
KBEngine

What	is	KBEngine?

KBEngine	is	an	open	source	game	server	engine.	The	client	can	communicate
with	the	server	through	a	simple	protocol.	KBEngine	plugins	can	be	quickly
combined	with	(Unity3D,	OGRE,	Cocos2d-x,	HTML5,	etc.)	technology	to	form
a	complete	game	client.	The	server-side	low-level	framework	is	written	in	C++,
and	the	game	logic	layer	uses	Python	(supports	hot-fixing).	Developers	do	not
need	to	repeatedly	implement	the	underlying	technologies	common	to	some
game	servers,	and	instead	can	focus	their	efforts	on	the	game	development	level,
to	quickly	build	various	multiplayer	games.	

(Because	it	is	often	asked	what	the	upper	limit	of	the	load	is	that	KBEngine	can
handle,	the	underlying	architecture	has	been	designed	as	a	multi-process
distributed	dynamic	load	balancing	solution.	Theoretically,	by	continuously
expanding	the	hardware,	the	upper	limit	of	the	load	can	also	be	continuously
increased.	The	upper	limit	of	the	capacity	of	a	single	machine	depends	on	the
complexity	of	the	game	logic	itself.)	

Homepage	http://www.kbengine.org	Releases	sources	:
https://github.com/kbengine/kbengine/releases/latest	binarys	:
https://sourceforge.net/projects/kbengine/files/	Demo	sources	unity3d	:
https://github.com/kbengine/kbengine_unity3d_demo/releases/latest	unity3d
:	https://github.com/kbengine/kbengine_unity3d_warring/releases/latest
ogre	:	https://github.com/kbengine/kbengine_ogre_demo/releases/latest
html5	:	https://github.com/kbengine/kbengine_html5_demo/releases/latest
Docs	docs	:	http://www.kbengine.org/docs/	API	:
https://github.com/kbengine/kbengine/tree/master/docs	Support	Email	:
kbesrv@gmail.com	Maillist	:
https://groups.google.com/d/forum/kbengine_maillist

http://www.kbengine.org
https://github.com/kbengine/kbengine/releases/latest
https://sourceforge.net/projects/kbengine/files/
https://github.com/kbengine/kbengine/releases/latest
https://github.com/kbengine/kbengine_unity3d_warring/releases/latest
https://github.com/kbengine/kbengine_ogre_demo/releases/latest
https://github.com/kbengine/kbengine_html5_demo/releases/latest
http://www.kbengine.org/docs/
https://github.com/kbengine/kbengine/tree/master/docs
mailto:kbesrv@gmail.com
https://groups.google.com/d/forum/kbengine_maillist

Start

You	can	look	at	the	installation	guide	first.	After	learning	about	the	common
tools,	you	can	go	to	GitHub	to	join	our	open	source	team.	
I	believe	that	after	you	have	enough	knowledge	of	KBEngine,	you	will	like	it.	

http://www.kbengine.org/docs/installation.html
http://www.kbengine.org/docs/tools/
https://github.com/kbengine/kbengine

Want	to	modify	and	improve	the	documentation?

If	you	think	there	is	something	in	the	documentation	that	needs	to	be	changed,
you	can	fork	kbengine_docs	and	submit	a	pull	request.	
Again,	if	you	find	anything	in	the	documentation	that	you	don't	understand,
please	submit	an	issue,	and	I	will	adjust	the	document	to	help	everyone	have	a
better	understanding.	

Copyright	KBEngine

https://github.com/kbengine/kbengine_docs
https://github.com/kbengine/kbengine_docs/issues

KBEngine

Keywords	Used

EntityCall:

This	is	the	conventional	means	of	remote	interaction	between	entities	in	the
script	layer.	(other	references:	allClients,	otherClients,	clientEntity).	

The	EntityCall	object	is	very	simple	to	implement	in	the	underlying	C++,	it
contains	only	the	ID	of	the	entity,	the	address	of	the	destination,	the	entity	type,
and	type	of	EntityCall.	When	a	remote	call	is	requested	by	the	user,	the	engine
first	finds	a	description	of	the	entity	definition	through	the	entity	type,	and
checks	the	data	input	by	the	user	against	the	description	of	the	entity	definition.
If	the	check	is	legal,	then	the	data	is	packaged	and	sent	to	the	destination
according	to	the	protocol.	

Note:	An	EntityCall	can	only	be	used	to	call	methods	declared	in	its
corresponding	def	file.	It	cannot	call	any	of	KBEngine's	basic	Entity	class
functions	or	access	entity	attributes.	

An	Entity	can	contain	up	to	three	parts:
Client:	When	an	entity	includes	a	client	part	(usually	a	player),	the	entity's	client
(EntityCall)	property	can	be	accessed	on	the	server	side.
Base:	When	an	entity	includes	a	baseapp	part,	the	base	(EntityCall)	attribute	of
the	entity	can	be	accessed	in	a	non-current	baseapp.
Cell:	When	an	entity	includes	a	cellapp	part,	the	cell	(EntityCall)	attribute	of	the
entity	can	be	accessed	in	a	non-current	cellapp.

Example:

Client	remote	method	defined	in	Avatar.def:

	 <ClientMethods>

	 	 <hello>

	 	 </hello>

	 </ClientMethods>

client\Avatar.py

	 class	Avatar:

	 	 def	hello(self):

	 	 	 print("hello")

Enter	in	the	Debug	page	input	box	of	the	GUIConsole	tool	(check	the	process	to
be	debugged	first	in	the	list	on	the	left):
First	find	the	ID	of	the	player	entity	(Avatar)	in	the	log	of	the	server's	Baseapp,
and	then	get	the	player	entity	(Avatar)	or	EntityCall	through	the	entity	ID:

>>>	KBEngine.entities[Player	ID].client.hello()

At	this	point,	the	client	log	file	will	output	"hello"	and	a	remote	call	process	will
be	completed.

KBE_ROOT:

This	is	a	KBEngine	environment	variable	that	describes	the	root	directory	where
KBEngine	is	located.

KBE_RES_PATH:

This	is	a	KBEngine	environment	variable	that	describes	the	resource	directory
that	KBEngine	engine	can	read.

KBE_HYBRID_PATH:

This	is	a	KBEngine	environment	variable	that	describes	the	directory	where	the
KBEngine	engine	executable	file	is	located.

entities.xml:

All	valid	entity	types	on	the	server	must	be	registered	here.	When	the	engine	is
initialized,	the	description	of	the	entity	is	loaded	according	to	the	order.

kbengine_defaults.xml:

Server-side	default	configuration,	where	users	can	modify	all	component
configurations	such	as	cellapp,	baseapp,	and	loginapp.	

Note:	You	may	often	need	to	upgrade	the	engine.	Modifying	directly	may	cause
conflicts	during	the	upgrade,	and	it	is	not	suitable	for	multiple	projects	in	the
same	KBEngine	environment.	

It	is	recommended	that	you	modify	the	overload	in	kbengine.xml.	You	only
need	to	rewrite	the	parts	you	want	to	modify	according	to	the	format	in	xml.

kbengine.xml:

Server	configuration	file,	where	users	can	modify	all	component	configurations
such	as	cellapp,	baseapp,	and	loginapp.
For	details,	please	refer	to	kbengine_defaults.xml

entity

Entity	is	defined	as	the	most	basic	object	of	the	server,	similar	to	Python's	base
object.
When	and	how	should	you	define	an	entity?	See
http://www.kbengine.org/docs/programming/entitydef.html

View

http://www.kbengine.org/docs/programming/entitydef.html

Each	client	entity	connected	to	the	server	will	have	a	View.	It	allows	the	client
entity	to	communicate	events	in	its	View	to	its	own	client.
View	is	related	to	space,	and	each	View	can	be	set	to	an	independent	size	range.	

Note:	The	space	described	here	is	an	abstract	concept	and	does	not	necessarily
need	to	be	bound	to	the	concept	of	physical	space	(except	for	MMORPGs).	For
the	core	gameplay	of	a	card	game,	players	in	a	room	can	also	be	considered	to	be
in	a	logical	space.	

Events	include:	entity	movement,	property	change	of	client	broadcast	type,
destruction	on	death,	and	so	on.

Witness

Eyewitness.
Only	Witnesses	bound	to	cell	entity	Views	take	effect.	In	other	words,	Witness	is
a	cell	proxy	of	the	client.	The	cellapp	continuously	synchronizes	the	information
in	the	View	to	the	client	through	the	Witness.
When	an	NPC	on	the	server	is	seen	by	a	witness,	it	call	the	onWitness	callback
of	the	entity.	The	server	can	rely	on	this	feature	to	reduce	CPU	consumption.
When	an	entity	is	not	witnessed,	the	server	can	stop	any	of	its	behavior.

Space

A	space	KBEngine	allocates	on	the	cellapp,	which	is	isolated	from	other	spaces.
Views,	traps,	entity	collisions,	etc.	only	interact	with	each	other	in	the	current
space.	The	space	is	defined	by	the	user.	It	can	be	a	scene,	copy,	room...

cell

There	are	two	different	meanings	of	cell	in	this	documentation.	Usually,	when
referring	to	the	Entity.cell	attribute,	you	are	actually	describing	the	entity's
CellEntityCall.

If	a	cell	is	described	as	part	of	a	space,	it	refers	to	cellapp's	load	balancing
technique.	A	space	in	the	cellapp	may	be	divided	into	n	parts,	each	called	a	cell,
and	each	cell	is	maintained	by	a	different	process.	

base

Usually	refers	to	the	Base	entity	on	the	baseapp	or	a	BaseEntityCall	that	points
to	the	Base	entity.
For	example:	Entity.base

client

Usually	refers	to	the	client	or	an	EntityCall	that	points	to	the	client	entity.
For	example:	Entity.client

cellapp

The	Cellapp	process	in	mainly	responsible	for	position-related	game	logic,	View,
AI,	scene	rooms,	and	so	on.
See	also:	cellapp

baseapp

The	Baseapp	process	is	mainly	responsible	for	communication	with	the	client,
position-independent	game	logic	(guild	manager,	chat	system,	game	lobby,
leaderboard,	etc.),	archiving,	backup,	and	so	on.
See	also:	baseapp

real

Refers	to	an	entity	in	a	cell	that	is	actually	present	in	the	cell	at	that	time.	(As
opposed	to	a	ghost	entity	broadcast	there	by	another	cell)

ghost

This	kind	of	entity	is	a	projected	copy	generated	by	cellapp's	dynamic	load
balancing	mechanism	which	divides	a	space	into	N	shares	and	splits	the	cells
between	different	processes.
Space	is	divided	into	multiple	regions.	To	make	the	client	unable	to	perceive	the
existence	of	the	boundaries	between	them,	we	synchronize	a	certain	range	of
entities	in	each	cell's	boundary	to	an	adjacent	cell's	boundary.	The	entity	has	a
part	of	its	data	synchronized	over	(CELL_PUBLIC,	cell	broadcast	types	of
attributes)	to	a	ghost	entity.	In	this	way	the	entity	can	interact	seamlessly	with
the	other	side	of	the	boundary	and	both	cells	simultaneously.	

Non-ghost	entities	are	called	real	entities.

vector3

Describe	and	manage	3D	space	vectors.	
There	are	three	properties	of	x,	y,	and	z	that	represent	different	axial	directions.	

Example	in	script:	import	Math	v	=	Math.Vector3()

Copyright	KBEngine

KBEngine

Basic	data	types
[Name]	 	 	 [Bytes]

UINT8	 	 	 1

UINT16	 	 	 2

UINT32	 	 	 4

UINT64	 	 	 8

INT8	 	 	 1

INT16	 	 	 2

INT32	 	 	 4

INT64	 	 	 8

FLOAT	 	 	 4

DOUBLE	 	 	 8

VECTOR2		 	 12

VECTOR3		 	 16

VECTOR4		 	 20

STRING	 	 	 N

UNICODE		 	 N

PYTHON	 	 	 N

PY_DICT		 	 N

PY_TUPLE	 	 N

PY_LIST		 	 N

ENTITYCALL	 	 N

BLOB	 	 	 N

Copyright	KBEngine

KBEngine

KBEngine	module

This	KBEngine	module	provides	a	part	of	the	logic	script	layer	access	to	entity,
as	well	as	current	space	data	and	so	on.

Class

Entity

Member	function

def	login(username,	password):
def	createAccount(username,	password):
def	reloginBaseapp():
def	player():
def	resetPassword(username):
def	bindAccountEmail(emailaddress):
def	newPassword(oldpassword,	newpassword):
def	findEntity(entityID):
def	getSpaceData(key):

Callback

Attributes

component 		Read	only	string
entities 		Entities
entity_uuid 		uint64
entity_id 		int32
spaceID 		int32

Member	functions	documentation

def	login(username,	password):

Function	description:
Login	account	to	KBEngine	server.
Note:	If	the	plug-in	and	the	UI	layer	use	event	interaction	mode,	do	not	call
directly	from	the	UI	layer.	Please	trigger	a	"login"	event	to	the	plug-in.	The
event	is	accompanied	by	the	data	username	and	password.	

parameter
username string,	username.
password string,	password.

def	createAccount(username,	password):

Function	description

Request	to	create	a	login	account	on	the	KBEngine	server.	
Note:	If	the	plug-in	and	the	UI	layer	use	the	event	interaction	mode,	do	not	call
directly	from	the	UI	layer.	Please	trigger	a	"createAccount"	event	to	the	plug-in.
The	event	is	accompanied	by	the	data	username	and	password.	

parameters:
username string,	username.
password string,	password.

def	reloginBaseapp():

Function	description

Requests	to	re-login	to	the	KBEngine	server	(usually	used	after	a	dropped
connection	in	order	to	connect	to	the	server	more	quickly	and	continue	to	control
the	server	role).
Note:	If	the	plug-in	and	the	UI	layer	use	event	interaction	mode,	do	not	call
directly	from	the	UI	layer,	please	trigger	a	"reloginBaseapp"	event	to	the	plug-in,
and	the	incidental	data	is	empty.	

def	player():

Function	description

Gets	the	entity	that	the	current	client	controls.

return:
Entity,	return	controlled	entity,	if	it	does	not	exist	(e.g.:	failed	to	connect	to
the	server)	returns	null.

def	resetPassword(username):

Function	description

Asks	loginapp	to	reset	the	password	of	the	account.	The	server	will	send	a
password	reset	email	(usually	the	forgotten	password	function)	to	the	email
address	to	which	the	account	is	bound.

parameters:
username string,	username.

def	bindAccountEmail(emailaddress):

Function	description

Requests	Baseapp	to	bind	the	email	address	of	the	account.

parameters:
emailaddress string,	email	address.

def	newPassword(oldpassword,	newpassword):

Function	description

Requests	to	set	a	new	password	for	the	account.

parameters:
oldpassword string,	old	password
newpassword string,	new	password

def	findEntity(entityID):

Function	description

Finds	an	instance	object	of	an	entity	by	its	ID.

parameters:
entityID int32,	entity	ID.

returns:
Entity	An	entity	instance	is	returned.	There	can	be	no	return	null.

def	getSpaceData(key):

Function	description

Gets	the	space	data	for	the	specified	key.	
The	space	data	is	set	by	the	user	on	the	server	through	setSpaceData.

parameters:
key string,	a	keyword

returns:
string,	specifies	the	value	at	the	key

Callback	function	documentation

Attributes	documentation

component

Description:

This	is	the	component	that	is	running	in	the	current	scripting	environment.	(So
far)	Possible	values	are	'cell',	'base',	'client',	'database',	'bot'	and	'editor'.

entities

Description:

entities	is	a	dictionary	object	that	contains	all	the	entities	in	the	current	process.

Types:
Entities

entity_uuid

Description:

The	uuid	of	the	entity.	Change	the	ID	and	entity	to	bind	to	this	login.	When
using	the	heavy	login	function,	the	server	compares	this	ID	and	determines	the
validity.

entity_id

Description:

The	ID	of	the	entity	controlled	by	the	current	client.

spaceID

Description:

The	ID	of	the	Space	where	the	entity	controlled	by	the	current	client	is	located
(also	can	be	understood	as	the	corresponding	scene,	room,	and	copy).

Copyright	KBEngine

KBEngine

Entity	class

[KBEngine	module]

Entity	is	part	of	the	KBEngine	module.	More...

import	KBEngine

Member	functions

def	baseCall(self,	methodName,	methodArgs):
def	cellCall(self,	methodName,	methodArgs):

Callbacks

def	onDestroy(self):
def	onEnterWorld(self):
def	onLeaveWorld(self):
def	onEnterSpace(self):
def	onLeaveSpace(self):

Attributes

direction 		Tuple	of	3	floats	as	(roll,	pitch,	yaw)
id 		Read-only	Integer
position 		Vector3
spaceID 		Read-only	uint32
isOnGround 		Read-only	bool
inWorld 		Read-only	bool
className 		Read-only	string

A	detailed	description

Instances	of	class	Entity	represent	game	objects	on	the	client.	

An	Entity	can	call	methods	on	its	equivalent	entity	in	the	base	and	cell
applications	via	ENTITYCALL.	This	requires	a	set	of	remotely-invoked
functions	(specified	in	the	entity's	.def	file).	It	also	works	the	other	way	around,
and	a	Client	can	have	its	functions	remotely	invoked	by	the	entity's	base	and	cell
parts	(must	be	specified	in	the	<ClientMethods>	section	of	the	entity's	.def	file).	

Client	entities	can	have	cell	attribute	changes	broadcast	to	them	by	using	any	of
the	*_CLIENT*	broadcast	flags	on	properties	in	the	entity's	def	file	on	the	server
side.	If	a	property	is	set	to	be	broadcast,	set_<property>()	is	called	on	the	client
entity	when	a	cell	attribute	is	changed.	See
http://kbengine.org/docs/programming/entitydef.html	for	more	info.

http://kbengine.org/docs/programming/entitydef.html

Member	function	documentation

def	baseCall(self,	methodName,	methodArgs):

Function	description:

The	method	to	call	the	base	part	of	the	entity.
Note:	the	entity	must	have	a	base	part	on	the	server	side.	Only	client	entities
controlled	by	the	client	can	access	this	method.	

Example:
js	plugin:	entity.baseCall("reqCreateAvatar",	roleType,	name);
c#	plugin:	entity.baseCall("reqCreateAvatar",	new	object[]{roleType,	name});

parameters:
methodName string,	method	name.
methodArgs objects,	method	parameter	list.

return:
Because	it	is	a	remote	call,	it	is	not	possible	to	block	waiting	for	a	return,	so
there	is	no	return	value.

def	cellCall(self,	methodName,	methodArgs):

Function	description:

The	method	to	call	the	cell	part	of	this	entity.
Note:	The	entity	must	have	a	cell	part	on	the	server.	Only	client	entities
controlled	by	the	client	can	access	this	method.	

Example:
js	plugin:	entity.cellCall("xxx",	roleType,	name);
c#	plugin:	entity.cellCall("xxx",	new	object[]{roleType,	name});

parameters:
methodName string,	method	name.
methodArgs objects,	method	parameter	list.

return:
Because	it	is	a	remote	call,	it	is	not	possible	to	block	waiting	for	a	return,	so
there	is	no	return	value.

Callback	function	documentation

def	onDestroy(self):

Called	when	the	entity	is	destroyed

def	onEnterWorld(self):

If	the	entity	is	not	client-controlled,	it	indicates	that	the	entity	has	entered	the
view	scope	of	the	client-controlled	entity	on	the	server,	at	which	point	the	client
can	see	the	entity.	
If	the	entity	is	client	controlled,	it	indicates	that	the	entity	has	created	a	cell	on
the	server	and	entered	the	Space.

def	onLeaveWorld(self):

If	the	entity	is	not	client-controlled,	it	indicates	that	the	entity	has	left	the	view
scope	of	the	client-controlled	entity	on	the	server	side,	and	the	client	cannot	see
this	entity	at	this	time.
If	the	entity	is	client	controlled,	it	indicates	that	the	entity	has	already	destroyed
the	cell	on	the	server	and	left	the	Space.

def	onEnterSpace(self):

The	client-controlled	entity	enters	a	new	space.

def	onLeaveSpace(self):

The	client-controlled	entity	leaves	the	current	space.

Attribute	documentation

className

The	class	name	of	the	entity.

Type:
Read-only,	string

position

The	coordinates	(x,y,z)	of	this	entity	in	world	space.	The	data	is	synchronized
from	the	server	to	the	client.	

Type:
Vector3

direction

This	attribute	describes	the	orientation	of	the	Entity	in	world	space.	Data	is
synchronized	from	the	server	to	the	client.

Type:
Vector3,	which	contains	(roll,	pitch,	yaw)	in	radians.

isOnGround

If	the	value	of	this	attribute	is	True,	the	Entity	is	on	the	ground,	otherwise	it	is
False.
If	it	is	a	client-controlled	entity,	this	attribute	will	be	synchronized	to	the	server
when	changed,	and	other	entities	will	be	synchronized	to	the	client	by	the	server.
The	client	can	determine	this	value	to	avoid	the	overhead	of	accuracy.

Type:
Read-write,	bool

Copyright	KBEngine

KBEngine

KBEngine	module

This	KBEngine	module	provides	the	Python	script	access	to	the	entity's	cell
part,	in	particular	it	provides	the	registration	and	removal	of	timers,	as	well	as
the	creation	of	entities.

Classes

Entity

Member	functions

def	addSpaceGeometryMapping(spaceID,	mapper,	path,
shouldLoadOnServer,	params):
def	addWatcher(path,	dataType,	getFunction):
def	address():
def	MemoryStream():
def	createEntity(entityType,	spaceID,	position,	direction,	params):
def	debugTracing():
def	delSpaceData(spaceID,	key):
def	delWatcher(path):
def	deregisterReadFileDescriptor(fileDescriptor):
def	deregisterWriteFileDescriptor(fileDescriptor):
def	executeRawDatabaseCommand(command,	callback,	threadID,
dbInterfaceName):
def	genUUID64():
def	getResFullPath(res):
def	getSpaceData(spaceID,	key):
def	getSpaceGeometryMapping(spaceID):
def	getWatcher(path):
def	getWatcherDir(path):
def	getAppFlags():
def	hasRes(res):
def	isShuttingDown():
def	listPathRes(path,	extension):
def	matchPath(res):
def	open(res,	mode):
def	publish():
def	registerReadFileDescriptor(fileDescriptor,	callback):
def	registerWriteFileDescriptor(fileDescriptor,	callback):
def	raycast(spaceID,	layer,	src,	dst):
def	reloadScript(fullReload):
def	scriptLogType(logType):

def	setAppFlags(flags):
def	setSpaceData(spaceID,	key,	value):
def	time():

Callback

def	onCellAppData(key,	value):
def	onCellAppDataDel(key):
def	onGlobalData(key,	value):
def	onGlobalDataDel(key):
def	onInit(isReload):
def	onSpaceData(spaceID,	key,	value):
def	onSpaceGeometryLoaded(spaceID,	mapping):
def	onAllSpaceGeometryLoaded(spaceID,	isBootstrap,	mapping):

Attributes

LOG_TYPE_DBG 	
LOG_TYPE_ERR 	
LOG_TYPE_INFO 	
LOG_TYPE_NORMAL 	
LOG_TYPE_WAR 	
NEXT_ONLY 	
cellAppData 	
component 		Read-only	string
entities 		Entities
globalData 		GlobalDataClient

Member	functions	documentation

def	addSpaceGeometryMapping(spaceID,	mapper,	path,
shouldLoadOnServer,	params):

Function	description:
Associate	a	geometric	mapping	of	a	given	space.	After	the	function	is	called,	the
server	and	client	will	load	the	corresponding	geometry	data.

On	the	server,	all	geometry	data	is	loaded	from	the	given	directory	into	the
specified	space.	These	data	may	be	divided	into	many	blocks.	Different	blocks
are	loaded	asynchronously.	The	following	callback	methods	are	called	when	all
the	geometry	data	is	loaded:

	 def	onAllSpaceGeometryLoaded(self,	spaceID,	mappingName):

The	server	only	loads	the	geometric	data	of	the	scene	for	use	by	the	navigation
and	collision	functions.	In	addition	to	the	geometric	data,	the	client	also	loads
data	such	as	textures.	
3D	scenes	currently	use	the	data	exported	by	the	recastnavigation	plugin-in	by
default.	2D	scenes	currently	use	the	data	exported	by	MapEditor	by	default.	

There	is	a	possibility	that	onAllSpaceGeometryLoaded()	will	not	be	invoked,
that	is,	if	multiple	Cellapps	call	this	method	at	the	same	time	to	add	geometry	to
the	same	space,	cellappmgr	crashes.

parameters:

spaceID uint32,	ID	of	the	space,	specifies	in	which	space	to
operate

mapper Not	yet	implemented
path Directory	path	containing	geometry	data

shouldLoadOnServer Optional	boolean	parameter	that	specifies	whether	toload	geometry	on	the	server.	Default	is	True.

params

Optional	PyDict	parameter,	specifies	the	navmesh	used
by	different	layers,	for	example:
KBEngine.addSpaceGeometryMapping(self.spaceID,

None,	resPath,	True,	{0	:
"srv_xinshoucun_1.navmesh",	1	:
"srv_xinshoucun.navmesh"})

def	addWatcher(path,	dataType,	getFunction):

Function	description:

Interacts	with	the	debug	monitoring	system	to	allow	users	to	register	a
monitoring	variable	with	the	monitoring	system.	

Example:	

>>>	def	countPlayers():

>>>					i	=	0

>>>					for	e	in	KBEngine.entities.values():

>>>						 if	e.__class__.__name__	==	"Avatar":

>>>						 	 i	+=	1

>>>					return	i

>>>

>>>	KBEngine.addWatcher("players",	"UINT32",	countPlayers)

This	function	adds	a	watch	variable	under	the	"scripts/players"	watch	path.	The
function	countPlayers	is	called	when	the	watcher	observes	a	change.

parameters:
path The	path	to	create	a	watcher.

dataType The	value	type	of	the	monitored	variable.	Reference:	Basic	data
types

getFunction
This	function	is	called	when	the	observer	retrieves	the	variable.
This	function	returns	a	value	representing	a	watch	variable
without	arguments.

def	address():

Function	description:

Returns	the	address	of	the	internal	network	interface.

def	MemoryStream():

Function	description:

Return	a	new	MemoryStream	object.

The	MemoryStream	object	stores	binary	information.	This	type	is	provided	to
allow	the	user	to	easily	serialize	and	deserialize	the	Python	base	types	following
the	same	KBEngine	underlying	serialization	rules.

For	example,	you	can	use	this	object	to	construct	a	network	packet	that
KBEngine	can	parse.	

Usage:

>>>	s	=	KBEngine.MemoryStream()

>>>	s

>>>	b''

>>>	s.append("UINT32",	1)

>>>	s.pop("UINT32")

>>>	1

The	types	that	MemoryStream	currently	supports	are	only	basic	data	types.
Reference:	Basic	data	types

def	createEntity(entityType,	spaceID,	position,	direction,	params):

Function	description:

createEntity	creates	a	new	entity	in	the	specified	space	of	the	current	process.	
When	calling	this	function	you	must	specifiy	the	type,	location,	and	direction	of
the	entity	to	be	created.	Optionally,	any	attribute	of	the	entity	can	be	set	with	the
params	Python	dictionary	parameter.	(the	attributes	are	described	in	the	entity's
.def	file).	

Example:

#	Create	an	open	Door	entity	in	the	same	space	as	the	"thing"	entity

direction	=	(0,	0,	thing.yaw)

properties	=	{	"open":1	}

KBEngine.createEntity("Door",	thing.space,	thing.position,	direction,

																							properties)

parameters:

entityType string,	the	name	of	the	entity	to	create,	declared	in	the/scripts/entities.xml	file.
spaceID int32,	the	ID	of	the	space	to	place	the	entity

position A	sequence	of	3	floats	that	specify	the	creation	point	of	the	new
entity,	in	world	coordinates.

direction A	sequence	of	3	floats	that	specify	the	initial	orientation	(roll,
pitch,	yaw)	of	the	new	entity	in	world	coordinates.

params
Optional	parameters,	a	Python	dictionary	object.	If	a	specified	key
is	an	Entity	attribute,	its	value	will	be	used	to	initialize	the
properties	of	the	new	Entity.

returns:
The	new	Entity.

def	debugTracing():

Function	description:

Outputs	the	Python	extension	object	counter	that	outputs	KBEngine	trace.
Extended	objects	include:	fixed	dictionary,	fixed	array,	Entity,	EntityCall...
If	the	counter	is	not	zero	when	the	server	is	shut	down	normally,	it	means	that
the	leak	already	exists	and	the	log	will	output	an	error	message.

ERROR	cellapp	[0x0000cd64]	[2014-11-12	00:38:07,300]	-
PyGC::debugTracing():	FixedArray	:	leaked(128)
ERROR	cellapp	[0x0000cd64]	[2014-11-12	00:38:07,300]	-
PyGC::debugTracing():	EntityCall	:	leaked(8)

def	delSpaceData(spaceID,	key):

Function	description:

Deletes	the	space	data	of	the	specified	key	(if	space	is	divided	into	multiple

parts,	it	will	be	deleted	synchronously).	
The	space	data	is	set	by	the	user	via	setSpaceData.

parameters:
spaceID int32,	the	ID	of	the	space
key string,	a	string	keyword

def	delWatcher(path):

Function	description:

Interacts	with	the	debug	monitoring	system,	allowing	users	to	delete	watcher
variables	in	the	script.

parameters:
path The	path	of	the	variable	to	delete.

def	deregisterReadFileDescriptor(fileDescriptor):

Function	description:

Deregisters	the	callback	registered	with
KBEngine.registerReadFileDescriptor.	

Example:
http://www.kbengine.org/assets/other/py/Poller.py

parameters:
fileDescriptor Socket	descriptor/file	descriptor

def	deregisterWriteFileDescriptor(fileDescriptor):

Function	description:

Deregisters	the	callback	registered	with
KBEngine.registerWriteFileDescriptor.	

Example:
http://www.kbengine.org/assets/other/py/Poller.py

http://www.kbengine.org/assets/other/py/Poller.py
http://www.kbengine.org/assets/other/py/Poller.py

parameters:
fileDescriptor Socket	descriptor/file	descriptor

def	executeRawDatabaseCommand(command,	callback,	threadID,
dbInterfaceName):

Function	description:

This	script	function	executes	a	database	command	on	the	database,	which	will	be
directly	parsed	by	the	relevant	database.	

Please	note	that	using	this	function	to	modify	the	entity	data	may	not	be	effective
because	if	the	entity	has	been	checked	out,	the	modified	entity	data	will	still	be
archived	by	the	entity	and	cause	overwriting.
This	function	is	strongly	not	recommended	for	reading	or	modifying	entity	data.

parameters:

command
This	database	command	will	be	different	for	different
database	configurations.	For	MySQL	databases	it	will	be
an	SQL	query	statement.

Optional	parameter,	callbacks	object	(for	example,	a
function)	with	the	command's	execution	result.	This
callback	has	4	parameters:	result	set,	number	of	rows
affected,	auto	value,	and	error	message.
Example:
def	sqlcallback(result,	rows,	insertid,	error):
				print(result,	rows,	insertid,	error)	

As	the	above	example	shows,	the	result	parameter
corresponds	to	the	"result	set",	and	the	result	set	parameter
is	a	row.	List.	Each	line	is	a	list	of	strings	containing	field
values.
The	command	execution	does	not	return	a	result	set	(for
example,	a	DELETE	command),	or	the	result	set	is	None	if
the	command	execution	has	an	error.	

The	rows	parameter	is	the	"number	of	rows	affected",
which	is	an	integer	indicating	the	number	of	rows	affected

callback by	the	command	execution.	This	parameter	is	only	relevant
for	commands	that	do	not	return	results	(such	as
DELETE).	
This	parameter	is	None	if	there	is	a	result	set	return	or	if
there	is	an	error	in	the	command	execution.	

The	insertid	corresponds	to	a	"long	value",	similar	to	the
entity's	databaseID.	When	successfully	inserting	data	into
a	table	with	an	auto	long	type	field,	it	returns	the	data	at
the	time	of	insertion.	Assigned	value.	
More	information	can	be	found	in	mysql's
mysql_insert_id()	method.	In	addition,	this	parameter	is
only	meaningful	when	the	database	type	is	mysql.	

error	corresponds	to	the	"error	message",	when	the
command	execution	error,	this	parameter	is	a	string
describing	the	error.	This	parameter	is	None	when	the
command	execution	has	not	occurred.

threadID

int32,	optional	parameter,	specifies	a	thread	to	process	this
command.	Users	can	use	this	parameter	to	control	the
execution	order	of	certain	commands	(dbmgr	is	multi-
threaded).	The	default	is	not	specified.	If	threadID	is	the
ID	of	the	entity,	it	will	be	added	to	the	entity's	archive
queue	and	written	by	the	thread	one	by	one.

dbInterfaceName

string,	optional	parameter,	specified	by	a	database
interface,	defaults	to	"default"	interface.	The	database
interface	is	defined	by	kbengine_defaults.xml->dbmgr-
>databaseInterfaces.

def	genUUID64():

Function	description:

This	function	generates	a	64-bit	unique	ID.
Note:	This	function	is	dependent	on	the	'gus'	startup	argument	of	the	Cellapp
service	process.	Please	set	the	startup	arguments	to	be	unique.
In	addition,	if	gus	exceeds	65535,	this	function	can	only	remain	unique	on	the

current	process.	

Usage
A	unique	item	ID	is	generated	on	multiple	service	processes	and	there	is	no
conflict	when	combined.
A	room	ID	is	generated	on	multiple	service	processes	and	no	uniqueness
verification	is	required.

returns:
64-bit	integer

def	getResFullPath(res):

Function	description:

Get	the	absolute	path	of	the	resource.
Note:	Resoures	must	be	accessible	under	KBE_RES_PATH.

parameters:

res string,	if	there	is	an	absolute	path	to	return	the	resource,	otherwise	itreturns	null.

returns:
string,	the	absolute	path	to	the	resource.

def	getSpaceData(spaceID,	key):

Function	description:

Get	the	space	data	of	the	specified	key.	
The	space	data	is	set	by	the	user	via	setSpaceData.

parameters:
spaceID int32,	the	ID	of	the	space
key string,	a	string	keyword

returns:
string,	string	data	for	the	given	key

def	getSpaceGeometryMapping(spaceID):

Function	description:

Returns	the	geometry	map	name	of	a	specified	space.

parameters:
spaceID The	ID	of	the	space	to	be	queried

returns:
string,	the	name	of	the	geometry	map.

def	getWatcher(path):

Function	description:

Gets	the	value	of	a	watch	variable	from	the	KBEngine	debug	system.	

Example:	In	the	baseapp1	Python	console,	enter:
>>>KBEngine.getWatcher("/root/stats/runningTime")	
12673648533	

>>>KBEngine.getWatcher("/root/scripts/players")	
32133

parameters:

path string,	the	absolute	path	of	the	variable	including	the	variable	name	(canbe	viewed	on	the	GUIConsole	watcher	page).

returns:
The	value	of	the	variable.

def	getWatcherDir(path):

Function	description:

Get	a	list	of	elements	(directories,	variable	names)	under	the	watch	directory
from	the	KBEngine	debugging	system.	

Example:	In	baseapp1	Python	console,	enter:
>>>KBEngine.getWatcher("/root")	
('stats',	'objectPools',	'network',	'syspaths',	'ThreadPool',	'cprofiles',	'scripts',
'numProxices',	'componentID',	'componentType',	'uid',	'numClients',
'globalOrder',	'username',	'load',	'gametime',	'entitiesSize',	'groupOrder')

parameters:

path string,	the	absolute	path	of	the	variable	including	the	variable	name	(canbe	viewed	on	the	GUIConsole	watcher	page).

returns:
The	list	of	elements	(directory,	variable	name)	under	the	Watch	directory.

def	getAppFlags():

Function	description:

Get	the	flags	of	the	current	engine	APP,	Reference:KBEngine.setAppFlags¡£	

returns:
KBEngine.APP_FLAGS_*

def	hasRes(res):

Function	description:

Use	this	interface	to	determine	if	a	relative	path	exists.
Note:	Resources	must	be	accessible	under	KBE_RES_PATH.	

Example:	

>>>KBEngine.hasRes("scripts/entities.xml")	
True

parameters:
res string,	the	relative	path	of	the	resource

returns:
BOOL,	if	it	exists	return	True,	otherwise	False.

def	isShuttingDown():

Function	description:

Returns	whether	the	server	is	shutting	down.	After	the	onBaseAppShuttingDown
callback	function	is	called,	this	function	returns	True.

returns:
BOOL,	if	the	server	is	shutting	down	True,	otherwise	False.

def	listPathRes(path,	extension):

Function	description:

Get	a	list	of	resources	in	a	resource	directory
Note:	Resources	must	be	accesible	under	KBE_RES_PATH.	

Example:	

>>>KBEngine.listPathRes("scripts/cell/interfaces")	
('/home/kbe/kbengine/demo/res/scripts/cell/interfaces/AI.py',
'/home/kbe/kbengine/demo/res/scripts/cell/interfaces/New	Text	Document.txt')	

>>>KBEngine.listPathRes("scripts/cell/interfaces",	"txt")	
('/home/kbe/kbengine/demo/res/scripts/cell/interfaces/New	Text	Document.txt')	

>>>KBEngine.listPathRes("scripts/cell/interfaces",	"txt|py")	
('/home/kbe/kbengine/demo/res/scripts/cell/interfaces/AI.py',
'/home/kbe/kbengine/demo/res/scripts/cell/interfaces/New	Text	Document.txt')	

>>>KBEngine.listPathRes("scripts/cell/interfaces",	("txt",	"py"))	
('/home/kbe/kbengine/demo/res/scripts/cell/interfaces/AI.py',
'/home/kbe/kbengine/demo/res/scripts/cell/interfaces/New	Text	Document.txt')

parameters:
res string,	the	relative	path	of	the	resource.
extension string,	optional	parameter,	file	extension.

returns:
Tuple,	resource	list.

def	matchPath(res):

Function	description:

Use	the	relative	path	of	the	resource	to	get	its	absolute	path.
Note:	Resources	must	be	accessible	under	KBE_RES_PATH.	

Example:	

>>>KBEngine.matchPath("scripts/entities.xml")
'/home/kbe/kbengine/demo/res/scripts/entities.xml'

parameters:
res string,	the	relative	path	to	the	resource	(including	the	resource	name)

returns:
string,	the	absolute	path	of	the	resource.

def	open(res,	mode):

Function	description:

Use	this	interface	to	open	resources	using	relative	paths.	Note:	Resources	must
be	accessible	under	KBE_RES_PATH.

parameters:
res string,	the	relative	path	of	the	resource.

mode

string,	file	operation	mode:
w	Open	in	write	mode,	
a	Open	in	append	mode	(Start	from	EOF,	create	new	file	if	necessary)	
r+	Open	
w+	in	read/write	mode	Open	in	read/write	mode	(see	w)	
a+	Open	in	read/write	mode	(See	a)	
rb	Opens	
wb	in	binary	read	mode	Opens	in	binary	write	mode	(see	w)	

ab	Opens	in	binary	append	mode	(see	a)	
rb+	Opens	in	binary	read	and	write	mode	(see	r+)	
wb+	Opens	in	binary	read	and	write	mode	(see	w+)	
ab+	Open	in	binary	read/write	mode	(see	a+)

def	publish():

Function	description:

This	interface	returns	the	current	server	release	mode.

returns:
int8,	0:	debug,	1:	release,	others	can	be	customized.

def	raycast(spaceID,	layer,	src,	dst):

Function	description:

In	the	specified	layer	of	the	specified	space,	a	ray	is	emitted	from	the	source
coordinates	to	the	destination	coordinates,	and	the	collided	coordinate	point	is
returned.	

Note:	Space	must	load	geometry	using	addSpaceGeometryMapping.	

Below	is	an	example:	

	 >>>	KBEngine.raycast(spaceID,	entity.layer,	(0,	10,	0),	(0,-10,0))

	 ((0.0000,	0.0000,	0.0000),	((0.0000,	0.0000,	0.0000),

	 (4.0000,	0.0000,	0.0000),	(4.0000,	0.0000,	4.0000)),	0)

parameters:
spaceID int32,	space	ID

layer
int8,	geometric	layer.	A	space	can	load	multiple	navmesh	data	at	the
same	time.	Different	navmesh	can	be	in	different	layers.	Different
layers	can	be	abstracted	into	the	ground,	the	water	surface	and	so	on.

returns:
list,	list	of	coordinate	points	collided

def	registerReadFileDescriptor(fileDescriptor,	callback):

Function	description:

Registers	a	callback	function	that	is	called	when	the	file	descriptor	is	readable.	

Example:
http://www.kbengine.org/assets/other/py/Poller.py

parameters:
fileDescriptor Socket	descriptor/file	descriptor

callback A	callback	function	with	the	socket	descriptor/file	descriptor
as	its	only	parameter.

def	registerWriteFileDescriptor(fileDescriptor,	callback):

Function	description:

Registers	a	callback	function	that	is	called	when	the	socket	descriptor/file
descriptor	is	writable.	

Example:
http://www.kbengine.org/assets/other/py/Poller.py

parameters:
fileDescriptor Socket	descriptor/file	descriptor

callback A	callback	function	with	the	socket	descriptor/file	descriptor
as	its	only	parameter.

def	reloadScript(fullReload):

Function	description:

Reloads	Python	modules	related	to	entity	and	custom	data	types.	The	current
entity	class	is	set	to	the	newly	loaded	class.	This	method	should	only	be	used	for
development	mode	and	not	for	product	mode.	The	following	points	should	be
noted:	

1)	The	overloaded	script	can	only	be	executed	on	Cellapp.	The	user	should

http://www.kbengine.org/assets/other/py/Poller.py
http://www.kbengine.org/assets/other/py/Poller.py

ensure	that	all	server	components	are	loaded.	

2)	The	custom	type	should	ensure	that	the	objects	already	instantiated	in	memory
are	updated	after	the	script	is	reloaded.	Here	is	an	example:	

for	e	in	KBEngine.entities.values():

			if	type(e)	is	Avatar.Avatar:

						e.customData.__class__	=	CustomClass

When	this	method	completes	KBEngine.onInit(True)	is	called.

parameters:

fullReload
Optional	boolean	parameter	that	specifies	whether	to	reload	entity
definitions	at	the	same	time.	If	this	parameter	is	False,	the	entity
definition	will	not	be	reloaded.	The	default	is	True.

returns:
True	if	the	reload	succeeds,	False	otherwise.

def	scriptLogType(logType):

Function	description:

Set	the	type	of	information	output	by	the	current	Python.print	(Reference:
KBEngine.LOG_TYPE_*).

def	setAppFlags(flags):

Function	description:

Set	the	flags	of	the	current	engine	APP.	

KBEngine.APP_FLAGS_NONE	//	Default	(not	set)
KBEngine.APP_FLAGS_NOT_PARTCIPATING_LOAD_BALANCING	//	Do
not	participate	in	load	balancing

Example:
KBEngine.setAppFlags(KBEngine.APP_FLAGS_NOT_PARTCIPATING_LOAD_BALANCING
|	KBEngine.APP_FLAGS_*)

def	setSpaceData(spaceID,	key,	value):

Function	description:

Sets	the	space	data	for	the	specified	key.	
The	space	data	can	be	obtained	via	getSpaceData.

parameters:
spaceID int32,	the	ID	of	the	space.
key string,	a	string	keyword
value string,	the	string	value.

def	time():

Function	description:

This	method	returns	the	current	game	time	(number	of	cycles).

returns:
uint32,	the	current	time	of	the	game.	This	refers	to	the	number	of	cycles.	The
period	is	affected	by	the	frequency.	The	frequency	is	determined	by	the
configuration	file	kbengine.xml	or	kbengine_defaults.xml->
gameUpdateHertz.

Callback	functions	documentation

def	onCellAppData(key,	value):

Function	description:

This	function	is	called	back	when	KBEngine.cellAppData	changes.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml->entryScriptFile).

parameters:
key The	key	of	the	changed	data.
value The	value	of	the	changed	data.

def	onCellAppDataDel(key):

Function	description:

This	function	is	called	back	when	KBEngine.cellAppData	is	deleted.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
keyDeleted	data	key.

def	onGlobalData(key,	value):

Function	description:

This	function	is	called	back	when	KBEngine.globalData	changes.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	moodule
(kbengine_defaults.xml->entryScriptFile).

parameters:
key The	key	of	the	changed	data.
value The	value	of	the	changed	data.

def	onGlobalDataDel(key):

Function	description:

This	function	is	called	back	when	KBEngine.globalData	is	deleted.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
keyDeleted	data	key.

def	onInit(isReload):

Function	description:

This	interface	is	called	after	all	scripts	have	been	initialized	since	the	engine
started.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
isReload Bool,	whether	it	was	triggered	after	reloading	the	loading	the	script.

def	onSpaceData(spaceID,	key,	value):

Function	description:

Called	when	there	is	a	change	in	the	space	data.
The	space	data	is	set	by	the	user	via	setSpaceData.

parameters:
spaceID The	ID	of	the	space.
key The	key	of	the	changed	data.
value The	value	of	the	changed	data.

def	onSpaceGeometryLoaded(spaceID,	mapping):

Function	description:

The	space	required	by	the	grid	collision	data	is	loaded.
Set	by	user	through	addSpaceGeometryMapping.

parameters:
spaceID The	ID	of	the	space.
mapping The	map	value	of	the	grid	collision	data.

def	onAllSpaceGeometryLoaded(spaceID,	isBootstrap,	mapping):

Function	description:

The	space	required	for	grid	collision	and	other	data	is	completely	loaded.
Set	by	user	through	addSpaceGeometryMapping.

parameters:
spaceID The	ID	of	the	space.

isBootstrap If	a	space	is	partitioned	by	multiple	cells,	isBootstrap	describeswhether	it	is	the	originating	cell	of	the	loading	request.
mapping The	map	value	of	grid	collision	data.

Attribute	documentation

LOG_TYPE_DBG

Description:

The	log	output	type	is	debug.
Set	by	scriptLogType.

LOG_TYPE_ERR

Description:

The	log	output	type	is	error.
Set	by	scriptLogType.

LOG_TYPE_INFO

Description:

The	log	output	type	is	general	information.
Set	by	scriptLogType.

LOG_TYPE_NORMAL

Description:

The	log	output	type	is	normal.
Set	by	scriptLogType.

LOG_TYPE_WAR

Description:

The	log	output	type	is	warning.
Set	by	scriptLogType.

NEXT_ONLY

Description:

This	constant	is	currently	unused	in	Cellap.

cellAppData

Description:

This	property	contains	a	dictionary-like	object	that	is	automatically	synchronized
across	all	CellApps.	When	a	value	in	the	dictionary	is	modified,	this	change	is
broadcast	to	all	Cellapps.	

Example:

KBEngine.cellAppData["hello"]	=	"there"

The	rest	of	Cellap	can	access	the	following:

print	KBEngine.cellAppData["hello"]

Keys	and	values	can	be	of	any	type,	but	these	types	must	be	encapsulated	and
unpacked	on	all	target	components.	

When	a	value	is	changed	or	deleted,	a	callback	function	is	called	on	all
components.	See:	KBEngine.onCellAppData	and
KBEngine.onDelCellAppData.	

Note:	Only	the	top-level	value	will	be	broadcast.	If	you	have	a	value	(such	as	a
list)	that	changes	the	internal	value	(such	as	just	changing	a	number),	this
information	will	not	be	broadcast.	

Do	not	do	the	following:

KBEngine.cellAppData["list"]	=	[1,	2,	3]

KBEngine.cellAppData["list"][1]	=	7

This	will	cause	the	local	access	to	read	[1,	7,	3]	and	the	remote	[1,	2,	3]

component

Description:

This	is	the	component	that	is	running	in	the	current	Python	environment.	(So	far)
Possible	values	are	'cell',	'base',	'client',	'database',	'bot'	and	'editor'.

entities

Description:

entities	is	a	dictinary	object	that	contains	all	entities	in	the	current	process,
including	ghost	entities.

Debugging	leaked	entities:	(instances	that	call	destroy	without	releasing
memory,	usually	as	a	result	of	the	reference	not	being	released)

>>>	KBEngine.entities.garbages.items()

[(1025,	Avatar	object	at	0x7f92431ceae8.)]

>>>	e	=	_[0][1]

>>>	import	gc

>>>	gc.get_referents(e)

[{'spacesIsOk':	True,	'bootstrapIdx':	1},]

Debugging	a	leaked	KBEngine-encapsulated	Python	object:
KBEngine.debugTracing

Types:
Entities

globalData

Description:

This	attribute	contains	a	dictionary-like	object	that	is	automatically	copied
between	all	BaseApps	and	CellApps.	When	a	value	in	a	dictionary	is	modified,
this	change	is	broadcast	to	all	BaseApps	and	CellApps.	CellAppMgr	solves
completion	conditions	and	ensures	the	authority	of	information	replication.	

Example:

KBEngine.globalData["hello"]	=	"there"

The	rest	of	Cellapp	or	Baseapp	can	access	the	following:

print	KBEngine.globalData["hello"]

Keys	and	values	can	be	of	any	type,	but	these	types	must	be	encapsulated	and
unpacked	on	all	target	components.	

When	a	value	is	changed	or	deleted,	a	callback	function	is	called	on	all
components.	See:	KBEngine.onGlobalData	and	KBEngine.onGlobalDataDel.

Note:	Only	the	top-level	value	will	be	broadcast.	If	you	have	a	volatile	value
(such	as	a	list)	that	changes	the	internal	value	(such	as	just	changing	a	number),
this	information	will	not	be	broadcast.	

Do	not	do	the	following:

KBEngine.globalData["list"]	=	[1,	2,	3]

KBEngine.globalData["list"][1]	=	7

This	will	cause	the	local	access	to	read	[1,	7,	3]	and	the	remote	[1,	2,	3]

Copyright	KBEngine

KBEngine

Entity

[KBEngine	module]

Entity	is	part	of	the	KBEngine	module.	More...

import	KBEngine

Member	functions

def	accelerate(self,	accelerateType,	acceleration):
def	addYawRotator(self,	targetYaw,	velocity,	userArg):
def	addProximity(self,	range,	userArg):
def	addTimer(self,	start,	interval=0.0,	userData=0):
def	cancelController(self,	controllerID):
def	clientEntity(self,	destID):
def	canNavigate(self):
def	debugView(self):
def	delTimer(self,	id):
def	destroy(self):
def	destroySpace(self):
def	entitiesInView(self):
def	entitiesInRange(self,	range,	entityType=None,	position=None):
def	isReal(self):
def	moveToEntity(self,	destEntityID,	velocity,	distance,	userData,
faceMovement,	moveVertically,	offsetPos):
def	moveToPoint(self,	destination,	velocity,	distance,	userData,
faceMovement,	moveVertically):
def	getViewRadius(self):
def	getViewHystArea(self):
def	getRandomPoints(self,	centerPos,	maxRadius,	maxPoints,	layer):
def	navigate(self,	destination,	velocity,	distance,	maxMoveDistance,
maxSearchDistance,	faceMovement,	layer,	userData):
def	navigatePathPoints(self,	destination,	maxSearchDistance,	layer):
def	setViewRadius(self,	radius,	hyst=5):
def	teleport(self,	nearbyMBRef,	position,	direction):
def	writeToDB(self,	shouldAutoLoad,	dbInterfaceName):

Callbacks

def	onDestroy(self):
def	onEnterTrap(self,	entity,	rangeXZ,	rangeY,	controllerID,	userArg):
def	onEnteredView(self,	entity):
def	onGetWitness(self):
def	onLeaveTrap(self,	entity,	rangeXZ,	rangeY,	controllerID,	userArg):
def	onLoseControlledBy(self,	id):
def	onLoseWitness(self):
def	onMove(self,	controllerID,	userData):
def	onMoveOver(self,	controllerID,	userData):
def	onMoveFailure(self,	controllerID,	userData):
def	onRestore(self):
def	onSpaceGone(self):
def	onTurn(self,	controllerID,	userData):
def	onTeleport(self):
def	onTeleportFailure(self):
def	onTeleportSuccess(self,	nearbyEntity):
def	onTimer(self,	timerHandle,	userData):
def	onUpdateBegin(self):
def	onUpdateEnd(self):
def	onWitnessed(self,	isWitnessed):
def	onWriteToDB(self):

Attributes

allClients 		Read-only	PyClient
base 		Read-only	BaseEntityCall
client 		Read-only	ClientEntityCall
controlledBy 		BaseEntityCall
className 		Read-only	string
direction 		Tuple	of	3	floats	as	(roll,	pitch,	yaw)
hasWitness 		boolean
id 		Read-only	Integer
isDestroyed 		Read-only	bool
isWitnessed 		Read-only	bool
layer 		int8
otherClients 		Read-only	PyClient
position 		Vector3
spaceID 		Read-only	uint32
topSpeed 		float
topSpeedY 		float
volatileInfo 		float

A	detailed	description

Instances	of	class	Entity	represent	game	objects	in	the	cell.	An	Entity	can	either
be	"real"	or	"ghosted".	A	"ghost"	Entity	is	a	copy	of	a	"real"	Entity	living	on	a
neighboring	cell.	There	is	a	unique	"real"	Entity	instance	for	each	entity,	and	0
or	more	"ghost"	Entity	instances.	

An	Entity	instance	controls	the	location	data	of	the	entity,	including	its	position
and	rotation.	It	also	controls	how	often	this	data	is	sent	to	the	client	(if	possible).
The	location	data	can	be	updated	by	a	unique	client	and	modified	by	the
controller	object	using	the	teleport	member	function.	Controllers	are	non-python
objects	that	can	be	used	to	change	the	location	data	over	time	on	cell	entities.
They	are	added	to	Entity	through	member	functions	such	as	"trackEntity"	and
"turnToYaw"	and	can	be	removed	via	"cancelController".	

Area	of	Interest	or	"View"	is	an	important	concept	for	all	KBEngine	entities	that
belong	to	a	client.	The	view	of	an	entity	is	the	area	that	the	client	(if	it	has	a
client)	can	perceive	around	this	entity.	This	is	used	to	select	the	amount	of	data
sent	to	the	client.	The	actual	shape	of	the	View	is	defined	by	the	range	of
distances	on	the	x-axis	and	around	the	z-axis,	and	there	is	a	lag	region	that
extends	outward	like	a	shape.	An	Entity	enters	another	Entity's	view,	but	does
not	leave	it	until	it	leaves	the	lag	area.	An	Entity	can	modify	its	View	size	via
"setViewRadius".	You	can	find	all	entities	within	a	specific	distance	with
"entitiesInRange"	and	set	traps	to	capture	all	entities	that	enter	the	trap	with
"addProximity".	

The	new	Entity	on	cellapp	can	be	created	using	KBEngine.createEntity.	An
entity	can	also	be	created	by	the	baseapp	remote	calls	to	the
KBEngine.createCellEntity	function.	

An	Entity	can	access	it	equivalent	entities	on	the	base	and	client	applications	via
ENTITYCALL.	This	requires	a	set	of	remotely-invoked	functions	(specified	in
the	entity's	.def	file)

Member	function	documentation

def	accelerate(self,	accelerateType,	acceleration):

Function	description:

Accelerate	the	current	movement	of	the	entity.

The	activities	that	can	be	accelerated	include:
Entity.moveToEntity
Entity.moveToPoint
Entity.navigate
Entity.addYawRotator

parameters:

accelerateType string,	the	type	of	movement	affected	such	as:	"Movement",
"Turn".

velocity float,	acceleration	per	second,	use	negative	to	decelerate

returns:
The	current	speed	of	the	affected	entity.

def	addYawRotator(self,	targetYaw,	velocity,	userArg):

Function	description:

The	control	entity	rotates	around	yaw.	Entity.onTurn	is	called	when	the	rotation
completes.	

To	remove	it,	use	Entity.cancelController	with	the	controller	ID	or	use
Entity.cancelController("Movement")	to	remove	it.

See:
Entity.cancelController

parameters:
targetYaw float,	the	given	target	yaw	radians.

velocity float,	the	arc	per	second	when	rotated.

userArg
Optional	integer	that	is	common	to	all	controllers.	If	this	value	is
not	0,	it	is	passed	to	the	callback	function.	It	is	recommended	to	set
the	default	value	to	0	in	the	callback	prototype.

def	addProximity(self,	rangeXZ,	rangeY,	userArg):

Function	description:

Create	an	area	trigger	that	will	notify	the	Entity	when	other	entities	enter	or
leave	the	trigger	area.	This	area	is	a	square	(for	efficiency).

If	another	entity	is	within	a	given	distance	on	the	x-axis	and	z-axis,	it	is
considered	to	be	within	the	range.	This	Entity	is	notified	via	the	onEnterTrap
and	onLeaveTrap	functions,	which	can	be	defined	as	follows:	

	 def	onEnterTrap(self,	entityEntering,	rangeXZ,	rangeY,	controllerID,	userArg	=	0):

	 def	onLeaveTrap(self,	entityLeaving,	rangeXZ,	rangeY,	controllerID,	userArg	=	0):

Because	the	scope	trigger	is	a	controller,	use	Entity.cancelController	with	the
controller	ID	to	delete	it.	

It	should	be	noted	that	the	callback	may	be	triggered	immediately,	even	before
the	call	to	addProximity()	returns.

See:
Entity.cancelController

parameters:

rangeXZ float,	the	size	of	the	xz	axis	area	of	the	trigger,	must	be	greater	thanor	equal	to	zero.
float,	the	height	of	the	y-axis	of	the	trigger,	must	be	greater	than	or
equal	to	zero.
It	should	be	noted	that	for	this	parameter	to	take	effect
kbengine_defaults.xml->cellapp->coordinate_system-
>rangemgr_y	must	be	set	to	true.	

rangeY Open	y-axis	management	will	increase	CPU	consumption,	because
some	games	have	a	large	number	of	entities	at	the	same	y-axis
height	or	all	on	the	ground	which	is	almost	completely	flat.	Because
of	this,	the	collision	becomes	very	dense.	
3D	space	games	or	small	room-type	games	are	more	suitable	for
this	option.

userArg
Optional	integer	that	is	common	to	all	controllers.	If	this	value	is
not	0,	it	is	passed	to	the	callback	function.	It	is	recommended	to	set
the	default	value	to	0	in	the	callback	prototype.

returns:
The	ID	of	the	created	controller.

def	addTimer(self,	start,	interval=0.0,	userData=0):

Function	description:

Register	a	timer.	The	timer	triggers	the	callback	function	onTimer	The	callback
function	will	be	executed	the	first	time	after	"initialOffset"	seconds,	and	then	it
will	be	executed	once	every	"repeatOffset"	seconds	with	the	"userArg"
parameter.	(integer	only)	

The	onTimer	function	must	be	defined	in	the	cell	part	of	the	entity	with	two
parameters.	The	first	is	an	integer,	the	timer's	ID	(which	can	be	used	to	remove
the	timer's	"delTimer"	function),	and	the	second	is	the	user	parameter
"userArg".	

Example:

#	Here	is	an	example	of	using	addTimer

import	KBEngine

	

class	MyCellEntity(KBEngine.Entity):

	

				def	__init__(self):

								KBEngine.Entity.__init__(self)

	

								#	Add	a	timer,	perform	the	first	time	after	5	seconds,	and	execute	once	every	1	second.	The	user	parameter	is	9.

								self.addTimer(5,	1,	9)

	

								#	Add	a	timer	and	execute	it	after	1	second.	The	default	user	parameter	is	0.

								self.addTimer(1)

	

				#	Entity	timer	callback	"onTimer"	is	called

				def	onTimer(self,	id,	userArg):

								print	"MyCellEntity.onTimer	called:	id	%i,	userArg:	%i"	%	(id,	userArg)

								#	if	this	is	a	repeated	timer,	when	it	is	no	longer	needed,	call	the	following	function	to	remove	it:

								#					self.delTimer(id)

parameters:

initialOffset float,	specifies	the	time	interval	(in	seconds)	for	the	timer	toexecute	the	first	callback.

repeatOffset

float,	specifies	the	time	interval	(in	seconds)	between	each
callback	after	the	first	callback.	The	timer	must	be	removed	with
the	function	delTimer,	otherwise	it	will	be	repeated.	Values	less
than	or	equal	to	0	will	be	ignored.

userArg integer,	specifies	the	value	of	the	"userArg"	parameter	when
calling	"onTimer".

returns:
integer,	returns	the	internal	ID	of	the	timer.	This	ID	can	be	used	to	remove	the
timer	using	delTimer.

def	cancelController(self,	controllerID):

Function	description:

The	function	cancelController	stops	the	effect	of	a	controller	on	Entity.	It	can
only	be	called	on	a	real	entity.

parameters:

controllerID

integer,	the	index	of	the	controller	to	cancel.	A	special	controller
type	string	can	also	be	used	as	its	type.	For	example,	only	one
mobile/navigation	controller	can	be	activated	at	a	time.	This	can
be	cancelled	with	entity.cancelController("Movement").

def	clientEntity(self,	destID):

Function	description:

This	method	can	access	the	method	of	an	entity	in	its	own	client	(the	current

entity	must	be	bound	to	the	client).	Only	the	entities	in	the	View	scope	will	be
synchronized	to	the	client.	It	can	only	be	called	on	a	real	entity.

parameters:
destID integer,	the	ID	of	the	target	entity.

def	canNavigate(self):

Function	description:

This	method	determines	whether	the	current	entity	can	use	the	navigation
(Entity.navigate)	feature.	It	can	only	be	called	on	a	real	entity.	
Usually	it	can	use	navigation	when	the	entity's	Space	uses
KBENgine.addSpaceGeometryMapping	to	load	valid	navigation	collision	data
(Navmesh	or	2D	tile	data)	and	the	entity	is	available	in	the	effective	navigation
area.

returns:
bool,	returns	True	if	the	entity	can	use	the	Navigate	function	in	the	current
space,	otherwise	it	returns	False.

def	debugView(self):

Function	description:

debugView	outputs	the	Entity's	View	details	to	the	cell's	debug	log.	A
description	of	the	workings	of	the	View	system	can	be	found	in	the	Entity	class
documentation.	

A	sample	of	information	is	as	follows:

		INFO	cellapp	[0x00001a1c]	[2014-11-04	00:28:41,409]	-	Avatar::debugView:	100	size=4,	Seen=4,	Pending=0,	ViewRadius=50.000,	ViewHyst=5.000

		INFO	cellapp	[0x00001a1c]	[2014-11-04	00:28:41,409]	-	Avatar::debugView:	100	Avatar(102),	position(771.586.211.002.776.55),	dist=0

		INFO	cellapp	[0x00001a1c]	[2014-11-04	00:28:41,409]	-	Avatar::debugView:	100	Monster(1028),	position(820.834.211.635.768.749),	dist=49.8659

		INFO	cellapp	[0x00001a1c]	[2014-11-04	00:28:41,409]	-	Avatar::debugView:	100	NPC(1025),	position(784.024.210.95.782.273),	dist=13.6915

		INFO	cellapp	[0x00001a1c]	[2014-11-04	00:28:41,409]	-	Avatar::debugView:	100	Avatar(106),	position(771.586.211.002.776.55),	dist=0

The	first	line	of	information	tells	us:

It	is	entity	#1000's	data.
There	are	4	entities	in	its	View	area	and	all	have	been	synchronized	to	the

client.
There	are	0	entities	in	its	view	Area	that	are	waiting	to	be	synchronized	to
the	client.
The	radius	of	the	View	is	50.000
The	lag	area	of	the	View	extends	5.000	outward.

def	delTimer(self,	id):

Function	description:

The	delTimer	function	is	used	to	remove	a	registered	timer.	The	removed	timer
is	no	longer	executed.	Single	shot	timers	are	automatically	removed	after	the
callback	is	executed,	and	it	is	not	necessary	to	use	the	delTimer	to	remove	it.	If
the	delTimer	function	uses	an	invalid	ID	(for	example,	it	has	been	removed),	an
error	will	be	generated.

parameters:
id integer,	which	specifies	the	timer	ID	to	remove.

def	destroy(self):

Function	description:

This	function	destroys	its	local	Entity	instance.	If	the	entity	has	a	ghost	part	on
other	processes,	it	will	also	notify	for	their	destruction.	This	function	is	best
called	by	the	entity	itself,	and	throws	an	exception	if	the	entity	is	a	ghost.	If	the
callback	function	onDestroy()	is	implemented,	it	is	executed.

def	destroySpace(self):

Function	description:

Destroys	the	space	this	entity	is	in.

def	entitiesInView(self):

Function	description:

Get	a	list	of	entities	in	the	View	scope	of	this	entity.

def	entitiesInRange(self,	range,	entityType=None,	position=None):

Function	description:

Search	for	entities	within	a	given	distance.	This	is	a	spherical	search.	The
distances	of	the	three	axes	must	be	measured.	This	can	find	entities	that	are
outside	the	View	scope	of	this	entity,	but	cannot	find	entities	in	other	cells.

Example:

		self.entitiesInRange(100,	'Creature',	(100,	0,	100))

Searches	for	a	list	of	entities	of	type	'Creature'	(an	instantiated	entity	of	a
subclass	of	'Creature').	The	center	point	is	(100,	0,	100)	and	the	search	radius	is
100	meters.

		[e	for	e	in	self.entitiesInRange(100,	None,	(100,0,100))	if	isinstance(e,	BaseType)]

Gives	a	list	of	entities	instantiated	from	subclasses	of	'BaseType'.

parameters:
range Search	distance	around	this	entity,	float	type

entityType

An	optional	string	parameter,	the	entity's	type	name,	used	to	match
entities.	If	the	entity	type	is	a	valid	class	name	(valid	entities	are
ones	listed	in	/scripts/entities.xml)	only	this	type	of	entity	will	be
returned,	otherwise	all	entities	in	this	range	will	be	returned.

position Optional	Vector3	type	parameter,	which	is	the	center	of	the	search
radius	is	centered	on	the	entity	itself	by	default.

returns:
A	list	of	Entity	objects	in	a	given	range.

def	isReal(self):

Function	description:

This	function	returns	whether	the	Entity	is	real	or	a	ghost.	

This	function	is	rarely	used	but	is	useful	for	debugging.

returns:
bool,	True	if	real,	otherwise	False.

def	moveToEntity(self,	destEntityID,	velocity,	distance,	userData,
faceMovement,	moveVertically,	offsetPos):

Function	description:

Moves	the	Entity	straight	to	another	Entity	position.
Any	Entity	can	only	have	one	motion	controller	at	any	time.	Repeatedly	calling
any	move	function	will	terminate	the	previous	move	controller.
This	function	will	return	a	controller	ID	that	can	be	used	to	cancel	this	move.

For	example,	Entity.cancelController(movementID).	You	can	also	cancel	the
move	using	Entity.cancelController("Movement").	The	callback	function	will
not	be	called	if	the	move	is	cancelled.	

	 def	onMove(self,	controllerID,	userData):

	 def	onMoveOver(self,	controllerID,	userData):

	 def	onMoveFailure(self,	controllerID,	userData):

References:
Entity.cancelController

parameters:
destEntityID int,	the	ID	of	the	target	Entity
velocity float,	speed	of	the	Entity	move,	in	m/s

distance float,	distance	target	that	when	reached	the	entity	will	stop
moving,	if	the	value	is	0,	it	moves	to	the	target	position.

userData object,	optional	parameter,	when	the	callback	function	is
invoked	the	userData	parameter	will	be	this	value.

faceMovement bool,	optional	parameter,	True	if	the	entity	faces	the	directionof	the	move.	If	it	is	other	mechanism,	it	is	False.

moveVertically
bool,	optional	parameter,	set	to	True	to	move	in	a	straight
line,	set	to	False	means	to	move	in	a	straight	line	parallel	to
the	ground.
Vector3,	optional	parameter,	Set	a	certain	offset	value,	such	as

offsetPos moving	the	target	position	to	the	left	of	the	entity.

returns:
int,	newly	created	controller	ID.

def	moveToPoint(self,	destination,	velocity,	distance,	userData,
faceMovement,	moveVertically):

Function	description:

Move	the	Entity	to	the	given	coordinate	point	in	a	straight	line.	The	callback
function	is	invoked	on	success	or	failure.
Any	Entity	can	only	have	one	motion	controller	at	any	time.	Repeatedly	calling
any	move	function	will	terminate	the	previous	move	controller.
Returns	a	controller	ID	that	can	be	used	to	cancel	this	move.	

For	example:	
Entity.cancelController(movementID).	You	can	also	cancel	the	move	with
Entity.cancelController("Movement").	The	callback	function	will	not	be
called	if	the	move	is	cancelled.	

The	callback	function	is	defined	as	follows:

	 def	onMove(self,	controllerID,	userData):

	 def	onMoveOver(self,	controllerID,	userData):

	 def	onMoveFailure(self,	controllerID,	userData):

See:
Entity.cancelController

parameters:
destination Vector3,	the	target	point	to	which	the	Entity	is	to	be	moved
velocity float,	Entity's	moving	speed,	in	m/s

distance float,	distance	target	that	when	reached	the	entity	will	stop
moving,	if	the	value	is	0,	it	moves	to	the	target	position.

userData object,	data	passed	to	the	callback	function

faceMovement bool,	True	if	the	entity	faces	the	direction	of	the	move.	If	it	isother	mechanism,	it	is	false.

moveVertically bool,	set	to	True	to	move	in	a	straight	line,	set	to	False	meansto	move	in	a	straight	line	parallel	to	the	ground.

returns:
int,	newly	created	controller	ID.

def	getViewRadius(self):

Function	description:

This	function	returns	the	current	View	radius	value	of	this	Entity.	

Data	can	be	set	via	Entity.setViewRadius(radius,	hyst).

returns:
float,	View	radius

def	getViewHystArea(self):

Function	description:

This	function	returns	the	current	lag	area	value	of	this	Entity	View.	

Data	can	be	set	via	Entity.setViewRadius(radius,	hyst).

returns:
float,	The	current	lag	area	value	of	this	Entity's	View.

def	getRandomPoints(self,	centerPos,	maxRadius,	maxPoints,	layer):

Function	description:

This	function	is	used	to	get	an	array	of	random	coordinate	point	that
Entity.navigate	can	reach	in	a	certain	area	centered	on	a	certain	coordinate
point.

parameters:
centerPos Vector3,	Entity	center	coordinates
maxRadius float,	the	maximum	search	radius

maxPoints uint32,	the	maximimum	number	of	random	coordinate	points
returned.

layer int8,	layer	of	navmesh	to	search.

returns:
tuple,	an	array	of	one	or	more	coordinates.

def	navigate(self,	destination,	velocity,	distance,	maxMoveDistance,
maxSearchDistance,	faceMovement,	layer,	userData):

Function	description:

Use	the	navigation	system	to	move	this	Entity	to	a	target	point.	A	callback	will
be	invoked	on	success	or	failure.	
KBEngine	can	have	several	pre-generated	navigation	meshes	with	different
mesh	sizes	(leading	to	different	navigation	paths).
Any	Entity	can	only	have	one	motion	controller	at	any	time.	Repeatedly	calling
any	move	function	will	terminate	the	previous	move	controller.
Returns	a	controller	ID	that	can	be	used	to	cancel	this	move.	

For	example:	
Entity.cancelController(movementID).	You	can	also	cancel	the	movement
controller	with	Entity.cancelController("Movement").	The	callback	function
will	not	be	called	if	the	move	is	cancelled.	

The	callback	functions	are	defined	as	follows:

	 def	onMove(self,	controllerID,	userData):

	 def	onMoveOver(self,	controllerID,	userData):

	 def	onMoveFailure(self,	controllerID,	userData):

See:
Entity.cancelController

parameters:
destination Vector3,	the	target	point	where	the	Entity	moves.
velocity float,	Entity's	move	speed,	in	m/s

distance
float,	distance	target	that	when	reached	the	entity	will
stop	moving,	if	the	value	is	0,	it	moves	to	the	target

position.
maxMoveDistance float,	the	maximum	move	distance

maxSearchDistance float,	the	maximum	search	distance	from	the	navigationdata.

faceMovement bool,	True	if	the	entity	faces	the	direction	of	the	move
(default).	Otherwise	False.

layer int8,	navmesh	layer	to	search
userData object,	the	data	passed	to	the	callback	function

returns:
int,	the	newly	created	controller	ID.

def	navigatePathPoints(self,	destination,	maxSearchDistance,	layer):

Function	description:

This	functions	returns	a	list	of	path	points	from	the	current	Entity	location	to	the
destination.	

parameters:
destination Vector3,	target	point	where	the	Entity	moves
maxSearchDistance float,	the	maximum	search	distance
layer int8,	navmesh	layer	to	search	for	a	path	on.

def	setViewRadius(self,	radius,	hyst=5):

Function	description:

Specifies	the	size	of	the	Entity's	View.	

This	function	can	only	be	used	by	Witness	related	entities.	

Note:	You	can	set	the	default	View	radius	by	setting	the	kbengine.xml
configuration	option	'cellapp/defaultViewRadius'.	

Data	can	be	obtained	with	Entity.getViewRadius()	and
Entity.getViewHystArea().

parameters:
radius float,	specifies	the	radius	of	the	View	area

hyst

float,	specifies	the	size	of	the	lag	area	of	the	View.	A	reasonable
setting	of	the	lag	area	will	reduce	the	sensitivity	of	View	collisions
and	reduce	CPU	consumption.	Views	where	one	entity	enters	another
entity	must	span	the	View	radius	area,	but	entities	that	leave	the	View
area	need	to	move	out	of	the	View	radius	area	including	the	lag	area.

returns:
None

def	teleport(self,	nearbyMBRef,	position,	direction):

Function	description:

Instantly	move	an	Entity	to	a	specified	space.	This	function	allows	you	to
specify	the	position	and	orientation	of	the	entity	after	is	has	been	moved.	
If	you	need	to	jump	in	different	spaces	(usually	for	different	scene	or	room
jumps),	you	can	pass	a	CellEntityCall	to	this	function	(the	entity	corresponding
to	the	entityCall	must	be	in	the	destination	Space).	

This	function	can	only	be	called	on	real	entities.

parameters:

nearbyMBRef

A	CellEntityCall	(the	entity	corresponding	to	this	entityCall
must	be	in	the	destination	Space)	that	determines	which
Space	an	Entity	is	to	jump	to.	It	is	considered	to	be	the
transfer	destination.	This	can	be	set	to	None,	in	which	case	it
will	teleport	on	the	current	cell.

position A	sequence	of	3	floats	(x,	y,	z),	the	coordinates	of	where	to
teleport	the	Entity	.

direction A	sequence	of	3	floats	(roll,	pitch,	yaw),	the	orientation	of	the
Entity	after	teleportation.

def	writeToDB(self,	shouldAutoLoad,	dbInterfaceName):

Function	description:

This	function	saves	the	data	related	to	this	entity	to	the	database,	including	the
data	of	the	base	entity.	The	onWriteToDB	function	of	the	base	entity	is	called
before	the	data	is	passed	to	the	database.	

The	data	of	the	cell	entity	is	also	backed	up	in	the	base	entity	to	ensure	that	the
data	is	up-to-date	when	crash	recovery	data	is	encountered	

This	function	can	only	be	called	on	real	entities,	and	the	entity	must	exist	in	the
base	section.

parameters:

shouldAutoLoad

bool,	optional	parameter,	specifies	whether	this	entity
needs	to	be	loaded	from	the	database	when	the	service
starts.
Note:	The	entity	is	automatically	loaded	when	the	server
starts.	The	default	is	to	call
createEntityAnywhereFromDBID	to	create	an	entity	to	a
minimally	loaded	baseapp.	The	entire	process	will	be
completed	before	the	first	started	baseapp	calls
onBaseAppReady.

The	script	layer	can	reimplement	the	entity	creation
method	in	a	customized	script	(kbengine_defaults.xml-
>baseapp->entryScriptFile	definition),	for	example:
def	onAutoLoadEntityCreate(entityType,	dbid):	
						KBEngine.createEntityFromDBID(entityType,	dbid)

dbInterfaceName

string,	optional	parameter,	specified	by	a	database
interface,	uses	the	interface	name	"default"	by	default.	The
database	interface	is	defined	in	kbengine_defaults.xml-
>dbmgr->databaseInterfaces.

Callback	functions	documentation

def	onDestroy(self):

If	this	function	is	implemented	in	a	script,	it	is	called	after	Entity.destroy()
destroys	this	entity.	This	function	has	no	parameters.

def	onEnterTrap(self,	entity,	rangeXZ,	rangeY,	controllerID,	userArg):

When	a	scope	trigger	is	registered	using	Entity.addProximity	and	another
entity	enters	the	trigger,	this	callback	function	is	called.

parameters:
entity Entity	that	has	entered	the	area

rangeXZ float,	the	size	of	the	xz	axis	of	the	trigger,	must	be	greater	than
or	equal	to	zero.

rangeY

float,	the	size	of	the	y-axis	height	of	the	trigger,	must	be	greater
than	or	equal	to	zero.
It	should	be	noted	that	for	this	parameter	to	take	effect	you	must
enable	kbengine_defaults.xml->cellapp->coordinate_system-
>rangemgr_y	
Opening	y-axis	management	will	increase	CPU	consumption,
because	some	games	have	a	large	number	of	entities	at	the	same
y-axis	height	or	on	the	ground	at	nearly	the	same	height.
Because	of	this,	the	collision	becomes	very	dense.
3D	space	games	or	small	room-type	games	are	more	suitable	for
enabling	this	option.

controllerID 	The	controller	id	of	this	trigger.

userArg The	value	of	the	parameter	given	by	the	user	when	calling
addProximity,	the	user	can	decide	how	to	use	this	parameter.

def	onEnteredView(self,	entity):

If	this	function	is	implemented	in	a	script,	when	an	entity	enters	the	View	scope
of	the	current	entity,	this	callback	is	triggered.

parameters:

entity 		The	entity	which	has	entered	the	View	scope.

def	onGetWitness(self):

If	this	function	is	implemented	in	a	script,	it	is	called	when	the	entity	has	a
Witness	bound	to	it.
You	can	also	access	the	entity	property	Entity.hasWitness	to	get	the	current
state	of	the	entity.

def	onLeaveTrap(self,	entity,	rangeXZ,	rangeY,	controllerID,	userArg):

If	this	function	is	implemented	in	a	script,	it	is	triggered	when	an	entity	leaves
the	trigger	area	registered	by	the	current	entity.	The	scope	trigger	is	registered
with	Entity.addProximity.

parameters:
entity The	entity	that	has	left	the	trigger	area.

rangeXZ float,	the	size	of	the	xz	axis	of	the	trigger,	must	be	greater	than
or	equal	to	zero.

rangeY

float,	the	size	of	the	y-axis	height	of	the	trigger,	must	be	greater
than	or	equal	to	zero.
It	should	be	noted	that	for	this	parameter	to	take	effect	you	must
enable	kbengine_defaults.xml->cellapp->coordinate_system-
>rangemgr_y	
Opening	y-axis	management	will	increase	CPU	consumption,
because	some	games	have	a	large	number	of	entities	at	the	same
y-axis	height	or	on	the	ground	at	nearly	the	same	height.
Because	of	this,	the	collision	becomes	very	dense.
3D	space	games	or	small	room-type	games	are	more	suitable	for
enabling	this	option.

controllerID 		The	controller	ID	of	this	trigger.

userArg The	value	of	the	parameter	given	by	the	user	when	calling
addProximity,	the	user	can	decide	how	to	use	this	parameter.

def	onLoseControlledBy(self,	id):

If	this	function	is	implemented	in	a	script,	this	callback	is	triggered	when	this
entity	loses	the	Entity.controlledBy	entity.

parameters:
id 		ID	of	the	controlledBy	entity.

def	onLoseWitness(self):

If	this	function	is	implemented	in	a	script,	the	callback	is	triggered	whe	this
entity	loses	a	Witness.
You	can	also	access	that	Entity.hasWitness	property	to	get	the	current	state.

def	onMove(self,	controllerID,	userData):

If	this	function	is	implemented	in	the	script,	the	callback	is	invoked	each	frame
when	moved	after	a	call	to	Entity.moveToPoint,	Entity.moveToEntity,	or
Entity.navigate.

parameters:
controllerID 		The	controller	ID	associated	with	the	move.

userData 		The	parameter	given	by	the	user	when	requesting	to	move	the
entity.

def	onMoveOver(self,	controllerID,	userData):

If	this	callback	function	is	implemented	in	a	script,	it	is	invoked	after	a	call	to
Entity.moveToPoint,	Entity.moveToEntity,	or	Entity.navigate	when	this
entity	reaches	the	target	point.

parameters:
controllerID 		The	controller	ID	associated	with	the	move.

userData 		This	parameter	value	is	given	by	the	user	when	requesting	to
move	an	entity.

def	onMoveFailure(self,	controllerID,	userData):

If	this	function	is	implemented	in	the	script,	this	callback	is	invoked	after	a	call
to	Entity.moveToPoint,	Entity.moveToEntity,	or	Entity.navigate	if	the
movement	has	failed.

parameters:
controllerID 		The	controller	ID	associated	with	the	move.

userData 		This	parameter	value	is	given	by	the	user	when	requesting	to
move	an	entity.

def	onRestore(self):

If	this	callback	function	is	implemented	in	a	script,	it	is	invoked	when	the	Cell
application	crashes	and	recreates	the	entity	on	another	cellapp.	This	function	has
no	arguments.

def	onSpaceGone(self):

If	this	callback	function	is	implemented	in	the	script,	it	will	be	called	when	the
current	entity's	Space	is	destroyed.	This	function	has	no	parameters.

def	onTurn(self,	controllerID,	userData):

If	this	callback	function	is	implemented	in	a	script,	it	will	be	called	after
reaching	the	specified	yaw.	(related	to	Entity.addYawRotator)

parameters:
controllerID 		The	controller	ID	returned	by	Entity.addYawRotator.

userData 		This	parameter	value	is	given	by	user	when	requesting	to
move	an	entity.

def	onTeleport(self):

If	this	callback	function	is	implemented	in	a	script,	it	will	be	called	at	the
moment	before	the	(Real)	entity	is	transmitted	in	the	entity	transfer	that	occurs
through	the	baseapp's	Entity.teleport	call.
Note:	Calling	teleport	on	the	entity's	cell	section	does	not	trigger	this	callback,	if
you	need	this	feature	please	invoke	this	callback	after	a	call	to	Entity.teleport.

def	onTeleportFailure(self):

If	this	callback	function	is	implemented	in	a	script,	it	will	be	called	after	a	call	to
Entity.teleport	if	the	teleport	has	failed.

def	onTeleportSuccess(self,	nearbyEntity):

If	this	callback	function	is	implemented	in	a	script,	it	is	invoked	after	a	succesful

call	to	Entity.teleport

parameters:

nearbyEntity
		This	parameter	is	given	by	the	user	when	calling
Entity.teleport.	This	is	a	real	entity.	

def	onTimer(self,	timerHandle,	userData):

Function	description:

This	function	is	called	when	a	timer	associated	with	this	entity	is	triggered.	A
timer	can	be	added	using	the	Entity.addTimer	function.

parameters:
timerHandle The	ID	of	the	timer.
userData integer,	given	by	the	user	when	calling	Entity.addTimer.

def	onUpdateBegin(self):

Invoked	when	a	synchronization	frame	begins.

def	onUpdateEnd(self):

Invoked	after	a	synchronization	frame	has	completed.

def	onWitnessed(self,	isWitnessed):

If	this	callback	function	is	implemented	in	a	script,	it	is	called	when	this	entity
enters	the	View	area	of	another	entity	bound	to	a	Witness	(also	can	be
understood	as	when	this	entity	is	observed	by	a	client).	This	function	can	be	used
to	activate	the	entity's	AI	when	it	is	observed,	and	stopping	AI	execution	when
the	entity	ceases	to	be	observed,	thus	reducing	CPU	consumption	of	the	server	to
increase	efficiency.

parameters:

isWitnessed

		bool,	True	if	the	entity	is	observed	and	False	when	the	entity	is
not	observed.
You	can	also	access	the	entity	property	Entity.isWitnessed	to	get

the	current	state	of	the	entity.

def	onWriteToDB(self):

If	this	callback	function	is	implemented	in	a	script,	it	is	called	when	the	entity	is
about	to	be	archived	into	the	database.

Attributes	documentation

allClients

By	calling	the	entity's	remote	client	methods	through	this	attribute,	the	engine
broadcasts	the	message	to	all	other	entities	bound	to	a	client	that	are	within	this
entity's	View	area	(including	its	own	client,	and	the	entity	bound	to	the	client	is
usually	the	player)

Example:
Avatar	has	player	A,	player	B,	and	monster	C	in	the	View	range.
avatar.allClients.attack(monsterID��skillID,	damage)

At	this	point,	the	player	himself,	player	A's,	and	player	B's	clients	will	all	call
the	entity's	attack	method,	and	their	client	can	invoke	the	specified	skill's	attack
action	to	perform.

Other	references:
Entity.clientEntity
Entity.otherClients

base

base	is	the	entityCall	used	to	contact	the	base	Entity.	This	attribute	is	read-only
and	is	None	if	the	entity	has	no	associated	base	Entity.

Other	references:
Entity.clientEntity
Entity.allClients
Entity.otherClients

Type:
Read-only,	ENTITYCALL

className

The	class	name	of	the	entity.

Type:
Read-only,	string

client

client	is	the	entityCall	used	to	contact	associated	client.	This	attribute	is	read-
only,	and	is	None	if	this	entity	does	not	have	an	associated	client.

Other	references:
Entity.clientEntity
Entity.allClients
Entity.otherClients

Type:
Read-only,	ENTITYCALL

controlledBy

If	this	attribute	is	set	to	the	BaseEntityCall	of	the	server-side	entity	associated
with	a	client,	this	entity	is	controlled	by	the	corresponding	client	to	move.	If	the
attribute	is	None,	the	entity	is	moved	by	the	server.	When	the	client	logs	in	and
calls	giveClientTo	on	this	entity,	this	attribute	is	automatically	set	to	its	own
BaseEntityCall.
Scripts	can	flexibly	control	the	movement	of	the	entity	by	the	server	or	by	the
client	(its	own	client	or	give	control	to	other	clients).

Other	references:
Entity.onLoseControlledBy

Type:
BaseEntityCall

direction

This	attribute	describes	the	orientation	of	the	Entity	in	world	space.	Users	can
change	this	attribute	and	the	data	will	be	synchronized	to	the	client.
Example:	self.direction.y	=	1.0	self.direction.z	=	1.0

Type:

Vector3,	which	contains	(roll,	pitch,	yaw)	in	radians.

hasWitness

If	this	read-only	attribute	is	True,	it	means	that	the	entity	has	already	bound	a
Witness.	If	the	entity	is	bound	to	Witness,	the	client	can	obtain	information
from	the	entity's	view	scope.	Otherwise,	False.

Type:
Read-only,	bool

id

id	is	the	id	of	the	Entity	object.	This	id	is	an	integer	that	is	the	same	between
base,	cell,	and	client	associated	entities.	This	attribute	is	read-only.

Type:
Read-only,	int32

isDestroyed

If	this	attribute	is	True,	this	Entity	has	already	been	destroyed.

Type:
Read-only,	bool

isOnGround

If	the	value	of	this	attribute	is	True,	the	Entity	is	on	the	ground,	otherwise	it	is
False.

Type:
Read-only,	bool

isWitnessed

If	the	current	entity	is	in	the	View	scope	of	another	entity	bound	to	Witness	(can
also	be	understood	as	an	entity	observed	by	a	client),	this	property	is	True,
otherwise	it	is	False.	

Other	references:
Entity.onWitnessed

Type:
Read-only,	bool

layer

A	space	can	load	multiple	navmesh	data	at	the	same	time.	Different	navmesh	can
be	in	different	layers.	Different	layers	can	be	abstracted	into	the	ground,	the
water	surface,	and	so	on.	This	attribute	determines	which	layer	an	entity	exists
in.	

Reference:
KBEngine.addSpaceGeometryMapping

Type:
int8

otherClients

By	calling	the	entity's	remote	client	methods	through	this	property,	the	engine
broadcasts	the	message	to	all	other	entities	bound	to	the	cliend	within	this
entity's	View	scope	(Not	including	its	own	client.	The	entity	bound	to	the	client
is	usually	the	player.).	

Example:
avatar	has	player	A,	player	B,	and	monster	C	in	the	View	range.
avatar.otherClients.attack(monsterID,	skillID,	damage)	

At	this	point,	player	A's	and	player	B's	client	will	call	the	entity	attack	method,
and	their	client	can	invoke	the	specified	skill's	attack	action	to	perform.

Other	references:
Entity.clientEntity
Entity.otherClients

position

The	coordinates	of	this	entity	in	world	space	(x,	y,	z).	This	attribute	can	be
changed	by	the	user	and	will	be	synchronized	to	the	client	after	the	change.	It	is
important	to	note	that	this	attribute	should	not	be	referenced.	Referencing	this
attribute	is	likely	to	incorrectly	modify	the	real	coordinates	of	the	entity.	

Example:

self.position.y	=	10.0

If	you	want	to	copy	this	attribute	value	you	can	do	the	following:	

	 import	Math

	 self.copyPosition	=	Math.Vector3(self.position)

Type:
Vector3

spaceID

This	attribute	is	the	ID	of	the	space	in	which	the	entity	is	located.	The	cell	and
client	ids	are	the	same.

Type:
Read-only,	Integer

topSpeed

The	maximum	xz	movement	speed	of	the	entity	(m/s).	This	attribute	is	usually
larger	than	the	actualy	movement	speed.	The	server	checks	the	client's
movement	legality	through	this	attribute.	If	the	movement	distance	excedes	the
speed	limit,	it	is	forced	back	to	the	previous	position.

Other	references:
Entity.topSpeedY

Type:
float

topSpeedY

The	maximum	y-axis	movement	speed	of	the	entity	(m/s).	This	attribute	is
usually	larger	than	the	actualy	movement	speed.	The	server	checks	the	client's
movement	legality	through	this	attribute.	If	the	movement	distance	excedes	the
speed	limit,	it	is	forced	back	to	the	previous	position.

Other	references:
Entity.topSpeed

Type:
float

volatileInfo

This	attribute	specifies	the	Entity's	volatile	data	synchronization	policy.
Volatile	data	includes	the	coordinate	position	of	the	entity	and	the	orientation	of
the	entity.	Since	volatile	data	is	easily	changed,	the	engine	uses	a	set	of
optimized	solutions	to	synchronize	it	to	the	client.
This	attribute	is	four	floats	(position,	yaw,	pitch,	roll)	that	represents	the	distance
value,	and	the	server	synchronizes	the	relevant	data	to	it	when	an	entity	reaches
a	close	distance.	If	the	distance	value	is	larger	than	the	View	radius,	it	means	that
it	is	always	synchronized	

There	is	also	a	special	bool	attribute	that	is	optimized.	Its	role	is	to	control
whether	or	not	the	server	is	optimized	for	synchronization.	The	current	main
optimization	is	the	Y	axis.
If	true,	the	server	does	not	synchronize	the	y-axis	coordinates	of	the	entity	when
some	actions	(e.g.,	navigate)	cause	the	server	to	determine	the	entity	is	on	the
ground.	This	can	save	a	lot	of	bandwidth	when	synchronizing	a	large	number	of
entities.	The	default	is	true.

Users	can	also	set	the	synchronization	policies	for	different	entities	in	.def:

<Volatile>

				<position/>											<!--	always	synchronize	-->

				<yaw/>																<!--	always	synchronize	-->

				<pitch>20</pitch>					<!--	synchronize	within	20m	or	less	-->

				<optimized>	true	</optimized>			

</Volatile>															<!--	roll	is	always	synchronized	if	not	specified		-->

Type:
sequence,	four	floats	(float,	float,	float,	float)

Copyright	KBEngine

KBEngine

KBEngine	module

This	KBEngine	module	provides	the	Python	script	access	to	the	entity's	base
part,	in	particular	it	provides	the	registration	and	removal	of	timers,	as	well	as
the	creation	of	entities.

Classes

Entity
Proxy

Member	functions

def	addWatcher(path,	dataType,	getFunction):
def	address():
def	MemoryStream():
def	charge(ordersID,	dbID,	byteDatas,	pycallback):
def	createEntity():
def	createEntityAnywhere(entityType,	*params,	callback):
def	createEntityRemotely(entityType,	baseMB,	*params,	callback):
def	createEntityFromDBID(entityType,	dbID,	callback,	dbInterfaceName):
def	createEntityAnywhereFromDBID(entityType,	dbID,	callback,
dbInterfaceName):
def	createEntityRemotelyFromDBID(entityType,	dbID,	baseMB,	callback,
dbInterfaceName):
def	createEntityLocally(entityType,	*params):
def	debugTracing():
def	delWatcher(path):
def	deleteEntityByDBID(entityType,	dbID,	callback,	dbInterfaceName):
def	deregisterReadFileDescriptor(fileDescriptor):
def	deregisterWriteFileDescriptor(fileDescriptor):
def	executeRawDatabaseCommand(command,	callback,	threadID,
dbInterfaceName):
def	genUUID64():
def	getResFullPath(res):
def	getWatcher(path):
def	getWatcherDir(path):
def	getAppFlags():
def	hasRes(res):
def	isShuttingDown():
def	listPathRes(path,	extension):
def	lookUpEntityByDBID(entityType,	dbID,	callback,	dbInterfaceName):
def	matchPath(res):
def	open(res,	mode):

def	publish():
def	quantumPassedPercent():
def	registerReadFileDescriptor(fileDescriptor,	callback):
def	registerWriteFileDescriptor(fileDescriptor,	callback):
def	reloadScript(fullReload):
def	scriptLogType(logType):
def	setAppFlags(flags):
def	time():

Callback	functions

def	onBaseAppReady(isBootstrap):
def	onBaseAppShutDown(state):
def	onCellAppDeath(addr):
def	onFini():
def	onBaseAppData(key,	value):
def	onBaseAppDataDel(key):
def	onGlobalData(key,	value):
def	onGlobalDataDel(key):
def	onInit(isReload):
def	onLoseChargeCB(orderID,	dbID,	success,	datas):
def	onReadyForLogin(isBootstrap):
def	onReadyForShutDown():
def	onAutoLoadEntityCreate(entityType,	dbID):

Attributes

LOG_ON_ACCEPT 	
LOG_ON_REJECT 	
LOG_ON_WAIT_FOR_DESTROY 	
LOG_TYPE_DBG 	
LOG_TYPE_ERR 	
LOG_TYPE_INFO 	
LOG_TYPE_NORMAL 	
LOG_TYPE_WAR 	
NEXT_ONLY 	
component 		Read-only	string
entities 		Entities
baseAppData 		GlobalDataClient
globalData 		GlobalDataClient

Member	functions	documentation

def	addWatcher(path,	dataType,	getFunction):

Function	description:
Interacts	with	the	debug	monitoring	system,	allowing	the	user	to	register	a
monitoring	variable	with	the	monitoring	system.	

Example:	

>>>	def	countPlayers():

>>>					i	=	0

>>>					for	e	in	KBEngine.entities.values():

>>>						 if	e.__class__.__name__	==	"Avatar":

>>>						 	 i	+=	1

>>>					return	i

>>>

>>>	KBEngine.addWatcher("players",	"UINT32",	countPlayers)

This	function	adds	a	watch	variable	under	the	"scripts/players"	watch	path.	The
function	countPlayers	is	called	when	the	watcher	observes.

parameters:
path Create	a	monitored	path.

dataType The	value	type	of	the	monitor	variable.	Reference:	Basic	data
types

getFunction
This	function	is	called	when	the	observer	retrieves	the	variable.
This	function	returns	a	value	representing	a	watch	variable
without	arguments.

def	address():

Function	description:

Returns	the	address	of	the	internal	network	interface.

def	MemoryStream():

Function	description:

Returns	a	new	MemoryStream	object.

The	MemoryStreamobject	stores	binary	information.	This	type	is	provided	to
allow	the	user	to	easily	serialize	and	deserialize	the	Python	base	types	following
KBEngine	underlying	serialization	rules.	

For	example,	you	can	use	this	object	to	construct	a	network	packet	that
KBEngine	can	parse.	

Usage:

>>>	s	=	KBEngine.MemoryStream()

>>>	s

>>>	b''

>>>	s.append("UINT32",	1)

>>>	s.pop("UINT32")

>>>	1

The	types	that	MemoryStream	currently	supports	are	only	basic	data	types.
Reference:	Basic	data	types

def	charge(ordersID,	dbID,	byteDatas,	pycallback):

Function	description:

Billing	interface.

parameters:
ordersID string,	order	ID.
dbID uint64,	the	databaseID	of	the	entity.
byteDatas bytes,	with	data,	which	is	parsed	and	defined	by	the	developer.

pycallback

Billing	callback.
Billing	callback	prototype:	(When	calling
KBEngine.chargeResponse	in	interfaces,	the	callback	is	called	if
an	order	is	set	to	callback)
	def	on*ChargeCB(self,	orderID,	dbID,	success,	datas):

			ordersID:	string,	OrderID
			dbID:	uint64,	usually	the	databaseID	of	the	entity.
			success:	bool,	whether	the	order	succeeded				datas:	bytes,	with
data,	parsed	and	defined	by	the	developer.

def	createEntity():

Function	description:

KBEngine.createEntityLocally	alias.

def	createEntityAnywhere(entityType,	params,	callback):

Function	description:

Create	a	new	base	Entity.	The	server	can	choose	any	Baseapp	to	create	an
Entity.	

This	method	should	be	preferred	over	KBEngine.createEntityLocally	so	the
server	has	the	flexibility	to	choose	a	suitable	Baseapp	to	create	an	entity.	

The	function	parameters	need	to	provide	the	type	of	entity	created,	and	there	is
also	a	Python	dictionary	as	a	parameter	to	initialize	the	entities	value.	

The	Python	dictionary	does	not	require	the	user	to	provide	all	of	the	properties,
and	the	default	values	provided	by	the	entity	definition	file	".def"	are	defaults.	

Example:

params	=	{

	 "name"	:	"kbe",	#	base,	BASE_AND_CLIENT

	 "HP"	:	100,	 #	cell,	ALL_CLIENT,	in	cellData

	 "tmp"	:	"tmp"	 #	baseEntity.tmp

}

def	onCreateEntityCallback(entity)

	 print(entity)

createEntityAnywhere("Avatar",	params,	onCreateEntityCallback)

parameters:

entityType string,	specifies	the	type	of	Entity	to	create.	Valid	entity	types	are
listed	in	/scripts/entities.xml.

params

optional	parameter,	a	Python	dictionary	object.	If	a	specified	key
is	an	Entity	attribute,	its	value	will	be	used	to	initialize	the
properties	of	this	Entity.	If	the	key	is	a	Cell	attribute,	it	will	be
added	to	the	'cellData'	attribute	of	the	Entity.	This	cellData'
attribute	is	a	Python	dictionary	and	will	be	used	later	to	initialize
the	attributes	of	the	cell	entity.

callback

An	optional	callback	function	that	is	called	when	the	entity	is
created.	The	callback	function	takes	one	argument,	when	the
Entity	is	created	successfully	it	is	the	entity's	entityCall,	on
failure	it	is	None.

returns:
Returns	the	entityCall	of	the	Entity	through	the	callback.

def	createEntityRemotely(entityType,	baseMB,	params,	callback):

Function	description:

Create	a	new	Entity	on	the	specified	baseapp	through	the	baseMB	parameter.	

KBEngine.createEntityAnywhere	should	be	preferred	over	this	method	to
allow	the	server	to	decide	which	is	the	most	suitable	Baseapp	to	create	the	entity
on	for	load	balancing	purposes.	

The	function	parameters	need	to	provide	the	type	of	the	created	entity,	and	there
is	also	a	Python	dictionary	as	a	parameter	to	initialize	the	entity's	value.	

This	Python	dictionary	does	not	require	the	user	to	provide	all	of	the	properties,
and	the	default	values	provided	by	the	entity	definition	file	".	def"	are	defaults.	

Example:

params	=	{

	 "name"	:	"kbe",	#	base,	BASE_AND_CLIENT

	 "HP"	:	100,	 #	cell,	ALL_CLIENT,	in	cellData

	 "tmp"	:	"tmp"	 #	baseEntity.tmp

}

def	onCreateEntityCallback(entity)

	 print(entity)

createEntityRemotely("Avatar",	baseEntityCall,	params,	onCreateEntityCallback)

parameters:

entityType string,	specifies	the	type	of	Entity	to	create.	Valid	entity	types	arelisted	in	/scripts/entities.xml.

baseMB BaseEntityCall	which	is	a	base	Entity	EntityCall.	The	entity	will
be	created	on	the	baseapp	process	corresponding	to	this	entity.

params

Optional	parameters,	a	Python	dictionary	object.	If	a	specified	key
is	an	Entity	attribute,	its	value	will	be	used	to	initialize	the
properties	of	this	Entity.	If	this	key	is	a	Cell	attribute,	it	will	be
added	to	the	Entity's	'cellData'	attribute.	This	'cellData'	attribute
is	a	Python	dictionary	and	will	be	used	later	to	initialize	the
attributes	of	the	cell	entity.

callback
An	optional	callback	function	that	is	called	when	the	entity	is
created.	The	callback	takes	one	argument,	on	success	it	is	an
Entity实体的entityCall,	on	failure	it	is	None.

returns:
Returns	the	Entity's	entityCall	through	the	callback.

def	createEntityFromDBID(entityType,	dbID,	callback,	dbInterfaceName):

Function	description:

Create	an	Entity	by	loading	data	from	the	database.	The	new	Entity	will	be
created	on	the	Baseapp	that	called	this	function.	If	the	Entity	has	been	checked
out	from	the	database,	a	reference	to	this	existing	entity	will	be	returned.

parameters:

entityType string,	specifies	the	Entity	type	to	load.	Valid	entity	types
are	listed	in	/scripts/entities.xml.

dbID
Specifies	the	database	ID	of	the	entity	to	create.	The
database	ID	of	this	entity	is	stored	in	the	entity's
databaseID	attribute.
An	optional	callback	function	that	is	called	when	the

callback

operation	is	complete.	The	callback	function	has	three
parameters:	baseRef,	databaseID,	and	wasActive.	If	the
operation	is	successful,	baseRef	will	be	an	entityCall	or	a
direct	reference	to	the	newly	created	Entity.	The
databaseID	will	be	the	database	ID	of	the	entity.	wasActive
will	be	True	if	baseRef	is	a	reference	to	an	already	existing
entity	(checked	out	from	the	database).	If	the	operation
fails	the	three	parameters	will	be	baseRef	-	None,
databaseID	-	0,	wasActive	-	False.	
The	most	common	reason	for	failure	is	that	the	entity	does
not	exist	in	the	database,	but	occasionally	other	errors	such
as	timeouts	or	ID	allocation	failure.

dbInterfaceName

string,	optional	parameter,	specified	by	a	database
interface,	and	the	"default"	interface	is	used	by	default.
Database	interfaces	are	defined	in	kbengine_defaults.xml-
>dbmgr->databaseInterfaces.

def	createEntityAnywhereFromDBID(entityType,	dbID,	callback,
dbInterfaceName):

Function	description:

Create	an	Entity	by	loading	data	from	the	database.	The	server	may	choose	any
Baseapp	to	create	the	Entity.	

Using	this	function	will	help	BaseApps	load	balance.	

If	the	entity	has	been	checked	out	from	the	database,	a	reference	to	the	existing
Entity	will	be	returned.

parameters:

entityType string,	specifies	the	Entity	type	to	load.	Valid	entity	types
are	listed	in	/scripts/entities.xml.

dbID
Specifies	the	database	ID	of	the	entity	to	create.	The
database	ID	of	this	entity	is	stored	in	the	entity's
databaseID	attribute.
An	optional	callback	function	that	is	called	when	the
operation	is	complete.	The	callback	function	has	three

callback

parameters:	baseRef,	databaseID,	and	wasActive.	If	the
operation	is	successful,	baseRef	will	be	an	entityCall	or	a
direct	reference	to	the	newly	created	Entity.	The
databaseID	will	be	the	database	ID	of	the	entity.	wasActive
will	be	True	if	baseRef	is	a	reference	to	an	already	existing
entity	(checked	out	from	the	database).	If	the	operation
fails	the	three	parameters	will	be	baseRef	-	None,
databaseID	-	0,	wasActive	-	False.	
The	most	common	reason	for	failure	is	that	the	entity	does
not	exist	in	the	database,	but	occasionally	other	errors	such
as	timeouts	or	ID	allocation	failure.

dbInterfaceName

string,	optional	parameter,	specified	by	a	database
interface,	and	the	"default"	interface	is	used	by	default.
Database	interfaces	are	defined	in	kbengine_defaults.xml-
>dbmgr->databaseInterfaces.

returns:
The	Entity's	entityCall	through	the	callback.

def	createEntityRemotelyFromDBID(entityType,	dbID,	baseMB,	callback,
dbInterfaceName):

Function	description:

Load	data	from	the	database	and	create	an	Entity	on	the	baseapp	specified	via
the	baseMB	parameter.	

If	the	entity	has	been	checked	out	from	the	database,	a	reference	to	the	existing
Entity	will	be	returned.

parameters:

entityType string,	specifies	the	Entity	type	to	load.	Valid	entity	types
are	listed	in	/scripts/entities.xml.

dbID
Specifies	the	database	ID	of	the	entity	to	create.	The
database	ID	of	this	entity	is	stored	in	the	entity's
databaseID	attribute.
An	optional	callback	function	that	is	called	when	the
operation	is	complete.	The	callback	function	has	three

callback

parameters:	baseRef,	databaseID,	and	wasActive.	If	the
operation	is	successful,	baseRef	will	be	an	entityCall	or	a
direct	reference	to	the	newly	created	Entity.	The
databaseID	will	be	the	database	ID	of	the	entity.	wasActive
will	be	True	if	baseRef	is	a	reference	to	an	already	existing
entity	(checked	out	from	the	database).	If	the	operation
fails	the	three	parameters	will	be	baseRef	-	None,
databaseID	-	0,	wasActive	-	False.	
The	most	common	reason	for	failure	is	that	the	entity	does
not	exist	in	the	database,	but	occasionally	other	errors	such
as	timeouts	or	ID	allocation	failure.

dbInterfaceName

string,	optional	parameter,	specified	by	a	database
interface,	and	the	"default"	interface	is	used	by	default.
Database	interfaces	are	defined	in	kbengine_defaults.xml-
>dbmgr->databaseInterfaces.

returns:
Returns	the	Entity's	entityCall	through	the	callback.

def	createEntityLocally(entityType,	params):

Function	description:

Create	a	new	Entity.	The	function	parameters	need	to	provide	the	type	of	the
created	entity,	and	there	is	also	an	optional	Python	dictionary	as	paramater	to
initialize	the	entity's	values.	

The	Python	dictionary	does	not	require	the	user	to	provide	all	of	the	properties,
and	the	default	values	provided	by	the	entity	definition	file	".def"	are	defaults.	

KBEngine.createEntityAnywhere	should	be	preferred	over	this	method	to
allow	the	server	to	decide	which	is	the	most	suitable	Baseapp	to	create	the	entity
on	for	load	balancing	purposes.	

It	should	be	noted	that	this	method	returns	the	entity	instantly	without	a	callback,
and	is	also	guaranteed	to	return	a	direct	reference	to	the	Entity	object,	rather
than	its	EntityCall.	It	is	suitable	to	use	this	method	over
KBEngine.createEntityAnywhere	when	you	need	to	manage	the	entities	life

cycle	(such	as	control	when	destroy	is	called	on	the	entity)	or	access	the	entities
attributes	from	the	creating	entity,	because	as	described	in	the	EntityCall
documentation,	it	is	not	possible	to	access	attributes	or	call	methods	not	listed	in
the	entity's	def	file	using	the	EntityCall.	This	method	is	also	necessary	to	use
when	you	need	a	direct	reference	to	an	entity	(as	it's	not	possible	to	get	one	on	a
different	baseapp).	Many	functions	take	an	EntityCall	as	a	parameter,	but	some
require	a	direct	reference	to	the	entity	(such	as	Proxy.giveClientTo).	

Example:

params	=	{

	 "name"	:	"kbe",	#	base,	BASE_AND_CLIENT

	 "HP"	:	100,	 #	cell,	ALL_CLIENT,	in	cellData

	 "tmp"	:	"tmp"	 #	baseEntity.tmp

}

baseEntity	=	createEntityLocally("Avatar",	params)

parameters:

entityType string,	specifies	the	type	of	entity	to	create.	Valid	entity	types	arelisted	in	/scripts/entities.xml.

params

optional	parameter,	a	Python	dictionary	object.	If	a	specified	key
is	an	Entity	attribute,	its	value	will	be	used	to	initialize	the
properties	of	this	Entity.	If	the	key	is	a	Cell	attribute,	it	will	be
added	to	the	'cellData'	attribute	of	the	Entity.	This	cellData'
attribute	is	a	Python	dictionary	and	will	be	used	later	to	initialize
the	attributes	of	the	cell	entity.

returns:
The	newly	created	Entity.

def	debugTracing():

Function	description:

Outputs	the	Python	extended	object	counter	currently	tracked	by	KBEngine.
Extended	objects	include:	fixed	dictionary,	fixed	array,	Entity,	EntityCall...
If	the	counter	is	not	zero	when	the	server	is	shut	down	normally,	it	means	that
the	leak	already	exists	and	the	log	will	output	an	error	message.

ERROR	cellapp	[0x0000cd64]	[2014-11-12	00:38:07,300]	-
PyGC::debugTracing():	FixedArray	:	leaked(128)
ERROR	cellapp	[0x0000cd64]	[2014-11-12	00:38:07,300]	-
PyGC::debugTracing():	EntityCall	:	leaked(8)

def	delWatcher(path):

Function	description:

Interacts	with	the	debug	monitoring	system,	allowing	users	to	delete	monitored
variables	in	the	script.

parameters:
path The	path	to	the	variable	to	delete.

def	deleteEntityByDBID(entityType,	dbID,	callback,	dbInterfaceName):

Function	description:

Deletes	the	specified	entity	(including	the	child	table	data	generated	by	the
attribute)	from	the	database.	If	the	entity	is	not	checked	out	from	the	database,
the	deletion	is	successful.	If	the	entity	has	been	checked	out	from	the	database,
KBEngine	will	fail	to	delete	and	return	the	Entity's	entityCall	in	the	callback.

parameters:

entityType string,	specifies	the	type	of	Entity	to	delete.	Valid	entity
types	are	listed	in	/scripts/entities.xml.

dbID
Specifies	the	database	ID	of	the	entity	to	delete.	The
database	ID	of	the	entity	is	stored	in	the	entity's
databaseID	attribute.databaseID属性。

callback

An	optional	callback,	with	only	one	parameter.	When	the
entity	has	not	been	checked	out	from	the	database	it	will	be
deleted	successfully	and	the	parameter	will	be	True.	If	the
entity	has	been	checked	out	from	the	database	then	the
parameter	is	the	Entity's	entityCall.

dbInterfaceName

String,	optional	parameter,	specifies	a	database	interface.
By	default	it	uses	the	"default"	interface.	Database
interfaces	are	defined	by	kbengine_defaults.xml->dbmgr-
>databaseInterfaces.

def	deregisterReadFileDescriptor(fileDescriptor):

Function	description:

Unregisters	the	callback	registered	with
KBEngine.registerReadFileDescriptor.	

Example:
http://www.kbengine.org/assets/other/py/Poller.py

parameters:
fileDescriptor socket	descriptor/file	descriptor

def	deregisterWriteFileDescriptor(fileDescriptor):

Function	description:

Unregisters	the	callback	registered	with
KBEngine.registerWriteFileDescriptor.	

Example:
http://www.kbengine.org/assets/other/py/Poller.py

parameters:
fileDescriptor socket	descriptor/file	descriptor.

def	executeRawDatabaseCommand(command,	callback,	threadID,
dbInterfaceName):

Function	description:

This	script	function	executes	a	database	command	on	the	database,	which	is
directly	parsed	by	the	relevant	database.	

Please	note	that	using	this	function	to	modify	entity	data	may	not	be	effective
because	if	the	entity	has	been	checked	out,	the	modified	data	will	still	be
archived	by	the	entity	and	cause	overwriting.
This	function	is	strongly	not	recommended	for	reading	or	modifying	entity	data.

http://www.kbengine.org/assets/other/py/Poller.py
http://www.kbengine.org/assets/other/py/Poller.py

parameters:

command
This	database	command	will	be	different	for	different
database	configuration	scenarios.	For	a	MySQL	database	it
is	an	SQL	query.

callback

Optional	parameter,	callback	object	(for	example,	a
function)	called	back	with	the	command	execution	result.	
This	callback	has	4	parameters:	result	set,	number	of	rows
affected,	auto	value,	error	message.
Example:
def	sqlcallback(result,	rows,	insertid,	error):					print(result,
rows,	insertid,	error)	

As	the	above	example	shows,	the	result	parameter
corresponds	to	the	"result	set",	and	the	result	set	parameter
is	a	row	List.	Each	line	is	a	list	of	strings	containing	field
values.	If	the	command	execution	does	not	return	a	result
set	(for	example,	a	DELETE	command),	or	the	command
execution	encounters	an	error,	the	result	set	is	None.	

The	rows	parameter	is	the	"number	of	rows	affected",
which	is	an	integer	indicating	the	number	of	rows	affected
by	the	command	execution.	This	parameter	is	only	relevant
for	commands	that	do	not	return	results	(such	as
DELETE).
This	parameter	is	None	if	there	is	a	result	set	return	or	if
there	is	an	error	in	the	command	execution.	

The	insertid	is	a	long	value,	similar	to	an	entity's
databaseID.	When	successfully	inserting	data	int	a	table
with	an	auto	long	type	field,	it	returns	the	data	at	the	time
of	insertion.	
More	information	can	be	found	in	mysql's
mysql_insert_id()	method.	In	addition,	this	parameter	is
only	meaningful	when	the	database	type	is	mysql.	

Error	corresponds	to	the	"error	message",	when	the
command	execution	encounters	an	error,	this	parameter	is

a	string	describing	the	error.	This	parameter	is	None	when
the	command	execution	has	not	occurred.

threadID

int32,	optional	parameter,	specifies	a	thread	to	process	this
command.	Users	can	use	this	parameter	to	control	the
execution	order	of	certain	commands	(dbmgr	is	multi-
threaded).	The	default	is	not	specified.	If	threadId	is	the	ID
of	an	entity,	it	will	be	added	to	the	entity's	archive	queue
and	written	by	the	thread	one	by	one.

dbInterfaceName

string,	optional	parameter,	specifies	a	database	interface.
By	default	it	uses	the	"default"	interface.	Database
interfaces	are	defined	by	kbengine_defaults.xml->dbmgr-
>databaseInterfaces.

def	genUUID64():

Function	description:

This	function	generates	a	64-bit	unique	ID.
Note:	This	function	depends	on	the	baseapp	server	process	startup	parameter
'gus'.	Please	set	the	startup	parameters	to	be	unique.
In	addition,	if	gus	exceeds	65535,	this	function	can	only	remain	unique	for	the
current	process.	

Usage:
Unique	IDs	can	be	generated	on	multiple	service	processes	and	do	not	conflict.
A	room	ID	can	be	generated	on	multiple	service	processes	and	no	uniqueness
verification	is	required.

returns:
Returns	a	64-bit	integer.

def	getResFullPath(res):

Function	description:

Get	the	absolute	path	of	a	resource.	
Note:	Resource	must	be	accessible	under	KBE_RES_PATH.

parameters:
res string,	the	relative	path	of	the	resource

returns:
string,	if	there	is	an	absolute	path	to	the	given	resource,	otherwise	returns
null.

def	getWatcher(path):

Function	description:

Gets	the	value	of	a	watch	variable	from	the	KBEngine	debugging	system.	

Example:	In	the	Python	console	of	baseapp1:	
>>>KBEngine.getWatcher("/root/stats/runningTime")	
12673648533	

>>>KBEngine.getWatcher("/root/scripts/players")	
32133

parameters:

path string,	the	absolute	path	of	the	variable	including	the	variable	name	(canbe	viewed	on	the	GUIConsole	watcher	page).

returns:
The	value	of	the	variable.

def	getWatcherDir(path):

Function	description:

Get	a	list	of	elements	(directories,	variable	names)	under	the	watch	directory
from	the	KBEngine	debugging	system.	

Example:	In	the	Python	console	of	baseapp1	enter:
>>>KBEngine.getWatcher("/root")	
('stats',	'objectPools',	'network',	'syspaths',	'ThreadPool',	'cprofiles',	'scripts',
'numProxices',	'componentID',	'componentType',	'uid',	'numClients',
'globalOrder',	'username',	'load',	'gametime',	'entitiesSize',	'groupOrder')

parameters:

path string,	the	absolute	path	to	this	variable	(can	be	viewd	on	theGUIConsole	watcher	page).

returns:
Monitors	the	list	of	elements	in	the	directory	(directory,	variable	name).

def	getAppFlags():

Function	description:

Get	the	flags	of	the	current	engine	APP,	Reference:	KBEngine.setAppFlags.	

returns:
KBEngine.APP_FLAGS_*

def	hasRes(res):

Function	description:

Use	this	interface	to	determine	if	a	relative	path	exists.
Note:	Resource	must	be	accessible	under	KBE_RES_PATH.	

Example:	

>>>KBEngine.hasRes("scripts/entities.xml")	
True

parameters:
res string,	the	relative	path	of	the	resource

returns:
bool,	True	if	relative	path	exists,	otherwise	False.

def	isShuttingDown():

Function	description:

Returns	whether	the	server	is	shutting	down.
After	the	onBaseAppShutDown(state=0)	is	called,	this	function	returns	True.

returns:
True	if	the	server	is	shutting	down,	otherwise	False.

def	listPathRes(path,	extension):

Function	description:

Get	a	list	of	resources	in	a	resource	directory
Note:	Resources	must	be	accessible	under	KBE_RES_PATH.	

Example:	

>>>KBEngine.listPathRes("scripts/cell/interfaces")	
('/home/kbe/kbengine/demo/res/scripts/cell/interfaces/AI.py',
'/home/kbe/kbengine/demo/res/scripts/cell/interfaces/New	Text	Document.txt')	

>>>KBEngine.listPathRes("scripts/cell/interfaces",	"txt")	
('/home/kbe/kbengine/demo/res/scripts/cell/interfaces/New	Text	Document.txt')	

>>>KBEngine.listPathRes("scripts/cell/interfaces",	"txt|py")	
('/home/kbe/kbengine/demo/res/scripts/cell/interfaces/AI.py',
'/home/kbe/kbengine/demo/res/scripts/cell/interfaces/New	Text	Document.txt')	

>>>KBEngine.listPathRes("scripts/cell/interfaces",	("txt",	"py"))	
('/home/kbe/kbengine/demo/res/scripts/cell/interfaces/AI.py',
'/home/kbe/kbengine/demo/res/scripts/cell/interfaces/New	Text	Document.txt')

parameters:
res string,	the	relative	path	of	the	resource	directory
extension string,	optional	parameter,	file	extension	to	filter	by

returns:
Tuple,	resource	list.

def	lookUpEntityByDBID(entityType,	dbID,	callback,	dbInterfaceName):

Function	description:

Queries	whether	an	entity	is	checked	out	of	the	database,	and	if	the	entity	has
been	checked	out	of	the	database,	KBEngine	will	return	the	Entity's	entityCall
in	the	callback.

parameters:

entityType string,	specifies	the	type	of	Entity	to	query.	Valid	entity
types	are	listed	in	/scripts/entities.xml.

dbID Specifies	the	database	ID	of	the	Entity	to	be	queried.	The
database	ID	is	stored	in	the	entity's	databaseID	attribute.

callback
A	callback	with	one	parameter,	True	when	the	entity	is	not
checked	out	from	the	database,	if	it	is	checked	out	then	it	is
the	Entity's	entityCall.	False	in	any	other	case.

dbInterfaceName

string,	optional	parameter,	specifies	a	database	interface.
Uses	the	"default"	interface	by	default.	Database	interfaces
are	defined	in	kbengine_defaults.xml->dbmgr-
>databaseInterfaces.

def	matchPath(res):

Function	description:

Get	the	absolute	path	of	a	resource	from	its	relative	path.
Note:	Resources	must	be	accessible	under	KBE_RES_PATH.	

Examples:	

>>>KBEngine.matchPath("scripts/entities.xml")
'/home/kbe/kbengine/demo/res/scripts/entities.xml'

parameters:
res string,	the	relative	path	of	the	resource	(including	its	name).

returns:
string,	the	absolute	path	of	the	resource.

def	open(res,	mode):

Function	description:

Use	this	function	to	open	resources	with	their	relative	paths.
Note:	Resource	must	be	accessible	under	KBE_RES_PATH.

parameters:
res string,	the	relative	path	of	the	resource.

mode

string,	file	operation	mode:
w	Open	in	write	mode,
a	Open	in	append	mode	(Start	from	EOF,	create	new	file	if	necessary)	
r+	Open	
w+	in	read/write	mode	Open	in	read/write	mode	(see	w)	
a+	Open	in	read/write	mode	(See	a)	
rb	Opens	
wb	in	binary	read	mode	Opens	in	binary	write	mode	(see	w)	
ab	Opens	in	binary	append	mode	(see	a)	
rb+	Opens	in	binary	read	and	write	mode	(see	r+)	
wb+	Opens	in	binary	read	and	write	mode	(see	w+)	
ab+	opens	in	binary	read/write	mode	(see	a+)	

def	publish():

Function	description:

This	function	returns	the	server's	current	release	mode.

returns:
int8,	0:	debug,	1:	release,	others	can	be	customized.

def	quantumPassedPercent():

Function	description:

Returns	the	percentage	of	the	current	tick	that	takes	one	clock	cycle.

returns:
Returns	the	percentage	of	the	current	tick	that	takes	one	clock	cycle.

def	registerReadFileDescriptor(fileDescriptor,	callback):

Function	description:

Registers	a	callback	function	that	is	called	when	the	file	descriptor	is	readable.	

Example:
http://www.kbengine.org/assets/other/py/Poller.py

parameters:
fileDescriptor socket	descriptor/file	descriptor.

callback A	callback	function	with	the	socket	descriptor/file	descriptor
as	its	only	parameter.

def	registerWriteFileDescriptor(fileDescriptor,	callback):

Function	description:

Registers	a	callback	function	that	is	called	when	the	socket	descriptor/file
descriptor	is	writable.	

Example:
http://www.kbengine.org/assets/other/py/Poller.py

parameters:
fileDescriptor socket	descriptor/file	descriptor

callback A	callback	function	with	the	socket	descriptor/file	descriptor
as	its	only	parameter.

def	reloadScript(fullReload):

Function	description:

Reloads	Python	modules	related	to	entity	and	custom	data	types.	The	current
entity's	class	is	set	to	the	newly	loaded	class.	This	method	should	only	be	used
for	development	mode	and	not	for	product	mode.	The	following	points	should	be
noted:	

1)	The	overloaded	script	can	only	be	executed	on	Baseapp,	and	the	user	should
ensure	that	all	server	components	are	loaded.	

http://www.kbengine.org/assets/other/py/Poller.py
http://www.kbengine.org/assets/other/py/Poller.py

2)	The	custom	type	should	ensure	that	the	objects	already	instantiated	in	memory
are	updated	after	the	script	is	reloaded.	Here	is	an	example:	

for	e	in	KBEngine.entities.values():

			if	type(e)	is	Avatar.Avatar:

						e.customData.__class__	=	CustomClass

When	this	mehod	completes,	KBEngine.onInit(True)	is	called.

parameters:

fullReload
bool,	optional	parameter	that	specifies	whether	to	reload	entity
definitions	at	the	same	time.	If	this	parameter	is	False,	the	entity
definition	will	not	be	reloaded.	The	default	is	True.

returns:
True	if	the	reload	succeeds,	otherwise	False.

def	scriptLogType(logType):

Function	description:

Set	the	type	of	information	output	by	the	current	Python.print	(Reference:
KBEngine.LOG_TYPE_*).

def	setAppFlags(flags):

Function	description:

Set	the	flags	of	the	current	engine	APP.	

KBEngine.APP_FLAGS_NONE	//	Default	(not	set)
KBEngine.APP_FLAGS_NOT_PARTCIPATING_LOAD_BALANCING	//Do
not	participate	in	load	balancing

Example:
KBEngine.setAppFlags(KBEngine.APP_FLAGS_NOT_PARTCIPATING_LOAD_BALANCING
|	KBEngine.APP_FLAGS_*)

def	time():

Function	description:

This	method	returns	the	current	game	time	(number	of	cycles).

returns:
uint32,	the	time	of	the	current	game.	This	refers	to	the	number	of	cycles.	The
period	is	affected	by	the	frequency.	The	frequency	is	determined	by	the
configuration	file	kbengine.xml	or	kbengine_defaults.xml-
>gameUpdateHertz.

Callback	functions	documentation

def	onBaseAppReady(isBootstrap):

Function	description:

This	callback	function	is	called	when	the	current	Baseapp	process	is	ready.
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
isBootstrap bool,	True	if	this	is	the	first	Baseapp	started

def	onBaseAppShutDown(state):

Function	description:

The	Baseapp	shutdown	procedure	will	call	this	function.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:

state
If	state	is	0,	it	means	that	it	is	before	all	clients	are	disconnected,	if	state
is	1,	it	means	that	it	is	before	all	entities	are	written	to	the	database,	if
state	is	2,	it	mean	all	entities	have	been	written	to	the	database.

def	onCellAppDeath(addr):

Function	description:

This	callback	function	will	be	called	on	the	death	of	a	cellapp.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:

addrDead	cellapp	address.tuple:(ip,	port)	Network	byte	order

def	onFini():

Function	description:

This	callback	function	is	called	after	the	engine	is	officially	shut	down.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

def	onBaseAppData(key,	value):

Function	description:

This	function	is	called	back	when	KBEngine.baseAppData	changes.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
key The	key	of	the	changed	data.
value The	value	of	the	changed	data.

def	onBaseAppDataDel(key):

Function	description:

This	function	is	called	back	when	KBEngine.baseAppData	is	deleted.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
keyDeleted	data	key

def	onGlobalData(key,	value):

Function	description:

This	function	is	called	back	when	KBEngine.globalData	changes.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
key The	key	of	the	changed	data
value The	value	of	the	changed	data

def	onGlobalDataDel(key):

Function	description:

This	function	is	called	back	when	KBEngine.globalData	is	deleted.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
keyDeleted	data	key.

def	onInit(isReload):

Function	description:

This	function	is	called	back	after	all	scripts	have	been	initialized	after	the	engine
started.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
isReload bool,	whether	it	was	triggered	after	rewriting	the	loading	script.

def	onLoseChargeCB(orderID,	dbID,	success,	datas):

Function	description:

This	function	is	called	back	when	KBEngine.chargeResponse	is	called	in	and
the	order	is	lost	or	unknown.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
ordersID string,	order	ID.
dbID uint64,	the	database	ID	of	the	entity,	see:	Entity.databaseID.

success bool,	is	it	successful?
datas bytes,	with	information

def	onReadyForLogin(isBootstrap):

Function	description:

When	the	engine	is	started	and	initialized,	it	will	always	call	this	function	to	ask
whether	the	script	layer	is	ready.	If	the	script	layer	is	ready,	loginapp	allows	the
client	to	log	in.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
isBootstrap bool,	True	if	this	is	the	first	Baseapp	started.

returns:
If	the	return	value	is	greater	than	or	equal	to	1.0,	the	script	layer	is	ready;
otherwise,	return	a	value	from	0	to	less	than	1.0.

def	onReadyForShutDown():

Function	description:

If	this	callback	function	is	implemented	in	the	script,	it	is	called	when	the
process	is	ready	to	exit.

You	can	use	this	callback	to	control	when	the	process	exits.

Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

returns:
bool	if	it	returns	True,	it	allows	the	process	to	exit.	Returning	other	values
will	cause	the	process	to	ask	again	after	a	period	of	time.

def	onAutoLoadEntityCreate(entityType,	dbID):

Function	description:

Called	when	an	automatically	loaded	entity	is	created.	If	the	script	layer
implements	this	callback,	the	entity	is	created	by	the	script	layer,	otherwise	the
engine	defaults	to	create	the	entity	using	createEntityAnywhereFromDBID.

This	callback	is	envoked	because	Entity.writeToDB	was	set	to	automatically
load	the	entity.	
Note:	this	callback	takes	precedence	over	onBaseAppReady	execution	and	can
be	checked	for	onBaseAppReady	when	the	entity	is	loaded.

parameters:

entityType string,	specifies	the	type	of	entity	to	query.	Valid	entity	types	arelisted	in	/scripts/entities.xml.

dbID specifies	the	database	ID	of	the	Entity	to	be	queried.	The	database
ID	of	this	entity	is	stored	in	the	entity's	databaseID	attribute.

Attributes	documentation

LOG_ON_ACCEPT

Description:

This	constant	is	returned	by	Proxy.onLogOnAttempt,	and	means	that	the	new
client	is	allowed	to	bind	to	a	Proxy	entity.
If	the	Proxy	entity	already	has	a	client	binding,	the	previous	client	will	be
kicked	out.

LOG_ON_REJECT

Description:

This	constant	is	returned	by	Proxy.onLogOnAttempt,	which	means	that	the
current	client	is	bound	to	the	Proxy	entity.

LOG_ON_WAIT_FOR_DESTROY

Description:

This	constant	is	returned	by	Proxy.onLogOnAttempt.	The	current	requesting
client	will	wait	until	the	Proxy	entity	is	completely	destroyed	and	the
underlying	layer	will	complete	the	subsequent	binding	process.	Before	this
returns,	Proxy.destroy	or	Proxy.destroyCellEntity	should	be	invoked.

LOG_TYPE_DBG

Description:

The	log	output	type	is	debug.
Set	by	scriptLogType.

LOG_TYPE_ERR

Description:

The	log	output	type	is	error.

Set	byscriptLogType.

LOG_TYPE_INFO

Description:

The	log	output	type	is	general	information.
Set	by	scriptLogType.

LOG_TYPE_NORMAL

Description:

The	log	output	type	is	normal.
Set	by	scriptLogType.

LOG_TYPE_WAR

Description:

The	log	output	type	is	warning.
Set	by	scriptLogType.

NEXT_ONLY

Description:

This	constant	is	used	for	the	Entity.shouldAutoBackup	and
Entity.shouldAutoArchive	attributes	and	means	that	the	entity	is	backed	up
automatically	next	time	it	is	deemed	acceptable,	and	then	the	attribute	is
automatically	set	to	false	(0).

component

Description:

This	is	the	component	that	is	running	in	the	current	Python	environment.	(So	far)
Possible	values	are	'cell',	'base',	'client',	'database',	'bot',	and	'editor'.

entities

Description:

entities	is	a	dictionary	object	that	contains	all	the	entities	in	the	current	process.	
Debugging	leaked	entities	(instances	that	call	destroy	without	releasing	memory,
usually	due	to	being	referenced):

>>>	KBEngine.entities.garbages.items()

[(1025,	Avatar	object	at	0x7f92431ceae8.)]

>>>	e	=	_[0][1]

>>>	import	gc

>>>	gc.get_referents(e)

[{'spacesIsOk':	True,	'bootstrapIdx':	1},]

Debugging	a	leaked	KBEngine-encapsulated	Python	object:
KBEngine.debugTracing

Types:
Entities

baseAppData

Description:

This	attribute	contains	a	dictionary-like	object	that	is	automatically	synchronized
across	all	BaseApps.	When	a	value	in	the	dictionary	is	modified,	the	change	is
broadcast	to	all	BaseApps.	

Example:

KBEngine.baseAppData["hello"]	=	"there"

The	rest	of	the	BaseApps	can	access	the	following:

print	KBEngine.baseAppData["hello"]

Keys	and	values	can	be	of	any	type,	but	these	types	must	be	encapsulated	and
unpacked	on	all	target	components.	

When	a	value	is	changed	or	deleted,	a	callback	function	is	called	on	all
components.	See:	KBEngine.onBaseAppData	and
KBEngine.onDelBaseAppData.	

Note:	Only	top-level	value	changes	will	be	broadcast.	If	you	have	a	value	(such
as	a	list)	that	changes	an	internal	value	(such	as	just	changing	a	number),	this
information	will	not	be	broadcast.	

Do	not	do	the	following:

KBEngine.baseAppData["list"]	=	[1,	2,	3]

KBEngine.baseAppData["list"][1]	=	7

The	local	access	is	[1,	7,	3]	and	the	remote	access	is	[1,	2,	3].

globalData

Description:

This	attribute	contains	a	dictionary-like	object	that	is	automatically	synchronized
across	all	BaseApps	and	CellApps.	When	a	value	in	the	dictionary	is	modified,
the	change	is	broadcast	to	all	BaseApps	and	CellApps.	

example:

KBEngine.globalData["hello"]	=	"there"

The	other	Baseapps	and	Cellapps	can	access	the	following:

print	KBEngine.globalData["hello"]

Keys	and	values	can	be	of	any	type,	but	these	types	must	be	encapsulated	and
unpacked	on	all	target	components.	

When	a	value	is	changed	or	deleted,	a	callback	function	is	called	on	all
components.	See:	KBEngine.onGlobalData	and	KBEngine.onGlobalDataDel.

Note:	Only	top-level	value	changes	will	be	broadcast.	If	you	have	a	value	(such
as	a	list)	that	changes	an	internal	value	(such	as	just	changing	a	number),	this
information	will	not	be	broadcast.	

Do	not	do	the	following:

KBEngine.globalData["list"]	=	[1,	2,	3]

KBEngine.globalData["list"][1]	=	7

The	local	access	is	[1,	7,	3]	and	the	remote	access	is	[1,	2,	3].

Copyright	KBEngine

KBEngine

Entity	class

[KBEngine	module]

Entity	is	part	of	the	KBEngine	module.	More...

import	KBEngine

Member	functions

def	addTimer(self,	initialOffset,	repeatOffset=0,	userArg=0):
def	createCellEntity(self,	cellEntityMB):
def	createCellEntityInNewSpace(self,	cellappIndex):
def	delTimer(self,	id):
def	destroy(self,	deleteFromDB,	writeToDB):
def	destroyCellEntity(self):
def	teleport(self,	baseEntityMB):
def	writeToDB(self,	callback,	shouldAutoLoad,	dbInterfaceName):

Callback	functions

def	onCreateCellFailure(self):
def	onDestroy(self):
def	onGetCell(self):
def	onLoseCell(self):
def	onPreArchive(self):
def	onRestore(self):
def	onTimer(self,	timerHandle,	userData):
def	onWriteToDB(self,	cellData):

Attributes

cell 		Read-only	CellEntityCall
cellData 		CELLDATADICT
className 		Read-only	string
client 		Read-only	ClientEntityCall
databaseID 		Read-only	int64
databaseInterfaceName 		Read-only	string
id 		Read-only	int32
isDestroyed 		bool
shouldAutoArchive 		True,	False	or	KBEngine.NEXT_ONLY
shouldAutoBackup 		True,	False	or	KBEngine.NEXT_ONLY

A	detailed	description

This	Entity	class	represents	an	Entity	that	resides	on	the	Baseapp.	Entities	can
be	created	using	the	KBEngine.createEntity	function	(as	well	as	functions
prefixed	by	createEntity).	An	Entity	can	also	be	remotely	created	using	the
Cellapp	function	KBEngine.createEntityOnBaseApp.	

A	base	Entity	can	be	linked	to	an	active	cell	entity	and	can	be	used	to	create	an
associated	cell	entity.	This	class	allows	you	to	create	and	destroy	cell	entities,
register	a	timer	on	the	base	entity,	or	access	the	contact	information	for	this
object.
You	can	also	access	a	CellEntityCall	through	which	this	base	entity	can
communicate	with	its	cell	entity	(the	associated	cell	entity	can	be	moved	to	a
different	cell	when	KBEngine	performs	load	balancing	as	a	result	of	the
movement	of	the	cell	entity).

Member	function	documentation

def	addTimer(self,	initialOffset,	repeatOffset=0,	userArg=0):

Function	description:

Register	a	timer.	The	timer	is	triggered	by	the	callback	function	onTimer,	which
will	be	executed	the	first	time	after	"initialOffset"	seconds,	and	then	executed
once	every	"repeatOffset"	seconds.	A	"userArg"	parameter	can	be	set	(integer
only).	

The	onTimer	function	must	be	defined	in	the	base	part	of	the	entity	with	two
parameters.	The	first	is	an	integer,	the	timer	id	(which	can	be	used	to	remove	the
timer's	"delTimer"	function),	and	the	second	is	the	user	parameter	"userArg".	

Example:

#	Here	is	an	example	of	using	addTimer

import	KBEngine

	

class	MyBaseEntity(KBEngine.Entity):

	

				def	__init__(self):

								KBEngine.Entity.__init__(self)

	

								#	Add	a	timer,	trigger	for	the	first	time	after	5	seconds,	and	execute	once	per	second	afterwards.	The	user	parameter	is	9.

								self.addTimer(5,	1,	9)

	

								#	Add	a	timer	and	execute	it	once	after	1	second.	The	default	user	parameter	is	0.

								self.addTimer(1)

	

				#	Entity	timer	callback	"onTimer"	is	called

				def	onTimer(self,	id,	userArg):

								print	"MyBaseEntity.onTimer	called:	id	%i,	userArg:	%i"	%	(id,	userArg)

								#	If	this	is	a	repeated	timer,	when	the	timer	is	no	longer	needed,	call	the	following	function	to	remove	it:

								#					self.delTimer(id)

parameters:

initialOffset float,	specifies	the	time	interval	in	seconds	for	the	timer	totrigger	the	first	callback.
float,	specifies	the	time	interval	(in	seconds)	after	each

repeatOffset execution	of	the	first	callback	execution.	You	must	remove	the
timer	with	the	function	delTimer,	otherwise	it	will	continue	to
repeat.	Values	less	than	or	equal	to	0	will	be	ignored.

userArg integer,	specifies	the	value	of	the	userArg	parameter	when
invoking	the	"onTimer"	callback.

returns:Z
integer,	the	internal	id	of	the	timer.	This	id	can	be	used	to	remove	the	timer
using	delTimer.

def	createCellEntity(self,	cellEntityMB):

Function	description:

Requests	to	create	an	associated	entity	in	a	cell.	

The	information	used	to	create	the	cell	entity	is	stored	in	the	entity's	cellData
attribute.	The	cellData	attribute	is	a	dictionary	that	corresponds	to	the	default
value	in	the	entity's	.def	file,	as	well	as	the	"position",	"direction",	and	"spaceID"
used	to	represent	the	entity's	position	and	orientation	(roll,	pitch,	yaw).

parameters:

cellEntityMB

CellEntityCall	parameter	that	specifies	which	space	to	create
this	cell	entity	in.	

Only	a	direct	CellEntityCall	may	be	used.	If	you	have	an	entity's
BaseEntityCall,	you	cannot	pass	its	baseEntityCall.cell	to	this
function.	Instead,	you	must	create	a	new	function	on	the	current
entity's	base	that	accepts	a	direct	CellEntityCall	as	a	parameter
and	then	calls	this	function	using	it.	

E.g.

baseEntityCallOfNearbyEntity.createCellNearSelf(self)

On	the	nearby	entity's	base:

def	createCellNearSelf(self,	baseEntityCall):

				baseEntityCall.createCellNearHere(self.cell)

On	the	current	entity's	base:

def	createCellNearHere(self,	cellEntityCall):

				self.createCellEntity(cellEntityCall)

def	createCellEntityInNewSpace(self,	cellappIndex):

Function	description:

Create	a	space	on	the	cellapp	and	create	the	cell	of	this	entity	into	the	new	space.
It	requests	to	complete	through	cellappmgr.	

The	information	used	to	create	the	cell	entity	is	stored	in	the	entity's	cellData
attribute.	This	property	is	a	dictionary.	The	default	values	in	the	corresponding
entity's	.def	file	also	include	"position",	"direction",	and	"spaceID"	for
representing	the	entity's	position	and	orientation	(roll,	pitch,	yaw).

parameters:

cellappIndex

integer,	if	it	is	either	None	or	0,	a	cellapp	is	dynamically	selected	by	
engine	load	balancer.	If	it	is	greater	than	0,	a	space	is	created	in	the
specified	cellapp
Example:	If	you	expect	to	open	four	cellapps,	then	the	cellappIndex	needs
to	specify	the	index	can	be	
1,	2,	3,	4,
if	the	actual	running	cellapp	is	less	than	4,	for	example,	only	3,	then	
cellappIndex	input	4	due	to	the	number	of	overflow	4	1,	5	2.

Tip:	This	feature	can	be	used	in	conjunction	with	KBEngine.setAppFlags
(KBEngine.APP_FLAGS_NOT_PARTCIPATING_LOAD_BALANCING),
for	example:	placing	large	map	spaces	in	several	fixed	cellapps	and	setting
these	cellapps	to	not	participate	in	load	balancing,	and	other	cellapps	to
place	copy	space.	When	the	copyspace	is	created	and	the	cellappIndex	is	
to	0	or	None,	the	consumption	of	the	copy	map	will	not	affect	the	
process,	thus	ensuring	the	smoothness	of	the	main	scene.

def	delTimer(self,	id):

Function	description:

The	function	delTimer	is	used	to	remove	a	registered	timer.	The	removed	timer
is	no	longer	executed.	Single-shot	timers	are	automatically	removed	after	the
callback	is	executed,	and	it	is	not	necessary	to	use	the	delTimer	to	remove	it.	If
the	delTimer	function	uses	an	invalid	id	(for	example,	has	been	removed),	it	will
generate	an	error.	

A	usage	example	is	with	the	Entity.addTimer	function.

parameters:
id integer,	which	specifies	the	timer	id	to	remove.

def	destroy(self,	deleteFromDB,	writeToDB):

Function	description:

This	function	destroys	the	base	parts	of	the	entity.	If	the	entity	has	a	cell	part,
then	the	user	must	first	destroy	the	cell	part,	otherwise	it	will	generate	an	error.
To	destroy	the	cell	part	of	the	entity,	call	a	Entity.destroyCellEntity.	

It	may	be	more	appropriate	to	call	self.destroy	in	the	onLoseCell	callback.	This
ensures	that	the	base	part	of	the	entity	is	destroyed.

parameters:

deleteFromDB If	True,	the	entry	associated	with	this	entity	in	the	database
will	be	deleted.	This	parameter	defaults	to	False.

writeToDB

If	True,	the	archived	attributes	associated	with	this	entity	will
be	written	to	the	database.	Only	if	this	entity	is	read	for	the
database	or	uses	Entity.writeToDB	will	it	be	written	to	the
database.	This	parameter	is	True	by	default,	but	will	be	ignore
when	deleteFromDB	is	True.

def	destroyCellEntity(self):

Function	description:

destroyCellEntity	requests	destruction	of	the	associated	cell	entity.	This	method
will	generate	an	error	if	there	is	no	associated	cell	entity.

def	teleport(self,	baseEntityMB):

Function	description:

teleport	will	teleport	the	cell	part	of	this	entity	to	the	space	where	the	entity
specified	by	the	parameter	is	located.	

After	arriving	at	the	new	space,	Entity.onTeleportSuccess	is	called.	This	can	be
used	to	move	the	entity	to	a	suitable	location	in	the	new	space.

parameters:

baseEntityMB

The	EntityCall	of	the	entity	that	is	in	the	space	this	entity	will
be	teleported.	When	successful,	the	cell	entity	associated	with
this	parameter	is	passed	to	the	Entity.onTeleportSuccess
function.

def	writeToDB(self,	callback,	shouldAutoLoad,	dbInterfaceName):

Function	description:

This	function	saves	the	entity's	archive	attributes	to	the	database	so	that	it	can	be
loaded	again	when	needed.	

Entities	can	also	be	marked	as	automatically	loaded	so	that	the	entity	will	be	re-
created	when	the	service	is	started.

parameters:

callback

This	optional	parameter	is	a	callback	function	when	the
database	operation	is	complete.	It	has	two	parameters.	The
first	is	a	success	or	failure	boolean	flag,	and	the	second	is
the	base	entity.

shouldAutoLoad

This	optional	parameter	specifies	whether	this	entity	needs
to	be	loaded	from	the	database	when	the	service	is	started.	
Note:	The	entity	is	automatically	loaded	when	the	server
starts.	The	default	is	to	call
createEntityAnywhereFromDBID	to	create	an	entity	to	a
minimally	loaded	baseapp.	The	entire	process	will	be
completed	before	the	first	started	baseapp	calls
onBaseAppReady.	

The	script	layer	can	reimplement	the	entity	creation

method	in	the	personalization	script
(kbengine_defaults.xml->baseapp->entryScriptFile
definition),	for	example:	
def	onAutoLoadEntityCreate(entityType,	dbid):
KBEngine.createEntityFromDBID(entityType,	dbid)

dbInterfaceName

string,	optional	parameter,	specified	by	a	database
interface,	default	is	to	use	the	"default"	interface.	Database
interfaces	are	defined	in	kbengine_defaults.xml->dbmgr-
>databaseInterfaces.

Callback	functions	documentation

def	onCreateCellFailure(self):

Function	description:

If	this	function	is	implemented	in	the	script,	this	function	is	called	when	the	cell
entity	fails	to	create.	This	function	has	no	parameters.

def	onDestroy(self):

Function	description:

If	this	callback	function	is	implemented	in	a	script,	it	is	called	after
Entity.destroy()	actually	destroys	the	entity.	This	function	has	no	parameters.

def	onGetCell(self):

Function	description:

If	this	function	is	implemented	in	the	script,	this	function	is	called	when	it	gets	a
cell	entity.	This	function	has	no	parameters.

def	onLoseCell(self):

Function	description:

If	this	function	is	implemented	in	the	script,	this	function	is	called	after	its
associated	cell	entity	is	destroyed.	This	function	has	no	parameters.

def	onPreArchive(self):

Function	description:

If	this	function	is	implemented	in	a	script,	it	is	called	before	the	entity	is
automatically	written	to	the	database.	This	callback	is	called	before	the
Entity.onWriteToDB	callback.	If	the	callback	returns	False,	the	archive
operation	is	aborted.	This	callback	should	return	True	to	continue	the	operation.
If	this	callback	does	not	exist,	the	archiving	operation	continues.

def	onRestore(self):

Function	description:

If	this	function	is	implemented	in	a	script,	it	is	called	when	this	Entity's
application	crashes	and	the	Entity	is	recreated	on	other	applications.	This
function	has	no	parameters.

def	onTimer(self,	timerHandle,	userData):

Function	description:

This	function	is	called	when	a	timer	associated	with	this	entity	is	triggered.	A
timer	can	be	added	using	the	Entity.addTimer	function.

parameters:
timerHandle The	id	of	the	timer.
userData integer,	User	data	passed	in	on	Entity.addTimer.

def	onWriteToDB(self,	cellData):

Function	description:

If	this	function	is	implemented	in	the	script,	this	function	is	called	when	the
entity	data	is	to	be	written	into	the	database.	

Note	that	calling	writeToDB	in	this	callback	will	result	in	an	infinite	loop.

parameters:

cellData Contains	the	cell	properties	that	will	be	stored	in	the	database.cellData	is	a	dictionary.

Attributes	documentation

cell

Description:

cell	is	the	ENTITYCALL	used	to	contact	the	cell	entity.	This	property	is	read-
only,	and	the	property	is	set	to	None	if	this	base	entity	has	no	associated	cell.	

Type:
Read-only	ENTITYCALL

cellData

Description:

cellData	is	a	dictionary	property.	Whenever	the	base	entity	does	not	create	its
cell	entity,	the	attributes	of	the	cell	entity	are	stored	here.	

If	the	cell	entity	is	created,	these	used	values	and	cellData	attributes	will	be
deleted.	In	addition	to	the	attributes	that	the	cell	entity	specifies	in	the	entity
definition	file,	it	also	contains	position,	direction,	and	spaceID.

Type:
CELLDATADICT

className

Description:

The	class	name	of	the	entity.

Type:
Read-only	string

client

Description:

client	is	the	EntityCall	used	to	contact	the	client.	This	attribute	is	read-only	and
is	set	to	None	if	this	base	entity	has	no	associated	client.

Type:
Read-only	ENTITYCALL

databaseID

Description:

databaseID	is	the	entity's	permanent	ID	(database	id).	This	id	is	of	type	uint64
and	is	greater	than	0.	If	it	is	0	then	the	entity	is	not	permanent.

Type:
Read-only	int64

databaseInterfaceName

Description:

databaseInterfaceName	is	the	database	interface	name	where	the	entity	persists.
The	interface	name	is	configured	in	kbengine_defaults->dbmgr.	The	entity	must
be	persistent	(databaseID>0)	for	this	attribute	to	be	available,	otherwise	an
empty	string	is	returned.

Type:
Read-only	string

id

Description:

id	is	the	object	id	of	the	entity.	This	id	is	an	integer	that	is	the	same	between
base,	cell,	and	client	associated	entities.	This	attribute	is	read-only.

Type:
Read-only	int32

isDestroyed

Description:

This	attribute	is	True	if	the	Entity	has	been	destroyed.

Type:
bool

shouldAutoArchive

Description:

This	attribute	determines	the	automatic	archiving	strategy.	If	set	to	True,
AutoArchive	will	be	available,	if	set	to	False	AutoArchive	will	not	be	available.
If	set	to	KBEngine.NEXT_ONLY,	automatic	archiving	will	be	available	at	the
next	scheduled	time.	This	attribute	will	be	set	to	false	after	the	next	archiving.

Type:
True,	False	or	KBEngine.NEXT_ONLY

shouldAutoBackup

Description:

This	attribute	determines	the	automatic	bacup	strategy.	If	set	to	True,	automatic
backup	will	be	available,	if	set	to	False,	automatic	backup	will	not	be	available.
If	set	to	KBEngine.NEXT_ONLY,	automatic	backup	will	be	done	at	the	next
available	predetermined	time.	After	the	next	backup,	this	attribute	will	be	set	to
False.

Type:
True,	False	or	KBEngine.NEXT_ONLY

Copyright	KBEngine

KBEngine

Proxy	class

[KBEngine	module]

Proxy	is	part	of	the	KBEngine	module.	More...

import	KBEngine

Parent

Entity

Member	function

def	disconnect(self):
def	getClientType(self):
def	getClientDatas(self):
def	giveClientTo(self,	proxy):
def	streamFileToClient(self,	resourceName,	desc="",	id=-1):
def	streamStringToClient(self,	data,	desc="",	id=-1):

Callbacks

def	onClientDeath(self):
def	onClientGetCell(self):
def	onClientEnabled(self):
def	onGiveClientToFailure(self):
def	onLogOnAttempt(self,	ip,	port,	password):
def	onStreamComplete(self,	id,	success):

Attributes

__ACCOUNT_NAME__ 		Read-only	string
__ACCOUNT_PASSWORD__ 		Read-only	string
clientAddr 		Read-only
clientEnabled 		Read-only	bool
hasClient 		Read-only	bool
roundTripTime 		Read-only
timeSinceHeardFromClient 		Read-only

A	detailed	description

A	Proxy	is	a	special	type	of	Entity.	It	inherits	from	Entity	and	has	an	associated
client.	By	itself,	it	is	a	proxy	client	entity	that	handles	all	server-to-client
updates.	Cannot	create	Proxy	class	objects	directly	script.

Member	functions	documentation

def	disconnect(self):

Disconnect	the	client.

def	getClientType(self):

Function	description:

This	function	returns	the	client	type.

returns:
UNKNOWN_CLIENT_COMPONENT_TYPE	=	0,
CLIENT_TYPE_MOBILE	=	1,	//	Mobile	phone
CLIENT_TYPE_WIN	=	2,	//	PC,	typically	EXE	clients
CLIENT_TYPE_LINUX	=	3	//	Linux	Application	program
CLIENT_TYPE_MAC	=	4	//	Mac	Application	program
CLIENT_TYPE_BROWSER	=	5,	//	Web	applications,	HTML5,	Flash
CLIENT_TYPE_BOTS	=	6,	//	bots
CLIENT_TYPE_MINI	=	7,	//	Mini-Client
CLIENT_TYPE_END	=	8	//	end

def	getClientDatas(self):

Function	description:

This	function	returns	the	data	attached	to	the	client	when	logging	in	and
registering.
This	data	can	be	used	to	expand	the	operating	system.	If	a	third-party	account
service	is	connected,	this	data	is	sent	to	the	third-party	service	system	through
the	interfaces	process.

returns:
tuple,	a	tuple	of	2	elements	(login	data	bytes,	registration	data	bytes),	the	first
element	is	the	datas	parameter	passed	in	when	the	client	invokes	the	login,
and	the	second	element	is	passed	in	when	the	client	registers.	Since	they	can
store	arbitrary	binary	data,	they	all	exist	as	bytes.

def	giveClientTo(self,	proxy):

Function	description:

The	client's	controller	is	transferred	to	another	Proxy,	the	current	Proxy	must
have	a	client	and	the	target	Proxy	must	have	no	associated	client,	otherwise	it
will	cause	an	error.

See	also:
Proxy.onGiveClientToFailure

parameters:
proxy Control	will	be	transferred	to	this	entity.

def	streamFileToClient(self,	resourceName,	desc="",	id=-1):

Function	description:

This	function	is	similar	to	streamStringToClient()	and	sends	a	resource	file	to
the	client.	The	sending	process	operates	on	different	threads	so	it	does	not
compromise	the	main	thread.

See	also:
Proxy.onStreamComplete

parameters:
resourceName The	name	of	the	resource	to	send,	including	the	path.

desc An	optional	string	that	describes	the	resource	sent	to	the
client.

id
A	16-bit	id	whose	value	depends	entirely	on	the	caller.	If	the
incoming	-1	system	will	select	an	unused	id	in	the	queue.	The
client	can	make	resource	judgments	based	on	this	id.

returns:
The	id	associated	with	this	download.

def	streamStringToClient(self,	data,	desc="",	id=-1):

Function	description:

Sends	some	data	to	the	client	bound	to	the	current	entity.	If	the	client	port	data	is
cleared,	this	function	can	only	be	called	when	the	client	binds	to	the	entity	again.
The	16-bit	id	is	entirely	up	to	the	caller.	
If	the	caller	does	not	specify	this	ID	then	the	system	will	allocate	an	unused	id.
The	client	can	make	resource	judgments	based	on	this	id.	

You	can	define	a	callback	function	(onStreamComplete)	in	a	Proxy-derived
class.	This	callback	function	is	called	when	all	data	is	successfully	sent	to	the
client	or	when	the	download	fails.	

See	also:	Proxy.onStreamComplete,	client	Entity.onStreamDataStarted,
Entity.onStreamDataRecv,	and	Entity.onStreamDataCompleted.

parameters:
data The	string	to	send
desc An	optional	description	string	sent.

id A	16-bit	id	whose	value	depends	entirely	on	the	caller.	If	the	incoming
-1	system	will	select	an	unused	id	in	the	queue.

returns:
The	id	associated	with	this	download.

Callback	functions	documentation

def	onClientDeath(self):

If	this	callback	is	implemented	in	a	script,	this	method	will	be	called	when	the
client	disconnects.	This	method	has	no	parameters.

def	onClientGetCell(self):

If	this	callback	is	implemented	in	a	script,	the	callback	is	called	when	the	client
can	call	the	entity's	cell	attribute

def	onClientEnabled(self):

If	this	callback	is	implemented	in	the	script,	it	is	invoked	when	the	entity	is
available	(various	initializations	and	communication	with	the	client).	This
method	has	no	parameters.	
Note:	giveClientTo	also	assigns	control	to	the	entity	and	causes	the	callback	to
be	called.

def	onGiveClientToFailure(self):

If	this	callback	is	implemented	in	a	script,	it	is	called	when	the	entity	fails	to	call
giveClientTo.	This	method	has	no	parameters.

def	onLogOnAttempt(self,	ip,	port,	password):

If	this	callback	is	implemented	in	a	script,	it	is	invoked	when	a	client	attempts	to
log	in	using	the	current	account	entity.	
This	situation	usually	happens	when	the	entity	that	exists	in	memory	is	in	a	valid
state,	the	most	obvious	example	is	user	A	logs	in	with	this	account,	and	user	B
tries	to	use	the	same	account	to	log	in,	triggering	this	callback.	

This	callback	function	can	return	the	following	constant	values:
KBEngine.LOG_ON_ACCEPT:	Allows	the	new	client	to	bind	to	the	entity.	If
the	entity	has	bound	a	client,	the	previous	client	will	be	kicked	out.
KBEngine.LOG_ON_REJECT:	Reject	new	client	entity	binding.

KBEngine.LOG_ON_WAIT_FOR_DESTROY:	Wait	for	the	entity	to	be

destroyed	before	the	client	binds.	

parameters:
ip 		The	IP	address	of	the	client	trying	to	log	in.
port 		The	port	to	which	the	client	attempted	to	log	in.
password 		The	MD5	password	used	when	the	user	logs	in.

def	onStreamComplete(self,	id,	success):

If	you	implement	this	callback	in	a	script,	when	a	user	uses
Proxy.streamStringToClient()	or	Proxy.streamFileToClient()	and	is
completed,	this	callback	is	invoked.

parameters:
id 		The	id	associated	with	the	download.
success 		Success	or	failure

Attributes	documentation

__ACCOUNT_NAME__

Note:

If	the	proxy	is	an	account,	you	can	access	__ACCOUNT_NAME__	to	get	the
account	name.

__ACCOUNT_PASSWORD__

Note:

If	the	proxy	is	an	account,	you	can	access	__ACCOUNT_PASSWORD__	to	get
the	MD5	password.

clientAddr

This	is	a	tuple	object	that	contains	the	client's	ip	and	port.

clientEnabled

Whether	the	entity	is	already	available.	The	script	cannot	communicate	with	the
client	until	the	entity	is	available.

hasClient

Proxy	is	bound	to	a	client	connection.

roundTripTime

The	average	round-trip	time	for	client	communication	between	the	server	and
this	Proxy	over	a	period	of	time.	This	property	only	takes	effect	under	Linux.

timeSinceHeardFromClient

The	time	(in	seconds)	that	has	passed	since	the	client	packet	was	last	received.

Copyright	KBEngine

KBEngine

KBEngine	module

This	KBEngine	module	provides	Python	scripts	control	over	the	loginapp
process	to	handle	entity	login	registration.

Member	functions

def	addTimer(initialOffset,	repeatOffset=0,	callbackObj=None):
def	delTimer(id):

Callback	functions

def	onLoginAppReady():
def	onLoginAppShutDown():
def	onRequestLogin(loginName,	password,	clientType,	datas):
def	onLoginCallbackFromDB(loginName,	accountName,	errorno,	datas):
def	onRequestCreateAccount(accountName,	password,	datas):
def	onCreateAccountCallbackFromDB(accountName,	errorno,	datas):

Member	functions	documentation

def	addTimer(initialOffset,	repeatOffset=0,	callbackObj=None):

Function	description:
Register	a	timer.	The	timer	is	triggered	by	the	callback	function	callbackObj.
The	callback	function	will	be	executed	the	first	time	after	"initialOffset"	seconds,
and	then	will	be	executed	once	every	"repeatOffset"	seconds.	

Example:

#	Here	is	an	example	of	using	addTimer

								import	KBEngine

	

								#	Add	a	timer,	perform	the	first	time	after	5	seconds,	and	execute	once	every	1	second.	The	user	parameter	is	9

								KBEngine.addTimer(5,	1,	onTimer_Callbackfun)

	

								#	Add	a	timer	and	execute	it	after	1	second.	The	default	user	parameter	is	0.

								KBEngine.addTimer(1,	onTimer_Callbackfun)

	

				def	onTimer_Callbackfun(id):

								print	"onTimer_Callbackfun	called:	id	%i"	%	(id)

								#	If	this	is	a	repeated	timer,	it	is	no	longer	needed,	call	the	following	function	to	remove:	

								#					KBEngine.delTimer(id)

parameters:

initialOffset float,	specifies	the	time	interval	in	seconds	for	the	timer	toregister	from	the	first	callback.

repeatOffset

float,	specifies	the	time	interval	(in	seconds)	between	each
execution	after	the	first	callback	execution.	You	must	remove
the	timer	with	the	function	delTimer,	otherwise	it	will	continue
to	repeat.	Values	less	than	or	equal	to	0	will	be	ignored.

callbackObj function,	the	specified	callback	function	object

returns:
integer,	the	internal	id	of	the	timer.	This	id	can	be	used	to	remove	the	timer
using	delTimer

def	delTimer(id):

Function	description:

The	function	delTimer	is	used	to	remove	a	registered	timer.	The	removed	timer
is	no	longer	executed.	Single-shot	timers	are	automatically	removed	after	the
callback	is	executed,	and	it	is	not	necessary	to	use	delTimer	to	remove	it.	If	the
delTimer	function	uses	an	invalid	id	(for	example,	has	been	removed),	it	will
generate	an	error	

A	use	case	for	the	KBEngine.addTimer	reference	timer.

parameters:
id integer,	timer	id	to	remove

Callback	functions	documentation

def	onLoginAppReady():

Function	description:

This	function	is	called	back	when	the	current	process	is	ready.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

def	onLoginAppShutDown():

Function	description:

Process	shutdown	calls	this	function	back.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

def	onRequestLogin(loginName,	password,	clientType,	datas):

Function	description:

Called	back	when	the	client	requests	the	server	login	account.	

Here	you	can	do	some	administrative	control	on	user	login.	For	example:
Use	this	interface	to	truncate	the	user's	login	here,	record	the	request	and	queue
it,	and	return	an	error	code	to	tell	the	client	the	queue	status.	

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

parameters:
loginName string,	the	name	of	the	account	submitted	when	logging	in.
password string,	MD5	password.
clientType integer,	client	type,	given	when	the	client	logs	in.

datas bytes,	the	data	attached	to	the	client	request,	can	forward	data	to	a
third-party	platform.

returns:
Tuple,	the	return	value	is	(error	code,	real	account	name,	password,	client
type,	data	data	submitted	by	the	client),	if	there	is	no	need	to	extend	the
modification,	the	return	value	is	usually	to	destroy	the	incoming	value
(KBEngine.SERVER_SUCCESS	,	loginName,	password,	clientType,	datas).

def	onLoginAppReady():

Function	description:

This	function	is	called	back	when	the	current	process	is	ready.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

def	onLoginAppShutDown():

Function	description:

Process	shutdown	calls	this	function	back.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

def	onLoginCallbackFromDB(loginName,	accountName,	errorno,	datas):

Function	description:

The	callback	returned	by	dbmgr	after	the	client	requests	the	server	login	account.

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

parameters:
loginName string,	the	name	of	the	account	submitted	when	logging	in.

accountName string,	the	real	account	name	(obtained	from	the	the	query	atdbmgr)

errorno integer,	error	code,	if	it	is	not	KBEngine.SERVER_SUCCESS,
login	failed.
bytes,	which	may	be	any	data,	such	as	data	returned	by	a	third-

datas party	platform	or	data	returned	by	dbmgr	and	interfaces	when
processing	the	login.

def	onRequestCreateAccount(accountName,	password,	data):

Function	description:

Callback	when	the	client	requests	the	server	to	create	an	account.

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

parameters:
accountName string,	the	name	of	the	account	submitted	by	the	client.
password string,	MD5	password.

datas bytes,	the	data	attached	to	the	client	request,	can	forward	data
to	a	third-party	platform.

returns:
Tuple,	the	return	value	is	(error	code,	real	account	name,	password,	data	data
submitted	by	the	client),	if	there	is	no	need	to	extend	the	modified	value	is
usually	returned	to	destroy	the	incoming	value
(KBEngine.SERVER_SUCCESS,	loginName,	password	,	datas).

def	onCreateAccountCallbackFromDB(accountName,	errorno,	datas):

Function	description:

The	callback	returned	by	dbmgr	after	the	client	requests	the	server	to	create	an
account.

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

parameters:
accountName string,	the	name	of	the	account	submitted	by	the	client.

errorno integer,	error	code,	if	it	is	not	KBEngine.SERVER_SUCCESS,
login	failed.

datas
bytes,	which	may	be	any	data,	such	as	data	returned	by	a	third-
party	platform	or	data	returned	by	dbmgr	and	interfaces	when
processing	the	login.

Copyright	KBEngine

KBEngine

KBEngine	module

This	KBEngine	module	provides	Python	scripts	to	control	the	dbmgr	process	to
handle	entity	login	queries	and	data	access.

Member	functions

def	addTimer(initialOffset,	repeatOffset=0,	callbackObj=None):
def	delTimer(id):

Callbacks

def	onDBMgrReady():
def	onDBMgrShutDown():
def	onReadyForShutDown():
def	onSelectAccountDBInterface(accountName):

Member	functions	documentation

def	addTimer(initialOffset,	repeatOffset=0,	callbackObj=None):

Function	description:
Registers	a	timer.	The	timer	triggers	the	callback	function	specified	by
callbackObj.	The	callback	will	be	executed	the	first	time	after	"initialOffset"
seconds,	and	then	executed	once	every	"repeatOffset"	seconds.	

Example:

#	Here	is	an	example	of	using	addTimer

								import	KBEngine

	

								#	Add	a	timer,	perform	the	first	time	after	5	seconds,	and	execute	once	every	1	second.	The	user	parameter	is	9

								KBEngine.addTimer(5,	1,	onTimer_Callbackfun)

	

								#	Add	a	timer	and	execute	it	after	1	second.	The	default	user	parameter	is	0.

								KBEngine.addTimer(1,	onTimer_Callbackfun)

	

				def	onTimer_Callbackfun(id):

								print	"onTimer_Callbackfun	called:	id	%i"	%	(id)

								#	If	this	is	a	repeated	timer,	it	is	no	longer	needed,	call	the	following	function	to	remove:	

								#					KBEngine.delTimer(id)

parameters:

initialOffset float,	specifies	the	time	interval	in	seconds	for	the	timer	toregister	the	first	callback.

repeatOffset

float,	specifies	the	time	interval	(in	seconds)	after	each
execution	of	the	first	callback	execution.	You	must	remove	the
timer	with	the	function	delTimer,	otherwise	it	will	continue	to
repeat.	Values	less	than	or	equal	to	0	will	be	ignored.

callbackObj function,	the	specified	callback	function	object.

returns:
integer,	this	function	returns	the	internal	id	of	the	timer.	This	id	can	be	used	to
remove	the	timer	using	delTimer.

def	delTimer(id):

Function	description:

The	delTimer	function	is	used	to	remove	a	registered	timer.	The	removed	timer
is	no	longer	executed.	Single-shot	timers	are	automatically	removed	after	the
callback	is	executed,	and	it	is	not	necessary	to	use	delTimer	to	remove	it.	If	the
delTimer	function	receives	an	invalid	id	(for	example,	it	was	removed),	it	will
generate	an	error.	

A	use	case	is	in	the	KBEngine.addTimer	example.

parameters:
id integer,	specifies	the	timer	id	to	remove.

Callback	functions	documentation

def	onDBMgrReady():

Function	description:

This	function	is	called	back	when	the	current	process	is	ready.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

def	onDBMgrShutDown():

Function	description:

This	function	is	called	when	the	process	shuts	down.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

def	onReadyForShutDown():

Function	description:

If	this	function	is	implemented	in	a	script,	the	callback	function	is	called	when
the	process	is	ready	to	exit.

You	can	use	this	callback	to	control	when	the	process	exits.

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

returns:
bool,	if	it	returns	True,	it	allows	the	process	to	exit.	Returning	other	values
will	cause	the	process	to	ask	again	after	a	period	of	time.

def	onSelectAccountDBInterface(accountName):

Function	description:

When	implemented	in	a	script,	this	callback	returns	the	database	interface
corresponding	to	an	account.	After	the	interface	is	selected,	the	dbmgr
operations	related	to	this	account	are	completed	by	the	corresponding	database
interface.	

Database	interfaces	are	defined	in	kbengine_defaults.xml->dbmgr-
>databaseInterfaces.
Use	this	function	to	determine	which	database	the	account	should	be	stored	in
based	on	accountName.

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

parameters:
accountName string,	the	name	of	the	account.

returns:
string,	the	database	interface	name	(database	interfaces	are	defined	in
kbengine_defaults.xml->dbmgr->databaseInterfaces).

Copyright	KBEngine

KBEngine

KBEngine	module

This	KBEngine	module	provides	the	parts	of	the	logical	script	layer	access	to
Entity,	as	well	as	the	data	of	other	clients	in	the	current	process,	and	so	on.

Classes

Entity
PyClientApp

Member	functions

def	addBots(reqCreateAndLoginTotalCount,
reqCreateAndLoginTickCount=0,	reqCreateAndLoginTickTime=0):
def	callback(initialOffset,	callbackObj):
def	cancelCallback(id):
def	genUUID64():
def	getWatcher(path):
def	getWatcherDir(path):
def	scriptLogType(logType):

Callbacks

def	onInit(isReload):
def	onFinish():

Attributes

bots 		bots
component 		Read-only	string

Member	functions	documentation

def	addBots(reqCreateAndLoginTotalCount,
reqCreateAndLoginTickCount=0,	reqCreateAndLoginTickTime=0):

Function	description:
Add	a	bot	to	the	server.	

Example:

#	Here	is	an	example	of	using	addBots

								import	KBEngine

	

								#	Add	5	robots	to	the	server	at	one	time	(instantaneously).

								KBEngine.addBots(5)

	

								#	Add	a	total	of	1000	robots	to	the	server,	5	at	a	time,	at	an	interval	of	10	seconds.

								KBEngine.addBots(1000,	5,	10)

parameters:

reqCreateAndLoginTotalCount integer,	integer,	the	total	number	of	bots	toadd	to	the	server.

reqCreateAndLoginTickCount integer,	the	number	of	bots	added	to	theserver	each	interval

reqCreateAndLoginTickTime integer,	the	interval	of	time	(in	seconds)
between	adding	bots.

def	callback(initialOffset,	callbackObj):

Function	description:

Registers	a	callback,	on	the	callbackObj	function,	which	will	be	executed	once
after	"initialOffset"	seconds.	

Example:

#	Here	is	an	example	of	using	callback

								import	KBEngine

	

								#	Add	a	timer	and	execute	it	after	1	second

								KBEngine.callback(1,	onCallbackfun)

	

				def	onCallbackfun():

								print	"onCallbackfun	called"

	

parameters:
initialOffset float,	time,	in	seconds,	to	wait	before	triggering	the	callback.
callbackObj function,	the	specified	callback	function	object.

returns:
integer,	this	function	returns	the	internal	id	of	the	callback.	This	id	can	be
used	with	cancelCallback	to	remove	the	callback.

def	cancelCallback(id):

Function	description:

This	function	is	used	to	remove	a	registered	but	not	yet	triggered	callback.	The
removed	callback	will	not	be	executed.	If	this	function	is	passed	an	invalid	id
(for	example,	timer	was	removed),	an	error	will	be	generated.	

A	use	case	is	in	the	KBEngine.callback	example.

parameters:
id integer,	specifies	the	callback	id	to	remove.

def	genUUID64():

Function	description:

This	function	generates	a	64-bit	unique	ID.
Note:	This	function	is	dependent	on	the	startup	argument	'gus'	of	the	Cellapps
service	process.	Please	set	the	startup	arguments	to	be	unique.	
In	addition,	if	gus	exceeds	65535,	the	function	can	only	remain	unique	on	the
current	process.	

Usage:
Unique	item	IDs	are	generated	on	multiple	service	processes	and	do	not	conflict

when	combined.
A	room	ID	is	generated	on	multiple	service	process	and	no	uniqueness
verification	is	required.

returns:
A	64-bit	integer.

def	getWatcher(path):

Function	description:

Gets	the	value	of	a	watch	variable	from	the	KBEngine	debug	system.	

Example:	In	the	Python	console	of	baseapp1	enter:
>>>KBEngine.getWatcher("/root/stats/runningTime")	
12673648533	

>>>KBEngine.getWatcher("/root/scripts/players")	
32133

parameters:

path string,	the	absolute	path	of	the	variable	including	the	variable	name	(canbe	viewed	on	the	GUIConsole	watcher	page).

returns:
The	value	of	the	variable.

def	getWatcherDir(path):

Function	description:

Get	a	list	of	elements	(directories,	variable	names)	under	the	watch	directory
from	the	KBEngine	debugging	system.	

Example:	In	the	Python	console	of	baseapp1	enter::
>>>KBEngine.getWatcher("/root")	
('stats',	'objectPools',	'network',	'syspaths',	'ThreadPool',	'cprofiles',	'scripts',
'numProxices',	'componentID',	'componentType',	'uid',	'numClients',
'globalOrder',	'username',	'load',	'gametime',	'entitiesSize',	'groupOrder')

parameters:

path string,	the	absolute	path	of	the	variable	including	the	variable	name	(canbe	viewed	on	the	GUIConsole	watcher	page).

returns:
A	list	of	elements	in	the	directory	(directories,	variable	names).

def	scriptLogType(logType):

Function	description:

Sets	the	type	of	information	output	by	the	current	Python.print	(Reference:
KBEngine.LOG_TYPE_*)

Callback	functions	documentation

def	onInit(isReload):

Function	description:

This	function	is	called	after	all	scripts	have	been	initialized	since	the	engine
started.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

parameters:
isReload bool,	whether	it	was	triggered	after	rewriting	the	loading	script.

def	onFinish():

Function	description:

This	function	is	called	back	when	the	process	shuts	down.	
Note:	This	callback	function	must	be	implemented	in	the	portal	module
(kbengine_defaults.xml->entryScriptFile).

Attributes	documentation

bots

Description:

bots	is	a	dictionary	object	that	contains	all	client	objects	on	the	current	process.

Types:
PyBots

component

Description:

This	is	the	component	that	is	running	in	the	current	scripting	environment.	(So
far)	Possible	values	are	'cell',	'base',	'client',	'database',	'bot',	and	'editor'.

°æÈ¨¹éKBEngineËùÓÐ¡£

KBEngine

PyClientApp	class

[KBEngine	module]

PyClientApp	is	a	part	of	the	KBEngine	Module.	It	is	is	client	object	created
when	a	client	is	simulated	from	the	bottom	of	C++.	It	cannot	be	created	in	the
script	layer	directly.

Member	functions

def	getSpaceData(key):

Callbacks

def	onDestroy(self):
def	onEnterWorld(self):
def	onLeaveWorld(self):
def	onEnterSpace(self):
def	onLeaveSpace(self):

Attributes

id 		Read-only	Integer
entities 		Entities

A	detailed	description

Instances	of	class	Entity	represent	game	objects	on	the	client.	

An	Entity	can	access	its	equivalent	entities	in	the	base	and	cell	applications	via
ENTITYCALL.	This	requires	a	set	of	remotely-invoked	functions	(specified	in
the	entity's	.def	file).

Member	functions	documentation

def	getSpaceData(key):

Function	description:

Get	the	space	data	of	the	specified	key.	
The	space	data	is	set	by	the	user	on	the	server	through	setSpaceData.

parameters:
key string,	a	string	keyword.

returns:
string,	string	data	for	the	key

Callback	functions	documentation

def	onDestroy(self):

Called	when	the	entity	is	destroyed.

def	onEnterWorld(self):

If	the	entity	is	not	a	client-controlled	entity,	it	indicates	that	the	entity	has	entered
the	View	scope	of	the	entity	controlled	by	the	client	on	the	server	side.	At	this
time,	the	client	can	see	the	entity.
If	this	entity	is	a	client-controlled	entity,	it	indicates	that	the	entity	has	created	a
cell	on	the	server	and	entered	space.

def	onLeaveWorld(self):

If	the	entity	is	not	a	client-controlled	entity,	it	indicates	that	the	entity	has	entered
the	View	scope	of	the	entity	controlled	by	the	client	on	the	server	side.	At	this
time,	the	client	can	see	this	entity.	
If	the	entity	is	a	client-controlled	entity,	it	indicates	that	the	entity	has	created	a
cell	on	the	server	and	entered	space.

def	onEnterSpace(self):

The	client-controlled	entity	enters	a	new	space.

def	onLeaveSpace(self):

The	client-controlled	entity	leaves	the	current	space.

Attributes	documentation

entities

Description:

entities	is	a	dictionary	object	that	contains	all	the	entities	in	the	current	process.

Types:
Entities

Copyright	KBEngine

KBEngine

Entity	class

[KBEngine	module]

Entity	is	part	of	the	KBEngine	module.	More...

import	KBEngine

Member	functions

def	moveToPoint(self,	destination,	velocity,	distance,	userData,
faceMovement,	moveVertically):
def	cancelController(self,	controllerID):

Callbacks

def	onEnterWorld(self):
def	onLeaveWorld(self):
def	onEnterSpace(self):
def	onLeaveSpace(self):

Attributes

base 		Read-only	ENTITYCALL
cell 		Read-only	ENTITYCALL
className 		Read-only	string
clientapp 		Read-only	PyClientApp
direction 		Tuple	of	3	floats	as	(roll,	pitch,	yaw)
id 		Read-only	Integer
position 		Vector3
spaceID 		Read-only	uint32
isOnGround 		Read-only	bool

A	detailed	description

Instances	of	the	class	Entity	represent	game	objects	on	the	client.	

An	Entity	can	access	its	equivalent	entities	in	the	base	and	cell	applications	via
ENTITYCALL.	This	requires	a	set	of	remotely-invoked	functions	(specified	in
the	entity's	.def	file).

Member	functions	documentation

def	moveToPoint(self,	destination,	velocity,	distance,	userData,
faceMovement,	moveVertically):

Function	description:

Moves	the	Entity	to	the	given	coordinate	point	in	a	straight	line.	The	callback
will	be	called	on	success	or	failure.
Any	Entity	can	only	have	one	motion	controller	at	any	time.	Repeatedly	calling
any	move	function	will	terminate	the	previous	move	controller.
Returns	a	controller	ID	that	can	be	used	to	cancel	this	move.	

Example:	
You	can	use	Entity.cancelController(movementID)	or
Entity.cancelController("Movement")	to	cancel	the	move.	The	callback	will
not	be	called	if	the	move	is	cancelled.	

The	callback	functions	are	defined	as	follows:

	 def	onMove(self,	controllerID,	userData):

	 def	onMoveOver(self,	controllerID,	userData):

	 def	onMoveFailure(self,	controllerID,	userData):

See	also:
Entity.cancelController

parameters:
destination Vector3,	the	target	point	to	which	the	Entity	is	to	be	moved.
velocity float,	the	speed	to	move	the	Entity	(in	m/s).

distance float,	the	distance	target	which	if	it	is	within,	movement	is
stopped.	If	the	value	is	0,	it	moves	to	the	target	position.

userData object,	user	data	passed	to	the	callback	function.

faceMovement bool,	True	if	the	entity	faces	the	direction	of	the	move.	If	it	isother	mechanism,	it	is	False.

moveVertically
bool,	set	to	True	means	to	move	in	a	straight	line	directly	to
the	point,	and	False	means	to	move	in	a	straight	line	paralell
to	the	ground.

returns:
int,	newly	created	controller	ID.

def	cancelController(self,	controllerID):

Function	description:

The	cancelController	function	stops	the	effect	of	a	controller	on	the	Entity.	It
can	only	be	called	on	a	real	entity.

parameters:

controllerID

integer,	the	index	of	the	controller	to	cancel.	A	special	controller
type	string	can	also	be	used.	For	example,	only	one
movement/navigation	controller	can	be	activated	at	a	time.	This
can	be	cancelled	with	entity.cancelController("Movement").

Callback	functions	documentation

def	onEnterWorld(self):

If	the	entity	is	not	a	client-controlled	entity,	it	indicates	that	the	entity	has	entered
the	View	scope	of	the	entity	controlled	by	the	client	on	the	server	side.	At	this
time,	the	client	can	see	this	entity.	
If	the	entity	is	a	client-controlled	entity,	it	indicates	that	the	entity	has	created	a
cell	on	the	server	and	entered	space.

def	onLeaveWorld(self):

If	the	entity	is	not	a	client-side	control	entity,	it	indicates	that	the	entity	has	left
the	view	scope	of	the	client-controlled	entity	on	the	server	side,	and	the	client
cannot	see	this	entity	at	this	time.	
If	the	entity	is	a	client-controlled	entity,	it	indicates	that	the	entity	has	destroyed
the	cell	on	the	server	and	left	space.

def	onEnterSpace(self):

The	client-controlled	entity	enters	a	new	space.

def	onLeaveSpace(self):

The	client-controlled	entity	leaves	the	current	space.

Attributes	documentation

base

base	is	the	entityCall	used	to	contact	the	base	Entity.	This	attribute	is	read-only,
and	is	None	if	this	entity	does	not	have	an	associated	base	Entity.

Other	references:
Entity.clientEntity
Entity.allClients
Entity.otherClients

Types:
Read-only,	ENTITYCALL

cell

Description:

cell	is	the	ENTITYCALL	used	to	contact	the	cell	entity.	This	attribute	is	Read-
only,	and	is	None	if	the	base	entity	has	no	associated	cell.	

Types:
Read-only	ENTITYCALL

cellData

Description:

cellData	is	a	dictionary	property.	Whenever	the	base	entity	has	not	created	its
cell	entity,	the	attributes	of	the	cell	entity	are	stored	here.	

If	the	cell	entity	is	created,	the	values	and	cellData	attributes	will	be	deleted.	In
addition	to	the	attributes	that	the	cell	entity	specifies	in	the	entity	definition	file,
it	also	contains	position,	direction,	and	spaceID.

Types:

CELLDATADICT

className

Description:

The	class	name	of	the	entity.

Types:
Read-only,	string

clientapp

Description:

The	client	(object)	to	which	the	current	entity	belongs.

Types:
Read-only,	PyClientApp

position

The	coordinates	(x,	y,	z)	of	this	entity	in	world	space.	The	data	is	synchronized
from	the	server	to	the	client.	

Types:
Vector3

direction

This	attribute	describes	the	orientation	of	the	Entity	in	world	space.	Data	is
synchronized	from	the	server	to	the	client.

Types:
Vector3,	which	contains	(roll,	pitch,	yaw)	in	radians.

isOnGround

If	the	value	of	this	attribute	is	True,	the	Entity	is	on	the	ground,	otherwise	it	is
False.
If	it	is	a	client-controlled	entity,	this	attribute	will	be	synchronizd	to	the	server	at
the	time	of	change,	and	other	entities	will	be	synchronized	to	the	client	by	the
server.	The	client	can	determine	this	value	to	reduce	the	cost	of	accuracy.

Types:
Read-write,	bool

Copyright	KBEngine

KBEngine

KBEngine	module

This	KBEngine	module	mainly	handles	access	of	third-party	platforms	for	the
KBEngine	server.

Member	functions

def	addTimer(initialOffset,	repeatOffset=0,	callbackObj=None):
def	accountLoginResponse(commitName,	realAccountName,	extraDatas,
errorCode):
def	createAccountResponse(commitName,	realAccountName,	extraDatas,
errorCode):
def	chargeResponse(orderID,	extraDatas,	errorCode):
def	delTimer(id):

Callbacks

def	onInterfaceAppReady():
def	onInterfaceAppShutDown():
def	onRequestCreateAccount(registerName,	password,	datas):
def	onRequestAccountLogin(loginName,	password,	datas):
def	onRequestCharge(ordersID,	entityDBID,	datas):

Member	functions	documentation

def	addTimer(initialOffset,	repeatOffset=0,	callbackObj=None):

Function	description:
Registers	a	timer.	The	timer	triggers	the	callback	function	callbackObj.	The
callback	function	will	be	executed	the	first	time	after	"initialOffset"	seconds,	and
then	will	be	executed	once	every	"repeatOffset"	seconds.	

Example:

#	Here	is	an	example	of	using	addTimer

								import	KBEngine

	

								#	Add	a	timer,	perform	the	first	time	after	5	seconds,	and	execute	once	every	1	second.	The	user	parameter	is	9

								KBEngine.addTimer(5,	1,	onTimer_Callbackfun)

	

								#	Add	a	timer	and	execute	it	after	1	second.	The	default	user	parameter	is	0.

								KBEngine.addTimer(1,	onTimer_Callbackfun)

	

				def	onTimer_Callbackfun(id):

								print	"onTimer_Callbackfun	called:	id	%i"	%	(id)

								#	If	this	is	a	repeated	timer,	it	is	no	longer	needed,	call	the	following	function	to	remove:	

								#					KBEngine.delTimer(id)

parameters:

initialOffset float,	specifies	the	time	interval	in	seconds	for	the	timer	toregister	from	the	first	callback.

repeatOffset

float,	specifies	the	time	interval	(in	seconds)	between	each
execution	after	the	first	callback	execution.	You	must	remove
the	timer	with	the	function	delTimer,	otherwise	it	will	continue
to	repeat.	Values	less	than	or	equal	to	0	will	be	ignored.

callbackObj function,	the	specified	callback	function	object

returns:
integer,	the	internal	id	of	the	timer.	This	id	can	be	used	to	remove	the	timer
from	delTimer.

def	accountLoginResponse(commitName,	realAccountName,	extraDatas,
errorCode):

Function	description:

After	onRequestAccountLogin	is	called	back,	the	script	needs	to	call	this
function	to	give	the	result	of	the	login	processing.

parameters:
commitName string,	the	name	submitted	by	the	client	when	requested.

realAccountName
string,	returns	the	real	account	name	(if	there	are	no
special	requirements	it	is	ually	commitName,	this	is
available	when	logging	in	with	various	alias	accounts).

extraDatas

bytes,	the	data	attached	to	the	client's	request.	Can
forward	the	data	to	a	third-party	platform	and	provide	an
opportunity	to	modify	it.	This	parameter	can	be	read	in	the
script	via	the	getClientDatas	interface	of	the	base	entity.

errorCode

integer,	error	code.	If	you	need	to	interrupt	the	user's
behavior,	you	can	set	the	error	code	here.	The	error	code
can	be	referenced	(KBEngine.SERVER_ERROR_*,
described	in	kbengine/kbe/res/server/server_errors.xml),
otherwise	submitting	KBEngine.SERVER_SUCCESS
represents	permitting	the	login.

def	createAccountResponse(commitName,	realAccountName,	extraDatas,
errorCode):

Function	description:

After	onRequestCreateAccount	is	called	back,	the	script	needs	to	call	this
function	to	give	an	account	creation	processing	result.

parameters:
commitName string,	the	name	submitted	by	the	client	when	requested.

realAccountName
string,	returns	the	real	account	name	(if	there	are	no
special	requirements	it	is	ually	commitName,	this	is
available	when	logging	in	with	various	alias	accounts).

extraDatas

bytes,	the	data	attached	to	the	client's	request.	Can
forward	the	data	to	a	third-party	platform	and	provide	an
opportunity	to	modify	it.	This	parameter	can	be	read	in	the
script	via	the	getClientDatas	interface	of	the	base	entity.

errorCode

integer,	error	code.	If	you	need	to	interrupt	the	user's
behavior,	you	can	set	the	error	code	here.	The	error	code
can	be	referenced	(KBEngine.SERVER_ERROR_*,
described	in	kbengine/kbe/res/server/server_errors.xml),
otherwise	submitting	KBEngine.SERVER_SUCCESS
represents	permitting	the	login.

def	chargeResponse(orderID,	extraDatas,	errorCode):

Function	description:

After	onRequestCharge	is	called	back,	the	script	needs	to	call	this	function	to
give	the	billing	result.

parameters:
ordersID string,	the	ID	of	the	order

extraDatas

bytes,	the	data	attached	to	the	client's	request.	Can	forward	the
data	to	a	third-party	platform	and	provide	an	opportunity	to
modify	it.	This	parameter	can	be	read	in	the	script	via	the
getClientDatas	interface	of	the	base	entity.

errorCode

integer,	error	code.	If	you	need	to	interrupt	the	user's	behavior,
you	can	set	the	error	code	here.	The	error	code	can	be	referenced
(KBEngine.SERVER_ERROR_*,	described	in
kbengine/kbe/res/server/server_errors.xml),	otherwise	submitting
KBEngine.SERVER_SUCCESS	represents	permitting	the	login.

def	delTimer(id):

Function	description:

The	delTimer	function	is	used	to	remove	a	registered	timer.	The	removed	timer
is	no	longer	executed.	Single-shot	timers	are	automatically	removed	after	the
callback	is	executed,	and	it	is	not	necessary	to	use	the	delTimer	function	to
remove	it.	If	the	delTimer	function	is	passed	an	invalid	id	(for	example,	timer
was	removed),	it	will	generate	an	error.	

A	use	case	is	shown	in	the	KBEngine.addTimer	example.

parameters:

id integer,	which	specifies	the	timer	id	to	remove.

Callback	functions	documentation

def	onInterfaceAppReady():

Function	description:

This	function	is	called	back	when	the	current	process	is	ready.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

def	onInterfaceAppShutDown():

Function	description:

This	function	is	called	back	when	the	process	shuts	down.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

def	onRequestCreateAccount(registerName,	password,	datas):

Function	description:

This	callback	is	called	when	the	client	requests	the	server	to	create	an	account.

The	data	can	be	checked	and	modified	within	this	function,	and	the	final	result	is
submitted	to	the	engine	through	KBEngine.createAccountResponse.	

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

parameters:
registerName string,	the	name	submitted	by	the	client	when	requested.
password string,	password

datas bytes,	the	data	attached	to	the	client's	request,	can	forward	data
to	a	third-party	platform.

def	onRequestAccountLogin(loginName,	password,	datas):

Function	description:

This	callback	is	called	when	the	client	requests	the	server	to	login	an	account.

The	data	can	be	checked	and	modified	within	this	function,	and	the	final	result	is
submitted	to	the	engine	through	KBEngine.accountLoginResponse.	

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

parameters:
loginName string,	the	name	submitted	by	the	client	when	requested.
password string,	password.

datas bytes,	the	data	attached	to	the	client	request,	can	forward	data	to	a
third-party	platform.

def	onRequestCharge(ordersID,	entityDBID,	datas):

Function	description:

This	callback	is	invoked	when	billing	is	requested	(usually	KBEngine.charge	is
called	on	baseapp).	

Data	can	be	checked	and	modified	within	this	function,	and	the	final	result	is
submitted	to	the	engine	via	KBEngine.chargeResponse.	

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

parameters:
ordersID uint64,	the	ID	of	the	order.
entityDBID uint64,	the	entity	DBID	of	the	submitted	order.

datas bytes,	the	data	attached	to	the	client	request,	can	forward	data	to
a	third-party	platform.

Copyright	KBEngine

KBEngine

KBEngine	module

This	KBEngine	module	provides	Python	scripts	the	ability	to	control,	analyze,
and	dump	certain	types	of	logs.

Member	functions

def	addTimer(initialOffset,	repeatOffset=0,	callbackObj=None):
def	delTimer(id):

Callbacks

def	onLoggerAppReady():
def	onLoggerAppShutDown():
def	onLogWrote(datas):
def	onReadyForShutDown():

Member	functions	documentation

def	addTimer(initialOffset,	repeatOffset=0,	callbackObj=None):

Function	description:
Registers	a	timer.	The	timer	triggers	the	callback	function	callbackObj.	The
callback	function	will	be	executed	the	first	time	after	"initialOffset"	seconds,	and
then	will	be	executed	once	every	"repeatOffset"	seconds.	

Example:

#	Here	is	an	example	of	using	addTimer

								import	KBEngine

	

								#	Add	a	timer,	perform	the	first	time	after	5	seconds,	and	execute	once	every	1	second.	The	user	parameter	is	9

								KBEngine.addTimer(5,	1,	onTimer_Callbackfun)

	

								#	Add	a	timer	and	execute	it	after	1	second.	The	default	user	parameter	is	0.

								KBEngine.addTimer(1,	onTimer_Callbackfun)

	

				def	onTimer_Callbackfun(id):

								print	"onTimer_Callbackfun	called:	id	%i"	%	(id)

								#	If	this	is	a	repeated	timer,	it	is	no	longer	needed,	call	the	following	function	to	remove:	

								#					KBEngine.delTimer(id)

parameters:

initialOffset float,	specifies	the	time	interval	in	seconds	for	the	timer	toregister	from	the	first	callback.

repeatOffset

float,	specifies	the	time	interval	(in	seconds)	between	each
execution	after	the	first	callback	execution.	You	must	remove
the	timer	with	the	function	delTimer,	otherwise	it	will	continue
to	repeat.	Values	less	than	or	equal	to	0	will	be	ignored.

callbackObj function,	the	specified	callback	function	object

returns:
integer,	the	internal	id	of	the	timer.	This	id	can	be	used	to	remove	the	timer
from	delTimer.

def	delTimer(id):

Function	description:

The	delTimer	function	is	used	to	remove	a	registered	timer.	The	removed	timer
is	no	longer	executed.	Single-shot	timers	are	automatically	removed	after	the
callback	is	executed,	and	it	is	not	necessary	to	use	the	delTimer	function	to
remove	it.	If	the	delTimer	function	is	passed	an	invalid	id	(for	example,	timer
was	removed),	it	will	generate	an	error.	

A	use	case	is	shown	in	the	KBEngine.addTimer	example.

parameters:
id integer,	which	specifies	the	timer	id	to	remove.

Callback	functions	documentation

def	onLoggerAppReady():

Function	description:

This	function	is	called	back	when	the	current	process	is	ready.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

def	onLoggerAppShutDown():

Function	description:

This	function	is	called	back	when	the	process	shuts	down.	
Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

def	onLogWrote(datas):

Function	description:

If	this	function	is	implemented	in	the	script,	it	is	invoked	when	the	logger
process	obtains	a	new	log.

The	database	interface	is	defined	in	kbengine_defaults.xml->dbmgr-
>databaseInterfaces.

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

parameters:
datas bytes,	log	data.

def	onReadyForShutDown():

Function	description:

If	this	function	is	implemented	in	the	script,	it	is	called	when	the	process	is	ready
to	exit.

You	can	use	this	callback	to	control	when	the	process	exits.

Note:	This	callback	interface	must	be	implemented	in	the	portal	module	(
kbengine_defaults.xml	->entryScriptFile).

returns:
bool,	if	it	returns	True,	it	allows	the	process	to	exit.	Returning	other	values
will	cause	the	process	to	ask	again	after	a	period	of	time.

Copyright	KBEngine

KBEngine

Cellapp	process

The	Cellapp	process	is	primarily	responsible	for	space-related	game	logic,
providing	players	on	different	baseapps	a	real-time	interaction	in	one	space.	The
Cellapp	can	usually	implement	scene-related	logic	such	as	NPCs/monsters,
battles,	and	checkpoint	rooms.

Copyright	KBEngine

KBEngine

Baseapp	process

The	Baseapp	process	is	mainly	responsible	for	communication	with	the	client,
location	independent	game	logic	(guild	manager,	chat	system,	leaderboard,	etc.),
archiving,	backup,	and	so	on.

Copyright	KBEngine

KBEngine

Loginapp	process

The	Loginapp	process	is	primarily	responsible	for	handling	entity	registration
and	login	requests.	
Note:	This	process	script	is	implemented	in	the	scripts/login	directory.

Copyright	KBEngine

	Getting Started
	Keywords
	Base Types
	client_plugins
	Introduction

	cellapp
	Introduction

	baseapp
	Introduction

	loginapp
	Introduction

	dbmgr
	Introduction

	bots
	Introduction

	interfaces
	Introduction

	logger
	Introduction

