
English

A	propos	de	ce	document
Ce	document	a	été	construit	automatiquement	à	partir	de	la	documentation	HTML	disponible	sur
java.sun.com.	Il	est	périodiquement	remis	à	jour,	lorsque	de	nouvelles	versions	des
documentations	originales	deviennent	disponibles.	Pour	télécharger	librement	et	gratuitement	ces
mises	à	jour,	mais	aussi	d''autres	documents	Java	au	format	HTMLHelp	ou	WinHelp,	visitez	le
site	de	Franck	Allimant	:

http://www.confluent.fr/javadoc	(en	Français)

http://www.confluent.fr/javadoc/indexe.html	(en	Anglais)

Bonne	utilisation	!

Contact

Les	remarques	et	les	suggestions	sont	les	bienvenues.	Merci	de	les	faire	parvenir	à	Franck
Allimant.

Notes

La	documentation	HTML	originale	est	disponible	sur	java.sun.com.	Merci	de	la	consulter	si	vous
avez	des	incertitudes	à	propos	les	informations	présentées	dans	ce	document.

La	version	HTMLHelp	de	cette	documentation	diffère	par	quelques	points	de	la	version	HTML,	à
cause	de	certaines	limitations	de	HTMLHelp.

1.	Applets	Java

Les	applets	Java	1	fonctionnent	correctement	dans	HTMLHelp,	pourvu	que	les	classes
Java	ne	soient	pas	embarquées	dans	le	fichier	d'aide	(chm)	lui-même.	Elles	sont	stockées
dans	le	répertoire	applets,	qui	se	trouve	au	même	endroit	que	le	fichier	d'aide.	Ce	répertoire
n'est	pas	nécessaire	au	fonctionnement	de	l'aide	:	s'il	est	absent,	les	applets	ne	seront	pas
affichées.

Le	plugin	Java	n'est	pas	supporté	par	HTMLHelp.	Les	applets	nécessitant	une	machine
virtuelle	Java	2	ne	peuvent	pas	être	exécutées.

2.	Fichiers	nécessitant	un	plugin

Le	support	des	plugins	n'est	pas	complet	dans	HTMLHelp.	En	fonction	de	la	configuration
de	votre	machine,	certains	problèmes	peuvent	survenir	lors	de	la	visualisation	de	ces
fichiers,	en	particulier	les	documents	PDF.

http://java.sun.com
mailto:allimant@nerim.net
http://www.confluent.fr/javadoc
http://www.confluent.fr/javadoc/indexe.html
mailto:allimant@nerim.net
http://java.sun.com

3.	Occurrences	multiples	d'un	mot-clef	de	l'index

Si	un	mot	clef	de	l'index	pointe	vers	plusieurs	documents,	une	page	listant	toutes	les
occurrences	trouvées	est	affichée.	Cette	page	fournit	le	titre	des	documents	dans	lequel	le
mot	clef	apparaît,	et	s'il	s'agit	d'une	méthode,	les	paramètres	de	cette	méthode.	Ce	mode
d'affichage	très	détaillé	a	été	préféré	à	la	boîte	de	dialogue	"Rubriques	Trouvées"
proposées	en	standard	par	HTMLHelp,	pour	permettre	une	navigation	plus	efficace	et	plus
rapide	dans	un	grand	nombre	de	documents.

Merci	à...

a.do	Consulting,	pour	offrir	gratuitement	un	parser	HTML	écrit	en	Java	aussi	compact	et	efficace.

Doug	Kramer,	de	Sun,	qui	a	autorisé	la	distribution	des	documentations	Java	pour	WinHelp	et
HTMLHelp.

Distribution

Ce	logiciel	est	gratuit.	Il	ne	peut	être	diffusé	sur	Internet	ou	dupliqué	que	dans	des	buts	non
commerciaux,	pour	usage	privé	exclusivement.	Toute	distribution	par	CD-ROM	est	soumise	à	une
autorisation	préalable	[contact].

Toutes	les	restrictions	de	distribution	imposées	par	Sun	à	la	documentation	originale	sont
applicables	au	présent	document.	Consultez	cette	page	(en	anglais)	pour	en	prendre
connaissance.

Copyright	©	1997-2002,	Franck	Allimant

http://www.do.org/
mailto:allimant@nerim.net
http://java.sun.com/docs/redist.html
mailto:allimant@nerim.net

French

About	this	document
This	document	is	built	from	the	HTML	documentations	available	at	java.sun.com.	It	is	regularly
updated,	when	new	versions	of	original	documentations	become	available.	To	download	updates
and	many	other	WinHelp	and	HTMLHelp	Java	documentations	for	free,	visit	Franck	Allimant's
web	site	:

http://www.confluent.fr/javadoc/indexe.html	(in	English)

http://www.confluent.fr/javadoc	(in	French)

Contact

Comments	and	suggestions	are	welcome.	Feel	free	to	send	them	to	Franck	Allimant.

Notes

The	original	HTML	documentation	is	available	at	java.sun.com.	Please	refer	to	this	original
documentation	if	you're	not	confident	with	the	present	document.

Due	to	some	HTMLHelp	limitations,	there	are	some	differences	between	this	help	file	and	the
original	HTML	version	of	the	documentation.

1.	Java	Applets

In	most	cases,	Java	1	applets	are	running	inside	the	HTMLHelp	viewer,	provided	they're	not
embedded	in	the	help	(chm)	file.	They	are	stored	in	the	applets	directory,	located	at	the
same	level	as	the	help	file.	This	folder	is	not	required	for	browsing	help,	but	if	it	is	missing,
applets	will	not	be	displayed.

Java	2	applets	require	the	Java	Plugin,	which	is	not	supported	by	the	HTMLHelp	viewer.
These	applets	will	not	be	displayed.

2.	Documents	that	require	a	plugin

Plugins	are	not	fully	supported	by	the	HTMLHelp	viewer.	Depending	on	the	configuration	of
your	machine,	some	problems	may	occur	when	viewing	these	files,	for	example	PDF
documents.

3.	Multiple	occurrences	of	an	index	keyword

If	an	index	keyword	points	to	more	than	one	document,	a	page	that	lists	all	found
occurrences	is	displayed.	This	page	shows	the	title	of	every	document	in	which	the	keyword

http://java.sun.com
mailto:allimant@nerim.net
http://www.confluent.fr/javadoc/indexe.html
http://www.confluent.fr/javadoc
mailto:allimant@nerim.net
http://java.sun.com

appears,	and	if	this	keyword	is	a	method,	the	parameters	of	this	method.	This	detailed
display	has	been	preferred	to	the	standard	HTMLHelp	"Topics	Found"	dialog	box,	to	provide
a	faster	and	more	efficient	browsing	of	a	large	number	of	documents.

Thanks	to...

a.do	Consulting,	for	HtmlStreamTokenizer™,	a	compact,	efficient	and	free	HTML	parser	written	in
Java.

Doug	Kramer	at	Sun,	who	authorized	the	distribution	of	this	document.

Distribution

This	software	is	free.	Permission	to	use,	copy,	and	distribute	this	software	for	non-commercial
purposes	via	the	Internet	without	fee	is	hereby	granted.	Permission	is	not	granted	for	any
distribution	in	the	form	of	CD-ROM	[contact].

Sun's	documentation	redistribution	policy	is	applicable	to	this	document.	Please	see	this	page	for
details.

Copyright	©	1997-2002,	Franck	Allimant

http://www.do.org/
mailto:allimant@nerim.net
http://java.sun.com/docs/redist.html
mailto:allimant@nerim.net

Overview	 Package	 Class	 Tree	 Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Serialized	Form

Package	javax.servlet

Class	javax.servlet.GenericServlet	implements
Serializable

Class	javax.servlet.ServletContextAttributeEvent
implements	Serializable

Serialized	Fields

name

java.lang.String	name

value

java.lang.Object	value

Class	javax.servlet.ServletContextEvent	implements
Serializable

Class	javax.servlet.ServletException	implements
Serializable

Serialized	Fields

rootCause

java.lang.Throwable	rootCause

Class	javax.servlet.UnavailableException	implements
Serializable

Serialized	Fields

permanent

boolean	permanent

seconds

int	seconds

servlet

Servlet	servlet

Package	javax.servlet.http

Class	javax.servlet.http.HttpServlet	implements
Serializable

Class	javax.servlet.http.HttpSessionBindingEvent
implements	Serializable

Serialized	Fields

name

java.lang.String	name

value

java.lang.Object	value

Class	javax.servlet.http.HttpSessionEvent
implements	Serializable

Overview	 Package	 Class	 Tree	 Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Overview	 Package	 Class	 Tree	 Deprecated	 Index	 	Help	
	PREV			NEXT FRAMES				NO	FRAMES

How	This	API	Document	Is
Organized

This	API	(Application	Programming	Interface)	document	has	pages
corresponding	to	the	items	in	the	navigation	bar,	described	as	follows.

Overview

The	Overview	page	is	the	front	page	of	this	API	document	and	provides	a
list	of	all	packages	with	a	summary	for	each.	This	page	can	also	contain	an
overall	description	of	the	set	of	packages.

Package

Each	package	has	a	page	that	contains	a	list	of	its	classes	and	interfaces,
with	a	summary	for	each.	This	page	can	contain	four	categories:

Interfaces	(italic)
Classes
Exceptions
Errors

Class/Interface

Each	class,	interface,	inner	class	and	inner	interface	has	its	own	separate
page.	Each	of	these	pages	has	three	sections	consisting	of	a	class/interface
description,	summary	tables,	and	detailed	member	descriptions:

Class	inheritance	diagram
Direct	Subclasses
All	Known	Subinterfaces
All	Known	Implementing	Classes
Class/interface	declaration
Class/interface	description

Inner	Class	Summary
Field	Summary
Constructor	Summary
Method	Summary

Field	Detail
Constructor	Detail
Method	Detail

Each	summary	entry	contains	the	first	sentence	from	the	detailed
description	for	that	item.	The	summary	entries	are	alphabetical,	while	the
detailed	descriptions	are	in	the	order	they	appear	in	the	source	code.	This
preserves	the	logical	groupings	established	by	the	programmer.

Tree	(Class	Hierarchy)

There	is	a	Class	Hierarchy	page	for	all	packages,	plus	a	hierarchy	for	each
package.	Each	hierarchy	page	contains	a	list	of	classes	and	a	list	of
interfaces.	The	classes	are	organized	by	inheritance	structure	starting	with
java.lang.Object.	The	interfaces	do	not	inherit	from	java.lang.Object.

When	viewing	the	Overview	page,	clicking	on	"Tree"	displays	the
hierarchy	for	all	packages.
When	viewing	a	particular	package,	class	or	interface	page,	clicking
"Tree"	displays	the	hierarchy	for	only	that	package.

Deprecated	API

The	Deprecated	API	page	lists	all	of	the	API	that	have	been	deprecated.	A
deprecated	API	is	not	recommended	for	use,	generally	due	to
improvements,	and	a	replacement	API	is	usually	given.	Deprecated	APIs
may	be	removed	in	future	implementations.

Index

The	Index	contains	an	alphabetic	list	of	all	classes,	interfaces,	constructors,
methods,	and	fields.

Prev/Next

These	links	take	you	to	the	next	or	previous	class,	interface,	package,	or	related
page.

Frames/No	Frames

These	links	show	and	hide	the	HTML	frames.	All	pages	are	available	with	or
without	frames.

Serialized	Form

Each	serializable	or	externalizable	class	has	a	description	of	its	serialization
fields	and	methods.	This	information	is	of	interest	to	re-implementors,	not	to
developers	using	the	API.	While	there	is	no	link	in	the	navigation	bar,	you	can
get	to	this	information	by	going	to	any	serialized	class	and	clicking	"Serialized
Form"	in	the	"See	also"	section	of	the	class	description.

This	help	file	applies	to	API	documentation	generated	using	the	standard	doclet.

Overview	 Package	 Class	 Tree	 Deprecated	 Index	 	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Overview	 Package	 Class	 	Tree	 Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Hierarchy	For	All	Packages

Package	Hierarchies:
javax.servlet,	javax.servlet.http

Class	Hierarchy

class	java.lang.Object
class	javax.servlet.http.Cookie	(implements	java.lang.Cloneable)
class	java.util.EventObject	(implements	java.io.Serializable)

class	javax.servlet.http.HttpSessionEvent
class	javax.servlet.http.HttpSessionBindingEvent

class	javax.servlet.ServletContextEvent
class	javax.servlet.ServletContextAttributeEvent

class	javax.servlet.GenericServlet	(implements	java.io.Serializable,
javax.servlet.Servlet,	javax.servlet.ServletConfig)

class	javax.servlet.http.HttpServlet	(implements
java.io.Serializable)

class	javax.servlet.http.HttpUtils
class	java.io.InputStream

class	javax.servlet.ServletInputStream
class	java.io.OutputStream

class	javax.servlet.ServletOutputStream
class	javax.servlet.ServletRequestWrapper	(implements
javax.servlet.ServletRequest)

class	javax.servlet.http.HttpServletRequestWrapper
(implements	javax.servlet.http.HttpServletRequest)

class	javax.servlet.ServletResponseWrapper	(implements
javax.servlet.ServletResponse)

class	javax.servlet.http.HttpServletResponseWrapper
(implements	javax.servlet.http.HttpServletResponse)

class	java.lang.Throwable	(implements	java.io.Serializable)
class	java.lang.Exception

class	javax.servlet.ServletException
class	javax.servlet.UnavailableException

Interface	Hierarchy

interface	java.util.EventListener
interface	javax.servlet.http.HttpSessionActivationListener
interface	javax.servlet.http.HttpSessionAttributeListener
interface	javax.servlet.http.HttpSessionBindingListener
interface	javax.servlet.http.HttpSessionListener
interface	javax.servlet.ServletContextAttributeListener
interface	javax.servlet.ServletContextListener

interface	javax.servlet.Filter
interface	javax.servlet.FilterChain
interface	javax.servlet.FilterConfig
interface	javax.servlet.http.HttpSession
interface	javax.servlet.http.HttpSessionContext
interface	javax.servlet.RequestDispatcher
interface	javax.servlet.Servlet
interface	javax.servlet.ServletConfig
interface	javax.servlet.ServletContext
interface	javax.servlet.ServletRequest

interface	javax.servlet.http.HttpServletRequest
interface	javax.servlet.ServletResponse

interface	javax.servlet.http.HttpServletResponse
interface	javax.servlet.SingleThreadModel

Overview	 Package	 Class	 	Tree	 Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Overview	 Package	 Class	 Tree	 Deprecated	 	Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

A	B	C	D	E	F	G	H	I	J	L	P	R	S	U	V

A

addCookie(Cookie)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	addCookie(Cookie	cookie)	on
the	wrapped	response	object.

addCookie(Cookie)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Adds	the	specified	cookie	to	the	response.
addDateHeader(String,	long)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	addDateHeader(String	name,
long	date)	on	the	wrapped	response	object.

addDateHeader(String,	long)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Adds	a	response	header	with	the	given	name	and	date-value.
addHeader(String,	String)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	return	addHeader(String	name,
String	value)	on	the	wrapped	response	object.

addHeader(String,	String)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Adds	a	response	header	with	the	given	name	and	value.
addIntHeader(String,	int)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	addIntHeader(String	name,	int
value)	on	the	wrapped	response	object.

addIntHeader(String,	int)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Adds	a	response	header	with	the	given	name	and	integer	value.
attributeAdded(HttpSessionBindingEvent)	-	Method	in	interface
javax.servlet.http.HttpSessionAttributeListener

Notification	that	an	attribute	has	been	added	to	a	session.
attributeAdded(ServletContextAttributeEvent)	-	Method	in	interface
javax.servlet.ServletContextAttributeListener

Notification	that	a	new	attribute	was	added	to	the	servlet	context.
attributeRemoved(HttpSessionBindingEvent)	-	Method	in	interface

javax.servlet.http.HttpSessionAttributeListener
Notification	that	an	attribute	has	been	removed	from	a	session.

attributeRemoved(ServletContextAttributeEvent)	-	Method	in	interface
javax.servlet.ServletContextAttributeListener

Notification	that	an	existing	attribute	has	been	remved	from	the	servlet
context.

attributeReplaced(HttpSessionBindingEvent)	-	Method	in	interface
javax.servlet.http.HttpSessionAttributeListener

Notification	that	an	attribute	has	been	replaced	in	a	session.
attributeReplaced(ServletContextAttributeEvent)	-	Method	in	interface
javax.servlet.ServletContextAttributeListener

Notification	that	an	attribute	on	the	servlet	context	has	been	replaced.

B

BASIC_AUTH	-	Static	variable	in	interface
javax.servlet.http.HttpServletRequest

String	identifier	for	Basic	authentication.

C

CLIENT_CERT_AUTH	-	Static	variable	in	interface
javax.servlet.http.HttpServletRequest

String	identifier	for	Basic	authentication.
clone()	-	Method	in	class	javax.servlet.http.Cookie

Overrides	the	standard	java.lang.Object.clone	method	to	return	a	copy
of	this	cookie.

containsHeader(String)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	containsHeader(String	name)
on	the	wrapped	response	object.

containsHeader(String)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Returns	a	boolean	indicating	whether	the	named	response	header	has
already	been	set.

contextDestroyed(ServletContextEvent)	-	Method	in	interface
javax.servlet.ServletContextListener

Notification	that	the	servlet	context	is	about	to	be	shut	down.
contextInitialized(ServletContextEvent)	-	Method	in	interface
javax.servlet.ServletContextListener

Notification	that	the	web	application	is	ready	to	process	requests.
Cookie	-	class	javax.servlet.http.Cookie.

Creates	a	cookie,	a	small	amount	of	information	sent	by	a	servlet	to	a	Web
browser,	saved	by	the	browser,	and	later	sent	back	to	the	server.

Cookie(String,	String)	-	Constructor	for	class	javax.servlet.http.Cookie
Constructs	a	cookie	with	a	specified	name	and	value.

D

destroy()	-	Method	in	interface	javax.servlet.Filter
Called	by	the	web	container	to	indicate	to	a	filter	that	it	is	being	taken	out
of	service.

destroy()	-	Method	in	interface	javax.servlet.Servlet
Called	by	the	servlet	container	to	indicate	to	a	servlet	that	the	servlet	is
being	taken	out	of	service.

destroy()	-	Method	in	class	javax.servlet.GenericServlet
Called	by	the	servlet	container	to	indicate	to	a	servlet	that	the	servlet	is
being	taken	out	of	service.

DIGEST_AUTH	-	Static	variable	in	interface
javax.servlet.http.HttpServletRequest

String	identifier	for	Basic	authentication.
doDelete(HttpServletRequest,	HttpServletResponse)	-	Method	in	class
javax.servlet.http.HttpServlet

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
DELETE	request.

doFilter(ServletRequest,	ServletResponse)	-	Method	in	interface
javax.servlet.FilterChain

Causes	the	next	filter	in	the	chain	to	be	invoked,	or	if	the	calling	filter	is	the
last	filter	in	the	chain,	causes	the	resource	at	the	end	of	the	chain	to	be
invoked.

doFilter(ServletRequest,	ServletResponse,	FilterChain)	-	Method	in	interface
javax.servlet.Filter

The	doFilter	method	of	the	Filter	is	called	by	the	container	each	time	a
request/response	pair	is	passed	through	the	chain	due	to	a	client	request	for
a	resource	at	the	end	of	the	chain.

doGet(HttpServletRequest,	HttpServletResponse)	-	Method	in	class
javax.servlet.http.HttpServlet

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
GET	request.

doHead(HttpServletRequest,	HttpServletResponse)	-	Method	in	class
javax.servlet.http.HttpServlet

Receives	an	HTTP	HEAD	request	from	the	protected	service	method	and
handles	the	request.

doOptions(HttpServletRequest,	HttpServletResponse)	-	Method	in	class

javax.servlet.http.HttpServlet
Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
OPTIONS	request.

doPost(HttpServletRequest,	HttpServletResponse)	-	Method	in	class
javax.servlet.http.HttpServlet

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
POST	request.

doPut(HttpServletRequest,	HttpServletResponse)	-	Method	in	class
javax.servlet.http.HttpServlet

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
PUT	request.

doTrace(HttpServletRequest,	HttpServletResponse)	-	Method	in	class
javax.servlet.http.HttpServlet

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
TRACE	request.

E

encodeRedirectUrl(String)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	return	encodeRedirectUrl(String
url)	on	the	wrapped	response	object.

encodeRedirectUrl(String)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Deprecated.	As	of	version	2.1,	use	encodeRedirectURL(String	url)	instead
encodeRedirectURL(String)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	return	encodeRedirectURL(String
url)	on	the	wrapped	response	object.

encodeRedirectURL(String)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Encodes	the	specified	URL	for	use	in	the	sendRedirect	method	or,	if
encoding	is	not	needed,	returns	the	URL	unchanged.

encodeUrl(String)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	encodeUrl(String	url)	on	the
wrapped	response	object.

encodeUrl(String)	-	Method	in	interface	javax.servlet.http.HttpServletResponse
Deprecated.	As	of	version	2.1,	use	encodeURL(String	url)	instead

encodeURL(String)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	encodeURL(String	url)	on	the
wrapped	response	object.

encodeURL(String)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Encodes	the	specified	URL	by	including	the	session	ID	in	it,	or,	if	encoding
is	not	needed,	returns	the	URL	unchanged.

F

Filter	-	interface	javax.servlet.Filter.
A	filter	is	an	object	than	perform	filtering	tasks	on	either	the	request	to	a
resource	(a	servlet	or	static	content),	or	on	the	response	from	a	resource,	or
both.

Filters	perform	filtering	in	the	doFilter	method.
FilterChain	-	interface	javax.servlet.FilterChain.

A	FilterChain	is	an	object	provided	by	the	servlet	container	to	the	developer
giving	a	view	into	the	invocation	chain	of	a	filtered	request	for	a	resource.

FilterConfig	-	interface	javax.servlet.FilterConfig.
A	filter	configuration	object	used	by	a	servlet	container	used	to	pass
information	to	a	filter	during	initialization.

flushBuffer()	-	Method	in	interface	javax.servlet.ServletResponse
Forces	any	content	in	the	buffer	to	be	written	to	the	client.

flushBuffer()	-	Method	in	class	javax.servlet.ServletResponseWrapper
The	default	behavior	of	this	method	is	to	call	flushBuffer()	on	the	wrapped
response	object.

FORM_AUTH	-	Static	variable	in	interface
javax.servlet.http.HttpServletRequest

String	identifier	for	Basic	authentication.
forward(ServletRequest,	ServletResponse)	-	Method	in	interface
javax.servlet.RequestDispatcher

Forwards	a	request	from	a	servlet	to	another	resource	(servlet,	JSP	file,	or
HTML	file)	on	the	server.

G

GenericServlet	-	class	javax.servlet.GenericServlet.
Defines	a	generic,	protocol-independent	servlet.

GenericServlet()	-	Constructor	for	class	javax.servlet.GenericServlet
Does	nothing.

getAttribute(String)	-	Method	in	interface	javax.servlet.ServletContext
Returns	the	servlet	container	attribute	with	the	given	name,	or	null	if	there
is	no	attribute	by	that	name.

getAttribute(String)	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	call	getAttribute(String	name)	on
the	wrapped	request	object.

getAttribute(String)	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	value	of	the	named	attribute	as	an	Object,	or	null	if	no
attribute	of	the	given	name	exists.

getAttribute(String)	-	Method	in	interface	javax.servlet.http.HttpSession
Returns	the	object	bound	with	the	specified	name	in	this	session,	or	null	if
no	object	is	bound	under	the	name.

getAttributeNames()	-	Method	in	interface	javax.servlet.ServletContext
Returns	an	Enumeration	containing	the	attribute	names	available	within
this	servlet	context.

getAttributeNames()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getAttributeNames()	on	the
wrapped	request	object.

getAttributeNames()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	an	Enumeration	containing	the	names	of	the	attributes	available	to
this	request.

getAttributeNames()	-	Method	in	interface	javax.servlet.http.HttpSession
Returns	an	Enumeration	of	String	objects	containing	the	names	of	all	the
objects	bound	to	this	session.

getAuthType()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	the	name	of	the	authentication	scheme	used	to	protect	the	servlet.

getAuthType()	-	Method	in	class	javax.servlet.http.HttpServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getAuthType()	on	the
wrapped	request	object.

getBufferSize()	-	Method	in	interface	javax.servlet.ServletResponse
Returns	the	actual	buffer	size	used	for	the	response.

getBufferSize()	-	Method	in	class	javax.servlet.ServletResponseWrapper
The	default	behavior	of	this	method	is	to	return	getBufferSize()	on	the
wrapped	response	object.

getCharacterEncoding()	-	Method	in	interface	javax.servlet.ServletResponse
Returns	the	name	of	the	charset	used	for	the	MIME	body	sent	in	this
response.

getCharacterEncoding()	-	Method	in	class
javax.servlet.ServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getCharacterEncoding()	on
the	wrapped	request	object.

getCharacterEncoding()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	name	of	the	character	encoding	used	in	the	body	of	this	request.

getCharacterEncoding()	-	Method	in	class
javax.servlet.ServletResponseWrapper

The	default	behavior	of	this	method	is	to	return	getCharacterEncoding()	on
the	wrapped	response	object.

getComment()	-	Method	in	class	javax.servlet.http.Cookie
Returns	the	comment	describing	the	purpose	of	this	cookie,	or	null	if	the
cookie	has	no	comment.

getContentLength()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getContentLength()	on	the
wrapped	request	object.

getContentLength()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	length,	in	bytes,	of	the	request	body	and	made	available	by	the
input	stream,	or	-1	if	the	length	is	not	known.

getContentType()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getContentType()	on	the
wrapped	request	object.

getContentType()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	MIME	type	of	the	body	of	the	request,	or	null	if	the	type	is	not
known.

getContext(String)	-	Method	in	interface	javax.servlet.ServletContext
Returns	a	ServletContext	object	that	corresponds	to	a	specified	URL	on
the	server.

getContextPath()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	the	portion	of	the	request	URI	that	indicates	the	context	of	the
request.

getContextPath()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getContextPath()	on	the
wrapped	request	object.

getCookies()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	an	array	containing	all	of	the	Cookie	objects	the	client	sent	with
this	request.

getCookies()	-	Method	in	class	javax.servlet.http.HttpServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getCookies()	on	the
wrapped	request	object.

getCreationTime()	-	Method	in	interface	javax.servlet.http.HttpSession
Returns	the	time	when	this	session	was	created,	measured	in	milliseconds
since	midnight	January	1,	1970	GMT.

getDateHeader(String)	-	Method	in	interface
javax.servlet.http.HttpServletRequest

Returns	the	value	of	the	specified	request	header	as	a	long	value	that
represents	a	Date	object.

getDateHeader(String)	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getDateHeader(String
name)	on	the	wrapped	request	object.

getDomain()	-	Method	in	class	javax.servlet.http.Cookie
Returns	the	domain	name	set	for	this	cookie.

getFilterName()	-	Method	in	interface	javax.servlet.FilterConfig
Returns	the	filter-name	of	this	filter	as	defined	in	the	deployment	descriptor.

getHeader(String)	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	the	value	of	the	specified	request	header	as	a	String.

getHeader(String)	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getHeader(String	name)	on
the	wrapped	request	object.

getHeaderNames()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	an	enumeration	of	all	the	header	names	this	request	contains.

getHeaderNames()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getHeaderNames()	on	the
wrapped	request	object.

getHeaders(String)	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	all	the	values	of	the	specified	request	header	as	an	Enumeration	of
String	objects.

getHeaders(String)	-	Method	in	class

javax.servlet.http.HttpServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getHeaders(String	name)	on
the	wrapped	request	object.

getId()	-	Method	in	interface	javax.servlet.http.HttpSession
Returns	a	string	containing	the	unique	identifier	assigned	to	this	session.

getIds()	-	Method	in	interface	javax.servlet.http.HttpSessionContext
Deprecated.	As	of	Java	Servlet	API	2.1	with	no	replacement.	This	method
must	return	an	empty	Enumeration	and	will	be	removed	in	a	future	version
of	this	API.

getInitParameter(String)	-	Method	in	interface	javax.servlet.FilterConfig
Returns	a	String	containing	the	value	of	the	named	initialization
parameter,	or	null	if	the	parameter	does	not	exist.

getInitParameter(String)	-	Method	in	interface	javax.servlet.ServletConfig
Returns	a	String	containing	the	value	of	the	named	initialization
parameter,	or	null	if	the	parameter	does	not	exist.

getInitParameter(String)	-	Method	in	interface	javax.servlet.ServletContext
Returns	a	String	containing	the	value	of	the	named	context-wide
initialization	parameter,	or	null	if	the	parameter	does	not	exist.

getInitParameter(String)	-	Method	in	class	javax.servlet.GenericServlet
Returns	a	String	containing	the	value	of	the	named	initialization
parameter,	or	null	if	the	parameter	does	not	exist.

getInitParameterNames()	-	Method	in	interface	javax.servlet.FilterConfig
Returns	the	names	of	the	servlet's	initialization	parameters	as	an
Enumeration	of	String	objects,	or	an	empty	Enumeration	if	the	servlet	has
no	initialization	parameters.

getInitParameterNames()	-	Method	in	interface	javax.servlet.ServletConfig
Returns	the	names	of	the	servlet's	initialization	parameters	as	an
Enumeration	of	String	objects,	or	an	empty	Enumeration	if	the	servlet	has
no	initialization	parameters.

getInitParameterNames()	-	Method	in	interface	javax.servlet.ServletContext
Returns	the	names	of	the	context's	initialization	parameters	as	an
Enumeration	of	String	objects,	or	an	empty	Enumeration	if	the	context	has
no	initialization	parameters.

getInitParameterNames()	-	Method	in	class	javax.servlet.GenericServlet
Returns	the	names	of	the	servlet's	initialization	parameters	as	an
Enumeration	of	String	objects,	or	an	empty	Enumeration	if	the	servlet	has
no	initialization	parameters.

getInputStream()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getInputStream()	on	the

wrapped	request	object.
getInputStream()	-	Method	in	interface	javax.servlet.ServletRequest

Retrieves	the	body	of	the	request	as	binary	data	using	a
ServletInputStream.

getIntHeader(String)	-	Method	in	interface
javax.servlet.http.HttpServletRequest

Returns	the	value	of	the	specified	request	header	as	an	int.
getIntHeader(String)	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getIntHeader(String	name)
on	the	wrapped	request	object.

getLastAccessedTime()	-	Method	in	interface	javax.servlet.http.HttpSession
Returns	the	last	time	the	client	sent	a	request	associated	with	this	session,	as
the	number	of	milliseconds	since	midnight	January	1,	1970	GMT,	and
marked	by	the	time	the	container	recieved	the	request.

getLastModified(HttpServletRequest)	-	Method	in	class
javax.servlet.http.HttpServlet

Returns	the	time	the	HttpServletRequest	object	was	last	modified,	in
milliseconds	since	midnight	January	1,	1970	GMT.

getLocale()	-	Method	in	interface	javax.servlet.ServletResponse
Returns	the	locale	assigned	to	the	response.

getLocale()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getLocale()	on	the	wrapped
request	object.

getLocale()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	preferred	Locale	that	the	client	will	accept	content	in,	based	on
the	Accept-Language	header.

getLocale()	-	Method	in	class	javax.servlet.ServletResponseWrapper
The	default	behavior	of	this	method	is	to	return	getLocale()	on	the	wrapped
response	object.

getLocales()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getLocales()	on	the
wrapped	request	object.

getLocales()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	an	Enumeration	of	Locale	objects	indicating,	in	decreasing	order
starting	with	the	preferred	locale,	the	locales	that	are	acceptable	to	the	client
based	on	the	Accept-Language	header.

getMajorVersion()	-	Method	in	interface	javax.servlet.ServletContext
Returns	the	major	version	of	the	Java	Servlet	API	that	this	servlet	container

supports.
getMaxAge()	-	Method	in	class	javax.servlet.http.Cookie

Returns	the	maximum	age	of	the	cookie,	specified	in	seconds,	By	default,
-1	indicating	the	cookie	will	persist	until	browser	shutdown.

getMaxInactiveInterval()	-	Method	in	interface	javax.servlet.http.HttpSession
Returns	the	maximum	time	interval,	in	seconds,	that	the	servlet	container
will	keep	this	session	open	between	client	accesses.

getMethod()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	the	name	of	the	HTTP	method	with	which	this	request	was	made,
for	example,	GET,	POST,	or	PUT.

getMethod()	-	Method	in	class	javax.servlet.http.HttpServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getMethod()	on	the
wrapped	request	object.

getMimeType(String)	-	Method	in	interface	javax.servlet.ServletContext
Returns	the	MIME	type	of	the	specified	file,	or	null	if	the	MIME	type	is
not	known.

getMinorVersion()	-	Method	in	interface	javax.servlet.ServletContext
Returns	the	minor	version	of	the	Servlet	API	that	this	servlet	container
supports.

getName()	-	Method	in	class	javax.servlet.ServletContextAttributeEvent
Return	the	name	of	the	attribute	that	changed	on	the	ServletContext.

getName()	-	Method	in	class	javax.servlet.http.HttpSessionBindingEvent
Returns	the	name	with	which	the	attribute	is	bound	to	or	unbound	from	the
session.

getName()	-	Method	in	class	javax.servlet.http.Cookie
Returns	the	name	of	the	cookie.

getNamedDispatcher(String)	-	Method	in	interface
javax.servlet.ServletContext

Returns	a	RequestDispatcher	object	that	acts	as	a	wrapper	for	the	named
servlet.

getOutputStream()	-	Method	in	interface	javax.servlet.ServletResponse
Returns	a	ServletOutputStream	suitable	for	writing	binary	data	in	the
response.

getOutputStream()	-	Method	in	class	javax.servlet.ServletResponseWrapper
The	default	behavior	of	this	method	is	to	return	getOutputStream()	on	the
wrapped	response	object.

getParameter(String)	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getParameter(String	name)
on	the	wrapped	request	object.

getParameter(String)	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	value	of	a	request	parameter	as	a	String,	or	null	if	the
parameter	does	not	exist.

getParameterMap()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getParameterMap()	on	the
wrapped	request	object.

getParameterMap()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	a	java.util.Map	of	the	parameters	of	this	request.

getParameterNames()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getParameterNames()	on
the	wrapped	request	object.

getParameterNames()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	an	Enumeration	of	String	objects	containing	the	names	of	the
parameters	contained	in	this	request.

getParameterValues(String)	-	Method	in	class
javax.servlet.ServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getParameterValues(String
name)	on	the	wrapped	request	object.

getParameterValues(String)	-	Method	in	interface	javax.servlet.ServletRequest
Returns	an	array	of	String	objects	containing	all	of	the	values	the	given
request	parameter	has,	or	null	if	the	parameter	does	not	exist.

getPath()	-	Method	in	class	javax.servlet.http.Cookie
Returns	the	path	on	the	server	to	which	the	browser	returns	this	cookie.

getPathInfo()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	any	extra	path	information	associated	with	the	URL	the	client	sent
when	it	made	this	request.

getPathInfo()	-	Method	in	class	javax.servlet.http.HttpServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getPathInfo()	on	the
wrapped	request	object.

getPathTranslated()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	any	extra	path	information	after	the	servlet	name	but	before	the
query	string,	and	translates	it	to	a	real	path.

getPathTranslated()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getPathTranslated()	on	the
wrapped	request	object.

getProtocol()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getProtocol()	on	the
wrapped	request	object.

getProtocol()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	name	and	version	of	the	protocol	the	request	uses	in	the	form
protocol/majorVersion.minorVersion,	for	example,	HTTP/1.1.

getQueryString()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	the	query	string	that	is	contained	in	the	request	URL	after	the	path.

getQueryString()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getQueryString()	on	the
wrapped	request	object.

getReader()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getReader()	on	the	wrapped
request	object.

getReader()	-	Method	in	interface	javax.servlet.ServletRequest
Retrieves	the	body	of	the	request	as	character	data	using	a	BufferedReader.

getRealPath(String)	-	Method	in	interface	javax.servlet.ServletContext
Returns	a	String	containing	the	real	path	for	a	given	virtual	path.

getRealPath(String)	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getRealPath(String	path)	on
the	wrapped	request	object.

getRealPath(String)	-	Method	in	interface	javax.servlet.ServletRequest
Deprecated.	As	of	Version	2.1	of	the	Java	Servlet	API,	use
ServletContext.getRealPath(java.lang.String)	instead.

getRemoteAddr()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getRemoteAddr()	on	the
wrapped	request	object.

getRemoteAddr()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	Internet	Protocol	(IP)	address	of	the	client	that	sent	the	request.

getRemoteHost()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getRemoteHost()	on	the
wrapped	request	object.

getRemoteHost()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	fully	qualified	name	of	the	client	that	sent	the	request.

getRemoteUser()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	the	login	of	the	user	making	this	request,	if	the	user	has	been
authenticated,	or	null	if	the	user	has	not	been	authenticated.

getRemoteUser()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getRemoteUser()	on	the
wrapped	request	object.

getRequest()	-	Method	in	class	javax.servlet.ServletRequestWrapper
Return	the	wrapped	request	object.

getRequestDispatcher(String)	-	Method	in	interface
javax.servlet.ServletContext

Returns	a	RequestDispatcher	object	that	acts	as	a	wrapper	for	the	resource
located	at	the	given	path.

getRequestDispatcher(String)	-	Method	in	class
javax.servlet.ServletRequestWrapper

The	default	behavior	of	this	method	is	to	return
getRequestDispatcher(String	path)	on	the	wrapped	request	object.

getRequestDispatcher(String)	-	Method	in	interface
javax.servlet.ServletRequest

Returns	a	RequestDispatcher	object	that	acts	as	a	wrapper	for	the	resource
located	at	the	given	path.

getRequestedSessionId()	-	Method	in	interface
javax.servlet.http.HttpServletRequest

Returns	the	session	ID	specified	by	the	client.
getRequestedSessionId()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getRequestedSessionId()	on
the	wrapped	request	object.

getRequestURI()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	the	part	of	this	request's	URL	from	the	protocol	name	up	to	the
query	string	in	the	first	line	of	the	HTTP	request.

getRequestURI()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getRequestURI()	on	the
wrapped	request	object.

getRequestURL()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Reconstructs	the	URL	the	client	used	to	make	the	request.

getRequestURL()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getRequestURL()	on	the
wrapped	request	object.

getRequestURL(HttpServletRequest)	-	Static	method	in	class
javax.servlet.http.HttpUtils

Deprecated.	Reconstructs	the	URL	the	client	used	to	make	the	request,
using	information	in	the	HttpServletRequest	object.

getResource(String)	-	Method	in	interface	javax.servlet.ServletContext

Returns	a	URL	to	the	resource	that	is	mapped	to	a	specified	path.
getResourceAsStream(String)	-	Method	in	interface
javax.servlet.ServletContext

Returns	the	resource	located	at	the	named	path	as	an	InputStream	object.
getResourcePaths(String)	-	Method	in	interface	javax.servlet.ServletContext

Returns	a	directory-like	listing	of	all	the	paths	to	resources	within	the	web
application	whose	longest	sub-path	matches	the	supplied	path	argument.

getResponse()	-	Method	in	class	javax.servlet.ServletResponseWrapper
Return	the	wrapped	ServletResponse	object.

getRootCause()	-	Method	in	class	javax.servlet.ServletException
Returns	the	exception	that	caused	this	servlet	exception.

getScheme()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getScheme()	on	the
wrapped	request	object.

getScheme()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	name	of	the	scheme	used	to	make	this	request,	for	example,
http,	https,	or	ftp.

getSecure()	-	Method	in	class	javax.servlet.http.Cookie
Returns	true	if	the	browser	is	sending	cookies	only	over	a	secure	protocol,
or	false	if	the	browser	can	send	cookies	using	any	protocol.

getServerInfo()	-	Method	in	interface	javax.servlet.ServletContext
Returns	the	name	and	version	of	the	servlet	container	on	which	the	servlet
is	running.

getServerName()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getServerName()	on	the
wrapped	request	object.

getServerName()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	host	name	of	the	server	that	received	the	request.

getServerPort()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getServerPort()	on	the
wrapped	request	object.

getServerPort()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	the	port	number	on	which	this	request	was	received.

getServlet()	-	Method	in	class	javax.servlet.UnavailableException
Deprecated.	As	of	Java	Servlet	API	2.2,	with	no	replacement.	Returns	the
servlet	that	is	reporting	its	unavailability.

getServlet(String)	-	Method	in	interface	javax.servlet.ServletContext
Deprecated.	As	of	Java	Servlet	API	2.1,	with	no	direct	replacement.

This	method	was	originally	defined	to	retrieve	a	servlet	from	a
ServletContext.	In	this	version,	this	method	always	returns	null	and
remains	only	to	preserve	binary	compatibility.	This	method	will	be
permanently	removed	in	a	future	version	of	the	Java	Servlet	API.

In	lieu	of	this	method,	servlets	can	share	information	using	the
ServletContext	class	and	can	perform	shared	business	logic	by	invoking
methods	on	common	non-servlet	classes.

getServletConfig()	-	Method	in	interface	javax.servlet.Servlet
Returns	a	ServletConfig	object,	which	contains	initialization	and	startup
parameters	for	this	servlet.

getServletConfig()	-	Method	in	class	javax.servlet.GenericServlet
Returns	this	servlet's	ServletConfig	object.

getServletContext()	-	Method	in	interface	javax.servlet.FilterConfig
Returns	a	reference	to	the	ServletContext	in	which	the	caller	is	executing.

getServletContext()	-	Method	in	interface	javax.servlet.ServletConfig
Returns	a	reference	to	the	ServletContext	in	which	the	caller	is	executing.

getServletContext()	-	Method	in	class	javax.servlet.ServletContextEvent
Return	the	ServletContext	that	changed.

getServletContext()	-	Method	in	class	javax.servlet.GenericServlet
Returns	a	reference	to	the	ServletContext	in	which	this	servlet	is	running.

getServletContext()	-	Method	in	interface	javax.servlet.http.HttpSession
Returns	the	ServletContext	to	which	this	session	belongs.

getServletContextName()	-	Method	in	interface	javax.servlet.ServletContext
Returns	the	name	of	this	web	application	correponding	to	this
ServletContext	as	specified	in	the	deployment	descriptor	for	this	web
application	by	the	display-name	element.

getServletInfo()	-	Method	in	interface	javax.servlet.Servlet
Returns	information	about	the	servlet,	such	as	author,	version,	and
copyright.

getServletInfo()	-	Method	in	class	javax.servlet.GenericServlet
Returns	information	about	the	servlet,	such	as	author,	version,	and
copyright.

getServletName()	-	Method	in	interface	javax.servlet.ServletConfig
Returns	the	name	of	this	servlet	instance.

getServletName()	-	Method	in	class	javax.servlet.GenericServlet
Returns	the	name	of	this	servlet	instance.

getServletNames()	-	Method	in	interface	javax.servlet.ServletContext

Deprecated.	As	of	Java	Servlet	API	2.1,	with	no	replacement.

This	method	was	originally	defined	to	return	an	Enumeration	of	all	the
servlet	names	known	to	this	context.	In	this	version,	this	method	always
returns	an	empty	Enumeration	and	remains	only	to	preserve	binary
compatibility.	This	method	will	be	permanently	removed	in	a	future	version
of	the	Java	Servlet	API.

getServletPath()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	the	part	of	this	request's	URL	that	calls	the	servlet.

getServletPath()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getServletPath()	on	the
wrapped	request	object.

getServlets()	-	Method	in	interface	javax.servlet.ServletContext
Deprecated.	As	of	Java	Servlet	API	2.0,	with	no	replacement.

This	method	was	originally	defined	to	return	an	Enumeration	of	all	the
servlets	known	to	this	servlet	context.	In	this	version,	this	method	always
returns	an	empty	enumeration	and	remains	only	to	preserve	binary
compatibility.	This	method	will	be	permanently	removed	in	a	future	version
of	the	Java	Servlet	API.

getSession()	-	Method	in	class	javax.servlet.http.HttpSessionEvent
Return	the	session	that	changed.

getSession()	-	Method	in	class	javax.servlet.http.HttpSessionBindingEvent
Return	the	session	that	changed.

getSession()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	the	current	session	associated	with	this	request,	or	if	the	request
does	not	have	a	session,	creates	one.

getSession()	-	Method	in	class	javax.servlet.http.HttpServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	getSession()	on	the
wrapped	request	object.

getSession(boolean)	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	the	current	HttpSession	associated	with	this	request	or,	if	if	there
is	no	current	session	and	create	is	true,	returns	a	new	session.

getSession(boolean)	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getSession(boolean	create)

on	the	wrapped	request	object.
getSession(String)	-	Method	in	interface	javax.servlet.http.HttpSessionContext

Deprecated.	As	of	Java	Servlet	API	2.1	with	no	replacement.	This	method
must	return	null	and	will	be	removed	in	a	future	version	of	this	API.

getSessionContext()	-	Method	in	interface	javax.servlet.http.HttpSession
Deprecated.	As	of	Version	2.1,	this	method	is	deprecated	and	has	no
replacement.	It	will	be	removed	in	a	future	version	of	the	Java	Servlet	API.

getUnavailableSeconds()	-	Method	in	class	javax.servlet.UnavailableException
Returns	the	number	of	seconds	the	servlet	expects	to	be	temporarily
unavailable.

getUserPrincipal()	-	Method	in	interface	javax.servlet.http.HttpServletRequest
Returns	a	java.security.Principal	object	containing	the	name	of	the
current	authenticated	user.

getUserPrincipal()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	getUserPrincipal()	on	the
wrapped	request	object.

getValue()	-	Method	in	class	javax.servlet.ServletContextAttributeEvent
Returns	the	value	of	the	attribute	that	has	been	added	removed	or	replaced.

getValue()	-	Method	in	class	javax.servlet.http.HttpSessionBindingEvent
Returns	the	value	of	the	attribute	that	has	been	added,	removed	or	replaced.

getValue()	-	Method	in	class	javax.servlet.http.Cookie
Returns	the	value	of	the	cookie.

getValue(String)	-	Method	in	interface	javax.servlet.http.HttpSession
Deprecated.	As	of	Version	2.2,	this	method	is	replaced	by
HttpSession.getAttribute(java.lang.String).

getValueNames()	-	Method	in	interface	javax.servlet.http.HttpSession
Deprecated.	As	of	Version	2.2,	this	method	is	replaced	by
HttpSession.getAttributeNames()

getVersion()	-	Method	in	class	javax.servlet.http.Cookie
Returns	the	version	of	the	protocol	this	cookie	complies	with.

getWriter()	-	Method	in	interface	javax.servlet.ServletResponse
Returns	a	PrintWriter	object	that	can	send	character	text	to	the	client.

getWriter()	-	Method	in	class	javax.servlet.ServletResponseWrapper
The	default	behavior	of	this	method	is	to	return	getWriter()	on	the	wrapped
response	object.

H

HttpServlet	-	class	javax.servlet.http.HttpServlet.
Provides	an	abstract	class	to	be	subclassed	to	create	an	HTTP	servlet
suitable	for	a	Web	site.

HttpServlet()	-	Constructor	for	class	javax.servlet.http.HttpServlet
Does	nothing,	because	this	is	an	abstract	class.

HttpServletRequest	-	interface	javax.servlet.http.HttpServletRequest.
Extends	the	ServletRequest	interface	to	provide	request	information	for
HTTP	servlets.

HttpServletRequestWrapper	-	class
javax.servlet.http.HttpServletRequestWrapper.

Provides	a	convenient	implementation	of	the	HttpServletRequest	interface
that	can	be	subclassed	by	developers	wishing	to	adapt	the	request	to	a
Servlet.

HttpServletRequestWrapper(HttpServletRequest)	-	Constructor	for	class
javax.servlet.http.HttpServletRequestWrapper

Constructs	a	request	object	wrapping	the	given	request.
HttpServletResponse	-	interface	javax.servlet.http.HttpServletResponse.

Extends	the	ServletResponse	interface	to	provide	HTTP-specific
functionality	in	sending	a	response.

HttpServletResponseWrapper	-	class
javax.servlet.http.HttpServletResponseWrapper.

Provides	a	convenient	implementation	of	the	HttpServletResponse	interface
that	can	be	subclassed	by	developers	wishing	to	adapt	the	response	from	a
Servlet.

HttpServletResponseWrapper(HttpServletResponse)	-	Constructor	for	class
javax.servlet.http.HttpServletResponseWrapper

Constructs	a	response	adaptor	wrapping	the	given	response.
HttpSession	-	interface	javax.servlet.http.HttpSession.

Provides	a	way	to	identify	a	user	across	more	than	one	page	request	or	visit
to	a	Web	site	and	to	store	information	about	that	user.

HttpSessionActivationListener	-	interface
javax.servlet.http.HttpSessionActivationListener.

Objects	that	are	bound	to	a	session	may	listen	to	container	events	notifying
them	that	sessions	will	be	passivated	and	that	session	will	be	activated.

HttpSessionAttributeListener	-	interface

javax.servlet.http.HttpSessionAttributeListener.
This	listener	interface	can	be	implemented	in	order	to	get	notifications	of
changes	to	the	attribute	lists	of	sessions	within	this	web	application.

HttpSessionBindingEvent	-	class	javax.servlet.http.HttpSessionBindingEvent.
Events	of	this	type	are	either	sent	to	an	object	that	implements
HttpSessionBindingListener	when	it	is	bound	or	unbound	from	a	session,
or	to	a	HttpSessionAttributeListener	that	has	been	configured	in	the
deployment	descriptor	when	any	attribute	is	bound,	unbound	or	replaced	in
a	session.

HttpSessionBindingEvent(HttpSession,	String)	-	Constructor	for	class
javax.servlet.http.HttpSessionBindingEvent

Constructs	an	event	that	notifies	an	object	that	it	has	been	bound	to	or
unbound	from	a	session.

HttpSessionBindingEvent(HttpSession,	String,	Object)	-	Constructor	for	class
javax.servlet.http.HttpSessionBindingEvent

Constructs	an	event	that	notifies	an	object	that	it	has	been	bound	to	or
unbound	from	a	session.

HttpSessionBindingListener	-	interface
javax.servlet.http.HttpSessionBindingListener.

Causes	an	object	to	be	notified	when	it	is	bound	to	or	unbound	from	a
session.

HttpSessionContext	-	interface	javax.servlet.http.HttpSessionContext.
Deprecated.	As	of	Java(tm)	Servlet	API	2.1	for	security	reasons,	with	no
replacement.	This	interface	will	be	removed	in	a	future	version	of	this	API.

HttpSessionEvent	-	class	javax.servlet.http.HttpSessionEvent.
This	is	the	class	representing	event	notifications	for	changes	to	sessions
within	a	web	application.

HttpSessionEvent(HttpSession)	-	Constructor	for	class
javax.servlet.http.HttpSessionEvent

Construct	a	session	event	from	the	given	source.
HttpSessionListener	-	interface	javax.servlet.http.HttpSessionListener.

Implementations	of	this	interface	may	are	notified	of	changes	to	the	list	of
active	sessions	in	a	web	application.

HttpUtils	-	class	javax.servlet.http.HttpUtils.
Deprecated.	As	of	Java(tm)	Servlet	API	2.3.	These	methods	were	only
useful	with	the	default	encoding	and	have	been	moved	to	the	request
interfaces.

HttpUtils()	-	Constructor	for	class	javax.servlet.http.HttpUtils
Deprecated.	Constructs	an	empty	HttpUtils	object.

I

include(ServletRequest,	ServletResponse)	-	Method	in	interface
javax.servlet.RequestDispatcher

Includes	the	content	of	a	resource	(servlet,	JSP	page,	HTML	file)	in	the
response.

init()	-	Method	in	class	javax.servlet.GenericServlet
A	convenience	method	which	can	be	overridden	so	that	there's	no	need	to
call	super.init(config).

init(FilterConfig)	-	Method	in	interface	javax.servlet.Filter
Called	by	the	web	container	to	indicate	to	a	filter	that	it	is	being	placed	into
service.

init(ServletConfig)	-	Method	in	interface	javax.servlet.Servlet
Called	by	the	servlet	container	to	indicate	to	a	servlet	that	the	servlet	is
being	placed	into	service.

init(ServletConfig)	-	Method	in	class	javax.servlet.GenericServlet
Called	by	the	servlet	container	to	indicate	to	a	servlet	that	the	servlet	is
being	placed	into	service.

invalidate()	-	Method	in	interface	javax.servlet.http.HttpSession
Invalidates	this	session	then	unbinds	any	objects	bound	to	it.

isCommitted()	-	Method	in	interface	javax.servlet.ServletResponse
Returns	a	boolean	indicating	if	the	response	has	been	committed.

isCommitted()	-	Method	in	class	javax.servlet.ServletResponseWrapper
The	default	behavior	of	this	method	is	to	return	isCommitted()	on	the
wrapped	response	object.

isNew()	-	Method	in	interface	javax.servlet.http.HttpSession
Returns	true	if	the	client	does	not	yet	know	about	the	session	or	if	the
client	chooses	not	to	join	the	session.

isPermanent()	-	Method	in	class	javax.servlet.UnavailableException
Returns	a	boolean	indicating	whether	the	servlet	is	permanently
unavailable.

isRequestedSessionIdFromCookie()	-	Method	in	interface
javax.servlet.http.HttpServletRequest

Checks	whether	the	requested	session	ID	came	in	as	a	cookie.
isRequestedSessionIdFromCookie()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return

isRequestedSessionIdFromCookie()	on	the	wrapped	request	object.
isRequestedSessionIdFromUrl()	-	Method	in	interface
javax.servlet.http.HttpServletRequest

Deprecated.	As	of	Version	2.1	of	the	Java	Servlet	API,	use
HttpServletRequest.isRequestedSessionIdFromURL()	instead.

isRequestedSessionIdFromUrl()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdFromUrl()	on	the	wrapped	request	object.

isRequestedSessionIdFromURL()	-	Method	in	interface
javax.servlet.http.HttpServletRequest

Checks	whether	the	requested	session	ID	came	in	as	part	of	the	request
URL.

isRequestedSessionIdFromURL()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdFromURL()	on	the	wrapped	request	object.

isRequestedSessionIdValid()	-	Method	in	interface
javax.servlet.http.HttpServletRequest

Checks	whether	the	requested	session	ID	is	still	valid.
isRequestedSessionIdValid()	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdValid()	on	the	wrapped	request	object.

isSecure()	-	Method	in	class	javax.servlet.ServletRequestWrapper
The	default	behavior	of	this	method	is	to	return	isSecure()	on	the	wrapped
request	object.

isSecure()	-	Method	in	interface	javax.servlet.ServletRequest
Returns	a	boolean	indicating	whether	this	request	was	made	using	a	secure
channel,	such	as	HTTPS.

isUserInRole(String)	-	Method	in	interface
javax.servlet.http.HttpServletRequest

Returns	a	boolean	indicating	whether	the	authenticated	user	is	included	in
the	specified	logical	"role".

isUserInRole(String)	-	Method	in	class
javax.servlet.http.HttpServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	isUserInRole(String	role)
on	the	wrapped	request	object.

J

javax.servlet	-	package	javax.servlet
	

javax.servlet.http	-	package	javax.servlet.http
	

L

log(Exception,	String)	-	Method	in	interface	javax.servlet.ServletContext
Deprecated.	As	of	Java	Servlet	API	2.1,	use	ServletContext.log(String
message,	Throwable	throwable)	instead.

This	method	was	originally	defined	to	write	an	exception's	stack	trace	and
an	explanatory	error	message	to	the	servlet	log	file.

log(String)	-	Method	in	interface	javax.servlet.ServletContext
Writes	the	specified	message	to	a	servlet	log	file,	usually	an	event	log.

log(String)	-	Method	in	class	javax.servlet.GenericServlet
Writes	the	specified	message	to	a	servlet	log	file,	prepended	by	the	servlet's
name.

log(String,	Throwable)	-	Method	in	interface	javax.servlet.ServletContext
Writes	an	explanatory	message	and	a	stack	trace	for	a	given	Throwable
exception	to	the	servlet	log	file.

log(String,	Throwable)	-	Method	in	class	javax.servlet.GenericServlet
Writes	an	explanatory	message	and	a	stack	trace	for	a	given	Throwable
exception	to	the	servlet	log	file,	prepended	by	the	servlet's	name.

P

parsePostData(int,	ServletInputStream)	-	Static	method	in	class
javax.servlet.http.HttpUtils

Deprecated.	Parses	data	from	an	HTML	form	that	the	client	sends	to	the
server	using	the	HTTP	POST	method	and	the	application/x-www-form-
urlencoded	MIME	type.

parseQueryString(String)	-	Static	method	in	class	javax.servlet.http.HttpUtils
Deprecated.	Parses	a	query	string	passed	from	the	client	to	the	server	and
builds	a	HashTable	object	with	key-value	pairs.

print(boolean)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	boolean	value	to	the	client,	with	no	carriage	return-line	feed
(CRLF)	character	at	the	end.

print(char)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	character	to	the	client,	with	no	carriage	return-line	feed	(CRLF)	at
the	end.

print(double)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	double	value	to	the	client,	with	no	carriage	return-line	feed
(CRLF)	at	the	end.

print(float)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	float	value	to	the	client,	with	no	carriage	return-line	feed	(CRLF)
at	the	end.

print(int)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	an	int	to	the	client,	with	no	carriage	return-line	feed	(CRLF)	at	the
end.

print(long)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	long	value	to	the	client,	with	no	carriage	return-line	feed	(CRLF)
at	the	end.

print(String)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	String	to	the	client,	without	a	carriage	return-line	feed	(CRLF)
character	at	the	end.

println()	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	carriage	return-line	feed	(CRLF)	to	the	client.

println(boolean)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	boolean	value	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).

println(char)	-	Method	in	class	javax.servlet.ServletOutputStream

Writes	a	character	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).

println(double)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	double	value	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).

println(float)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	float	value	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).

println(int)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	an	int	to	the	client,	followed	by	a	carriage	return-line	feed	(CRLF)
character.

println(long)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	long	value	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).

println(String)	-	Method	in	class	javax.servlet.ServletOutputStream
Writes	a	String	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).

putValue(String,	Object)	-	Method	in	interface	javax.servlet.http.HttpSession
Deprecated.	As	of	Version	2.2,	this	method	is	replaced	by
HttpSession.setAttribute(java.lang.String,	java.lang.Object)

R

readLine(byte[],	int,	int)	-	Method	in	class	javax.servlet.ServletInputStream
Reads	the	input	stream,	one	line	at	a	time.

removeAttribute(String)	-	Method	in	interface	javax.servlet.ServletContext
Removes	the	attribute	with	the	given	name	from	the	servlet	context.

removeAttribute(String)	-	Method	in	class
javax.servlet.ServletRequestWrapper

The	default	behavior	of	this	method	is	to	call	removeAttribute(String	name)
on	the	wrapped	request	object.

removeAttribute(String)	-	Method	in	interface	javax.servlet.ServletRequest
Removes	an	attribute	from	this	request.

removeAttribute(String)	-	Method	in	interface	javax.servlet.http.HttpSession
Removes	the	object	bound	with	the	specified	name	from	this	session.

removeValue(String)	-	Method	in	interface	javax.servlet.http.HttpSession
Deprecated.	As	of	Version	2.2,	this	method	is	replaced	by
HttpSession.removeAttribute(java.lang.String)

RequestDispatcher	-	interface	javax.servlet.RequestDispatcher.
Defines	an	object	that	receives	requests	from	the	client	and	sends	them	to
any	resource	(such	as	a	servlet,	HTML	file,	or	JSP	file)	on	the	server.

reset()	-	Method	in	interface	javax.servlet.ServletResponse
Clears	any	data	that	exists	in	the	buffer	as	well	as	the	status	code	and
headers.

reset()	-	Method	in	class	javax.servlet.ServletResponseWrapper
The	default	behavior	of	this	method	is	to	call	reset()	on	the	wrapped
response	object.

resetBuffer()	-	Method	in	interface	javax.servlet.ServletResponse
Clears	the	content	of	the	underlying	buffer	in	the	response	without	clearing
headers	or	status	code.

resetBuffer()	-	Method	in	class	javax.servlet.ServletResponseWrapper
The	default	behavior	of	this	method	is	to	call	resetBuffer()	on	the	wrapped
response	object.

S

SC_ACCEPTED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(202)	indicating	that	a	request	was	accepted	for	processing,	but
was	not	completed.

SC_BAD_GATEWAY	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(502)	indicating	that	the	HTTP	server	received	an	invalid
response	from	a	server	it	consulted	when	acting	as	a	proxy	or	gateway.

SC_BAD_REQUEST	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(400)	indicating	the	request	sent	by	the	client	was	syntactically
incorrect.

SC_CONFLICT	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(409)	indicating	that	the	request	could	not	be	completed	due	to
a	conflict	with	the	current	state	of	the	resource.

SC_CONTINUE	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(100)	indicating	the	client	can	continue.
SC_CREATED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(201)	indicating	the	request	succeeded	and	created	a	new
resource	on	the	server.

SC_EXPECTATION_FAILED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(417)	indicating	that	the	server	could	not	meet	the	expectation
given	in	the	Expect	request	header.

SC_FORBIDDEN	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(403)	indicating	the	server	understood	the	request	but	refused	to
fulfill	it.

SC_GATEWAY_TIMEOUT	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(504)	indicating	that	the	server	did	not	receive	a	timely
response	from	the	upstream	server	while	acting	as	a	gateway	or	proxy.

SC_GONE	-	Static	variable	in	interface	javax.servlet.http.HttpServletResponse
Status	code	(410)	indicating	that	the	resource	is	no	longer	available	at	the
server	and	no	forwarding	address	is	known.

SC_HTTP_VERSION_NOT_SUPPORTED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(505)	indicating	that	the	server	does	not	support	or	refuses	to
support	the	HTTP	protocol	version	that	was	used	in	the	request	message.

SC_INTERNAL_SERVER_ERROR	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(500)	indicating	an	error	inside	the	HTTP	server	which
prevented	it	from	fulfilling	the	request.

SC_LENGTH_REQUIRED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(411)	indicating	that	the	request	cannot	be	handled	without	a
defined	Content-Length.

SC_METHOD_NOT_ALLOWED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(405)	indicating	that	the	method	specified	in	the	Request-Line
is	not	allowed	for	the	resource	identified	by	the	Request-URI.

SC_MOVED_PERMANENTLY	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(301)	indicating	that	the	resource	has	permanently	moved	to	a
new	location,	and	that	future	references	should	use	a	new	URI	with	their
requests.

SC_MOVED_TEMPORARILY	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(302)	indicating	that	the	resource	has	temporarily	moved	to
another	location,	but	that	future	references	should	still	use	the	original	URI
to	access	the	resource.

SC_MULTIPLE_CHOICES	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(300)	indicating	that	the	requested	resource	corresponds	to	any
one	of	a	set	of	representations,	each	with	its	own	specific	location.

SC_NO_CONTENT	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(204)	indicating	that	the	request	succeeded	but	that	there	was
no	new	information	to	return.

SC_NON_AUTHORITATIVE_INFORMATION	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(203)	indicating	that	the	meta	information	presented	by	the
client	did	not	originate	from	the	server.

SC_NOT_ACCEPTABLE	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(406)	indicating	that	the	resource	identified	by	the	request	is
only	capable	of	generating	response	entities	which	have	content
characteristics	not	acceptable	according	to	the	accept	headerssent	in	the
request.

SC_NOT_FOUND	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(404)	indicating	that	the	requested	resource	is	not	available.
SC_NOT_IMPLEMENTED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(501)	indicating	the	HTTP	server	does	not	support	the
functionality	needed	to	fulfill	the	request.

SC_NOT_MODIFIED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(304)	indicating	that	a	conditional	GET	operation	found	that	the
resource	was	available	and	not	modified.

SC_OK	-	Static	variable	in	interface	javax.servlet.http.HttpServletResponse
Status	code	(200)	indicating	the	request	succeeded	normally.

SC_PARTIAL_CONTENT	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(206)	indicating	that	the	server	has	fulfilled	the	partial	GET
request	for	the	resource.

SC_PAYMENT_REQUIRED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(402)	reserved	for	future	use.
SC_PRECONDITION_FAILED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(412)	indicating	that	the	precondition	given	in	one	or	more	of
the	request-header	fields	evaluated	to	false	when	it	was	tested	on	the	server.

SC_PROXY_AUTHENTICATION_REQUIRED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(407)	indicating	that	the	client	MUST	first	authenticate	itself
with	the	proxy.

SC_REQUEST_ENTITY_TOO_LARGE	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(413)	indicating	that	the	server	is	refusing	to	process	the	request

because	the	request	entity	is	larger	than	the	server	is	willing	or	able	to
process.

SC_REQUEST_TIMEOUT	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(408)	indicating	that	the	client	did	not	produce	a	requestwithin
the	time	that	the	server	was	prepared	to	wait.

SC_REQUEST_URI_TOO_LONG	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(414)	indicating	that	the	server	is	refusing	to	service	the	request
because	the	Request-URI	is	longer	than	the	server	is	willing	to	interpret.

SC_REQUESTED_RANGE_NOT_SATISFIABLE	-	Static	variable	in
interface	javax.servlet.http.HttpServletResponse

Status	code	(416)	indicating	that	the	server	cannot	serve	the	requested	byte
range.

SC_RESET_CONTENT	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(205)	indicating	that	the	agent	SHOULD	reset	the	document
view	which	caused	the	request	to	be	sent.

SC_SEE_OTHER	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(303)	indicating	that	the	response	to	the	request	can	be	found
under	a	different	URI.

SC_SERVICE_UNAVAILABLE	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(503)	indicating	that	the	HTTP	server	is	temporarily
overloaded,	and	unable	to	handle	the	request.

SC_SWITCHING_PROTOCOLS	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(101)	indicating	the	server	is	switching	protocols	according	to
Upgrade	header.

SC_TEMPORARY_REDIRECT	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(307)	indicating	that	the	requested	resource	resides	temporarily
under	a	different	URI.

SC_UNAUTHORIZED	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(401)	indicating	that	the	request	requires	HTTP	authentication.
SC_UNSUPPORTED_MEDIA_TYPE	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(415)	indicating	that	the	server	is	refusing	to	service	the	request
because	the	entity	of	the	request	is	in	a	format	not	supported	by	the
requested	resource	for	the	requested	method.

SC_USE_PROXY	-	Static	variable	in	interface
javax.servlet.http.HttpServletResponse

Status	code	(305)	indicating	that	the	requested	resource	MUST	be	accessed
through	the	proxy	given	by	the	Location	field.

sendError(int)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	sendError(int	sc)	on	the
wrapped	response	object.

sendError(int)	-	Method	in	interface	javax.servlet.http.HttpServletResponse
Sends	an	error	response	to	the	client	using	the	specified	status	code	and
clearing	the	buffer.

sendError(int,	String)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	sendError(int	sc,	String	msg)
on	the	wrapped	response	object.

sendError(int,	String)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Sends	an	error	response	to	the	client	using	the	specified	status	clearing	the
buffer.

sendRedirect(String)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	return	sendRedirect(String
location)	on	the	wrapped	response	object.

sendRedirect(String)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Sends	a	temporary	redirect	response	to	the	client	using	the	specified
redirect	location	URL.

service(HttpServletRequest,	HttpServletResponse)	-	Method	in	class
javax.servlet.http.HttpServlet

Receives	standard	HTTP	requests	from	the	public	service	method	and
dispatches	them	to	the	doXXX	methods	defined	in	this	class.

service(ServletRequest,	ServletResponse)	-	Method	in	interface
javax.servlet.Servlet

Called	by	the	servlet	container	to	allow	the	servlet	to	respond	to	a	request.
service(ServletRequest,	ServletResponse)	-	Method	in	class
javax.servlet.GenericServlet

Called	by	the	servlet	container	to	allow	the	servlet	to	respond	to	a	request.
service(ServletRequest,	ServletResponse)	-	Method	in	class
javax.servlet.http.HttpServlet

Dispatches	client	requests	to	the	protected	service	method.
Servlet	-	interface	javax.servlet.Servlet.

Defines	methods	that	all	servlets	must	implement.
ServletConfig	-	interface	javax.servlet.ServletConfig.

A	servlet	configuration	object	used	by	a	servlet	container	used	to	pass
information	to	a	servlet	during	initialization.

ServletContext	-	interface	javax.servlet.ServletContext.
Defines	a	set	of	methods	that	a	servlet	uses	to	communicate	with	its	servlet
container,	for	example,	to	get	the	MIME	type	of	a	file,	dispatch	requests,	or
write	to	a	log	file.

ServletContextAttributeEvent	-	class
javax.servlet.ServletContextAttributeEvent.

This	is	the	event	class	for	notifications	about	changes	to	the	attributes	of	the
servlet	context	of	a	web	application.

ServletContextAttributeEvent(ServletContext,	String,	Object)	-	Constructor
for	class	javax.servlet.ServletContextAttributeEvent

Construct	a	ServletContextAttributeEvent	from	the	given	context	for	the
given	attribute	name	and	attribute	value.

ServletContextAttributeListener	-	interface
javax.servlet.ServletContextAttributeListener.

Implementations	of	this	interface	recieve	notifications	of	changes	to	the
attribute	list	on	the	servlet	context	of	a	web	application.

ServletContextEvent	-	class	javax.servlet.ServletContextEvent.
This	is	the	event	class	for	notifications	about	changes	to	the	servlet	context
of	a	web	application.

ServletContextEvent(ServletContext)	-	Constructor	for	class
javax.servlet.ServletContextEvent

Construct	a	ServletContextEvent	from	the	given	context.
ServletContextListener	-	interface	javax.servlet.ServletContextListener.

Implementations	of	this	interface	recieve	notifications	about	changes	to	the
servlet	context	of	the	web	application	they	are	part	of.

ServletException	-	exception	javax.servlet.ServletException.
Defines	a	general	exception	a	servlet	can	throw	when	it	encounters
difficulty.

ServletException()	-	Constructor	for	class	javax.servlet.ServletException
Constructs	a	new	servlet	exception.

ServletException(String)	-	Constructor	for	class	javax.servlet.ServletException
Constructs	a	new	servlet	exception	with	the	specified	message.

ServletException(String,	Throwable)	-	Constructor	for	class
javax.servlet.ServletException

Constructs	a	new	servlet	exception	when	the	servlet	needs	to	throw	an
exception	and	include	a	message	about	the	"root	cause"	exception	that
interfered	with	its	normal	operation,	including	a	description	message.

ServletException(Throwable)	-	Constructor	for	class
javax.servlet.ServletException

Constructs	a	new	servlet	exception	when	the	servlet	needs	to	throw	an
exception	and	include	a	message	about	the	"root	cause"	exception	that
interfered	with	its	normal	operation.

ServletInputStream	-	class	javax.servlet.ServletInputStream.
Provides	an	input	stream	for	reading	binary	data	from	a	client	request,
including	an	efficient	readLine	method	for	reading	data	one	line	at	a	time.

ServletInputStream()	-	Constructor	for	class	javax.servlet.ServletInputStream
Does	nothing,	because	this	is	an	abstract	class.

ServletOutputStream	-	class	javax.servlet.ServletOutputStream.
Provides	an	output	stream	for	sending	binary	data	to	the	client.

ServletOutputStream()	-	Constructor	for	class
javax.servlet.ServletOutputStream

Does	nothing,	because	this	is	an	abstract	class.
ServletRequest	-	interface	javax.servlet.ServletRequest.

Defines	an	object	to	provide	client	request	information	to	a	servlet.
ServletRequestWrapper	-	class	javax.servlet.ServletRequestWrapper.

Provides	a	convenient	implementation	of	the	ServletRequest	interface	that
can	be	subclassed	by	developers	wishing	to	adapt	the	request	to	a	Servlet.

ServletRequestWrapper(ServletRequest)	-	Constructor	for	class
javax.servlet.ServletRequestWrapper

Creates	a	ServletRequest	adaptor	wrapping	the	given	request	object.
ServletResponse	-	interface	javax.servlet.ServletResponse.

Defines	an	object	to	assist	a	servlet	in	sending	a	response	to	the	client.
ServletResponseWrapper	-	class	javax.servlet.ServletResponseWrapper.

Provides	a	convenient	implementation	of	the	ServletResponse	interface	that
can	be	subclassed	by	developers	wishing	to	adapt	the	response	from	a
Servlet.

ServletResponseWrapper(ServletResponse)	-	Constructor	for	class
javax.servlet.ServletResponseWrapper

Creates	a	ServletResponse	adaptor	wrapping	the	given	response	object.

sessionCreated(HttpSessionEvent)	-	Method	in	interface
javax.servlet.http.HttpSessionListener

Notification	that	a	session	was	created.
sessionDestroyed(HttpSessionEvent)	-	Method	in	interface
javax.servlet.http.HttpSessionListener

Notification	that	a	session	was	invalidated.
sessionDidActivate(HttpSessionEvent)	-	Method	in	interface
javax.servlet.http.HttpSessionActivationListener

Notification	that	the	session	has	just	been	activated.
sessionWillPassivate(HttpSessionEvent)	-	Method	in	interface
javax.servlet.http.HttpSessionActivationListener

Notification	that	the	session	is	about	to	be	passivated.
setAttribute(String,	Object)	-	Method	in	interface	javax.servlet.ServletContext

Binds	an	object	to	a	given	attribute	name	in	this	servlet	context.
setAttribute(String,	Object)	-	Method	in	class
javax.servlet.ServletRequestWrapper

The	default	behavior	of	this	method	is	to	return	setAttribute(String	name,
Object	o)	on	the	wrapped	request	object.

setAttribute(String,	Object)	-	Method	in	interface	javax.servlet.ServletRequest
Stores	an	attribute	in	this	request.

setAttribute(String,	Object)	-	Method	in	interface
javax.servlet.http.HttpSession

Binds	an	object	to	this	session,	using	the	name	specified.
setBufferSize(int)	-	Method	in	interface	javax.servlet.ServletResponse

Sets	the	preferred	buffer	size	for	the	body	of	the	response.
setBufferSize(int)	-	Method	in	class	javax.servlet.ServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	setBufferSize(int	size)	on	the
wrapped	response	object.

setCharacterEncoding(String)	-	Method	in	class
javax.servlet.ServletRequestWrapper

The	default	behavior	of	this	method	is	to	set	the	character	encoding	on	the
wrapped	request	object.

setCharacterEncoding(String)	-	Method	in	interface
javax.servlet.ServletRequest

Overrides	the	name	of	the	character	encoding	used	in	the	body	of	this
request.

setComment(String)	-	Method	in	class	javax.servlet.http.Cookie
Specifies	a	comment	that	describes	a	cookie's	purpose.

setContentLength(int)	-	Method	in	interface	javax.servlet.ServletResponse

Sets	the	length	of	the	content	body	in	the	response	In	HTTP	servlets,	this
method	sets	the	HTTP	Content-Length	header.

setContentLength(int)	-	Method	in	class	javax.servlet.ServletResponseWrapper
The	default	behavior	of	this	method	is	to	call	setContentLength(int	len)	on
the	wrapped	response	object.

setContentType(String)	-	Method	in	interface	javax.servlet.ServletResponse
Sets	the	content	type	of	the	response	being	sent	to	the	client.

setContentType(String)	-	Method	in	class
javax.servlet.ServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	setContentType(String	type)
on	the	wrapped	response	object.

setDateHeader(String,	long)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	setDateHeader(String	name,
long	date)	on	the	wrapped	response	object.

setDateHeader(String,	long)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Sets	a	response	header	with	the	given	name	and	date-value.
setDomain(String)	-	Method	in	class	javax.servlet.http.Cookie

Specifies	the	domain	within	which	this	cookie	should	be	presented.
setHeader(String,	String)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	return	setHeader(String	name,
String	value)	on	the	wrapped	response	object.

setHeader(String,	String)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Sets	a	response	header	with	the	given	name	and	value.
setIntHeader(String,	int)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	setIntHeader(String	name,	int
value)	on	the	wrapped	response	object.

setIntHeader(String,	int)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Sets	a	response	header	with	the	given	name	and	integer	value.
setLocale(Locale)	-	Method	in	interface	javax.servlet.ServletResponse

Sets	the	locale	of	the	response,	setting	the	headers	(including	the	Content-
Type's	charset)	as	appropriate.

setLocale(Locale)	-	Method	in	class	javax.servlet.ServletResponseWrapper
The	default	behavior	of	this	method	is	to	call	setLocale(Locale	loc)	on	the

wrapped	response	object.
setMaxAge(int)	-	Method	in	class	javax.servlet.http.Cookie

Sets	the	maximum	age	of	the	cookie	in	seconds.
setMaxInactiveInterval(int)	-	Method	in	interface
javax.servlet.http.HttpSession

Specifies	the	time,	in	seconds,	between	client	requests	before	the	servlet
container	will	invalidate	this	session.

setPath(String)	-	Method	in	class	javax.servlet.http.Cookie
Specifies	a	path	for	the	cookie	to	which	the	client	should	return	the	cookie.

setRequest(ServletRequest)	-	Method	in	class
javax.servlet.ServletRequestWrapper

Sets	the	request	object	being	wrapped.
setResponse(ServletResponse)	-	Method	in	class
javax.servlet.ServletResponseWrapper

Sets	the	response	being	wrapped.
setSecure(boolean)	-	Method	in	class	javax.servlet.http.Cookie

Indicates	to	the	browser	whether	the	cookie	should	only	be	sent	using	a
secure	protocol,	such	as	HTTPS	or	SSL.

setStatus(int)	-	Method	in	class	javax.servlet.http.HttpServletResponseWrapper
The	default	behavior	of	this	method	is	to	call	setStatus(int	sc)	on	the
wrapped	response	object.

setStatus(int)	-	Method	in	interface	javax.servlet.http.HttpServletResponse
Sets	the	status	code	for	this	response.

setStatus(int,	String)	-	Method	in	class
javax.servlet.http.HttpServletResponseWrapper

The	default	behavior	of	this	method	is	to	call	setStatus(int	sc,	String	sm)	on
the	wrapped	response	object.

setStatus(int,	String)	-	Method	in	interface
javax.servlet.http.HttpServletResponse

Deprecated.	As	of	version	2.1,	due	to	ambiguous	meaning	of	the	message
parameter.	To	set	a	status	code	use	setStatus(int),	to	send	an	error	with
a	description	use	sendError(int,	String).	Sets	the	status	code	and
message	for	this	response.

setValue(String)	-	Method	in	class	javax.servlet.http.Cookie
Assigns	a	new	value	to	a	cookie	after	the	cookie	is	created.

setVersion(int)	-	Method	in	class	javax.servlet.http.Cookie
Sets	the	version	of	the	cookie	protocol	this	cookie	complies	with.

SingleThreadModel	-	interface	javax.servlet.SingleThreadModel.
Ensures	that	servlets	handle	only	one	request	at	a	time.

U

UnavailableException	-	exception	javax.servlet.UnavailableException.
Defines	an	exception	that	a	servlet	or	filter	throws	to	indicate	that	it	is
permanently	or	temporarily	unavailable.

UnavailableException(int,	Servlet,	String)	-	Constructor	for	class
javax.servlet.UnavailableException

Deprecated.	As	of	Java	Servlet	API	2.2,	use
UnavailableException.UnavailableException(String,	int)	instead.

UnavailableException(Servlet,	String)	-	Constructor	for	class
javax.servlet.UnavailableException

Deprecated.	As	of	Java	Servlet	API	2.2,	use
UnavailableException.UnavailableException(String)	instead.

UnavailableException(String)	-	Constructor	for	class
javax.servlet.UnavailableException

Constructs	a	new	exception	with	a	descriptive	message	indicating	that	the
servlet	is	permanently	unavailable.

UnavailableException(String,	int)	-	Constructor	for	class
javax.servlet.UnavailableException

Constructs	a	new	exception	with	a	descriptive	message	indicating	that	the
servlet	is	temporarily	unavailable	and	giving	an	estimate	of	how	long	it	will
be	unavailable.

V

valueBound(HttpSessionBindingEvent)	-	Method	in	interface
javax.servlet.http.HttpSessionBindingListener

Notifies	the	object	that	it	is	being	bound	to	a	session	and	identifies	the
session.

valueUnbound(HttpSessionBindingEvent)	-	Method	in	interface
javax.servlet.http.HttpSessionBindingListener

Notifies	the	object	that	it	is	being	unbound	from	a	session	and	identifies	the
session.

A	B	C	D	E	F	G	H	I	J	L	P	R	S	U	V
Overview	 Package	 Class	 Tree	 Deprecated	 	Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Overview	 Package	 Class	 Tree	 	Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Deprecated	API

Deprecated	Classes
javax.servlet.http.HttpUtils											As	of	Java(tm)	Servlet	API	2.3.	These
methods	were	only	useful	with	the	default	encoding	and	have	been	moved	to	the
request	interfaces.	
	

Deprecated	Interfaces
javax.servlet.http.HttpSessionContext	
										As	of	Java(tm)	Servlet	API	2.1	for	security	reasons,	with	no	replacement.
This	interface	will	be	removed	in	a	future	version	of	this	API.	
	

Deprecated	Methods
javax.servlet.http.HttpServletResponse.encodeRedirectUrl(String)	
										As	of	version	2.1,	use	encodeRedirectURL(String	url)	instead	
javax.servlet.http.HttpServletResponse.encodeUrl(String)	
										As	of	version	2.1,	use	encodeURL(String	url)	instead	
javax.servlet.http.HttpSessionContext.getIds()	
										As	of	Java	Servlet	API	2.1	with	no	replacement.	This	method	must	return
an	empty	Enumeration	and	will	be	removed	in	a	future	version	of	this	API.	
javax.servlet.ServletRequest.getRealPath(String)	
										As	of	Version	2.1	of	the	Java	Servlet	API,	use
ServletContext.getRealPath(java.lang.String)	instead.	
javax.servlet.UnavailableException.getServlet()	
										As	of	Java	Servlet	API	2.2,	with	no	replacement.	Returns	the	servlet	that
is	reporting	its	unavailability.	
javax.servlet.ServletContext.getServlet(String)	
										As	of	Java	Servlet	API	2.1,	with	no	direct	replacement.

This	method	was	originally	defined	to	retrieve	a	servlet	from	a
ServletContext.	In	this	version,	this	method	always	returns	null	and	remains

only	to	preserve	binary	compatibility.	This	method	will	be	permanently
removed	in	a	future	version	of	the	Java	Servlet	API.

In	lieu	of	this	method,	servlets	can	share	information	using	the
ServletContext	class	and	can	perform	shared	business	logic	by	invoking
methods	on	common	non-servlet	classes.	

javax.servlet.ServletContext.getServletNames()	
										As	of	Java	Servlet	API	2.1,	with	no	replacement.

This	method	was	originally	defined	to	return	an	Enumeration	of	all	the	servlet
names	known	to	this	context.	In	this	version,	this	method	always	returns	an
empty	Enumeration	and	remains	only	to	preserve	binary	compatibility.	This
method	will	be	permanently	removed	in	a	future	version	of	the	Java	Servlet
API.	

javax.servlet.ServletContext.getServlets()	
										As	of	Java	Servlet	API	2.0,	with	no	replacement.

This	method	was	originally	defined	to	return	an	Enumeration	of	all	the	servlets
known	to	this	servlet	context.	In	this	version,	this	method	always	returns	an
empty	enumeration	and	remains	only	to	preserve	binary	compatibility.	This
method	will	be	permanently	removed	in	a	future	version	of	the	Java	Servlet
API.	

javax.servlet.http.HttpSessionContext.getSession(String)	
										As	of	Java	Servlet	API	2.1	with	no	replacement.	This	method	must	return
null	and	will	be	removed	in	a	future	version	of	this	API.	
javax.servlet.http.HttpSession.getSessionContext()	
										As	of	Version	2.1,	this	method	is	deprecated	and	has	no	replacement.	It
will	be	removed	in	a	future	version	of	the	Java	Servlet	API.	
javax.servlet.http.HttpSession.getValue(String)	
										As	of	Version	2.2,	this	method	is	replaced	by
HttpSession.getAttribute(java.lang.String).	
javax.servlet.http.HttpSession.getValueNames()	
										As	of	Version	2.2,	this	method	is	replaced	by
HttpSession.getAttributeNames()	
javax.servlet.http.HttpServletRequest.isRequestedSessionIdFromUrl()	

										As	of	Version	2.1	of	the	Java	Servlet	API,	use
HttpServletRequest.isRequestedSessionIdFromURL()	instead.	

javax.servlet.ServletContext.log(Exception,	String)	
										As	of	Java	Servlet	API	2.1,	use	ServletContext.log(String	message,
Throwable	throwable)	instead.

This	method	was	originally	defined	to	write	an	exception's	stack	trace	and	an
explanatory	error	message	to	the	servlet	log	file.	

javax.servlet.http.HttpSession.putValue(String,	Object)	
										As	of	Version	2.2,	this	method	is	replaced	by
HttpSession.setAttribute(java.lang.String,	java.lang.Object)	
javax.servlet.http.HttpSession.removeValue(String)	
										As	of	Version	2.2,	this	method	is	replaced	by
HttpSession.removeAttribute(java.lang.String)	
javax.servlet.http.HttpServletResponse.setStatus(int,	String)	
										As	of	version	2.1,	due	to	ambiguous	meaning	of	the	message	parameter.
To	set	a	status	code	use	setStatus(int),	to	send	an	error	with	a	description
use	sendError(int,	String).	Sets	the	status	code	and	message	for	this
response.	
	

Deprecated	Constructors
javax.servlet.UnavailableException(int,	Servlet,	String)	
										As	of	Java	Servlet	API	2.2,	use
UnavailableException.UnavailableException(String,	int)	instead.	
javax.servlet.UnavailableException(Servlet,	String)	
										As	of	Java	Servlet	API	2.2,	use
UnavailableException.UnavailableException(String)	instead.	
	

Overview	 Package	 Class	 Tree	 	Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

	Overview	 Package	 Class	 Tree	 Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Packages
javax.servlet 	
javax.servlet.http 	

	

	Overview	 Package	 Class	 Tree	 Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Overview	 Package	 Class	 	Tree	 Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Hierarchy	For	Package	javax.servlet

Package	Hierarchies:
All	Packages

Class	Hierarchy

class	java.lang.Object
class	java.util.EventObject	(implements	java.io.Serializable)

class	javax.servlet.ServletContextEvent
class	javax.servlet.ServletContextAttributeEvent

class	javax.servlet.GenericServlet	(implements	java.io.Serializable,
javax.servlet.Servlet,	javax.servlet.ServletConfig)
class	java.io.InputStream

class	javax.servlet.ServletInputStream
class	java.io.OutputStream

class	javax.servlet.ServletOutputStream
class	javax.servlet.ServletRequestWrapper	(implements
javax.servlet.ServletRequest)
class	javax.servlet.ServletResponseWrapper	(implements
javax.servlet.ServletResponse)
class	java.lang.Throwable	(implements	java.io.Serializable)

class	java.lang.Exception
class	javax.servlet.ServletException

class	javax.servlet.UnavailableException

Interface	Hierarchy

interface	java.util.EventListener
interface	javax.servlet.ServletContextAttributeListener
interface	javax.servlet.ServletContextListener

interface	javax.servlet.Filter
interface	javax.servlet.FilterChain
interface	javax.servlet.FilterConfig
interface	javax.servlet.RequestDispatcher
interface	javax.servlet.Servlet
interface	javax.servlet.ServletConfig
interface	javax.servlet.ServletContext
interface	javax.servlet.ServletRequest
interface	javax.servlet.ServletResponse
interface	javax.servlet.SingleThreadModel

Overview	 Package	 Class	 	Tree	 Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Overview	 	Package	 Class	 Tree	 Deprecated	 Index	Help	
	PREV	PACKAGE			NEXT	PACKAGE FRAMES				NO	FRAMES

Package	javax.servlet

Interface	Summary

Filter

A	filter	is	an	object	than	perform	filtering
tasks	on	either	the	request	to	a	resource	(a
servlet	or	static	content),	or	on	the	response
from	a	resource,	or	both.

Filters	perform	filtering	in	the	doFilter
method.

FilterChain

A	FilterChain	is	an	object	provided	by	the
servlet	container	to	the	developer	giving	a
view	into	the	invocation	chain	of	a	filtered
request	for	a	resource.

FilterConfig
A	filter	configuration	object	used	by	a	servlet
container	used	to	pass	information	to	a	filter
during	initialization.

RequestDispatcher

Defines	an	object	that	receives	requests	from
the	client	and	sends	them	to	any	resource
(such	as	a	servlet,	HTML	file,	or	JSP	file)	on
the	server.

Servlet Defines	methods	that	all	servlets	must
implement.

ServletConfig
A	servlet	configuration	object	used	by	a
servlet	container	used	to	pass	information	to	a
servlet	during	initialization.

ServletContext

Defines	a	set	of	methods	that	a	servlet	uses	to
communicate	with	its	servlet	container,	for
example,	to	get	the	MIME	type	of	a	file,
dispatch	requests,	or	write	to	a	log	file.

ServletContextAttributeListener
Implementations	of	this	interface	recieve
notifications	of	changes	to	the	attribute	list	on
the	servlet	context	of	a	web	application.
Implementations	of	this	interface	recieve

ServletContextListener notifications	about	changes	to	the	servlet
context	of	the	web	application	they	are	part
of.

ServletRequest Defines	an	object	to	provide	client	request
information	to	a	servlet.

ServletResponse Defines	an	object	to	assist	a	servlet	in	sending
a	response	to	the	client.

SingleThreadModel Ensures	that	servlets	handle	only	one	request
at	a	time.

	

Class	Summary
GenericServlet Defines	a	generic,	protocol-independent

servlet.

ServletContextAttributeEvent
This	is	the	event	class	for	notifications	about
changes	to	the	attributes	of	the	servlet	context
of	a	web	application.

ServletContextEvent
This	is	the	event	class	for	notifications	about
changes	to	the	servlet	context	of	a	web
application.

ServletInputStream

Provides	an	input	stream	for	reading	binary
data	from	a	client	request,	including	an
efficient	readLine	method	for	reading	data
one	line	at	a	time.

ServletOutputStream Provides	an	output	stream	for	sending	binary
data	to	the	client.

ServletRequestWrapper

Provides	a	convenient	implementation	of	the
ServletRequest	interface	that	can	be
subclassed	by	developers	wishing	to	adapt	the
request	to	a	Servlet.

ServletResponseWrapper

Provides	a	convenient	implementation	of	the
ServletResponse	interface	that	can	be
subclassed	by	developers	wishing	to	adapt	the
response	from	a	Servlet.

	

Exception	Summary
ServletException Defines	a	general	exception	a	servlet	can	throw	when	it

encounters	difficulty.

UnavailableException
Defines	an	exception	that	a	servlet	or	filter	throws	to
indicate	that	it	is	permanently	or	temporarily
unavailable.

	

Overview	 	Package	 Class	 Tree	 Deprecated	 Index	Help	
	PREV	PACKAGE			NEXT	PACKAGE FRAMES				NO	FRAMES

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	SingleThreadModel

public	abstract	interface	SingleThreadModel

Ensures	that	servlets	handle	only	one	request	at	a	time.	This	interface	has	no
methods.

If	a	servlet	implements	this	interface,	you	are	guaranteed	that	no	two	threads
will	execute	concurrently	in	the	servlet's	service	method.	The	servlet	container
can	make	this	guarantee	by	synchronizing	access	to	a	single	instance	of	the
servlet,	or	by	maintaining	a	pool	of	servlet	instances	and	dispatching	each	new
request	to	a	free	servlet.

This	interface	does	not	prevent	synchronization	problems	that	result	from
servlets	accessing	shared	resources	such	as	static	class	variables	or	classes
outside	the	scope	of	the	servlet.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	Filter

public	abstract	interface	Filter

A	filter	is	an	object	than	perform	filtering	tasks	on	either	the	request	to	a
resource	(a	servlet	or	static	content),	or	on	the	response	from	a	resource,	or	both.

Filters	perform	filtering	in	the	doFilter	method.	Every	Filter	has	access	to	a
FilterConfig	object	from	which	it	can	obtain	its	initialization	parameters,	a
reference	to	the	ServletContext	which	it	can	use,	for	example,	to	load	resources
needed	for	filtering	tasks.

Filters	are	configured	in	the	deployment	descriptor	of	a	web	application

Examples	that	have	been	identified	for	this	design	are
1)	Authentication	Filters	
2)	Logging	and	Auditing	Filters	
3)	Image	conversion	Filters	
4)	Data	compression	Filters	
5)	Encryption	Filters	
6)	Tokenizing	Filters	
7)	Filters	that	trigger	resource	access	events	
8)	XSL/T	filters	
9)	Mime-type	chain	Filter	

Since:
Servlet	2.3

Method	Summary

	void

destroy()	
										Called	by	the	web	container	to	indicate	to	a	filter	that	it	is	being
taken	out	of	service.

	void

doFilter(ServletRequest	request,	ServletResponse	response,

FilterChain	chain)	
										The	doFilter	method	of	the	Filter	is	called	by	the	container	each

time	a	request/response	pair	is	passed	through	the	chain	due	to	a	client
request	for	a	resource	at	the	end	of	the	chain.

	void

init(FilterConfig	filterConfig)	
										Called	by	the	web	container	to	indicate	to	a	filter	that	it	is	being
placed	into	service.

	

Method	Detail

init

public	void	init(FilterConfig	filterConfig)

										throws	ServletException

Called	by	the	web	container	to	indicate	to	a	filter	that	it	is	being	placed	into
service.	The	servlet	container	calls	the	init	method	exactly	once	after
instantiating	the	filter.	The	init	method	must	complete	successfully	before
the	filter	is	asked	to	do	any	filtering	work.	

The	web	container	cannot	place	the	filter	into	service	if	the	init	method
either
1.Throws	a	ServletException	
2.Does	not	return	within	a	time	period	defined	by	the	web	container

doFilter

public	void	doFilter(ServletRequest	request,

																					ServletResponse	response,

																					FilterChain	chain)

														throws	java.io.IOException,

																					ServletException

The	doFilter	method	of	the	Filter	is	called	by	the	container	each	time	a
request/response	pair	is	passed	through	the	chain	due	to	a	client	request	for
a	resource	at	the	end	of	the	chain.	The	FilterChain	passed	in	to	this	method
allows	the	Filter	to	pass	on	the	request	and	response	to	the	next	entity	in	the
chain.

A	typical	implementation	of	this	method	would	follow	the	following
pattern:-	
1.	Examine	the	request
2.	Optionally	wrap	the	request	object	with	a	custom	implementation	to	filter
content	or	headers	for	input	filtering	
3.	Optionally	wrap	the	response	object	with	a	custom	implementation	to
filter	content	or	headers	for	output	filtering	
4.	a)	Either	invoke	the	next	entity	in	the	chain	using	the	FilterChain	object
(chain.doFilter()),	
4.	b)	or	not	pass	on	the	request/response	pair	to	the	next	entity	in	the	filter
chain	to	block	the	request	processing
5.	Directly	set	headers	on	the	response	after	invokation	of	the	next	entity	in
ther	filter	chain.

destroy

public	void	destroy()

Called	by	the	web	container	to	indicate	to	a	filter	that	it	is	being	taken	out
of	service.	This	method	is	only	called	once	all	threads	within	the	filter's
doFilter	method	have	exited	or	after	a	timeout	period	has	passed.	After	the
web	container	calls	this	method,	it	will	not	call	the	doFilter	method	again
on	this	instance	of	the	filter.	

This	method	gives	the	filter	an	opportunity	to	clean	up	any	resources	that
are	being	held	(for	example,	memory,	file	handles,	threads)	and	make	sure
that	any	persistent	state	is	synchronized	with	the	filter's	current	state	in
memory.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	FilterChain

public	abstract	interface	FilterChain

A	FilterChain	is	an	object	provided	by	the	servlet	container	to	the	developer
giving	a	view	into	the	invocation	chain	of	a	filtered	request	for	a	resource.	Filters
use	the	FilterChain	to	invoke	the	next	filter	in	the	chain,	or	if	the	calling	filter	is
the	last	filter	in	the	chain,	to	invoke	the	rosource	at	the	end	of	the	chain.

Since:
Servlet	2.3

See	Also:
Filter

Method	Summary

	void

doFilter(ServletRequest	request,	ServletResponse	response)	
										Causes	the	next	filter	in	the	chain	to	be	invoked,	or	if	the	calling
filter	is	the	last	filter	in	the	chain,	causes	the	resource	at	the	end	of	the
chain	to	be	invoked.

	

Method	Detail

doFilter

public	void	doFilter(ServletRequest	request,

																					ServletResponse	response)

														throws	java.io.IOException,

																					ServletException

Causes	the	next	filter	in	the	chain	to	be	invoked,	or	if	the	calling	filter	is	the
last	filter	in	the	chain,	causes	the	resource	at	the	end	of	the	chain	to	be
invoked.
Parameters:

request	-	the	request	to	pass	along	the	chain.

response	-	the	response	to	pass	along	the	chain.
Since:

2.3

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	FilterConfig

public	abstract	interface	FilterConfig

A	filter	configuration	object	used	by	a	servlet	container	used	to	pass	information
to	a	filter	during	initialization.

Since:
Servlet	2.3

See	Also:
Filter

Method	Summary

	java.lang.String

getFilterName()	
										Returns	the	filter-name	of	this	filter	as	defined	in	the
deployment	descriptor.

	java.lang.String

getInitParameter(java.lang.String	name)	
										Returns	a	String	containing	the	value	of	the	named
initialization	parameter,	or	null	if	the	parameter	does	not
exist.

	java.util.Enumeration

getInitParameterNames()	
										Returns	the	names	of	the	servlet's	initialization
parameters	as	an	Enumeration	of	String	objects,	or	an
empty	Enumeration	if	the	servlet	has	no	initialization
parameters.

	ServletContext

getServletContext()	
										Returns	a	reference	to	the	ServletContext	in	which
the	caller	is	executing.

	

Method	Detail

getFilterName

public	java.lang.String	getFilterName()

Returns	the	filter-name	of	this	filter	as	defined	in	the	deployment	descriptor.

getServletContext

public	ServletContext	getServletContext()

Returns	a	reference	to	the	ServletContext	in	which	the	caller	is	executing.
Returns:

a	ServletContext	object,	used	by	the	caller	to	interact	with	its	servlet
container

See	Also:
ServletContext

getInitParameter

public	java.lang.String	getInitParameter(java.lang.String	name)

Returns	a	String	containing	the	value	of	the	named	initialization
parameter,	or	null	if	the	parameter	does	not	exist.
Parameters:

name	-	a	String	specifying	the	name	of	the	initialization	parameter
Returns:

a	String	containing	the	value	of	the	initialization	parameter

getInitParameterNames

public	java.util.Enumeration	getInitParameterNames()

Returns	the	names	of	the	servlet's	initialization	parameters	as	an
Enumeration	of	String	objects,	or	an	empty	Enumeration	if	the	servlet	has
no	initialization	parameters.
Returns:

an	Enumeration	of	String	objects	containing	the	names	of	the
servlet's	initialization	parameters

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Class	GenericServlet
java.lang.Object

		|

		+--javax.servlet.GenericServlet

Direct	Known	Subclasses:
HttpServlet

public	abstract	class	GenericServlet
extends	java.lang.Object
implements	Servlet,	ServletConfig,	java.io.Serializable

Defines	a	generic,	protocol-independent	servlet.	To	write	an	HTTP	servlet	for
use	on	the	Web,	extend	HttpServlet	instead.

GenericServlet	implements	the	Servlet	and	ServletConfig	interfaces.
GenericServlet	may	be	directly	extended	by	a	servlet,	although	it's	more
common	to	extend	a	protocol-specific	subclass	such	as	HttpServlet.

GenericServlet	makes	writing	servlets	easier.	It	provides	simple	versions	of	the
lifecycle	methods	init	and	destroy	and	of	the	methods	in	the	ServletConfig
interface.	GenericServlet	also	implements	the	log	method,	declared	in	the
ServletContext	interface.

To	write	a	generic	servlet,	you	need	only	override	the	abstract	service	method.

See	Also:
Serialized	Form

Constructor	Summary
GenericServlet()	
										Does	nothing.
	

Method	Summary

	void

destroy()	
										Called	by	the	servlet	container	to	indicate	to	a
servlet	that	the	servlet	is	being	taken	out	of	service.

	java.lang.String

getInitParameter(java.lang.String	name)	
										Returns	a	String	containing	the	value	of	the	named
initialization	parameter,	or	null	if	the	parameter	does	not
exist.

	java.util.Enumeration

getInitParameterNames()	
										Returns	the	names	of	the	servlet's	initialization
parameters	as	an	Enumeration	of	String	objects,	or	an
empty	Enumeration	if	the	servlet	has	no	initialization
parameters.

	ServletConfig
getServletConfig()	
										Returns	this	servlet's	ServletConfig	object.

	ServletContext

getServletContext()	
										Returns	a	reference	to	the	ServletContext	in	which
this	servlet	is	running.

	java.lang.String

getServletInfo()	
										Returns	information	about	the	servlet,	such	as
author,	version,	and	copyright.

	java.lang.String
getServletName()	
										Returns	the	name	of	this	servlet	instance.

	void

init()	
										A	convenience	method	which	can	be	overridden	so
that	there's	no	need	to	call	super.init(config).

	void

init(ServletConfig	config)	
										Called	by	the	servlet	container	to	indicate	to	a
servlet	that	the	servlet	is	being	placed	into	service.

	void

log(java.lang.String	msg)	
										Writes	the	specified	message	to	a	servlet	log	file,
prepended	by	the	servlet's	name.

	void

log(java.lang.String	message,

java.lang.Throwable	t)	
										Writes	an	explanatory	message	and	a	stack	trace	for
a	given	Throwable	exception	to	the	servlet	log	file,
prepended	by	the	servlet's	name.

abstract		void

service(ServletRequest	req,	ServletResponse	res)	
										Called	by	the	servlet	container	to	allow	the	servlet	to
respond	to	a	request.

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

toString,	wait,	wait,	wait

	

Constructor	Detail

GenericServlet

public	GenericServlet()

Does	nothing.	All	of	the	servlet	initialization	is	done	by	one	of	the	init
methods.

Method	Detail

destroy

public	void	destroy()

Called	by	the	servlet	container	to	indicate	to	a	servlet	that	the	servlet	is
being	taken	out	of	service.	See	Servlet.destroy().
Specified	by:

destroy	in	interface	Servlet

getInitParameter

public	java.lang.String	getInitParameter(java.lang.String	name)

Returns	a	String	containing	the	value	of	the	named	initialization
parameter,	or	null	if	the	parameter	does	not	exist.	See
ServletConfig.getInitParameter(java.lang.String).

This	method	is	supplied	for	convenience.	It	gets	the	value	of	the	named
parameter	from	the	servlet's	ServletConfig	object.

Specified	by:
getInitParameter	in	interface	ServletConfig

Parameters:
name	-	a	String	specifying	the	name	of	the	initialization	parameter

Returns:
String	a	String	containing	the	value	of	the	initalization	parameter

getInitParameterNames

public	java.util.Enumeration	getInitParameterNames()

Returns	the	names	of	the	servlet's	initialization	parameters	as	an
Enumeration	of	String	objects,	or	an	empty	Enumeration	if	the	servlet	has
no	initialization	parameters.	See
ServletConfig.getInitParameterNames().

This	method	is	supplied	for	convenience.	It	gets	the	parameter	names	from
the	servlet's	ServletConfig	object.

Specified	by:
getInitParameterNames	in	interface	ServletConfig

Returns:
Enumeration	an	enumeration	of	String	objects	containing	the	names
of	the	servlet's	initialization	parameters

getServletConfig

public	ServletConfig	getServletConfig()

Returns	this	servlet's	ServletConfig	object.
Specified	by:

getServletConfig	in	interface	Servlet
Returns:

ServletConfig	the	ServletConfig	object	that	initialized	this	servlet

getServletContext

public	ServletContext	getServletContext()

Returns	a	reference	to	the	ServletContext	in	which	this	servlet	is	running.
See	ServletConfig.getServletContext().

This	method	is	supplied	for	convenience.	It	gets	the	context	from	the
servlet's	ServletConfig	object.

Specified	by:
getServletContext	in	interface	ServletConfig

Returns:
ServletContext	the	ServletContext	object	passed	to	this	servlet	by	the
init	method

getServletInfo

public	java.lang.String	getServletInfo()

Returns	information	about	the	servlet,	such	as	author,	version,	and
copyright.	By	default,	this	method	returns	an	empty	string.	Override	this
method	to	have	it	return	a	meaningful	value.	See
Servlet.getServletInfo().
Specified	by:

getServletInfo	in	interface	Servlet
Returns:

String	information	about	this	servlet,	by	default	an	empty	string

init

public	void	init(ServletConfig	config)

										throws	ServletException

Called	by	the	servlet	container	to	indicate	to	a	servlet	that	the	servlet	is
being	placed	into	service.	See
Servlet.init(javax.servlet.ServletConfig).

This	implementation	stores	the	ServletConfig	object	it	receives	from	the
servlet	container	for	later	use.	When	overriding	this	form	of	the	method,
call	super.init(config).

Specified	by:
init	in	interface	Servlet

Parameters:
config	-	the	ServletConfig	object	that	contains	configutation
information	for	this	servlet

Throws:
ServletException	-	if	an	exception	occurs	that	interrupts	the	servlet's
normal	operation

See	Also:
UnavailableException

init

public	void	init()

										throws	ServletException

A	convenience	method	which	can	be	overridden	so	that	there's	no	need	to
call	super.init(config).

Instead	of	overriding	init(ServletConfig),	simply	override	this	method
and	it	will	be	called	by	GenericServlet.init(ServletConfig	config).
The	ServletConfig	object	can	still	be	retrieved	via	getServletConfig().

Throws:
ServletException	-	if	an	exception	occurs	that	interrupts	the	servlet's
normal	operation

log

public	void	log(java.lang.String	msg)

Writes	the	specified	message	to	a	servlet	log	file,	prepended	by	the	servlet's
name.	See	ServletContext.log(String).

Parameters:
msg	-	a	String	specifying	the	message	to	be	written	to	the	log	file

log

public	void	log(java.lang.String	message,

																java.lang.Throwable	t)

Writes	an	explanatory	message	and	a	stack	trace	for	a	given	Throwable
exception	to	the	servlet	log	file,	prepended	by	the	servlet's	name.	See
ServletContext.log(String,	Throwable).
Parameters:

message	-	a	String	that	describes	the	error	or	exception
t	-	the	java.lang.Throwable	error	or	exception

service

public	abstract	void	service(ServletRequest	req,

																													ServletResponse	res)

																						throws	ServletException,

																													java.io.IOException

Called	by	the	servlet	container	to	allow	the	servlet	to	respond	to	a	request.
See	Servlet.service(javax.servlet.ServletRequest,
javax.servlet.ServletResponse).

This	method	is	declared	abstract	so	subclasses,	such	as	HttpServlet,	must
override	it.

Specified	by:
service	in	interface	Servlet

Parameters:
req	-	the	ServletRequest	object	that	contains	the	client's	request
res	-	the	ServletResponse	object	that	will	contain	the	servlet's
response

Throws:
ServletException	-	if	an	exception	occurs	that	interferes	with	the
servlet's	normal	operation	occurred

java.io.IOException	-	if	an	input	or	output	exception	occurs

getServletName

public	java.lang.String	getServletName()

Returns	the	name	of	this	servlet	instance.	See
ServletConfig.getServletName().
Specified	by:

getServletName	in	interface	ServletConfig
Returns:

the	name	of	this	servlet	instance

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 Class	 	Tree	 Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Hierarchy	For	Package	javax.servlet.http

Package	Hierarchies:
All	Packages

Class	Hierarchy

class	java.lang.Object
class	javax.servlet.http.Cookie	(implements	java.lang.Cloneable)
class	java.util.EventObject	(implements	java.io.Serializable)

class	javax.servlet.http.HttpSessionEvent
class	javax.servlet.http.HttpSessionBindingEvent

class	javax.servlet.GenericServlet	(implements	java.io.Serializable,
javax.servlet.Servlet,	javax.servlet.ServletConfig)

class	javax.servlet.http.HttpServlet	(implements
java.io.Serializable)

class	javax.servlet.http.HttpUtils
class	javax.servlet.ServletRequestWrapper	(implements
javax.servlet.ServletRequest)

class	javax.servlet.http.HttpServletRequestWrapper
(implements	javax.servlet.http.HttpServletRequest)

class	javax.servlet.ServletResponseWrapper	(implements
javax.servlet.ServletResponse)

class	javax.servlet.http.HttpServletResponseWrapper
(implements	javax.servlet.http.HttpServletResponse)

Interface	Hierarchy

interface	java.util.EventListener
interface	javax.servlet.http.HttpSessionActivationListener
interface	javax.servlet.http.HttpSessionAttributeListener
interface	javax.servlet.http.HttpSessionBindingListener
interface	javax.servlet.http.HttpSessionListener

interface	javax.servlet.http.HttpSession
interface	javax.servlet.http.HttpSessionContext
interface	javax.servlet.ServletRequest

interface	javax.servlet.http.HttpServletRequest
interface	javax.servlet.ServletResponse

interface	javax.servlet.http.HttpServletResponse

Overview	 Package	 Class	 	Tree	 Deprecated	 Index	Help	
	PREV			NEXT FRAMES				NO	FRAMES

Overview	 	Package	 Class	 Tree	 Deprecated	 Index	Help	
	PREV	PACKAGE			NEXT	PACKAGE FRAMES				NO	FRAMES

Package	javax.servlet.http

Interface	Summary
HttpServletRequest Extends	the	ServletRequest	interface	to

provide	request	information	for	HTTP	servlets.

HttpServletResponse
Extends	the	ServletResponse	interface	to
provide	HTTP-specific	functionality	in	sending
a	response.

HttpSession
Provides	a	way	to	identify	a	user	across	more
than	one	page	request	or	visit	to	a	Web	site	and
to	store	information	about	that	user.

HttpSessionActivationListener

Objects	that	are	bound	to	a	session	may	listen
to	container	events	notifying	them	that	sessions
will	be	passivated	and	that	session	will	be
activated.

HttpSessionAttributeListener

This	listener	interface	can	be	implemented	in
order	to	get	notifications	of	changes	to	the
attribute	lists	of	sessions	within	this	web
application.

HttpSessionBindingListener Causes	an	object	to	be	notified	when	it	is
bound	to	or	unbound	from	a	session.

HttpSessionContext Deprecated.	As	of	Java(tm)	Servlet	API	2.1	for
security	reasons,	with	no	replacement.

HttpSessionListener
Implementations	of	this	interface	may	are
notified	of	changes	to	the	list	of	active	sessions
in	a	web	application.

	

Class	Summary

Cookie

Creates	a	cookie,	a	small	amount	of
information	sent	by	a	servlet	to	a	Web
browser,	saved	by	the	browser,	and	later	sent
back	to	the	server.

HttpServlet Provides	an	abstract	class	to	be	subclassed	to
create	an	HTTP	servlet	suitable	for	a	Web	site.

HttpServletRequestWrapper

Provides	a	convenient	implementation	of	the
HttpServletRequest	interface	that	can	be
subclassed	by	developers	wishing	to	adapt	the
request	to	a	Servlet.

HttpServletResponseWrapper

Provides	a	convenient	implementation	of	the
HttpServletResponse	interface	that	can	be
subclassed	by	developers	wishing	to	adapt	the
response	from	a	Servlet.

HttpSessionBindingEvent

Events	of	this	type	are	either	sent	to	an	object
that	implements
HttpSessionBindingListener	when	it	is
bound	or	unbound	from	a	session,	or	to	a
HttpSessionAttributeListener	that	has
been	configured	in	the	deployment	descriptor
when	any	attribute	is	bound,	unbound	or
replaced	in	a	session.

HttpSessionEvent
This	is	the	class	representing	event
notifications	for	changes	to	sessions	within	a
web	application.

HttpUtils Deprecated.	As	of	Java(tm)	Servlet	API	2.3.
	

Overview	 	Package	 Class	 Tree	 Deprecated	 Index	Help	
	PREV	PACKAGE			NEXT	PACKAGE FRAMES				NO	FRAMES

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Class	Cookie
java.lang.Object

		|

		+--javax.servlet.http.Cookie

public	class	Cookie
extends	java.lang.Object
implements	java.lang.Cloneable

Creates	a	cookie,	a	small	amount	of	information	sent	by	a	servlet	to	a	Web
browser,	saved	by	the	browser,	and	later	sent	back	to	the	server.	A	cookie's	value
can	uniquely	identify	a	client,	so	cookies	are	commonly	used	for	session
management.

A	cookie	has	a	name,	a	single	value,	and	optional	attributes	such	as	a	comment,
path	and	domain	qualifiers,	a	maximum	age,	and	a	version	number.	Some	Web
browsers	have	bugs	in	how	they	handle	the	optional	attributes,	so	use	them
sparingly	to	improve	the	interoperability	of	your	servlets.

The	servlet	sends	cookies	to	the	browser	by	using	the
HttpServletResponse.addCookie(javax.servlet.http.Cookie)	method,
which	adds	fields	to	HTTP	response	headers	to	send	cookies	to	the	browser,	one
at	a	time.	The	browser	is	expected	to	support	20	cookies	for	each	Web	server,
300	cookies	total,	and	may	limit	cookie	size	to	4	KB	each.

The	browser	returns	cookies	to	the	servlet	by	adding	fields	to	HTTP	request
headers.	Cookies	can	be	retrieved	from	a	request	by	using	the
HttpServletRequest.getCookies()	method.	Several	cookies	might	have	the
same	name	but	different	path	attributes.

Cookies	affect	the	caching	of	the	Web	pages	that	use	them.	HTTP	1.0	does	not
cache	pages	that	use	cookies	created	with	this	class.	This	class	does	not	support
the	cache	control	defined	with	HTTP	1.1.

This	class	supports	both	the	Version	0	(by	Netscape)	and	Version	1	(by	RFC
2109)	cookie	specifications.	By	default,	cookies	are	created	using	Version	0	to
ensure	the	best	interoperability.

Constructor	Summary
Cookie(java.lang.String	name,	java.lang.String	value)	
										Constructs	a	cookie	with	a	specified	name	and	value.
	

Method	Summary

	java.lang.Object

clone()	
										Overrides	the	standard	java.lang.Object.clone
method	to	return	a	copy	of	this	cookie.

	java.lang.String

getComment()	
										Returns	the	comment	describing	the	purpose	of	this
cookie,	or	null	if	the	cookie	has	no	comment.

	java.lang.String
getDomain()	
										Returns	the	domain	name	set	for	this	cookie.

	int

getMaxAge()	
										Returns	the	maximum	age	of	the	cookie,	specified	in
seconds,	By	default,	-1	indicating	the	cookie	will	persist	until
browser	shutdown.

	java.lang.String
getName()	
										Returns	the	name	of	the	cookie.

	java.lang.String

getPath()	
										Returns	the	path	on	the	server	to	which	the	browser
returns	this	cookie.

	boolean

getSecure()	
										Returns	true	if	the	browser	is	sending	cookies	only	over
a	secure	protocol,	or	false	if	the	browser	can	send	cookies
using	any	protocol.

	java.lang.String
getValue()	
										Returns	the	value	of	the	cookie.

	int

getVersion()	
										Returns	the	version	of	the	protocol	this	cookie	complies
with.

	void
setComment(java.lang.String	purpose)	
										Specifies	a	comment	that	describes	a	cookie's	purpose.

	void

setDomain(java.lang.String	pattern)	
										Specifies	the	domain	within	which	this	cookie	should	be
presented.

	void
setMaxAge(int	expiry)	
										Sets	the	maximum	age	of	the	cookie	in	seconds.

	void

setPath(java.lang.String	uri)	
										Specifies	a	path	for	the	cookie	to	which	the	client	should
return	the	cookie.

	void

setSecure(boolean	flag)	
										Indicates	to	the	browser	whether	the	cookie	should	only
be	sent	using	a	secure	protocol,	such	as	HTTPS	or	SSL.

	void

setValue(java.lang.String	newValue)	
										Assigns	a	new	value	to	a	cookie	after	the	cookie	is
created.

	void

setVersion(int	v)	
										Sets	the	version	of	the	cookie	protocol	this	cookie
complies	with.

	
Methods	inherited	from	class	java.lang.Object
equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,	toString,

wait,	wait,	wait

	

Constructor	Detail

Cookie

public	Cookie(java.lang.String	name,

														java.lang.String	value)

Constructs	a	cookie	with	a	specified	name	and	value.

The	name	must	conform	to	RFC	2109.	That	means	it	can	contain	only
ASCII	alphanumeric	characters	and	cannot	contain	commas,	semicolons,	or
white	space	or	begin	with	a	$	character.	The	cookie's	name	cannot	be
changed	after	creation.

The	value	can	be	anything	the	server	chooses	to	send.	Its	value	is	probably
of	interest	only	to	the	server.	The	cookie's	value	can	be	changed	after
creation	with	the	setValue	method.

By	default,	cookies	are	created	according	to	the	Netscape	cookie
specification.	The	version	can	be	changed	with	the	setVersion	method.

Parameters:
name	-	a	String	specifying	the	name	of	the	cookie
value	-	a	String	specifying	the	value	of	the	cookie

Throws:
java.lang.IllegalArgumentException	-	if	the	cookie	name	contains
illegal	characters	(for	example,	a	comma,	space,	or	semicolon)	or	it	is
one	of	the	tokens	reserved	for	use	by	the	cookie	protocol

See	Also:
setValue(java.lang.String),	setVersion(int)

Method	Detail

setComment

public	void	setComment(java.lang.String	purpose)

Specifies	a	comment	that	describes	a	cookie's	purpose.	The	comment	is
useful	if	the	browser	presents	the	cookie	to	the	user.	Comments	are	not
supported	by	Netscape	Version	0	cookies.
Parameters:

purpose	-	a	String	specifying	the	comment	to	display	to	the	user
See	Also:

getComment()

getComment

public	java.lang.String	getComment()

Returns	the	comment	describing	the	purpose	of	this	cookie,	or	null	if	the
cookie	has	no	comment.
Returns:

a	String	containing	the	comment,	or	null	if	none
See	Also:

setComment(java.lang.String)

setDomain

public	void	setDomain(java.lang.String	pattern)

Specifies	the	domain	within	which	this	cookie	should	be	presented.

The	form	of	the	domain	name	is	specified	by	RFC	2109.	A	domain	name
begins	with	a	dot	(.foo.com)	and	means	that	the	cookie	is	visible	to	servers
in	a	specified	Domain	Name	System	(DNS)	zone	(for	example,
www.foo.com,	but	not	a.b.foo.com).	By	default,	cookies	are	only	returned
to	the	server	that	sent	them.

Parameters:
pattern	-	a	String	containing	the	domain	name	within	which	this
cookie	is	visible;	form	is	according	to	RFC	2109

See	Also:
getDomain()

getDomain

public	java.lang.String	getDomain()

Returns	the	domain	name	set	for	this	cookie.	The	form	of	the	domain	name
is	set	by	RFC	2109.
Returns:

a	String	containing	the	domain	name
See	Also:

setDomain(java.lang.String)

setMaxAge

public	void	setMaxAge(int	expiry)

Sets	the	maximum	age	of	the	cookie	in	seconds.

A	positive	value	indicates	that	the	cookie	will	expire	after	that	many
seconds	have	passed.	Note	that	the	value	is	the	maximum	age	when	the
cookie	will	expire,	not	the	cookie's	current	age.

A	negative	value	means	that	the	cookie	is	not	stored	persistently	and	will	be
deleted	when	the	Web	browser	exits.	A	zero	value	causes	the	cookie	to	be
deleted.

Parameters:
expiry	-	an	integer	specifying	the	maximum	age	of	the	cookie	in
seconds;	if	negative,	means	the	cookie	is	not	stored;	if	zero,	deletes	the
cookie

See	Also:
getMaxAge()

getMaxAge

public	int	getMaxAge()

Returns	the	maximum	age	of	the	cookie,	specified	in	seconds,	By	default,
-1	indicating	the	cookie	will	persist	until	browser	shutdown.
Returns:

an	integer	specifying	the	maximum	age	of	the	cookie	in	seconds;	if
negative,	means	the	cookie	persists	until	browser	shutdown

See	Also:
setMaxAge(int)

setPath

public	void	setPath(java.lang.String	uri)

Specifies	a	path	for	the	cookie	to	which	the	client	should	return	the	cookie.

The	cookie	is	visible	to	all	the	pages	in	the	directory	you	specify,	and	all	the
pages	in	that	directory's	subdirectories.	A	cookie's	path	must	include	the
servlet	that	set	the	cookie,	for	example,	/catalog,	which	makes	the	cookie

visible	to	all	directories	on	the	server	under	/catalog.

Consult	RFC	2109	(available	on	the	Internet)	for	more	information	on
setting	path	names	for	cookies.

Parameters:
uri	-	a	String	specifying	a	path

See	Also:
getPath()

getPath

public	java.lang.String	getPath()

Returns	the	path	on	the	server	to	which	the	browser	returns	this	cookie.	The
cookie	is	visible	to	all	subpaths	on	the	server.
Returns:

a	String	specifying	a	path	that	contains	a	servlet	name,	for	example,
/catalog

See	Also:
setPath(java.lang.String)

setSecure

public	void	setSecure(boolean	flag)

Indicates	to	the	browser	whether	the	cookie	should	only	be	sent	using	a
secure	protocol,	such	as	HTTPS	or	SSL.

The	default	value	is	false.

Parameters:
flag	-	if	true,	sends	the	cookie	from	the	browser	to	the	server	using
only	when	using	a	secure	protocol;	if	false,	sent	on	any	protocol

See	Also:
getSecure()

getSecure

public	boolean	getSecure()

Returns	true	if	the	browser	is	sending	cookies	only	over	a	secure	protocol,
or	false	if	the	browser	can	send	cookies	using	any	protocol.
Returns:

true	if	the	browser	uses	a	secure	protocol;	otherwise,	true
See	Also:

setSecure(boolean)

getName

public	java.lang.String	getName()

Returns	the	name	of	the	cookie.	The	name	cannot	be	changed	after	creation.
Returns:

a	String	specifying	the	cookie's	name

setValue

public	void	setValue(java.lang.String	newValue)

Assigns	a	new	value	to	a	cookie	after	the	cookie	is	created.	If	you	use	a
binary	value,	you	may	want	to	use	BASE64	encoding.

With	Version	0	cookies,	values	should	not	contain	white	space,	brackets,
parentheses,	equals	signs,	commas,	double	quotes,	slashes,	question	marks,
at	signs,	colons,	and	semicolons.	Empty	values	may	not	behave	the	same
way	on	all	browsers.

Parameters:
newValue	-	a	String	specifying	the	new	value

See	Also:
getValue(),	Cookie

getValue

public	java.lang.String	getValue()

Returns	the	value	of	the	cookie.
Returns:

a	String	containing	the	cookie's	present	value
See	Also:

setValue(java.lang.String),	Cookie

getVersion

public	int	getVersion()

Returns	the	version	of	the	protocol	this	cookie	complies	with.	Version	1
complies	with	RFC	2109,	and	version	0	complies	with	the	original	cookie
specification	drafted	by	Netscape.	Cookies	provided	by	a	browser	use	and
identify	the	browser's	cookie	version.
Returns:

0	if	the	cookie	complies	with	the	original	Netscape	specification;	1	if
the	cookie	complies	with	RFC	2109

See	Also:
setVersion(int)

setVersion

public	void	setVersion(int	v)

Sets	the	version	of	the	cookie	protocol	this	cookie	complies	with.	Version	0
complies	with	the	original	Netscape	cookie	specification.	Version	1
complies	with	RFC	2109.

Since	RFC	2109	is	still	somewhat	new,	consider	version	1	as	experimental;
do	not	use	it	yet	on	production	sites.

Parameters:
v	-	0	if	the	cookie	should	comply	with	the	original	Netscape
specification;	1	if	the	cookie	should	comply	with	RFC	2109

See	Also:
getVersion()

clone

public	java.lang.Object	clone()

Overrides	the	standard	java.lang.Object.clone	method	to	return	a	copy
of	this	cookie.
Overrides:

clone	in	class	java.lang.Object

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Class	HttpServlet
java.lang.Object

		|

		+--javax.servlet.GenericServlet

								|

								+--javax.servlet.http.HttpServlet

public	abstract	class	HttpServlet
extends	GenericServlet
implements	java.io.Serializable

Provides	an	abstract	class	to	be	subclassed	to	create	an	HTTP	servlet	suitable	for
a	Web	site.	A	subclass	of	HttpServlet	must	override	at	least	one	method,
usually	one	of	these:

doGet,	if	the	servlet	supports	HTTP	GET	requests
doPost,	for	HTTP	POST	requests
doPut,	for	HTTP	PUT	requests
doDelete,	for	HTTP	DELETE	requests
init	and	destroy,	to	manage	resources	that	are	held	for	the	life	of	the
servlet
getServletInfo,	which	the	servlet	uses	to	provide	information	about	itself

There's	almost	no	reason	to	override	the	service	method.	service	handles
standard	HTTP	requests	by	dispatching	them	to	the	handler	methods	for	each
HTTP	request	type	(the	doXXX	methods	listed	above).

Likewise,	there's	almost	no	reason	to	override	the	doOptions	and	doTrace
methods.

Servlets	typically	run	on	multithreaded	servers,	so	be	aware	that	a	servlet	must
handle	concurrent	requests	and	be	careful	to	synchronize	access	to	shared
resources.	Shared	resources	include	in-memory	data	such	as	instance	or	class
variables	and	external	objects	such	as	files,	database	connections,	and	network
connections.	See	the	Java	Tutorial	on	Multithreaded	Programming	for	more
information	on	handling	multiple	threads	in	a	Java	program.

http://java.sun.com/Series/Tutorial/java/threads/multithreaded.html

See	Also:
Serialized	Form

Constructor	Summary
HttpServlet()	
										Does	nothing,	because	this	is	an	abstract	class.
	

Method	Summary
protected

	void

doDelete(HttpServletRequest	req,	HttpServletResponse	resp)	
										Called	by	the	server	(via	the	service	method)	to	allow	a	servlet
to	handle	a	DELETE	request.

protected

	void

doGet(HttpServletRequest	req,	HttpServletResponse	resp)	
										Called	by	the	server	(via	the	service	method)	to	allow	a	servlet
to	handle	a	GET	request.

protected

	void

doHead(HttpServletRequest	req,	HttpServletResponse	resp)	
										Receives	an	HTTP	HEAD	request	from	the	protected	service
method	and	handles	the	request.

protected

	void

doOptions(HttpServletRequest	req,	HttpServletResponse	resp)

										Called	by	the	server	(via	the	service	method)	to	allow	a	servlet
to	handle	a	OPTIONS	request.

protected

	void

doPost(HttpServletRequest	req,	HttpServletResponse	resp)	
										Called	by	the	server	(via	the	service	method)	to	allow	a	servlet
to	handle	a	POST	request.

protected

	void

doPut(HttpServletRequest	req,	HttpServletResponse	resp)	
										Called	by	the	server	(via	the	service	method)	to	allow	a	servlet
to	handle	a	PUT	request.

protected

	void

doTrace(HttpServletRequest	req,	HttpServletResponse	resp)	
										Called	by	the	server	(via	the	service	method)	to	allow	a	servlet
to	handle	a	TRACE	request.

protected

	long

getLastModified(HttpServletRequest	req)	
										Returns	the	time	the	HttpServletRequest	object	was	last
modified,	in	milliseconds	since	midnight	January	1,	1970	GMT.

protected

service(HttpServletRequest	req,	HttpServletResponse	resp)	
										Receives	standard	HTTP	requests	from	the	public	service

	void method	and	dispatches	them	to	the	doXXX	methods	defined	in	this
class.

	void
service(ServletRequest	req,	ServletResponse	res)	
										Dispatches	client	requests	to	the	protected	service	method.

	
Methods	inherited	from	class	javax.servlet.GenericServlet
destroy,	getInitParameter,	getInitParameterNames,

getServletConfig,	getServletContext,	getServletInfo,

getServletName,	init,	init,	log,	log

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

toString,	wait,	wait,	wait

	

Constructor	Detail

HttpServlet

public	HttpServlet()

Does	nothing,	because	this	is	an	abstract	class.

Method	Detail

doGet

protected	void	doGet(HttpServletRequest	req,

																					HttpServletResponse	resp)

														throws	ServletException,

																					java.io.IOException

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
GET	request.

Overriding	this	method	to	support	a	GET	request	also	automatically
supports	an	HTTP	HEAD	request.	A	HEAD	request	is	a	GET	request	that

returns	no	body	in	the	response,	only	the	request	header	fields.

When	overriding	this	method,	read	the	request	data,	write	the	response
headers,	get	the	response's	writer	or	output	stream	object,	and	finally,	write
the	response	data.	It's	best	to	include	content	type	and	encoding.	When
using	a	PrintWriter	object	to	return	the	response,	set	the	content	type
before	accessing	the	PrintWriter	object.

The	servlet	container	must	write	the	headers	before	committing	the
response,	because	in	HTTP	the	headers	must	be	sent	before	the	response
body.

Where	possible,	set	the	Content-Length	header	(with	the
ServletResponse.setContentLength(int)	method),	to	allow	the	servlet
container	to	use	a	persistent	connection	to	return	its	response	to	the	client,
improving	performance.	The	content	length	is	automatically	set	if	the	entire
response	fits	inside	the	response	buffer.

The	GET	method	should	be	safe,	that	is,	without	any	side	effects	for	which
users	are	held	responsible.	For	example,	most	form	queries	have	no	side
effects.	If	a	client	request	is	intended	to	change	stored	data,	the	request
should	use	some	other	HTTP	method.

The	GET	method	should	also	be	idempotent,	meaning	that	it	can	be	safely
repeated.	Sometimes	making	a	method	safe	also	makes	it	idempotent.	For
example,	repeating	queries	is	both	safe	and	idempotent,	but	buying	a
product	online	or	modifying	data	is	neither	safe	nor	idempotent.

If	the	request	is	incorrectly	formatted,	doGet	returns	an	HTTP	"Bad
Request"	message.

Parameters:
req	-	an	HttpServletRequest	object	that	contains	the	request	the
client	has	made	of	the	servlet
resp	-	an	HttpServletResponse	object	that	contains	the	response	the
servlet	sends	to	the	client

Throws:
java.io.IOException	-	if	an	input	or	output	error	is	detected	when	the
servlet	handles	the	GET	request
ServletException	-	if	the	request	for	the	GET	could	not	be	handled

See	Also:
ServletResponse.setContentType(java.lang.String)

getLastModified

protected	long	getLastModified(HttpServletRequest	req)

Returns	the	time	the	HttpServletRequest	object	was	last	modified,	in
milliseconds	since	midnight	January	1,	1970	GMT.	If	the	time	is	unknown,
this	method	returns	a	negative	number	(the	default).

Servlets	that	support	HTTP	GET	requests	and	can	quickly	determine	their
last	modification	time	should	override	this	method.	This	makes	browser	and
proxy	caches	work	more	effectively,	reducing	the	load	on	server	and
network	resources.

Parameters:
req	-	the	HttpServletRequest	object	that	is	sent	to	the	servlet

Returns:
a	long	integer	specifying	the	time	the	HttpServletRequest	object	was
last	modified,	in	milliseconds	since	midnight,	January	1,	1970	GMT,
or	-1	if	the	time	is	not	known

doHead

protected	void	doHead(HttpServletRequest	req,

																						HttpServletResponse	resp)

															throws	ServletException,

																						java.io.IOException

Receives	an	HTTP	HEAD	request	from	the	protected	service	method	and
handles	the	request.	The	client	sends	a	HEAD	request	when	it	wants	to	see
only	the	headers	of	a	response,	such	as	Content-Type	or	Content-Length.
The	HTTP	HEAD	method	counts	the	output	bytes	in	the	response	to	set	the
Content-Length	header	accurately.

If	you	override	this	method,	you	can	avoid	computing	the	response	body
and	just	set	the	response	headers	directly	to	improve	performance.	Make

sure	that	the	doHead	method	you	write	is	both	safe	and	idempotent	(that	is,
protects	itself	from	being	called	multiple	times	for	one	HTTP	HEAD
request).

If	the	HTTP	HEAD	request	is	incorrectly	formatted,	doHead	returns	an
HTTP	"Bad	Request"	message.

Parameters:
req	-	the	request	object	that	is	passed	to	the	servlet
resp	-	the	response	object	that	the	servlet	uses	to	return	the	headers	to
the	clien

Throws:
java.io.IOException	-	if	an	input	or	output	error	occurs
ServletException	-	if	the	request	for	the	HEAD	could	not	be	handled

doPost

protected	void	doPost(HttpServletRequest	req,

																						HttpServletResponse	resp)

															throws	ServletException,

																						java.io.IOException

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
POST	request.	The	HTTP	POST	method	allows	the	client	to	send	data	of
unlimited	length	to	the	Web	server	a	single	time	and	is	useful	when	posting
information	such	as	credit	card	numbers.

When	overriding	this	method,	read	the	request	data,	write	the	response
headers,	get	the	response's	writer	or	output	stream	object,	and	finally,	write
the	response	data.	It's	best	to	include	content	type	and	encoding.	When
using	a	PrintWriter	object	to	return	the	response,	set	the	content	type
before	accessing	the	PrintWriter	object.

The	servlet	container	must	write	the	headers	before	committing	the
response,	because	in	HTTP	the	headers	must	be	sent	before	the	response
body.

Where	possible,	set	the	Content-Length	header	(with	the
ServletResponse.setContentLength(int)	method),	to	allow	the	servlet

container	to	use	a	persistent	connection	to	return	its	response	to	the	client,
improving	performance.	The	content	length	is	automatically	set	if	the	entire
response	fits	inside	the	response	buffer.

When	using	HTTP	1.1	chunked	encoding	(which	means	that	the	response
has	a	Transfer-Encoding	header),	do	not	set	the	Content-Length	header.

This	method	does	not	need	to	be	either	safe	or	idempotent.	Operations
requested	through	POST	can	have	side	effects	for	which	the	user	can	be
held	accountable,	for	example,	updating	stored	data	or	buying	items	online.

If	the	HTTP	POST	request	is	incorrectly	formatted,	doPost	returns	an
HTTP	"Bad	Request"	message.

Parameters:
req	-	an	HttpServletRequest	object	that	contains	the	request	the
client	has	made	of	the	servlet
resp	-	an	HttpServletResponse	object	that	contains	the	response	the
servlet	sends	to	the	client

Throws:
java.io.IOException	-	if	an	input	or	output	error	is	detected	when	the
servlet	handles	the	request
ServletException	-	if	the	request	for	the	POST	could	not	be	handled

See	Also:
ServletOutputStream,
ServletResponse.setContentType(java.lang.String)

doPut

protected	void	doPut(HttpServletRequest	req,

																					HttpServletResponse	resp)

														throws	ServletException,

																					java.io.IOException

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
PUT	request.	The	PUT	operation	allows	a	client	to	place	a	file	on	the	server
and	is	similar	to	sending	a	file	by	FTP.

When	overriding	this	method,	leave	intact	any	content	headers	sent	with	the

request	(including	Content-Length,	Content-Type,	Content-Transfer-
Encoding,	Content-Encoding,	Content-Base,	Content-Language,	Content-
Location,	Content-MD5,	and	Content-Range).	If	your	method	cannot
handle	a	content	header,	it	must	issue	an	error	message	(HTTP	501	-	Not
Implemented)	and	discard	the	request.	For	more	information	on	HTTP	1.1,
see	RFC	2068	.

This	method	does	not	need	to	be	either	safe	or	idempotent.	Operations	that
doPut	performs	can	have	side	effects	for	which	the	user	can	be	held
accountable.	When	using	this	method,	it	may	be	useful	to	save	a	copy	of	the
affected	URL	in	temporary	storage.

If	the	HTTP	PUT	request	is	incorrectly	formatted,	doPut	returns	an	HTTP
"Bad	Request"	message.

Parameters:
req	-	the	HttpServletRequest	object	that	contains	the	request	the
client	made	of	the	servlet
resp	-	the	HttpServletResponse	object	that	contains	the	response	the
servlet	returns	to	the	client

Throws:
java.io.IOException	-	if	an	input	or	output	error	occurs	while	the
servlet	is	handling	the	PUT	request
ServletException	-	if	the	request	for	the	PUT	cannot	be	handled

doDelete

protected	void	doDelete(HttpServletRequest	req,

																								HttpServletResponse	resp)

																	throws	ServletException,

																								java.io.IOException

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
DELETE	request.	The	DELETE	operation	allows	a	client	to	remove	a
document	or	Web	page	from	the	server.

This	method	does	not	need	to	be	either	safe	or	idempotent.	Operations
requested	through	DELETE	can	have	side	effects	for	which	users	can	be
held	accountable.	When	using	this	method,	it	may	be	useful	to	save	a	copy

of	the	affected	URL	in	temporary	storage.

If	the	HTTP	DELETE	request	is	incorrectly	formatted,	doDelete	returns	an
HTTP	"Bad	Request"	message.

Parameters:
req	-	the	HttpServletRequest	object	that	contains	the	request	the
client	made	of	the	servlet
resp	-	the	HttpServletResponse	object	that	contains	the	response	the
servlet	returns	to	the	client

Throws:
java.io.IOException	-	if	an	input	or	output	error	occurs	while	the
servlet	is	handling	the	DELETE	request
ServletException	-	if	the	request	for	the	DELETE	cannot	be	handled

doOptions

protected	void	doOptions(HttpServletRequest	req,

																									HttpServletResponse	resp)

																		throws	ServletException,

																									java.io.IOException

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
OPTIONS	request.	The	OPTIONS	request	determines	which	HTTP
methods	the	server	supports	and	returns	an	appropriate	header.	For
example,	if	a	servlet	overrides	doGet,	this	method	returns	the	following
header:

Allow:	GET,	HEAD,	TRACE,	OPTIONS

There's	no	need	to	override	this	method	unless	the	servlet	implements	new
HTTP	methods,	beyond	those	implemented	by	HTTP	1.1.

Parameters:
req	-	the	HttpServletRequest	object	that	contains	the	request	the
client	made	of	the	servlet
resp	-	the	HttpServletResponse	object	that	contains	the	response	the
servlet	returns	to	the	client

Throws:

java.io.IOException	-	if	an	input	or	output	error	occurs	while	the
servlet	is	handling	the	OPTIONS	request
ServletException	-	if	the	request	for	the	OPTIONS	cannot	be	handled

doTrace

protected	void	doTrace(HttpServletRequest	req,

																							HttpServletResponse	resp)

																throws	ServletException,

																							java.io.IOException

Called	by	the	server	(via	the	service	method)	to	allow	a	servlet	to	handle	a
TRACE	request.	A	TRACE	returns	the	headers	sent	with	the	TRACE
request	to	the	client,	so	that	they	can	be	used	in	debugging.	There's	no	need
to	override	this	method.
Parameters:

req	-	the	HttpServletRequest	object	that	contains	the	request	the
client	made	of	the	servlet
resp	-	the	HttpServletResponse	object	that	contains	the	response	the
servlet	returns	to	the	client

Throws:
java.io.IOException	-	if	an	input	or	output	error	occurs	while	the
servlet	is	handling	the	TRACE	request
ServletException	-	if	the	request	for	the	TRACE	cannot	be	handled

service

protected	void	service(HttpServletRequest	req,

																							HttpServletResponse	resp)

																throws	ServletException,

																							java.io.IOException

Receives	standard	HTTP	requests	from	the	public	service	method	and
dispatches	them	to	the	doXXX	methods	defined	in	this	class.	This	method	is
an	HTTP-specific	version	of	the
Servlet.service(javax.servlet.ServletRequest,

javax.servlet.ServletResponse)	method.	There's	no	need	to	override
this	method.
Parameters:

req	-	the	HttpServletRequest	object	that	contains	the	request	the
client	made	of	the	servlet
resp	-	the	HttpServletResponse	object	that	contains	the	response	the
servlet	returns	to	the	client

Throws:
java.io.IOException	-	if	an	input	or	output	error	occurs	while	the
servlet	is	handling	the	TRACE	request
ServletException	-	if	the	request	for	the	TRACE	cannot	be	handled

See	Also:
Servlet.service(javax.servlet.ServletRequest,

javax.servlet.ServletResponse)

service

public	void	service(ServletRequest	req,

																				ServletResponse	res)

													throws	ServletException,

																				java.io.IOException

Dispatches	client	requests	to	the	protected	service	method.	There's	no	need
to	override	this	method.
Parameters:

req	-	the	HttpServletRequest	object	that	contains	the	request	the
client	made	of	the	servlet
resp	-	the	HttpServletResponse	object	that	contains	the	response	the
servlet	returns	to	the	client

Throws:
java.io.IOException	-	if	an	input	or	output	error	occurs	while	the
servlet	is	handling	the	TRACE	request
ServletException	-	if	the	request	for	the	TRACE	cannot	be	handled

Overrides:
service	in	class	GenericServlet

See	Also:
Servlet.service(javax.servlet.ServletRequest,

javax.servlet.ServletResponse)

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Interface	HttpServletRequest

All	Known	Implementing	Classes:
HttpServletRequestWrapper

public	abstract	interface	HttpServletRequest
extends	ServletRequest

Extends	the	ServletRequest	interface	to	provide	request	information	for	HTTP
servlets.

The	servlet	container	creates	an	HttpServletRequest	object	and	passes	it	as	an
argument	to	the	servlet's	service	methods	(doGet,	doPost,	etc).

Field	Summary
static	java.lang.String

BASIC_AUTH	
										String	identifier	for	Basic	authentication.

static	java.lang.String
CLIENT_CERT_AUTH	
										String	identifier	for	Basic	authentication.

static	java.lang.String
DIGEST_AUTH	
										String	identifier	for	Basic	authentication.

static	java.lang.String
FORM_AUTH	
										String	identifier	for	Basic	authentication.

	

Method	Summary

	java.lang.String

getAuthType()	
										Returns	the	name	of	the	authentication	scheme
used	to	protect	the	servlet.

	java.lang.String

getContextPath()	
										Returns	the	portion	of	the	request	URI	that
indicates	the	context	of	the	request.
getCookies()	

	Cookie[] 										Returns	an	array	containing	all	of	the	Cookie
objects	the	client	sent	with	this	request.

	long

getDateHeader(java.lang.String	name)	
										Returns	the	value	of	the	specified	request	header	as
a	long	value	that	represents	a	Date	object.

	java.lang.String

getHeader(java.lang.String	name)	
										Returns	the	value	of	the	specified	request	header	as
a	String.

	java.util.Enumeration

getHeaderNames()	
										Returns	an	enumeration	of	all	the	header	names
this	request	contains.

	java.util.Enumeration

getHeaders(java.lang.String	name)	
										Returns	all	the	values	of	the	specified	request
header	as	an	Enumeration	of	String	objects.

	int

getIntHeader(java.lang.String	name)	
										Returns	the	value	of	the	specified	request	header	as
an	int.

	java.lang.String

getMethod()	
										Returns	the	name	of	the	HTTP	method	with	which
this	request	was	made,	for	example,	GET,	POST,	or	PUT.

	java.lang.String

getPathInfo()	
										Returns	any	extra	path	information	associated	with
the	URL	the	client	sent	when	it	made	this	request.

	java.lang.String

getPathTranslated()	
										Returns	any	extra	path	information	after	the	servlet
name	but	before	the	query	string,	and	translates	it	to	a
real	path.

	java.lang.String

getQueryString()	
										Returns	the	query	string	that	is	contained	in	the
request	URL	after	the	path.

	java.lang.String

getRemoteUser()	
										Returns	the	login	of	the	user	making	this	request,	if
the	user	has	been	authenticated,	or	null	if	the	user	has
not	been	authenticated.

	java.lang.String

getRequestedSessionId()	
										Returns	the	session	ID	specified	by	the	client.

	java.lang.String

getRequestURI()	
										Returns	the	part	of	this	request's	URL	from	the
protocol	name	up	to	the	query	string	in	the	first	line	of
the	HTTP	request.

	java.lang.StringBuffer

getRequestURL()	
										Reconstructs	the	URL	the	client	used	to	make	the
request.

	java.lang.String

getServletPath()	
										Returns	the	part	of	this	request's	URL	that	calls	the
servlet.

	HttpSession

getSession()	
										Returns	the	current	session	associated	with	this
request,	or	if	the	request	does	not	have	a	session,	creates
one.

	HttpSession

getSession(boolean	create)	
										Returns	the	current	HttpSession	associated	with
this	request	or,	if	if	there	is	no	current	session	and	create
is	true,	returns	a	new	session.

	java.security.Principal

getUserPrincipal()	
										Returns	a	java.security.Principal	object
containing	the	name	of	the	current	authenticated	user.

	boolean

isRequestedSessionIdFromCookie()	
										Checks	whether	the	requested	session	ID	came	in
as	a	cookie.

	boolean

isRequestedSessionIdFromUrl()	
										Deprecated.	As	of	Version	2.1	of	the	Java	Servlet
API,	use	isRequestedSessionIdFromURL()	instead.

	boolean

isRequestedSessionIdFromURL()	
										Checks	whether	the	requested	session	ID	came	in
as	part	of	the	request	URL.

	boolean

isRequestedSessionIdValid()	
										Checks	whether	the	requested	session	ID	is	still
valid.

	boolean

isUserInRole(java.lang.String	role)	
										Returns	a	boolean	indicating	whether	the

authenticated	user	is	included	in	the	specified	logical
"role".

	
Methods	inherited	from	interface	javax.servlet.ServletRequest
getAttribute,	getAttributeNames,	getCharacterEncoding,

getContentLength,	getContentType,	getInputStream,	getLocale,

getLocales,	getParameter,	getParameterMap,	getParameterNames,

getParameterValues,	getProtocol,	getReader,	getRealPath,

getRemoteAddr,	getRemoteHost,	getRequestDispatcher,	getScheme,

getServerName,	getServerPort,	isSecure,	removeAttribute,

setAttribute,	setCharacterEncoding

	

Field	Detail

BASIC_AUTH

public	static	final	java.lang.String	BASIC_AUTH

String	identifier	for	Basic	authentication.	Value	"BASIC"

FORM_AUTH

public	static	final	java.lang.String	FORM_AUTH

String	identifier	for	Basic	authentication.	Value	"FORM"

CLIENT_CERT_AUTH

public	static	final	java.lang.String	CLIENT_CERT_AUTH

String	identifier	for	Basic	authentication.	Value	"CLIENT_CERT"

DIGEST_AUTH

public	static	final	java.lang.String	DIGEST_AUTH

String	identifier	for	Basic	authentication.	Value	"DIGEST"

Method	Detail

getAuthType

public	java.lang.String	getAuthType()

Returns	the	name	of	the	authentication	scheme	used	to	protect	the	servlet.
All	servlet	containers	support	basic,	form	and	client	certificate
authentication,	and	may	additionally	support	digest	authentication.	If	the
servlet	is	not	authenticated	null	is	returned.

Same	as	the	value	of	the	CGI	variable	AUTH_TYPE.

Returns:
one	of	the	static	members	BASIC_AUTH,	FORM_AUTH,
CLIENT_CERT_AUTH,	DIGEST_AUTH	(suitable	for	==
comparison)	indicating	the	authentication	scheme,	or	null	if	the
request	was	not	authenticated.

getCookies

public	Cookie[]	getCookies()

Returns	an	array	containing	all	of	the	Cookie	objects	the	client	sent	with
this	request.	This	method	returns	null	if	no	cookies	were	sent.
Returns:

an	array	of	all	the	Cookies	included	with	this	request,	or	null	if	the
request	has	no	cookies

getDateHeader

public	long	getDateHeader(java.lang.String	name)

Returns	the	value	of	the	specified	request	header	as	a	long	value	that
represents	a	Date	object.	Use	this	method	with	headers	that	contain	dates,

such	as	If-Modified-Since.

The	date	is	returned	as	the	number	of	milliseconds	since	January	1,	1970
GMT.	The	header	name	is	case	insensitive.

If	the	request	did	not	have	a	header	of	the	specified	name,	this	method
returns	-1.	If	the	header	can't	be	converted	to	a	date,	the	method	throws	an
IllegalArgumentException.

Parameters:
name	-	a	String	specifying	the	name	of	the	header

Returns:
a	long	value	representing	the	date	specified	in	the	header	expressed	as
the	number	of	milliseconds	since	January	1,	1970	GMT,	or	-1	if	the
named	header	was	not	included	with	the	reqest

Throws:
java.lang.IllegalArgumentException	-	If	the	header	value	can't	be
converted	to	a	date

getHeader

public	java.lang.String	getHeader(java.lang.String	name)

Returns	the	value	of	the	specified	request	header	as	a	String.	If	the	request
did	not	include	a	header	of	the	specified	name,	this	method	returns	null.
The	header	name	is	case	insensitive.	You	can	use	this	method	with	any
request	header.
Parameters:

name	-	a	String	specifying	the	header	name
Returns:

a	String	containing	the	value	of	the	requested	header,	or	null	if	the
request	does	not	have	a	header	of	that	name

getHeaders

public	java.util.Enumeration	getHeaders(java.lang.String	name)

Returns	all	the	values	of	the	specified	request	header	as	an	Enumeration	of
String	objects.

Some	headers,	such	as	Accept-Language	can	be	sent	by	clients	as	several
headers	each	with	a	different	value	rather	than	sending	the	header	as	a
comma	separated	list.

If	the	request	did	not	include	any	headers	of	the	specified	name,	this
method	returns	an	empty	Enumeration.	The	header	name	is	case
insensitive.	You	can	use	this	method	with	any	request	header.

Parameters:
name	-	a	String	specifying	the	header	name

Returns:
an	Enumeration	containing	the	values	of	the	requested	header.	If	the
request	does	not	have	any	headers	of	that	name	return	an	empty
enumeration.	If	the	container	does	not	allow	access	to	header
information,	return	null

getHeaderNames

public	java.util.Enumeration	getHeaderNames()

Returns	an	enumeration	of	all	the	header	names	this	request	contains.	If	the
request	has	no	headers,	this	method	returns	an	empty	enumeration.

Some	servlet	containers	do	not	allow	do	not	allow	servlets	to	access	headers
using	this	method,	in	which	case	this	method	returns	null

Returns:
an	enumeration	of	all	the	header	names	sent	with	this	request;	if	the
request	has	no	headers,	an	empty	enumeration;	if	the	servlet	container
does	not	allow	servlets	to	use	this	method,	null

getIntHeader

public	int	getIntHeader(java.lang.String	name)

Returns	the	value	of	the	specified	request	header	as	an	int.	If	the	request
does	not	have	a	header	of	the	specified	name,	this	method	returns	-1.	If	the
header	cannot	be	converted	to	an	integer,	this	method	throws	a
NumberFormatException.

The	header	name	is	case	insensitive.

Parameters:
name	-	a	String	specifying	the	name	of	a	request	header

Returns:
an	integer	expressing	the	value	of	the	request	header	or	-1	if	the
request	doesn't	have	a	header	of	this	name

Throws:
java.lang.NumberFormatException	-	If	the	header	value	can't	be
converted	to	an	int

getMethod

public	java.lang.String	getMethod()

Returns	the	name	of	the	HTTP	method	with	which	this	request	was	made,
for	example,	GET,	POST,	or	PUT.	Same	as	the	value	of	the	CGI	variable
REQUEST_METHOD.
Returns:

a	String	specifying	the	name	of	the	method	with	which	this	request
was	made

getPathInfo

public	java.lang.String	getPathInfo()

Returns	any	extra	path	information	associated	with	the	URL	the	client	sent
when	it	made	this	request.	The	extra	path	information	follows	the	servlet
path	but	precedes	the	query	string.	This	method	returns	null	if	there	was	no
extra	path	information.

Same	as	the	value	of	the	CGI	variable	PATH_INFO.

Returns:
a	String,	decoded	by	the	web	container,	specifying	extra	path
information	that	comes	after	the	servlet	path	but	before	the	query
string	in	the	request	URL;	or	null	if	the	URL	does	not	have	any	extra
path	information

getPathTranslated

public	java.lang.String	getPathTranslated()

Returns	any	extra	path	information	after	the	servlet	name	but	before	the
query	string,	and	translates	it	to	a	real	path.	Same	as	the	value	of	the	CGI
variable	PATH_TRANSLATED.

If	the	URL	does	not	have	any	extra	path	information,	this	method	returns
null.	The	web	container	does	not	decode	thins	string.

Returns:
a	String	specifying	the	real	path,	or	null	if	the	URL	does	not	have
any	extra	path	information

getContextPath

public	java.lang.String	getContextPath()

Returns	the	portion	of	the	request	URI	that	indicates	the	context	of	the
request.	The	context	path	always	comes	first	in	a	request	URI.	The	path
starts	with	a	"/"	character	but	does	not	end	with	a	"/"	character.	For	servlets
in	the	default	(root)	context,	this	method	returns	"".	The	container	does	not
decode	this	string.
Returns:

a	String	specifying	the	portion	of	the	request	URI	that	indicates	the
context	of	the	request

getQueryString

public	java.lang.String	getQueryString()

Returns	the	query	string	that	is	contained	in	the	request	URL	after	the	path.
This	method	returns	null	if	the	URL	does	not	have	a	query	string.	Same	as
the	value	of	the	CGI	variable	QUERY_STRING.
Returns:

a	String	containing	the	query	string	or	null	if	the	URL	contains	no
query	string.	The	value	is	not	decoded	by	the	container.

getRemoteUser

public	java.lang.String	getRemoteUser()

Returns	the	login	of	the	user	making	this	request,	if	the	user	has	been
authenticated,	or	null	if	the	user	has	not	been	authenticated.	Whether	the
user	name	is	sent	with	each	subsequent	request	depends	on	the	browser	and
type	of	authentication.	Same	as	the	value	of	the	CGI	variable
REMOTE_USER.
Returns:

a	String	specifying	the	login	of	the	user	making	this	request,	or	null

isUserInRole

public	boolean	isUserInRole(java.lang.String	role)

Returns	a	boolean	indicating	whether	the	authenticated	user	is
included	in	the	specified	logical	"role".	Roles	and	role	membership	can
be	defined	using	deployment	descriptors.	If	the	user	has	not	been
authenticated,	the	method	returns	false.
Parameters:

role	-	a	String	specifying	the	name	of	the	role
Returns:

a	boolean	indicating	whether	the	user	making	this	request
belongs	to	a	given	role;	false	if	the	user	has	not	been
authenticated

getUserPrincipal

public	java.security.Principal	getUserPrincipal()

Returns	a	java.security.Principal	object	containing	the	name	of
the	current	authenticated	user.	If	the	user	has	not	been	authenticated,
the	method	returns	null.
Returns:

a	java.security.Principal	containing	the	name	of	the	user
making	this	request;	null	if	the	user	has	not	been	authenticated

getRequestedSessionId

public	java.lang.String	getRequestedSessionId()

Returns	the	session	ID	specified	by	the	client.	This	may	not	be	the
same	as	the	ID	of	the	actual	session	in	use.	For	example,	if	the	request
specified	an	old	(expired)	session	ID	and	the	server	has	started	a	new
session,	this	method	gets	a	new	session	with	a	new	ID.	If	the	request
did	not	specify	a	session	ID,	this	method	returns	null.
Returns:

a	String	specifying	the	session	ID,	or	null	if	the	request	did	not
specify	a	session	ID

See	Also:
isRequestedSessionIdValid()

getRequestURI

public	java.lang.String	getRequestURI()

Returns	the	part	of	this	request's	URL	from	the	protocol	name	up	to	the
query	string	in	the	first	line	of	the	HTTP	request.	The	web	container
does	not	decode	this	String.	For	example:
First	line	of	HTTP	request Returned	Value
POST	/some/path.html	HTTP/1.1 /some/path.html
GET	http://foo.bar/a.html	HTTP/1.0 /a.html
HEAD	/xyz?a=b	HTTP/1.1 /xyz

To	reconstruct	an	URL	with	a	scheme	and	host,	use
HttpUtils.getRequestURL(javax.servlet.http.HttpServletRequest)

Returns:
a	String	containing	the	part	of	the	URL	from	the	protocol	name
up	to	the	query	string

See	Also:
HttpUtils.getRequestURL(javax.servlet.http.HttpServletRequest)

getRequestURL

public	java.lang.StringBuffer	getRequestURL()

Reconstructs	the	URL	the	client	used	to	make	the	request.	The
returned	URL	contains	a	protocol,	server	name,	port	number,	and
server	path,	but	it	does	not	include	query	string	parameters.

Because	this	method	returns	a	StringBuffer,	not	a	string,	you	can
modify	the	URL	easily,	for	example,	to	append	query	parameters.

This	method	is	useful	for	creating	redirect	messages	and	for	reporting
errors.

Returns:
a	StringBuffer	object	containing	the	reconstructed	URL

getServletPath

public	java.lang.String	getServletPath()

Returns	the	part	of	this	request's	URL	that	calls	the	servlet.	This
includes	either	the	servlet	name	or	a	path	to	the	servlet,	but	does	not
include	any	extra	path	information	or	a	query	string.	Same	as	the	value
of	the	CGI	variable	SCRIPT_NAME.
Returns:

a	String	containing	the	name	or	path	of	the	servlet	being	called,
as	specified	in	the	request	URL,	decoded.

getSession

public	HttpSession	getSession(boolean	create)

Returns	the	current	HttpSession	associated	with	this	request	or,	if	if
there	is	no	current	session	and	create	is	true,	returns	a	new	session.

If	create	is	false	and	the	request	has	no	valid	HttpSession,	this
method	returns	null.

To	make	sure	the	session	is	properly	maintained,	you	must	call	this
method	before	the	response	is	committed.	If	the	container	is	using
cookies	to	maintain	session	integrity	and	is	asked	to	create	a	new
session	when	the	response	is	committed,	an	IllegalStateException	is
thrown.

Parameters:
true	-	to	create	a	new	session	for	this	request	if	necessary;	false
to	return	null	if	there's	no	current	session

Returns:
the	HttpSession	associated	with	this	request	or	null	if	create	is
false	and	the	request	has	no	valid	session

See	Also:
getSession()

getSession

public	HttpSession	getSession()

Returns	the	current	session	associated	with	this	request,	or	if	the
request	does	not	have	a	session,	creates	one.
Returns:

the	HttpSession	associated	with	this	request
See	Also:

getSession(boolean)

isRequestedSessionIdValid

public	boolean	isRequestedSessionIdValid()

Checks	whether	the	requested	session	ID	is	still	valid.
Returns:

true	if	this	request	has	an	id	for	a	valid	session	in	the	current

session	context;	false	otherwise
See	Also:

getRequestedSessionId(),	getSession(boolean),
HttpSessionContext

isRequestedSessionIdFromCookie

public	boolean	isRequestedSessionIdFromCookie()

Checks	whether	the	requested	session	ID	came	in	as	a	cookie.
Returns:

true	if	the	session	ID	came	in	as	a	cookie;	otherwise,	false
See	Also:

getSession(boolean)

isRequestedSessionIdFromURL

public	boolean	isRequestedSessionIdFromURL()

Checks	whether	the	requested	session	ID	came	in	as	part	of	the	request
URL.
Returns:

true	if	the	session	ID	came	in	as	part	of	a	URL;	otherwise,	false
See	Also:

getSession(boolean)

isRequestedSessionIdFromUrl

public	boolean	isRequestedSessionIdFromUrl()

Deprecated.	As	of	Version	2.1	of	the	Java	Servlet	API,	use
isRequestedSessionIdFromURL()	instead.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Class	HttpServletRequestWrapper
java.lang.Object

		|

		+--javax.servlet.ServletRequestWrapper

								|

								+--javax.servlet.http.HttpServletRequestWrapper

public	class	HttpServletRequestWrapper
extends	ServletRequestWrapper
implements	HttpServletRequest

Provides	a	convenient	implementation	of	the	HttpServletRequest	interface	that
can	be	subclassed	by	developers	wishing	to	adapt	the	request	to	a	Servlet.	This
class	implements	the	Wrapper	or	Decorator	pattern.	Methods	default	to	calling
through	to	the	wrapped	request	object.

Since:
v	2.3

See	Also:
HttpServletRequest

Constructor	Summary
HttpServletRequestWrapper(HttpServletRequest	request)	
										Constructs	a	request	object	wrapping	the	given	request.
	

Method	Summary

	java.lang.String

getAuthType()	
										The	default	behavior	of	this	method	is	to	return
getAuthType()	on	the	wrapped	request	object.

	java.lang.String

getContextPath()	
										The	default	behavior	of	this	method	is	to	return
getContextPath()	on	the	wrapped	request	object.
getCookies()	

	Cookie[] 										The	default	behavior	of	this	method	is	to	return
getCookies()	on	the	wrapped	request	object.

	long

getDateHeader(java.lang.String	name)	
										The	default	behavior	of	this	method	is	to	return
getDateHeader(String	name)	on	the	wrapped	request
object.

	java.lang.String

getHeader(java.lang.String	name)	
										The	default	behavior	of	this	method	is	to	return
getHeader(String	name)	on	the	wrapped	request	object.

	java.util.Enumeration

getHeaderNames()	
										The	default	behavior	of	this	method	is	to	return
getHeaderNames()	on	the	wrapped	request	object.

	java.util.Enumeration

getHeaders(java.lang.String	name)	
										The	default	behavior	of	this	method	is	to	return
getHeaders(String	name)	on	the	wrapped	request	object.

	int

getIntHeader(java.lang.String	name)	
										The	default	behavior	of	this	method	is	to	return
getIntHeader(String	name)	on	the	wrapped	request
object.

	java.lang.String

getMethod()	
										The	default	behavior	of	this	method	is	to	return
getMethod()	on	the	wrapped	request	object.

	java.lang.String

getPathInfo()	
										The	default	behavior	of	this	method	is	to	return
getPathInfo()	on	the	wrapped	request	object.

	java.lang.String

getPathTranslated()	
										The	default	behavior	of	this	method	is	to	return
getPathTranslated()	on	the	wrapped	request	object.

	java.lang.String

getQueryString()	
										The	default	behavior	of	this	method	is	to	return
getQueryString()	on	the	wrapped	request	object.

	java.lang.String

getRemoteUser()	
										The	default	behavior	of	this	method	is	to	return
getRemoteUser()	on	the	wrapped	request	object.

	java.lang.String

getRequestedSessionId()	

										The	default	behavior	of	this	method	is	to	return
getRequestedSessionId()	on	the	wrapped	request	object.

	java.lang.String

getRequestURI()	
										The	default	behavior	of	this	method	is	to	return
getRequestURI()	on	the	wrapped	request	object.

	java.lang.StringBuffer

getRequestURL()	
										The	default	behavior	of	this	method	is	to	return
getRequestURL()	on	the	wrapped	request	object.

	java.lang.String

getServletPath()	
										The	default	behavior	of	this	method	is	to	return
getServletPath()	on	the	wrapped	request	object.

	HttpSession

getSession()	
										The	default	behavior	of	this	method	is	to	return
getSession()	on	the	wrapped	request	object.

	HttpSession

getSession(boolean	create)	
										The	default	behavior	of	this	method	is	to	return
getSession(boolean	create)	on	the	wrapped	request
object.

	java.security.Principal

getUserPrincipal()	
										The	default	behavior	of	this	method	is	to	return
getUserPrincipal()	on	the	wrapped	request	object.

	boolean

isRequestedSessionIdFromCookie()	
										The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdFromCookie()	on	the	wrapped
request	object.

	boolean

isRequestedSessionIdFromUrl()	
										The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdFromUrl()	on	the	wrapped	request
object.

	boolean

isRequestedSessionIdFromURL()	
										The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdFromURL()	on	the	wrapped
request	object.

	boolean

isRequestedSessionIdValid()	
										The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdValid()	on	the	wrapped	request

object.

	boolean

isUserInRole(java.lang.String	role)	
										The	default	behavior	of	this	method	is	to	return
isUserInRole(String	role)	on	the	wrapped	request	object.

	
Methods	inherited	from	class	javax.servlet.ServletRequestWrapper
getAttribute,	getAttributeNames,	getCharacterEncoding,

getContentLength,	getContentType,	getInputStream,	getLocale,

getLocales,	getParameter,	getParameterMap,	getParameterNames,

getParameterValues,	getProtocol,	getReader,	getRealPath,

getRemoteAddr,	getRemoteHost,	getRequest,	getRequestDispatcher,

getScheme,	getServerName,	getServerPort,	isSecure,

removeAttribute,	setAttribute,	setCharacterEncoding,	setRequest

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

toString,	wait,	wait,	wait

	

Constructor	Detail

HttpServletRequestWrapper

public	HttpServletRequestWrapper(HttpServletRequest	request)

Constructs	a	request	object	wrapping	the	given	request.
Throws:

java.lang.IllegalArgumentException	-	if	the	request	is	null

Method	Detail

getAuthType

public	java.lang.String	getAuthType()

The	default	behavior	of	this	method	is	to	return	getAuthType()	on	the
wrapped	request	object.

Specified	by:
getAuthType	in	interface	HttpServletRequest

getCookies

public	Cookie[]	getCookies()

The	default	behavior	of	this	method	is	to	return	getCookies()	on	the
wrapped	request	object.
Specified	by:

getCookies	in	interface	HttpServletRequest

getDateHeader

public	long	getDateHeader(java.lang.String	name)

The	default	behavior	of	this	method	is	to	return	getDateHeader(String
name)	on	the	wrapped	request	object.
Specified	by:

getDateHeader	in	interface	HttpServletRequest

getHeader

public	java.lang.String	getHeader(java.lang.String	name)

The	default	behavior	of	this	method	is	to	return	getHeader(String	name)	on
the	wrapped	request	object.
Specified	by:

getHeader	in	interface	HttpServletRequest

getHeaders

public	java.util.Enumeration	getHeaders(java.lang.String	name)

The	default	behavior	of	this	method	is	to	return	getHeaders(String	name)	on

the	wrapped	request	object.
Specified	by:

getHeaders	in	interface	HttpServletRequest

getHeaderNames

public	java.util.Enumeration	getHeaderNames()

The	default	behavior	of	this	method	is	to	return	getHeaderNames()	on	the
wrapped	request	object.
Specified	by:

getHeaderNames	in	interface	HttpServletRequest

getIntHeader

public	int	getIntHeader(java.lang.String	name)

The	default	behavior	of	this	method	is	to	return	getIntHeader(String	name)
on	the	wrapped	request	object.
Specified	by:

getIntHeader	in	interface	HttpServletRequest

getMethod

public	java.lang.String	getMethod()

The	default	behavior	of	this	method	is	to	return	getMethod()	on	the
wrapped	request	object.
Specified	by:

getMethod	in	interface	HttpServletRequest

getPathInfo

public	java.lang.String	getPathInfo()

The	default	behavior	of	this	method	is	to	return	getPathInfo()	on	the
wrapped	request	object.
Specified	by:

getPathInfo	in	interface	HttpServletRequest

getPathTranslated

public	java.lang.String	getPathTranslated()

The	default	behavior	of	this	method	is	to	return	getPathTranslated()	on	the
wrapped	request	object.
Specified	by:

getPathTranslated	in	interface	HttpServletRequest

getContextPath

public	java.lang.String	getContextPath()

The	default	behavior	of	this	method	is	to	return	getContextPath()	on	the
wrapped	request	object.
Specified	by:

getContextPath	in	interface	HttpServletRequest

getQueryString

public	java.lang.String	getQueryString()

The	default	behavior	of	this	method	is	to	return	getQueryString()	on	the
wrapped	request	object.
Specified	by:

getQueryString	in	interface	HttpServletRequest

getRemoteUser

public	java.lang.String	getRemoteUser()

The	default	behavior	of	this	method	is	to	return	getRemoteUser()	on	the
wrapped	request	object.
Specified	by:

getRemoteUser	in	interface	HttpServletRequest

isUserInRole

public	boolean	isUserInRole(java.lang.String	role)

The	default	behavior	of	this	method	is	to	return	isUserInRole(String	role)
on	the	wrapped	request	object.
Specified	by:

isUserInRole	in	interface	HttpServletRequest

getUserPrincipal

public	java.security.Principal	getUserPrincipal()

The	default	behavior	of	this	method	is	to	return	getUserPrincipal()	on	the
wrapped	request	object.
Specified	by:

getUserPrincipal	in	interface	HttpServletRequest

getRequestedSessionId

public	java.lang.String	getRequestedSessionId()

The	default	behavior	of	this	method	is	to	return	getRequestedSessionId()	on
the	wrapped	request	object.
Specified	by:

getRequestedSessionId	in	interface	HttpServletRequest

getRequestURI

public	java.lang.String	getRequestURI()

The	default	behavior	of	this	method	is	to	return	getRequestURI()	on	the
wrapped	request	object.
Specified	by:

getRequestURI	in	interface	HttpServletRequest

getRequestURL

public	java.lang.StringBuffer	getRequestURL()

The	default	behavior	of	this	method	is	to	return	getRequestURL()	on	the
wrapped	request	object.
Specified	by:

getRequestURL	in	interface	HttpServletRequest

getServletPath

public	java.lang.String	getServletPath()

The	default	behavior	of	this	method	is	to	return	getServletPath()	on	the
wrapped	request	object.
Specified	by:

getServletPath	in	interface	HttpServletRequest

getSession

public	HttpSession	getSession(boolean	create)

The	default	behavior	of	this	method	is	to	return	getSession(boolean	create)
on	the	wrapped	request	object.
Specified	by:

getSession	in	interface	HttpServletRequest

getSession

public	HttpSession	getSession()

The	default	behavior	of	this	method	is	to	return	getSession()	on	the
wrapped	request	object.
Specified	by:

getSession	in	interface	HttpServletRequest

isRequestedSessionIdValid

public	boolean	isRequestedSessionIdValid()

The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdValid()	on	the	wrapped	request	object.
Specified	by:

isRequestedSessionIdValid	in	interface	HttpServletRequest

isRequestedSessionIdFromCookie

public	boolean	isRequestedSessionIdFromCookie()

The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdFromCookie()	on	the	wrapped	request	object.
Specified	by:

isRequestedSessionIdFromCookie	in	interface	HttpServletRequest

isRequestedSessionIdFromURL

public	boolean	isRequestedSessionIdFromURL()

The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdFromURL()	on	the	wrapped	request	object.
Specified	by:

isRequestedSessionIdFromURL	in	interface	HttpServletRequest

isRequestedSessionIdFromUrl

public	boolean	isRequestedSessionIdFromUrl()

The	default	behavior	of	this	method	is	to	return
isRequestedSessionIdFromUrl()	on	the	wrapped	request	object.
Specified	by:

isRequestedSessionIdFromUrl	in	interface	HttpServletRequest

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Interface	HttpServletResponse

All	Known	Implementing	Classes:
HttpServletResponseWrapper

public	abstract	interface	HttpServletResponse
extends	ServletResponse

Extends	the	ServletResponse	interface	to	provide	HTTP-specific	functionality
in	sending	a	response.	For	example,	it	has	methods	to	access	HTTP	headers	and
cookies.

The	servlet	container	creates	an	HttpServletRequest	object	and	passes	it	as	an
argument	to	the	servlet's	service	methods	(doGet,	doPost,	etc).

See	Also:
ServletResponse

Field	Summary

static	int

SC_ACCEPTED	
										Status	code	(202)	indicating	that	a	request	was	accepted	for
processing,	but	was	not	completed.

static	int

SC_BAD_GATEWAY	
										Status	code	(502)	indicating	that	the	HTTP	server	received	an
invalid	response	from	a	server	it	consulted	when	acting	as	a	proxy	or
gateway.

static	int

SC_BAD_REQUEST	
										Status	code	(400)	indicating	the	request	sent	by	the	client	was
syntactically	incorrect.

static	int

SC_CONFLICT	
										Status	code	(409)	indicating	that	the	request	could	not	be
completed	due	to	a	conflict	with	the	current	state	of	the	resource.

static	int
SC_CONTINUE	
										Status	code	(100)	indicating	the	client	can	continue.

static	int

SC_CREATED	
										Status	code	(201)	indicating	the	request	succeeded	and	created
a	new	resource	on	the	server.

static	int

SC_EXPECTATION_FAILED	
										Status	code	(417)	indicating	that	the	server	could	not	meet	the
expectation	given	in	the	Expect	request	header.

static	int

SC_FORBIDDEN	
										Status	code	(403)	indicating	the	server	understood	the	request
but	refused	to	fulfill	it.

static	int

SC_GATEWAY_TIMEOUT	
										Status	code	(504)	indicating	that	the	server	did	not	receive	a
timely	response	from	the	upstream	server	while	acting	as	a	gateway
or	proxy.

static	int

SC_GONE	
										Status	code	(410)	indicating	that	the	resource	is	no	longer
available	at	the	server	and	no	forwarding	address	is	known.

static	int

SC_HTTP_VERSION_NOT_SUPPORTED	
										Status	code	(505)	indicating	that	the	server	does	not	support	or
refuses	to	support	the	HTTP	protocol	version	that	was	used	in	the
request	message.

static	int

SC_INTERNAL_SERVER_ERROR	
										Status	code	(500)	indicating	an	error	inside	the	HTTP	server
which	prevented	it	from	fulfilling	the	request.

static	int

SC_LENGTH_REQUIRED	
										Status	code	(411)	indicating	that	the	request	cannot	be	handled
without	a	defined	Content-Length.

static	int

SC_METHOD_NOT_ALLOWED	
										Status	code	(405)	indicating	that	the	method	specified	in	the
Request-Line	is	not	allowed	for	the	resource	identified	by	the
Request-URI.

static	int

SC_MOVED_PERMANENTLY	
										Status	code	(301)	indicating	that	the	resource	has	permanently
moved	to	a	new	location,	and	that	future	references	should	use	a	new
URI	with	their	requests.
SC_MOVED_TEMPORARILY	
										Status	code	(302)	indicating	that	the	resource	has	temporarily

static	int moved	to	another	location,	but	that	future	references	should	still	use
the	original	URI	to	access	the	resource.

static	int

SC_MULTIPLE_CHOICES	
										Status	code	(300)	indicating	that	the	requested	resource
corresponds	to	any	one	of	a	set	of	representations,	each	with	its	own
specific	location.

static	int

SC_NO_CONTENT	
										Status	code	(204)	indicating	that	the	request	succeeded	but	that
there	was	no	new	information	to	return.

static	int

SC_NON_AUTHORITATIVE_INFORMATION	
										Status	code	(203)	indicating	that	the	meta	information
presented	by	the	client	did	not	originate	from	the	server.

static	int

SC_NOT_ACCEPTABLE	
										Status	code	(406)	indicating	that	the	resource	identified	by	the
request	is	only	capable	of	generating	response	entities	which	have
content	characteristics	not	acceptable	according	to	the	accept
headerssent	in	the	request.

static	int

SC_NOT_FOUND	
										Status	code	(404)	indicating	that	the	requested	resource	is	not
available.

static	int

SC_NOT_IMPLEMENTED	
										Status	code	(501)	indicating	the	HTTP	server	does	not	support
the	functionality	needed	to	fulfill	the	request.

static	int

SC_NOT_MODIFIED	
										Status	code	(304)	indicating	that	a	conditional	GET	operation
found	that	the	resource	was	available	and	not	modified.

static	int
SC_OK	
										Status	code	(200)	indicating	the	request	succeeded	normally.

static	int

SC_PARTIAL_CONTENT	
										Status	code	(206)	indicating	that	the	server	has	fulfilled	the
partial	GET	request	for	the	resource.

static	int
SC_PAYMENT_REQUIRED	
										Status	code	(402)	reserved	for	future	use.
SC_PRECONDITION_FAILED	
										Status	code	(412)	indicating	that	the	precondition	given	in	one

static	int or	more	of	the	request-header	fields	evaluated	to	false	when	it	was
tested	on	the	server.

static	int

SC_PROXY_AUTHENTICATION_REQUIRED	
										Status	code	(407)	indicating	that	the	client	MUST	first
authenticate	itself	with	the	proxy.

static	int

SC_REQUEST_ENTITY_TOO_LARGE	
										Status	code	(413)	indicating	that	the	server	is	refusing	to
process	the	request	because	the	request	entity	is	larger	than	the	server
is	willing	or	able	to	process.

static	int

SC_REQUEST_TIMEOUT	
										Status	code	(408)	indicating	that	the	client	did	not	produce	a
requestwithin	the	time	that	the	server	was	prepared	to	wait.

static	int

SC_REQUEST_URI_TOO_LONG	
										Status	code	(414)	indicating	that	the	server	is	refusing	to
service	the	request	because	the	Request-URI	is	longer	than	the	server
is	willing	to	interpret.

static	int

SC_REQUESTED_RANGE_NOT_SATISFIABLE	
										Status	code	(416)	indicating	that	the	server	cannot	serve	the
requested	byte	range.

static	int

SC_RESET_CONTENT	
										Status	code	(205)	indicating	that	the	agent	SHOULD	reset	the
document	view	which	caused	the	request	to	be	sent.

static	int

SC_SEE_OTHER	
										Status	code	(303)	indicating	that	the	response	to	the	request	can
be	found	under	a	different	URI.

static	int

SC_SERVICE_UNAVAILABLE	
										Status	code	(503)	indicating	that	the	HTTP	server	is
temporarily	overloaded,	and	unable	to	handle	the	request.

static	int

SC_SWITCHING_PROTOCOLS	
										Status	code	(101)	indicating	the	server	is	switching	protocols
according	to	Upgrade	header.

static	int

SC_TEMPORARY_REDIRECT	
										Status	code	(307)	indicating	that	the	requested	resource	resides
temporarily	under	a	different	URI.
SC_UNAUTHORIZED	

static	int 										Status	code	(401)	indicating	that	the	request	requires	HTTP
authentication.

static	int

SC_UNSUPPORTED_MEDIA_TYPE	
										Status	code	(415)	indicating	that	the	server	is	refusing	to
service	the	request	because	the	entity	of	the	request	is	in	a	format	not
supported	by	the	requested	resource	for	the	requested	method.

static	int

SC_USE_PROXY	
										Status	code	(305)	indicating	that	the	requested	resource	MUST
be	accessed	through	the	proxy	given	by	the	Location	field.

	

Method	Summary
	void

addCookie(Cookie	cookie)	
										Adds	the	specified	cookie	to	the	response.

	void

addDateHeader(java.lang.String	name,	long	date)	
										Adds	a	response	header	with	the	given	name	and	date-
value.

	void

addHeader(java.lang.String	name,

java.lang.String	value)	
										Adds	a	response	header	with	the	given	name	and	value.

	void

addIntHeader(java.lang.String	name,	int	value)	
										Adds	a	response	header	with	the	given	name	and	integer
value.

	boolean

containsHeader(java.lang.String	name)	
										Returns	a	boolean	indicating	whether	the	named
response	header	has	already	been	set.

	java.lang.String

encodeRedirectUrl(java.lang.String	url)	
										Deprecated.	As	of	version	2.1,	use
encodeRedirectURL(String	url)	instead

	java.lang.String

encodeRedirectURL(java.lang.String	url)	
										Encodes	the	specified	URL	for	use	in	the	sendRedirect
method	or,	if	encoding	is	not	needed,	returns	the	URL
unchanged.

	java.lang.String

encodeUrl(java.lang.String	url)	
										Deprecated.	As	of	version	2.1,	use	encodeURL(String

url)	instead

	java.lang.String

encodeURL(java.lang.String	url)	
										Encodes	the	specified	URL	by	including	the	session	ID
in	it,	or,	if	encoding	is	not	needed,	returns	the	URL	unchanged.

	void

sendError(int	sc)	
										Sends	an	error	response	to	the	client	using	the	specified
status	code	and	clearing	the	buffer.

	void

sendError(int	sc,	java.lang.String	msg)	
										Sends	an	error	response	to	the	client	using	the	specified
status	clearing	the	buffer.

	void

sendRedirect(java.lang.String	location)	
										Sends	a	temporary	redirect	response	to	the	client	using
the	specified	redirect	location	URL.

	void

setDateHeader(java.lang.String	name,	long	date)	
										Sets	a	response	header	with	the	given	name	and	date-
value.

	void

setHeader(java.lang.String	name,

java.lang.String	value)	
										Sets	a	response	header	with	the	given	name	and	value.

	void

setIntHeader(java.lang.String	name,	int	value)	
										Sets	a	response	header	with	the	given	name	and	integer
value.

	void
setStatus(int	sc)	
										Sets	the	status	code	for	this	response.

	void

setStatus(int	sc,	java.lang.String	sm)	
										Deprecated.	As	of	version	2.1,	due	to	ambiguous
meaning	of	the	message	parameter.	To	set	a	status	code	use
setStatus(int),	to	send	an	error	with	a	description	use
sendError(int,	String).	Sets	the	status	code	and	message
for	this	response.

	
Methods	inherited	from	interface	javax.servlet.ServletResponse
flushBuffer,	getBufferSize,	getCharacterEncoding,	getLocale,

getOutputStream,	getWriter,	isCommitted,	reset,	resetBuffer,

setBufferSize,	setContentLength,	setContentType,	setLocale

	

Field	Detail

SC_CONTINUE

public	static	final	int	SC_CONTINUE

Status	code	(100)	indicating	the	client	can	continue.

SC_SWITCHING_PROTOCOLS

public	static	final	int	SC_SWITCHING_PROTOCOLS

Status	code	(101)	indicating	the	server	is	switching	protocols	according	to
Upgrade	header.

SC_OK

public	static	final	int	SC_OK

Status	code	(200)	indicating	the	request	succeeded	normally.

SC_CREATED

public	static	final	int	SC_CREATED

Status	code	(201)	indicating	the	request	succeeded	and	created	a	new
resource	on	the	server.

SC_ACCEPTED

public	static	final	int	SC_ACCEPTED

Status	code	(202)	indicating	that	a	request	was	accepted	for	processing,	but
was	not	completed.

SC_NON_AUTHORITATIVE_INFORMATION

public	static	final	int	SC_NON_AUTHORITATIVE_INFORMATION

Status	code	(203)	indicating	that	the	meta	information	presented	by	the
client	did	not	originate	from	the	server.

SC_NO_CONTENT

public	static	final	int	SC_NO_CONTENT

Status	code	(204)	indicating	that	the	request	succeeded	but	that	there	was
no	new	information	to	return.

SC_RESET_CONTENT

public	static	final	int	SC_RESET_CONTENT

Status	code	(205)	indicating	that	the	agent	SHOULD	reset	the	document
view	which	caused	the	request	to	be	sent.

SC_PARTIAL_CONTENT

public	static	final	int	SC_PARTIAL_CONTENT

Status	code	(206)	indicating	that	the	server	has	fulfilled	the	partial	GET
request	for	the	resource.

SC_MULTIPLE_CHOICES

public	static	final	int	SC_MULTIPLE_CHOICES

Status	code	(300)	indicating	that	the	requested	resource	corresponds	to	any
one	of	a	set	of	representations,	each	with	its	own	specific	location.

SC_MOVED_PERMANENTLY

public	static	final	int	SC_MOVED_PERMANENTLY

Status	code	(301)	indicating	that	the	resource	has	permanently	moved	to	a
new	location,	and	that	future	references	should	use	a	new	URI	with	their
requests.

SC_MOVED_TEMPORARILY

public	static	final	int	SC_MOVED_TEMPORARILY

Status	code	(302)	indicating	that	the	resource	has	temporarily	moved	to
another	location,	but	that	future	references	should	still	use	the	original	URI
to	access	the	resource.

SC_SEE_OTHER

public	static	final	int	SC_SEE_OTHER

Status	code	(303)	indicating	that	the	response	to	the	request	can	be	found
under	a	different	URI.

SC_NOT_MODIFIED

public	static	final	int	SC_NOT_MODIFIED

Status	code	(304)	indicating	that	a	conditional	GET	operation	found	that	the
resource	was	available	and	not	modified.

SC_USE_PROXY

public	static	final	int	SC_USE_PROXY

Status	code	(305)	indicating	that	the	requested	resource	MUST	be	accessed
through	the	proxy	given	by	the	Location	field.

SC_TEMPORARY_REDIRECT

public	static	final	int	SC_TEMPORARY_REDIRECT

Status	code	(307)	indicating	that	the	requested	resource	resides	temporarily
under	a	different	URI.	The	temporary	URI	SHOULD	be	given	by	the
Location	field	in	the	response.

SC_BAD_REQUEST

public	static	final	int	SC_BAD_REQUEST

Status	code	(400)	indicating	the	request	sent	by	the	client	was	syntactically
incorrect.

SC_UNAUTHORIZED

public	static	final	int	SC_UNAUTHORIZED

Status	code	(401)	indicating	that	the	request	requires	HTTP	authentication.

SC_PAYMENT_REQUIRED

public	static	final	int	SC_PAYMENT_REQUIRED

Status	code	(402)	reserved	for	future	use.

SC_FORBIDDEN

public	static	final	int	SC_FORBIDDEN

Status	code	(403)	indicating	the	server	understood	the	request	but	refused	to
fulfill	it.

SC_NOT_FOUND

public	static	final	int	SC_NOT_FOUND

Status	code	(404)	indicating	that	the	requested	resource	is	not	available.

SC_METHOD_NOT_ALLOWED

public	static	final	int	SC_METHOD_NOT_ALLOWED

Status	code	(405)	indicating	that	the	method	specified	in	the	Request-Line
is	not	allowed	for	the	resource	identified	by	the	Request-URI.

SC_NOT_ACCEPTABLE

public	static	final	int	SC_NOT_ACCEPTABLE

Status	code	(406)	indicating	that	the	resource	identified	by	the	request	is
only	capable	of	generating	response	entities	which	have	content
characteristics	not	acceptable	according	to	the	accept	headerssent	in	the
request.

SC_PROXY_AUTHENTICATION_REQUIRED

public	static	final	int	SC_PROXY_AUTHENTICATION_REQUIRED

Status	code	(407)	indicating	that	the	client	MUST	first	authenticate	itself
with	the	proxy.

SC_REQUEST_TIMEOUT

public	static	final	int	SC_REQUEST_TIMEOUT

Status	code	(408)	indicating	that	the	client	did	not	produce	a	requestwithin
the	time	that	the	server	was	prepared	to	wait.

SC_CONFLICT

public	static	final	int	SC_CONFLICT

Status	code	(409)	indicating	that	the	request	could	not	be	completed	due	to
a	conflict	with	the	current	state	of	the	resource.

SC_GONE

public	static	final	int	SC_GONE

Status	code	(410)	indicating	that	the	resource	is	no	longer	available	at	the
server	and	no	forwarding	address	is	known.	This	condition	SHOULD	be
considered	permanent.

SC_LENGTH_REQUIRED

public	static	final	int	SC_LENGTH_REQUIRED

Status	code	(411)	indicating	that	the	request	cannot	be	handled	without	a
defined	Content-Length.

SC_PRECONDITION_FAILED

public	static	final	int	SC_PRECONDITION_FAILED

Status	code	(412)	indicating	that	the	precondition	given	in	one	or	more	of
the	request-header	fields	evaluated	to	false	when	it	was	tested	on	the	server.

SC_REQUEST_ENTITY_TOO_LARGE

public	static	final	int	SC_REQUEST_ENTITY_TOO_LARGE

Status	code	(413)	indicating	that	the	server	is	refusing	to	process	the	request
because	the	request	entity	is	larger	than	the	server	is	willing	or	able	to

process.

SC_REQUEST_URI_TOO_LONG

public	static	final	int	SC_REQUEST_URI_TOO_LONG

Status	code	(414)	indicating	that	the	server	is	refusing	to	service	the	request
because	the	Request-URI	is	longer	than	the	server	is	willing	to	interpret.

SC_UNSUPPORTED_MEDIA_TYPE

public	static	final	int	SC_UNSUPPORTED_MEDIA_TYPE

Status	code	(415)	indicating	that	the	server	is	refusing	to	service	the	request
because	the	entity	of	the	request	is	in	a	format	not	supported	by	the
requested	resource	for	the	requested	method.

SC_REQUESTED_RANGE_NOT_SATISFIABLE

public	static	final	int	SC_REQUESTED_RANGE_NOT_SATISFIABLE

Status	code	(416)	indicating	that	the	server	cannot	serve	the	requested	byte
range.

SC_EXPECTATION_FAILED

public	static	final	int	SC_EXPECTATION_FAILED

Status	code	(417)	indicating	that	the	server	could	not	meet	the	expectation
given	in	the	Expect	request	header.

SC_INTERNAL_SERVER_ERROR

public	static	final	int	SC_INTERNAL_SERVER_ERROR

Status	code	(500)	indicating	an	error	inside	the	HTTP	server	which
prevented	it	from	fulfilling	the	request.

SC_NOT_IMPLEMENTED

public	static	final	int	SC_NOT_IMPLEMENTED

Status	code	(501)	indicating	the	HTTP	server	does	not	support	the
functionality	needed	to	fulfill	the	request.

SC_BAD_GATEWAY

public	static	final	int	SC_BAD_GATEWAY

Status	code	(502)	indicating	that	the	HTTP	server	received	an	invalid
response	from	a	server	it	consulted	when	acting	as	a	proxy	or	gateway.

SC_SERVICE_UNAVAILABLE

public	static	final	int	SC_SERVICE_UNAVAILABLE

Status	code	(503)	indicating	that	the	HTTP	server	is	temporarily
overloaded,	and	unable	to	handle	the	request.

SC_GATEWAY_TIMEOUT

public	static	final	int	SC_GATEWAY_TIMEOUT

Status	code	(504)	indicating	that	the	server	did	not	receive	a	timely
response	from	the	upstream	server	while	acting	as	a	gateway	or	proxy.

SC_HTTP_VERSION_NOT_SUPPORTED

public	static	final	int	SC_HTTP_VERSION_NOT_SUPPORTED

Status	code	(505)	indicating	that	the	server	does	not	support	or	refuses	to
support	the	HTTP	protocol	version	that	was	used	in	the	request	message.

Method	Detail

addCookie

public	void	addCookie(Cookie	cookie)

Adds	the	specified	cookie	to	the	response.	This	method	can	be	called
multiple	times	to	set	more	than	one	cookie.
Parameters:

cookie	-	the	Cookie	to	return	to	the	client

containsHeader

public	boolean	containsHeader(java.lang.String	name)

Returns	a	boolean	indicating	whether	the	named	response	header	has
already	been	set.
Parameters:

name	-	the	header	name
Returns:

true	if	the	named	response	header	has	already	been	set;	false
otherwise

encodeURL

public	java.lang.String	encodeURL(java.lang.String	url)

Encodes	the	specified	URL	by	including	the	session	ID	in	it,	or,	if	encoding
is	not	needed,	returns	the	URL	unchanged.	The	implementation	of	this
method	includes	the	logic	to	determine	whether	the	session	ID	needs	to	be
encoded	in	the	URL.	For	example,	if	the	browser	supports	cookies,	or
session	tracking	is	turned	off,	URL	encoding	is	unnecessary.

For	robust	session	tracking,	all	URLs	emitted	by	a	servlet	should	be	run

through	this	method.	Otherwise,	URL	rewriting	cannot	be	used	with
browsers	which	do	not	support	cookies.

Parameters:
url	-	the	url	to	be	encoded.

Returns:
the	encoded	URL	if	encoding	is	needed;	the	unchanged	URL
otherwise.

encodeRedirectURL

public	java.lang.String	encodeRedirectURL(java.lang.String	url)

Encodes	the	specified	URL	for	use	in	the	sendRedirect	method	or,	if
encoding	is	not	needed,	returns	the	URL	unchanged.	The	implementation	of
this	method	includes	the	logic	to	determine	whether	the	session	ID	needs	to
be	encoded	in	the	URL.	Because	the	rules	for	making	this	determination
can	differ	from	those	used	to	decide	whether	to	encode	a	normal	link,	this
method	is	seperate	from	the	encodeURL	method.

All	URLs	sent	to	the	HttpServletResponse.sendRedirect	method	should
be	run	through	this	method.	Otherwise,	URL	rewriting	cannot	be	used	with
browsers	which	do	not	support	cookies.

Parameters:
url	-	the	url	to	be	encoded.

Returns:
the	encoded	URL	if	encoding	is	needed;	the	unchanged	URL
otherwise.

See	Also:
sendRedirect(java.lang.String),	encodeUrl(java.lang.String)

encodeUrl

public	java.lang.String	encodeUrl(java.lang.String	url)

Deprecated.	As	of	version	2.1,	use	encodeURL(String	url)	instead

Parameters:
url	-	the	url	to	be	encoded.

Returns:
the	encoded	URL	if	encoding	is	needed;	the	unchanged	URL
otherwise.

encodeRedirectUrl

public	java.lang.String	encodeRedirectUrl(java.lang.String	url)

Deprecated.	As	of	version	2.1,	use	encodeRedirectURL(String	url)	instead
Parameters:

url	-	the	url	to	be	encoded.
Returns:

the	encoded	URL	if	encoding	is	needed;	the	unchanged	URL
otherwise.

sendError

public	void	sendError(int	sc,

																						java.lang.String	msg)

															throws	java.io.IOException

Sends	an	error	response	to	the	client	using	the	specified	status	clearing	the
buffer.	The	server	defaults	to	creating	the	response	to	look	like	an	HTML-
formatted	server	error	page	containing	the	specified	message,	setting	the
content	type	to	"text/html",	leaving	cookies	and	other	headers	unmodified.
If	an	error-page	declaration	has	been	made	for	the	web	application
corresponding	to	the	status	code	passed	in,	it	will	be	served	back	in
preference	to	the	suggested	msg	parameter.

If	the	response	has	already	been	committed,	this	method	throws	an
IllegalStateException.	After	using	this	method,	the	response	should	be
considered	to	be	committed	and	should	not	be	written	to.

Parameters:
sc	-	the	error	status	code
msg	-	the	descriptive	message

Throws:
java.io.IOException	-	If	an	input	or	output	exception	occurs
IllegalStateException	-	If	the	response	was	committed

sendError

public	void	sendError(int	sc)

															throws	java.io.IOException

Sends	an	error	response	to	the	client	using	the	specified	status	code	and
clearing	the	buffer.

If	the	response	has	already	been	committed,	this	method	throws	an
IllegalStateException.	After	using	this	method,	the	response	should	be
considered	to	be	committed	and	should	not	be	written	to.

Parameters:
sc	-	the	error	status	code

Throws:
java.io.IOException	-	If	an	input	or	output	exception	occurs
IllegalStateException	-	If	the	response	was	committed	before	this
method	call

sendRedirect

public	void	sendRedirect(java.lang.String	location)

																		throws	java.io.IOException

Sends	a	temporary	redirect	response	to	the	client	using	the	specified
redirect	location	URL.	This	method	can	accept	relative	URLs;	the	servlet
container	must	convert	the	relative	URL	to	an	absolute	URL	before	sending
the	response	to	the	client.	If	the	location	is	relative	without	a	leading	'/'	the
container	interprets	it	as	relative	to	the	current	request	URI.	If	the	location
is	relative	with	a	leading	'/'	the	container	interprets	it	as	relative	to	the
servlet	container	root.

If	the	response	has	already	been	committed,	this	method	throws	an
IllegalStateException.	After	using	this	method,	the	response	should	be

considered	to	be	committed	and	should	not	be	written	to.

Parameters:
location	-	the	redirect	location	URL

Throws:
java.io.IOException	-	If	an	input	or	output	exception	occurs
IllegalStateException	-	If	the	response	was	committed

setDateHeader

public	void	setDateHeader(java.lang.String	name,

																										long	date)

Sets	a	response	header	with	the	given	name	and	date-value.	The	date	is
specified	in	terms	of	milliseconds	since	the	epoch.	If	the	header	had	already
been	set,	the	new	value	overwrites	the	previous	one.	The	containsHeader
method	can	be	used	to	test	for	the	presence	of	a	header	before	setting	its
value.
Parameters:

name	-	the	name	of	the	header	to	set
value	-	the	assigned	date	value

See	Also:
containsHeader(java.lang.String),
addDateHeader(java.lang.String,	long)

addDateHeader

public	void	addDateHeader(java.lang.String	name,

																										long	date)

Adds	a	response	header	with	the	given	name	and	date-value.	The	date	is
specified	in	terms	of	milliseconds	since	the	epoch.	This	method	allows
response	headers	to	have	multiple	values.
Parameters:

name	-	the	name	of	the	header	to	set
value	-	the	additional	date	value

See	Also:
setDateHeader(java.lang.String,	long)

setHeader

public	void	setHeader(java.lang.String	name,

																						java.lang.String	value)

Sets	a	response	header	with	the	given	name	and	value.	If	the	header	had
already	been	set,	the	new	value	overwrites	the	previous	one.	The
containsHeader	method	can	be	used	to	test	for	the	presence	of	a	header
before	setting	its	value.
Parameters:

name	-	the	name	of	the	header
value	-	the	header	value

See	Also:
containsHeader(java.lang.String),
addHeader(java.lang.String,	java.lang.String)

addHeader

public	void	addHeader(java.lang.String	name,

																						java.lang.String	value)

Adds	a	response	header	with	the	given	name	and	value.	This	method	allows
response	headers	to	have	multiple	values.
Parameters:

name	-	the	name	of	the	header
value	-	the	additional	header	value

See	Also:
setHeader(java.lang.String,	java.lang.String)

setIntHeader

public	void	setIntHeader(java.lang.String	name,

																									int	value)

Sets	a	response	header	with	the	given	name	and	integer	value.	If	the	header
had	already	been	set,	the	new	value	overwrites	the	previous	one.	The
containsHeader	method	can	be	used	to	test	for	the	presence	of	a	header

before	setting	its	value.
Parameters:

name	-	the	name	of	the	header
value	-	the	assigned	integer	value

See	Also:
containsHeader(java.lang.String),
addIntHeader(java.lang.String,	int)

addIntHeader

public	void	addIntHeader(java.lang.String	name,

																									int	value)

Adds	a	response	header	with	the	given	name	and	integer	value.	This
method	allows	response	headers	to	have	multiple	values.
Parameters:

name	-	the	name	of	the	header
value	-	the	assigned	integer	value

See	Also:
setIntHeader(java.lang.String,	int)

setStatus

public	void	setStatus(int	sc)

Sets	the	status	code	for	this	response.	This	method	is	used	to	set	the	return
status	code	when	there	is	no	error	(for	example,	for	the	status	codes	SC_OK
or	SC_MOVED_TEMPORARILY).	If	there	is	an	error,	and	the	caller
wishes	to	invoke	an	defined	in	the	web	applicaion,	the	sendError	method
should	be	used	instead.

The	container	clears	the	buffer	and	sets	the	Location	header,	preserving
cookies	and	other	headers.

Parameters:
sc	-	the	status	code

See	Also:
sendError(int,	java.lang.String)

setStatus

public	void	setStatus(int	sc,

																						java.lang.String	sm)

Deprecated.	As	of	version	2.1,	due	to	ambiguous	meaning	of	the	message
parameter.	To	set	a	status	code	use	setStatus(int),	to	send	an	error	with
a	description	use	sendError(int,	String).	Sets	the	status	code	and
message	for	this	response.
Parameters:

sc	-	the	status	code
sm	-	the	status	message

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Class	HttpServletResponseWrapper
java.lang.Object

		|

		+--javax.servlet.ServletResponseWrapper

								|

								+--javax.servlet.http.HttpServletResponseWrapper

public	class	HttpServletResponseWrapper
extends	ServletResponseWrapper
implements	HttpServletResponse

Provides	a	convenient	implementation	of	the	HttpServletResponse	interface	that
can	be	subclassed	by	developers	wishing	to	adapt	the	response	from	a	Servlet.
This	class	implements	the	Wrapper	or	Decorator	pattern.	Methods	default	to
calling	through	to	the	wrapped	response	object.

Since:
v	2.3

See	Also:
HttpServletResponse

Constructor	Summary
HttpServletResponseWrapper(HttpServletResponse	response)	
										Constructs	a	response	adaptor	wrapping	the	given	response.
	

Method	Summary

	void

addCookie(Cookie	cookie)	
										The	default	behavior	of	this	method	is	to	call
addCookie(Cookie	cookie)	on	the	wrapped	response	object.

	void

addDateHeader(java.lang.String	name,	long	date)	
										The	default	behavior	of	this	method	is	to	call
addDateHeader(String	name,	long	date)	on	the	wrapped
response	object.
addHeader(java.lang.String	name,

	void

java.lang.String	value)	
										The	default	behavior	of	this	method	is	to	return
addHeader(String	name,	String	value)	on	the	wrapped	response
object.

	void

addIntHeader(java.lang.String	name,	int	value)	
										The	default	behavior	of	this	method	is	to	call
addIntHeader(String	name,	int	value)	on	the	wrapped	response
object.

	boolean

containsHeader(java.lang.String	name)	
										The	default	behavior	of	this	method	is	to	call
containsHeader(String	name)	on	the	wrapped	response	object.

	java.lang.String

encodeRedirectUrl(java.lang.String	url)	
										The	default	behavior	of	this	method	is	to	return
encodeRedirectUrl(String	url)	on	the	wrapped	response	object.

	java.lang.String

encodeRedirectURL(java.lang.String	url)	
										The	default	behavior	of	this	method	is	to	return
encodeRedirectURL(String	url)	on	the	wrapped	response
object.

	java.lang.String

encodeUrl(java.lang.String	url)	
										The	default	behavior	of	this	method	is	to	call
encodeUrl(String	url)	on	the	wrapped	response	object.

	java.lang.String

encodeURL(java.lang.String	url)	
										The	default	behavior	of	this	method	is	to	call
encodeURL(String	url)	on	the	wrapped	response	object.

	void

sendError(int	sc)	
										The	default	behavior	of	this	method	is	to	call
sendError(int	sc)	on	the	wrapped	response	object.

	void

sendError(int	sc,	java.lang.String	msg)	
										The	default	behavior	of	this	method	is	to	call
sendError(int	sc,	String	msg)	on	the	wrapped	response	object.

	void

sendRedirect(java.lang.String	location)	
										The	default	behavior	of	this	method	is	to	return
sendRedirect(String	location)	on	the	wrapped	response	object.

	void

setDateHeader(java.lang.String	name,	long	date)	
										The	default	behavior	of	this	method	is	to	call
setDateHeader(String	name,	long	date)	on	the	wrapped

response	object.

	void

setHeader(java.lang.String	name,

java.lang.String	value)	
										The	default	behavior	of	this	method	is	to	return
setHeader(String	name,	String	value)	on	the	wrapped	response
object.

	void

setIntHeader(java.lang.String	name,	int	value)	
										The	default	behavior	of	this	method	is	to	call
setIntHeader(String	name,	int	value)	on	the	wrapped	response
object.

	void

setStatus(int	sc)	
										The	default	behavior	of	this	method	is	to	call
setStatus(int	sc)	on	the	wrapped	response	object.

	void

setStatus(int	sc,	java.lang.String	sm)	
										The	default	behavior	of	this	method	is	to	call
setStatus(int	sc,	String	sm)	on	the	wrapped	response	object.

	
Methods	inherited	from	class	javax.servlet.ServletResponseWrapper
flushBuffer,	getBufferSize,	getCharacterEncoding,	getLocale,

getOutputStream,	getResponse,	getWriter,	isCommitted,	reset,

resetBuffer,	setBufferSize,	setContentLength,	setContentType,

setLocale,	setResponse

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

toString,	wait,	wait,	wait

	

Constructor	Detail

HttpServletResponseWrapper

public	HttpServletResponseWrapper(HttpServletResponse	response)

Constructs	a	response	adaptor	wrapping	the	given	response.
Throws:

java.lang.IllegalArgumentException	-	if	the	response	is	null

Method	Detail

addCookie

public	void	addCookie(Cookie	cookie)

The	default	behavior	of	this	method	is	to	call	addCookie(Cookie	cookie)	on
the	wrapped	response	object.
Specified	by:

addCookie	in	interface	HttpServletResponse

containsHeader

public	boolean	containsHeader(java.lang.String	name)

The	default	behavior	of	this	method	is	to	call	containsHeader(String	name)
on	the	wrapped	response	object.
Specified	by:

containsHeader	in	interface	HttpServletResponse

encodeURL

public	java.lang.String	encodeURL(java.lang.String	url)

The	default	behavior	of	this	method	is	to	call	encodeURL(String	url)	on	the
wrapped	response	object.
Specified	by:

encodeURL	in	interface	HttpServletResponse

encodeRedirectURL

public	java.lang.String	encodeRedirectURL(java.lang.String	url)

The	default	behavior	of	this	method	is	to	return	encodeRedirectURL(String
url)	on	the	wrapped	response	object.
Specified	by:

encodeRedirectURL	in	interface	HttpServletResponse

encodeUrl

public	java.lang.String	encodeUrl(java.lang.String	url)

The	default	behavior	of	this	method	is	to	call	encodeUrl(String	url)	on	the
wrapped	response	object.
Specified	by:

encodeUrl	in	interface	HttpServletResponse

encodeRedirectUrl

public	java.lang.String	encodeRedirectUrl(java.lang.String	url)

The	default	behavior	of	this	method	is	to	return	encodeRedirectUrl(String
url)	on	the	wrapped	response	object.
Specified	by:

encodeRedirectUrl	in	interface	HttpServletResponse

sendError

public	void	sendError(int	sc,

																						java.lang.String	msg)

															throws	java.io.IOException

The	default	behavior	of	this	method	is	to	call	sendError(int	sc,	String	msg)
on	the	wrapped	response	object.
Specified	by:

sendError	in	interface	HttpServletResponse

sendError

public	void	sendError(int	sc)

															throws	java.io.IOException

The	default	behavior	of	this	method	is	to	call	sendError(int	sc)	on	the
wrapped	response	object.
Specified	by:

sendError	in	interface	HttpServletResponse

sendRedirect

public	void	sendRedirect(java.lang.String	location)

																		throws	java.io.IOException

The	default	behavior	of	this	method	is	to	return	sendRedirect(String
location)	on	the	wrapped	response	object.
Specified	by:

sendRedirect	in	interface	HttpServletResponse

setDateHeader

public	void	setDateHeader(java.lang.String	name,

																										long	date)

The	default	behavior	of	this	method	is	to	call	setDateHeader(String	name,
long	date)	on	the	wrapped	response	object.
Specified	by:

setDateHeader	in	interface	HttpServletResponse

addDateHeader

public	void	addDateHeader(java.lang.String	name,

																										long	date)

The	default	behavior	of	this	method	is	to	call	addDateHeader(String	name,
long	date)	on	the	wrapped	response	object.
Specified	by:

addDateHeader	in	interface	HttpServletResponse

setHeader

public	void	setHeader(java.lang.String	name,

																						java.lang.String	value)

The	default	behavior	of	this	method	is	to	return	setHeader(String	name,
String	value)	on	the	wrapped	response	object.
Specified	by:

setHeader	in	interface	HttpServletResponse

addHeader

public	void	addHeader(java.lang.String	name,

																						java.lang.String	value)

The	default	behavior	of	this	method	is	to	return	addHeader(String	name,
String	value)	on	the	wrapped	response	object.
Specified	by:

addHeader	in	interface	HttpServletResponse

setIntHeader

public	void	setIntHeader(java.lang.String	name,

																									int	value)

The	default	behavior	of	this	method	is	to	call	setIntHeader(String	name,	int
value)	on	the	wrapped	response	object.
Specified	by:

setIntHeader	in	interface	HttpServletResponse

addIntHeader

public	void	addIntHeader(java.lang.String	name,

																									int	value)

The	default	behavior	of	this	method	is	to	call	addIntHeader(String	name,	int
value)	on	the	wrapped	response	object.
Specified	by:

addIntHeader	in	interface	HttpServletResponse

setStatus

public	void	setStatus(int	sc)

The	default	behavior	of	this	method	is	to	call	setStatus(int	sc)	on	the
wrapped	response	object.
Specified	by:

setStatus	in	interface	HttpServletResponse

setStatus

public	void	setStatus(int	sc,

																						java.lang.String	sm)

The	default	behavior	of	this	method	is	to	call	setStatus(int	sc,	String	sm)	on
the	wrapped	response	object.
Specified	by:

setStatus	in	interface	HttpServletResponse

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Interface	HttpSession

public	abstract	interface	HttpSession

Provides	a	way	to	identify	a	user	across	more	than	one	page	request	or	visit	to	a
Web	site	and	to	store	information	about	that	user.

The	servlet	container	uses	this	interface	to	create	a	session	between	an	HTTP
client	and	an	HTTP	server.	The	session	persists	for	a	specified	time	period,
across	more	than	one	connection	or	page	request	from	the	user.	A	session	usually
corresponds	to	one	user,	who	may	visit	a	site	many	times.	The	server	can
maintain	a	session	in	many	ways	such	as	using	cookies	or	rewriting	URLs.

This	interface	allows	servlets	to

View	and	manipulate	information	about	a	session,	such	as	the	session
identifier,	creation	time,	and	last	accessed	time
Bind	objects	to	sessions,	allowing	user	information	to	persist	across
multiple	user	connections

When	an	application	stores	an	object	in	or	removes	an	object	from	a	session,	the
session	checks	whether	the	object	implements	HttpSessionBindingListener.	If
it	does,	the	servlet	notifies	the	object	that	it	has	been	bound	to	or	unbound	from
the	session.	Notifications	are	sent	after	the	binding	methods	complete.	For
session	that	are	invalidated	or	expire,	notifications	are	sent	after	the	session	has
been	invalidatd	or	expired.

When	container	migrates	a	session	between	VMs	in	a	distributed	container
setting,	all	session	atributes	implementing	the	HttpSessionActivationListener
interface	are	notified.

A	servlet	should	be	able	to	handle	cases	in	which	the	client	does	not	choose	to
join	a	session,	such	as	when	cookies	are	intentionally	turned	off.	Until	the	client
joins	the	session,	isNew	returns	true.	If	the	client	chooses	not	to	join	the	session,
getSession	will	return	a	different	session	on	each	request,	and	isNew	will
always	return	true.

Session	information	is	scoped	only	to	the	current	web	application
(ServletContext),	so	information	stored	in	one	context	will	not	be	directly
visible	in	another.

See	Also:
HttpSessionBindingListener,	HttpSessionContext

Method	Summary

	java.lang.Object

getAttribute(java.lang.String	name)	
										Returns	the	object	bound	with	the	specified	name	in
this	session,	or	null	if	no	object	is	bound	under	the	name.

	java.util.Enumeration

getAttributeNames()	
										Returns	an	Enumeration	of	String	objects
containing	the	names	of	all	the	objects	bound	to	this
session.

	long

getCreationTime()	
										Returns	the	time	when	this	session	was	created,
measured	in	milliseconds	since	midnight	January	1,	1970
GMT.

	java.lang.String

getId()	
										Returns	a	string	containing	the	unique	identifier
assigned	to	this	session.

	long

getLastAccessedTime()	
										Returns	the	last	time	the	client	sent	a	request
associated	with	this	session,	as	the	number	of	milliseconds
since	midnight	January	1,	1970	GMT,	and	marked	by	the
time	the	container	recieved	the	request.

	int

getMaxInactiveInterval()	
										Returns	the	maximum	time	interval,	in	seconds,	that
the	servlet	container	will	keep	this	session	open	between
client	accesses.

	ServletContext

getServletContext()	
										Returns	the	ServletContext	to	which	this	session
belongs.
getSessionContext()	

	HttpSessionContext 										Deprecated.	As	of	Version	2.1,	this	method	is
deprecated	and	has	no	replacement.	It	will	be	removed	in	a
future	version	of	the	Java	Servlet	API.

	java.lang.Object

getValue(java.lang.String	name)	
										Deprecated.	As	of	Version	2.2,	this	method	is
replaced	by	getAttribute(java.lang.String).

	java.lang.String[]

getValueNames()	
										Deprecated.	As	of	Version	2.2,	this	method	is
replaced	by	getAttributeNames()

	void

invalidate()	
										Invalidates	this	session	then	unbinds	any	objects
bound	to	it.

	boolean

isNew()	
										Returns	true	if	the	client	does	not	yet	know	about
the	session	or	if	the	client	chooses	not	to	join	the	session.

	void

putValue(java.lang.String	name,

java.lang.Object	value)	
										Deprecated.	As	of	Version	2.2,	this	method	is
replaced	by	setAttribute(java.lang.String,
java.lang.Object)

	void

removeAttribute(java.lang.String	name)	
										Removes	the	object	bound	with	the	specified	name
from	this	session.

	void

removeValue(java.lang.String	name)	
										Deprecated.	As	of	Version	2.2,	this	method	is
replaced	by	removeAttribute(java.lang.String)

	void

setAttribute(java.lang.String	name,

java.lang.Object	value)	
										Binds	an	object	to	this	session,	using	the	name
specified.

	void

setMaxInactiveInterval(int	interval)	
										Specifies	the	time,	in	seconds,	between	client
requests	before	the	servlet	container	will	invalidate	this
session.

	

Method	Detail

getCreationTime

public	long	getCreationTime()

Returns	the	time	when	this	session	was	created,	measured	in	milliseconds
since	midnight	January	1,	1970	GMT.
Returns:

a	long	specifying	when	this	session	was	created,	expressed	in
milliseconds	since	1/1/1970	GMT

Throws:
IllegalStateException	-	if	this	method	is	called	on	an	invalidated
session

getId

public	java.lang.String	getId()

Returns	a	string	containing	the	unique	identifier	assigned	to	this	session.
The	identifier	is	assigned	by	the	servlet	container	and	is	implementation
dependent.
Returns:

a	string	specifying	the	identifier	assigned	to	this	session

getLastAccessedTime

public	long	getLastAccessedTime()

Returns	the	last	time	the	client	sent	a	request	associated	with	this	session,	as
the	number	of	milliseconds	since	midnight	January	1,	1970	GMT,	and
marked	by	the	time	the	container	recieved	the	request.

Actions	that	your	application	takes,	such	as	getting	or	setting	a	value
associated	with	the	session,	do	not	affect	the	access	time.

Returns:

a	long	representing	the	last	time	the	client	sent	a	request	associated
with	this	session,	expressed	in	milliseconds	since	1/1/1970	GMT

getServletContext

public	ServletContext	getServletContext()

Returns	the	ServletContext	to	which	this	session	belongs.
Returns:

The	ServletContext	object	for	the	web	application
Since:

2.3

setMaxInactiveInterval

public	void	setMaxInactiveInterval(int	interval)

Specifies	the	time,	in	seconds,	between	client	requests	before	the	servlet
container	will	invalidate	this	session.	A	negative	time	indicates	the	session
should	never	timeout.
Parameters:

interval	-	An	integer	specifying	the	number	of	seconds

getMaxInactiveInterval

public	int	getMaxInactiveInterval()

Returns	the	maximum	time	interval,	in	seconds,	that	the	servlet	container
will	keep	this	session	open	between	client	accesses.	After	this	interval,	the
servlet	container	will	invalidate	the	session.	The	maximum	time	interval
can	be	set	with	the	setMaxInactiveInterval	method.	A	negative	time
indicates	the	session	should	never	timeout.
Returns:

an	integer	specifying	the	number	of	seconds	this	session	remains	open
between	client	requests

See	Also:

setMaxInactiveInterval(int)

getSessionContext

public	HttpSessionContext	getSessionContext()

Deprecated.	As	of	Version	2.1,	this	method	is	deprecated	and	has	no
replacement.	It	will	be	removed	in	a	future	version	of	the	Java	Servlet	API.

getAttribute

public	java.lang.Object	getAttribute(java.lang.String	name)

Returns	the	object	bound	with	the	specified	name	in	this	session,	or	null	if
no	object	is	bound	under	the	name.
Parameters:

name	-	a	string	specifying	the	name	of	the	object
Returns:

the	object	with	the	specified	name
Throws:

IllegalStateException	-	if	this	method	is	called	on	an	invalidated
session

getValue

public	java.lang.Object	getValue(java.lang.String	name)

Deprecated.	As	of	Version	2.2,	this	method	is	replaced	by
getAttribute(java.lang.String).
Parameters:

name	-	a	string	specifying	the	name	of	the	object
Returns:

the	object	with	the	specified	name
Throws:

IllegalStateException	-	if	this	method	is	called	on	an	invalidated
session

getAttributeNames

public	java.util.Enumeration	getAttributeNames()

Returns	an	Enumeration	of	String	objects	containing	the	names	of	all	the
objects	bound	to	this	session.
Returns:

an	Enumeration	of	String	objects	specifying	the	names	of	all	the
objects	bound	to	this	session

Throws:
IllegalStateException	-	if	this	method	is	called	on	an	invalidated
session

getValueNames

public	java.lang.String[]	getValueNames()

Deprecated.	As	of	Version	2.2,	this	method	is	replaced	by
getAttributeNames()

Returns:
an	array	of	String	objects	specifying	the	names	of	all	the	objects
bound	to	this	session

Throws:
IllegalStateException	-	if	this	method	is	called	on	an	invalidated
session

setAttribute

public	void	setAttribute(java.lang.String	name,

																									java.lang.Object	value)

Binds	an	object	to	this	session,	using	the	name	specified.	If	an	object	of	the
same	name	is	already	bound	to	the	session,	the	object	is	replaced.

After	this	method	executes,	and	if	the	new	object	implements
HttpSessionBindingListener,	the	container	calls
HttpSessionBindingListener.valueBound.	The	container	then	notifies

any	HttpSessionAttributeListeners	in	the	web	application.

If	an	object	was	already	bound	to	this	session	of	this	name	that	implements
HttpSessionBindingListener,	its
HttpSessionBindingListener.valueUnbound	method	is	called.

If	the	value	passed	in	is	null,	this	has	the	same	effect	as	calling
removeAttribute().

Parameters:
name	-	the	name	to	which	the	object	is	bound;	cannot	be	null
value	-	the	object	to	be	bound

Throws:
IllegalStateException	-	if	this	method	is	called	on	an	invalidated
session

putValue

public	void	putValue(java.lang.String	name,

																					java.lang.Object	value)

Deprecated.	As	of	Version	2.2,	this	method	is	replaced	by
setAttribute(java.lang.String,	java.lang.Object)

Parameters:
name	-	the	name	to	which	the	object	is	bound;	cannot	be	null
value	-	the	object	to	be	bound;	cannot	be	null

Throws:
IllegalStateException	-	if	this	method	is	called	on	an	invalidated
session

removeAttribute

public	void	removeAttribute(java.lang.String	name)

Removes	the	object	bound	with	the	specified	name	from	this	session.	If	the
session	does	not	have	an	object	bound	with	the	specified	name,	this	method
does	nothing.

After	this	method	executes,	and	if	the	object	implements
HttpSessionBindingListener,	the	container	calls
HttpSessionBindingListener.valueUnbound.	The	container	then	notifies
any	HttpSessionAttributeListeners	in	the	web	application.

Parameters:
name	-	the	name	of	the	object	to	remove	from	this	session

Throws:
IllegalStateException	-	if	this	method	is	called	on	an	invalidated
session

removeValue

public	void	removeValue(java.lang.String	name)

Deprecated.	As	of	Version	2.2,	this	method	is	replaced	by
removeAttribute(java.lang.String)

Parameters:
name	-	the	name	of	the	object	to	remove	from	this	session

Throws:
IllegalStateException	-	if	this	method	is	called	on	an	invalidated
session

invalidate

public	void	invalidate()

Invalidates	this	session	then	unbinds	any	objects	bound	to	it.
Throws:

IllegalStateException	-	if	this	method	is	called	on	an	already
invalidated	session

isNew

public	boolean	isNew()

Returns	true	if	the	client	does	not	yet	know	about	the	session	or	if	the

client	chooses	not	to	join	the	session.	For	example,	if	the	server	used	only
cookie-based	sessions,	and	the	client	had	disabled	the	use	of	cookies,	then	a
session	would	be	new	on	each	request.
Returns:

true	if	the	server	has	created	a	session,	but	the	client	has	not	yet
joined

Throws:
IllegalStateException	-	if	this	method	is	called	on	an	already
invalidated	session

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Interface	HttpSessionActivationListener

public	abstract	interface	HttpSessionActivationListener
extends	java.util.EventListener

Objects	that	are	bound	to	a	session	may	listen	to	container	events	notifying	them
that	sessions	will	be	passivated	and	that	session	will	be	activated.	A	container
that	migrates	session	between	VMs	or	persists	sessions	is	required	to	notify	all
attributes	bound	to	sessions	implementing	HttpSessionActivationListener.

Since:
2.3

Method	Summary
	void

sessionDidActivate(HttpSessionEvent	se)	
										Notification	that	the	session	has	just	been	activated.

	void
sessionWillPassivate(HttpSessionEvent	se)	
										Notification	that	the	session	is	about	to	be	passivated.

	

Method	Detail

sessionWillPassivate

public	void	sessionWillPassivate(HttpSessionEvent	se)

Notification	that	the	session	is	about	to	be	passivated.

sessionDidActivate

public	void	sessionDidActivate(HttpSessionEvent	se)

Notification	that	the	session	has	just	been	activated.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Interface	HttpSessionAttributeListener

public	abstract	interface	HttpSessionAttributeListener
extends	java.util.EventListener

This	listener	interface	can	be	implemented	in	order	to	get	notifications	of
changes	to	the	attribute	lists	of	sessions	within	this	web	application.

Since:
v	2.3

Method	Summary
	void

attributeAdded(HttpSessionBindingEvent	se)	
										Notification	that	an	attribute	has	been	added	to	a	session.

	void
attributeRemoved(HttpSessionBindingEvent	se)	
										Notification	that	an	attribute	has	been	removed	from	a	session.

	void
attributeReplaced(HttpSessionBindingEvent	se)	
										Notification	that	an	attribute	has	been	replaced	in	a	session.

	

Method	Detail

attributeAdded

public	void	attributeAdded(HttpSessionBindingEvent	se)

Notification	that	an	attribute	has	been	added	to	a	session.	Called	after	the
attribute	is	added.

attributeRemoved

public	void	attributeRemoved(HttpSessionBindingEvent	se)

Notification	that	an	attribute	has	been	removed	from	a	session.	Called	after
the	attribute	is	removed.

attributeReplaced

public	void	attributeReplaced(HttpSessionBindingEvent	se)

Notification	that	an	attribute	has	been	replaced	in	a	session.	Called	after	the
attribute	is	replaced.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Class	HttpSessionBindingEvent
java.lang.Object

		|

		+--java.util.EventObject

								|

								+--javax.servlet.http.HttpSessionEvent

														|

														+--javax.servlet.http.HttpSessionBindingEvent

public	class	HttpSessionBindingEvent
extends	HttpSessionEvent

Events	of	this	type	are	either	sent	to	an	object	that	implements
HttpSessionBindingListener	when	it	is	bound	or	unbound	from	a	session,	or
to	a	HttpSessionAttributeListener	that	has	been	configured	in	the
deployment	descriptor	when	any	attribute	is	bound,	unbound	or	replaced	in	a
session.

The	session	binds	the	object	by	a	call	to	HttpSession.setAttribute	and
unbinds	the	object	by	a	call	to	HttpSession.removeAttribute.

See	Also:
HttpSession,	HttpSessionBindingListener,
HttpSessionAttributeListener,	Serialized	Form

Fields	inherited	from	class	java.util.EventObject
source

	

Constructor	Summary
HttpSessionBindingEvent(HttpSession	session,

java.lang.String	name)	
										Constructs	an	event	that	notifies	an	object	that	it	has	been	bound	to	or
unbound	from	a	session.
HttpSessionBindingEvent(HttpSession	session,

java.lang.String	name,	java.lang.Object	value)	

										Constructs	an	event	that	notifies	an	object	that	it	has	been	bound	to	or
unbound	from	a	session.
	

Method	Summary

	java.lang.String

getName()	
										Returns	the	name	with	which	the	attribute	is	bound	to	or
unbound	from	the	session.

	HttpSession
getSession()	
										Return	the	session	that	changed.

	java.lang.Object

getValue()	
										Returns	the	value	of	the	attribute	that	has	been	added,
removed	or	replaced.

	
Methods	inherited	from	class	java.util.EventObject
getSource,	toString

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

wait,	wait,	wait

	

Constructor	Detail

HttpSessionBindingEvent

public	HttpSessionBindingEvent(HttpSession	session,

																															java.lang.String	name)

Constructs	an	event	that	notifies	an	object	that	it	has	been	bound	to	or
unbound	from	a	session.	To	receive	the	event,	the	object	must	implement
HttpSessionBindingListener.
Parameters:

session	-	the	session	to	which	the	object	is	bound	or	unbound
name	-	the	name	with	which	the	object	is	bound	or	unbound

See	Also:
getName(),	getSession()

HttpSessionBindingEvent

public	HttpSessionBindingEvent(HttpSession	session,

																															java.lang.String	name,

																															java.lang.Object	value)

Constructs	an	event	that	notifies	an	object	that	it	has	been	bound	to	or
unbound	from	a	session.	To	receive	the	event,	the	object	must	implement
HttpSessionBindingListener.
Parameters:

session	-	the	session	to	which	the	object	is	bound	or	unbound
name	-	the	name	with	which	the	object	is	bound	or	unbound

See	Also:
getName(),	getSession()

Method	Detail

getSession

public	HttpSession	getSession()

Return	the	session	that	changed.
Overrides:

getSession	in	class	HttpSessionEvent

getName

public	java.lang.String	getName()

Returns	the	name	with	which	the	attribute	is	bound	to	or	unbound	from	the
session.
Returns:

a	string	specifying	the	name	with	which	the	object	is	bound	to	or
unbound	from	the	session

getValue

public	java.lang.Object	getValue()

Returns	the	value	of	the	attribute	that	has	been	added,	removed	or	replaced.
If	the	attribute	was	added	(or	bound),	this	is	the	value	of	the	attribute.	If	the
attrubute	was	removed	(or	unbound),	this	is	the	value	of	the	removed
attribute.	If	the	attribute	was	replaced,	this	is	the	old	value	of	the	attribute.
Since:

2.3

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Interface	HttpSessionBindingListener

public	abstract	interface	HttpSessionBindingListener
extends	java.util.EventListener

Causes	an	object	to	be	notified	when	it	is	bound	to	or	unbound	from	a	session.
The	object	is	notified	by	an	HttpSessionBindingEvent	object.	This	may	be	as	a
result	of	a	servlet	programmer	explicitly	unbinding	an	attribute	from	a	session,
due	to	a	session	being	invalidated,	or	due	to	a	session	timing	out.

See	Also:
HttpSession,	HttpSessionBindingEvent

Method	Summary

	void

valueBound(HttpSessionBindingEvent	event)	
										Notifies	the	object	that	it	is	being	bound	to	a	session	and	identifies
the	session.

	void

valueUnbound(HttpSessionBindingEvent	event)	
										Notifies	the	object	that	it	is	being	unbound	from	a	session	and
identifies	the	session.

	

Method	Detail

valueBound

public	void	valueBound(HttpSessionBindingEvent	event)

Notifies	the	object	that	it	is	being	bound	to	a	session	and	identifies	the
session.
Parameters:

event	-	the	event	that	identifies	the	session
See	Also:

valueUnbound(javax.servlet.http.HttpSessionBindingEvent)

valueUnbound

public	void	valueUnbound(HttpSessionBindingEvent	event)

Notifies	the	object	that	it	is	being	unbound	from	a	session	and	identifies	the
session.
Parameters:

event	-	the	event	that	identifies	the	session
See	Also:

valueBound(javax.servlet.http.HttpSessionBindingEvent)

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Interface	HttpSessionContext

Deprecated.	As	of	Java(tm)	Servlet	API	2.1	for	security	reasons,	with	no
replacement.	This	interface	will	be	removed	in	a	future	version	of	this	API.

public	abstract	interface	HttpSessionContext

See	Also:
HttpSession,	HttpSessionBindingEvent,	HttpSessionBindingListener

Method	Summary

	java.util.Enumeration

getIds()	
										Deprecated.	As	of	Java	Servlet	API	2.1	with	no
replacement.	This	method	must	return	an	empty
Enumeration	and	will	be	removed	in	a	future	version	of
this	API.

	HttpSession

getSession(java.lang.String	sessionId)	
										Deprecated.	As	of	Java	Servlet	API	2.1	with	no
replacement.	This	method	must	return	null	and	will	be
removed	in	a	future	version	of	this	API.

	

Method	Detail

getSession

public	HttpSession	getSession(java.lang.String	sessionId)

Deprecated.	As	of	Java	Servlet	API	2.1	with	no	replacement.	This	method
must	return	null	and	will	be	removed	in	a	future	version	of	this	API.

getIds

public	java.util.Enumeration	getIds()

Deprecated.	As	of	Java	Servlet	API	2.1	with	no	replacement.	This	method
must	return	an	empty	Enumeration	and	will	be	removed	in	a	future	version
of	this	API.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Class	HttpSessionEvent
java.lang.Object

		|

		+--java.util.EventObject

								|

								+--javax.servlet.http.HttpSessionEvent

Direct	Known	Subclasses:
HttpSessionBindingEvent

public	class	HttpSessionEvent
extends	java.util.EventObject

This	is	the	class	representing	event	notifications	for	changes	to	sessions	within	a
web	application.

Since:
v	2.3

See	Also:
Serialized	Form

Fields	inherited	from	class	java.util.EventObject
source

	

Constructor	Summary
HttpSessionEvent(HttpSession	source)	
										Construct	a	session	event	from	the	given	source.
	

Method	Summary
	HttpSession

getSession()	
										Return	the	session	that	changed.

	
Methods	inherited	from	class	java.util.EventObject

getSource,	toString

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

wait,	wait,	wait

	

Constructor	Detail

HttpSessionEvent

public	HttpSessionEvent(HttpSession	source)

Construct	a	session	event	from	the	given	source.

Method	Detail

getSession

public	HttpSession	getSession()

Return	the	session	that	changed.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Interface	HttpSessionListener

public	abstract	interface	HttpSessionListener
extends	java.util.EventListener

Implementations	of	this	interface	may	are	notified	of	changes	to	the	list	of	active
sessions	in	a	web	application.	To	recieve	notification	events,	the	implementation
class	must	be	configured	in	the	deployment	descriptor	for	the	web	application.

Since:
v	2.3

See	Also:
HttpSessionEvent

Method	Summary
	void

sessionCreated(HttpSessionEvent	se)	
										Notification	that	a	session	was	created.

	void
sessionDestroyed(HttpSessionEvent	se)	
										Notification	that	a	session	was	invalidated.

	

Method	Detail

sessionCreated

public	void	sessionCreated(HttpSessionEvent	se)

Notification	that	a	session	was	created.
Parameters:

se	-	the	notification	event

sessionDestroyed

public	void	sessionDestroyed(HttpSessionEvent	se)

Notification	that	a	session	was	invalidated.
Parameters:

se	-	the	notification	event

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet.http	Class	HttpUtils
java.lang.Object

		|

		+--javax.servlet.http.HttpUtils

Deprecated.	As	of	Java(tm)	Servlet	API	2.3.	These	methods	were	only	useful
with	the	default	encoding	and	have	been	moved	to	the	request	interfaces.

public	class	HttpUtils
extends	java.lang.Object

Constructor	Summary
HttpUtils()	
										Deprecated.	Constructs	an	empty	HttpUtils	object.
	

Method	Summary

static	java.lang.StringBuffer

getRequestURL(HttpServletRequest	req)	
										Deprecated.	Reconstructs	the	URL	the	client
used	to	make	the	request,	using	information	in	the
HttpServletRequest	object.

static	java.util.Hashtable

parsePostData(int	len,

ServletInputStream	in)	
										Deprecated.	Parses	data	from	an	HTML	form
that	the	client	sends	to	the	server	using	the	HTTP
POST	method	and	the	application/x-www-form-
urlencoded	MIME	type.

static	java.util.Hashtable

parseQueryString(java.lang.String	s)	
										Deprecated.	Parses	a	query	string	passed
from	the	client	to	the	server	and	builds	a	HashTable
object	with	key-value	pairs.

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

toString,	wait,	wait,	wait

	

Constructor	Detail

HttpUtils

public	HttpUtils()

Deprecated.	
Constructs	an	empty	HttpUtils	object.

Method	Detail

parseQueryString

public	static	java.util.Hashtable	parseQueryString(java.lang.String	s)

Deprecated.	
Parses	a	query	string	passed	from	the	client	to	the	server	and	builds	a
HashTable	object	with	key-value	pairs.	The	query	string	should	be	in	the
form	of	a	string	packaged	by	the	GET	or	POST	method,	that	is,	it	should
have	key-value	pairs	in	the	form	key=value,	with	each	pair	separated	from
the	next	by	a	&	character.

A	key	can	appear	more	than	once	in	the	query	string	with	different	values.
However,	the	key	appears	only	once	in	the	hashtable,	with	its	value	being
an	array	of	strings	containing	the	multiple	values	sent	by	the	query	string.

The	keys	and	values	in	the	hashtable	are	stored	in	their	decoded	form,	so
any	+	characters	are	converted	to	spaces,	and	characters	sent	in
hexadecimal	notation	(like	%xx)	are	converted	to	ASCII	characters.

Parameters:
s	-	a	string	containing	the	query	to	be	parsed

Returns:
a	HashTable	object	built	from	the	parsed	key-value	pairs

Throws:

java.lang.IllegalArgumentException	-	if	the	query	string	is	invalid

parsePostData

public	static	java.util.Hashtable	parsePostData(int	len,

																																																ServletInputStream	in)

Deprecated.	
Parses	data	from	an	HTML	form	that	the	client	sends	to	the	server	using	the
HTTP	POST	method	and	the	application/x-www-form-urlencoded	MIME
type.

The	data	sent	by	the	POST	method	contains	key-value	pairs.	A	key	can
appear	more	than	once	in	the	POST	data	with	different	values.	However,
the	key	appears	only	once	in	the	hashtable,	with	its	value	being	an	array	of
strings	containing	the	multiple	values	sent	by	the	POST	method.

The	keys	and	values	in	the	hashtable	are	stored	in	their	decoded	form,	so
any	+	characters	are	converted	to	spaces,	and	characters	sent	in
hexadecimal	notation	(like	%xx)	are	converted	to	ASCII	characters.

Parameters:
len	-	an	integer	specifying	the	length,	in	characters,	of	the
ServletInputStream	object	that	is	also	passed	to	this	method
in	-	the	ServletInputStream	object	that	contains	the	data	sent	from
the	client

Returns:
a	HashTable	object	built	from	the	parsed	key-value	pairs

Throws:
java.lang.IllegalArgumentException	-	if	the	data	sent	by	the	POST
method	is	invalid

getRequestURL

public	static	java.lang.StringBuffer	getRequestURL(HttpServletRequest

Deprecated.	
Reconstructs	the	URL	the	client	used	to	make	the	request,	using

information	in	the	HttpServletRequest	object.	The	returned	URL	contains
a	protocol,	server	name,	port	number,	and	server	path,	but	it	does	not
include	query	string	parameters.

Because	this	method	returns	a	StringBuffer,	not	a	string,	you	can	modify
the	URL	easily,	for	example,	to	append	query	parameters.

This	method	is	useful	for	creating	redirect	messages	and	for	reporting
errors.

Parameters:
req	-	a	HttpServletRequest	object	containing	the	client's	request

Returns:
a	StringBuffer	object	containing	the	reconstructed	URL

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	RequestDispatcher

public	abstract	interface	RequestDispatcher

Defines	an	object	that	receives	requests	from	the	client	and	sends	them	to	any
resource	(such	as	a	servlet,	HTML	file,	or	JSP	file)	on	the	server.	The	servlet
container	creates	the	RequestDispatcher	object,	which	is	used	as	a	wrapper
around	a	server	resource	located	at	a	particular	path	or	given	by	a	particular
name.

This	interface	is	intended	to	wrap	servlets,	but	a	servlet	container	can	create
RequestDispatcher	objects	to	wrap	any	type	of	resource.

See	Also:
ServletContext.getRequestDispatcher(java.lang.String),
ServletContext.getNamedDispatcher(java.lang.String),
ServletRequest.getRequestDispatcher(java.lang.String)

Method	Summary

	void

forward(ServletRequest	request,	ServletResponse	response)	
										Forwards	a	request	from	a	servlet	to	another	resource	(servlet,	JSP
file,	or	HTML	file)	on	the	server.

	void

include(ServletRequest	request,	ServletResponse	response)	
										Includes	the	content	of	a	resource	(servlet,	JSP	page,	HTML	file)	in
the	response.

	

Method	Detail

forward

public	void	forward(ServletRequest	request,

																				ServletResponse	response)

													throws	ServletException,

																				java.io.IOException

Forwards	a	request	from	a	servlet	to	another	resource	(servlet,	JSP	file,	or
HTML	file)	on	the	server.	This	method	allows	one	servlet	to	do	preliminary
processing	of	a	request	and	another	resource	to	generate	the	response.

For	a	RequestDispatcher	obtained	via	getRequestDispatcher(),	the
ServletRequest	object	has	its	path	elements	and	parameters	adjusted	to
match	the	path	of	the	target	resource.

forward	should	be	called	before	the	response	has	been	committed	to	the
client	(before	response	body	output	has	been	flushed).	If	the	response
already	has	been	committed,	this	method	throws	an
IllegalStateException.	Uncommitted	output	in	the	response	buffer	is
automatically	cleared	before	the	forward.

The	request	and	response	parameters	must	be	either	the	same	objects	as
were	passed	to	the	calling	servlet's	service	method	or	be	subclasses	of	the
ServletRequestWrapper	or	ServletResponseWrapper	classes	that	wrap
them.

Parameters:
request	-	a	ServletRequest	object	that	represents	the	request	the
client	makes	of	the	servlet
response	-	a	ServletResponse	object	that	represents	the	response	the
servlet	returns	to	the	client

Throws:
ServletException	-	if	the	target	resource	throws	this	exception
java.io.IOException	-	if	the	target	resource	throws	this	exception
IllegalStateException	-	if	the	response	was	already	committed

include

public	void	include(ServletRequest	request,

																				ServletResponse	response)

													throws	ServletException,

																				java.io.IOException

Includes	the	content	of	a	resource	(servlet,	JSP	page,	HTML	file)	in	the

response.	In	essence,	this	method	enables	programmatic	server-side
includes.

The	ServletResponse	object	has	its	path	elements	and	parameters	remain
unchanged	from	the	caller's.	The	included	servlet	cannot	change	the
response	status	code	or	set	headers;	any	attempt	to	make	a	change	is
ignored.

The	request	and	response	parameters	must	be	either	the	same	objects	as
were	passed	to	the	calling	servlet's	service	method	or	be	subclasses	of	the
ServletRequestWrapper	or	ServletResponseWrapper	classes	that	wrap
them.

Parameters:
request	-	a	ServletRequest	object	that	contains	the	client's	request
response	-	a	ServletResponse	object	that	contains	the	servlet's
response

Throws:
ServletException	-	if	the	included	resource	throws	this	exception
java.io.IOException	-	if	the	included	resource	throws	this	exception

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	Servlet

All	Known	Implementing	Classes:
GenericServlet

public	abstract	interface	Servlet

Defines	methods	that	all	servlets	must	implement.

A	servlet	is	a	small	Java	program	that	runs	within	a	Web	server.	Servlets	receive
and	respond	to	requests	from	Web	clients,	usually	across	HTTP,	the	HyperText
Transfer	Protocol.

To	implement	this	interface,	you	can	write	a	generic	servlet	that	extends
javax.servlet.GenericServlet	or	an	HTTP	servlet	that	extends
javax.servlet.http.HttpServlet.

This	interface	defines	methods	to	initialize	a	servlet,	to	service	requests,	and	to
remove	a	servlet	from	the	server.	These	are	known	as	life-cycle	methods	and	are
called	in	the	following	sequence:

1.	 The	servlet	is	constructed,	then	initialized	with	the	init	method.
2.	 Any	calls	from	clients	to	the	service	method	are	handled.
3.	 The	servlet	is	taken	out	of	service,	then	destroyed	with	the	destroy	method,

then	garbage	collected	and	finalized.

In	addition	to	the	life-cycle	methods,	this	interface	provides	the
getServletConfig	method,	which	the	servlet	can	use	to	get	any	startup
information,	and	the	getServletInfo	method,	which	allows	the	servlet	to	return
basic	information	about	itself,	such	as	author,	version,	and	copyright.

See	Also:
GenericServlet,	HttpServlet

Method	Summary

	void
destroy()	
										Called	by	the	servlet	container	to	indicate	to	a	servlet	that
the	servlet	is	being	taken	out	of	service.

	ServletConfig

getServletConfig()	
										Returns	a	ServletConfig	object,	which	contains
initialization	and	startup	parameters	for	this	servlet.

	java.lang.String

getServletInfo()	
										Returns	information	about	the	servlet,	such	as	author,
version,	and	copyright.

	void

init(ServletConfig	config)	
										Called	by	the	servlet	container	to	indicate	to	a	servlet	that
the	servlet	is	being	placed	into	service.

	void

service(ServletRequest	req,	ServletResponse	res)	
										Called	by	the	servlet	container	to	allow	the	servlet	to
respond	to	a	request.

	

Method	Detail

init

public	void	init(ServletConfig	config)

										throws	ServletException

Called	by	the	servlet	container	to	indicate	to	a	servlet	that	the	servlet	is
being	placed	into	service.

The	servlet	container	calls	the	init	method	exactly	once	after	instantiating
the	servlet.	The	init	method	must	complete	successfully	before	the	servlet
can	receive	any	requests.

The	servlet	container	cannot	place	the	servlet	into	service	if	the	init
method

1.	 Throws	a	ServletException
2.	 Does	not	return	within	a	time	period	defined	by	the	Web	server

Parameters:

config	-	a	ServletConfig	object	containing	the	servlet's	configuration
and	initialization	parameters

Throws:
ServletException	-	if	an	exception	has	occurred	that	interferes	with	the
servlet's	normal	operation

See	Also:
UnavailableException,	getServletConfig()

getServletConfig

public	ServletConfig	getServletConfig()

Returns	a	ServletConfig	object,	which	contains	initialization	and	startup
parameters	for	this	servlet.	The	ServletConfig	object	returned	is	the	one
passed	to	the	init	method.

Implementations	of	this	interface	are	responsible	for	storing	the
ServletConfig	object	so	that	this	method	can	return	it.	The
GenericServlet	class,	which	implements	this	interface,	already	does	this.

Returns:
the	ServletConfig	object	that	initializes	this	servlet

See	Also:
init(javax.servlet.ServletConfig)

service

public	void	service(ServletRequest	req,

																				ServletResponse	res)

													throws	ServletException,

																				java.io.IOException

Called	by	the	servlet	container	to	allow	the	servlet	to	respond	to	a	request.

This	method	is	only	called	after	the	servlet's	init()	method	has	completed
successfully.

The	status	code	of	the	response	always	should	be	set	for	a	servlet	that

throws	or	sends	an	error.

Servlets	typically	run	inside	multithreaded	servlet	containers	that	can
handle	multiple	requests	concurrently.	Developers	must	be	aware	to
synchronize	access	to	any	shared	resources	such	as	files,	network
connections,	and	as	well	as	the	servlet's	class	and	instance	variables.	More
information	on	multithreaded	programming	in	Java	is	available	in	the	Java
tutorial	on	multi-threaded	programming.

Parameters:
req	-	the	ServletRequest	object	that	contains	the	client's	request
res	-	the	ServletResponse	object	that	contains	the	servlet's	response

Throws:
ServletException	-	if	an	exception	occurs	that	interferes	with	the
servlet's	normal	operation
java.io.IOException	-	if	an	input	or	output	exception	occurs

getServletInfo

public	java.lang.String	getServletInfo()

Returns	information	about	the	servlet,	such	as	author,	version,	and
copyright.

The	string	that	this	method	returns	should	be	plain	text	and	not	markup	of
any	kind	(such	as	HTML,	XML,	etc.).

Returns:
a	String	containing	servlet	information

destroy

public	void	destroy()

Called	by	the	servlet	container	to	indicate	to	a	servlet	that	the	servlet	is
being	taken	out	of	service.	This	method	is	only	called	once	all	threads
within	the	servlet's	service	method	have	exited	or	after	a	timeout	period
has	passed.	After	the	servlet	container	calls	this	method,	it	will	not	call	the

http://java.sun.com/Series/Tutorial/java/threads/multithreaded.html

service	method	again	on	this	servlet.

This	method	gives	the	servlet	an	opportunity	to	clean	up	any	resources	that
are	being	held	(for	example,	memory,	file	handles,	threads)	and	make	sure
that	any	persistent	state	is	synchronized	with	the	servlet's	current	state	in
memory.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	ServletConfig

All	Known	Implementing	Classes:
GenericServlet

public	abstract	interface	ServletConfig

A	servlet	configuration	object	used	by	a	servlet	container	used	to	pass
information	to	a	servlet	during	initialization.

Method	Summary

	java.lang.String

getInitParameter(java.lang.String	name)	
										Returns	a	String	containing	the	value	of	the	named
initialization	parameter,	or	null	if	the	parameter	does	not
exist.

	java.util.Enumeration

getInitParameterNames()	
										Returns	the	names	of	the	servlet's	initialization
parameters	as	an	Enumeration	of	String	objects,	or	an
empty	Enumeration	if	the	servlet	has	no	initialization
parameters.

	ServletContext

getServletContext()	
										Returns	a	reference	to	the	ServletContext	in	which
the	caller	is	executing.

	java.lang.String
getServletName()	
										Returns	the	name	of	this	servlet	instance.

	

Method	Detail

getServletName

public	java.lang.String	getServletName()

Returns	the	name	of	this	servlet	instance.	The	name	may	be	provided	via
server	administration,	assigned	in	the	web	application	deployment
descriptor,	or	for	an	unregistered	(and	thus	unnamed)	servlet	instance	it	will
be	the	servlet's	class	name.
Returns:

the	name	of	the	servlet	instance

getServletContext

public	ServletContext	getServletContext()

Returns	a	reference	to	the	ServletContext	in	which	the	caller	is	executing.
Returns:

a	ServletContext	object,	used	by	the	caller	to	interact	with	its	servlet
container

See	Also:
ServletContext

getInitParameter

public	java.lang.String	getInitParameter(java.lang.String	name)

Returns	a	String	containing	the	value	of	the	named	initialization
parameter,	or	null	if	the	parameter	does	not	exist.
Parameters:

name	-	a	String	specifying	the	name	of	the	initialization	parameter
Returns:

a	String	containing	the	value	of	the	initialization	parameter

getInitParameterNames

public	java.util.Enumeration	getInitParameterNames()

Returns	the	names	of	the	servlet's	initialization	parameters	as	an
Enumeration	of	String	objects,	or	an	empty	Enumeration	if	the	servlet	has
no	initialization	parameters.

Returns:
an	Enumeration	of	String	objects	containing	the	names	of	the
servlet's	initialization	parameters

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	ServletContext

public	abstract	interface	ServletContext

Defines	a	set	of	methods	that	a	servlet	uses	to	communicate	with	its	servlet
container,	for	example,	to	get	the	MIME	type	of	a	file,	dispatch	requests,	or	write
to	a	log	file.

There	is	one	context	per	"web	application"	per	Java	Virtual	Machine.	(A	"web
application"	is	a	collection	of	servlets	and	content	installed	under	a	specific
subset	of	the	server's	URL	namespace	such	as	/catalog	and	possibly	installed
via	a	.war	file.)

In	the	case	of	a	web	application	marked	"distributed"	in	its	deployment
descriptor,	there	will	be	one	context	instance	for	each	virtual	machine.	In	this
situation,	the	context	cannot	be	used	as	a	location	to	share	global	information
(because	the	information	won't	be	truly	global).	Use	an	external	resource	like	a
database	instead.

The	ServletContext	object	is	contained	within	the	ServletConfig	object,
which	the	Web	server	provides	the	servlet	when	the	servlet	is	initialized.

See	Also:
Servlet.getServletConfig(),	ServletConfig.getServletContext()

Method	Summary

	java.lang.Object

getAttribute(java.lang.String	name)	
										Returns	the	servlet	container	attribute	with	the	given
name,	or	null	if	there	is	no	attribute	by	that	name.

	java.util.Enumeration

getAttributeNames()	
										Returns	an	Enumeration	containing	the	attribute
names	available	within	this	servlet	context.

	ServletContext

getContext(java.lang.String	uripath)	
										Returns	a	ServletContext	object	that	corresponds

to	a	specified	URL	on	the	server.

	java.lang.String

getInitParameter(java.lang.String	name)	
										Returns	a	String	containing	the	value	of	the	named
context-wide	initialization	parameter,	or	null	if	the
parameter	does	not	exist.

	java.util.Enumeration

getInitParameterNames()	
										Returns	the	names	of	the	context's	initialization
parameters	as	an	Enumeration	of	String	objects,	or	an
empty	Enumeration	if	the	context	has	no	initialization
parameters.

	int

getMajorVersion()	
										Returns	the	major	version	of	the	Java	Servlet	API
that	this	servlet	container	supports.

	java.lang.String

getMimeType(java.lang.String	file)	
										Returns	the	MIME	type	of	the	specified	file,	or	null
if	the	MIME	type	is	not	known.

	int

getMinorVersion()	
										Returns	the	minor	version	of	the	Servlet	API	that
this	servlet	container	supports.

	RequestDispatcher

getNamedDispatcher(java.lang.String	name)	
										Returns	a	RequestDispatcher	object	that	acts	as	a
wrapper	for	the	named	servlet.

	java.lang.String

getRealPath(java.lang.String	path)	
										Returns	a	String	containing	the	real	path	for	a	given
virtual	path.

	RequestDispatcher

getRequestDispatcher(java.lang.String	path)	
										Returns	a	RequestDispatcher	object	that	acts	as	a
wrapper	for	the	resource	located	at	the	given	path.

	java.net.URL

getResource(java.lang.String	path)	
										Returns	a	URL	to	the	resource	that	is	mapped	to	a
specified	path.

	java.io.InputStream

getResourceAsStream(java.lang.String	path)	
										Returns	the	resource	located	at	the	named	path	as	an
InputStream	object.
getResourcePaths(java.lang.String	path)	
										Returns	a	directory-like	listing	of	all	the	paths	to

	java.util.Set resources	within	the	web	application	whose	longest	sub-
path	matches	the	supplied	path	argument.

	java.lang.String

getServerInfo()	
										Returns	the	name	and	version	of	the	servlet
container	on	which	the	servlet	is	running.

	Servlet

getServlet(java.lang.String	name)	
										Deprecated.	As	of	Java	Servlet	API	2.1,	with	no
direct	replacement.

This	method	was	originally	defined	to	retrieve	a	servlet
from	a	ServletContext.	In	this	version,	this	method
always	returns	null	and	remains	only	to	preserve	binary
compatibility.	This	method	will	be	permanently	removed
in	a	future	version	of	the	Java	Servlet	API.

In	lieu	of	this	method,	servlets	can	share	information	using
the	ServletContext	class	and	can	perform	shared	business
logic	by	invoking	methods	on	common	non-servlet	classes.

	java.lang.String

getServletContextName()	
										Returns	the	name	of	this	web	application
correponding	to	this	ServletContext	as	specified	in	the
deployment	descriptor	for	this	web	application	by	the
display-name	element.

	java.util.Enumeration

getServletNames()	
										Deprecated.	As	of	Java	Servlet	API	2.1,	with	no
replacement.

This	method	was	originally	defined	to	return	an
Enumeration	of	all	the	servlet	names	known	to	this
context.	In	this	version,	this	method	always	returns	an
empty	Enumeration	and	remains	only	to	preserve	binary
compatibility.	This	method	will	be	permanently	removed
in	a	future	version	of	the	Java	Servlet	API.

getServlets()	
										Deprecated.	As	of	Java	Servlet	API	2.0,	with	no
replacement.

	java.util.Enumeration

This	method	was	originally	defined	to	return	an
Enumeration	of	all	the	servlets	known	to	this	servlet
context.	In	this	version,	this	method	always	returns	an
empty	enumeration	and	remains	only	to	preserve	binary
compatibility.	This	method	will	be	permanently	removed
in	a	future	version	of	the	Java	Servlet	API.

	void

log(java.lang.Exception	exception,

java.lang.String	msg)	
										Deprecated.	As	of	Java	Servlet	API	2.1,	use
log(String	message,	Throwable	throwable)	instead.

This	method	was	originally	defined	to	write	an	exception's
stack	trace	and	an	explanatory	error	message	to	the	servlet
log	file.

	void

log(java.lang.String	msg)	
										Writes	the	specified	message	to	a	servlet	log	file,
usually	an	event	log.

	void

log(java.lang.String	message,

java.lang.Throwable	throwable)	
										Writes	an	explanatory	message	and	a	stack	trace	for
a	given	Throwable	exception	to	the	servlet	log	file.

	void

removeAttribute(java.lang.String	name)	
										Removes	the	attribute	with	the	given	name	from	the
servlet	context.

	void

setAttribute(java.lang.String	name,

java.lang.Object	object)	
										Binds	an	object	to	a	given	attribute	name	in	this
servlet	context.

	

Method	Detail

getContext

public	ServletContext	getContext(java.lang.String	uripath)

Returns	a	ServletContext	object	that	corresponds	to	a	specified	URL	on
the	server.

This	method	allows	servlets	to	gain	access	to	the	context	for	various	parts
of	the	server,	and	as	needed	obtain	RequestDispatcher	objects	from	the
context.	The	given	path	must	be	begin	with	"/",	is	interpreted	relative	to	the
server's	document	root	and	is	matched	against	the	context	roots	of	other
web	applications	hosted	on	this	container.

In	a	security	conscious	environment,	the	servlet	container	may	return	null
for	a	given	URL.

Parameters:
uripath	-	a	String	specifying	the	context	path	of	another	web
application	in	the	container.

Returns:
the	ServletContext	object	that	corresponds	to	the	named	URL,	or
null	if	either	none	exists	or	the	container	wishes	to	restrict	this	access.

See	Also:
RequestDispatcher

getMajorVersion

public	int	getMajorVersion()

Returns	the	major	version	of	the	Java	Servlet	API	that	this	servlet	container
supports.	All	implementations	that	comply	with	Version	2.3	must	have	this
method	return	the	integer	2.
Returns:

2

getMinorVersion

public	int	getMinorVersion()

Returns	the	minor	version	of	the	Servlet	API	that	this	servlet	container
supports.	All	implementations	that	comply	with	Version	2.3	must	have	this
method	return	the	integer	3.

Returns:
3

getMimeType

public	java.lang.String	getMimeType(java.lang.String	file)

Returns	the	MIME	type	of	the	specified	file,	or	null	if	the	MIME	type	is
not	known.	The	MIME	type	is	determined	by	the	configuration	of	the
servlet	container,	and	may	be	specified	in	a	web	application	deployment
descriptor.	Common	MIME	types	are	"text/html"	and	"image/gif".
Parameters:

file	-	a	String	specifying	the	name	of	a	file
Returns:

a	String	specifying	the	file's	MIME	type

getResourcePaths

public	java.util.Set	getResourcePaths(java.lang.String	path)

Returns	a	directory-like	listing	of	all	the	paths	to	resources	within	the	web
application	whose	longest	sub-path	matches	the	supplied	path	argument.
Paths	indicating	subdirectory	paths	end	with	a	'/'.	The	returned	paths	are	all
relative	to	the	root	of	the	web	application	and	have	a	leading	'/'.	For
example,	for	a	web	application	containing

/welcome.html
/catalog/index.html
/catalog/products.html
/catalog/offers/books.html
/catalog/offers/music.html
/customer/login.jsp
/WEB-INF/web.xml
/WEB-INF/classes/com.acme.OrderServlet.class,

getResourcePaths("/")	returns	{"/welcome.html",	"/catalog/",	"/customer/",
"/WEB-INF/"}

getResourcePaths("/catalog/")	returns	{"/catalog/index.html",
"/catalog/products.html",	"/catalog/offers/"}.
Parameters:

the	-	partial	path	used	to	match	the	resources,	which	must	start	with	a	/
Returns:

a	Set	containing	the	directory	listing,	or	null	if	there	are	no	resources
in	the	web	application	whose	path	begins	with	the	supplied	path.

Since:
Servlet	2.3

getResource

public	java.net.URL	getResource(java.lang.String	path)

																									throws	java.net.MalformedURLException

Returns	a	URL	to	the	resource	that	is	mapped	to	a	specified	path.	The	path
must	begin	with	a	"/"	and	is	interpreted	as	relative	to	the	current	context
root.

This	method	allows	the	servlet	container	to	make	a	resource	available	to
servlets	from	any	source.	Resources	can	be	located	on	a	local	or	remote	file
system,	in	a	database,	or	in	a	.war	file.

The	servlet	container	must	implement	the	URL	handlers	and
URLConnection	objects	that	are	necessary	to	access	the	resource.

This	method	returns	null	if	no	resource	is	mapped	to	the	pathname.

Some	containers	may	allow	writing	to	the	URL	returned	by	this	method
using	the	methods	of	the	URL	class.

The	resource	content	is	returned	directly,	so	be	aware	that	requesting	a	.jsp
page	returns	the	JSP	source	code.	Use	a	RequestDispatcher	instead	to
include	results	of	an	execution.

This	method	has	a	different	purpose	than	java.lang.Class.getResource,
which	looks	up	resources	based	on	a	class	loader.	This	method	does	not	use
class	loaders.

Parameters:
path	-	a	String	specifying	the	path	to	the	resource

Returns:
the	resource	located	at	the	named	path,	or	null	if	there	is	no	resource
at	that	path

Throws:
java.net.MalformedURLException	-	if	the	pathname	is	not	given	in	the
correct	form

getResourceAsStream

public	java.io.InputStream	getResourceAsStream(java.lang.String	path)

Returns	the	resource	located	at	the	named	path	as	an	InputStream	object.

The	data	in	the	InputStream	can	be	of	any	type	or	length.	The	path	must	be
specified	according	to	the	rules	given	in	getResource.	This	method	returns
null	if	no	resource	exists	at	the	specified	path.

Meta-information	such	as	content	length	and	content	type	that	is	available
via	getResource	method	is	lost	when	using	this	method.

The	servlet	container	must	implement	the	URL	handlers	and
URLConnection	objects	necessary	to	access	the	resource.

This	method	is	different	from	java.lang.Class.getResourceAsStream,
which	uses	a	class	loader.	This	method	allows	servlet	containers	to	make	a
resource	available	to	a	servlet	from	any	location,	without	using	a	class
loader.

Parameters:
name	-	a	String	specifying	the	path	to	the	resource

Returns:
the	InputStream	returned	to	the	servlet,	or	null	if	no	resource	exists	at
the	specified	path

getRequestDispatcher

public	RequestDispatcher	getRequestDispatcher(java.lang.String	path)

Returns	a	RequestDispatcher	object	that	acts	as	a	wrapper	for	the	resource
located	at	the	given	path.	A	RequestDispatcher	object	can	be	used	to
forward	a	request	to	the	resource	or	to	include	the	resource	in	a	response.
The	resource	can	be	dynamic	or	static.

The	pathname	must	begin	with	a	"/"	and	is	interpreted	as	relative	to	the
current	context	root.	Use	getContext	to	obtain	a	RequestDispatcher	for
resources	in	foreign	contexts.	This	method	returns	null	if	the
ServletContext	cannot	return	a	RequestDispatcher.

Parameters:
path	-	a	String	specifying	the	pathname	to	the	resource

Returns:
a	RequestDispatcher	object	that	acts	as	a	wrapper	for	the	resource	at
the	specified	path

See	Also:
RequestDispatcher,	getContext(java.lang.String)

getNamedDispatcher

public	RequestDispatcher	getNamedDispatcher(java.lang.String	name)

Returns	a	RequestDispatcher	object	that	acts	as	a	wrapper	for	the	named
servlet.

Servlets	(and	JSP	pages	also)	may	be	given	names	via	server	administration
or	via	a	web	application	deployment	descriptor.	A	servlet	instance	can
determine	its	name	using	ServletConfig.getServletName().

This	method	returns	null	if	the	ServletContext	cannot	return	a
RequestDispatcher	for	any	reason.

Parameters:
name	-	a	String	specifying	the	name	of	a	servlet	to	wrap

Returns:
a	RequestDispatcher	object	that	acts	as	a	wrapper	for	the	named
servlet

See	Also:
RequestDispatcher,	getContext(java.lang.String),
ServletConfig.getServletName()

getServlet

public	Servlet	getServlet(java.lang.String	name)

																			throws	ServletException

Deprecated.	As	of	Java	Servlet	API	2.1,	with	no	direct	replacement.

This	method	was	originally	defined	to	retrieve	a	servlet	from	a
ServletContext.	In	this	version,	this	method	always	returns	null	and
remains	only	to	preserve	binary	compatibility.	This	method	will	be
permanently	removed	in	a	future	version	of	the	Java	Servlet	API.

In	lieu	of	this	method,	servlets	can	share	information	using	the
ServletContext	class	and	can	perform	shared	business	logic	by	invoking
methods	on	common	non-servlet	classes.

getServlets

public	java.util.Enumeration	getServlets()

Deprecated.	As	of	Java	Servlet	API	2.0,	with	no	replacement.

This	method	was	originally	defined	to	return	an	Enumeration	of	all	the
servlets	known	to	this	servlet	context.	In	this	version,	this	method	always
returns	an	empty	enumeration	and	remains	only	to	preserve	binary
compatibility.	This	method	will	be	permanently	removed	in	a	future	version
of	the	Java	Servlet	API.

getServletNames

public	java.util.Enumeration	getServletNames()

Deprecated.	As	of	Java	Servlet	API	2.1,	with	no	replacement.

This	method	was	originally	defined	to	return	an	Enumeration	of	all	the
servlet	names	known	to	this	context.	In	this	version,	this	method	always
returns	an	empty	Enumeration	and	remains	only	to	preserve	binary
compatibility.	This	method	will	be	permanently	removed	in	a	future	version
of	the	Java	Servlet	API.

log

public	void	log(java.lang.String	msg)

Writes	the	specified	message	to	a	servlet	log	file,	usually	an	event	log.	The
name	and	type	of	the	servlet	log	file	is	specific	to	the	servlet	container.
Parameters:

msg	-	a	String	specifying	the	message	to	be	written	to	the	log	file

log

public	void	log(java.lang.Exception	exception,

																java.lang.String	msg)

Deprecated.	As	of	Java	Servlet	API	2.1,	use	log(String	message,
Throwable	throwable)	instead.

This	method	was	originally	defined	to	write	an	exception's	stack	trace	and
an	explanatory	error	message	to	the	servlet	log	file.

log

public	void	log(java.lang.String	message,

																java.lang.Throwable	throwable)

Writes	an	explanatory	message	and	a	stack	trace	for	a	given	Throwable
exception	to	the	servlet	log	file.	The	name	and	type	of	the	servlet	log	file	is
specific	to	the	servlet	container,	usually	an	event	log.
Parameters:

message	-	a	String	that	describes	the	error	or	exception
throwable	-	the	Throwable	error	or	exception

getRealPath

public	java.lang.String	getRealPath(java.lang.String	path)

Returns	a	String	containing	the	real	path	for	a	given	virtual	path.	For
example,	the	path	"/index.html"	returns	the	absolute	file	path	on	the	server's
filesystem	would	be	served	by	a	request	for
"http://host/contextPath/index.html",	where	contextPath	is	the	context	path
of	this	ServletContext..

The	real	path	returned	will	be	in	a	form	appropriate	to	the	computer	and
operating	system	on	which	the	servlet	container	is	running,	including	the
proper	path	separators.	This	method	returns	null	if	the	servlet	container
cannot	translate	the	virtual	path	to	a	real	path	for	any	reason	(such	as	when
the	content	is	being	made	available	from	a	.war	archive).

Parameters:
path	-	a	String	specifying	a	virtual	path

Returns:
a	String	specifying	the	real	path,	or	null	if	the	translation	cannot	be
performed

getServerInfo

public	java.lang.String	getServerInfo()

Returns	the	name	and	version	of	the	servlet	container	on	which	the	servlet
is	running.

The	form	of	the	returned	string	is	servername/versionnumber.	For	example,
the	JavaServer	Web	Development	Kit	may	return	the	string	JavaServer
Web	Dev	Kit/1.0.

The	servlet	container	may	return	other	optional	information	after	the
primary	string	in	parentheses,	for	example,	JavaServer	Web	Dev	Kit/1.0
(JDK	1.1.6;	Windows	NT	4.0	x86).

Returns:

a	String	containing	at	least	the	servlet	container	name	and	version
number

getInitParameter

public	java.lang.String	getInitParameter(java.lang.String	name)

Returns	a	String	containing	the	value	of	the	named	context-wide
initialization	parameter,	or	null	if	the	parameter	does	not	exist.

This	method	can	make	available	configuration	information	useful	to	an
entire	"web	application".	For	example,	it	can	provide	a	webmaster's	email
address	or	the	name	of	a	system	that	holds	critical	data.

Parameters:
name	-	a	String	containing	the	name	of	the	parameter	whose	value	is
requested

Returns:
a	String	containing	at	least	the	servlet	container	name	and	version
number

See	Also:
ServletConfig.getInitParameter(java.lang.String)

getInitParameterNames

public	java.util.Enumeration	getInitParameterNames()

Returns	the	names	of	the	context's	initialization	parameters	as	an
Enumeration	of	String	objects,	or	an	empty	Enumeration	if	the	context	has
no	initialization	parameters.
Returns:

an	Enumeration	of	String	objects	containing	the	names	of	the
context's	initialization	parameters

See	Also:
ServletConfig.getInitParameter(java.lang.String)

getAttribute

public	java.lang.Object	getAttribute(java.lang.String	name)

Returns	the	servlet	container	attribute	with	the	given	name,	or	null	if	there
is	no	attribute	by	that	name.	An	attribute	allows	a	servlet	container	to	give
the	servlet	additional	information	not	already	provided	by	this	interface.
See	your	server	documentation	for	information	about	its	attributes.	A	list	of
supported	attributes	can	be	retrieved	using	getAttributeNames.

The	attribute	is	returned	as	a	java.lang.Object	or	some	subclass.	Attribute
names	should	follow	the	same	convention	as	package	names.	The	Java
Servlet	API	specification	reserves	names	matching	java.*,	javax.*,	and
sun.*.

Parameters:
name	-	a	String	specifying	the	name	of	the	attribute

Returns:
an	Object	containing	the	value	of	the	attribute,	or	null	if	no	attribute
exists	matching	the	given	name

See	Also:
getAttributeNames()

getAttributeNames

public	java.util.Enumeration	getAttributeNames()

Returns	an	Enumeration	containing	the	attribute	names	available	within
this	servlet	context.	Use	the	getAttribute(java.lang.String)	method
with	an	attribute	name	to	get	the	value	of	an	attribute.
Returns:

an	Enumeration	of	attribute	names
See	Also:

getAttribute(java.lang.String)

setAttribute

public	void	setAttribute(java.lang.String	name,

																									java.lang.Object	object)

Binds	an	object	to	a	given	attribute	name	in	this	servlet	context.	If	the	name
specified	is	already	used	for	an	attribute,	this	method	will	replace	the
attribute	with	the	new	to	the	new	attribute.

If	listeners	are	configured	on	the	ServletContext	the	container	notifies
them	accordingly.

If	a	null	value	is	passed,	the	effect	is	the	same	as	calling
removeAttribute().

Attribute	names	should	follow	the	same	convention	as	package	names.	The
Java	Servlet	API	specification	reserves	names	matching	java.*,	javax.*,
and	sun.*.

Parameters:
name	-	a	String	specifying	the	name	of	the	attribute
object	-	an	Object	representing	the	attribute	to	be	bound

removeAttribute

public	void	removeAttribute(java.lang.String	name)

Removes	the	attribute	with	the	given	name	from	the	servlet	context.	After
removal,	subsequent	calls	to	getAttribute(java.lang.String)	to	retrieve
the	attribute's	value	will	return	null.

If	listeners	are	configured	on	the	ServletContext	the	container	notifies
them	accordingly.

Parameters:
name	-	a	String	specifying	the	name	of	the	attribute	to	be	removed

getServletContextName

public	java.lang.String	getServletContextName()

Returns	the	name	of	this	web	application	correponding	to	this
ServletContext	as	specified	in	the	deployment	descriptor	for	this	web
application	by	the	display-name	element.
Returns:

The	name	of	the	web	application	or	null	if	no	name	has	been	declared
in	the	deployment	descriptor.

Since:
Servlet	2.3

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Class	ServletContextAttributeEvent
java.lang.Object

		|

		+--java.util.EventObject

								|

								+--javax.servlet.ServletContextEvent

														|

														+--javax.servlet.ServletContextAttributeEvent

public	class	ServletContextAttributeEvent
extends	ServletContextEvent

This	is	the	event	class	for	notifications	about	changes	to	the	attributes	of	the
servlet	context	of	a	web	application.

Since:
v	2.3

See	Also:
ServletContextAttributeListener,	Serialized	Form

Fields	inherited	from	class	java.util.EventObject
source

	

Constructor	Summary
ServletContextAttributeEvent(ServletContext	source,

java.lang.String	name,	java.lang.Object	value)	
										Construct	a	ServletContextAttributeEvent	from	the	given	context	for	the
given	attribute	name	and	attribute	value.
	

Method	Summary

	java.lang.String

getName()	
										Return	the	name	of	the	attribute	that	changed	on	the
ServletContext.
getValue()	

	java.lang.Object 										Returns	the	value	of	the	attribute	that	has	been	added
removed	or	replaced.

	
Methods	inherited	from	class	javax.servlet.ServletContextEvent
getServletContext

	
Methods	inherited	from	class	java.util.EventObject
getSource,	toString

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

wait,	wait,	wait

	

Constructor	Detail

ServletContextAttributeEvent

public	ServletContextAttributeEvent(ServletContext	source,

																																				java.lang.String	name,

																																				java.lang.Object	value)

Construct	a	ServletContextAttributeEvent	from	the	given	context	for	the
given	attribute	name	and	attribute	value.

Method	Detail

getName

public	java.lang.String	getName()

Return	the	name	of	the	attribute	that	changed	on	the	ServletContext.

getValue

public	java.lang.Object	getValue()

Returns	the	value	of	the	attribute	that	has	been	added	removed	or	replaced.
If	the	attribute	was	added,	this	is	the	value	of	the	attribute.	If	the	attrubute
was	removed,	this	is	the	value	of	the	removed	attribute.	If	the	attribute	was
replaced,	this	is	the	old	value	of	the	attribute.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	ServletContextAttributeListener

public	abstract	interface	ServletContextAttributeListener
extends	java.util.EventListener

Implementations	of	this	interface	recieve	notifications	of	changes	to	the	attribute
list	on	the	servlet	context	of	a	web	application.	To	recieve	notification	events,	the
implementation	class	must	be	configured	in	the	deployment	descriptor	for	the
web	application.

Since:
v	2.3

See	Also:
ServletContextAttributeEvent

Method	Summary
	void

attributeAdded(ServletContextAttributeEvent	scab)	
										Notification	that	a	new	attribute	was	added	to	the	servlet	context.

	void

attributeRemoved(ServletContextAttributeEvent	scab)	
										Notification	that	an	existing	attribute	has	been	remved	from	the
servlet	context.

	void

attributeReplaced(ServletContextAttributeEvent	scab)	
										Notification	that	an	attribute	on	the	servlet	context	has	been
replaced.

	

Method	Detail

attributeAdded

public	void	attributeAdded(ServletContextAttributeEvent	scab)

Notification	that	a	new	attribute	was	added	to	the	servlet	context.	Called

after	the	attribute	is	added.

attributeRemoved

public	void	attributeRemoved(ServletContextAttributeEvent	scab)

Notification	that	an	existing	attribute	has	been	remved	from	the	servlet
context.	Called	after	the	attribute	is	removed.

attributeReplaced

public	void	attributeReplaced(ServletContextAttributeEvent	scab)

Notification	that	an	attribute	on	the	servlet	context	has	been	replaced.
Called	after	the	attribute	is	replaced.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Class	ServletContextEvent
java.lang.Object

		|

		+--java.util.EventObject

								|

								+--javax.servlet.ServletContextEvent

Direct	Known	Subclasses:
ServletContextAttributeEvent

public	class	ServletContextEvent
extends	java.util.EventObject

This	is	the	event	class	for	notifications	about	changes	to	the	servlet	context	of	a
web	application.

Since:
v	2.3

See	Also:
ServletContextListener,	Serialized	Form

Fields	inherited	from	class	java.util.EventObject
source

	

Constructor	Summary
ServletContextEvent(ServletContext	source)	
										Construct	a	ServletContextEvent	from	the	given	context.
	

Method	Summary
	ServletContext

getServletContext()	
										Return	the	ServletContext	that	changed.

	
Methods	inherited	from	class	java.util.EventObject

getSource,	toString

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

wait,	wait,	wait

	

Constructor	Detail

ServletContextEvent

public	ServletContextEvent(ServletContext	source)

Construct	a	ServletContextEvent	from	the	given	context.
Parameters:

source	-	-	the	ServletContext	that	is	sending	the	event.

Method	Detail

getServletContext

public	ServletContext	getServletContext()

Return	the	ServletContext	that	changed.
Returns:

the	ServletContext	that	sent	the	event.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	ServletContextListener

public	abstract	interface	ServletContextListener
extends	java.util.EventListener

Implementations	of	this	interface	recieve	notifications	about	changes	to	the
servlet	context	of	the	web	application	they	are	part	of.	To	recieve	notification
events,	the	implementation	class	must	be	configured	in	the	deployment
descriptor	for	the	web	application.

Since:
v	2.3

See	Also:
ServletContextEvent

Method	Summary
	void

contextDestroyed(ServletContextEvent	sce)	
										Notification	that	the	servlet	context	is	about	to	be	shut	down.

	void
contextInitialized(ServletContextEvent	sce)	
										Notification	that	the	web	application	is	ready	to	process	requests.

	

Method	Detail

contextInitialized

public	void	contextInitialized(ServletContextEvent	sce)

Notification	that	the	web	application	is	ready	to	process	requests.

contextDestroyed

public	void	contextDestroyed(ServletContextEvent	sce)

Notification	that	the	servlet	context	is	about	to	be	shut	down.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Class	ServletException
java.lang.Object

		|

		+--java.lang.Throwable

								|

								+--java.lang.Exception

														|

														+--javax.servlet.ServletException

Direct	Known	Subclasses:
UnavailableException

public	class	ServletException
extends	java.lang.Exception

Defines	a	general	exception	a	servlet	can	throw	when	it	encounters	difficulty.

See	Also:
Serialized	Form

Constructor	Summary
ServletException()	
										Constructs	a	new	servlet	exception.
ServletException(java.lang.String	message)	
										Constructs	a	new	servlet	exception	with	the	specified	message.
ServletException(java.lang.String	message,

java.lang.Throwable	rootCause)	
										Constructs	a	new	servlet	exception	when	the	servlet	needs	to	throw	an
exception	and	include	a	message	about	the	"root	cause"	exception	that
interfered	with	its	normal	operation,	including	a	description	message.
ServletException(java.lang.Throwable	rootCause)	
										Constructs	a	new	servlet	exception	when	the	servlet	needs	to	throw	an
exception	and	include	a	message	about	the	"root	cause"	exception	that
interfered	with	its	normal	operation.
	

Method	Summary

	java.lang.Throwable

getRootCause()	
										Returns	the	exception	that	caused	this	servlet
exception.

	
Methods	inherited	from	class	java.lang.Throwable
fillInStackTrace,	getLocalizedMessage,	getMessage,

printStackTrace,	printStackTrace,	printStackTrace,	toString

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

wait,	wait,	wait

	

Constructor	Detail

ServletException

public	ServletException()

Constructs	a	new	servlet	exception.

ServletException

public	ServletException(java.lang.String	message)

Constructs	a	new	servlet	exception	with	the	specified	message.	The
message	can	be	written	to	the	server	log	and/or	displayed	for	the	user.
Parameters:

message	-	a	String	specifying	the	text	of	the	exception	message

ServletException

public	ServletException(java.lang.String	message,

																								java.lang.Throwable	rootCause)

Constructs	a	new	servlet	exception	when	the	servlet	needs	to	throw	an
exception	and	include	a	message	about	the	"root	cause"	exception	that
interfered	with	its	normal	operation,	including	a	description	message.
Parameters:

message	-	a	String	containing	the	text	of	the	exception	message
rootCause	-	the	Throwable	exception	that	interfered	with	the	servlet's
normal	operation,	making	this	servlet	exception	necessary

ServletException

public	ServletException(java.lang.Throwable	rootCause)

Constructs	a	new	servlet	exception	when	the	servlet	needs	to	throw	an
exception	and	include	a	message	about	the	"root	cause"	exception	that
interfered	with	its	normal	operation.	The	exception's	message	is	based	on
the	localized	message	of	the	underlying	exception.

This	method	calls	the	getLocalizedMessage	method	on	the	Throwable
exception	to	get	a	localized	exception	message.	When	subclassing
ServletException,	this	method	can	be	overridden	to	create	an	exception
message	designed	for	a	specific	locale.

Parameters:
rootCause	-	the	Throwable	exception	that	interfered	with	the	servlet's
normal	operation,	making	the	servlet	exception	necessary

Method	Detail

getRootCause

public	java.lang.Throwable	getRootCause()

Returns	the	exception	that	caused	this	servlet	exception.
Returns:

the	Throwable	that	caused	this	servlet	exception

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	

	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Class	ServletInputStream
java.lang.Object

		|

		+--java.io.InputStream

								|

								+--javax.servlet.ServletInputStream

public	abstract	class	ServletInputStream
extends	java.io.InputStream

Provides	an	input	stream	for	reading	binary	data	from	a	client	request,	including
an	efficient	readLine	method	for	reading	data	one	line	at	a	time.	With	some
protocols,	such	as	HTTP	POST	and	PUT,	a	ServletInputStream	object	can	be
used	to	read	data	sent	from	the	client.

A	ServletInputStream	object	is	normally	retrieved	via	the
ServletRequest.getInputStream()	method.

This	is	an	abstract	class	that	a	servlet	container	implements.	Subclasses	of	this
class	must	implement	the	java.io.InputStream.read()	method.

See	Also:
ServletRequest

Constructor	Summary
protected

ServletInputStream()	
										Does	nothing,	because	this	is	an	abstract	class.

	

Method	Summary
	int

readLine(byte[]	b,	int	off,	int	len)	
										Reads	the	input	stream,	one	line	at	a	time.

	
Methods	inherited	from	class	java.io.InputStream
available,	close,	mark,	markSupported,	read,	read,	read,	reset,

skip

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

toString,	wait,	wait,	wait

	

Constructor	Detail

ServletInputStream

protected	ServletInputStream()

Does	nothing,	because	this	is	an	abstract	class.

Method	Detail

readLine

public	int	readLine(byte[]	b,

																				int	off,

																				int	len)

													throws	java.io.IOException

Reads	the	input	stream,	one	line	at	a	time.	Starting	at	an	offset,	reads	bytes
into	an	array,	until	it	reads	a	certain	number	of	bytes	or	reaches	a	newline
character,	which	it	reads	into	the	array	as	well.

This	method	returns	-1	if	it	reaches	the	end	of	the	input	stream	before
reading	the	maximum	number	of	bytes.

Parameters:
b	-	an	array	of	bytes	into	which	data	is	read
off	-	an	integer	specifying	the	character	at	which	this	method	begins
reading
len	-	an	integer	specifying	the	maximum	number	of	bytes	to	read

Returns:
an	integer	specifying	the	actual	number	of	bytes	read,	or	-1	if	the	end

of	the	stream	is	reached
Throws:

java.io.IOException	-	if	an	input	or	output	exception	has	occurred

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Class	ServletOutputStream
java.lang.Object

		|

		+--java.io.OutputStream

								|

								+--javax.servlet.ServletOutputStream

public	abstract	class	ServletOutputStream
extends	java.io.OutputStream

Provides	an	output	stream	for	sending	binary	data	to	the	client.	A
ServletOutputStream	object	is	normally	retrieved	via	the
ServletResponse.getOutputStream()	method.

This	is	an	abstract	class	that	the	servlet	container	implements.	Subclasses	of	this
class	must	implement	the	java.io.OutputStream.write(int)	method.

See	Also:
ServletResponse

Constructor	Summary
protected

ServletOutputStream()	
										Does	nothing,	because	this	is	an	abstract	class.

	

Method	Summary

	void

print(boolean	b)	
										Writes	a	boolean	value	to	the	client,	with	no	carriage	return-line
feed	(CRLF)	character	at	the	end.

	void

print(char	c)	
										Writes	a	character	to	the	client,	with	no	carriage	return-line	feed
(CRLF)	at	the	end.

	void

print(double	d)	
										Writes	a	double	value	to	the	client,	with	no	carriage	return-line	feed
(CRLF)	at	the	end.

	void

print(float	f)	
										Writes	a	float	value	to	the	client,	with	no	carriage	return-line	feed
(CRLF)	at	the	end.

	void

print(int	i)	
										Writes	an	int	to	the	client,	with	no	carriage	return-line	feed	(CRLF)
at	the	end.

	void

print(long	l)	
										Writes	a	long	value	to	the	client,	with	no	carriage	return-line	feed
(CRLF)	at	the	end.

	void

print(java.lang.String	s)	
										Writes	a	String	to	the	client,	without	a	carriage	return-line	feed
(CRLF)	character	at	the	end.

	void
println()	
										Writes	a	carriage	return-line	feed	(CRLF)	to	the	client.

	void

println(boolean	b)	
										Writes	a	boolean	value	to	the	client,	followed	by	a	carriage	return-
line	feed	(CRLF).

	void

println(char	c)	
										Writes	a	character	to	the	client,	followed	by	a	carriage	return-line
feed	(CRLF).

	void

println(double	d)	
										Writes	a	double	value	to	the	client,	followed	by	a	carriage	return-
line	feed	(CRLF).

	void

println(float	f)	
										Writes	a	float	value	to	the	client,	followed	by	a	carriage	return-line
feed	(CRLF).

	void

println(int	i)	
										Writes	an	int	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF)	character.

	void

println(long	l)	
										Writes	a	long	value	to	the	client,	followed	by	a	carriage	return-line
feed	(CRLF).

	void

println(java.lang.String	s)	
										Writes	a	String	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).

	
Methods	inherited	from	class	java.io.OutputStream
close,	flush,	write,	write,	write

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

toString,	wait,	wait,	wait

	

Constructor	Detail

ServletOutputStream

protected	ServletOutputStream()

Does	nothing,	because	this	is	an	abstract	class.

Method	Detail

print

public	void	print(java.lang.String	s)

											throws	java.io.IOException

Writes	a	String	to	the	client,	without	a	carriage	return-line	feed	(CRLF)
character	at	the	end.
Parameters:

s	-	the	String
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

print

public	void	print(boolean	b)

											throws	java.io.IOException

Writes	a	boolean	value	to	the	client,	with	no	carriage	return-line	feed
(CRLF)	character	at	the	end.
Parameters:

b	-	the	boolean	value	to	send	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

print

public	void	print(char	c)

											throws	java.io.IOException

Writes	a	character	to	the	client,	with	no	carriage	return-line	feed	(CRLF)	at
the	end.
Parameters:

c	-	the	character	to	send	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

print

public	void	print(int	i)

											throws	java.io.IOException

Writes	an	int	to	the	client,	with	no	carriage	return-line	feed	(CRLF)	at	the
end.
Parameters:

i	-	the	int	to	send	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

print

public	void	print(long	l)

											throws	java.io.IOException

Writes	a	long	value	to	the	client,	with	no	carriage	return-line	feed	(CRLF)

at	the	end.
Parameters:

l	-	the	long	value	to	send	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

print

public	void	print(float	f)

											throws	java.io.IOException

Writes	a	float	value	to	the	client,	with	no	carriage	return-line	feed	(CRLF)
at	the	end.
Parameters:

f	-	the	float	value	to	send	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

print

public	void	print(double	d)

											throws	java.io.IOException

Writes	a	double	value	to	the	client,	with	no	carriage	return-line	feed
(CRLF)	at	the	end.
Parameters:

d	-	the	double	value	to	send	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

println

public	void	println()

													throws	java.io.IOException

Writes	a	carriage	return-line	feed	(CRLF)	to	the	client.
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

println

public	void	println(java.lang.String	s)

													throws	java.io.IOException

Writes	a	String	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).
Parameters:

s	-	the	String	to	write	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

println

public	void	println(boolean	b)

													throws	java.io.IOException

Writes	a	boolean	value	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).
Parameters:

b	-	the	boolean	value	to	write	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

println

public	void	println(char	c)

													throws	java.io.IOException

Writes	a	character	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).
Parameters:

c	-	the	character	to	write	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

println

public	void	println(int	i)

													throws	java.io.IOException

Writes	an	int	to	the	client,	followed	by	a	carriage	return-line	feed	(CRLF)
character.
Parameters:

i	-	the	int	to	write	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

println

public	void	println(long	l)

													throws	java.io.IOException

Writes	a	long	value	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).
Parameters:

l	-	the	long	value	to	write	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

println

public	void	println(float	f)

													throws	java.io.IOException

Writes	a	float	value	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).
Parameters:

f	-	the	float	value	to	write	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

println

public	void	println(double	d)

													throws	java.io.IOException

Writes	a	double	value	to	the	client,	followed	by	a	carriage	return-line	feed
(CRLF).
Parameters:

d	-	the	double	value	to	write	to	the	client
Throws:

java.io.IOException	-	if	an	input	or	output	exception	occurred

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	ServletRequest

All	Known	Subinterfaces:
HttpServletRequest

All	Known	Implementing	Classes:
ServletRequestWrapper

public	abstract	interface	ServletRequest

Defines	an	object	to	provide	client	request	information	to	a	servlet.	The	servlet
container	creates	a	ServletRequest	object	and	passes	it	as	an	argument	to	the
servlet's	service	method.

A	ServletRequest	object	provides	data	including	parameter	name	and	values,
attributes,	and	an	input	stream.	Interfaces	that	extend	ServletRequest	can
provide	additional	protocol-specific	data	(for	example,	HTTP	data	is	provided	by
HttpServletRequest.

See	Also:
HttpServletRequest

Method	Summary

	java.lang.Object

getAttribute(java.lang.String	name)	
										Returns	the	value	of	the	named	attribute	as	an
Object,	or	null	if	no	attribute	of	the	given	name	exists.

	java.util.Enumeration

getAttributeNames()	
										Returns	an	Enumeration	containing	the	names	of
the	attributes	available	to	this	request.

	java.lang.String

getCharacterEncoding()	
										Returns	the	name	of	the	character	encoding	used	in
the	body	of	this	request.

	int

getContentLength()	
										Returns	the	length,	in	bytes,	of	the	request	body	and

made	available	by	the	input	stream,	or	-1	if	the	length	is
not	known.

	java.lang.String

getContentType()	
										Returns	the	MIME	type	of	the	body	of	the	request,
or	null	if	the	type	is	not	known.

	ServletInputStream

getInputStream()	
										Retrieves	the	body	of	the	request	as	binary	data
using	a	ServletInputStream.

	java.util.Locale

getLocale()	
										Returns	the	preferred	Locale	that	the	client	will
accept	content	in,	based	on	the	Accept-Language	header.

	java.util.Enumeration

getLocales()	
										Returns	an	Enumeration	of	Locale	objects
indicating,	in	decreasing	order	starting	with	the	preferred
locale,	the	locales	that	are	acceptable	to	the	client	based
on	the	Accept-Language	header.

	java.lang.String

getParameter(java.lang.String	name)	
										Returns	the	value	of	a	request	parameter	as	a
String,	or	null	if	the	parameter	does	not	exist.

	java.util.Map

getParameterMap()	
										Returns	a	java.util.Map	of	the	parameters	of	this
request.

	java.util.Enumeration

getParameterNames()	
										Returns	an	Enumeration	of	String	objects
containing	the	names	of	the	parameters	contained	in	this
request.

	java.lang.String[]

getParameterValues(java.lang.String	name)	
										Returns	an	array	of	String	objects	containing	all	of
the	values	the	given	request	parameter	has,	or	null	if	the
parameter	does	not	exist.

	java.lang.String

getProtocol()	
										Returns	the	name	and	version	of	the	protocol	the
request	uses	in	the	form
protocol/majorVersion.minorVersion,	for	example,
HTTP/1.1.
getReader()	

	java.io.BufferedReader 										Retrieves	the	body	of	the	request	as	character	data
using	a	BufferedReader.

	java.lang.String

getRealPath(java.lang.String	path)	
										Deprecated.	As	of	Version	2.1	of	the	Java	Servlet
API,	use
ServletContext.getRealPath(java.lang.String)

instead.

	java.lang.String

getRemoteAddr()	
										Returns	the	Internet	Protocol	(IP)	address	of	the
client	that	sent	the	request.

	java.lang.String

getRemoteHost()	
										Returns	the	fully	qualified	name	of	the	client	that
sent	the	request.

	RequestDispatcher

getRequestDispatcher(java.lang.String	path)	
										Returns	a	RequestDispatcher	object	that	acts	as	a
wrapper	for	the	resource	located	at	the	given	path.

	java.lang.String

getScheme()	
										Returns	the	name	of	the	scheme	used	to	make	this
request,	for	example,	http,	https,	or	ftp.

	java.lang.String

getServerName()	
										Returns	the	host	name	of	the	server	that	received
the	request.

	int

getServerPort()	
										Returns	the	port	number	on	which	this	request	was
received.

	boolean

isSecure()	
										Returns	a	boolean	indicating	whether	this	request
was	made	using	a	secure	channel,	such	as	HTTPS.

	void
removeAttribute(java.lang.String	name)	
										Removes	an	attribute	from	this	request.

	void

setAttribute(java.lang.String	name,

java.lang.Object	o)	
										Stores	an	attribute	in	this	request.

	void

setCharacterEncoding(java.lang.String	env)	
										Overrides	the	name	of	the	character	encoding	used
in	the	body	of	this	request.

	

Method	Detail

getAttribute

public	java.lang.Object	getAttribute(java.lang.String	name)

Returns	the	value	of	the	named	attribute	as	an	Object,	or	null	if	no
attribute	of	the	given	name	exists.

Attributes	can	be	set	two	ways.	The	servlet	container	may	set	attributes	to
make	available	custom	information	about	a	request.	For	example,	for
requests	made	using	HTTPS,	the	attribute
javax.servlet.request.X509Certificate	can	be	used	to	retrieve
information	on	the	certificate	of	the	client.	Attributes	can	also	be	set
programatically	using	setAttribute(java.lang.String,
java.lang.Object).	This	allows	information	to	be	embedded	into	a	request
before	a	RequestDispatcher	call.

Attribute	names	should	follow	the	same	conventions	as	package	names.
This	specification	reserves	names	matching	java.*,	javax.*,	and	sun.*.

Parameters:
name	-	a	String	specifying	the	name	of	the	attribute

Returns:
an	Object	containing	the	value	of	the	attribute,	or	null	if	the	attribute
does	not	exist

getAttributeNames

public	java.util.Enumeration	getAttributeNames()

Returns	an	Enumeration	containing	the	names	of	the	attributes	available	to
this	request.	This	method	returns	an	empty	Enumeration	if	the	request	has
no	attributes	available	to	it.
Returns:

an	Enumeration	of	strings	containing	the	names	of	the	request's

attributes

getCharacterEncoding

public	java.lang.String	getCharacterEncoding()

Returns	the	name	of	the	character	encoding	used	in	the	body	of	this	request.
This	method	returns	null	if	the	request	does	not	specify	a	character
encoding
Returns:

a	String	containing	the	name	of	the	chararacter	encoding,	or	null	if
the	request	does	not	specify	a	character	encoding

setCharacterEncoding

public	void	setCharacterEncoding(java.lang.String	env)

																										throws	java.io.UnsupportedEncodingException

Overrides	the	name	of	the	character	encoding	used	in	the	body	of	this
request.	This	method	must	be	called	prior	to	reading	request	parameters	or
reading	input	using	getReader().
Parameters:

a	-	String	containing	the	name	of	the	chararacter	encoding.
Throws:

java.io.UnsupportedEncodingException	-	if	this	is	not	a	valid	encoding

getContentLength

public	int	getContentLength()

Returns	the	length,	in	bytes,	of	the	request	body	and	made	available	by	the
input	stream,	or	-1	if	the	length	is	not	known.	For	HTTP	servlets,	same	as
the	value	of	the	CGI	variable	CONTENT_LENGTH.
Returns:

an	integer	containing	the	length	of	the	request	body	or	-1	if	the	length
is	not	known

getContentType

public	java.lang.String	getContentType()

Returns	the	MIME	type	of	the	body	of	the	request,	or	null	if	the	type	is	not
known.	For	HTTP	servlets,	same	as	the	value	of	the	CGI	variable
CONTENT_TYPE.
Returns:

a	String	containing	the	name	of	the	MIME	type	of	the	request,	or	null
if	the	type	is	not	known

getInputStream

public	ServletInputStream	getInputStream()

																																		throws	java.io.IOException

Retrieves	the	body	of	the	request	as	binary	data	using	a
ServletInputStream.	Either	this	method	or	getReader()	may	be	called	to
read	the	body,	not	both.
Returns:

a	ServletInputStream	object	containing	the	body	of	the	request
Throws:

IllegalStateException	-	if	the	getReader()	method	has	already	been
called	for	this	request
java.io.IOException	-	if	an	input	or	output	exception	occurred

getParameter

public	java.lang.String	getParameter(java.lang.String	name)

Returns	the	value	of	a	request	parameter	as	a	String,	or	null	if	the
parameter	does	not	exist.	Request	parameters	are	extra	information	sent
with	the	request.	For	HTTP	servlets,	parameters	are	contained	in	the	query
string	or	posted	form	data.

You	should	only	use	this	method	when	you	are	sure	the	parameter	has	only

one	value.	If	the	parameter	might	have	more	than	one	value,	use
getParameterValues(java.lang.String).

If	you	use	this	method	with	a	multivalued	parameter,	the	value	returned	is
equal	to	the	first	value	in	the	array	returned	by	getParameterValues.

If	the	parameter	data	was	sent	in	the	request	body,	such	as	occurs	with	an
HTTP	POST	request,	then	reading	the	body	directly	via	getInputStream()
or	getReader()	can	interfere	with	the	execution	of	this	method.

Parameters:
name	-	a	String	specifying	the	name	of	the	parameter

Returns:
a	String	representing	the	single	value	of	the	parameter

See	Also:
getParameterValues(java.lang.String)

getParameterNames

public	java.util.Enumeration	getParameterNames()

Returns	an	Enumeration	of	String	objects	containing	the	names	of	the
parameters	contained	in	this	request.	If	the	request	has	no	parameters,	the
method	returns	an	empty	Enumeration.
Returns:

an	Enumeration	of	String	objects,	each	String	containing	the	name
of	a	request	parameter;	or	an	empty	Enumeration	if	the	request	has	no
parameters

getParameterValues

public	java.lang.String[]	getParameterValues(java.lang.String	name)

Returns	an	array	of	String	objects	containing	all	of	the	values	the	given
request	parameter	has,	or	null	if	the	parameter	does	not	exist.

If	the	parameter	has	a	single	value,	the	array	has	a	length	of	1.

Parameters:
name	-	a	String	containing	the	name	of	the	parameter	whose	value	is
requested

Returns:
an	array	of	String	objects	containing	the	parameter's	values

See	Also:
getParameter(java.lang.String)

getParameterMap

public	java.util.Map	getParameterMap()

Returns	a	java.util.Map	of	the	parameters	of	this	request.	Request
parameters	are	extra	information	sent	with	the	request.	For	HTTP	servlets,
parameters	are	contained	in	the	query	string	or	posted	form	data.
Returns:

an	immutable	java.util.Map	containing	parameter	names	as	keys	and
parameter	values	as	map	values.	The	keys	in	the	parameter	map	are	of
type	String.	The	values	in	the	parameter	map	are	of	type	String	array.

getProtocol

public	java.lang.String	getProtocol()

Returns	the	name	and	version	of	the	protocol	the	request	uses	in	the	form
protocol/majorVersion.minorVersion,	for	example,	HTTP/1.1.	For	HTTP
servlets,	the	value	returned	is	the	same	as	the	value	of	the	CGI	variable
SERVER_PROTOCOL.
Returns:

a	String	containing	the	protocol	name	and	version	number

getScheme

public	java.lang.String	getScheme()

Returns	the	name	of	the	scheme	used	to	make	this	request,	for	example,

http,	https,	or	ftp.	Different	schemes	have	different	rules	for	constructing
URLs,	as	noted	in	RFC	1738.
Returns:

a	String	containing	the	name	of	the	scheme	used	to	make	this	request

getServerName

public	java.lang.String	getServerName()

Returns	the	host	name	of	the	server	that	received	the	request.	For	HTTP
servlets,	same	as	the	value	of	the	CGI	variable	SERVER_NAME.
Returns:

a	String	containing	the	name	of	the	server	to	which	the	request	was
sent

getServerPort

public	int	getServerPort()

Returns	the	port	number	on	which	this	request	was	received.	For	HTTP
servlets,	same	as	the	value	of	the	CGI	variable	SERVER_PORT.
Returns:

an	integer	specifying	the	port	number

getReader

public	java.io.BufferedReader	getReader()

																																	throws	java.io.IOException

Retrieves	the	body	of	the	request	as	character	data	using	a	BufferedReader.
The	reader	translates	the	character	data	according	to	the	character	encoding
used	on	the	body.	Either	this	method	or	getInputStream()	may	be	called	to
read	the	body,	not	both.
Returns:

a	BufferedReader	containing	the	body	of	the	request
Throws:

java.io.UnsupportedEncodingException	-	if	the	character	set	encoding
used	is	not	supported	and	the	text	cannot	be	decoded
IllegalStateException	-	if	getInputStream()	method	has	been	called
on	this	request
java.io.IOException	-	if	an	input	or	output	exception	occurred

See	Also:
getInputStream()

getRemoteAddr

public	java.lang.String	getRemoteAddr()

Returns	the	Internet	Protocol	(IP)	address	of	the	client	that	sent	the	request.
For	HTTP	servlets,	same	as	the	value	of	the	CGI	variable	REMOTE_ADDR.
Returns:

a	String	containing	the	IP	address	of	the	client	that	sent	the	request

getRemoteHost

public	java.lang.String	getRemoteHost()

Returns	the	fully	qualified	name	of	the	client	that	sent	the	request.	If	the
engine	cannot	or	chooses	not	to	resolve	the	hostname	(to	improve
performance),	this	method	returns	the	dotted-string	form	of	the	IP	address.
For	HTTP	servlets,	same	as	the	value	of	the	CGI	variable	REMOTE_HOST.
Returns:

a	String	containing	the	fully	qualified	name	of	the	client

setAttribute

public	void	setAttribute(java.lang.String	name,

																									java.lang.Object	o)

Stores	an	attribute	in	this	request.	Attributes	are	reset	between	requests.
This	method	is	most	often	used	in	conjunction	with	RequestDispatcher.

Attribute	names	should	follow	the	same	conventions	as	package	names.

Names	beginning	with	java.*,	javax.*,	and	com.sun.*,	are	reserved	for
use	by	Sun	Microsystems.	
If	the	value	passed	in	is	null,	the	effect	is	the	same	as	calling
removeAttribute(java.lang.String).

Parameters:
name	-	a	String	specifying	the	name	of	the	attribute
o	-	the	Object	to	be	stored

removeAttribute

public	void	removeAttribute(java.lang.String	name)

Removes	an	attribute	from	this	request.	This	method	is	not	generally
needed	as	attributes	only	persist	as	long	as	the	request	is	being	handled.

Attribute	names	should	follow	the	same	conventions	as	package	names.
Names	beginning	with	java.*,	javax.*,	and	com.sun.*,	are	reserved	for
use	by	Sun	Microsystems.

Parameters:
name	-	a	String	specifying	the	name	of	the	attribute	to	remove

getLocale

public	java.util.Locale	getLocale()

Returns	the	preferred	Locale	that	the	client	will	accept	content	in,	based	on
the	Accept-Language	header.	If	the	client	request	doesn't	provide	an
Accept-Language	header,	this	method	returns	the	default	locale	for	the
server.
Returns:

the	preferred	Locale	for	the	client

getLocales

public	java.util.Enumeration	getLocales()

Returns	an	Enumeration	of	Locale	objects	indicating,	in	decreasing	order
starting	with	the	preferred	locale,	the	locales	that	are	acceptable	to	the	client
based	on	the	Accept-Language	header.	If	the	client	request	doesn't	provide
an	Accept-Language	header,	this	method	returns	an	Enumeration
containing	one	Locale,	the	default	locale	for	the	server.
Returns:

an	Enumeration	of	preferred	Locale	objects	for	the	client

isSecure

public	boolean	isSecure()

Returns	a	boolean	indicating	whether	this	request	was	made	using	a	secure
channel,	such	as	HTTPS.
Returns:

a	boolean	indicating	if	the	request	was	made	using	a	secure	channel

getRequestDispatcher

public	RequestDispatcher	getRequestDispatcher(java.lang.String	path)

Returns	a	RequestDispatcher	object	that	acts	as	a	wrapper	for	the	resource
located	at	the	given	path.	A	RequestDispatcher	object	can	be	used	to
forward	a	request	to	the	resource	or	to	include	the	resource	in	a	response.
The	resource	can	be	dynamic	or	static.

The	pathname	specified	may	be	relative,	although	it	cannot	extend	outside
the	current	servlet	context.	If	the	path	begins	with	a	"/"	it	is	interpreted	as
relative	to	the	current	context	root.	This	method	returns	null	if	the	servlet
container	cannot	return	a	RequestDispatcher.

The	difference	between	this	method	and
ServletContext.getRequestDispatcher(java.lang.String)	is	that	this
method	can	take	a	relative	path.

Parameters:

path	-	a	String	specifying	the	pathname	to	the	resource
Returns:

a	RequestDispatcher	object	that	acts	as	a	wrapper	for	the	resource	at
the	specified	path

See	Also:
RequestDispatcher,
ServletContext.getRequestDispatcher(java.lang.String)

getRealPath

public	java.lang.String	getRealPath(java.lang.String	path)

Deprecated.	As	of	Version	2.1	of	the	Java	Servlet	API,	use
ServletContext.getRealPath(java.lang.String)	instead.

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Class	ServletRequestWrapper
java.lang.Object

		|

		+--javax.servlet.ServletRequestWrapper

Direct	Known	Subclasses:
HttpServletRequestWrapper

public	class	ServletRequestWrapper
extends	java.lang.Object
implements	ServletRequest

Provides	a	convenient	implementation	of	the	ServletRequest	interface	that	can
be	subclassed	by	developers	wishing	to	adapt	the	request	to	a	Servlet.	This	class
implements	the	Wrapper	or	Decorator	pattern.	Methods	default	to	calling
through	to	the	wrapped	request	object.

Since:
v	2.3

See	Also:
ServletRequest

Constructor	Summary
ServletRequestWrapper(ServletRequest	request)	
										Creates	a	ServletRequest	adaptor	wrapping	the	given	request	object.
	

Method	Summary

	java.lang.Object

getAttribute(java.lang.String	name)	
										The	default	behavior	of	this	method	is	to	call
getAttribute(String	name)	on	the	wrapped	request	object.

	java.util.Enumeration

getAttributeNames()	
										The	default	behavior	of	this	method	is	to	return
getAttributeNames()	on	the	wrapped	request	object.

	java.lang.String

getCharacterEncoding()	
										The	default	behavior	of	this	method	is	to	return
getCharacterEncoding()	on	the	wrapped	request	object.

	int

getContentLength()	
										The	default	behavior	of	this	method	is	to	return
getContentLength()	on	the	wrapped	request	object.

	java.lang.String

getContentType()	
										The	default	behavior	of	this	method	is	to	return
getContentType()	on	the	wrapped	request	object.

	ServletInputStream

getInputStream()	
										The	default	behavior	of	this	method	is	to	return
getInputStream()	on	the	wrapped	request	object.

	java.util.Locale

getLocale()	
										The	default	behavior	of	this	method	is	to	return
getLocale()	on	the	wrapped	request	object.

	java.util.Enumeration

getLocales()	
										The	default	behavior	of	this	method	is	to	return
getLocales()	on	the	wrapped	request	object.

	java.lang.String

getParameter(java.lang.String	name)	
										The	default	behavior	of	this	method	is	to	return
getParameter(String	name)	on	the	wrapped	request	object.

	java.util.Map

getParameterMap()	
										The	default	behavior	of	this	method	is	to	return
getParameterMap()	on	the	wrapped	request	object.

	java.util.Enumeration

getParameterNames()	
										The	default	behavior	of	this	method	is	to	return
getParameterNames()	on	the	wrapped	request	object.

	java.lang.String[]

getParameterValues(java.lang.String	name)	
										The	default	behavior	of	this	method	is	to	return
getParameterValues(String	name)	on	the	wrapped	request
object.

	java.lang.String

getProtocol()	
										The	default	behavior	of	this	method	is	to	return
getProtocol()	on	the	wrapped	request	object.
getReader()	

	java.io.BufferedReader 										The	default	behavior	of	this	method	is	to	return
getReader()	on	the	wrapped	request	object.

	java.lang.String

getRealPath(java.lang.String	path)	
										The	default	behavior	of	this	method	is	to	return
getRealPath(String	path)	on	the	wrapped	request	object.

	java.lang.String

getRemoteAddr()	
										The	default	behavior	of	this	method	is	to	return
getRemoteAddr()	on	the	wrapped	request	object.

	java.lang.String

getRemoteHost()	
										The	default	behavior	of	this	method	is	to	return
getRemoteHost()	on	the	wrapped	request	object.

	ServletRequest
getRequest()	
										Return	the	wrapped	request	object.

	RequestDispatcher

getRequestDispatcher(java.lang.String	path)	
										The	default	behavior	of	this	method	is	to	return
getRequestDispatcher(String	path)	on	the	wrapped
request	object.

	java.lang.String

getScheme()	
										The	default	behavior	of	this	method	is	to	return
getScheme()	on	the	wrapped	request	object.

	java.lang.String

getServerName()	
										The	default	behavior	of	this	method	is	to	return
getServerName()	on	the	wrapped	request	object.

	int

getServerPort()	
										The	default	behavior	of	this	method	is	to	return
getServerPort()	on	the	wrapped	request	object.

	boolean

isSecure()	
										The	default	behavior	of	this	method	is	to	return
isSecure()	on	the	wrapped	request	object.

	void

removeAttribute(java.lang.String	name)	
										The	default	behavior	of	this	method	is	to	call
removeAttribute(String	name)	on	the	wrapped	request
object.

	void

setAttribute(java.lang.String	name,

java.lang.Object	o)	
										The	default	behavior	of	this	method	is	to	return

setAttribute(String	name,	Object	o)	on	the	wrapped
request	object.

	void

setCharacterEncoding(java.lang.String	enc)	
										The	default	behavior	of	this	method	is	to	set	the
character	encoding	on	the	wrapped	request	object.

	void
setRequest(ServletRequest	request)	
										Sets	the	request	object	being	wrapped.

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

toString,	wait,	wait,	wait

	

Constructor	Detail

ServletRequestWrapper

public	ServletRequestWrapper(ServletRequest	request)

Creates	a	ServletRequest	adaptor	wrapping	the	given	request	object.
Throws:

java.lang.IllegalArgumentException	-	if	the	request	is	null

Method	Detail

getRequest

public	ServletRequest	getRequest()

Return	the	wrapped	request	object.

setRequest

public	void	setRequest(ServletRequest	request)

Sets	the	request	object	being	wrapped.

Throws:
java.lang.IllegalArgumentException	-	if	the	request	is	null.

getAttribute

public	java.lang.Object	getAttribute(java.lang.String	name)

The	default	behavior	of	this	method	is	to	call	getAttribute(String	name)	on
the	wrapped	request	object.
Specified	by:

getAttribute	in	interface	ServletRequest

getAttributeNames

public	java.util.Enumeration	getAttributeNames()

The	default	behavior	of	this	method	is	to	return	getAttributeNames()	on	the
wrapped	request	object.
Specified	by:

getAttributeNames	in	interface	ServletRequest

getCharacterEncoding

public	java.lang.String	getCharacterEncoding()

The	default	behavior	of	this	method	is	to	return	getCharacterEncoding()	on
the	wrapped	request	object.
Specified	by:

getCharacterEncoding	in	interface	ServletRequest

setCharacterEncoding

public	void	setCharacterEncoding(java.lang.String	enc)

																										throws	java.io.UnsupportedEncodingException

The	default	behavior	of	this	method	is	to	set	the	character	encoding	on	the

wrapped	request	object.
Specified	by:

setCharacterEncoding	in	interface	ServletRequest

getContentLength

public	int	getContentLength()

The	default	behavior	of	this	method	is	to	return	getContentLength()	on	the
wrapped	request	object.
Specified	by:

getContentLength	in	interface	ServletRequest

getContentType

public	java.lang.String	getContentType()

The	default	behavior	of	this	method	is	to	return	getContentType()	on	the
wrapped	request	object.
Specified	by:

getContentType	in	interface	ServletRequest

getInputStream

public	ServletInputStream	getInputStream()

																																		throws	java.io.IOException

The	default	behavior	of	this	method	is	to	return	getInputStream()	on	the
wrapped	request	object.
Specified	by:

getInputStream	in	interface	ServletRequest

getParameter

public	java.lang.String	getParameter(java.lang.String	name)

The	default	behavior	of	this	method	is	to	return	getParameter(String	name)
on	the	wrapped	request	object.
Specified	by:

getParameter	in	interface	ServletRequest

getParameterMap

public	java.util.Map	getParameterMap()

The	default	behavior	of	this	method	is	to	return	getParameterMap()	on	the
wrapped	request	object.
Specified	by:

getParameterMap	in	interface	ServletRequest

getParameterNames

public	java.util.Enumeration	getParameterNames()

The	default	behavior	of	this	method	is	to	return	getParameterNames()	on
the	wrapped	request	object.
Specified	by:

getParameterNames	in	interface	ServletRequest

getParameterValues

public	java.lang.String[]	getParameterValues(java.lang.String	name)

The	default	behavior	of	this	method	is	to	return	getParameterValues(String
name)	on	the	wrapped	request	object.
Specified	by:

getParameterValues	in	interface	ServletRequest

getProtocol

public	java.lang.String	getProtocol()

The	default	behavior	of	this	method	is	to	return	getProtocol()	on	the
wrapped	request	object.
Specified	by:

getProtocol	in	interface	ServletRequest

getScheme

public	java.lang.String	getScheme()

The	default	behavior	of	this	method	is	to	return	getScheme()	on	the
wrapped	request	object.
Specified	by:

getScheme	in	interface	ServletRequest

getServerName

public	java.lang.String	getServerName()

The	default	behavior	of	this	method	is	to	return	getServerName()	on	the
wrapped	request	object.
Specified	by:

getServerName	in	interface	ServletRequest

getServerPort

public	int	getServerPort()

The	default	behavior	of	this	method	is	to	return	getServerPort()	on	the
wrapped	request	object.
Specified	by:

getServerPort	in	interface	ServletRequest

getReader

public	java.io.BufferedReader	getReader()

																																	throws	java.io.IOException

The	default	behavior	of	this	method	is	to	return	getReader()	on	the	wrapped
request	object.
Specified	by:

getReader	in	interface	ServletRequest

getRemoteAddr

public	java.lang.String	getRemoteAddr()

The	default	behavior	of	this	method	is	to	return	getRemoteAddr()	on	the
wrapped	request	object.
Specified	by:

getRemoteAddr	in	interface	ServletRequest

getRemoteHost

public	java.lang.String	getRemoteHost()

The	default	behavior	of	this	method	is	to	return	getRemoteHost()	on	the
wrapped	request	object.
Specified	by:

getRemoteHost	in	interface	ServletRequest

setAttribute

public	void	setAttribute(java.lang.String	name,

																									java.lang.Object	o)

The	default	behavior	of	this	method	is	to	return	setAttribute(String	name,
Object	o)	on	the	wrapped	request	object.
Specified	by:

setAttribute	in	interface	ServletRequest

removeAttribute

public	void	removeAttribute(java.lang.String	name)

The	default	behavior	of	this	method	is	to	call	removeAttribute(String	name)
on	the	wrapped	request	object.
Specified	by:

removeAttribute	in	interface	ServletRequest

getLocale

public	java.util.Locale	getLocale()

The	default	behavior	of	this	method	is	to	return	getLocale()	on	the	wrapped
request	object.
Specified	by:

getLocale	in	interface	ServletRequest

getLocales

public	java.util.Enumeration	getLocales()

The	default	behavior	of	this	method	is	to	return	getLocales()	on	the
wrapped	request	object.
Specified	by:

getLocales	in	interface	ServletRequest

isSecure

public	boolean	isSecure()

The	default	behavior	of	this	method	is	to	return	isSecure()	on	the	wrapped
request	object.
Specified	by:

isSecure	in	interface	ServletRequest

getRequestDispatcher

public	RequestDispatcher	getRequestDispatcher(java.lang.String	path)

The	default	behavior	of	this	method	is	to	return
getRequestDispatcher(String	path)	on	the	wrapped	request	object.
Specified	by:

getRequestDispatcher	in	interface	ServletRequest

getRealPath

public	java.lang.String	getRealPath(java.lang.String	path)

The	default	behavior	of	this	method	is	to	return	getRealPath(String	path)	on
the	wrapped	request	object.
Specified	by:

getRealPath	in	interface	ServletRequest

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Interface	ServletResponse

All	Known	Subinterfaces:
HttpServletResponse

All	Known	Implementing	Classes:
ServletResponseWrapper

public	abstract	interface	ServletResponse

Defines	an	object	to	assist	a	servlet	in	sending	a	response	to	the	client.	The
servlet	container	creates	a	ServletResponse	object	and	passes	it	as	an	argument
to	the	servlet's	service	method.

To	send	binary	data	in	a	MIME	body	response,	use	the	ServletOutputStream
returned	by	getOutputStream().	To	send	character	data,	use	the	PrintWriter
object	returned	by	getWriter().	To	mix	binary	and	text	data,	for	example,	to
create	a	multipart	response,	use	a	ServletOutputStream	and	manage	the
character	sections	manually.

The	charset	for	the	MIME	body	response	can	be	specified	with
setContentType(java.lang.String).	For	example,	"text/html;
charset=Shift_JIS".	The	charset	can	alternately	be	set	using
setLocale(java.util.Locale).	If	no	charset	is	specified,	ISO-8859-1	will	be
used.	The	setContentType	or	setLocale	method	must	be	called	before
getWriter	for	the	charset	to	affect	the	construction	of	the	writer.

See	the	Internet	RFCs	such	as	RFC	2045	for	more	information	on	MIME.
Protocols	such	as	SMTP	and	HTTP	define	profiles	of	MIME,	and	those
standards	are	still	evolving.

See	Also:
ServletOutputStream

Method	Summary

http://info.internet.isi.edu/in-notes/rfc/files/rfc2045.txt

	void
flushBuffer()	
										Forces	any	content	in	the	buffer	to	be	written	to	the
client.

	int
getBufferSize()	
										Returns	the	actual	buffer	size	used	for	the	response.

	java.lang.String

getCharacterEncoding()	
										Returns	the	name	of	the	charset	used	for	the	MIME
body	sent	in	this	response.

	java.util.Locale
getLocale()	
										Returns	the	locale	assigned	to	the	response.

	ServletOutputStream

getOutputStream()	
										Returns	a	ServletOutputStream	suitable	for	writing
binary	data	in	the	response.

	java.io.PrintWriter

getWriter()	
										Returns	a	PrintWriter	object	that	can	send	character
text	to	the	client.

	boolean

isCommitted()	
										Returns	a	boolean	indicating	if	the	response	has	been
committed.

	void

reset()	
										Clears	any	data	that	exists	in	the	buffer	as	well	as	the
status	code	and	headers.

	void

resetBuffer()	
										Clears	the	content	of	the	underlying	buffer	in	the
response	without	clearing	headers	or	status	code.

	void

setBufferSize(int	size)	
										Sets	the	preferred	buffer	size	for	the	body	of	the
response.

	void

setContentLength(int	len)	
										Sets	the	length	of	the	content	body	in	the	response	In
HTTP	servlets,	this	method	sets	the	HTTP	Content-Length
header.

	void

setContentType(java.lang.String	type)	
										Sets	the	content	type	of	the	response	being	sent	to	the
client.

	void
setLocale(java.util.Locale	loc)	
										Sets	the	locale	of	the	response,	setting	the	headers
(including	the	Content-Type's	charset)	as	appropriate.

	

Method	Detail

getCharacterEncoding

public	java.lang.String	getCharacterEncoding()

Returns	the	name	of	the	charset	used	for	the	MIME	body	sent	in	this
response.

If	no	charset	has	been	assigned,	it	is	implicitly	set	to	ISO-8859-1	(Latin-1).

See	RFC	2047	(http://ds.internic.net/rfc/rfc2045.txt)	for	more	information
about	character	encoding	and	MIME.

Returns:
a	String	specifying	the	name	of	the	charset,	for	example,	ISO-8859-1

getOutputStream

public	ServletOutputStream	getOutputStream()

																																				throws	java.io.IOException

Returns	a	ServletOutputStream	suitable	for	writing	binary	data	in	the
response.	The	servlet	container	does	not	encode	the	binary	data.

Calling	flush()	on	the	ServletOutputStream	commits	the	response.	Either
this	method	or	getWriter()	may	be	called	to	write	the	body,	not	both.

Returns:
a	ServletOutputStream	for	writing	binary	data

Throws:
IllegalStateException	-	if	the	getWriter	method	has	been	called	on
this	response

java.io.IOException	-	if	an	input	or	output	exception	occurred
See	Also:

getWriter()

getWriter

public	java.io.PrintWriter	getWriter()

																														throws	java.io.IOException

Returns	a	PrintWriter	object	that	can	send	character	text	to	the	client.	The
character	encoding	used	is	the	one	specified	in	the	charset=	property	of	the
setContentType(java.lang.String)	method,	which	must	be	called	before
calling	this	method	for	the	charset	to	take	effect.

If	necessary,	the	MIME	type	of	the	response	is	modified	to	reflect	the
character	encoding	used.

Calling	flush()	on	the	PrintWriter	commits	the	response.

Either	this	method	or	getOutputStream()	may	be	called	to	write	the	body,
not	both.

Returns:
a	PrintWriter	object	that	can	return	character	data	to	the	client

Throws:
java.io.UnsupportedEncodingException	-	if	the	charset	specified	in
setContentType	cannot	be	used
IllegalStateException	-	if	the	getOutputStream	method	has	already
been	called	for	this	response	object
java.io.IOException	-	if	an	input	or	output	exception	occurred

See	Also:
getOutputStream(),	setContentType(java.lang.String)

setContentLength

public	void	setContentLength(int	len)

Sets	the	length	of	the	content	body	in	the	response	In	HTTP	servlets,	this

method	sets	the	HTTP	Content-Length	header.
Parameters:

len	-	an	integer	specifying	the	length	of	the	content	being	returned	to
the	client;	sets	the	Content-Length	header

setContentType

public	void	setContentType(java.lang.String	type)

Sets	the	content	type	of	the	response	being	sent	to	the	client.	The	content
type	may	include	the	type	of	character	encoding	used,	for	example,
text/html;	charset=ISO-8859-4.

If	obtaining	a	PrintWriter,	this	method	should	be	called	first.

Parameters:
type	-	a	String	specifying	the	MIME	type	of	the	content

See	Also:
getOutputStream(),	getWriter()

setBufferSize

public	void	setBufferSize(int	size)

Sets	the	preferred	buffer	size	for	the	body	of	the	response.	The	servlet
container	will	use	a	buffer	at	least	as	large	as	the	size	requested.	The	actual
buffer	size	used	can	be	found	using	getBufferSize.

A	larger	buffer	allows	more	content	to	be	written	before	anything	is	actually
sent,	thus	providing	the	servlet	with	more	time	to	set	appropriate	status
codes	and	headers.	A	smaller	buffer	decreases	server	memory	load	and
allows	the	client	to	start	receiving	data	more	quickly.

This	method	must	be	called	before	any	response	body	content	is	written;	if
content	has	been	written,	this	method	throws	an	IllegalStateException.

Parameters:
size	-	the	preferred	buffer	size

Throws:
IllegalStateException	-	if	this	method	is	called	after	content	has	been
written

See	Also:
getBufferSize(),	flushBuffer(),	isCommitted(),	reset()

getBufferSize

public	int	getBufferSize()

Returns	the	actual	buffer	size	used	for	the	response.	If	no	buffering	is	used,
this	method	returns	0.
Returns:

the	actual	buffer	size	used
See	Also:

setBufferSize(int),	flushBuffer(),	isCommitted(),	reset()

flushBuffer

public	void	flushBuffer()

																	throws	java.io.IOException

Forces	any	content	in	the	buffer	to	be	written	to	the	client.	A	call	to	this
method	automatically	commits	the	response,	meaning	the	status	code	and
headers	will	be	written.
See	Also:

setBufferSize(int),	getBufferSize(),	isCommitted(),	reset()

resetBuffer

public	void	resetBuffer()

Clears	the	content	of	the	underlying	buffer	in	the	response	without	clearing
headers	or	status	code.	If	the	response	has	been	committed,	this	method
throws	an	IllegalStateException.
Since:

2.3
See	Also:

setBufferSize(int),	getBufferSize(),	isCommitted(),	reset()

isCommitted

public	boolean	isCommitted()

Returns	a	boolean	indicating	if	the	response	has	been	committed.	A
commited	response	has	already	had	its	status	code	and	headers	written.
Returns:

a	boolean	indicating	if	the	response	has	been	committed
See	Also:

setBufferSize(int),	getBufferSize(),	flushBuffer(),	reset()

reset

public	void	reset()

Clears	any	data	that	exists	in	the	buffer	as	well	as	the	status	code	and
headers.	If	the	response	has	been	committed,	this	method	throws	an
IllegalStateException.
Throws:

IllegalStateException	-	if	the	response	has	already	been	committed
See	Also:

setBufferSize(int),	getBufferSize(),	flushBuffer(),
isCommitted()

setLocale

public	void	setLocale(java.util.Locale	loc)

Sets	the	locale	of	the	response,	setting	the	headers	(including	the	Content-
Type's	charset)	as	appropriate.	This	method	should	be	called	before	a	call	to
getWriter().	By	default,	the	response	locale	is	the	default	locale	for	the
server.

Parameters:
loc	-	the	locale	of	the	response

See	Also:
getLocale()

getLocale

public	java.util.Locale	getLocale()

Returns	the	locale	assigned	to	the	response.
See	Also:

setLocale(java.util.Locale)

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Class	ServletResponseWrapper
java.lang.Object

		|

		+--javax.servlet.ServletResponseWrapper

Direct	Known	Subclasses:
HttpServletResponseWrapper

public	class	ServletResponseWrapper
extends	java.lang.Object
implements	ServletResponse

Provides	a	convenient	implementation	of	the	ServletResponse	interface	that	can
be	subclassed	by	developers	wishing	to	adapt	the	response	from	a	Servlet.	This
class	implements	the	Wrapper	or	Decorator	pattern.	Methods	default	to	calling
through	to	the	wrapped	response	object.

Since:
v	2.3

See	Also:
ServletResponse

Constructor	Summary
ServletResponseWrapper(ServletResponse	response)	
										Creates	a	ServletResponse	adaptor	wrapping	the	given	response	object.
	

Method	Summary

	void

flushBuffer()	
										The	default	behavior	of	this	method	is	to	call
flushBuffer()	on	the	wrapped	response	object.

	int

getBufferSize()	
										The	default	behavior	of	this	method	is	to	return
getBufferSize()	on	the	wrapped	response	object.

	java.lang.String

getCharacterEncoding()	
										The	default	behavior	of	this	method	is	to	return
getCharacterEncoding()	on	the	wrapped	response	object.

	java.util.Locale

getLocale()	
										The	default	behavior	of	this	method	is	to	return
getLocale()	on	the	wrapped	response	object.

	ServletOutputStream

getOutputStream()	
										The	default	behavior	of	this	method	is	to	return
getOutputStream()	on	the	wrapped	response	object.

	ServletResponse
getResponse()	
										Return	the	wrapped	ServletResponse	object.

	java.io.PrintWriter

getWriter()	
										The	default	behavior	of	this	method	is	to	return
getWriter()	on	the	wrapped	response	object.

	boolean

isCommitted()	
										The	default	behavior	of	this	method	is	to	return
isCommitted()	on	the	wrapped	response	object.

	void

reset()	
										The	default	behavior	of	this	method	is	to	call	reset()
on	the	wrapped	response	object.

	void

resetBuffer()	
										The	default	behavior	of	this	method	is	to	call
resetBuffer()	on	the	wrapped	response	object.

	void

setBufferSize(int	size)	
										The	default	behavior	of	this	method	is	to	call
setBufferSize(int	size)	on	the	wrapped	response	object.

	void

setContentLength(int	len)	
										The	default	behavior	of	this	method	is	to	call
setContentLength(int	len)	on	the	wrapped	response	object.

	void

setContentType(java.lang.String	type)	
										The	default	behavior	of	this	method	is	to	call
setContentType(String	type)	on	the	wrapped	response	object.

	void

setLocale(java.util.Locale	loc)	
										The	default	behavior	of	this	method	is	to	call
setLocale(Locale	loc)	on	the	wrapped	response	object.

	void
setResponse(ServletResponse	response)	
										Sets	the	response	being	wrapped.

	
Methods	inherited	from	class	java.lang.Object
clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

toString,	wait,	wait,	wait

	

Constructor	Detail

ServletResponseWrapper

public	ServletResponseWrapper(ServletResponse	response)

Creates	a	ServletResponse	adaptor	wrapping	the	given	response	object.
Throws:

java.lang.IllegalArgumentException	-	if	the	response	is	null.

Method	Detail

getResponse

public	ServletResponse	getResponse()

Return	the	wrapped	ServletResponse	object.

setResponse

public	void	setResponse(ServletResponse	response)

Sets	the	response	being	wrapped.
Throws:

java.lang.IllegalArgumentException	-	if	the	response	is	null.

getCharacterEncoding

public	java.lang.String	getCharacterEncoding()

The	default	behavior	of	this	method	is	to	return	getCharacterEncoding()	on
the	wrapped	response	object.
Specified	by:

getCharacterEncoding	in	interface	ServletResponse

getOutputStream

public	ServletOutputStream	getOutputStream()

																																				throws	java.io.IOException

The	default	behavior	of	this	method	is	to	return	getOutputStream()	on	the
wrapped	response	object.
Specified	by:

getOutputStream	in	interface	ServletResponse

getWriter

public	java.io.PrintWriter	getWriter()

																														throws	java.io.IOException

The	default	behavior	of	this	method	is	to	return	getWriter()	on	the	wrapped
response	object.
Specified	by:

getWriter	in	interface	ServletResponse

setContentLength

public	void	setContentLength(int	len)

The	default	behavior	of	this	method	is	to	call	setContentLength(int	len)	on
the	wrapped	response	object.
Specified	by:

setContentLength	in	interface	ServletResponse

setContentType

public	void	setContentType(java.lang.String	type)

The	default	behavior	of	this	method	is	to	call	setContentType(String	type)
on	the	wrapped	response	object.
Specified	by:

setContentType	in	interface	ServletResponse

setBufferSize

public	void	setBufferSize(int	size)

The	default	behavior	of	this	method	is	to	call	setBufferSize(int	size)	on	the
wrapped	response	object.
Specified	by:

setBufferSize	in	interface	ServletResponse

getBufferSize

public	int	getBufferSize()

The	default	behavior	of	this	method	is	to	return	getBufferSize()	on	the
wrapped	response	object.
Specified	by:

getBufferSize	in	interface	ServletResponse

flushBuffer

public	void	flushBuffer()

																	throws	java.io.IOException

The	default	behavior	of	this	method	is	to	call	flushBuffer()	on	the	wrapped
response	object.
Specified	by:

flushBuffer	in	interface	ServletResponse

isCommitted

public	boolean	isCommitted()

The	default	behavior	of	this	method	is	to	return	isCommitted()	on	the
wrapped	response	object.
Specified	by:

isCommitted	in	interface	ServletResponse

reset

public	void	reset()

The	default	behavior	of	this	method	is	to	call	reset()	on	the	wrapped
response	object.
Specified	by:

reset	in	interface	ServletResponse

resetBuffer

public	void	resetBuffer()

The	default	behavior	of	this	method	is	to	call	resetBuffer()	on	the	wrapped
response	object.
Specified	by:

resetBuffer	in	interface	ServletResponse

setLocale

public	void	setLocale(java.util.Locale	loc)

The	default	behavior	of	this	method	is	to	call	setLocale(Locale	loc)	on	the
wrapped	response	object.
Specified	by:

setLocale	in	interface	ServletResponse

getLocale

public	java.util.Locale	getLocale()

The	default	behavior	of	this	method	is	to	return	getLocale()	on	the	wrapped
response	object.
Specified	by:

getLocale	in	interface	ServletResponse

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

javax.servlet	Class	UnavailableException
java.lang.Object

		|

		+--java.lang.Throwable

								|

								+--java.lang.Exception

														|

														+--javax.servlet.ServletException

																				|

																				+--javax.servlet.UnavailableException

public	class	UnavailableException
extends	ServletException

Defines	an	exception	that	a	servlet	or	filter	throws	to	indicate	that	it	is
permanently	or	temporarily	unavailable.

When	a	servlet	or	filter	is	permanently	unavailable,	something	is	wrong	with	the
it,	and	it	cannot	handle	requests	until	some	action	is	taken.	For	example,	a
servlet	might	be	configured	incorrectly,	or	a	filter's	state	may	be	corrupted.	The
component	should	log	both	the	error	and	the	corrective	action	that	is	needed.

A	servlet	or	filter	is	temporarily	unavailable	if	it	cannot	handle	requests
momentarily	due	to	some	system-wide	problem.	For	example,	a	third-tier	server
might	not	be	accessible,	or	there	may	be	insufficient	memory	or	disk	storage	to
handle	requests.	A	system	administrator	may	need	to	take	corrective	action.

Servlet	containers	can	safely	treat	both	types	of	unavailable	exceptions	in	the
same	way.	However,	treating	temporary	unavailability	effectively	makes	the
servlet	container	more	robust.	Specifically,	the	servlet	container	might	block
requests	to	the	servlet	or	filter	for	a	period	of	time	suggested	by	the	exception,
rather	than	rejecting	them	until	the	servlet	container	restarts.

See	Also:
Serialized	Form

Constructor	Summary
UnavailableException(int	seconds,	Servlet	servlet,

java.lang.String	msg)	
										Deprecated.	As	of	Java	Servlet	API	2.2,	use
UnavailableException(String,	int)	instead.
UnavailableException(Servlet	servlet,	java.lang.String	msg)	
										Deprecated.	As	of	Java	Servlet	API	2.2,	use
UnavailableException(String)	instead.
UnavailableException(java.lang.String	msg)	
										Constructs	a	new	exception	with	a	descriptive	message	indicating	that
the	servlet	is	permanently	unavailable.
UnavailableException(java.lang.String	msg,	int	seconds)	
										Constructs	a	new	exception	with	a	descriptive	message	indicating	that
the	servlet	is	temporarily	unavailable	and	giving	an	estimate	of	how	long	it	will
be	unavailable.
	

Method	Summary

	Servlet

getServlet()	
										Deprecated.	As	of	Java	Servlet	API	2.2,	with	no	replacement.
Returns	the	servlet	that	is	reporting	its	unavailability.

	int

getUnavailableSeconds()	
										Returns	the	number	of	seconds	the	servlet	expects	to	be
temporarily	unavailable.

	boolean

isPermanent()	
										Returns	a	boolean	indicating	whether	the	servlet	is	permanently
unavailable.

	
Methods	inherited	from	class	javax.servlet.ServletException
getRootCause

	
Methods	inherited	from	class	java.lang.Throwable
fillInStackTrace,	getLocalizedMessage,	getMessage,

printStackTrace,	printStackTrace,	printStackTrace,	toString

	
Methods	inherited	from	class	java.lang.Object

clone,	equals,	finalize,	getClass,	hashCode,	notify,	notifyAll,

wait,	wait,	wait

	

Constructor	Detail

UnavailableException

public	UnavailableException(Servlet	servlet,

																												java.lang.String	msg)

Deprecated.	As	of	Java	Servlet	API	2.2,	use
UnavailableException(String)	instead.
Parameters:

servlet	-	the	Servlet	instance	that	is	unavailable
msg	-	a	String	specifying	the	descriptive	message

UnavailableException

public	UnavailableException(int	seconds,

																												Servlet	servlet,

																												java.lang.String	msg)

Deprecated.	As	of	Java	Servlet	API	2.2,	use
UnavailableException(String,	int)	instead.
Parameters:

seconds	-	an	integer	specifying	the	number	of	seconds	the	servlet
expects	to	be	unavailable;	if	zero	or	negative,	indicates	that	the	servlet
can't	make	an	estimate
servlet	-	the	Servlet	that	is	unavailable
msg	-	a	String	specifying	the	descriptive	message,	which	can	be
written	to	a	log	file	or	displayed	for	the	user.

UnavailableException

public	UnavailableException(java.lang.String	msg)

Constructs	a	new	exception	with	a	descriptive	message	indicating	that	the
servlet	is	permanently	unavailable.
Parameters:

msg	-	a	String	specifying	the	descriptive	message

UnavailableException

public	UnavailableException(java.lang.String	msg,

																												int	seconds)

Constructs	a	new	exception	with	a	descriptive	message	indicating	that	the
servlet	is	temporarily	unavailable	and	giving	an	estimate	of	how	long	it	will
be	unavailable.

In	some	cases,	the	servlet	cannot	make	an	estimate.	For	example,	the	servlet
might	know	that	a	server	it	needs	is	not	running,	but	not	be	able	to	report
how	long	it	will	take	to	be	restored	to	functionality.	This	can	be	indicated
with	a	negative	or	zero	value	for	the	seconds	argument.

Parameters:
msg	-	a	String	specifying	the	descriptive	message,	which	can	be
written	to	a	log	file	or	displayed	for	the	user.
seconds	-	an	integer	specifying	the	number	of	seconds	the	servlet
expects	to	be	unavailable;	if	zero	or	negative,	indicates	that	the	servlet
can't	make	an	estimate

Method	Detail

isPermanent

public	boolean	isPermanent()

Returns	a	boolean	indicating	whether	the	servlet	is	permanently
unavailable.	If	so,	something	is	wrong	with	the	servlet,	and	the	system
administrator	must	take	some	corrective	action.
Returns:

true	if	the	servlet	is	permanently	unavailable;	false	if	the	servlet	is
available	or	temporarily	unavailable

getServlet

public	Servlet	getServlet()

Deprecated.	As	of	Java	Servlet	API	2.2,	with	no	replacement.	Returns	the
servlet	that	is	reporting	its	unavailability.
Returns:

the	Servlet	object	that	is	throwing	the	UnavailableException

getUnavailableSeconds

public	int	getUnavailableSeconds()

Returns	the	number	of	seconds	the	servlet	expects	to	be	temporarily
unavailable.

If	this	method	returns	a	negative	number,	the	servlet	is	permanently
unavailable	or	cannot	provide	an	estimate	of	how	long	it	will	be
unavailable.	No	effort	is	made	to	correct	for	the	time	elapsed	since	the
exception	was	first	reported.

Returns:
an	integer	specifying	the	number	of	seconds	the	servlet	will	be
temporarily	unavailable,	or	a	negative	number	if	the	servlet	is
permanently	unavailable	or	cannot	make	an	estimate

Overview	 Package	 	Class	 Tree	 Deprecated	 Index	Help	
	PREV	CLASS			NEXT	CLASS FRAMES				NO	FRAMES
SUMMARY:		INNER	|	FIELD	|	CONSTR	|	METHOD DETAIL:		FIELD	|	CONSTR	|	METHOD

	A propos de ce document
	About this document

