
What’s	New	in	LANSA	Version	13	Service	Pack	2?
	
The	second	Service	Pack	for	LANSA	Version	13	includes	new	features	and
some	enhancements.

Web	Application	Module
Enhancements

Various	WAM	enhancements	are
introduced	in	SP2.
	

Windows	64-bit	Support Visual	LANSA	now	supports	the
generation	and	compilation	of	both
Windows	32-bit	and	64-bit
applications.

IBM	i	User	Profile	Handling IBM	i	user	profiles	can	now	be
validated,	and	IBM	i	passwords	can
be	changed	using	the	IBM	special
APIs	with	interfaces	to	RDML	and
LANSA	Open.

SuperServer	Enhancements SuperServer	connections	can	now	be
made	between	all	supported
platforms:	IBM	i,	Windows	and
Linux.

IDE	Enhancements	for	IBM	i
Administrators

Export	lists	can	be	generated
automatically	when	checking	in	or
delivering	objects	to	an	IBM	i	server,
and	objects	can	be	refreshed
selectively	in	the	Repository.

	
Before	deploying	your	Version	13	applications,	please	take	time	to	thoroughly
understand	the	new	MSI	Deployment	mechanism.
Note	that	Version	13.0	iSeries	Exports	cannot	be	imported	to	V13.0	SP1	or	later
versions.
This	document	also	contains	What's	New	in	LANSA	Version	13?	and	What's
New	in	LANSA	Version	13	SP1?



	
Edition	Date	May	30,	2014
©	2014	LANSA



Web	Application	Module	Enhancements
LANSA	Version	13	Service	Pack	2	introduces	many	new	features	and
enhancements	for	WAMs:

jQuery	Mobile	WAM	Enhancements
Support	for	file	uploads	to	a	webroutine
New	XHTML	Weblets
Upgraded	Third-Party	Libraries
WAM	Editor	Enhancements



jQuery	Mobile	WAM	Enhancements
Commonly	used	jQuery	Mobile	weblets	have	been	made	easier	to	use	and
various	new	weblets	have	been	introduced.
Easier	to	Design	jQuery	Mobile	WAMs
New	jQuery	Mobile	Weblets
Other	improvements	to	jQuery	Mobile

	
Note	that	the	jQuery	Mobile	look	and	feel	has	changed:
								New	Flat	UI

								Two	themes:	Light	and	Dark
								Themeroller	based	theming
								Widgets	can	be	pre-rendered	for	better	performance.



Easier	to	Design	jQuery	Mobile	WAMs
Simplified	default	versions	of	a	number	of	jQuery	Mobile	Weblets	have	been
introduced	for	ease	of	use.
These	include	the	button	(std_button_s1):

And	anchor	(std_anchor_s1)	weblets:

Use	the	previous	versions	of	these	weblets	(std_button_v2	and	std_anchor_v2)
only	if	you	need	to	add	content	to	them.



New	jQuery	Mobile	Weblets
New	jQuery	Mobile	weblets	are	available:

Autocomplete The	Autocomplete	weblet
provides	suggestions	while
you	type	into	the	field.
The	suggestions	are	provided
by	a	webroutine	using	Ajax.

Image The	Image	weblet	displays	an
image.
The	weblet	has	an	option	to
load	the	image	only	when	it
comes	into	view,	which	helps
render	the	page	faster.

Loader The	Loader	displays	a	small
loading	overlay	when	jQuery
Mobile	loads	in	content	via
AJAX,	or	when	you	want	to
perform	an	action	that
momentarily	blocks	user
interaction.

Progress	bar Progress	bar	displays	the	status
of	a	determinate	process.
It	can	also	be	used	to	display	a
value	as	a	percentage	of	its
maximum	value.



Other	improvements	to	jQuery	Mobile
Input	Box	Weblet
The	Input	Box	weblet	now	supports	input	type=”number”	to	bring	the	correct
keyboard	to	mobile	devices.

	
Generated	Lists	for	jQuery	Mobile
Generated	lists	for	jQuery	Mobile	are	now	similar	in	structure	to	the	lists
generated	for	Technology	Service	XHTML.	You	have	access	to	columns	by
variable	name.
Previously	the	XHTML	and	jQuery	Mobile	list	methods	were	different,	with	the
jQuery	Mobile’s	method	giving	more	flexibility	in	adding	content	to	the	list
entry	at	the	expense	of	making	it	less	easy	to	use	in	the	WAM	Editor.
You	can	still	use	the	more	flexible	and	complex	method	by	using	the	jQuery
Mobile	std_html_list	weblet.



Support	for	File	Uploads	to	a	Webroutine
You	can	use	the	file	upload	weblet	to	select	files	to	upload	to	the	application
server	(into	a	temporary	directory).	The	webroutine	that	receives	the	file	upload
can	then	manipulate	the	uploaded	files	as	required.

For	more	information,	see	the	description	of	the	XHTML	File	Upload
(std_fileupload)	weblet	and	for	the	jQuery	Mobile	File	Upload	(std_fileupload)
weblet.

its:lansa087.chm::/Lansa/WAMengb8_2640.htm
its:lansa087.chm::/Lansa/WAMengb9_2105.htm


New	XHTML	Weblets
New	XHTML	Mobile	weblets	are	available:

The	Image	weblet	displays	an
image.
The	weblet	has	an	option	to	load
the	image	only	when	it	comes	into
view,	which	helps	render	the	page
faster.

The	Loader	displays	a	small
loading	overlay	when	jQuery
Mobile	loads	in	content	via
AJAX,	or	when	you	want	to
perform	an	action	that
momentarily	blocks	user
interaction.

Progress	bar	displays	the	status	of
a	determinate	process.
It	can	also	be	used	to	display	a
value	as	a	percentage	of	its
maximum	value.



Upgraded	Third-Party	Libraries
Third-party	libraries	have	been	upgraded:

jQuery	Core	1.9.1

jQuery	UI	1.10.3

jQuery	Mobile	1.4.2

jQuery	Timepicker	Plugin	1.4.3

CKEditor	4.2.1

Mobiscroll	2.9.5



WAM	Editor	Enhancements
The	WAM	Editor	now	inspects	the	design	of	a	web	routine	for	use	of	deprecated
weblets	and	lets	the	user	know	if	they	are	using	deprecated	weblets.	This	test	is
done	when	a	web	routine's	design	is	opened	in	the	WAM	Editor.



Windows	64-bit	Support

Visual	LANSA	now	supports	the	generation	and	compilation	of	both	Windows
32-bit	and	64-bit	LANSA	applications.
								A	64-bit	Visual	LANSA	runtime	is	provided	in	addition	to	the	32-bit
runtime

								64-bit	deployments	are	supported	in	addition	to	32-bit	deployments
	
When	Should	Windows	64-bit	Support	be	Enabled?
Installation	Considerations
Programming	Considerations
32-bit	and	64-bit	Applications	Accessing	the	Same	Database
Notable	Environmental	Differences



When	Should	Windows	64-bit	Support	be	Enabled?
We	recommended	that	Windows	64-bit	support	is	only	enabled	when	there	is
corporate	requirement	for	it.
Windows	64-bit	support	should	only	be	installed	on	a	Build	machine,	not
developer	machines.
	

Drawbacks
Using	Windows	64-bit	support	has	some	drawbacks:
								You	must	obtain	your	own	64-bit	compiler,	either	Visual	Studio	2010
Professional	(or	later)	or	Visual	Studio	2012	Express	for	Desktop	(or	later).

								Compile	times	are	longer	because	both	32-bit	and	64-bit	DLLs	are	always
built.

								Functions	which	use	DISPLAY,	REQUEST	or	POPUP	commands	will	fail
to	compile	also	in	32-bit	DLLs.

	

Features	not	Supported
There	are	LANSA	features	that	do	not	function	or	are	not	supported	in	64-bit
applications:
								Graphics	Server

								Web	Functions
								ZIP	and	specialized	LANSA	Built	In	Functions	(BIFs)
								Explorer	Component	AutoRefresh	Property



Installation	Considerations
It	is	presumed	that	64-bit	support	is	only	enabled	on	the	Build	machine	and	that
developers	do	not	enable	it.	As	a	consequence,	when	64-bit	support	is	enabled
both	the	32-bit	and	64-bit	compiles	are	performed	and	both	MSI	packages	are
built.
You	cannot	compile	a	function	which	contains	DISPLAY,	REQUEST	and
POPUP	commands	-	even	the	32-bit	compile	will	fail.	This	is	why	it	is	better
not	to	enable	64-bit	support	on	Developer's	machines.	If	developers	need	to
work	on	both	RDML	functions	and	64-bit	applications,	two	systems	which	use
the	same	repository	can	be	installed	on	their	machines	

Compiler	Installation
If	a	supported	compiler	is	not	installed	before	LANSA,	the	LANSA-shipped
compiler	is	installed	and	enabled.	If	you	install	a	64-bit	compiler	later,	you	need
to	change	this	registry	entry	to	disable	the	LANSA-shipped	compiler:

On	a	64-
bit	PC

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\LANSA\MicrosoftCompiler\2010\Enabled
to	0.

On	a	32-
bit	PC

HKEY_LOCAL_MACHINE\SOFTWARE\LANSA\MicrosoftCompiler\2010\Enabled.

	
If	Visual	Studio	is	installed	before	LANSA,	it	is	used	as	the	compiler.
If	the	version	of	Visual	Studio	installed	does	not	support	64-bit	compiling,
install	a	version	that	does.	LANSA	will	detect	it	when	it	is	next	started.
.



Programming	Considerations
There	are	no	increases	in	the	maximum	size	of	any	LANSA	feature	because	the
limits	are	considered	sufficient.	This	ensures	greater	compatibility	between	32-
bit	and	64-bit	applications.	For	example:
								The	maximum	size	of	an	RDMLX	List	is	still	2	billion	rows,	with	each
entry	being	2	billion	bytes	long.

								The	Built	In	Functions	SND_TO_DATA_QUEUE	and
RCV_FROM_DATA_QUEUE	may	be	used	interchangeably.

								Job	Queue	Emulation	can	use	either	a	32-bit	or	64-bit	Job	Queue	Monitor
and	jobs	may	be	submitted	from	either	32-bit	or	64-bit.	Note	that	the	64-bit
Job	Queue	Monitor	will	execute	the	submitted	job	as	64-bit,	no	matter	which
platform	submitted	the	job.

	
PC	Other	Files	which	are	loaded	using	a	32-bit	ODBC	driver	will	need	to	create
a	64-bit	DSN	with	the	same	name	as	that	used	to	load	the	file,	or	use
CONNECT_SERVER	when	deployed	to	re-direct	IO	to	a	64-bit	driver.
An	ActiveX	included	in	LANSA	RDML	must	be	a	registered	32-bit	version.	To
execute	the	ActiveX,	a	version	must	be	registered	which	is	of	the	same
processor	architecture	as	the	LANSA	runtime.	That	is,	if	the	LANSA	runtime	is
64-bit	then	the	64-bit	ActiveX	must	be	registered	on	the	deployed	PC.



32-bit	and	64-bit	Applications	Accessing	the	Same	Database
These	considerations	are	particularly	important	when	deploying	an	application
into	a	production	system:

Do	not	create
mixed	32-bit	and
64-bit
applications

To	avoid	complexity,	it	is	recommended	that	applications
are	either	32-bit	or	64-bit.	For	example,	if	you	use	both	32-
bit	and	64-bit	clients	when	using	SuperServer,	only	use	a
64-bit	server.	Because	the	clients	are	not	directly	accessing
the	database,	there	is	no	complication.

Auto-generate
relative	record
numbers

Assign	relative	record	numbers	using	auto-generation.	If
relative	record	numbers	are	assigned	using	external	files,
duplicates	will	occur	unless	the	RPTH	parameter	is
assigned	to	the	same	path	for	both	32-bit	and	64-bit
applications.	A	file	that	is	currently	using	external	files	can
be	changed	to	use	auto-generation	using	the	Upgrade	tool
feature	Convert	Files	to	Use	Identity	Column.

Database
upgraded	by	first
system	upgraded

Table	upgrades	are	identified	by	comparing	the	previous
CTD	file	to	the	new	CTD	file	being	installed.	Thus	only	the
first	system	upgraded	should	upgrade	the	database.	This	is
why	database	upgrade	defaults	to	off	during	an	MSI	install
and	why	per-user	installs	disable	database	upgrade.

Be	consistent If	an	existing	OAM	is	not	there	for	64-bit	but	is	for	32-bit,
and	vice	versa,	the	user	needs	to	control	which	is	the	latest
OAM.	If	32-bit	is	the	first	environment	to	be	installed,
continue	that	way	for	all	Upgrades	and	Patches.	Once	the
64-bit	environment	is	at	the	same	level,	the	Upgrade/Patch
database	change	machine	can	be	switched,	but	it	is
inadvisable.	Be	consistent	and	use	one	machine	from	the
beginning.



Notable	Environmental	Differences
								The	system	directory	for	32-bit	applications	is	of	the	form
x_win95\x_lansa.	For	64-bit	applications	it	is	x_win64\x_lansa.	Therefore
system	variables	like	*SYS_DIR	return	a	different	value.

								Visual	LANSA	is	a	32-bit	application.	Hence	interaction	between	Visual
Lansa	and	64-bit	generated	DLLs	cannot	occur.

								32-bit	OAMs	are	always	built	because	Visual	LANSA	requires	the	32-bit
OAM	to	unload	and	load	the	data	from	the	table.	The	64-bit	build	command
always	skips	the	SQL	table	build,	presuming	that	32-bit	has	already	done	it.

								The	Windows	Installer	has	a	known	defect	which	converts	the	Target
directory	in	a	Shortcut	from	c:\program	files	to	c:\program	files	(x86).
Nonetheless,	the	shortcut	still	works	correctly	as	if	it	was	c:\program	files.
Even	if	the	32-bit	version	of	the	Application	is	installed	in
c:\program	files	(x86),	it	does	not	get	executed,	it	is	still	the	64-bit	version.
See	the	MSDN	forum	post	32bit	MSI	on	64bit	OS:	Converting	shortcut	target
path	of	64bit	app	to	32	bit	Path.

								A	similar	situation	occurs	with	Windows\system	32.	The	shortcut	looks	OK
but	it	does	not	find	the	object.	It	is	not	valid	to	create	a	shortcut	that	points	to
this	directory.

http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/a380e765-e062-4f84-89a3-d4072c46cbc4/


IBM	i	User	Profile	Handling
IBM	i	user	profiles	can	now	be	validated,	and	IBM	i	passwords	can	be	changed
using	the	IBM	special	APIs	with	interfaces	to	RDML	and	LANSA	Open.
Using	this	functionality	non-5250	users	can	find	out	when	their	password	is
going	to	expire,	and,	if	the	password	has	not	expired	or	been	disabled,	to	change
it.
This	functionality	is	implemented	in	Visual	LANSA	as	Built-In	Functions,	and
in	LANSA	Open	as	Lce	APIs.	See:
								CHECK_IBMI_SIGNON	and	CHANGE_IBMI_SIGNON	in	the	Technical
Reference.

								LceGetIBMiSignon	and	LceSetIBMiSignon	in	the	LANSA	Open	Guide.

its:lansa015.chm::/Lansa/CHECK_IBMI_SIGNON.htm
its:lansa015.chm::/Lansa/CHANGE_IBMI_SIGNON.htm
its:lansa035.chm::/Lansa/LceGetIBMiSignon.htm
its:lansa035.chm::/Lansa/LceSetIBMiSignon.htm


SuperServer	Enhancements
Until	LANSA	Version	13	Service
Pack	2	the	possibities	of	establishing
a	SuperServer	connection	between
different	types	of	servers	was	limited.

Now	it	is	possible	to	establish	a
SuperServer	connection	between	any
two	servers	regardless	of	the
operating	system	they	are
running.																							



IDE	Enhancements	for	IBM	i	Administrators
New	Check-In	Features
Refresh	Selected	Objects



New	Check-In	Features
When	objects	are	checked	in	or	delivered	to	an	IBM	i	system,	an	export	list
containing	the	selected	objects	can	be	automatically	generated	on	the	IBM	i:

	
You	can	change	the	default	name	of	the	export	list.	If	you	specify	the	name	of
an	existing	export	list,	the	new	list	will	be	appended	to	it.
For	more	information	see	Check	In	Options	and	Deliver	To	Options	in	the
Visual	LANSA	Administrator's	Guide.

its:lansa011.chm::/Lansa/l4wADM03_0110.htm
its:lansa011.chm::/Lansa/l4wADM03_0165.htm


Refresh	Selected	Objects
Instead	of	doing	a	full	refresh	of	all	the	objects	in	the	repository,	you	can	refresh
the	details	of	selected	objects	which	are	already	in	the	local	repository	by	right-
clicking	and	selecting	Refresh:

Object	data	is	downloaded	from	the	Master	in	batches	and	then	trickled	into	the
local	Repository	to	avoid	impacting	performance	on	the	local	machine.	You	can
use	F5	at	any	time	to	force	the	objects	to	be	refreshed	immediately.
For	more	information	see	Refresh	Master	Object	List	in	the	Visual	LANSA
Administrator's	Guide.

its:lansa011.chm::/Lansa/l4wADM03_0045.htm


What's	New	in	LANSA	Version	13	SP1?
The	first	Service	Pack	for	LANSA	Version	13	includes	some	enhancements	and
new	features.

Visual	LANSA
usability
enhancements

The	new	Table	Layouts	can	be	managed	directly	from
the	ribbon.
The	management	of	DirectX	Styles	has	been	integrated
into	the	ribbon.
You	can	choose	which	commands	are	included	in	the
QuickAccess	Toolbar.
You	can	customize	the	editor	Status	Bar.
The	User-Designed	Controls	(UDC)	have	been	made
easier	to	use	and	there	are	some	sample	designs
available.
A	new	CRUD	Wizard	generates	a	rich	client
application	similar	to	the	IDE	interface.
New	Images	and	Styles	are	available	for	use	in	rich
client	applications.
The	context	sensitivity	of	help	text	in	the	editor	has
been	improved.	The	help	is	invoked	using	F1	(not	F2
as	previously).
	

WAM	enhancements Webroutines	support	POST	in	JSON	Format.
Weblets	that	send	requests	now	have	a	new	property,
vf_wamevent,	for	VLF	developers	to	set	a	WAM
event.
Undo/Redo	has	been	improved	in	the	WAM	Editor.
	

Logical	Modeler The	Logical	Modeler	now	supports	long	file	names.
	

LANSA	Open LANSA	Open	includes	support	for	Unicode,	Boolean
columns	and	long	names.
	



Before	deploying	your	Version	13	applications,	please	take	time	to	thoroughly
understand	the	new	MSI	Deployment	mechanism.
Note	that	Version	13.0	iSeries	Exports	cannot	be	imported	to	V13.0	SP1.
This	document	also	contains	What's	New	in	LANSA	Version	13?	
	
Edition	Date	April	1,	2014
©	2013	LANSA



Table	Layouts
The	new	Table	layouts	can	be	managed	directly	from	the	ribbon:

The	Table	layout	manager	makes	creating	and	managing	application	interfaces
easy.	In	the	majority	of	cases	the	older	layout	managers	are	no	longer	required.
See	Table	Layout.



DirectX	Styles
DirectX	styles	can	be	managed	from	the	ribbon:

See	Dynamic	Styles.



QuickAccess	Toolbar
The	Quick	access	toolbar	provides	easy	access	to	commonly	used	commands:

You	can	now	choose	the	commands	it	contains:



	



Status	Bar
You	can	choose	the	information	displayed	in	the	status	bar:



User-Designed	Controls
Creating	user-designed	controls	(UDC)	has	been	made	easier:

There	are	sample	UDC	designs	available	which	you	can	use	in	your
applications:

The	F1	help	text	provides	information	about	the	control	you	are	working	with.



	



CRUD	Wizard
You	can	create	LANSA	applications	modeled	on	the	LANSA	IDE	using	a
simple	wizard:

See	Create	an	Application	Using	a	Wizard	in	the	Visual	LANSA	Developer
Guide.

its:lansa013.chm::/Lansa/L4wDev06_1710.htm


New	Images	and	Styles
New	images	are	available	for	use	in	rich	client	applications:

Two	new	visual	styles	are	available	to	demonstrate	DirectX	capabilities:





POST	in	JSON	Format
Webroutines	now	support	POST	in	JSON	format:

See	JSON	Support	in	the	Web	Application	Modules	(WAMs)	Guide.

its:lansa087.chm::/Lansa/WAMengb3_0080.htm


vf_wamevent
Weblets	that	send	requests	now	have	a	property	vf_wamevent	for	VLF
developers	to	set	a	WAM	event:



Undo/Redo
Undo/redo	has	been	improved	in	the	WAM	Editor.	Undo/redo	is	available	in	the
context	menu:

	
And	in	the	ribbon:



MSI	Deployment
Before	you	deploy	your	Version	13	applications,	please	take	time	to	thoroughly
understand	the	new	MSI	deployment	mechanism.
A	version	number	needs	to	be	compiled	into	every	DLL.	You	need	to	set	the
version	number	in	the	Compile	settings	dialog	and	then	rebuild	the	entire
application.	The	whole	application	must	be	in	a	single	Package	Version	–	a
single	MSI.	Do	not	try	to	put	different	parts	of	the	application	in	different
Package	Versions.

For	more	information,	see	Deployment	in	this	guide	and	What's	New	in	the
Deployment	Tool	in	the	LANSA	Application	Deployment	Tool	guide.
	

its:lansa022.chm::/Lansa/l4wdplb1_0005.htm


What's	New	in	LANSA	Version	13?
Licensing New	Version	13	licenses	are	required	for	both	IBM	i

and	Windows.

Microsoft	DirectX
User	Interface

The	Microsoft	DirectX	user	interface	offers	an
engaging	end-user	experience	and	richer
visualization	of	data	in	Visual	LANSA.

Ability	to	Consume
.NET	Components

Your	LANSA	programs	can	consume	.NET	UI	and
non-UI	components.

WAMs	for	Mobiles You	can	now	easily	create	Web	Application	Modules
for	mobile	applications.

Internationalization
with	UNICODE	

LANSA	provides	full	Unicode	support.

Version	Control
System	Support Phase	1	of	LANSA’s	version	control	interface	to	3rd

party	versioning	tools	is	available.

Deployment LANSA	applications	can	be	packaged	as	standard
MSI	(Microsoft	Installer)	packages	for	deployment.

Long	Names Long	names	are	allowed	to	enable	3rd	party
integration	and	descriptive	names.

RDMLX
Enhancements

New	intrinsics	and	primitives,	language	GET/SET
commands	etc.	available.

Windows	Centric
Developmen

Various	enhancements	have	been	made	to	LANSA	to
reflect	the	fact	that	development	centers	more	and
more	on	the	Windows	platform.

File	Enhancements IBM	I	other	files	now	support	Unicode	and	binary
and	varbinary	fields.

Change	of
Collection/Library	on
Import	and
Deployment

The	file	library	or	collection	can	be	overridden	on
import	and	deployment.



Installation	and
Development

New	installation	and	development	features	have
been	introduced	to	ensure	ease	of	use	and	developer
productivity.

Visual	LANSA
Framework

The	new	version	of	the	Framework	utilizes	and
showcases	the	DirectX	user	interface.

Version	13	Features
This	version	of	the	Framework	utilizes	and	showcases	the	new	features	in
LANSA	Version	13,	including	the	DirectX	user	interface.

Customized	Quick	Finds
The	Quick	Find	box	is	a	dialog	that	appears	on	the	top	right	of	the	VLF
window.
The	current	behaviour	is	to	search	a	list	of	all	business	object	captions.	This
can	now	be	overridden	so	that	the	user	searches	a	list	of	values	that	you
control.
And	when	the	user	selects	one	of	your	values,	you	control	what	happens.
Typically	this	would	be	a	switch	to	a	business	object,	or	to	an	instance	list
entry	in	a	business	object,	or	a	command	handler	for	a	business	object.
If	necessary	you	can	also	signal	that	the	list	of	searched	values	should	be
rebuilt.

Button	To	Switch	Between	Monitors
A	button	has	been	added	to	allow	users	with	multiple	monitors	to	switch	to
the	other	monitor.	The	button	is	located	on	the	bottom	left	of	the	Framework
window.

Automatic	Command	Handler	Float	Feature
A	new	feature	is	available	for	frameworks	where	the	user	needs	to	see	a	full
size	instance	list	and	a	full	size	command	handler	at	the	same	time.
The	feature	makes	the	command	handlers	automatically	float	off	to	a	separate
window	when	an	instance	list	is	clicked,	or	double-clicked.
If	the	user	has	two	monitors,	the	command	handlers	can	be	made	to
automatically	float	to	the	other	monitor.
This	leaves	a	full	size	instance	list	in	the	original	window	and	allows	the	user
to	resize	their	command	handler	window.

Popup	Panel	Hints	for	Instance	Lists



If	the	framework	is	running	in	Direct-X	mode,	it	is	now	possible	to	show	a
popup	panel	when	the	user	hovers	over	an	instance	list	entry.	This	panel	can
be	used	to	give	the	user	a	quick	overview	of	the	item	without	opening	any	of
the	command	handlers	for	that	item.
The	end-user	is	able	to	disable	the	feature	by	right	mouse	clicking	on	the
instance	list,	if	popups	are	not	required.

Small	VLF-WIN	Improvements
When	a	user	clicks	on	a	cluster	item	in	a	tree	view	instance	list,	the	Visual
ID1	and	Visual	ID2	are	available.	Previously,	only	the	items	identifying	keys
were	available.
When	blank	values	are	added	to	date	instance	list	columns,	the	blank	is
displayed	rather	than	the	value	of	the	previous	instance	list	entry.
Improved	sort	order	of	business	objects	when	a	user	selects	a	command	that
applies	to	multiple	business	objects.

LANSA	Integrator The	latest	LANSA	Integrator	is	shipped	in	Version
13.

	 	
		
	



Licensing
When	installing	Version	13	or	upgrading	to	Version	13,	you	will	be	required	to
obtain	new	Version	13	specific	licenses.	
New	licenses	are	required	for	both	IBM	i	and	Windows,	this	includes	both
server	and	client	licenses	and	Hardware	keys	(Dongles).
Prior	to	upgrading	to	Version	13,	you	should	send	your	CPU	details	to	LANSA
Licensing	for	new	Version	13	licenses.
There	is	a	new	method	of	applying	Server	and	Integrator	licenses.
In	Version	13	all	your	licenses	can	be	consolidated	into	a	single	central	license
location	for	ease	of	management.	You	can	consolidate	various	LANSA
configurations	on	the	same	CPU	or	many	licenses	from	various	CPUs	into	one
central	location.
Refer	to	Product	Licensing	at	the	LANSA	Support	website	for	more	details.

http://www.lansa.com/support/licensing/index.htm


Microsoft	DirectX	User	Interface
Visual	LANSA	version	13.0	introduces	the	DirectX	rendering	engine.	DirectX
is	a	collection	of	APIs	embedded	in	to	Windows	that	provide	superior	graphics
capabilities,	opening	the	door	to	a	world	of	new	design	possibilities.

	
To	see	examples	of	what	can	be	done	with	DirectX	run	the	DirectX
Demonstration	Application.
With	the	new	Visual	LANSA	user-designed	controls,	the	developer	has	almost
complete	control	over	the	user	interface.	For	example:
								There	are	gradient	colors,	rounded	corners,	transparency	and	opacity.

								Dynamic	styles	and	mouse	events	make	it	possible	for	the	user	interface	to
react	as	the	mouse	enters,	hovers	over	or	leaves	a	control.

								Context	menus	can	be	much	more	than	just	menus	and	animations	allow
for	developers	to	add	valuable	visual	feedback	for	the	user.

	
New	Visual	LANSA	IDE
Dynamic	Styles
Brushes



User-Designed	Controls
Table	Layout
Popup	Panel	(Prim_PPNL)
Scaling
Taskbar	Integration
Animations
Adopting	DirectX



DirectX	Demonstration	Application
Run	the	DirectX	demonstration	application	to	see	examples	of	what	can	be	done
with	DirectX:

To	run	the	demonstration	application,	choose	Partition	Initialization	when	you
log	on	to	LANSA	on	Windows:



	
In	the	Partition	Initialization	dialog	choose	Run	Demonstration:

	
When	you	click	OK,	the	LANSA	DirectX	Examples	application	is	run:



	



	

	



New	Visual	LANSA	IDE
The	LANSA	IDE	(Integrated	Development	Environment)	supports	the	new
DirectX	based	features	with	new	Dynamic	Styles,	Animation	and	Layout
helpers.
	

Ribbon	vs.	Menu	and	Toolbar
In	the	new	IDE	the	ribbon	merges	menus,	shortcuts	and	toolbars	into	a	single
construct.
Ribbon	uses	a	little	more	vertical	space	than	a	menu	and	toolbar,	but	this	extra
space	provides	a	very	valuable	area	in	which	contextual	information	can	be
shown.
For	example	the	style	helper	shows	how	a	style	appears	when	the	focus
component	is	a	component	that	uses	a	style:

	
The	ribbon	also	allows	you	to	create	and	configure	styles	in	much	the	same	way
as	the	Version	12	layout	helper	does.	However,	by	having	the	helper	in	the
ribbon,	you	can	see	this	information	with	a	single	click	by	bringing	the	sheet	to
the	front.
The	layout	helper	is	now	also	in	the	ribbon	showing	basic	layout	information
about	the	focus	control	without	the	need	to	show	the	layout	helper	dialog:

	
The	ribbon	changes	as	the	context	changes.	For	example,	when	a	File	is	open,
there	are	no	execute	or	debug	options	as	a	File	is	not	executable.
Ribbons	also	simplify	access	to	all	commands.	The	most	common	activities,



save,	compile,	check	in,	close	can	be	found	in	the	quick	access	toolbar	which	is
always	available.	The	remainder	require	little	more	than	two	or	three	keystrokes
or	a	couple	of	clicks	and	are	easy	to	discover.
The	properties	and	features	available	in	the	ribbon	are	limited	to	the	most
commonly	used,	and	specific	views	are	available	for	editing	the	other
properties.



Dynamic	Styles
Unlike	Visual	Styles	which	simply	overwrite	any	existing	style	information
when	applied	to	a	control,	Dynamic	Styles	can	be	added	and	removed	at
runtime.	This	makes	them	akin	to	Cascading	Style	Sheets:

	
Dynamic	Styles	can	be	created	as	part	of	a	Visual	Style	and	accessed	as	read
only	features:
	
Define_Com	Class(#prim_vs.Style)	Name(#LargeFonts)	Bold(True)
Fontsize(72)
	
#Panel.Style	<=	#MyStyles<LargeFonts>
	
	
Alternatively	they	can	be	created	at	runtime	in	the	same	as	any	other	component
instance	and	then	applied	to	controls	as	required.	Styles	created	this	way	are
entirely	dynamic	and	can	be	modified	at	runtime	to	reflect	user	preferences:



Define_Com	Class(#prim_vs.Style)	Name(#Fontsize)	Fontsize(10)
	
Evtroutine	Handling(#Fontsize.Changed)
#DynamicStyle.FontSize	:=	#FontSize
Endroutine
	
Multiple	styles	can	be	added	or	removed	from	a	control:
Evtroutine	Handling(#...)
#Control.Styles.Add(#MyStyles<LargeFonts>)
#Control.Styles.Add(#MyStyles<UnderlineItalic>)
Endroutine
	
You	can	use	dynamic	styles	to	define	rounded	corners,	borders	top,	left,	right	or
bottom,	effects	e.g.	drop	shadows,	foreground	and	background	brushes	and
opacity	masks.
Styles	can	be	applied	at	Application	level	to	alter	the	appearance	of	all	controls:
Define_Com	Class(#prim_vs.Style)	Name(#Label)	Cornerbottomleft(3)
Cornerbottomright(3)	Cornertopleft(3)	Cornertopright(3)
Evtroutine	Handling(#Com_owner.Createinstance)
#Sys_Appln.Appearance.Label	<=	#Label
Endroutine



MouseOverStyles
All	controls	have	two	sets	of	styles:	Styles	and	MouseOverStyles.
Styles	are	applied	to	the	control	and	any	child	controls.
MouseOver	Styles	are	applied	to	the	control	on	MouseOver,	i.e.	when	the
mouse	enters	the	bounds	of	the	control,	and	removed	on	MouseLeave.	This
allows	for	simple	declarative	code	rather	than	having	to	code	lots	of
MouseEnter	events.
Composite	controls	such	as	Panel	and	Group	box	have	a	third	set	of	styles,
PrivateStyles.	Private	Styles	allow	composites	to	continue	to	use	the	styles
supplied	by	their	parent,	and	to	have	their	own	styles	that	aren’t	passed	on	to
child	controls.	For	example	they	can	make	a	group	box	caption	red	without
making	the	contents	red.



Brushes
Brushes	allow	for	gradient	colors,	images	and	even	other	controls	to	be	used	to
fill	the	background,	foreground,	or	borders	of	a	style.

	
There	are	several	types	of	brushes	available:
Linear	Brush
Radial	Brush
Solid	Brush
Image	Brush
Visual	Brush



Linear	Brush
The	image	below	shows	a	Linear	Brush	transitioning	from	gray	to	white:

	
A	linear	brush	is	used	to	define	a	color	transition	that	follows	a	line	defined	by
the	start	and	end	coordinates:
Define_Com	Class(#prim_vs.Style)	Name(#Style)	Backgroundbrush(#Brush)
Define_Com	Class(#Prim_Vs.LinearBrush)	Name(#Brush)	Colors(#Colors)
Define_Com	Class(#Prim_Vs.BrushColors)	Name(#Colors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#Color1)	Color(Gray)
Parent(#Colors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#Color2)	At(100)
Color(White)	Parent(#Colors)



Radial	Brush
The	image	below	shows	a	radial	brush	transitioning	from	gray	to	white	with	an
origin	of	100,	100	(bottom	right):

Radial	brush	is	used	to	define	a	color	transition	that	follows	a	line	defined	by
the	start	and	end	coordinates	emanating	from	an	origin:
Define_Com	Class(#prim_vs.Style)	Name(#Style)	Backgroundbrush(#Brush)
Define_Com	Class(#Prim_Vs.RadialBrush)	Name(#Brush)	Colors(#Colors)
Originleft(100)	Origintop(100)
Define_Com	Class(#Prim_Vs.BrushColors)	Name(#Colors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#Color1)	Color(Gray)
Parent(#Colors)
Define_Com	Class(#Prim_Vs.BrushColor)	Name(#Color2)	At(100)
Color(White)	Parent(#Colors)
End_Com



Solid	Brush
The	image	below	shows	a	solid	white	brush	with	opacity	of	75.
The	brush	has	been	applied	to	a	panel	on	top	of	which	is	the	foreground	text.
Opacity	of	75	allows	the	background	to	be	visible	through	the	panel:

	
Solid	brush	is	used	to	define	a	brush	with	a	single	color:
Define_Com	Class(#prim_vs.Style)	Name(#Style)	Backgroundbrush(#Brush)
Define_Com	Class(#Prim_Vs.SolidBrush)	Name(#Brush)	Color(White)
Opacity(75)



Image	Brush
The	image	below	shows	an	image	brush	at	30%	opacity	with	overlaid	fields:

	
Image	brush	is	used	to	render	an	image	as	the	content	of	the	brush.	The	image
can	be	sized,	repeated	and	reflected.	A	typical	use	for	an	image	brush	is	as	a
watermark	or	background	image	for	a	form:
Define_Com	Class(#prim_vs.Style)	Name(#Style)	Backgroundbrush(#Brush)
Define_Com	Class(#Prim_Vs.imageBrush)	Name(#Brush)	Image(#Globe)
Opacity(30)	Sizing(BestFit)



Visual	Brush
A	visual	brush	allows	an	image	of	another	control	to	be	used	as	the	background
or	foreground	of	a	style.	This	is	particularly	useful	for	drag	and	drop	images.	As
with	image	brushes	the	image	of	the	control	can	be	resized	or	repeated.



User-Designed	Controls
User-designed	controls	are	a	new	form	of	visual	list	similar	to	tree	view	or	grid.
However,	user-designed	controls	have	no	predefined	appearance,	and	the	user
has	free	reign	over	the	design	of	the	items	that	will	be	constructed.	Items	are
added	using	the	typical	list	commands,	Add_Entry,	Dlt_Entry,	SelectList	etc.
Each	user-designed	control	has	its	own	design	interface	(e.g.
#Prim_Tile.iTiledesign,	#Prim_Tree.iTreedesign),	which	is	implemented	by	a
reusable	part	which	allows	the	design	instance	to	respond	to	focus,	selection,
expand/collapse	in	the	case	of	tree,	and	other	events.
You	can	also	define	the	repository	fields	you	want	to	use	and	these	are	mapped
in	to	the	design	instance	on	add.
A	user-designed	control	can	use	either	a	single	class	of	design	or	many
depending	on	requirement.
	
Define_Com	Class(#prim_Tile<#MyTileDesign>)	Name(#Tile)…
	



Tile	(Prim_Tile)
Tile	items	are	laid	out	in	a	grid	pattern	governed	by	the	rules	of	a	flow	layout:



Tree	(Prim_Tree)
Tree	items	are	added	to	the	tree	and	behave	like	a	simple	list.	However,	by
setting	the	ParentItem	the	item	can	be	nested	within	another	tree	item.	When	an
item	is	collapsed	or	expanded,	the	tree	shows	the	necessary	items.



Carousel
Carousel	shows	individual	designs,	in	this	case	a	simple	image	and	label	in
either	a	linear	or	elliptical	pattern.	For	simplicity,	the	example	above	uses	the
same	image	repeatedly.



Book
Book	shows	individual	designs,	in	this	case	a	simple	image	and	label	as	if	they
were	pages	of	a	book.	For	simplicity,	the	example	above	uses	the	same	image
repeatedly.



Table	Layout
Table	layout	is	new	layout	manager	similar	in	concept	to	the	Version	12	Grid
layout	or	a	table	in	Microsoft	Word.

A	table	is	split	in	to	a	series	of	columns	and	rows,	each	of	which	occupies	a
percentage	or	fixed	pixel	width	portion	of	the	space	available.	Controls	to	be
laid	out	are	given	a	layout	item	that	specifies	a	row	and	column,	and	further
allows	a	row	span	and	column	span	to	be	specified.
Unlike	most	layout	managers,	Table	allows	controls	to	occupy	the	same	space,
greatly	simplifying	the	creation	of	complex	UI	layouts.
The	code	below	defines	a	table	of	3	columns	and	4	rows,	the	fourth	being	of
fixed	height.	The	table	item	manages	#Control	and	will	resize	it	to	fill	the	first
row.
Define_Com	Class(#prim_tblo)	Name(#TableLayout)
Define_Com	Class(#Prim_tblo.Column)	Name(#TColumn1)
Parent(#TableLayout)
Define_Com	Class(#Prim_tblo.Column)	Name(#TColumn2)
Parent(#TableLayout)
Define_Com	Class(#Prim_tblo.Column)	Name(#TColumn3)
Parent(#TableLayout)



Define_Com	Class(#Prim_tblo.Row)	Name(#TRow1)	Parent(#TableLayout)
Define_Com	Class(#Prim_tblo.Row)	Name(#TRow2)	Parent(#TableLayout)
Define_Com	Class(#Prim_tblo.Row)	Name(#TRow3)	Parent(#TableLayout)
Define_Com	Class(#Prim_tblo.Row)	Name(#Trow4)	Height(70)
Parent(#TableLayout)	Units(Pixels)
Define_Com	Class(#Prim_tblo.Item)	Name(#TableItem1)	Column(#TColumn1)
Columnspan(3)	Manage(#Control)	Parent(#TableLayout)	Row(#TRow1)
See	Table	Layout	Manager	in	the	Visual	LANSA	Developer	Guide.

its:lansa013.chm::/Lansa/L4wDev06_1715.htm


Popup	Panel	(Prim_PPNL)
Popup	panels	are	effectively	an	extension	to	the	concept	of	user-designed
controls.	Rather	than	hints,	popup	menus	and	drag	image	being	of	a	predefined
type,	popup	panels	can	be	used	to	show	fully	programmable	reusable	parts
instead.
All	controls	now	have	Popup	and	HintPopup	properties.	By	attaching	a	Popup
to	a	control,	on	a	right	click,	the	popup	will	be	shown.	Similarly,	by	attaching	a
hint	popup,	when	the	hint	is	required	the	popup	will	be	shown.
Similar	to	Popup	menus,	a	Prepare	event	is	fired	shortly	before	the	hint	is	to	be
shown	allowing	for	the	user	to	configure	the	popup	content	as	required.

In	the	image	above,	a	popup	panel	is	used	to	show	additional	information	about
the	active	item.	Similarly	below,	on	a	right	click,	not	only	is	there	a	typical
context	menu,	but	also	a	contextual	tool	bar.



Unlike	hints	and	popup	menus,	Popups	are	fully	function	reusable	parts	and	can
therefore	take	focus	and	react	to	keyboard	input.	This	allows	for	similar	context
processing	as	seen	in	Microsoft	Office.
The	code	below	shows	a	Tile	with	hint	and	context	popups.
Define_Com	Class(#prim_Tile<#MyTileDesign>)	Name(#Tile)
Hintpopup(#HintPopup)	Parent(#COM_OWNER)	Popup(#ContextPopup)
Define_Com	Class(#prim_ppnl)	Name(#HintPopup)
Content(#HintPopupContent)
Define_Com	Class(#PopupPanelEmployeeDetails)	Name(#HintPopupContent)
Define_Com	Class(#prim_ppnl)	Name(#ContextPopup)
Content(#ContextPopupContent)
Define_Com	Class(#PopupPanelContextPopup)	Name(#ContextPopupContent)



Scaling
Scaling	allows	a	control	to	appear	smaller	or	larger	without	changing	the	height
and	width	properties.	This	is	typically	useful	when	viewing	images,	but	can	also
be	used	to	enhance	the	visibility	of	all	application	features.	Scaled	controls	are
still	bound	by	the	size	of	their	parent	control.

	
All	controls	now	have	ScaleHeight,	ScaleWidth,	ScaleOriginTop	and
ScaleOriginLeft	properties.	In	conjunction	with	the	static	properties,	controls
also	have	an	in	built	Scale	animation	method.
The	code	below	makes	a	button	scale	to	50%	larger	and	then	back	to	normal
size,	and	gives	the	impression	of	the	button	jumping	out	of	the	screen	briefly
Define_Com	Class(#prim_phbn)	Name(#Button)	Caption('Click	Here')
Displayposition(1)	Parent(#COM_OWNER)	Tabposition(1)
Evtroutine	Handling(#Button.mouseEnter)
#Button.Scale(	150	150	150	)
#Button.Scale(	100	100	150	150	)
Endroutine



Taskbar	Integration
Visual	LANSA	desktop	applications	can	now	interact	with	the	Windows
Taskbar

Windows	TaskbarInfo	allows	a	percentage	progress	to	be	specified	as	well	as
overlay	images.	ProgressStyle	allows	for	the	colour	and	behaviour	of	the
progress	to	be	modified	as	well.
#Application.TaskBarInfo.ProgressStyle	:=	Paused
#Application.TaskBarInfo.OverlayImage	<=	#Pause16
	
The	code	above	set	the	taskbar	to	a	paused	state,	resulting	in	a	yellow	color	and
overlays	a	pause	image:



Animations
Animations	are	nothing	new.	Even	the	green	screen	had	blinking	text.
In	the	modern	world	however,	animations	go	a	little	further	and	allow
developers	to	add	a	little	glitz	and	glamor,	as	well	as	providing	a	means	of
highlighting	features	to	the	end	user	whenever	there	is	a	need	to	draw	attention
to	a	particular	area	of	the	screen.
Perhaps	the	most	important	single	feature	of	animations	is	that	they	operate
entirely	in	their	own	thread	meaning	that	animations	can	execute	while	other
longer	processing	is	going	on.
There	are	two	types	of	animation:
Transitions
Control	Animations



Transitions
Transitions	are	little	more	than	a	more	interesting	way	of	bringing	a	panel	to	the
front,	similar	to	the	way	slide	transition	in	Microsoft	PowerPoint.
Today,	when	we	want	to	bring	a	panel	to	the	front	we	write	code	that	looks
similar	to	the	below.
#Panel2.Visible	:=	True
#Panel1.Visible	:=	False
	
This	shows	a	secondary	panel	and	hides	the	currently	visible	one.	The
processing	is	instant	and	the	effect	is	simple.
However,	with	transitions	we	can	make	one	panel	fade	while	the	other	appears,
or	have	one	roll	down	from	the	top	of	the	screen	to	cover	one	on	top.
Define_Com	Class(#prim_anim)	Name(#Animation)
Define_Com	Class(#prim_anim.Transition)	Name(#Flip)	Source(#Panel1)
Target(#Panel2)	Transitiontype(Flip)	Parent(#Animation)
Evtroutine	Handling(#Button.Click)
#Animation.Start
Endroutine
	
The	code	above	defines	a	simple	animation	that	uses	the	Flip	transition.	This
will	be	available	as	a	feature	of	all	controls	eventually	resulting	in	much	more
concise	code.
Evtroutine	Handling(#Button.Click)
#Panel1.TransitionTo(#Panel2	Flip)
Endroutine



Control	Animations
Control	animations	allow	for	much	more	varied	animations.	There	are	move,
fade,	rotate,	scale	and	many	more	types	of	animation,	each	of	which	can	be	used
to	affect	the	state	of	a	specific	control.
Importantly	however,	animations	cannot	put	a	control	in	state	that	cannot	be
described	by	the	properties	of	the	control.	So,	while	a	control’s	properties	are
not	being	updated	during	the	animation,	when	complete	the	animation	the
control	is	still	subject	to	the	normal	Visual	LANSA	rules.
For	a	simple	example,	a	button	that	is	positioned	by	a	layout	can	still	be	moved
by	an	animation	to	or	from	a	given	point,	but	when	the	animation	finishes	the
layout	will	again	take	control	and	position	the	button.
For	simplicity,	some	animations	are	available	as	features	of	controls.
Evtroutine	Handling(#Button.Click)
#Button.Scale(200)
#Button.FadeOut
Endroutine
	
The	code	above	will	start	scaling	the	button	to	twice	its	width	and	then	start
fading	out.
More	complex	animations	can	be	achieved	by	building	composite	animations
that	move	multiple	controls
Define_Com	Class(#prim_anim)	Name(#Animation)
Define_Com	Class(#Prim_anim.Opacity)	Name(#ShowBanner)	Duration(2000)
Manage(#Banner)	Opacity(100)	Parent(#Animation)
Define_Com	Class(#Prim_anim.opacity)	Na`me(#ShowGlobe)	Duration(2000)
Manage(#Globe)	Opacity(100)	Parent(#Animation)
Define_Com	Class(#Prim_anim.MoveFrom)	Name(#BannerInFromLeft)
Duration(2000)	Manage(#Banner)	Parent(#Animation)
Define_Com	Class(#Prim_anim.MoveFrom)	Name(#GlobeInFromBelow)
Duration(2000)	Manage(#Globe)	Parent(#Animation)
	
This	example	is	taken	from	the	DirectX	Sample	splash	screen.	It	takes	2
seconds	to	make	a	Banner	and	Globe	100%	opaque	while	at	the	same	moving
them	from	off	the	screen	in	to	view.
Complex	animations	may	have	many	component	pieces	and	all	will	be	executed



when	the	animation	starts.	Each	piece	has	a	StartTime	property	that	can	be
modified	so	that	the	animation	can	run	in	a	specific	sequence.



Adopting	DirectX
When	running	an	application	in	Version	13,	it	will	continue	to	behave	exactly	as
it	did	in	version	12.	Only	by	actively	choosing	to	use	the	DirectX	rendering
option	will	the	application	change.	This	can	be	done	at	application,	form	or	even
panel	level.	For	many	users,	this	transition	may	be	almost	seamless.	For	some
however,	DirectX	rendering	may	subtly	impact	the	behavior	of	the	existing
application.
LANSA	has	gone	to	great	lengths	to	ensure	that	“flicking	the	DirectX	switch”	is
as	simple	and	uneventful	as	possible,	and	that	the	user	interface	remains	close	to
that	of	version	12.	However,	with	such	an	array	of	new	functionality	and	the
restrictions	imposed	by	the	adoption	of	new	underlying	technologies,	some
change	is	inevitable
Adopting	DirectX	Rendering
DirectX	Changes
Samples	Source



Adopting	DirectX	Rendering
Whilst	every	effort	has	been	made	to	ensure	that	as	much	of	the	Win32
appearance	has	been	honoured	as	possible,	circumstances	dictate	that	it	is
simply	impossible	to	provide	a	DirectX	runtime	that	precisely	reflects	that	of
Win32.
Before	enabling	for	DirectX,	you	need	to	answer	one	question.	Do	you	really
need	to?	If	the	answer	is	no,	you	should	continue	using	version	13	as	you	did
version	12.
Enabling	for	DirectX
Strategies
Test,	Test,	Test



Enabling	for	DirectX
Visual	LANSA	allows	DirectX	to	be	applied	at	panel,	form	or	application	level.
Once	DirectX	is	enabled,	all	child	panels	will	also	use	DirectX,	specific	Win32
controls	notwithstanding.
If	we	set	the	runtime	to	DirectX,	all	forms,	panels	and	controls	within	the
application	will	use	DirectX	rendering.
If	we	set	a	form	to	use	DirectX,	child	panels	and	controls	will	use	DirectX
rendering.
If	we	set	a	panel	to	use	DirectX,	panels	and	controls	will	use	DirectX	rendering.



Strategies
In	practical	terms,	there	are	two	strategies	for	the	adoption	of	DirectX	–
Wholesale	or	piecemeal.
Piecemeal	is	the	less	invasive	strategy.	This	allows	individual	forms	or	panels	to
start	using	DirectX	related	features	e.g.	new	controls	or	animations,	without
affecting	the	remainder	of	the	application.	It	is	worthy	of	note	however	that	this
will	enforce	a	TrueType	font	to	be	used,	and	it	may	therefore	be	necessary	to
change	the	font	for	the	remainder	of	the	application	to	ensure	consistency.
The	wholesale	approach	simply	means	that	the	runtime	is	switched	to	use
DirectX	and	that	as	a	result	the	entire	application	will	render	using	DirectX.



Test,	Test,	Test
Regardless	of	the	strategy	employed	to	start	using	DirectX,	the	majority	of
applications	may	well	behave	slightly	differently.	For	some	it	will	be	as	subtle
as	a	change	in	font;	for	others,	parts	of	the	application	will	not	behave	quite	the
same	as	before	and	may	cause	runtime	errors.
It	is	strongly	recommended	that	you	perform	a	full	test	of	your	applications
before	enabling	any	productions	systems.



DirectX	Changes
The	following	sections	detail	individual	changes	and	explain	the	reasons	for	the
change	and	how	they	may	impact	existing	applications.	Where	possible,
workarounds	and	simple	ways	in	which	these	issues	can	be	overcome	are
specified.
Default	Appearance
Transparency	and	Opacity
Routed	Events
Mouse	Events
Visual	Styles
True	Type	Fonts
Win32	&	DirectX	(ActiveX	and	Graphs)
UpdateDisplay



Default	Appearance
Below	are	images	of	the	same	form	running	firstly	as	it	would	appear	in	version
13	using	Win32	and	secondly	as	DirectX.

The	code	for	this	form	is	available	in	the	Sample	Source	section	of	this
document.
Functionally,	the	two	forms	are	identical.	However,	the	font	used	for	the	text	is
different.	Win32	defaults	to	MS	Sans	Serif	9	while	Direct	X	defaults	to	Segoe
UI	9.
Ms	Sans	Serif	is	an	old	font	and	was	created	a	long	time	ago	when	screens	were
much	smaller	and	had	much	lower	resolutions.	The	result	is	that	on	a	modern
screen,	running	a	modern	resolution,	it	looks	rather	“blocky”	compared	to	the
smooth	edges	and	nicely	rounded	corners	of	a	modern	True	Type	font.
For	most	users	the	change	of	font	may	well	be	of	no	consequence.	However,
Segoe	UI	is	slightly	wider,	and	as	can	be	seen	form	the	two	images,	and	this
may	cause	some	text	to	wrap,	show	ellipses	or	be	truncated.



Transparency	and	Opacity
DirectX	rendering	introduces	transparency	and	opacity.	By	default	in	DirectX
all	panels	and	labels	are	considered	transparent	unless	a	specific	Style	has	been
applied.	This	new	appearance	can	lead	to	issues.
Below,	a	simple	form	toggles	between	address	and	employee	details.	When	the
button	is	clicked,	the	address	details	are	enabled	and	brought	to	the	front.

The	code	for	this	form	is	available	in	the	Sample	Source	section	of	this
document.
However,	the	results	with	DirectX	rendering	are	somewhat	different.



Regardless	of	the	DisplayPosition	of	the	Address	and	Details	panels,	both	are
plainly	visible.
The	need	for	this	default	stems	from	the	desire	to	build	complex	layered	forms
and	to	still	be	able	to	see	watermark	images	or	backgrounds	applied	to	it.	If	they
were	opaque,	it	would	be	necessary	to	visit	every	panel	and	label	and
specifically	apply	a	transparent	style.
A	simple	work	around	for	this	situation	is	to	set	the	inactive	panel	to
Visible(False)	rather	than	Enabled(False).



Routed	Events
To	simplify	the	coding	of	complex	reusable	parts	and	in	particular	the	design
panels	for	the	new	user-	designed	controls,	an	event	detected	on	a	control	is	now
passed	up	the	parent	chain.
Typically	for	user-designed	control,	the	panels	displayed	are	constructed	of	little
more	than	labels	and	images.	However,	with	the	existing	event	processing,	each
of	the	labels	would	take	the	click	event	and	not	pass	it	on.	The	result	would	be
that	the	user	would	need	to	code	every	click	event	for	every	child	control.	By
routing	the	event	up	the	parent	chain,	coding	is	greatly	simplified.
Of	course,	it	may	be	necessary	to	know	which	of	the	controls	actually	fire	the
event	initially.	The	EVTROUTINE	command	already	has	the	Com_Sender
selector,	but	this	only	ever	reports	the	control	firing	the	event.	So,	the	Origin
selector	has	been	added.	Regardless	of	how	many	layers	of	parent	are	used,
Origin	will	contain	a	reference	to	the	instance	on	which	the	event	was	actually
started.
Evtroutine	Handling(#Com_owner.Click)	Origin(#Origin)
…
Endroutine
	
The	only	exception	to	this	rule	is	when	the	event	crosses	a	reusable	part
boundary.	Reusable	parts	are	black	boxes	as	such	and	the	rules	of	encapsulation
dictate	that	what	goes	on	within	a	reusable	part	must	stay	within	a	reusable	part.
So,	in	this	situation,	as	far	as	the	parent	is	concerned,	the	origin	is	the	reusable
part	itself.
As	at	the	time	of	release	of	this	document,	the	Origin	control	is	still	available
across	the	reusable	part	boundary.	This	is	a	known	issue.
Clearly	though,	this	change	of	event	behavior	may	have	some	side	effects.	In	a
simple	example	where	there	is	a	click	event	for	both	child	and	parent
components,	in	Win32	the	two	events	would	remain	separate.	However,	with
DirectX	processing	and	event	routing	a	click	on	the	child	would	result	in	both
the	child	click	and	parent	click	firing.	This	is	an	unusual	situation	and	it	is
unlikely	that	many	customers	will	encounter	it,	but	nevertheless	it	is
conceivable	and	should	be	catered	for.
To	counter	unwanted	event	propagation,	the	Handled	Selector	has	been	added	to
EVTROUTINE.	By	setting	Handled	to	true	the	event	is	no	longer	passed
beyond	the	routine	being	processed.



Evtroutine	Handling(#Button.Click)	Handled(#Handled)
*	Stop	the	event	going	any	further	up	the	parent	chain.
#Handled	:=	True
Endroutine
	



Mouse	Events
When	an	application	is	using	DirectX,	there	are	changes	to	the	way	in	which	the
list	controls	(Tree,	Grid	etc.)	appear.	Most	notably,	when	the	mouse	is	over	an
item	in	the	list,	the	item	will	be	highlighted.	In	the	image	below,	the	first	item	in

the	list	is	the	FocusItem.	The	5th	item	has	the	mouse	over	it	and	is	therefore	the
CurrentItem.

The	code	for	this	form	is	available	in	the	Sample	Source	section	of	this
document.
All	LANSA	lists	use	a	CurrentItem	concept	that	maps	the	equivalent	field
values	from	the	list	and	into	the	equivalent	variables.	CurrentItem	effectively
represents	the	item	last	processed	in	the	list.	This	might	be	the	last	item	clicked
on,	which	will	also	be	the	FocusItem,	or	perhaps	the	last	item	processed	in	a
Selectlist	loop.
Historically,	it	was	common	to	see	processing	similar	to	the	above	where	the
Delete	button	would	cause	the	deletion	of	the	currently	selected	item	with	code
similar	to	the	following.
Evtroutine	Handling(#Delete.Click)
If	(#List.CurrentItem	*IsNot	*null)
Dlt_Entry	Number(#List.CurrentItem.Entry)	From_List(#List)
Endif
Endroutine



This	code	effectively	assumes	the	CurrentItem	and	FocusItem	are	going	to	be
one	and	the	same,	and	for	most	scenarios	prior	to	DirectX	that	would	be	the
case.
However,	in	DirectX,	MouseOver	processing	has	been	added	for	all	lists	and
takes	effect	immediately.	Even	if	the	related	event	routines	aren’t	coded,	the
runtime	is	still	determining	what	the	CurrentItem	is	and	this	can	affect	the
values	of	variables.
Relying	on	CurrentItem	is	not	good	practice	outside	of	a	Selectlist	as	it	can	be
corrupted.	For	single	selection	lists	you	should	always	use	the	FocusItem.



Visual	Styles
Visual	Styles	have	historically	ignored	the	BorderColor	property	for	reasons
that	are	unclear.	Borders	were	painted	black	unless	a	theme	was	applied	in
which	case	the	theme	took	over	and	applied	a	border	color	of	its	own.
Under	DirectX,	the	border	color	as	specified	will	now	be	applied.	This	may
cause	issues	for	some	customers	who	have	erroneous	values	specified	in	their
Visual	Styles.	The	obvious	workaround	is	to	correct	the	Visual	Style.
As	at	the	time	of	release	of	this	document,	Visual	Style	BorderStyle	is	ignored
in	a	DirectX	runtime.	All	borders	are	shown	as	a	single	line.



True	Type	Fonts
DirectX	rendering	only	supports	True	Type	fonts.	This	is	simply	a	reflection	of
the	underlying	Microsoft	technologies.	True	Type	and	Open	Type,	an	extension
of	True	Type,	are	industry	standards	and	designed	to	render	smoothly	regardless
of	the	font	size	used.
Where	a	font	cannot	be	rendered,	Visual	LANSA	uses	Segoe	UI.
Fonts	such	as	MS	Sans	Serif,	which	is	not	True	Type,	typically	have	modern
True	Type	alternatives.	The	MS	Sans	Serif	equivalent	is	Microsoft	Sans	Serif.
If	you	intend	to	adopt	DirectX,	it	is	strongly	recommended	that	you	change	your
application	to	use	a	True	Type	font.	This	may	cause	issues	with	text	no	longer
fitting	in	the	available	space	and	it	is	recommended	that	you	review	any	changes
you	have	made.



Win32	&	DirectX	(ActiveX	and	Graphs)
There	are	compatibility	issues	when	trying	to	work	with	both	Win32	and
DirectX	in	the	same	UI	space.	As	with	fonts,	this	is	a	reflection	of	the
underlying	technology.
For	many	customers,	the	adoption	of	DirectX	may	well	occur	in	individual
forms	bolted	on	to	existing	applications,	or	perhaps	as	panels	embedded	in
existing	forms.	This	technique	is	fine	as	DirectX	will	work	within	Win32	quite
happily.	However,	the	reverse	is	not	quite	so	simple,	and	Win32	controls	don’t
necessarily	behave	in	the	way	one	might	think.
Win32	controls	cannot	occupy	part	of	the	same	render	level	as	DirectX	and	are
therefore	placed	on	a	different	level.	This	results	in	a	situation	where	child
Win32	controls	that	are	bigger	than	their	parent	will	cause	scrolling	issues.	In
the	image	below,	the	browser	is	parented	to	a	panel	which	has	been	scrolled.	See
how	the	top	of	the	browser	coincides	with	the	top	of	the	panel	scroll	bar	on	the
right.	As	this	is	a	Win32	application,	the	browser	is	correctly	clipped.

The	code	for	this	form	is	available	in	the	Sample	Source	section	of	this
document.
However,	in	the	same	form	running	as	DirectX	(below),	scrolling	the	panel
causes	the	ActiveX	to	move,	but	not	to	clip.	See	how	the	browser	is	now	above



the	panel	scrollbar	on	the	right.

The	only	practical	solution	to	this	issue	is	to	ensure	that	the	Win32	control	is
sized	appropriately,	probably	by	use	of	a	layout	manager,	and	does	not	exceed
the	size	of	its	parent.
As	at	the	time	of	release	of	this	document,	Memo	(Prim_memo)	and	Listview
(Prim_ltvw)	are	still	Win32	controls.



UpdateDisplay
In	Win32	the	UpdateDisplay	method	could	be	called	on	a	control	to	force	the
screen	to	refresh	during	a	long	running	process.	The	Win32	runtime	was	able	to
address	individual	controls	specifically	and	in	effect	could	update	a	small
portion	of	the	UI.
However,	the	DirectX	runtime	works	in	a	different	manner	and	this	is	no	longer
possible.	UpdateDisplay	will	cause	the	whole	of	the	form	to	update.
In	most	circumstances	this	will	be	of	little	consequence.	However,	in	situations
where	UpdateDisplay	is	called	repeatedly,	this	will	cause	noticeable
performance	degradation.
A	typical	situation	where	that	occurs	is	when	a	Progress	Bar	is	used.	Progress
Bars	automatically	use	UpdateDisplay	to	ensure	that	they	reflect	their	latest
value.	In	the	example	below	a	simple	loop	is	executed	and	the	progress	bar	and
start	button	caption	are	updated	every	iteration.

In	Win32	above,	the	start	button	is	not	updated.	The	UpdateDisplay	is	specific
to	the	Progress	Bar.	However,	in	DirectX,	the	whole	form	gets	updated.

The	code	for	this	form	is	available	in	the	Sample	Source	section	of	this
document.
To	counteract	this	situation,	rather	than	updating	the	progress	bar	or	specifically
executing	UpdateDisplay	every	iteration,	a	simple	test	can	be	added	so	that	the



update	only	occurs	every	10th	time.



Samples	Source
Default	Appearance

Transparency	and	Opacity

Mouse	Events

Win32	&	DirectX	(ActiveX	and	Graphs)

UpdateDisplay



Default	Appearance
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(119)
Clientwidth(336)	Componentversion(1)	Height(157)	Left(175)	Top(215)
Width(352)
Define_Com	Class(#EMPNO.Visual)	Name(#EMPNO)	Componentversion(1)
Displayposition(1)	Left(8)	Marginleft(130)	Parent(#COM_OWNER)
Tabposition(1)	Top(8)
Define_Com	Class(#SURNAME.Visual)	Name(#SURNAME)
Componentversion(1)	Displayposition(2)	Left(8)	Marginleft(130)
Parent(#COM_OWNER)	Tabposition(2)	Top(32)
Define_Com	Class(#GIVENAME.Visual)	Name(#GIVENAME)
Componentversion(1)	Displayposition(3)	Left(8)	Marginleft(130)
Parent(#COM_OWNER)	Tabposition(3)	Top(56)
Define_Com	Class(#PRIM_PHBN)	Name(#OK)	Buttondefault(True)
Caption('&OK')	Displayposition(4)	Left(164)	Parent(#COM_OWNER)
Tabposition(4)	Top(88)
Define_Com	Class(#PRIM_PHBN)	Name(#Cancel)	Buttoncancel(True)
Caption('&Cancel')	Displayposition(5)	Left(252)	Parent(#COM_OWNER)
Tabposition(5)	Top(88)
Evtroutine	Handling(#Com_owner.CreateInstance)
Case	(#sys_appln.RenderStyle)
When	(=	DirectX)
#Com_owner.Caption	:=	"DirectX"
When	(=	Win32)
#Com_owner.Caption	:=	"Win32"
Endcase
Endroutine
End_Com



Transparency	and	Opacity
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(114)
Clientwidth(522)	Height(152)	Left(106)	Top(204)	Width(538)
Define_Com	Class(#PRIM_PANL)	Name(#Details)	Displayposition(1)
Height(108)	Left(15)	Parent(#COM_OWNER)	Tabposition(2)	Tabstop(False)
Top(13)	Width(338)
Define_Com	Class(#PRIM_PANL)	Name(#Address)	Displayposition(2)
Enabled(False)	Height(108)	Left(15)	Parent(#COM_OWNER)	Tabposition(1)
Tabstop(False)	Top(13)	Width(338)
Define_Com	Class(#PRIM_PHBN)	Name(#MoveToFront)	Caption('Show
Address')	Displayposition(3)	Left(360)	Parent(#COM_OWNER)	Tabposition(3)
Top(8)	Width(153)
Define_Com	Class(#EMPNO.Visual)	Name(#EMPNO)	Componentversion(1)
Displayposition(1)	Height(20)	Left(8)	Parent(#Details)	Tabposition(1)
Define_Com	Class(#SURNAME.Visual)	Name(#SURNAME)
Componentversion(1)	Displayposition(2)	Height(20)	Left(8)	Parent(#Details)
Tabposition(2)	Top(24)
Define_Com	Class(#GIVENAME.Visual)	Name(#GIVENAME)
Componentversion(1)	Displayposition(3)	Height(20)	Left(8)	Parent(#Details)
Tabposition(3)	Top(48)
Define_Com	Class(#ADDRESS1.Visual)	Name(#ADDRESS1)
Componentversion(1)	Displayposition(1)	Height(20)	Left(8)	Parent(#Address)
Tabposition(1)	Width(300)
Define_Com	Class(#ADDRESS2.Visual)	Name(#ADDRESS2)
Componentversion(1)	Displayposition(2)	Height(20)	Left(8)	Parent(#Address)
Tabposition(2)	Top(24)	Usepicklist(False)	Width(300)
Define_Com	Class(#ADDRESS3.Visual)	Name(#ADDRESS3)
Componentversion(1)	Displayposition(3)	Height(20)	Left(8)	Parent(#Address)
Tabposition(3)	Top(48)	Width(300)
Define_Com	Class(#POSTCODE.Visual)	Name(#POSTCODE)
Componentversion(1)	Displayposition(4)	Height(20)	Left(8)	Parent(#Address)
Tabposition(4)	Top(72)	Usepicklist(False)	Width(249)
Evtroutine	Handling(#MoveToFront.Click)
If	(#Details.DisplayPosition	<>	1)
#Details.DisplayPosition	:=	1
#Details.enabled	:=	True
#Address.enabled	:=	False



#MoveToFront.Caption	:=	"Show	Address"
Else
#Address.DisplayPosition	:=	1
#Details.enabled	:=	False
#Address.enabled	:=	True
#MoveToFront.Caption	:=	"Show	Details"
Endif
Endroutine
End_Com



Mouse	Events
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(306)
Clientwidth(462)	Componentversion(1)	Height(344)	Left(103)	Top(200)
Width(478)
Define_Com	Class(#PRIM_Trvw)	Name(#List)	Columnbuttonheight(19)
Componentversion(2)	Displayposition(1)	Fullrowselect(True)	Haslines(False)
Height(261)	Keyboardpositioning(SortColumn)	Left(8)	Linesatroot(False)
Parent(#COM_OWNER)	Tabposition(1)	Top(40)	Viewstyle(UnLevelled)
Width(444)
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_1)	Displayposition(1)
Level(1)	Parent(#List)	Source(#EMPNO)	Width(27)
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_2)	Displayposition(2)
Level(2)	Parent(#List)	Source(#SURNAME)	Width(33)
Define_Com	Class(#PRIM_TVCL)	Name(#TVCL_3)	Displayposition(3)
Level(3)	Parent(#List)	Source(#GIVENAME)	Width(40)
Define_Com	Class(#PRIM_SPBN)	Name(#Delete)	Caption('Delete')
Displayposition(2)	Left(8)	Parent(#COM_OWNER)	Tabposition(2)	Top(8)
Width(137)
Evtroutine	Handling(#Com_owner.CreateInstance)
Case	(#sys_appln.RenderStyle)
When	(=	DirectX)
#Com_owner.Caption	:=	"DirectX"
When	(=	Win32)
#Com_owner.Caption	:=	"Win32"
Endcase
Select	Fields(#List)	From_File(pslmst)
Add_Entry	To_List(#List)
Endselect
Endroutine
Evtroutine	Handling(#Delete.Click)
If	(#List.CurrentItem	*IsNot	*null)
Dlt_Entry	Number(#List.CurrentItem.Entry)	From_List(#List)
Endif
Endroutine
End_Com



Win32	&	DirectX	(ActiveX	and	Graphs)
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(574)
Clientwidth(965)	Componentversion(1)	Height(612)	Left(112)	Top(184)
Width(981)
Define_Com	Class(#PRIM_PANL)	Name(#Panel)	Displayposition(1)
Height(481)	Horizontalscroll(True)	Left(80)	Parent(#COM_OWNER)
Style(#Style_1)	Tabposition(1)	Tabstop(False)	Top(56)	Verticalscroll(True)
Width(793)
Define_Com	Class(#VA_WEBCTL.WebBrowser)	Name(#Browser)
Displayposition(1)	Height(600)	Left(0)	Parent(#Panel)	Tabposition(1)	Top(0)
Width(775)
Define_Com	Class(#PRIM_VS.Style)	Name(#Style_1)
Backgroundbrush(#RadialBrush_1)
Define_Com	Class(#PRIM_VS.BrushColors)	Name(#BrushColors_1)
Define_Com	Class(#PRIM_VS.BrushColor)	Name(#BrushColor_1)	At(25)
Color(255:255:255)	Parent(#BrushColors_1)
Define_Com	Class(#PRIM_VS.BrushColor)	Name(#BrushColor_2)	At(100)
Color(32:155:204)	Parent(#BrushColors_1)
Define_Com	Class(#PRIM_VS.RadialBrush)	Name(#RadialBrush_1)
Colors(#BrushColors_1)	Originleft(100)	Origintop(100)	Radiusleft(125)
Radiustop(125)
Evtroutine	Handling(#Com_owner.CreateInstance)
Case	(#sys_appln.RenderStyle)
When	(=	DirectX)
#Com_owner.Caption	:=	"DirectX"
When	(=	Win32)
#Com_owner.Caption	:=	"Win32"
Endcase
Endroutine
Evtroutine	Handling(#Com_owner.initialize)
#Browser.Navigate(	www.lansa.com	)
Endroutine
End_Com



UpdateDisplay
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(124)
Clientwidth(498)	Componentversion(1)	Height(162)	Left(261)	Top(195)
Width(514)
Define_Com	Class(#PRIM_PGBR)	Name(#ProgressBar)	Displayposition(1)
Left(8)	Maximumvalue(10000)	Minimumvalue(0)	Parent(#COM_OWNER)
Tabposition(1)	Top(8)	Value(1)	Width(481)
Define_Com	Class(#PRIM_PHBN)	Name(#Start)	Caption('Start	(0)')
Displayposition(2)	Height(41)	Left(8)	Parent(#COM_OWNER)	Tabposition(2)
Top(72)	Width(177)
Evtroutine	Handling(#Com_owner.CreateInstance)
Case	(#sys_appln.RenderStyle)
When	(=	DirectX)
#Com_owner.Caption	:=	"DirectX"
When	(=	Win32)
#Com_owner.Caption	:=	"Win32"
Endcase
Endroutine
Evtroutine	Handling(#Start.Click)
#ProgressBar.value	:=	0
Begin_Loop	To(10000)
#ProgressBar.value	+=	1
#Start.Caption	:=	("Start	(&1)").Substitute(	#ProgressBar.Value.Asstring	)
End_Loop
Endroutine
End_Com



Ability	to	Consume	.NET	Components
Your	LANSA	programs	can	consume	.NET	UI	and	non-UI	components:
								Graphs

								Buttons
								Barcode	scanners
								Device	specific	interfaces

You	register	3rd	party	.NET	controls	into	the	repository	and	then	use	the
exposed	events,	methods	and	properties	in	RDLMX.
For	more	information,	refer	to	.NET	Components	in	the	Visual	LANSA
Developer	Guide.

its:lansa013.chm::/Lansa/L4wDev07_0365.htm


	



WAMs	for	Mobiles
The	jQuery	Mobile	TSP	provides	an	enhanced	HTML	5	solution	for	mobile
devices	based	on	the	jQuery	Mobile	touch	optimized	web	framework.

	
jQuery	Mobile	is	a	unified,	HTML5-based	user	interface	system	for	all	popular
mobile	device	platforms,	built	on	a	jQuery	and	jQuery	UI	foundation.	Its
lightweight	code	is	built	with	progressive	enhancement,	and	it	has	a	flexible,
easily	themeable	design.
The	jQMobile	Technology	service	is	a	wrapper	around	the	JavaScript	library
that	allows	it	to	work	in	the	LANSA	IDE	with	drag-and-droppable	weblets	that
are	configured	by	editing	properties.
You	can	create	your	mobile	WAMs	using	a	Wizard	which	creates	sampler
applications	and	design	outlines	for	a	mobile	app:



	
Also	see	LANSA	Web	Mobile	Application	Wizard.

its:lansa087.chm::/Lansa/WAMEngm1_0110.htm


Internationalization	with	UNICODE
LANSA	now	provides	full	support	for	Unicode:
								Database	tables	support	UNICODE	data	type	in	columns.

								The	IDE	now	displays	all	multilingual	text	using	Unicode,	so	you	see	all
text	in	all	languages	displayed	as	you	will	see	it	when	it	executes.

								Full	support	of	Unicode	in	RDMLX	components	and	functions.
								User	interfaces	–	forms	and	WAMs	–	support	Unicode.

								WAMs	output	UTF-8	regardless	of	language	in	use.
								Support	of	UTF-8	(CCSID	1208)	on	IBM	i	Other	Files
								Unicode	string	intrinsics	ensure	data	integrity	(AsNativeString	and
AsUnicodeString).

								Unicode	field	types	Nchar	and	Nvarchar:

	
	
The	introduction	of	Unicode	has	resulted	in	some	changes	to	the	Built-In
Function	Rules.	To	see	the	changes	refer	to	Built-in	Function	Rules	in	the
Technical	Reference.

its:lansa015.chm::/Lansa/BIF_RULES.htm


Version	Control	System	Support
Visual	LANSA	now	supports	using	a	Version	Control	System	as	a	Master
Repository	instead	of	an	IBM	i	as	the	Master.	This	system	configuration	is
called	VCS	Master.

Each	Developer	is	“sandboxed”	so	that	they	do	not	interfere	with	other
developers'	work	until	it	is	checked	in	to	the	VCS.	Any	VCS	can	be	used	but	it
is	essential	that	in-depth	knowledge	of	the	VCS	is	acquired.
VCS	Master	is	designed	to	be	used	by	Windows	developers	who	have	prior
knowledge	of	using	a	VCS.	As	such	it	can	be	likened	to	using	a	VCS	with	any
other	Windows	development	environment,	like	Visual	Studio.
All	Version	Control	features	such	as	branching,	merging,	comparing	source,
labeling,	etc.	provide	better	control	of	your	source	code	–	but	they	require	a
good	deal	of	planning	and	discipline	to	make	them	work.
The	VCS	controls	access	to	the	source	code,	so	LANSA	task	tracking	and
LANSA	security	are	ignored	and	source	code	audit	stamps	are	not	available.
Refer	to	LANSA	guides	for	more	details.
	



Deployment
LANSA	applications	are	now	packaged	as	standard	Microsoft	Installer	(MSI)
packages	for	deployment:

MSI	integrates	with	SCCM	(install	management	software),	has	better	support
for	multiple	language	installations	and	is	more	configurable	which	has	allowed
version	updating	to	be	more	targeted.
For	more	information,	refer	to	What's	New	in	the	Deployment	Tool.

its:lansa022.chm::/Lansa/l4wdplb1_0005.htm


Long	Names

Long	names	have	been	introduced	to	enable	3rd	party	integration	and
descriptive	names.
Several	different	LANSA	object	types	can	be	referred	to	in	RDMLX	partitions
by	a	name	that	is	longer	than	the	traditional	ten	characters.	These	object	types
are:
								Fields

								Files
								Logical	views
								VL	Components

								Processes
								Functions
								WAMs
	
Long	names	can	only	be	given	to	these	LANSA	objects	in	Visual	LANSA.
The	use	of	long	names	is	an	RDMLX	partition-level	setting:



RDMLX	Enhancements
A	number	of	enhancements	have	been	made	to	RDMLX:
								New	intrinsics	and	primitives

								New	language	commands	(GET/SET)
								32K	lines	of	code	–	limited	by	compiler
								Recursive	Stack	raised	from	50	to	250

								Constructors	for	an	instance
								*NEW	operator	for	inline	construction
								Assign	Category	for	your	own	methods.



Windows	Centric	Development
								Housekeeping	and	Administration	tasks	such	as	impact	analysis	are
available	with	equivalent	functionality	in	Visual	LANSA:

See	Impact	Analysis.
	
								The	use	of	Identity	columns	in	tables	removes	the	requirement	for	RPTH
files.

								Post-mortem	Debugging	has	been	enhanced:	LANSA	executables	now
automatically	produce	a	dump	file	if	an	unhandled	exception	such	as	an
access	violation	occurs.	This	shortens	the	turnaround	time	for	resolving	these
rare	issues	and	makes	it	much	easier	to	capture	the	program	state	with	hard	to
reproduce	issues.

								Version	information,	such	as	product	name,	product	and	file	version	and
copyright,	can	be	included	in	LANSA	objects	when	they	are	compiled.	This
information	is	visible	in	the	DLL's	properties:



	



Impact	Analysis
Impact	lists	allow	you	to	find	objects	that	relate	to	a	specific	object	so	that	you
can	assess	the	impact	of	a	planned	change.

Using	the	List	Type	Impact,	you	can	select	the	objects	you	wish	to	be	included
in	the	list,	and	then,	for	each	object	type,	you	can	specify	a	specific	or	common
filter	to	narrow	your	selection.
For	example,	a	common	filter	could	be	to	search	for	a	full	or	partial	name.	A
specific	filter	could	include,	for	each	field	in	the	object,	the	operators	Like	with
or	without	the	asterisk	(*)	wildcard,	Equal	to,	Greater	than,	Less	than,	Less
than	or	equal	to	as	shown	here:

Your	list	can	be	saved	as	a	Static	list	or	as	an	Excel	file	enabling	you	to	re-use	it
again	at	a	later	time.



Run	an	Impact	List
To	run	the	impact	list,	click	on	the	“Run”	button	in	the	impact	list	toolbar.
Clicking	on	the	“Run”	button	will	also	save	the	impact	list.

Review	the	results
The	results	will	be	displayed	in	the	Impact	Analysis	output	view.

Export
In	the	output	view,	click	on	the	job	heading.	You	will	then	be	able	to	export	the
list	of	objects	produced	by	the	impact	analysis.
a.			Export	to	Excel
						With	the	job	heading	selected,	click	on	the	export	to	Excel	icon.	The	list

of	LANSA	objects	will	be	exported	to	a	CSV	file.
b.			Export	to	a	Static	List
						With	the	job	heading	selected,	click	on	the	Export	as	Static	List	option.	A

dialog	will	open	where	you	can	choose	the	name	and	the	type	of	list.



Change	of	Collection/Library	on	Import	and	Deployment
File	library	or	collection	can	be	changed	on	import	and	deployment	to	override
default	behavior.

	
By	default	OAMs	are	created	in	a	sub-directory	of	the	partition	execute
directory,	named	after	the	partition	default	file	library.	For	example,	if	the
partition	default	file	library	is	DC@DEMOLIB	in	partition	DEM,	the	OAM	is
created	in	the	directory	X_DEM\DC@DEMOLIB\EXECUTE.	If	the	file's
library	is	not	the	same	as	the	Partition	Default	library,	the	Visual	LANSA	IDE
will	put	the	OAM	in	the	partition	execute	directory.
The	default	behaviour	when	deploying	a	File	is	to	change	the	SQL	Table	and
OAM	to	use	the	partition	default	file	library	of	the	target	partition.



File	Enhancements
IBM	i	Other	Files	now	support:
								Binary	and	Varbinary	field	types

								UTF-8	(CCSID	1208)
	
Boolean	is	supported	as	a	repository	field	type.



Installation	and	Development
New	installation	and	development	features	have	been	introduced	to	ensure	ease
of	use	and	developer	productivity.

Supported	Platforms
See	Supported	Versions	at	the	LANSA	Support	website.

Upgrade	Path
Any	Version	12	system	can	be	directly	upgraded	to	Version	13.
Version	11(SP5)	systems	must	first	be	upgraded	to	Version	12.

Note	about	Check-In	and	Check-Out
When	you	upgrade	to	Version	13,	the	repository	state	of	all	objects	will	be	set	to
Not	Checked	Out.	This	means	that	before	upgrading	all	changes	to	objects	in	all
partitions	must	be	checked	into	the	IBM	i.
After	the	upgrade,	when	an	object	is	checked	out	to	a	PC,	it	is	locked	out	and	no
other	PC	can	modify	it.	If	you	do	not	want	to	lock	the	object,	check	it	out	as
read-only.	Both	the	Visual	LANSA	Editor	and	the	IBM	i	have	an	unlock	option
which	you	can	use	to	allow	another	developer	to	access	an	object.

http://www.lansa.com/support/supportedversions.htm


Visual	LANSA	Framework

Version	13	Features
This	version	of	the	Framework	utilizes	and	showcases	the	new	features	in
LANSA	Version	13,	including	the	DirectX	user	interface.

Customized	Quick	Finds
The	Quick	Find	box	is	a	dialog	that	appears	on	the	top	right	of	the	VLF
window.
The	current	behaviour	is	to	search	a	list	of	all	business	object	captions.	This
can	now	be	overridden	so	that	the	user	searches	a	list	of	values	that	you
control.
And	when	the	user	selects	one	of	your	values,	you	control	what	happens.
Typically	this	would	be	a	switch	to	a	business	object,	or	to	an	instance	list
entry	in	a	business	object,	or	a	command	handler	for	a	business	object.
If	necessary	you	can	also	signal	that	the	list	of	searched	values	should	be
rebuilt.

Button	To	Switch	Between	Monitors
A	button	has	been	added	to	allow	users	with	multiple	monitors	to	switch	to
the	other	monitor.	The	button	is	located	on	the	bottom	left	of	the	Framework
window.

Automatic	Command	Handler	Float	Feature
A	new	feature	is	available	for	frameworks	where	the	user	needs	to	see	a	full
size	instance	list	and	a	full	size	command	handler	at	the	same	time.
The	feature	makes	the	command	handlers	automatically	float	off	to	a	separate
window	when	an	instance	list	is	clicked,	or	double-clicked.
If	the	user	has	two	monitors,	the	command	handlers	can	be	made	to
automatically	float	to	the	other	monitor.
This	leaves	a	full	size	instance	list	in	the	original	window	and	allows	the	user
to	resize	their	command	handler	window.

Popup	Panel	Hints	for	Instance	Lists
If	the	framework	is	running	in	Direct-X	mode,	it	is	now	possible	to	show	a
popup	panel	when	the	user	hovers	over	an	instance	list	entry.	This	panel	can
be	used	to	give	the	user	a	quick	overview	of	the	item	without	opening	any	of



the	command	handlers	for	that	item.
The	end-user	is	able	to	disable	the	feature	by	right	mouse	clicking	on	the
instance	list,	if	popups	are	not	required.

Small	VLF-WIN	Improvements
When	a	user	clicks	on	a	cluster	item	in	a	tree	view	instance	list,	the	Visual
ID1	and	Visual	ID2	are	available.	Previously,	only	the	items	identifying	keys
were	available.
When	blank	values	are	added	to	date	instance	list	columns,	the	blank	is
displayed	rather	than	the	value	of	the	previous	instance	list	entry.
Improved	sort	order	of	business	objects	when	a	user	selects	a	command	that
applies	to	multiple	business	objects.



LANSA	Integrator
Version	13	LANSA	Integrator	enhancements	include:
								Support	of	LANSA	long	field	names

								Support	of	BLOB/CLOB	support
								Support	of	Unicode	fields
								JSONBindFileService	which	allows	the	reading	and	writing	of	JSON	files

								Support	of	implicit	and	explicit	SSL/TLS	connection	to	SMTP	and	POP3
services


	What's New in LANSA Version 13 SP2?
	Web Application Module Enhancements
	jQuery Mobile WAM Enhancements
	Easier to Design jQuery Mobile WAMs 
	New jQuery Mobile Weblets
	Other improvements to jQuery Mobile
	Support for File Uploads to a Webroutine 
	New XHTML Weblets
	Upgraded Third-Party Libraries
	WAM Editor Enhancements
	Windows 64-bit Support
	When Should Windows 64-bit Support be Enabled?
	Installation Considerations
	Programming Considerations
	32-bit and 64-bit Applications Accessing the Same Database
	Notable Environmental Differences
	IBM i User Profile Handling
	SuperServer Enhancements
	IDE Enhancements for IBM i Administrators
	New Check-In Features
	Refresh Selected Objects
	What's New in LANSA Version 13 SP1?
	Table Layouts 
	DirectX Styles 
	QuickAccess Toolbar
	Status Bar 
	User-Designed Controls
	CRUD Wizard
	New Images and Styles
	POST in JSON Format
	vf_wamevent
	Undo/Redo
	MSI Deployment
	What's New in LANSA Version 13?
	Licensing
	Microsoft DirectX User Interface
	DirectX Demonstration Application
	New Visual LANSA IDE
	Dynamic Styles
	MouseOverStyles
	Brushes
	Linear Brush
	Radial Brush
	Solid Brush
	Image Brush
	Visual Brush
	User-Designed Controls
	Tile (Prim_Tile)
	Tree (Prim_Tree)
	Carousel
	Book
	Table Layout
	Popup Panel (Prim_PPNL)
	Scaling
	Taskbar Integration
	Animations
	Transitions
	Control Animations
	Adopting DirectX
	Adopting DirectX Rendering
	Enabling for DirectX
	Strategies
	Test, Test, Test
	DirectX Changes
	Default Appearance
	Transparency and Opacity
	Routed Events
	Mouse Events
	Visual Styles
	True Type Fonts
	Win32 & DirectX (ActiveX and Graphs)
	UpdateDisplay
	Samples Source
	Default Appearance
	Transparency and Opacity
	Mouse Events
	Win32 & DirectX (ActiveX and Graphs)
	UpdateDisplay
	Ability to Consume .NET Components
	WAMs for Mobiles
	Internationalization with UNICODE
	Version Control System Support
	Deployment
	Long Names
	RDMLX Enhancements
	Windows Centric Development
	Impact Analysis
	Change of Collection/Library on Import and Deployment
	File Enhancements
	Installation and Development
	Visual LANSA Framework
	LANSA Integrator

