Set	xSectSurf	=	xSect.CrossSectionSurfaces.Item(0)
				
				'		Get	the	alignment	name
				Dim	alignName	As	String
				alignName	=	align.Name
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				'	Get	the	cross	section	surface	name
				Dim	surfName	As	String
				surfName	=	xSectSurf.Name
				
				'	Get	the	offsets	and	elevations
				Dim	offElev	As	Variant
				offElev	=	xSectSurf.OffsetElevations
				
				MsgBox	"The	alignment	name	is:	"	&	alignName	&	vbCrLf	&	_
								"The	first	cross	section	is	at	station:	"	&	station	&	vbCrLf	&	_
								"The	first	surface	name	is:	"	&	surfName	&	vbCrLf	&	_
								"The	first	three	offsets	and	elevations	for	the	surface	are:"	&	vbCrLf	&	_

javascript:history.back();

								vbTab	&	"Offset	1:	"	&	Format(offElev(0),	"0.00")	&	_
								vbTab	&	"Elevation	1:	"	&	Format(offElev(1),	"0.00")	&	vbCrLf	&	_
								vbTab	&	"Offset	2:	"	&	Format(offElev(2),	"0.00")	&	_
								vbTab	&	"Elevation	2:	"	&	Format(offElev(3),	"0.00")	&	vbCrLf	&	_
								vbTab	&	"Offset	3:	"	&	Format(offElev(4),	"0.00")	&	_
								vbTab	&	"Elevation	3:	"	&	Format(offElev(5),	"0.00"),	_
								vbInformation,	"OffsetElevation	Example"
				
End	Sub

javascript:history.back();

OffsetElevationToXy	Example

Sub	Example_OffsetElevationToXy()
				
				'	This	example	returns	an	Autocad	XY	for	a	given	offset	and	elevation	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSect	=	AeccApplication.ActiveDocument.CrossSectionBlocks.Item(0)
				
				Dim	offElev(0	To	1)	As	Double
				Dim	XY	As	Variant
				Dim	station	As	String
				Dim	offset	As	Double
				Dim	elevation	As	Double
				
				'Get	the	station	for	the	first	alignment	cross	section	in	the	collection.
				station	=	alignXSect.station
				
				'Get	the	offset	and	the	elevation
				offset	=	ThisDrawing.Utility.GetReal(vbCrLf	&	"Enter	the	offset	in	station	"	&	station	&	":	")
				elevation	=	ThisDrawing.Utility.GetReal("Enter	the	elevation	in	station	"	&	station	&	":	")
				
				'	Use	the	entered	values	to	get	the	X	and	Y	values
				offElev(0)	=	offset
				offElev(1)	=	elevation
				
				XY	=	alignXSect.OffsetElevationToXy(offElev)
				
				MsgBox	"The	X	value	for	the	offset	is:	"	&	Format(XY(0),	"0.00")	&	vbCrLf	&	_
								"The	Y	value	for	the	elevation	is:	"	&	Format(XY(1),	"0.00")	_
								,	vbInformation,	"OffsetElevationToXy	Example"
				
End	Sub

Open	Example

Sub	Example_Open()
				
				'	This	example	opens	an	existing	project-based	drawing.
				Dim	dwgs	As	AeccDrawings
				Set	dwgs	=	AeccApplication.ActiveProject.Drawings
				
				'	Specify	the	full	path	of	the	drawing
				Dim	strDwg	As	String
				Set	strDwg	=	AeccApplication.ActiveProject.Drawings.Item(0).FullName
				
				'	Specify	the	full	path	of	the	project
				Dim	strProject	As	String
				Set	strProject	=	AeccApplication.ActiveProject.FullName
				
				dwgs.Open	strDwg,	strProject
				
End	Sub

javascript:history.back();

OpenProjectBased	Example

Sub	Example_OpenProjectBased()
				
				'	This	example	opens	the	first	existing	project-based	drawing
				'	in	the	collection.
				Dim	dwg	As	AeccDrawing
				Dim	doc	As	AeccDocument
				Dim	openDoc	As	AeccDocument
				
				Set	dwg	=	AeccApplication.ActiveProject.Drawings.Item(0)
				Set	doc	=	AeccApplication.ActiveDocument
				
				'	Specify	the	full	path	of	the	drawing
				Dim	strDwg	As	String
				strDwg	=	dwg.FullName
				
				Set	openDoc	=	doc.OpenProjectBased(strDwg)
				
				MsgBox	"The	name	of	the	opened	drawing	is	"	&	openDoc.Name,	_
								vbInformation,	"OpenProjectBased	Example"
				
End	Sub

javascript:history.back();

Output	Example

Sub	Example_Output()
				
				'	This	example	returns	the	Count	of	Faces	for	the	first	Surface
				'	in	the	collection	by	using	the	Outputs	property.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	number	of	Faces	in	the	first	surface	is:	"	&	surf.Outputs.Faces.Count	_
								,	vbInformation,	"Outputs	Example"
				
End	Sub

javascript:history.back();

OverflowPoints	Example

Sub	Example_OverflowPoints()
				
				'	This	example	returns	the	first	point	in	the	OverflowPoints
				'	for	the	first	WaterShed	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	wShed	As	AeccWaterShed
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	wShed	=	surf.Outputs.WaterSheds.Item(0)
				
				Dim	coords	As	Variant
				
				coords	=	wShed.OverflowPoints
				
				MsgBox	"The	first	OverFlowPoint	for	the	first	WaterShed	is:	"	&	coords(0)	&	",	"	&	coords(1)	&	",	"	&	coords(2)	_
								,	vbInformation,	"OverflowPoints	Example"
				
End	Sub

javascript:history.back();

OverrideDescription	Example

Sub	Example_OverrideDescription()
				
				'	This	example	returns	the	OverrideDescription	for	the	first	CogoPoint	in	the	collection.
				'	This	example	the	first	point	in	the	collection	is	in	a	Point	Group	Named	"Example	Group".
				Dim	cogoPnts	As	AeccCogoPoints
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				'	Filter	CogoPoints	collection	on	GroupName
				cogoPnts.GroupName	=	"Example	Group"
				
				Set	cogoPnt	=	cogoPnts.Item(0)
				
				MsgBox	"The	OverrideDescription	for	the	first	CogoPoint	in	the	collection	is:	"	&	_
								cogoPnt.OverrideDescription,	vbInformation,	"OverrideDescription	Example"
				
End	Sub

javascript:history.back();

OverrideElevation	Example

Sub	Example_OverrideElevation()
				
				'	This	example	returns	the	OverrideElevation	for	the	first	CogoPoint	in	the	collection.
				'	This	example	assumes	the	first	point	in	the	collection	is	in	a	
				'	Point	Group	named	"Example	Group".
				Dim	cogoPnts	As	AeccCogoPoints
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				'	Filter	CogoPoints	collection	on	GroupName
				cogoPnts.GroupName	=	"Example	Group"
				
				Set	cogoPnt	=	cogoPnts.Item(0)
				
				MsgBox	"The	OverrideElevation	for	the	first	CogoPoint	in	the	collection	is:	"	&	_
								cogoPnt.OverrideElevation,	vbInformation,	"OverrideElevation	Example"
				
End	Sub

javascript:history.back();

OverrideName	Example

Sub	Example_OverrideName()
				
				'	This	example	returns	the	OverrideName	for	the	first	CogoPoint	in	the	collection.
				'	This	example	assumes	the	first	point	in	the	collection	is	in	a	
				'	Point	Group	named	"Example	Group".
				Dim	cogoPnts	As	AeccCogoPoints
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				'	Filter	CogoPoints	collection	on	GroupName
				cogoPnts.GroupName	=	"Example	Group"
				
				Set	cogoPnt	=	cogoPnts.Item(0)
				
				MsgBox	"The	OverrideName	for	the	first	CogoPoint	in	the	collection	is:	"	&	_
								cogoPnt.OverrideName,	vbInformation,	"OverrideName	Example"
				
End	Sub

javascript:history.back();

OverrideNew	Example

Sub	Example_OverrideNew()
				
				'	This	example	returns	the	OverrideNew	setting.
				Dim	prefUser	As	AeccPreferencesUser
				Set	prefUser	=	AeccApplication.Preferences.User
				
				MsgBox	"The	current	value	for	OverrideNew	is:	"	&	prefUser.OverrideNew,	_
								vbInformation,	"OverrideNew	Example"
				
End	Sub

javascript:history.back();

OverrideOpen	Example

Sub	Example_OverrideOpen()
				
				'	This	example	returns	the	OverrideOpen	setting.
				Dim	prefUser	As	AeccPreferencesUser
				Set	prefUser	=	AeccApplication.Preferences.User
				
				MsgBox	"The	current	value	for	OverrideOpen	is:	"	&	prefUser.OverrideOpen,	_
								vbInformation,	"OverrideOpen	Example"
				
End	Sub

javascript:history.back();

Owner	Example

Sub	Example_Owner
				
				'	This	example	returns	the	Label	for	the	first	FileLock	in	the	collection.
				Dim	filelock	As	AeccFileLock
				Set	filelock	=	AeccApplication.ActiveProject.fileLocks.Item(0)
				
				MsgBox	"The	Label	of	the	first	FileLock	in	the	collection	is:	"	&	filelock.Label	_
								,	vbInformation,	"Label	Example"
				
End	Sub

javascript:history.back();

P	Example

Sub	Example_P()
				
				'	This	example	returns	the	P	value	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	P	value	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.P
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"P	Example"
				
End	Sub

javascript:history.back();

Parcel	Example

Sub	Example_Parcel()
				
				'	This	example	returns	the	K	Label	layer	for	Parcel	Preferences
				'	in	the	current	project.
				Dim	prefPrj	As	AeccPreferencesProject
				Set	prefPrj	=	AeccApplication.ActiveProject.Preferences
				
				MsgBox	"The	K	Label	layer	for	Parcel	Preferences	in	the	current	Project	is:	"	_
								&	prefPrj.Parcel.GetString(kLabelLayer),	vbInformation,	"Parcel	Example"
				
End	Sub

javascript:history.back();

ParcelEntities	Example

Sub	Example_ParcelEntities()
				
				'	This	example	uses	the	ParcelEntities	property	to	get	the	number	of	entities	for	the
				'	of	entities	for	the	first	parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Set	parcel	=	AeccApplication.ActiveProject.parcels.Item(0)
				
				MsgBox	"The	number	of	entites	for	the	first	Parcel	in	the	collection	is:	"	_
								&	parcel.ParcelEntities.Count,	vbInformation,	"ParcelEntities	Example"
				
End	Sub

javascript:history.back();

Paste	Example

Sub	Example_Paste()
				
				'	This	example	pastes	the	second	surface	in	the	collection	to
				'	the	first	surface	in	the	collection
				Dim	surf	As	AeccSurface
				Dim	surfs	As	AeccSurfaces
				Set	surfs	=	AeccApplication.ActiveProject.Surfaces
				
				'	Get	the	name	of	the	second	surface	in	the	collection
				Set	surf	=	surfs.Item(1)
				Dim	surfName	As	String
				surfName	=	surf.Name
				
				'	Set	the	current	surface	to	the	first	surface	in	the	collection
				Set	surf	=	surfs.Item(0)
				surfs.CurrentSurface	=	surf.Name
				
				'	Paste	the	two	surfaces
				surf.Paste	surfName
				
				MsgBox	"The	current	surface	name	is:	"	&	surfs.CurrentSurface	&	vbCrLf	&	_
								"The	pasted	surface	name	is:	"	&	surfName,	vbInformation,	"Paste	Example"
				
End	Sub

javascript:history.back();

Path	Example

Examples:

l	DescriptionKeyFile

l	DescriptionKeyFiles

l	Drawing

l	Drawings

l	FileLocks

l	Project

Sub	Example_Path_DescriptionKeyFile()
				
				'	This	example	returns	the	Path	for	the	first
				'	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				
				MsgBox	"The	value	for	DescriptionKeyFile	Path	is:	"	&	dKeyFile.Path,	vbInformation,	"Path	Example"
				
End	Sub

Sub	Example_Path_DescriptionKeyFiles()
				
				'	This	example	returns	the	Path	for	DescriptionKeyFiles.
				Dim	dKeyFiles	As	AeccDescriptionKeyFiles
				Set	dKeyFiles	=	AeccApplication.ActiveProject.DescriptionKeyFiles
				
				MsgBox	"The	value	for	DescriptionKeyFiles	Path	is:	"	&	dKeyFiles.Path,	vbInformation,	"Path	Example"
				
End	Sub

javascript:history.back();

Sub	Example_Path_Drawing()
				
				'	This	example	returns	the	Path	setting	for	the	first	Drawing
				'	in	the	collection.
				Dim	dwg	As	AeccDrawing
				Set	dwg	=	AeccApplication.ActiveProject.Drawings(0)
				
				MsgBox	"The	Path	for	the	first	Drawing	in	the	collection	is:	"	&	dwg.Path	_
								,	vbInformation,	"Path	Example"
				
End	Sub

Sub	Example_Path_Drawings()
				
				'	This	example	returns	the	Path	for	the	drawings	in	the	active	project.
				Dim	dwgs	As	AeccDrawings
				Set	dwgs	=	AeccApplication.ActiveProject.Drawings
				
				MsgBox	"The	Path	value	for	Drawings	is:	"	&	dwgs.Path,	vbInformation,	"Path	Example"
				
End	Sub

Sub	Example_Path_FileLocks()
				
				'	This	example	returns	the	Path	for	the	FileLocks	in	the	active	project.
				Dim	fileLocks	As	AeccFileLocks
				Set	fileLocks	=	AeccApplication.ActiveProject.FileLocks
				
				MsgBox	"The	Path	value	for	FileLocks	is:	"	&	fileLocks.Path,	vbInformation,	"Path	Example"
				
End	Sub

Sub	Example_Path_Project()
				
				'	This	example	returns	the	Path	setting	for	the	first	Project
				'	in	the	collection
				Dim	proj	As	AeccProject

				Set	proj	=	AeccApplication.Projects.Item(0)
				
				MsgBox	"The	Path	value	for	the	first	Project	in	the	collection	is:	"	&	proj.Path,	vbInformation,	"Path	Example"
				
End	Sub

Perimeter	Example

Sub	Example_Perimeter()
				
				'	This	example	returns	the	Perimeter	for	the	first	parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Set	parcel	=	AeccApplication.ActiveProject.parcels.Item(0)
				
				MsgBox	"The	Perimeter	for	the	first	Parcel	in	the	collection	is:	"	_
								&	Format(parcel.Perimeter,	"0.00"),	vbInformation,	"Perimeter	Example"
				
End	Sub

javascript:history.back();

PerpIntersection	Example

Sub	Example_PerpIntersection()
				
				'	This	example	gets	the	PerpIntersection	from	a	user	supplied	point
				'	for	the	first	Alignment	in	the	collection..
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	returnPnt	As	Variant
				Dim	coords	As	Variant
				
				'	Get	the	point
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Enter	a	point	near	the	first	alignment:	")
				
				'	Get	the	perpendicular	intersection	location
				coords	=	align.PerpIntersection(returnPnt(0),	returnPnt(1))
				
				MsgBox	"The	PerpIntersection	for	the	first	Alignment	is:"	&	vbCrLf	&	_
								"			Station:	"	&	coords(0)	&	vbCrLf	&	_
								"			Direction:	"	&	coords(1)	&	vbCrLf	&	_
								"			Easting:	"	&	coords(2)	&	vbCrLf	&	_
								"			Northing:	"	&	coords(3),	vbInformation,	"PerpIntersection	Example"
				
End	Sub

javascript:history.back();

PiEasting	Example

Sub	Example_PiEasting()
				
				'	This	example	returns	the	PiEasting	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	OiEasting	for	the	first	Curve	in	the	alignment	is:	"	&	alignEnt.PiEasting
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"PiEasting	Example"
				
End	Sub

javascript:history.back();

PiNorthing	Example

Sub	Example_PiNorthing()
				
				'	This	example	returns	the	PiNorthing	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	PiNorthing	for	the	first	Curve	in	the	alignment	is:	"	&	alignEnt.PiNorthing
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"PiNorthing	Example"
				
End	Sub

javascript:history.back();

PointByNumber	Example

Sub	Example_PointByNumber()
				
				'	This	gets	a	CogoPoint	given	a	point	number.
				Dim	cogoPnts	As	AeccCogoPoints
				Dim	cogoPnt	As	AeccCogoPoint
				Dim	pntNum	As	Long
				
				'	Set	point	number	to	get	to	10
				pntNum	=	10
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				Set	cogoPnt	=	cogoPnts.PointByNumber(pntNum)
				
				MsgBox	"The	Number	for	CogoPoints	is:	"	&	cogoPnt.Number,	vbInformation,	"PointByNumber	Example"
				
End	Sub

javascript:history.back();

PointCodeDecription	Example

Sub	Example_PointCodeDescription()
				
				'	'	This	example	returns	the	point	code	description	for	the	first	cross
				'	'	section	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	xSects	As	AeccCrossSections
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	xSects	=	align.CrossSections
				
				'	'Get	the	the	description	for	point	code	1
				Dim	desc	As	String
				desc	=	xSects.PointCodeDescription(1)
				
				MsgBox	"The	description	for	point	code	1	is:	"	&	_
				"Description:	"	&	desc,	vbInformation,	"PointCodeDescription	Example"
				
End	Sub

javascript:history.back();

PointFiles	Example

Sub	Example_PointFiles()
				
				'	This	example	returns	the	number	of	PointFiles	in	the	first
				'	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfIn	As	AeccSurfaceInputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfIn	=	surf.Inputs
				
				MsgBox	"The	number	of	PointFiles	in	the	first	Surface	is:	"	&	surfIn.PointFiles.Count	_
								,	vbInformation,	"PointFiles	Example"
				
End	Sub

javascript:history.back();

PointGroupNames	Example

Sub	Example_PointGroupNames()
				
				'	This	example	returns	the	number	of	PointGroupNames	in	the	first
				'	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfIn	As	AeccSurfaceInputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfIn	=	surf.Inputs
				
				MsgBox	"The	number	of	PointGroupNames	in	the	first	Surface	is:	"	&	surfIn.PointGroupNames.Count	_
								,	vbInformation,	"PointGroupNames	Example"
				
End	Sub

javascript:history.back();

PointGroups	Example

Sub	Example_PointGroups()
				
				'	This	example	returns	the	number	of	PointGroups
				'	in	the	current	project.
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.ActiveProject
				
				MsgBox	"The	number	of	PointGroups	in	the	current	Project	is:	"	&	proj.PointGroups.Count	_
								,	vbInformation,	"PointGroups	Example"
				
End	Sub

javascript:history.back();

PointList	Example

Sub	Example_PointList()
				
				'	This	function	gets	the	PointList	for	the	first	PointGroup
				'	in	the	collection.
				Dim	pntGrp	As	AeccPointGroup
				Set	pntGrp	=	AeccApplication.ActiveProject.PointGroups.Item(0)
				
				MsgBox	"The	PointList	for	the	first	PointGroup	is:	"	&	pntGrp.PointList,	_
								vbInformation,	"PointList	Example"
				
End	Sub

javascript:history.back();

PointLocation	Example

Sub	Example_PointLocation()
				
				'	This	example	gets	the	PointLocation	from	user	supplied	values
				'	for	the	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	station	As	Double
				Dim	offset	As	Double
				Dim	easting	As	Double
				Dim	northing	As	Double
				Dim	direction	As	Double
				
				'	Get	the	station	and	the	offset
				station	=	ThisDrawing.Utility.GetReal("Enter	the	station	for	the	point:	")
				offset	=	ThisDrawing.Utility.GetReal("Enter	the	offset	for	the	point:	")
				
				'	Get	the	point	location
				align.PointLocation	station,	offset,	easting,	northing,	direction
				
				MsgBox	"The	Point	Location	is:"	&	vbCrLf	&	_
								"			Easting:	"	&	easting	&	vbCrLf	&	_
								"			Northing:	"	&	northing	&	vbCrLf	&	_
								"			Direction:	"	&	direction,	vbInformation,	"PointLocation	Example"
				
End	Sub

javascript:history.back();

PointNameSize	Example

Sub	Example_PointNameSize()
				
				'	This	gets	the	PointNameSize	for	the	CogoPoints	collection
				Dim	cogoPnts	As	AeccCogoPoints
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				MsgBox	"The	PointNameSize	for	CogoPoints	is:	"	&	cogoPnts.PointNameSize,	_
								vbInformation,	"PointNameSize	Example"
				
End	Sub

javascript:history.back();

PointNumberSelect	Example

Sub	Example_PointNumberSelect()
				
				'	This	gets	all	the	CogoPoint	numbers	in	a	selection	set	and
				'	displays	them	as	a	comma	delimited	string.
				Dim	cogoPnts	As	AeccCogoPoints
				Dim	entity	As	Object
				Dim	pntNum	As	Long
				Dim	odjId	As	Long
				Dim	firstPnt	As	Boolean
				Dim	strPnts	As	String
				
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	filtered	for	CogoPoint	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_POINT"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode

javascript:history.back();

				
				firstPnt	=	True
				'	Process	selection	set
				For	Each	entity	In	ssetObj
								objId	=	entity.ObjectID
								pntNum	=	cogoPnts.PointNumberFromObjID(objId)
								If	pntNum	>	0	Then
												If	firstPnt	=	True	Then
																strPnts	=	Format(pntNum)
																firstPnt	=	False
												Else
																strPnts	=	strPnts	+	","	+	Format(pntNum)
												End	If
								End	If
				Next
				
				MsgBox	"The	CogoPoint	numbers	in	the	selection	are:	"	&	_
								strPnts,	vbInformation,	"PointNumberFromObjID	Example"
				
End	Sub

PointOnLineTolerance	Example

Sub	Example_PointOnLineTolerance()
				
				'	This	example	returns	the	PointOnLineTolerance	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	PointOnLineTolerance	for	the	first	surface	is:	"	&	surf.PointOnLineTolerance,	_
								vbInformation,	"PointOnLineTolerance	Example"
				
End	Sub

javascript:history.back();

PointStringToArray	Example

Sub	Example_PointStringToArray()
				
				'	This	examples	returns	a	array	of	point	numbers	from	a
				'	CogoPoints	string	format.
				Dim	cogoPnts	As	AeccCogoPoints
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				Dim	pntString	As	String
				Dim	pntArray	As	Variant
				
				pntString	=	"1,4-8,40,10,12"
				
				'	Convert	to	array
				pntArray	=	cogoPnts.PointStringToArray(pntString)
				
				MsgBox	"The	CogoPoints	point	number	for	1,4-8,40,10,12	are	"	&	_
								pntArray(0)	&	"	"	&	pntArray(1)	&	"	"	&	pntArray(2)	&	"	"	&	_
								pntArray(3)	&	"	"	&	pntArray(4)	&	"	"	&	pntArray(5)	&	"	"	&	_
								pntArray(6)	&	"	"	&	pntArray(7)	&	"	"	&	pntArray(8),	vbInformation,	"PointStringToArray	Example"
				
End	Sub

javascript:history.back();

PointTolerance	Example

Sub	Example_PointTolerance()
				
				'	This	example	returns	the	PointTolerance	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	PointTolerance	for	the	first	surface	is:	"	&	surf.PointTolerance,	_
								vbInformation,	"PointTolerance	Example"
				
End	Sub

javascript:history.back();

Precision	Example

Sub	Example_Precision()
				
				'	This	example	returns	the	Precision	for	the	first	parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Set	parcel	=	AeccApplication.ActiveProject.parcels.Item(0)
				
				MsgBox	"The	Precision	for	the	first	Parcel	in	the	collection	is:	"	_
								&	parcel.Precision,	vbInformation,	"Precison	Example"
				
End	Sub

javascript:history.back();

Preferences	Example

Examples:

l	AeccApplication

l	Document

l	Project

Sub	Example_Preferences_AeccApplication()
				
				'	This	example	returns	the	current	setting	of	PrototypePath
				'	from	the	preferences	object.
				Dim	preferences	As	AeccPreferences
				Set	preferences	=	AeccApplication.Preferences
				
				MsgBox	"The	current	value	for	PrototypePath	is:	"	&	preferences.Files.PrototypePath,	_
								vbInformation,	"Preferences	Example"
				
End	Sub

Sub	Example_Preferences_Document()
				
				'	This	example	returns	the	AngularPrecision	for	the	active	document.
				Dim	doc	As	AeccDocument
				Set	doc	=	AeccApplication.ActiveDocument
				
				MsgBox	"The	setting	for	AngularPrecision	is:	"	&	doc.Preferences.AngularPrecision,	_
								vbInformation,	"Preferences	Example"
				
End	Sub

Sub	Example_Preferences_Project()
				
				'	This	example	returns	the	text	size	for	Cogo	Preferences

javascript:history.back();

				'	in	the	current	project.
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.ActiveProject
				
				MsgBox	"The	text	size	for	Cogo	Preferences	in	the	current	Project	is:	"	&	_	
								proj.Preferences.Cogo.GetDouble(kPntTextSize),	vbInformation,	"Preferences	Example"
				
End	Sub

PreferencesPath	Example

Sub	Example_PreferencesPath()
				
				'	This	example	returns	the	PreferencesPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	PreferencesPath	is:	"	&	prefFiles.PreferencesPath,	_
								vbInformation,	"PreferencesPath	Example"
				
End	Sub

javascript:history.back();

Profile	Example

Sub	Example_Profile()
				
				'	This	example	returns	the	base	grid	layer	for	Profile	Preferences
				'	in	the	current	project.
				Dim	prefPrj	As	AeccPreferencesProject
				Set	prefPrj	=	AeccApplication.ActiveProject.Preferences
				
				MsgBox	"The	base	grid	layer	for	Profle	Preferences	in	the	current	Project	is:	"	_
								&	prefPrj.Profile.GetString(kBaseGridLayer),	vbInformation,	"Profile	Example"
				
End	Sub

javascript:history.back();

ProfileBlocks	Example

Sub	Example_ProfileBlocks()
				
				'	This	example	returns	the	count	of	alignment	profiles	in
				'	the	active	document.
				Dim	doc	As	AeccDocument
				Set	doc	=	AeccApplication.ActiveDocument
				
				MsgBox	"The	number	of	alignment	profile	blocks	in	the	current	document	is:	"	&	_
								doc.ProfileBlocks.Count,	vbInformation,	"ProfileBlocks	Example"
				
End	Sub

javascript:history.back();

ProfileByType	Example

Examples:

l	EGProfiles	(Civil	Engineering	Feature)

l	FGProfiles	(Civil	Engineering	Feature)

Sub	Example_ProfileByType_EGProfiles()
				
				'	This	example	gets	the	surface	name	of	the	first	existing	ground	profile
				'	in	the	first	alignment	in	the	collection.	An	existing	ground	profile	is	set	based
				'	upon	the	surface	name	with	a	center	type.
				Dim	align	As	AeccAlignment
				Dim	EGProf	As	AeccEGProfile
				Dim	cenEGProf	As	AeccEGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	EGProf	=	align.EGProfiles.Item(0)
				
				Dim	surfName	As	String
				surfName	=	EGProf.SurfaceName
				
				Set	cenEGProf	=	align.EGProfiles.ProfileByType(kEgCenter,	surfName)
				
				MsgBox	"The	first	station	for	the	center	existing	ground	profile	is:	"	_
								&	cenEGProf.StationElevations(0),	vbInformation,	"ProfileByType	Example"
				
End	Sub

Sub	Example_ProfileByType_FGProfiles()
				
				'	This	example	uses	the	ProfileByType	method	to	get	the	finished	ground	profile
				'	based	on	a	center	type,	for	the	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	FGProf	As	AeccFGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)

javascript:history.back();

				Set	FGProf	=	align.FGProfiles.Item(0)
				
				Set	FGProf	=	align.FGProfiles.ProfileByType(kEgCenter)
				
				MsgBox	"The	Type	of	the	finished	ground	profile	is:	"	_
								&	FGProf.Type,	vbInformation,	"ProfileByType	Example"
				
End	Sub

ProgramPath	Example

Sub	Example_ProgramPath()
				
				'	This	example	returns	the	ProgramPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	ProgramPath	is:	"	&	prefFiles.ProgramPath,	_
								vbInformation,	"ProgramPath	Example"
				
End	Sub

javascript:history.back();

ProjectName	Example

Sub	Example_ProjectName()
				
				'	This	example	displays	the	ProjectName	setting	for	the	current	drawing
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				MsgBox	"The	setting	for	ProjectName	is:	"	&	dbPref.ProjectName,	_
								vbInformation,	"ProjectName	Example"
				
End	Sub

javascript:history.back();

ProjectPath	Example

Examples:

l	PreferencesFiles

l	Projects

Sub	Example_ProjectPath_PreferencesFiles()
				
				'	This	example	returns	the	ProjectPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	ProjectPath	is:	"	&	prefFiles.ProjectPath,	_
								vbInformation,	"ProjectPath	Example"
				
End	Sub

Sub	Example_ProjectPath_Projects()
				
				'	This	example	returns	the	ProjectPath	setting.
				Dim	projs	As	AeccProjects
				Set	projs	=	AeccApplication.Projects
				
				MsgBox	"The	ProjectPath	value	for	Projects	is:	"	&	projs.ProjectPath,	_
								vbInformation,	"ProjectPath	Example"
				
End	Sub

javascript:history.back();

Projects	Example

Sub	Example_Projects()
				
				'	This	example	returns	the	number	of	Projects	at	the	ProjectPath.
				Dim	projs	As	AeccProjects
				Set	projs	=	AeccApplication.Projects
				
				MsgBox	"The	number	of	projects	at	"	&	projs.ProjectPath	&	"	is:	"	&	projs.Count,	_
								vbInformation,	"Projects	Example"
				
End	Sub

javascript:history.back();

PrototypeName	Example

Sub	Example_PrototypeName()
				
				'	This	example	returns	the	PrototypeName	setting	for	the	first	Project
				'	in	the	collection
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.Projects.Item(0)
				
				MsgBox	"The	PrototypeName	for	the	first	Project	in	the	collection	is:	"	&	proj.PrototypeName	_
								,	vbInformation,	"PrototypeName	Example"
				
End	Sub

javascript:history.back();

PrototypePath	Example

Sub	Example_PrototypePath()
				
				'	This	example	returns	the	PrototypePath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	PrototypePath	is:	"	&	prefFiles.PrototypePath,	_
								vbInformation,	"PrototypePath	Example"
				
End	Sub

javascript:history.back();

Prototypes	Example

Sub	Example_Prototypes()
				
				'	This	example	returns	the	number	of	Prototypes	at	the	PrototypePath
				Dim	prots	As	AeccPrototypes
				Set	prots	=	AeccApplication.Prototypes
				
				MsgBox	"The	number	of	prototypes	is	"	&	prots.Count
				
End	Sub

javascript:history.back();

PVIs	Example

Sub	Example_PVIs()
				
				'	This	example	uses	the	PVIs	property	to	get	the	number	of	PVIs	for	the
				'	finished	ground	profile	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	FGProf	As	AeccFGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProf	=	align.FGProfiles.Item(0)
				
				MsgBox	"The	number	of	PVIs	for	the	finished	ground	profile	in	the	first	alignment	is:	"	_
								&	FGProf.PVIs.Count,	vbInformation,	"PVIs	Example"
				
End	Sub

javascript:history.back();

RadialDistance	Example

Sub	Example_RadialDistance()
				
				'	This	example	returns	the	RadialDistance	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	RadialDistance	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.RadialDistance
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"RadialDistance	Example"
				
End	Sub

javascript:history.back();

Radius	Example

Examples:

l	AlignCurve

l	ParcelCurve

Sub	Example_Radius_AlignCurve()
				
				'	This	example	returns	the	Radius	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	Radius	for	the	first	Curve	in	the	alignment	is:	"	_
												&	Format(alignEnt.Radius,	"0.00")
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"Radius	Example"
				
End	Sub

Sub	Example_Radius_ParcelCurve()
				
				'	This	example	returns	the	Radius	for	the	first	curve	in	the
				'	first	Parcel	in	the	collection.

javascript:history.back();

				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				Dim	parcelMsg	As	String
				parcelMsg	=	"There	is	no	Curve	entity	in	the	first	Parcel."
				
				'	Find	first	Curve	in	the	parcel
				For	Each	parcelEnt	In	parcel.ParcelEntities
								If	parcelEnt.Type	=	kParcelCurve	Then
												parcelMsg	=	"The	Radius	for	the	first	Curve	in	the	Parcel	is:	"	_
												&	Format(parcelEnt.Radius,	"0.00")
								Exit	For
								End	If
				Next
				
				MsgBox	parcelMsg,	vbInformation,	"Radius	Example"
				
End	Sub

RawDescription	Example

Sub	Example_RawDescription()
				
				'	This	example	returns	the	RawDescription	for	the	first	CogoPoint	in	the	collection.
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnt	=	AeccApplication.ActiveProject.CogoPoints.Item(0)
				
				MsgBox	"The	RawDescription	for	the	first	CogoPoint	in	the	collection	is:	"	&	_
								cogoPnt.RawDescription,	vbInformation,	"RawDescription	Example"
				
End	Sub

javascript:history.back();

RemoveAll	Example

Examples:

l	Alignment

l	StationEquations

Sub	Example_RemoveAll_Alignment()
				
				'	This	example	adds	an	Alignment	made	up	of	a	tangent.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				'	Add	an	Alignment	named	"Example	Alignment"	and	starting	at	Station	50.0
				Set	align	=	aligns.Add("Example	Alignment",	50#)
				
				'	Add	a	tangent
				Dim	tangent	As	AeccAlignTangent
				Set	tangent	=	align.AddTangent(0#,	0#,	150#,	0#)
				
				MsgBox	"The	total	number	of	entities	in	the	Alignment	is:	"	&	align.AlignEntities.Count,	vbInformation,	"RemoveAll	Example"
				
				'	Remove	the	entities	from	the	alignment
				align.RemoveAll
				
				MsgBox	"The	total	number	of	entities	in	the	Alignment	is:	"	&	align.AlignEntities.Count,	vbInformation,	"RemoveAll	Example"
				
End	Sub

Sub	Example_RemoveAll_StationEquations()
				
				'	This	example	removes	all	StationEquations	from
				'	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments

javascript:history.back();

				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				
				'	Get	the	first	alignment
				Set	align	=	aligns.Item(0)
				
				'	Set	the	first	alignment	current.
				aligns.CurrentAlignment	=	align.Name
				
				'	Show	then	StationEquation	count	for	the	first	alignment
				MsgBox	"The	StationEquation	count	for	the	first	alignment	is:	"	&	align.StationEquations.count,	vbInformation,	"RemoveAll	Example"
				
				'	Remove	all	StationEquations
				align.StationEquations.RemoveAll
				
				'	Show	the	StationEquation	count	as	zero	after	the	remove	all
				MsgBox	"The	StationEquation	count	for	the	first	alignment	is:	"	&	align.StationEquations.count,	vbInformation,	"RemoveAll	Example"
				
End	Sub

RemoveAllLabels	Example

Sub	Example_RemoveAllLabels()
				
				'	This	example	removes	all	labels	from	a	selected	contour
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	Contour	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	mode	As	Integer
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_CONTOUR"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				Dim	returnPnt	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Select	a	contour	line:	")
				ssetObj.SelectAtPoint	returnPnt,	groupCode,	dataCode
				
				Dim	objContour	As	AeccContour
				Set	objContour	=	ssetObj.Item(0)
				
				objContour.RemoveAllLabels

javascript:history.back();

				
End	Sub

RemoveLabelAt	Example

Sub	Example_RemoveLabelAt()
				
				'	This	example	removes	a	label	from	a	Contour	object	by	selecting	the
				'	contour
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	Contour	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	mode	As	Integer
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AECC_CONTOUR"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				Dim	returnPnt	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Enter	a	point	on	a	contour	line:	")
				ssetObj.SelectAtPoint	returnPnt,	groupCode,	dataCode
				
				Dim	Ent	As	AeccContour
				Set	Ent	=	ssetObj.Item(0)
				Ent.RemoveLabelAt	returnPnt(0),	returnPnt(1)

javascript:history.back();

				
End	Sub

Rename	Example

Examples:

l	Parcels

l	Surfaces

Sub	Example_Rename_Parcels()
				
				'	This	example	starts	by	creating	a	Parcel	named	"NewParcel".
				'	The	new	Parcel	name	displayed.	Finally,	the	new	Parcel	is	renamed
				'	to	"OldName"	and	is	displayed	again.
				Dim	parcels	As	AeccParcels
				Dim	parcel	As	AeccParcel
				Set	parcels	=	AeccApplication.ActiveProject.Parcels
				
				'	'	Add	a	new	Parcel	name	"NewParcel"
				Set	parcel	=	parcels.Add("NewParcel")
				
				MsgBox	"The	Parcel	name	is:	"	&	parcel.Name,	vbInformation,	"Rename	Example"
				
				'	'	Rename	the	new	Parcel	to	"OldParcel"
				parcels.Rename	"NewParcel",	"OldParcel"
				
				MsgBox	"The	Parcel	name	is:	"	&	parcel.Name,	vbInformation,	"Rename	Example"
				
End	Sub

Sub	Example_Rename_Surfaces()
				
				'	This	example	renames	a	the	first	Surface	in	the	collection	to	"FinalSurface".
				Dim	surfs	As	AeccSurfaces
				Dim	surf	As	AeccSurface
				Set	surfs	=	AeccApplication.ActiveProject.Surfaces
				

javascript:history.back();

				'	Get	the	name	of	the	first	surface	in	the	collection
				Set	surf	=	surfs.Item(0)
				Dim	surfName	As	String
				surfName	=	surf.Name
				
				'	Rename	the	surface
				surfs.Rename	surfName,	"FinalSurface"
				
				MsgBox	"The	Surface	name	FinalSurface	was	named:	"	&	surfName,	vbInformation,	"Rename	Example"
				
End	Sub

RevisionNumber	Example

Sub	Example_RevisionNumber()
				
				'	This	example	returns	the	RevisionNumber	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	RevisionNumber	for	the	first	surface	is:	"	&	surf.RevisionNumber	,	vbInformation,	"RevisionNumber	Example"
				
End	Sub

javascript:history.back();
javascript:history.back();

RightWidth	Example

Sub	Example_RightWidth()
				
				'	This	example	returns	the	right	width	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	alignXSects	As	AeccCrossSectionBlocks
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	alignXSect	=	alignXSects.Item(0)
				
				'Get	the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	station	As	String
				station	=	alignXSect.station
				
				MsgBox	"The	right	width	for	the	alignment	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								Format(alignXSect.RightWidth,	"0.00"),	vbInformation,	"RightWidth	Example"
				
End	Sub

RotateByDescriptionParam	Example

Sub	Example_RotateByDescriptionParam()
				
				'	This	example	returns	the	RotateByDescriptionParam	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	RotateByDescriptionParam	is:	"	&	dKey.RotateByDescriptionParam	_
								,	vbInformation,	"RotoateByDescriptionParam	Example"
				
End	Sub

javascript:history.back();

RotateByFixedFactor	Example

Sub	Example_RotateByFixedFactor()
				
				'	This	example	returns	the	RotateByFixedFactor	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	RotateByFixedFactor	is:	"	&	dKey.RotateByFixedFactor,	_
								vbInformation,	"RotateByFixedFactor	Example"
				
End	Sub

javascript:history.back();

RotateClockwise	Example

Sub	Example_RotateClockwise()
				
				'	This	example	returns	the	RotateClockwise	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	RotateClockwise	is:	"	&	dKey.RotateClockwise	_
								,	vbInformation,	"RotateClockwise	Example"
				
End	Sub

javascript:history.back();

RotateDescriptionParam	Example

Sub	Example_RotateDescriptionParam()
				
				'	This	example	returns	the	RotateDescriptionParam	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	RotateDescriptionParam	is:	"	&	dKey.RotateDescriptionParam,	_
								vbInformation,	"RotateDescriptionParam	Example"
				
End	Sub

javascript:history.back();

RotateFixedFactor	Example

Sub	Example_RotateFixedFactor()
				
				'	This	example	returns	the	RotateFixedFactor	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	RotateFixedFactor	is:	"	&	dKey.RotateFixedFactor	_
								,	vbInformation,	"RotateFixedFactor	Example"
				
End	Sub

javascript:history.back();

SampleElevation	Example

Sub	Example_SampleElevation()
				
				'	This	example	returns	an	array	of	points	between	a	selected	start	and	end	point
				'	for	the	first	surface	in	the	collection.	The	array	from	points	includes	the	start
				'	and	end	points	and	all	points	that	intersect	an	edge	between	the	start	and
				'	endpoint.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				Dim	pnt1	As	Variant
				Dim	pnt2	As	Variant
				Dim	derivedPnts	As	Variant
				
				'	Return	points	using	a	prompt
				pnt1	=	ThisDrawing.Utility.GetPoint(,	"Select	first	point:	")
				pnt2	=	ThisDrawing.Utility.GetPoint(pnt1,	"Select	second	point:	")
				
				derivedPnts	=	surf.SampleElevations(pnt1,	pnt2)
				
				MsgBox	"The	first	two	points	in	the	derived	points	are:"	&	vbCrLf	&	_
								derivedPnts(0)	&	",	"	&	derivedPnts(1)	&	",	"	&	derivedPnts(2)	&	vbCrLf	&	_
								derivedPnts(3)	&	",	"	&	derivedPnts(4)	&	",	"	&	derivedPnts(5),	vbInformation,	_
								"SampleElevations	Example"
				
End	Sub

javascript:history.back();

Save	Example

Examples:

l	Alignment

l	CogoPoint

l	DescriptionKey

l	PointGroup

Sub	Example_Save_Alignment()
				
				'	This	example	changes	the	Description	and	StartingStation
				'	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	Aligns.Item(0)
				
				'	Make	the	first	alignment	in	the	collection	current
				aligns.CurrentAlignment	=	align.Name
				
				'	Set	AutoSave	to	FALSE	to	prevent	writing	the	changes
				'	until	they	are	all	made
				aligns.AutoSave	=	False
				
				'	Make	changes
				align.Description	=	"New	Description"
				align.StartingStation	=	20#
				
				'	Save	changes
				align.Save
				
				'	Reset	AutoSave	to	the	default	state	of	TRUE
				aligns.AutoSave	=	True

javascript:history.back();

				
				MsgBox	"The	first	Alignments	Description	is:	"	&	align.Description	&	vbCrLf	&	_
								"The	first	Alignments	StartingStation	is:	"	&	align.StartingStation,	_
								vbInformation,	"Save	Example"
				
End	Sub

Sub	Example_Save_CogoPoint()
				
				'	This	example	changes	the	Northing,	Easting,	and	Elevation
				'	for	the	first	CogoPoint	in	the	collection.
				Dim	cogoPnts	As	AeccCogoPoints
				Dim	cogoPnt	As	AeccCogoPoint
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				Set	cogoPnt	=	cogoPnts.Item(0)
				
				'	Set	AutoSave	to	FALSE	to	prevent	writing	the	changes
				'	until	they	are	all	made
				cogoPnts.AutoSave	=	False
				
				'	Make	changes
				cogoPnt.Northing	=	100#
				cogoPnt.Easting	=	100#
				cogoPnt.Elevation	=	150#
				
				'	Save	changes
				cogoPnt.Save
				
				'	Reset	AutoSave	to	the	default	state	of	TRUE
				cogoPnts.AutoSave	=	True
				
				MsgBox	"The	following	changes	were	made	to	CogoPoint	"	&	cogoPnt.Number	&	":"	&	vbCrLf	&	_
								"			Northing:	"	&	cogoPnt.Northing	&	vbCrLf	&	_
								"			Easting:	"	&	cogoPnt.Easting	&	vbCrLf	&	_
								"			Elevation:	"	&	cogoPnt.Elevation,	vbInformation,	"Save	Example"
				
End	Sub

Sub	Example_Save_DescriptionKey()
				
				'	This	example	changes	the	layer	settings
				'	for	the	first	DescriptionKey	in	the	collection.
				Dim	dKeyFiles	As	AeccDescriptionKeyFiles
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFiles	=	AeccApplication.ActiveProject.DescriptionKeyFiles
				Set	dKeyFile	=	dKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				'	Set	AutoSave	to	FALSE	to	prevent	writing	the	changes
				'	until	they	are	all	made
				dKeyFiles.AutoSave	=	False
				
				'	Make	changes
				dKey.DescriptionLayer	=	"dKey	Desc"
				dKey.SymbolLayer	=	"dKey	Symb"
				
				'	Save	changes
				dKey.Save
				
				'	Reset	AutoSave	to	the	default	state	of	TRUE
				dKeyFiles.AutoSave	=	True
				
				MsgBox	"The	DescriptionLayer	is:	"	&	dkey.DescriptionLayer	&	vbCrLf	&	_
								"The	SymbolLayer	is:	"	&	dkey.SymbolLayer,	vbInformation,	"Save	Example"
				
End	Sub

Sub	Example_Save_PointGroup()
				
				'	This	example	changes	the	Description	and	Elevation
				'	for	the	first	PointGroup	in	the	collection.
				Dim	pntGrps	As	AeccPointGroups
				Dim	pntGrp	As	AeccPointGroup

				Set	pntGrps	=	AeccApplication.ActiveProject.PointGroups
				Set	pntGrp	=	pntGrps.Item(0)
				
				'	Set	AutoSave	to	FALSE	to	prevent	writing	the	changes
				'	until	they	are	all	made
				pntGrps.AutoSave	=	False
				
				'	Make	changes
				pntGrp.Description	=	"New	Description"
				pntGrp.Elevation	=	100#
				
				'	Save	changes
				pntGrp.Save
				
				'	Reset	AutoSave	to	the	default	state	of	TRUE
				pntGrps.AutoSave	=	True
				
				MsgBox	"The	first	PointGroup	Description	is:	"	&	pntGrp.Description	&	vbCrLf	&	_
								"The	first	PointGroup	Elevation	is:	"	&	pntGrp.Elevation,	vbInformation,	"Save	Example"
				
End	Sub

SaveAsDefault	Example

Sub	Example_SaveAsDefault()
				
				'	This	example	sets	the	TextHeight	setting	to	0.25
				'	and	saves	it	as	the	default.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				dbPref.TextHeight	=	0.25
				dbPref.SaveAsDefault
				
				MsgBox	"The	new	default	value	for	TextHeight	is:	"	&	dbPref.TextHeight,	_
								vbInformation,	"SaveAsDefault	Example"
				
End	Sub

javascript:history.back();

SaveSetupProfile	Example

Sub	Example_SaveSetupProfile()
				
				'	This	example	saves	a	new	drawing	setup	profile.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.DatabasePreferences
				
				'	The	file	extension	".set"	is	appended	automatically.
				dbPref.SaveSetupProfile("myprofile")
				
End	Sub

javascript:history.back();

SectionVolume	Example

Sub	Example_SectionVolume()
				
				'	This	example	calculates	the	volume	data	for	the	second	cross	section	in	the
				'	cross	section	collection	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				'	Define	result	variables
				Dim	cutArea	As	Double
				Dim	cutCentroid	As	Double
				Dim	cutVolume	As	Double
				Dim	fillArea	As	Double
				Dim	fillCentroid	As	Double
				Dim	fillVolume	As	Double
				
				'	Get	volume	data
				xSect.SectionVolume	kVolumeByAvgEndArea,	1#,	1#,	1#,	cutArea,	cutCentroid,	cutVolume,	fillArea,	fillCentroid,	fillVolume
				
				MsgBox	"The	volume	data	at	station	"	&	station	&	"	is:	"	&	vbCrLf	&	_
								"Cut	Area:	"	&	Format(cutArea,	"0.00")	&	vbCrLf	&	_
								"Cut	Centroid:	"	&	Format(cutCentroid,	"0.00")	&	vbCrLf	&	_
								"Cut	Volume:	"	&	Format(cutVolume,	"0.00")	&	vbCrLf	&	_
								"Fill	Area:	"	&	Format(fillArea,	"0.00")	&	vbCrLf	&	_
								"Fill	Centroid:	"	&	Format(fillCentroid,	"0.00")	&	vbCrLf	&	_
								"Fill	Volume:	"	&	Format(fillVolume,	"0.00"),	vbInformation,	"SectionVolumn	Example"
				

javascript:history.back();

End	Sub

ScaleByDescriptionParam	Example

Sub	Example_ScaleByDescriptionParam()
				
				'	This	example	returns	the	ScaleByDescriptionParam	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	ScaleByDescriptionParam	is:	"	&	dKey.ScaleByDescriptionParam	_
								,	vbInformation,	"ScaleByDescriptionKey	Example"
				
End	Sub

javascript:history.back();

ScaleByDrawingScale	Example

Sub	Example_ScaleByDrawingScale()
				
				'	This	example	returns	the	ScaleByDrawingScale	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	ScaleByDrawingScale	is:	"	&	dKey.ScaleByDrawingScale,	_
								vbInformation,	"ScaleByDrawingScale	Example"
				
End	Sub

javascript:history.back();

ScaleByFixedFactor	Example

Sub	Example_ScaleByFixedFactor()
				
				'	This	example	returns	the	ScaleByFixedFactor	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	ScaleByFixedFactor	is:	"	&	dKey.ScaleByFixedFactor	_
								,	vbInformation,	"ScaleByFixedFactor	Example"
				
End	Sub

javascript:history.back();

ScaleDescriptionParam	Example

Sub	Example_ScaleDescriptionParam()
				
				'	This	example	returns	the	ScaleDescriptionParam	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	ScaleDescriptionParam	is:	"	&	dKey.ScaleDescriptionParam	_
								,	vbInformation,	"ScaleDescriptionParam	Example"
				
End	Sub

javascript:history.back();

ScaleFixedFactor	Example

Sub	Example_ScaleFixedFactor()
				
				'	This	example	returns	the	ScaleFixedFactor	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	ScaleFixedFactor	is:	"	&	dKey.ScaleFixedFactor	_
								,	vbInformation,	"ScaleFixedFactor	Example"
				
End	Sub

javascript:history.back();

ScaleInXY	Example

Sub	Example_ScaleInXY()
				
				'	This	example	returns	the	ScaleInXY	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	ScaleInXY	is:	"	&	dKey.ScaleInXY,	_
								vbInformation,	"ScaleInXY	Example"
				
End	Sub

javascript:history.back();

ScaleInZ	Example

Sub	Example_ScaleInZ()
				
				'	This	example	returns	the	ScaleInZ	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	ScaleInZ	is:	"	&	dKey.ScaleInZ,	_
								vbInformation,	"ScaleInZ	Example"
				
End	Sub

javascript:history.back();

ScaleOnInsert	Example

Sub	Example_ScaleOnInsert()
				
				'	This	example	returns	the	ScaleOnInsert	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				'	Convert	the	scale	on	insert	value	to	a	string.
				Dim	scaleins	As	String
				If	dbPref.ScaleOnInsert	=	True	Then
								scaleins	=	"scale	on	insert."
				Else
								scaleins	=	"do	not	scale	on	insert."
				End	If
				
				MsgBox	"The	current	value	for	ScaleOnInsert	is	"	&	scaleins,	_
								vbInformation,	"ScaleOnInsert	Example"
				
End	Sub

javascript:history.back();

SearchType	Example

Sub	Example_SearchType()
				
				'	This	example	returns	how	the	Faces	collection	was	generated.
				Dim	surf	As	AeccSurface
				Dim	faces	As	AeccFaces
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	faces	=	Surf.Outputs.Faces
				
				Dim	msgStr	As	String
				
				Select	Case	faces.SearchType
				Case	kNoSearch
								msgStr	=	"No	search"
				Case	kSearchByBoundar
								msgStr	=	"Search	by	boundary"
				Case	kSearchByPath
								msgStr	=	"Search	by	path"
				Case	kSearchByPoint
								msgStr	=	"Search	by	point"
				End	Select
				
				MsgBox	"The	Faces	search	type	is	set	to:	"	&	msgStr,	vbInformation,	"SearchType	Example"
				
End	Sub

javascript:history.back();

SectionByStation	Example

Sub	Example_SectionByStation()
				
				'	This	example	returns	a	cross	section	by	providing	the	station
				'	to	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	xSects	As	AeccCrossSections
				Dim	xSect	As	AeccCrossSection
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	xSects	=	align.CrossSections
				
				'	Get	the	station	for	the	first	cross	section	in	the	cross	section	collection
				Dim	station	As	Double
				station	=	xSects.Item(0).station
				
				'	Get	the	cross	section	block	for	the	station	set	above
				Set	xSect	=	xSects.SectionByStation(station)
				
				MsgBox	"The	maimum	elevation	for	the	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								Format(xSect.MaxElevation,	"0.00"),	vbInformation,	"SectionByStation	Example"
				
End	Sub

javascript:history.back();

SetBoundingBox	Example

Sub	Example_SetBoundingBox()
				
				'	This	example	sets	a	surface	bounding	box	for	the	first	surface
				'	in	the	collection,	based	upon	two	picked	points.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				Dim	pnt1	As	Variant
				Dim	pnt2	As	Variant
				
				pnt1	=	ThisDrawing.Utility.GetPoint(,	"Select	first	corner	:	")
				pnt2	=	ThisDrawing.Utility.GetCorner(Pnt1,	"Select	other	corner:	")
				
				surf.SetBoundingBox	pnt1,	pnt2
				
End	Sub

javascript:history.back();

SetDouble	Example

Sub	Example_SetDouble()
				
				'	This	example	uses	SetDouble	to	define	the	ContLabelSpacingDist
				'	for	PreferencesSurface.
				Dim	surfPref	As	AeccPreferencesSurface
				Set	surfPref	=	AeccApplication.ActiveProject.preferences.Surface
				
				surfPref.SetDouble	kContLabelSpacingDist,	200#
				
				MsgBox	"The	value	for	ContLabelSpacingDist	is	"	&	surfPref.GetDouble(kContLabelSpacingDist),	_
								vbInformation,	"SetDouble	Example"
				
End	Sub

javascript:history.back();

SetInteger	Example

Sub	Example_SetInteger()
				
				'	This	example	uses	SetInteger	to	define	the	ContLabelPrecision
				'	for	PreferencesSurface.
				Dim	surfPref	As	AeccPreferencesSurface
				Set	surfPref	=	AeccApplication.ActiveProject.preferences.Surface
				
				surfPref.SetInteger	kContLabelPrecision,	3
				
				MsgBox	"The	value	for	ContLabelPrecision	is	"	&	surfPref.GetInteger(kContLabelPrecision),	_
								vbInformation,	"SetInteger	Example"
				
End	Sub

javascript:history.back();

SetReferenceCurve	Example

Sub	Example_SetReferenceCurve()
				
				'	This	example	uses	the	SetReferenceCurve	method	to	attach	curve	text
				'	to	a	selected	arc	or	circle
				
				Dim	ent	As	AcadEntity
				Dim	basePnt	As	Variant
				
				'	Pick	the	curve
				On	Error	Resume	Next
				RETRY:
				Err.Clear
				ThisDrawing.Utility.GetEntity	ent,	basePnt,	"Select	a	curve"
				If	Err	<>	0	Then
								ThisDrawing.Utility.Prompt	"No	entity	found"	+	vbCrLf
								GoTo	RETRY
				End	If
				If	ent.ObjectName	<>	"AcDbCircle"	And	_
								ent.ObjectName	<>	"AcDbArc"	Then
								ThisDrawing.Utility.Prompt	"Entity	is	not	an	arc	or	circle"	+	vbCrLf
								GoTo	RETRY
				End	If
				
				'	Attach	the	curve	text
				Dim	ctext	As	AeccCurveText
				Set	ctext	=	ThisDrawing.ModelSpace.AddCustomObject("AecDbCurveText")
				
				ctext.SetReferenceCurve	ent
				ctext.TextAbove	=	"ABOVE"
				ctext.TextBelow	=	"BELOW"
				
End	Sub

javascript:history.back();

SetString	Example

Sub	Example_SetSting()
				
				'	This	example	uses	SetString	to	define	the	SurfaceLayer
				'	for	PreferencesSurface.
				Dim	surfPref	As	AeccPreferencesSurface
				Set	surfPref	=	AeccApplication.ActiveProject.preferences.Surface
				
				surfPref.SetString	kSurfaceLayer,	"MyLayer"
				
				MsgBox	"The	value	for	SurfaceLayer	is	"	&	surfPref.GetString(kSurfaceLayer)	,	vbInformation,	"SetString	Example"
				
End	Sub

javascript:history.back();

SheetHeight	Example

Sub	Example_SheetHeight()
				
				'	This	example	returns	the	SheetHeight	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	SheetHeight	is:	"	&	dbPref.SheetHeight,	_
								vbInformation,	"SheetHeight	Example"
				
End	Sub

javascript:history.back();

SheetWidth	Example

Sub	Example_SheetWidth()
				
				'	This	example	returns	the	SheetWidth	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	value	for	SheetWidth	is	"	&	dbPref.SheetWidth,	_
								vbInformation,	"SheetWidth	Example"
				
End	Sub

javascript:history.back();

ShortTangent	Example

Sub	Example_ShortTangent()
				
				'	This	example	returns	the	ShortTangent	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	ShortTangent	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.ShortTangent
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"ShortTangent	Example"
				
End	Sub

javascript:history.back();

ShowStartUpDialog	Example

Sub	Example_ShowStartupDialog()
				
				'	This	example	returns	the	ShowStartupDialog	setting.
				Dim	prefUser	As	AeccPreferencesUser
				Set	prefUser	=	AeccApplication.Preferences.User
				
				MsgBox	"The	current	value	for	ShowStartupDialog	is:	"	&	prefUser.ShowStartupDialog,	vbInformation,	"ShowStartupDialog	Example"
				
End	Sub

javascript:history.back();

ShowSubFolders	Example

Sub	Example_ShowSubfolders()
				
				'	This	example	returns	the	ShowSubfolders	setting	for	the	active	project.
				Dim	dwgs	As	AeccDrawings
				Set	dwgs	=	AeccApplication.ActiveProject.Drawings
				
				MsgBox	"The	ShowSubfolders	value	for	Drawings	in	the	current	Project	is	"	&	dwgs.ShowSubfolders	_
								,	vbInformation,	"ShowSubfolders	Example"
				
End	Sub

javascript:history.back();

SpeedtablesPath	Example

Sub	Example_SpeedTablesPath()
				
				'	This	example	returns	the	SpeedTablesPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	SpeedTablesPath	is:	"	&	prefFiles.SpeedTablesPath,	_
								vbInformation,	"SpeedTablesPath	Example"
				
End	Sub

javascript:history.back();

SpiEasting	Example

Sub	Example_SpiEasting()
				
				'	This	example	returns	the	SpiEasting	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	SpiEasting	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.SpiEasting
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"SpiEasting	Example"
				
End	Sub

javascript:history.back();

SpilTangent	Example

Sub	Example_SpilTangent()
				
				'	This	example	returns	the	SpilTangent	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	SpilTangent	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.SpilTangent
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"SpilTangent	Example"
				
End	Sub

javascript:history.back();

SpiNorthing	Example

Sub	Example_SpiNorthing()
				
				'	This	example	returns	the	SpiNorthing	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	SpiNorthing	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.SpiNorthing
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"SpiNorthing	Example"
				
End	Sub

javascript:history.back();

SpiralType1	Example

Sub	Example_SpiralType1()
				
				'	This	example	returns	the	SpiralType1	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	SpiralType1	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.SpiralType1
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"SpiralType1	Example"
				
End	Sub

javascript:history.back();

SpiralType2	Example

Sub	Example_SpiralType2()
				
				'	This	example	returns	the	SpiralType2	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	SpiralType2	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.SpiralType2
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"SpiralType2	Example"
				
End	Sub

javascript:history.back();

StartDirection	Example

Examples:

l	AlignCurve

l	AlignSpiral

Sub	Example_StartDirection_AlignCurve()
				
				'	This	example	returns	the	StartDirection	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	StartDirection	for	the	first	Curve	in	the	alignment	is:	"	&	alignEnt.StartDirection
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"StartDirection	Example"
				
End	Sub

Sub	Example_StartDirection_AlignSpiral()
				
				'	This	example	returns	the	StartDirection	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment

javascript:history.back();

				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	StartDirection	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.StartDirection
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"StartDirection	Example"
				
End	Sub

StartEasting	Example

Examples:

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	ParcelEntity,	ParcelCurve,	ParcelLine

Sub	Example_StartEasting_AlignEntity()
				
				'	This	example	returns	the	StartEasting	for	the	first	entity	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnt	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	alignEnt	=	align.AlignEntities.Item(0)
				
				MsgBox	"The	StartEasting	of	the	first	entity	in	the	Alignment	is:	"	&	alignEnt.StartEasting,	_
								vbInformation,	"StartEasting	Example"
				
End	Sub

Sub	Example_StartEasting_ParcelEntity()
				
				'	This	example	returns	the	StartEasting	for	the	first	entity	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				MsgBox	"The	StartEasting	of	the	first	entity	in	the	Parcel	is:	"	&	parcelEnt.StartEasting,	_
								vbInformation,	"StartEasting	Example"
				
End	Sub

javascript:history.back();

StartingStation	Example

Examples:

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	Alignment

l	ProfileBlock	(Civil	Engineering	Feature)

Sub	Example_StartingStation_AlignEntity()
				
				'	This	example	returns	the	StartingStation	for	the	first	entity	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnt	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	alignEnt	=	align.AlignEntities.Item(0)
				
				MsgBox	"The	StartingStation	of	the	first	entity	in	the	Alignment	is:	"	&	_
								alignEnt.StartingStation,	vbInformation,	"StartingStation	Example"
				
End	Sub

Sub	Example_StartingStation_Alignment()
				
				'	This	example	returns	the	StartingStation	for	the	first	alignment
				'	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				MsgBox	"The	StartingStation	of	the	first	Alignment	is:	"	&	align.StartingStation,	_
								vbInformation,	"StartingStation	Example"
				
End	Sub

javascript:history.back();

Sub	Example_StartingStation_ProfileBlock()
				
				'	This	example	returns	the	StartingStation	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	StartingStation	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.StartingStation,	vbInformation,	"StartingStation	Example"
				
End	Sub

StartNorthing	Example

Examples:

l	AlignEntity,	AlignCurve,	AlignSpiral,	AlignTangent

l	ParcelEntity,	ParcelCurve,	ParcelLine

Sub	Example_StartNorthing_AlignEntity()
				
				'	This	example	returns	the	StartNorthing	for	the	first	entity	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnt	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	alignEnt	=	align.AlignEntities.Item(0)
				
				MsgBox	"The	StartNorthing	of	the	first	entity	in	the	Alignment	is:	"	&	alignEnt.StartNorthing,	_
								vbInformation,	"StartNorthing	Example"
				
End	Sub

Sub	Example_StartNorthing_ParcelEntity()
				
				'	This	example	returns	the	StartNorthing	for	the	first	entity	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				MsgBox	"The	StartNorthing	of	the	first	entity	in	the	Parcel	is:	"	&	parcelEnt.StartNorthing,	_
								vbInformation,	"StartNorthing	Example"
				
End	Sub

javascript:history.back();

Station	Example

Examples:

l	CrossSection	(Civil	Engineering	Feature)

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	PVI	(Civil	Engineering	Feature)

l	Superelevation	(Civil	Engineering	Feature)

Sub	Example_Station_CrossSection()
				
				'	This	example	returns	the	station	for	the	first	cross	section	in	the
				'	cross	section	collection	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				MsgBox	"The	station	for	the	first	cross	section	in	the	collection	is:	"	&	_
								station,	vbInformation,	"Station	Example"
				
End	Sub

Sub	Example_Station_CrossSectionBlock()
				
				'	This	example	returns	the	station	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	aligns	As	AeccAlignments

javascript:history.back();

				Dim	alignXSects	As	AeccCrossSectionBlocks
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	alignXSect	=	alignXSects.Item(0)
				
				'	Get	the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(alignXSect.station)
				
				MsgBox	"The	station	for	the	first	alignment	cross	section	in	the	collection	is:	"	&		_
								station,	vbInformation,	"Station	Example"
				
End	Sub

Sub	Example_Station_PVI()
				
				'	This	example	returns	the	Station	value	for	the	second	PVI	in	the
				'	first	finished	ground	of	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	FGProf	As	AeccFGProfile
				Dim	PVI	As	AeccPVI
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProf	=	align.FGProfiles.Item(0)
				Set	PVI	=	FGProf.PVIs.Item(1)
				
				MsgBox	"The	Station	of	the	second	PVI	is:	"	_
								&	Format(PVI.Station,	"0.000"),	vbInformation,	"Station	Example"
				
End	Sub

Sub	Example_Station_Superelevation()
				
				'	This	example	returns	the	data	for	the	first	superelevation	in	the
				'	superelevation	collection	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment

				Dim	sElev	As	AeccSuperelevation
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	sElev	=	align.Superelevations.Item(0)
				
				'		Get	the	alignment	name
				Dim	alignName	As	String
				alignName	=	align.Name
				
				'	Get	the	superelevation	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(sElev.station)
				
				'	Get	the	superelevation	curve	code
				Dim	crvCode	As	String
				Select	Case	sElev.curveCode
				Case	kSERightHandCurve
								crvCode	=	"Right	Hand	Curve"
				Case	kSELeftHandCurve
								crvCode	=	"Left	Hand	Curve"
				End	Select
				
				'	Get	the	superelevation	code
				Dim	supCode	As	String
				Select	Case	sElev.SuperelevationCode
				Case	kSEFullCrown
								supCode	=	"Full	Crown"
				Case	kSEHalfCrown
								supCode	=	"Half	Crown"
				Case	kSECrownRemoved
								supCode	=	"Crown	Removed"
				Case	kSEFullSuperelevations
								supCode	=	"Full	Superelevation"
				Case	kSEReverseCurve
								supCode	=	"Reverse	Curve"
				Case	kSECompoundCurve
								supCode	=	"Compound	Curve"

				End	Select
				
				MsgBox	"The	alignment	name	is:	"	&	alignName	&	vbCrLf	&	_
								"The	data	for	the	first	superelevation	is:	"	&	vbCrLf	&	_
								vbTab	&	"Station:	"	&	station	&	vbCrLf	&	_
								vbTab	&	"Curve	Code:	"	&	crvCode	&	vbCrLf	&	_
								vbTab	&	"Superelevation	Code:	"	&	supCode,	_
								vbInformation,	"Station	Example"
				
End	Sub

StationAhead	Example

Sub	Example_StationAhead()
				
				'	This	example	returns	the	StationAhead	value
				'	for	the	StationEquation	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	StaEqu	As	AeccStationEquation
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	StaEqu	=	align.StationEquations.Item(0)
				
				MsgBox	"The	setting	StationAhead	is	"	&	StaEqu.StationAhead,	vbInformation,	"StationAhead	Example"
				
End	Sub

javascript:history.back();

StationBack	Example

Sub	Example_StationBack()
				
				'	This	example	returns	the	StationBack	value
				'	for	the	StationEquation	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	StaEqu	As	AeccStationEquation
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	StaEqu	=	align.StationEquations.Item(0)
				
				MsgBox	"The	setting	StationBack	is	"	&	StaEqu.StationBack,	vbInformation,	"StationBack	Example"
				
End	Sub

javascript:history.back();

StationElevations	Example

Sub	Example_StationElevations()
				
				'	This	example	uses	StationElevations	to	displays	the	station	and	elevation
				'	for	the	first	existing	ground	profile	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	EGProf	As	AeccEGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	EGProf	=	align.EGProfiles.Item(0)
				
				MsgBox	"The	first	station	for	the	first	existing	ground	profile	is:	"	_
								&	Format(EGProf.StationElevations(0),	"0.00")	&	vbCrLf	&	_
								"The	first	elevation	for	the	first	existing	ground	profile	is:	"	_
								&	Format(EGProf.StationElevations(1),	"0.00")	&	vbCrLf,	_
								vbInformation,	"StaionElevations	Example"
				
End	Sub

javascript:history.back();

StationElevationToXy	Example

Sub	Example_StationElevationToXy()
				
				'	This	example	returns	the	StationElevationToXy	for	the	first	ProfileBlock
				'	in	the	collection.
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				Dim	StaElev(0	To	1)	As	Double
				Dim	XY	As	Variant
				Dim	station	As	Double
				Dim	elevation	As	Double
				
				'Get	the	station	and	the	elevation
				station	=	ThisDrawing.Utility.GetReal("Enter	the	station	for	the	X	value:	")
				elevation	=	ThisDrawing.Utility.GetReal("Enter	the	elevation	for	the	Y	value:	")
				
				'	Use	the	entered	values	to	get	the	X	and	Y	values
				staElev(0)	=	station
				staElev(1)	=	elevation
				
				XY	=	alignProf.StationElevationToXy(staElev)
				
				MsgBox	"The	X	value	for	the	StationElevation	is:	"	&	Format(XY(0),	"0.00")	&	vbCrLf	&	_
								"The	Y	value	for	the	StationElevation	is:	"	&	Format(XY(1),	"0.00")	_
								,	vbInformation,	"StationElevationToXy	Example"
				
End	Sub

javascript:history.back();

StationExample	Example

Sub	Example_StationEquations()
				
				'	This	example	returns	the	number	of	StationEquations	for	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	staEqu	As	AeccStationEquations
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	staEqu	=	align.StationEquations
				
				MsgBox	"The	number	of	StationEquations	in	this	project	is:	"	&	staEqu.Count	,	vbInformation,	"StationEquations	Example"
				
End	Sub

javascript:history.back();

StationIncrement	Example

Sub	Example_StationIncrement()
				
				'	This	example	returns	the	StationIncrement	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	StationIncrement	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.StationIncrement,	vbInformation,	"StationIncrement	Example"
				
End	Sub

javascript:history.back();

StationOffset	Example

Sub	Example_StationOffset()
				
				'	This	example	gets	the	StationOffset	from	user	supplied	point
				'	for	the	first	Alignment	in	the	collection..
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	returnPnt	As	Variant
				Dim	station	As	Double
				Dim	offset	As	Double
				Dim	direction	As	Double
				
				'	Get	the	point
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Enter	a	point	near	the	first	alignment:	")
				
				'	Get	the	station	offset	location
				align.StationOffset	returnPnt(0),	returnPnt(1),	station,	offset,	direction
				
				MsgBox	"The	StationOffset	for	the	first	Alignment	is:"	&	vbCrLf	&	_
								"			Station:	"	&	station	&	vbCrLf	&	_
								"			Offset:	"	&	offset	&	vbCrLf	&	_
								"			Direction:	"	&	direction,	vbInformation,	"StationOffset	Example"
				
End	Sub

javascript:history.back();

Status	Example

Sub	Example_Status()
				
				'	This	example	displays	the	Status	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				Dim	strStatus	As	String
				
				'	Set	string	to	status	of	surface
				Select	Case	surf.Status
				Case	kNoData
								strStatus	=	"has	no	data."
				Case	kNotBuilt
								strStatus	=	"is	not	built."
				Case	kUpToDate
								strStatus	=	"is	up	to	date."
				Case	kOutOfDate
								strStatus	=	"is	out	of	date."
				End	Select
				
				MsgBox	"The	current	surface	"	&	strStatus,	vbInformation,	"Status	Example"
				
End	Sub

javascript:history.back();

SuperelevationCode	Example

Sub	Example_SuperelevationCode()
				
				'	This	example	returns	the	data	for	the	first	superelevation	in	the
				'	superelevation	collection	for	the	first	alignment	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	sElev	As	AeccSuperelevation
				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	sElev	=	align.Superelevations.Item(0)
				
				'		Get	the	alignment	name
				Dim	alignName	As	String
				alignName	=	align.Name
				
				'	Get	the	superelevation	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(sElev.station)
				
				'	Get	the	superelevation	curve	code
				Dim	crvCode	As	String
				Select	Case	sElev.curveCode
				Case	kSERightHandCurve
								crvCode	=	"Right	Hand	Curve"
				Case	kSELeftHandCurve
								crvCode	=	"Left	Hand	Curve"
				End	Select
				
				'	Get	the	superelevation	code
				Dim	supCode	As	String
				Select	Case	sElev.SuperelevationCode
				Case	kSEFullCrown
								supCode	=	"Full	Crown"
				Case	kSEHalfCrown

javascript:history.back();

								supCode	=	"Half	Crown"
				Case	kSECrownRemoved
								supCode	=	"Crown	Removed"
				Case	kSEFullSuperelevations
								supCode	=	"Full	Superelevation"
				Case	kSEReverseCurve
								supCode	=	"Reverse	Curve"
				Case	kSECompoundCurve
								supCode	=	"Compound	Curve"
				End	Select
				
				MsgBox	"The	alignment	name	is:	"	&	alignName	&	vbCrLf	&	_
								"The	data	for	the	first	superelevation	is:	"	&	vbCrLf	&	_
								vbTab	&	"Station:	"	&	station	&	vbCrLf	&	_
								vbTab	&	"Curve	Code:	"	&	crvCode	&	vbCrLf	&	_
								vbTab	&	"Superelevation	Code:	"	&	supCode,	_
								vbInformation,	"SuperelevationCode	Example"
				
End	Sub

Superelevations	Example

Sub	Example_Superelevations()
				
				'	This	example	returns	the	number	of	superelevations	for	the
				'	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				MsgBox	"The	number	of	superelevations	in	first	alignment	is:	"	_
								&	align.Superelevations.Count	,	vbInformation,	"Superelevations	Example"
				
End	Sub

javascript:history.back();

Surface	Example

Sub	Example_Surface()
				
				'	This	example	returns	the	PreferencesSurface	object	that
				'	is	used	to	access	the	SurfaceLayer	property
				Dim	surfPref	As	AeccPreferencesSurface
				Set	surfPref	=	AeccApplication.ActiveProject.preferences.Surface
				
				MsgBox	"The	Surface	preferences	for	SurfaceLayer	is:	"	&	surfPref.GetString(kSurfaceLayer),	_
								vbInformation,	"Surface	Example"
				
End	Sub

javascript:history.back();

SurfaceName	Example

Sub	Example_SurfaceName()
				
				'	This	example	uses	SurfaceName	to	displays	the	name	of	the	surface
				'	for	the	first	existing	ground	profile	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	EGProf	As	AeccEGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	EGProf	=	align.EGProfiles.Item(0)
				
				MsgBox	"The	SurfaceName	for	the	first	existing	ground	profile	is:	"	_
								&	EGProf.SurfaceName,	vbInformation,	"SurfaceName	Example"
				
End	Sub

javascript:history.back();

Surfaces	Example

Sub	Example_Surfaces()
				
				'	This	example	returns	the	vertical	exaggeration	factor	for	Surfaces
				'	Preferences	in	the	current	project.
				Dim	prefPrj	As	AeccPreferencesProject
				Set	prefPrj	=	AeccApplication.ActiveProject.Preferences
				
				MsgBox	"The	vertical	exaggeration	factor	for	Surfaces	Preferences	in	the	current	Project	is:	"	&	prefPrj.Surface.GetDouble(kVertExaggerationFactor)	_
								,	vbInformation,	"Surfaces	Example"
				
End	Sub

javascript:history.back();

SymbolBlock	Example

Sub	Example_SymbolBlock()
				
				'	This	example	returns	the	SymbolBlock	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	SymbolBlock	is	"	&	dKey.SymbolBlock,	_
								vbInformation,	"SymbolBlock	Example"
				
End	Sub

javascript:history.back();

SymbolLayer	Example

Sub	Example_SymbolLayer()
				
				'	This	example	returns	the	SymbolLayer	for	the	first
				'	DescriptionKey	in	the	first	DescriptionKeyFile	in	the	collection.
				Dim	dKeyFile	As	AeccDescriptionKeyFile
				Dim	dKey	As	AeccDescriptionKey
				Set	dKeyFile	=	AeccApplication.ActiveProject.DescriptionKeyFiles.Item(0)
				Set	dKey	=	dKeyFile.Item(0)
				
				MsgBox	"The	value	for	DescriptionKey	SymbolLayer	is	"	&	dKey.SymbolLayer,	_
								vbInformation,	"SymbolLayer	Example"
				
End	Sub

javascript:history.back();

SymbolManagerPath	Example

Sub	Example_SymbolManagerPath()
				
				'	This	example	returns	the	SymbolManagerPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	SymbolManagerPath	is:	"	&	prefFiles.SymbolManagerPath,	_
								vbInformation,	"SymbolManagerPath	Example"
				
End	Sub

javascript:history.back();

SystemPath	Example

Sub	Example_SystemPath()
				
				'	This	example	returns	the	SystemPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	SystemPath	is:	"	&	prefFiles.SystemPath,	_
								vbInformation,	"SystemPath	Example"
				
End	Sub

javascript:history.back();

TangentLabelIncrement	Example

Sub	Example_TangentLabelIncrement()
				
				'	This	example	returns	the	TangentLabelIncrement	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	TangentLabelIncrement	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.TangentLabelIncrement,	vbInformation,	"TangentlabelIncrement	Example"
				
End	Sub

javascript:history.back();

TangentLength	Example

Examples:

l	AlignCurve

l	ParcelCurve

Sub	Example_TangentLength_AlignCurve()
				
				'	This	example	returns	the	TangentLength	for	the	first	Curve	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Curve	entity	in	the	first	Alignment."
				
				'	Find	first	Curve	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kCurve	Then
												alignMsg	=	"The	TangentLength	for	the	first	Curve	in	the	alignment	is:	"	_
												&	Format(alignEnt.TangentLength,	"0.00")
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"TangentLength	Example"
				
End	Sub

Sub	Example_TangentLength_ParcelCurve()
				
				'	This	example	returns	the	TangentLength	for	the	first	curve	in	the
				'	first	Parcel	in	the	collection.

javascript:history.back();

				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				Dim	parcelMsg	As	String
				parcelMsg	=	"There	is	no	Curve	entity	in	the	first	Parcel."
				
				'	Find	first	Curve	in	the	parcel
				For	Each	parcelEnt	In	parcel.ParcelEntities
								If	parcelEnt.Type	=	kParcelCurve	Then
												parcelMsg	=	"The	TangentLength	for	the	first	Curve	in	the	Parcel	is:	"	_
												&	Format(parcelEnt.TangentLength,	"0.00")
								Exit	For
								End	If
				Next
				
				MsgBox	parcelMsg,	vbInformation,	"TangentLength	Example"
				
End	Sub

TempPath	Example

Sub	Example_TempPath()
				
				'	This	example	returns	the	TempPath	setting.
				Dim	prefFiles	As	AeccPreferencesFiles
				Set	prefFiles	=	AeccApplication.Preferences.Files
				
				MsgBox	"The	current	value	for	TempPath	is:	"	&	prefFiles.TempPath,	vbInformation,	"TempPath	Example"
				
End	Sub

javascript:history.back();

TextAbove	Example

Sub	Example_TextAbove()
				
				'	This	example	returns	the	TextAbove	setting	for	the
				'	first	CurveText	object	in	a	selection	set
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	CurveText	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AEC_CURVETEXT"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode
				
				Dim	objCrvTxt	As	AeccCurveText
				Set	objCrvTxt	=	ssetObj.Item(0)
				
				MsgBox	"The	setting	for	TextAbove	is:	"	&	objCrvTxt.TextAbove	,	vbInformation,	"TextAbove	Example"
				
End	Sub

javascript:history.back();

TextBelow	Example

Sub	Example_TextBelow()
				
				'	This	example	returns	the	TextBelow	setting	for	the
				'	first	CurveText	object	in	a	selection	set
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	CurveText	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AEC_CURVETEXT"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode
				
				Dim	objCrvTxt	As	AeccCurveText
				Set	objCrvTxt	=	ssetObj.Item(0)
				
				MsgBox	"The	setting	for	TextBelow	is:	"	&	objCrvTxt.TextBelow	,	vbInformation,	"TextBelow	Example"
				
End	Sub

javascript:history.back();

TextHeight	Example

Sub	Example_TextHeight()
				
				'	This	example	displays	the	TextHeight	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				MsgBox	"The	current	value	for	TextHeight	is:	"	&	dbPref.TextHeight,	_
				vbInformation,	"TextHeight	Example"
				
End	Sub

javascript:history.back();

TextLayer	Example

Sub	Example_TextLayer()
				
				'	This	example	returns	the	TextLayer	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	TextLayer	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.TextLayer,	vbInformation,	"TextLayer	Example"
				
End	Sub

javascript:history.back();

TextOffsetAbove	Example

Sub	Example_TextOffsetAbove()
				
				'	This	example	returns	the	TextOffsetAbove	setting	for	the
				'	first	CurveText	object	in	a	selection	set
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	CurveText	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AEC_CURVETEXT"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode
				
				Dim	objCrvTxt	As	AeccCurveText
				Set	objCrvTxt	=	ssetObj.Item(0)
				
				MsgBox	"The	setting	for	TextOffsetAbove	is:	"	&	objCrvTxt.TextOffsetAbove	,	vbInformation,	"TextOffsetAbove	Example"
				
End	Sub

javascript:history.back();

TextOffsetBelow	Example

Sub	Example_TextOffsetBelow()
				
				'	This	example	returns	the	TextOffsetBelow	setting	for	the
				'	first	CurveText	object	in	a	selection	set
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	CurveText	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AEC_CURVETEXT"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode
				
				Dim	objCrvTxt	As	AeccCurveText
				Set	objCrvTxt	=	ssetObj.Item(0)
				
				MsgBox	"The	setting	for	TextOffsetBelow	is:	"	&	objCrvTxt.TextOffsetBelow	,	vbInformation,	"TextOffsetBelow	Example"
				
End	Sub

javascript:history.back();

TextSize	Example

Sub	Example_TextSize()
				
				'	This	example	returns	the	TextSize	setting	for	the
				'	first	CurveText	object	in	a	selection	set
				
				On	Error	Resume	Next
				
				'	Delete	existing	SelectionSet
				ThisDrawing.SelectionSets("SSet").Delete
				
				'	Create	the	selection	set	based	on	a	point	selection
				'	and	filter	for	CurveText	objects
				Dim	ssetObj	As	AcadSelectionSet
				Set	ssetObj	=	ThisDrawing.SelectionSets.Add("SSet")
				
				Dim	gpCode(0)	As	Integer
				Dim	dataValue(0)	As	Variant
				
				gpCode(0)	=	0
				dataValue(0)	=	"AEC_CURVETEXT"
				
				Dim	groupCode	As	Variant
				Dim	dataCode	As	Variant
				
				groupCode	=	gpCode
				dataCode	=	dataValue
				ssetObj.SelectOnScreen	groupCode,	dataCode
				
				Dim	objCrvTxt	As	AeccCurveText
				Set	objCrvTxt	=	ssetObj.Item(0)
				
				MsgBox	"The	setting	for	TextSize	is:	"	&	objCrvTxt.TextSize,	vbInformation,	"TextSize	Example"
				
End	Sub

javascript:history.back();

ThetaExt	Example

Sub	Example_ThetaExt()
				
				'	This	example	returns	the	ThetaExt	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	ThetaExt	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.ThetaExt
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"TheataExt	Example"
				
End	Sub

javascript:history.back();

Time	Example

Sub	Example_Time()
				
				'	This	example	returns	the	Time	for	the	first	FileLock	in	the	collection.
				Dim	filelock	As	AeccFileLock
				Set	filelock	=	AeccApplication.ActiveProject.fileLocks.Item(0)
				
				MsgBox	"The	Time	of	the	first	FileLock	in	the	collection	is:	"	&	filelock.Time,	_
								vbInformation,	"Time	Example"
				
End	Sub

javascript:history.back();

TinPoints	Example

Sub	Example_TinPoints()
				
				'	This	example	returns	the	number	of	TinPoints	in	the	first
				'	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfOut	As	AeccSurfaceOutputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfOut	=	surf.Outputs
				
				MsgBox	"The	number	of	TinPoints	in	the	first	Surface	is:	"	&	surfOut.TinPoints.Count	_
								,	vbInformation,	"TinPoints	Example"
				
End	Sub

javascript:history.back();

TotalX	Example

Sub	Example_TotalX()
				
				'	This	example	returns	the	TotalX	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	TotalX	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.TotalX
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"TotalX	Example"
				
End	Sub

javascript:history.back();

TotalY	Example

Sub	Example_TotalY()
				
				'	This	example	returns	the	TotalY	for	the	first	Spiral	found	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnts	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				
				Dim	alignMsg	As	String
				alignMsg	=	"There	is	no	Spiral	entity	in	the	first	Alignment."
				
				'	Find	first	Spiral	in	the	alignment
				For	Each	alignEnt	In	align.AlignEntities
								If	alignEnt.Type	=	kSpiral	Then
												alignMsg	=	"The	TotalY	for	the	first	Spiral	in	the	alignment	is:	"	&	alignEnt.TotalY
												Exit	For
								End	If
				Next
				
				MsgBox	alignMsg,	vbInformation,	"TotalY	Example"
				
End	Sub

javascript:history.back();

Type	Example

Examples:

l	AlignEntity,	AlignCurve,	AlignCurve,	AlignTangent

l	Boundary

l	Breakline

l	CrossSectionSurface	(Civil	Engineering	Feature)

l	EGProfile	(Civil	Engineering	Feature)

l	FGProfile	(Civil	Engineering	Feature)

l	ParcelEntity,	ParcelCurve,	ParcelLine

l	StationEquation

l	Surface

l	Watershed

Sub	Example_Type_AlignEntity()
				
				'	This	example	returns	the	Type	setting	for	the	first	entity	in	the
				'	first	Alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	alignEnt	As	AeccAlignEntity
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	alignEnt	=	align.AlignEntities.Item(0)
				
				Dim	alignType	As	String
				
				Select	Case	alignEnt.Type
				Case	kCurve
								alignType	=	"Curve"

javascript:history.back();

				Case	kSpiral
								alignType	=	"Spiral"
				Case	kTangent
								alignType	=	"Tangent"
				End	Select
				
				MsgBox	"The	Type	for	the	first	entity	in	the	alignment	is:	"	&	alignType	_
								,	vbInformation,	"Type	Example"
				
End	Sub

Sub	Example_Type_Boundary()
				
				'	This	example	returns	the	Type
				'	for	the	first	Boundary	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	bound	As	AeccBoundary
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	bound	=	surf.Inputs.Boundaries.Item(0)
				
				Dim	bndType	As	String
				
				Select	Case	bound.Type
				Case	kBoundaryTypeShow
								bndType	=	"Visible"
				Case	kBoundaryTypeHide
								bndType	=	"Hidden"
				Case	kBoundaryTypeOuter
								bndType	=	"Outer"
				End	Select
				
				MsgBox	"The	Type	for	the	first	Boundary	is:	"	&	bndType	_
								,	vbInformation,	"Type	Example"
				
End	Sub

Sub	Example_Type_BreakLine()

				
				'	This	example	returns	the	Type
				'	for	the	first	BreakLine	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	brkLine	As	AeccBreakLine
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	brkLine	=	surf.Inputs.BreakLines.Item(0)
				
				Dim	brkType	As	String
				
				Select	Case	brkLine.Type
				Case	kStandaed
								brkType	=	"Standard"
				Case	kProximety
								brkType	=	"Proximity"
				Case	kWallLeft
								brkType	=	"Wall	Left"
				Case	kWallRight
								brkType	=	"Wall	Right"
				Case	kNondestructive
								brkType	=	"Non	Destructive"
				End	Select
				
				MsgBox	"The	Type	for	the	first	BreakLine	is:	"	&	brkType	_
								,	vbInformation,	"Type	Example"
				
End	Sub

Sub	Example_Type_CrossSectionSurface()
				
				'	This	example	returns	the	surface	type	for	the	first	cross
				'	section	surface	in	the	collection	for	the	first	cross	section
				'	in	the	collection.
				Dim	aligns	As	AeccAlignments
				Dim	align	As	AeccAlignment
				Dim	xSect	As	AeccCrossSection
				Dim	xSectSurf	As	AeccCrossSectionSurface

				Set	aligns	=	AeccApplication.ActiveProject.Alignments
				Set	align	=	aligns.Item(0)
				Set	xSect	=	align.CrossSections.Item(0)
				Set	xSectSurf	=	xSect.CrossSectionSurfaces.Item(0)
				
				'		Get	the	alignment	name
				Dim	alignName	As	String
				alignName	=	align.Name
				
				'	Get	the	cross	section	station	and	format	it
				Dim	station	As	String
				station	=	aligns.DoubleToStaFormat(xSect.station)
				
				'	Get	the	cross	section	surface	name
				Dim	surfName	As	String
				surfName	=	xSectSurf.Name
				
				'	Get	the	cross	section	surface	type
				Dim	xSurfType	As	String
				
				Select	Case	xSectSurf.Type
				Case	kExistingGround
								xSurfType	=	"Existing	Ground"
				Case	kTopSurface
								xSurfType	=	"Top	Surface"
				Case	kDatumSurface
								xSurfType	=	"Datum	Surface"
				Case	kTemplateSurface
								xSurfType	=	"Template	Surface"
				Case	kSubassemblySurface
								xSurfType	=	"Subassembly	Surface"
				Case	kMatchSurface
								xSurfType	=	"Match	Surface"
				End	Select
				
				MsgBox	"The	alignment	name	is:	"	&	alignName	&	vbCrLf	&	_
								"The	first	cross	section	is	at	station:	"	&	station	&	vbCrLf	&	_

								"The	first	surface	name	is:	"	&	surfName	&	vbCrLf	&	_
								"The	first	surface	type	is:	"	&	xSurfType,	vbInformation	,	"Type	Example"
				
End	Sub

Sub	Example_Type_EGProfile()
				
				'	This	example	returns	the	Type	setting	for	the	first	existing	ground	profile
				'	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment
				Dim	EGProf	As	AeccEGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	EGProf	=	align.EGProfiles.Item(0)
				
				Dim	EGProfType	As	String
				
				Select	Case	EGProf.Type
				Case	kEgCenter
								EGProfType	=	"Center"
				Case	kEgLeft
								EGProfType	=	"Left"
				Case	kEgNone
								EGProfType	=	"None"
				Case	kEgRight
								EGProfType	=	"Right"
				End	Select
				
				MsgBox	"The	Type	for	the	first	existing	ground	profile	in	the	alignment	is:	"	&	EGProfType	_
								,	vbInformation,	"Type	Example"
				
End	Sub

Sub	Example_Type_FGProfile()
				
				'	This	example	returns	the	Type	setting	for	the	finished	ground	profile
				'	in	the	first	alignment	in	the	collection.
				Dim	align	As	AeccAlignment

				Dim	FGProf	As	AeccFGProfile
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	FGProf	=	align.FGProfiles.Item(0)
				
				Dim	FGProfType	As	String
				
				Select	Case	FGProf.Type
				Case	kFgCenter
								FGProfType	=	"Center"
				Case	kFgDitchLeft
								FGProfType	=	"Ditch	Left"
				Case	kFgDitchRight
								FGProfType	=	"Ditch	Right"
				Case	kFgLeft1
								FGProfType	=	"Left	1"
				Case	kFgLeft2
								FGProfType	=	"Left	2"
				Case	kFgLeft3
								FGProfType	=	"Left	3"
				Case	kFgLeft4
								FGProfType	=	"Left	4"
				Case	kFgLeft5
								FGProfType	=	"Left	5"
				Case	kFgLeft6
								FGProfType	=	"Left	6"
				Case	kFgLeft7
								FGProfType	=	"Left	7"
				Case	kFgLeft8
								FGProfType	=	"Left	9"
				Case	kFgNone
								FGProfType	=	"None"
				Case	kFgRight1
								FGProfType	=	"Right	1"
				Case	kFgRight2
								FGProfType	=	"Right	2"
				Case	kFgRight3
								FGProfType	=	"Right	3"

				Case	kFgRight4
								FGProfType	=	"Right	4"
				Case	kFgRight5
								FGProfType	=	"Right	5"
				Case	kFgRight6
								FGProfType	=	"Right	6"
				Case	kFgRight7
								FGProfType	=	"Right	7"
				Case	kFgRight8
								FGProfType	=	"Right	8"
				End	Select
				
				MsgBox	"The	Type	for	the	finished	ground	profile	in	the	alignment	is:	"	&	FGProfType	_
								,	vbInformation,	"Type	Example"
				
End	Sub

Sub	Example_Type_ParcelEntity()
				
				'	This	example	returns	the	Type	for	the	first	entity	in	the
				'	first	Parcel	in	the	collection.
				Dim	parcel	As	AeccParcel
				Dim	parcelEnt	As	AeccParcelEntity
				Set	parcel	=	AeccApplication.ActiveProject.Parcels.Item(0)
				Set	parcelEnt	=	parcel.ParcelEntities.Item(0)
				
				Dim	parcelType	As	String
				
				Select	Case	parcelEnt.Type
				Case	kParcelCurve
								parcelType	=	"Curve"
				Case	kParcelLine
								parcelType	=	"Line"
				End	Select
				
				MsgBox	"The	Type	of	the	first	entity	in	the	Parcel	is:	"	&	parcelType,	_
								vbInformation,	"Type	Example"

				
End	Sub

Sub	Example_Type_StationEquation()
				
				'	This	example	returns	the	Type	setting	for	StationEquation.
				Dim	align	As	AeccAlignment
				Dim	staEqu	As	AeccStationEquation
				Set	align	=	AeccApplication.ActiveProject.Alignments.Item(0)
				Set	staEqu	=	align.StationEquations.Item(0)
				
				'	Convert	the	type	to	a	string.
				Select	Case	staEqu.Type
				Case	kIncreasing
								staType	=	"Station	Equation	increases	stationing."
				Case	kDecreasing
								staType	=	"Station	Equation	decreases	stationing."
				End	Select
				
				MsgBox	"The	current	value	for	Type	is	"	&	staType,	vbInformation,	"Type	Example"
				
End	Sub

Sub	Example_Type_Surface()
				
				'	This	example	returns	the	Type	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				Dim	surfType	as	String
				
				'	Convert	the	type	to	a	string.
				Select	Case	surf.Type
				Case	kUnknownSurface
								surfType	=	"The	surface	type	is	Unknown."
				Case	kTin
								surfType	=	"The	surface	type	is	Surface."

				Case	kCompositeVolumn
								surfType	=	"The	surface	type	is	Composite	Volume."
				Case	kGridVolumn
				surfType	=	"The	surface	type	is	Grid	Volume."
				End	Select
				
				MsgBox	surfType,	vbInformation,	"Type	Example"
				
End	Sub

Sub	Example_Type_Watershed()
				
				'	This	example	returns	the	Type	or	Watershed
				'	for	the	first	WaterShed	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	wShed	As	AeccWaterShed
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	wShed	=	surf.Outputs.WaterSheds.Item(0)
				
				Dim	wShedType	As	String
				
				Select	Case	wShed.Type
				Case	kBoundaryPoint
								wShedType	=	"includes	a	boundary	point."
				Case	kBoundarySegment
								wShedType	=	"includes	part	of	a	boundary."
				Case	kLocalMin
								wShedType	=	"is	a	depression."
				Case	kFlatArea
								wShedType	=	"has	a	flat	area."
				Case	kMultiDrain
								wShedType	=	"has	multiple	drains."
				End	Select
				
				MsgBox	"The	first	WaterShed	"	&	wShedType,	vbInformation,	"Type	Example"
				
End	Sub

UnLockPoints	Example

Sub	Example_UnLockPoints()
				
				'	This	examples	locks	a	series	of	point	numbers	and
				'	then	unlocks	a	subset	of	those	point	numbers.
				Dim	cogoPnts	As	AeccCogoPoints
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				'	Create	locked	point	string
				Dim	pntString	As	String
				pntString	=	"1,4-8,40,10,12"
				
				'	Lock	points
				cogoPnts.LockPoints	(pntString)
				
				MsgBox	"Locked	point	numbers	are	"	&	cogoPnts.LockedPointNumbers,	_
				vbInformation,	"UnLockPoints	Example"
				
				'	Create	unlock	point	string
				pntString	=	"4-8"
				
				'	Unlock	points
				cogoPnts.UnlockPoints	(pntString)
				
				MsgBox	"Locked	point	numbers	are	"	&	cogoPnts.LockedPointNumbers,	_
								vbInformation,	"UnLockPoints	Example"
				
End	Sub

javascript:history.back();

UpperRight	Example

Sub	Example_UpperRight()
				
				'	This	example	returns	the	Datum	Elevation	for	the	first	ProfileBlock
				'	in	the	collection.
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				Dim	coords	As	Variant
				coords	=	alignProf.UpperRight
				
				MsgBox	"The	UpperRight	coordinates	for	the	first	Alignment	Profile	are:"	&	vbCrLf	&	_
								"X	Value:	"	&	Format(coords(0),	"0.00")	&	vbCrLf	&	_
								"Y	Value:	"	&	Format(coords(1),	"0.00"),	vbInformation,	"UpperRight	Example"
				
End	Sub

javascript:history.back();

UsedPointNumbers	Example

Sub	Example_UsedPointNumbers()
				
				'	This	gets	the	UsedPointNumbers	in	the	CogoPoints	collection
				Dim	cogoPnts	As	AeccCogoPoints
				Set	cogoPnts	=	AeccApplication.ActiveProject.CogoPoints
				
				MsgBox	"The	UsedPointNumbers	in	the	CogoPoints	collection	are:	"	&	cogoPnts.UsedPointNumbers,	_
								vbInformation,	"UsedPointNumbers	Example"
				
End	Sub

javascript:history.back();

User	Example

Sub	Example_User()
				
				'	This	example	returns	the	current	setting	of	LastUsedProject
				'	from	the	preferences	object.
				Dim	prefs	As	AeccPreferences
				Set	prefs	=	AeccApplication.Preferences
				
				MsgBox	"The	last	used	project	was	"	&	prefs.User.LastUsedProj,	vbInformation,	"User	Example"
				
End	Sub

javascript:history.back();

Utility	Example

Sub	Example_Utility()
				
				'	This	example	returns	the	AngleToString	value	for	0.785398	radians	using
				'	the	active	document.
				Dim	doc	As	AeccDocument
				Set	doc	=	AeccApplication.ActiveDocument
				
				MsgBox	"The	setting	for	AngleToString	is	"	&	doc.Utility.AngleToString(0.785398,	acDegrees,	4)	_
								,	vbInformation,	"Utility	Example"
				
End	Sub

javascript:history.back();

VerticalGridLayer	Example

Sub	Example_VerticalGridLayer()
				
				'	This	example	returns	the	VerticalGridLayer	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	VerticalGridLayer	for	the	first	ProfileBlock	in	the	collection	is:	"	_
									&	alignProf.VerticalGridLayer,	vbInformation,	"VerticalGridLayer	Example"
				
End	Sub

javascript:history.back();

VerticalScale	Example

Examples:

l	CrossSectionBlock	(Civil	Engineering	Feature)

l	DatabasePreferences

l	ProfileBlock	(Civil	Engineering	Feature)

Sub	Example_VerticalScale_CrossSectionBlock()
				
				'	This	example	returns	the	vertical	scale	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	alignXSects	As	AeccCrossSectionBlocks
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	alignXSect	=	alignXSects.Item(0)
				
				'Get	the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	station	As	String
				station	=	alignXSect.station
				
				MsgBox	"The	vertical	scale	for	the	alignment	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								Format(alignXSect.VerticalScale,	"0.00"),	vbInformation,	"VerticalScale	Example"
				
End	Sub

Sub	Example_VerticalScale_DatabasePreferences()
				
				'	This	example	returns	the	vertical	scale	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.Preferences
				
				MsgBox	"The	current	vertical	scale	for	this	drawing	is:	"	&	dbPref.VerticalScale,	_
								vbInformation,	"VerticalScale	Example"

javascript:history.back();

				
End	Sub

Sub	Example_VerticalScale_ProfileBlock()
				
				'	This	example	returns	the	vertical	scale	for	the	first	alignment	profile
				'	in	the	collection.
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				MsgBox	"The	vertical	scale	for	the	first	alignment	profile	is:	"	&	_
								Format(alignProf.VerticalScale,	"0.00"),	vbInformation,	"VerticalScale	Example"
				
End	Sub

Volume	Example

Sub	Example_Volume()
				
				'	This	example	returns	the	Volume	for	the	first	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				
				MsgBox	"The	Volume	for	the	first	surface	is:	"	&	surf.Volume,	vbInformation,	"Volume	Example"
				
End	Sub

javascript:history.back();

VolumnDisplay	Example

Sub	Example_VolumeDisplayUnit()
				
				'	This	example	returns	the	VolumeDisplayUnit	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				'	Convert	the	volume	display	unit	to	a	string.
				Dim	unit	As	String
				Select	Case	dbPref.VolumeDisplayUnit
				Case	aecUnitCubicInch
								unit	=	"cubic	inch"
				Case	aecUnitCubicFoot
								unit	=	"cubic	foot"
				Case	aecUnitCubicYard
								unit	=	"cubic	yard"
				Case	aecUnitCubicMil
								unit	=	"cubic	millimeters"
				Case	aecUnitCubicCentimeter
								unit	=	"cubic	centimeters"
				Case	aecUnitCubicDecimeter
								unit	=	"cubic	decimeters"
				Case	aecUnitCubicMeter
								unit	=	"cubic	meters"
				End	Select
				
				MsgBox	"The	current	value	for	VolumeDisplayUnit	is	"	&	unit,	_
								vbInformation,	"VolumnDisplayUnit	Example"
				
End	Sub

javascript:history.back();

VolumnPrecision	Example

Sub	Example_VolumePrecision()
				
				'	This	example	displays	the	VolumePrecision	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				MsgBox	"The	current	value	for	VolumePrecision	is:	"	&	dbPref.VolumePrecision,	_
								vbInformation,	"VolumnPrecision	Example"
				
End	Sub

javascript:history.back();

VolumnSuffix	Example

Sub	Example_VolumeSuffix()
				
				'	This	example	displays	the	VolumeSuffix	setting	for	the	current	drawing.
				Dim	dbPref	As	AeccDatabasePreferences
				Set	dbPref	=	AeccApplication.ActiveDocument.preferences
				
				MsgBox	"The	current	value	for	VolumeSuffix	is	"	&	dbPref.VolumeSuffix,	_
								vbInformation,	"VolumnSuffix	Example"
				
End	Sub

javascript:history.back();

Watersheds	Example

Sub	Example_Watersheds()
				
				'	This	example	returns	the	number	of	WaterSheds	in	the	first
				'	surface	in	the	collection.
				Dim	surf	As	AeccSurface
				Dim	surfOut	As	AeccSurfaceOutputs
				Set	surf	=	AeccApplication.ActiveProject.Surfaces.Item(0)
				Set	surfOut	=	surf.Outputs
				
				MsgBox	"The	number	of	WaterSheds	in	the	first	Surface	is:	"	&	surfOut.WaterSheds.Count	_
								,	vbInformation,	"WaterSheds	Example"
				
End	Sub

javascript:history.back();

XyToEastNorth	Example

Sub	Example_XyToEastNorth()
				
				'This	example	returns	the	Easting	and	Northing	for	an	AutoCAD	XY.
				Dim	util	As	AeccUtility
				Set	util	=	AeccApplication.ActiveDocument.Utility
				
				Dim	ptXY	(0	To	2)	As	Double
				Dim	ptEN(0	To	2)	As	Double
				Dim	var1	As	Variant
				Dim	str	As	String
				
				ptXY(0)	=	1000
				ptXY(1)	=	1000
				ptXY(2)	=	0
				
				'	Convert	point	to	Easting,	Northing
				var1	=	util.XyToEastNorth(ptXY)
				
				ptEN(0)	=	var1(0)
				ptEN(1)	=	var1(1)
				ptEN(2)	=	var1(2)
				
				'	Make	display	string
				str	=	Format(ptEN(0),	"0.00")	+	",	"	+	Format(ptEN(1),	"0.00")	+	",	"	+		Format(ptEN(2),	"0.00")
				MsgBox	"Point:	"	&	str,	vbInformation,	"XyToEastNorth	Example"
				
End	Sub

javascript:history.back();
javascript:history.back();

XyToOffsetElevation	Example

Sub	Example_XyToOffsetElevation()
				
				'		This	example	returns	the	offset	and	elevation	for	a	selected	point	in	the	first
				'		alignment	crosssection	in	the	collection
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSect	=	AeccApplication.ActiveDocument.CrossSectionBlocks.Item(0)
				
				Dim	station	As	String
				Dim	offElev	As	Variant
				Dim	returnPnt	As	Variant
				
				'	Get	the	station	for	the	first	alignment	cross	section	in	the	collection.
				station	=	alignXSect.station
				
				'	Get	a	point	in	the	alignment	cross	section.
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	vbCrLf	&	"Specify	a	point	in	the	alignment	cross	section	at	station	"	&	station	&	":	")
				
				offElev	=	alignXSect.XyToOffsetElevation(returnPnt)
				
				MsgBox	"The	station	for	the	selected	point	is:	"	&	Format(offElev(0),	"0.00")	&	vbCrLf	&	_
								"The	offset	for	the	selected	point	is:	"	&	Format(offElev(1),	"0.00")	_
								,	vbInformation,	"XyToOffsetElevation	Example"
				
End	Sub

XyToStationElevation	Example

Sub	Example_XyToStationElevation()
				
				'	This	example	returns	the	XyToStationElevation	for	the	first	ProfileBlock
				'	in	the	collection
				Dim	alignProf	As	AeccProfileBlock
				Set	alignProf	=	AeccApplication.ActiveDocument.ProfileBlocks.Item(0)
				
				Dim	staElev	As	Variant
				Dim	returnPnt	As	Variant
				
				'	Get	a	point	in	the	alignment	profile.
				returnPnt	=	ThisDrawing.Utility.GetPoint(,	"Enter	a	point	in	the	alignment	profile:	")
				
				staElev	=	alignProf.XyToStationElevation(returnPnt)
				
				MsgBox	"The	Station	for	the	X	value	is:	"	&	Format(staElev(0),	"0.00")	&	vbCrLf	&	_
				"The	Elevation	for	the	Y	Value	is:	"	&	Format(staElev(1),	"0.00")	_
				,	vbInformation,	"XyToStationElevation	Example"
				
End	Sub

javascript:history.back();

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	the	ActiveX	Object	Model

landauto-guide.chm::/html/idh_understanding_introduction.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	the	ActiveX	Object	Model

landauto-guide.chm::/html/idh_understanding_introduction.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

Status

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	the	ActiveX	Object	Model

landauto-guide.chm::/html/idh_understanding_introduction.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

FindPoint

GetElevation

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

SearchType

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

SetBoundingBox

Build

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

FindPoint

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

Understanding	Parcels

Understanding	Profiles

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_parcels.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	the	ActiveX	Object	Model

landauto-guide.chm::/html/idh_understanding_introduction.htm

Collections

AlignEntities

Alignments

Boundaries

BreakLines

CogoPoints

ContourItems

CrossSectionBlocks	(Civil	Engineering
Feature)

CrossSectionPointCodes	(Civil
Engineering	Feature)

CrossSections	(Civil	Engineering
Feature)

CrossSectionSurfaces	(Civil
Engineering	Feature)

DEMFiles

DescriptionKeyFile

DescriptionKeyFiles

ElevationContours

Faces

FGProfiles	(Civil	Engineering
Feature)

FileLocks

Parcels

ParcelEntities

PointFiles

PointGroups

PointGroupNames

ProfileBlocks	(Civil	Engineering
Feature)

Projects

PVIs	(Civil	Engineering	Feature)

Prototypes

StationEquations

javascript:history.back();

Documents

Drawings

Edges

EGProfiles	(Civil	Engineering	Feature)

ElevationContours

SuperElevations	(Civil
Engineering	Feature)

Surfaces

TinPoints

WaterSheds

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

LockedPointNumbers

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

Save

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

AutoSave

Open

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

GetBoundingBox

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

LockedPointNumbers

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	the	ActiveX	Object	Model

landauto-guide.chm::/html/idh_understanding_introduction.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

Area3D

AverageGrade

MaxFaceArea

MaxGrade

MeanElevation

MinFaceArea

MinGrade

NumberOfFaces

Volume

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

Area2D

AverageGrade

MaxFaceArea

MaxGrade

MeanElevation

MinFaceArea

MinGrade

NumberOfFaces

Volume

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

Save

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

Save

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

Area2D

Area3D

MaxFaceArea

MaxGrade

MeanElevation

MinFaceArea

MinGrade

NumberOfFaces

Volume

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
javascript:history.back();

CenterlineOffset	Example

Sub	Example_CenterlineOffset()
				
				'	This	example	returns	the	centerline	offset	for	the
				'	first	alignment	cross	section	in	the	collection.
				Dim	alignXSects	As	AeccCrossSectionBlocks
				Dim	alignXSect	As	AeccCrossSectionBlock
				Set	alignXSects	=	AeccApplication.ActiveDocument.CrossSectionBlocks
				Set	alignXSect	=	alignXSects.Item(0)
				
				'Get	the	station	for	the	first	alignment	cross	section	in	the	collection
				Dim	station	As	String
				station	=	alignXSect.station
				
				MsgBox	"The	centerline	offset	for	the	alignment	cross	section	at	station	"	&	station	&	"	is:	"	&	_
								Format(alignXSect.CenterlineOffset,	"0.00"),	vbInformation,	"Height	Example"
				
End	Sub

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

Understanding	COM	Wrappers

Understanding	Cross	Sections	and	Superelevations

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_com.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	the	ActiveX	Object	Model

landauto-guide.chm::/html/idh_understanding_introduction.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

Name

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	CogoPoints

Understanding	COM	Wrappers

Understanding	Cross	Sections	and	Superelevations

Understanding	Project	Management

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_com.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_proj_mgt.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

Understanding	COM	Wrappers

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_com.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	CogoPoints

Understanding	COM	Wrappers

Understanding	Cross	Sections	and	Superelevations

Understanding	Profiles

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_com.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

PointNameSize

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

LockPoints

UnlockPoints

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	CogoPoints

Understanding	Project	Management

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_proj_mgt.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

SpiralType2

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

Area2D

Area3D

AverageGrade

MaxGrade

MeanElevation

MinFaceArea

MinGrade

NumberOfFaces

Volume

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

Area2D

Area3D

AverageGrade

MaxFaceArea

MeanElevation

MinFaceArea

MinGrade

NumberOfFaces

Volume

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

Area2D

Area3D

AverageGrade

MaxFaceArea

MaxGrade

MinFaceArea

MinGrade

NumberOfFaces

Volume

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

Area2D

Area3D

AverageGrade

MaxFaceArea

MaxGrade

MeanElevation

MinGrade

NumberOfFaces

Volume

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

Area2D

Area3D

AverageGrade

MaxFaceArea

MaxGrade

MeanElevation

MinFaceArea

NumberOfFaces

Volume

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

Description

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	CogoPoints

Understanding	COM	Wrappers

Understanding	Cross	Sections	and	Superelevations

Understanding	Parcels

Understanding	Profiles

Understanding	Project	Management

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_com.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_parcels.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm
landauto-guide.chm::/html/idh_understanding_proj_mgt.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

Understanding	COM	Wrappers

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_com.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	CogoPoints

Understanding	COM	Wrappers

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_com.htm
landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

Area2D

Area3D

AverageGrade

MaxFaceArea

MaxGrade

MeanElevation

MinFaceArea

MinGrade

Volume

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

NumberOfFaces

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

Parcels	Example

Sub	Example_Parcels()
				
				'	This	example	returns	the	number	of	Parcels	in	the	current	project.
				Dim	proj	As	AeccProject
				Set	proj	=	AeccApplication.ActiveProject
				
				MsgBox	"The	number	of	Parcels	in	the	current	Project	is:	"	&	proj.Parcels.Count	_
								,	vbInformation,	"Parcels	Example"
				
End	Sub

javascript:history.back();

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_cogopoints.htm
landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

IsNameSupported

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

PointTolerance

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

PointOnLineTolerance

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Parcels

landauto-guide.chm::/html/idh_understanding_parcels.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

FindPath

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

SpiralType2

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

LOffset

SpiralType1

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

Build

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	COM	Wrappers

landauto-guide.chm::/html/idh_understanding_com.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

landauto-guide.chm::/html/idh_understanding_alignments.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Profiles

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	CogoPoints

landauto-guide.chm::/html/idh_understanding_cogopoints.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Alignments

Understanding	Cross	Sections	and	Superelevations

Understanding	Profiles

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_alignments.htm
landauto-guide.chm::/html/idh_understanding_crosssections.htm
landauto-guide.chm::/html/idh_understanding_profiles.htm
landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

Area2D

Area3D

AverageGrade

MaxGrade

MaxFaceArea

MeanElevation

MinFaceArea

MinGrade

NumberOfFaces

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Project	Management

landauto-guide.chm::/html/idh_understanding_proj_mgt.htm

See	Also

Methods	and	Properties:

	

ActiveX	and	VBA	Developer's	Guide:

Understanding	Surfaces

landauto-guide.chm::/html/idh_understanding_surfaces.htm

	Object Model
	Methods
	Add Method
	AddCurve Method
	AddLabelAt Method
	AddLine Method
	AddSpiral Method
	AddTangent Method
	AddToAllElevations Method
	AlignmentFromObjectID Method
	AreaVolume Method
	ArrayToPointString Method
	Build Method
	ClearOverrides Method
	Composite Method
	ConvertToCurrentAreaDisplay Method
	ConvertToCurrentVolumnDisplay Method
	Copy Method
	Delete Method
	DifferenceGrid Method
	DoubleToStaFormat Method
	EastNorthToXy Method
	ElevationAt Method
	ExternalStaToInternal Method
	FindAllConnectingEdges Method
	FindAllFaces Method
	FindConnectingEdge Method
	FindFace Method
	FindPath Method
	FindPoint Method
	GetBoundingBox Method
	GetDouble Method
	GetElevation Method
	GetInteger Method
	GetLayerName Method
	GetStaStrWithEquations Method
	GetStaWithEquations Method
	GetString Method
	Import Method
	InstantGrade Method
	Item Method
	LineIntersection Method
	LoadSetupProfile Method
	LockPoints Method
	NewProjectBased Method
	OffsetElevationToXy Method
	Open Method
	OpenProjectBased Method
	Paste Method
	PerpIntersection Method
	PointByNumber Method
	PointCodeDescription Method
	PointLocation Method
	PointNumberFromObjID Method
	PointStringToArray Method
	ProfileByType Method
	RemoveAll Method
	RemoveAllLabels Method
	RemoveLabelAt Method
	Rename Method
	SampleElevations Method
	Save Method
	SaveAsDefault Method
	SaveSetupProfile Method
	SectionByStation Method
	SectionVolume Method
	SetBoundingBox Method
	SetDouble Method
	SetInteger Method
	SetReferenceCurve Method
	SetString Method
	StationElevationToXy Method
	StationOffset Method
	UnLockPoints Method
	XyToEastNorth Method
	XyToOffsetElevation Method
	XyToStationElevation Method

	Properties
	A Property
	Active Property
	ActiveDocument Property
	ActiveProject Property
	AD1 Property
	AD2 Property
	AlignEntities Property
	Alignment Property
	Alignments Property
	AngularAzimuth Property
	AngularDisplayFormat Property
	AngularPrecision Property
	Application Property
	Area Property
	Area2D Property
	Area3D Property
	AreaDisplayUnit Property
	AreaPrecision Property
	AreaSuffix Property
	Author Property
	AutoSave Property
	AverageGrade Property
	BasePoint Property
	BasePointNE Property
	BeginCondition Property
	BorderBlockFilename Property
	BorderBottomMargin Property
	BorderLeftMargin Property
	BorderLineWidth Property
	BorderPath Property
	BorderRightMargin Property
	BorderStyle Property
	BorderTopMargin Property
	Boundaries Property
	Boundary Property
	BreakLines Property
	CCWFlag Property
	CenterEasting Property
	CenterlineOffset Property
	CenterNorthing Property
	CentroidEasting Property
	CentroidNorthing Property
	ChordDirection Property
	ChordLength Property
	CivilDataFilesPath Property
	Code Property
	Cogo Property
	CogoPoints Property
	ContourItems Property
	ContourStyle Property
	ContourStyleName Property
	ContourStylesPath Property
	CoordinatePrecision Property
	Coordinates Property
	CoordinateZone Property
	Count Property
	Course Property
	CourseIn Property
	CourseOut Property
	CrossSection Property
	CrossSectionBlocks Property
	CrossSectionPointCodes Property
	CrossSections Property
	CrossSectionSurfaces Property
	CurrentAlignment Property
	CurrentSurface Property
	CurveCode Property
	CurveLabelIncrement Property
	CurveLength Property
	DatabaseScale Property
	DataPath Property
	DatumElevation Property
	Delta Property
	DEMFiles Property
	Description Property
	DescriptionFormat Property
	DescriptionKeyFiles Property
	DescriptionLayer Property
	DescriptionOverride Property
	DescriptionXDRef Property
	Direction Property
	Documents Property
	DrainsInto Property
	DrawingPath Property
	Drawings Property
	DrawingSetupPath Property
	Easting Property
	Edges Property
	EGPrecision Property
	EGProfiles Property
	Elevation Property
	ElevationContours Property
	ElevationOverride Property
	ElevationPrecision Property
	ElevationXDRef Property
	EndDirection Property
	EndEasting Property
	EndingStation Property
	EndNorthing Property
	ExceedBoth Property
	ExtEasting Property
	ExternalSecant Property
	ExtNorthing Property
	Faces Property
	FacetDeviation Property
	FGPrecision Property
	FGProfiles Property
	File Property
	FileLocks Property
	Files Property
	FirstTimeDrawingSetup Property
	FirstTimeDrawingSetupFile Property
	Format Property
	FormatsPath Property
	FullDescription Property
	FullName Property
	GridEasting Property
	GridNorthing Property
	GroupName Property
	Height Property
	HelpPath Property
	Id Property
	Inputs Property
	IsBreakLine Property
	IsNameSupported Property
	IsVisible Property
	K Property
	Keywords Property
	Label Property
	LabelPoints Property
	LabelStyle Property
	LabelStyleOverride Property
	LabelStylePath Property
	LabelStyleXDRef Property
	LastUsedDwg Property
	LastUsedDwgPath Property
	LastUsedProj Property
	LastUsedProjPath Property
	Latitude Property
	LayerFile Property
	LayerStandard Property
	LeftWidth Property
	Length Property
	LExt Property
	LinearDisplayFormat Property
	LinearPrecision Property
	LinearUnit Property
	LockedPointNumbers Property
	LockType Property
	LOffset Property
	Longitude Property
	MaxElevation Property
	MaxFaceArea Property
	MaxGrade Property
	MaxOffset Property
	MeanElevation Property
	MeasurementUnit Property
	MidOrdinate Property
	MinDepressionArea Property
	MinDepressionDepth Property
	MinElevation Property
	MinFaceArea Property
	MinGrade Property
	MinOffset Property
	Name Property
	NameOverride Property
	NameXDRef Property
	NextPointNumber Property
	Normal Property
	Northing Property
	NorthRotation Property
	Number Property
	NumberOfFaces Property
	NumberOfPoints Property
	ObjectID Property
	Offset Property
	OffsetElevations Property
	Outputs Property
	OverflowPoints Property
	OverrideDescription Property
	OverrideElevation Property
	OverrideName Property
	OverrideNew Property
	OverrideOpen Property
	Owner Property
	P Property
	Parcel Property
	ParcelEntities Property
	Parcels Property
	Path Property
	Perimeter Property
	PiEasting Property
	PiNorthing Property
	PointFiles Property
	PointGroupNames Property
	PointGroups Property
	PointList Property
	PointNameSize Property
	PointOnLineTolerance Property
	PointTolerance Property
	Precision Property
	Preferences Property
	PreferencesPath Property
	Profile Property
	ProfileBlocks Property
	ProgramPath Property
	ProjectName Property
	ProjectPath Property
	Projects Property
	PrototypeName Property
	PrototypePath Property
	Prototypes Property
	PVIs Property
	RadialDistance Property
	Radius Property
	RawDescription Property
	RevisionNumber Property
	RightWidth Property
	RotateByDescriptionParam Property
	RotateByFixedFactor Property
	RotateClockwise Property
	RotateDescriptionParam Property
	RotateFixedFactor Property
	ScaleByDescriptionParam Property
	ScaleByDrawingScale Property
	ScaleByFixedFactor Property
	ScaleDescriptionParam Property
	ScaleFixedFactor Property
	ScaleInXY Property
	ScaleInZ Property
	ScaleOnInsert Property
	SearchType Property
	SheetHeight Property
	SheetWidth Property
	ShortTangent Property
	ShowStartupDialog Property
	ShowSubfolders Property
	SpeedTablesPath Property
	SpiEasting Property
	SpilTangent Property
	SpiNorthing Property
	SpiralType1 Property
	SpiralType2 Property
	StartDirection Property
	StartEasting Property
	StartingStation Property
	StartNorthing Property
	Station Property
	StationAhead Property
	StationBack Property
	StationEquations Property
	StationElevations Property
	StationIncrement Property
	Status Property
	SuperelevationCode Property
	Superelevations Property
	Surface Property
	SurfaceName Property
	Surfaces Property
	SymbolBlock Property
	SymbolLayer Property
	SymbolManagerPath Property
	SystemPath Property
	TangentLabelIncrement Property
	Type Property
	TempPath Property
	TextAbove Property
	TextBelow Property
	TextHeight Property
	TextOffsetAbove Property
	TextOffsetBelow Property
	TextSize Property
	ThetaExt Property
	Time Property
	TinPoints Property
	TotalX Property
	TotalY Property
	Type Property
	UpperRight Property
	UsedPointNumbers Property
	User Property
	Utility Property
	VerticalScale Property
	Volume Property
	VolumnDisplayUnit Property
	VolumnPrecision Property
	VolumnSuffix Property
	WaterSheds Property

	Objects
	AeccApplication Object
	AeccContour Object
	AeccContourStyle Object
	AeccCurveText Object
	AeccPoint Object
	AlignCurve Object
	AlignEntities Collection
	AlignEntity Collection
	Alignment Object
	Alignments Collection
	AlignSpiral Object
	AlignTangent Object
	Boundaries Collection
	Boundary Object
	BreakLine Object
	BreakLines Collection
	CogoPoint Object
	CogoPoints Collection
	ContourItem Object
	ContourItems Collection
	CrossSection Object
	CrossSectionBlock Object
	CrossSectionBlocks Collection
	CrossSectionPointCode Object
	CrossSectionPointCodes Collection
	CrossSections Collection
	CrossSectionSurface Object
	CrossSectionSurfaces Collection
	DatabasePreferences Object
	DEMFile Object
	DEMFiles Collection
	DescriptionKey Object
	DescriptionKeyFile Collection
	DescriptionKeyFiles Collection
	Document Object
	Documents Collection
	Drawing Object
	Drawiings Collection
	Edge Object
	Edges Collection
	EGProfile 0bject
	EGProfiles Collection
	ElevationContour Object
	ElevationContours Collection
	Face Object
	Faces Collection
	FGProfile Object
	FGProfiles Collection
	FileLock Object
	FileLocks Collection
	Parcel Object
	ParcelCurve Object
	ParcelEntities Collection
	ParcelEntity Collection
	ParcelLine Object
	Parcels Collection
	PointFile Object
	PointFiles Collection
	PointGroup Object
	PointGroupName Object
	PointGroupNames Collection
	PointGroups Collection
	Preferences Object
	PreferencesAlignment Object
	PreferencesCogo Object
	PreferencesCrossSection Object
	PreferencesFiles Object
	PreferencesParcel Object
	PreferencesProfile Object
	PreferencesProject Object
	PreferencesSurface Object
	PreferencesUser Object
	ProfileBlock Object
	ProfileBlocks Collection
	Project Object
	Projects Collection
	Prototype Object
	Prototypes Collection
	PVI Object
	PVIs Collection
	StationEquation Object
	StationEquations Collection
	Superelevation Object
	Superelevations Collection
	Surface Object
	SurfaceInputs Collection
	SurfaceOutputs Object
	Surfaces Collection
	TinPoint Object
	TinPoints Collection
	Utility Object
	WaterShed Object
	WaterSheds Collection

