
	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onLoad
Executes	JavaScript	code	when	a	load	event	occurs;	that	is,	when	the	browser
finishes	loading	a	window	or	all	frames	within	a	FRAMESET	tag.

Image,	Layer,	Window
Navigator	2.0
Navigator	3.0:	event	handler	of	Image

onLoad="handlerText"

handlerText JavaScript		JavaScript	

Use	the	onLoad	event	handler	within	either	the	BODY	or	the	FRAMESET	tag,
for	example,	<BODY	onLoad="...">.

In	a	FRAMESET	and	FRAME	relationship,	an	onLoad	event	within	a	frame
(placed	in	the	BODY	tag)	occurs	before	an	onLoad	event	within	the
FRAMESET	(placed	in	the	FRAMESET	tag).

For	images,	the	onLoad	event	handler	indicates	the	script	to	execute	when	an
image	is	displayed.	Do	not	confuse	displaying	an	image	with	loading	an	image.
You	can	load	several	images,	then	display	them	one	by	one	in	the	same	Image
object	by	setting	the	object's	src	property.	If	you	change	the	image	displayed	in
this	way,	onLoad	executes	every	time	an	image	is	displayed,	not	just	when	the
image	is	loaded	into	memory.

If	you	specify	an	onLoadan	Image	object	that	displays	a	looping	GIF	animation
(multi-image	GIF),	each	loop	of	the	animation	triggers	the	onLoad	event,	and

the	event	handler	executes	once	for	each	loop.

You	can	use	the	onLoad	event	handler	to	create	a	JavaScript	animation	by
repeatedly	setting	the	src	property	of	an	Image	object.	See	Image	for
information.

type
target
width,
height

For	an	event	over	a	window,	but	not	over	a	layer,	these	represent	the
width	and	height	of	the	window.

	1:	Display	message	when	page	loads. 	In	the	following	example,	the	onLoad
event	handler	displays	a	greeting	message	after	a	Web	page	is	loaded.

<BODY	onLoad="window.alert("Welcome	to	the	Brave	New	World	home
page!")>		2:	Display	alert	when	image	loads. 	The	following	example	creates
two	Image	objects,	one	with	the	Image	constructor	and	one	with	the	IMG	tag.
Each	Image	object	has	an	onLoad	event	handler	that	calls	the	displayAlert
function,	which	displays	an	alert.	For	the	image	created	with	the	IMG	tag,	the
alert	displays	the	image	name.	For	the	image	created	with	the	Image
constructor,	the	alert	displays	a	message	without	the	image	name.	This	is
because	the	onLoad	handler	for	an	object	created	with	the	Image	constructor
must	be	the	name	of	a	function,	and	it	cannot	specify	parameters	for	the
displayAlert	function.

<SCRIPT>
imageA	=	new	Image(50,50)
imageA.onload=displayAlert
imageA.src="cyanball.gif"	function	displayAlert(theImage)	{
			if	(theImage==null)	{
						alert('An	image	loaded')
			}
			else	alert(theImage.name	+	'	has	been	loaded.')
}

</SCRIPT>	<IMG	NAME="imageB"	SRC="greenball.gif"	ALIGN="top"
			onLoad=displayAlert(this)>
		3:	Looping	GIF	animation. 	The
following	example	displays	an	image,	birdie.gif,	that	is	a	looping	GIF
animation.	The	onLoadthe	image	increments	the	variable	cycles,	which	keeps
track	of	the	number	of	times	the	animation	has	looped.	To	see	the	value	of
cycles,	the	user	clicks	the	button	labeled	Count	Loops.

<SCRIPT>
var	cycles=0
</SCRIPT>
<IMG	ALIGN="top"	SRC="birdie.gif"	BORDER=0
			onLoad="++cycles">
<INPUT	TYPE="button"	VALUE="Count	Loops"
			onClick="alert('The	animation	has	looped	'	+	cycles	+	'	times.')">		4:
Change	GIF	animation	displayed.	The	following	example	uses	an	onLoad
event	handler	to	rotate	the	display	of	six	GIF	animations.	Each	animation	is
displayed	in	sequence	in	one	Image	object.	When	the	document	loads,
!anim0.html	is	displayed.	When	that	animation	completes,	the	onLoad	event
handler	causes	the	next	file,	!anim1.html,	to	load	in	place	of	the	first	file.	After
the	last	animation,	!anim5.html,	completes,	the	first	file	is	again	displayed.
Notice	that	the	changeAnimation	function	does	not	call	itself	after	changing	the
src	property	of	the	Image	object.	This	is	because	when	the	src	property	changes,
the	image's	onLoad	event	handler	is	triggered	and	the	changeAnimation
function	is	called.

<SCRIPT>
var	whichImage=0
var	maxImages=5	function	changeAnimation(theImage)	{
			++whichImage
			if	(whichImage	<=	maxImages)	{
						var	imageName="!anim"	+	whichImage	+	".gif"
						theImage.src=imageName
			}	else	{
						whichImage=-1
						return
			}
}
</SCRIPT>	<IMG	NAME="changingAnimation"	SRC="!anim0.gif"
BORDER=0	ALIGN="top"

			onLoad="changeAnimation(this)">	See	also	for	 Image.

onAbort,	onError,	onUnload

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	

JavaScript	

	JavaScript	JavaScript		Netscape	

	JavaScript	1.2		JavaScript		 Netscape	Communicator	
HTML

http://developer.netscape.com/library/documentation/communicator/dynhtml/index.htm

	JavaScript	

	JavaScript	JavaScript		Netscape	

	JavaScript	

	

	JavaScriptNetscape	

	JavaScript
	JavaScript
JavaScript	
JavaScript	

	

JavaScript	

%	()
++	()
--	()
-	()

?:	()
,	()
delete
new
this
typeof
void

	

	JavaScript	JavaScript	

break
comment
continue
delete
do...while
export
for
for...in
function
if...else
import
labeled
return
switch
var
while
with

	

	JavaScript		ArrayBooleanDateFunctionMathNumber

Object		String	JavaScript	

Array

Boolean

Date

Function

Math

Number

Object

String

RegExp

	

	documentLayerLinkAnchorAreaImage		Applet

document

Link

Area
Anchor
Image

Applet
Layer

	

	Window	FrameLocation		History

Window

Frame
Location

History

screen

	

Form

Hidden

Text

Textarea

Password

FileUpload

Button

Submit

Reset

Radio

Checkbox

Select

Option

	

navigator

MimeType

Plugin

	

	JavaScript

Navigator	4.0	
event
onAbort
onBlur
onChange
onClick
onDblClick
onDragDrop
onError
onFocus
onKeyDown
onKeyPress
onKeyUp
onLoad
onMouseDown
onMouseMove
onMouseOut
onMouseOver
onMouseUp
onMove
onReset
onResize
onSelect
onSubmit
onUnload

		LiveWire	

	LiveWire	databaseDbPoolConnectionCursorStproc
Resultset		blob

database

DbPool

Connection

Cursor

Stproc

Resultset

blob

		

	requestclientprojectserver		Lock

request

client

project

server

Lock

	File		SendMail

File

SendMail

	

	JavaScript	

addClient
addResponseHeader
blob
callC
debug
deleteResponseHeader
escape
eval
flush
getOptionValue
getOptionValueCount
isNaN
Number
parseFloat
parseInt
redirect

registerCFunction
ssjs_generateClientID
ssjs_getCGIVariable
ssjs_getClientID
String
taint
unescape
untaint
write

	LiveConnect		Java	

netscape.javascript.JSObject

netscape.javascript.JSException

netscape.plugin.Plugin

	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

This	reference	is	organized	around	the	ality	of	the	JavaScript	language.	Sometimes	you
already	know	the	name	of	an	object	or	method,	but	don't	know	precisely	where	to	look	for	it.
This	chapter	contains	tables	of	links	to	aid	in	this	situation.

	1,	"Operators,"	is	a	list	of	all	JavaScript	operators,	grouped	by	type	of	operator.

	2,	"Statements,"	is	an	alphabetical	list	of	all	JavaScript	statements.

	3,	"Objects	with	their	methods	and	properties,"	is	an	alphabetical	list	of	all	of	JavaScript's
predefined	classes	and	objects.	The	predefined	methods	and	properties	for	each	object	are
listed.

	4,	"Methods,"	is	an	alphabetical	list	of	all	predefined	methods,	regardless	of	the	object	to
which	they	belong.	The	second	column	indicates	the	object	with	which	the	method	is
associated.	There	are	separate	entries	for	methods	of	the	same	name	used	in	different	objects.
Each	method	name	links	to	the	method	in	the	indicated	object.

Similarly,		5,	"Properties,"	is	an	alphabetical	list	of	all	predefined	properties,	regardless	of	the
object	to	which	they	belong.	The	second	column	indicates	the	object	with	which	the	property	is
associated.

	6,	"Global	s,"	is	an	alphabetical	list	of	JavaScript's	global	s.	These	are	s	which	aren't
associated	with	any	object.

	7,	"Event	handlers,"	is	an	alphabetical	list	of	all	JavaScript	event	handlers.

Key	to	the	versions

If	there	is	an	entry	in	both	the	Client	Version	and	the	Server	Version	columns	for	a	single
construct,	that	construct	is	part	of	the	core	language.	Otherwise,	it	is	defined	only	for	the	client
or	for	the	server,	as	indicated.

The	version	number	indicates	the	versions	of	Netscape	Navigator	(Nav),	LiveWire	(LW),	or	the
Netscape	servers	(Svr),	such	as	Enterprise	Server	and	FastTrack	Server),	for	which	the
construct	is	defined.

A	plus	sign	after	a	version	number	(as	in	Nav	3+)	indicates	that	the	construct	is	defined	for
that	version	and	all	later	versions	(In	the	case	of	server	constructs,	LW	1+	indicates	the
construct	was	defined	for	LiveWire	1.0	and	continues	to	be	defined	in	Netscape	3.x
servers.)

If	there	is	no	plus	sign	(Nav	3)	or	there	is	a	range	(Nav	2-3),	the	construct	was	only
defined	for	the	named	releases.

A	construct	that	has	existed	for	more	than	one	release	may	have	had	changes	between
releases.	For	this	information,	see	the	entry	for	the	construct.

	

	1	Operators		

Operator	Category Operator Client	version
Server
version

Arithmetic	Operators

+ Nav	2 LW	1
++ Nav	2 LW	1
- Nav	2 LW	1
-- Nav	2 LW	1
* Nav	2 LW	1
/ Nav	2 LW	1
% Nav	2 LW	1

String	Operators
+ Nav	2 LW	1
+= Nav	2 LW	1

Logical	Operators
&& Nav	2 LW	1
|| Nav	2 LW	1
! Nav	2 LW	1

Bitwise	Operators

& Nav	2 LW	1
^ Nav	2 LW	1
| Nav	2 LW	1
~ Nav	2 LW	1
<< Nav	2 LW	1
>> Nav	2 LW	1

>>> Nav	2 LW	1

Assignment	Operators

= Nav	2 LW	1
+= Nav	2 LW	1
-= Nav	2 LW	1
*= Nav	2 LW	1
/= Nav	2 LW	1
%= Nav	2 LW	1
&= Nav	2 LW	1
^= Nav	2 LW	1
|= Nav	2 LW	1
<<= Nav	2 LW	1
>>= Nav	2 LW	1
>>>= Nav	2 LW	1

Comparison	Operators

== Nav	2 LW	1
!= Nav	2 LW	1
> Nav	2 LW	1
>= Nav	2 LW	1
< Nav	2 LW	1
<= Nav	2 LW	1

Special	Operators

?: Nav	2 LW	1
, Nav	2 LW	1
delete Nav	2 LW	1
new Nav	2 LW	1
this Nav	2 LW	1
typeof Nav	3 LW	1
void Nav	3 LW	1

			2	Statements		

Statement Client	version
Server
version

break Nav	2+ LW	1+

comment Nav	2+ LW	1+
continue Nav	2+ LW	1+
delete Nav	4 Svr	3
do...while Nav	4 Svr	3
export Nav	4 Svr	3
for Nav	2+ LW	1+
for...in Nav	2+ LW	1+

Nav	2+ LW	1+
if...else Nav	2+ LW	1+
import Nav	4 Svr	3
labeled Nav	4 Svr	3
return Nav	2+ LW	1+
switch Nav	4 Svr	3
var Nav	2+ LW	1+
while Nav	2+ LW	1+
with Nav	2+ LW	1+

			3	Objects	with	their	methods	and	properties		

Object Client
version

Server
version Methods Properties Event

handlers
Anchor Nav	2+ 	
Applet Nav	3+
Area
(see	Link) Nav	3+

Array

Nav	3+
(2	as
non-
object)

LW	1+

concat
join
pop
push
reverse
shift
slice
splice
sort

index
input
length
prototype

toString
unshift

blob LW	1+ blobImage
blobLink

Boolean Nav	3+ LW	1+ toString prototype

Button Nav	2+

blur
click
focus
handleEvent

form	
name
type
value

onBlur
onClick
onFocus
onMouseDown
onMouseUp

Checkbox Nav	2+

blur
click
focus
handleEvent

checked
defaultChecked
form
name
type
value

onBlur
onClick
onFocus

client LW	1+ destroy
expiration

Connection Svr	3

beginTransaction
commitTransaction
connected
cursor
execute
majorErrorCode
majorErrorMessage
minorErrorCode
minorErrorMessage
release
rollbackTransaction
SQL
storedProc
toString

prototype

Cursor LW	1+

close
columnName
columns
deleteRow
insertRow

cursorColumn
prototype

next
updateRow

database LW	1+

beginTransaction
commitTransaction	
connect
connected
cursor
disconnect	
execute
majorErrorCode
majorErrorMessage
minorErrorCode
minorErrorMessage
rollbackTransaction	
SQL
storedProc
storedProcArgs
toString

prototype

Date Nav	2+ LW	1+

getDate
getDay	
getHours
getMinutes
getMonth
getSeconds
getTime
getTimezoneOffset
getYear
parse
setDate
setHours
setMinutes	
setMonth
setSeconds
setTime	
setYear
toGMTString
toLocaleString
UTC

prototype

DbPool Svr	3

DbPool
connect	
connected	
connection
disconnect
majorErrorCode
majorErrorMessage
minorErrorCode	
minorErrorMessage	
storedProcArgs
toString

document Nav	2+

captureEvents
close
getSelection
handleEvent
open	
releaseEvents
routeEvent
write	
writeln

alinkColor
anchors
applets
bgColor
cookie
domain
embeds
fgColor
formName
forms
images
lastModified
layers
linkColor
links
plugins
referrer
title
URL
vlinkColor

onClick
onDblClick
onKeyDown
onKeyPress
onKeyUp
onMouseDown
onMouseUp

event Nav	4

data
height
layerX
layerY
modifiers
pageX
pageY

screenX
screenY
target
type
which
width

File LW	1+

byteToString
clearError
close
eof	
error
exists
flush
getLength
getPosition
open
read
readByte
readln
setPosition
stringToByte	
write	
writeByte
writeln

prototype

FileUpload Nav	2+

blur
focus	
handleEvent
select

form	
name
type
value

onBlur
onChange
onFocus

Form Nav	2+
handleEvent
reset	
submit

action
elements
encoding
length

name
target

onReset
onSubmit

Frame
(see
Window)

Nav	2+

Nav	3+ LW	1+ toString

arguments
arity
caller
prototype

Hidden Nav	2+

form
name
type
value

History Nav	2+
back
forward
go

current
length
next
previous

Image Nav	3+ handleEvent

border	
complete
height
hspace
lowsrc
name
prototype	
src							
vspace	
width

onAbort
onError
onKeyDown
onKeyPress
onKeyUp
onLoad

Layer Nav	4

captureEvents
handleEvent
load
moveAbove
moveBelow
moveBy
moveTo
moveToAbsolute
releaseEvents
resizeBy

above
background
bgColor
below
clip.bottom
clip.height
clip.left
clip.right
clip.top
clip.width
document
left
name
pageX
pageY

onBlur
onFocus
onLoad
onMouseOut
onMouseOver

resizeTo
routeEvent

parentLayer
siblingAbove
siblingBelow
src	
top
visibility
zIndex

Link Nav	2+ handleEvent

hash
host
hostname
href
pathname
port
protocol
search
target	
text

onClick
onDblClick
onKeyDown
onKeyPress
onKeyUp
onMouseDown
onMouseOut
onMouseUp
onMouseOver

Location Nav	2+ reload
replace

hash
host
hostname
href
pathname
port
protocol
search

Lock Svr	3 isValid	lock
unlock

Math Nav	2+ LW	1+

abs
acos
asin
atan
atan2
ceil
cos
exp
floor	
log	
max

E
LN10
LN2
LOG10E
LOG2E
PI

min
pow
random
round
sin
sqrt
tan

SQRT1_2
SQRT2

MimeType Nav	3+
description
enabledPlugin
suffixes	type

navigator Nav	2+

javaEnabled	
plugins.refresh
preference
taintEnabled

appCodeName
appName
appVersion
language
mimeTypes	
platform
plugins
userAgent

Number Nav	3+ LW	1+

MAX_VALUE
MIN_VALUE
NaN
NEGATIVE_INFINITY
POSITIVE_INFINITY
prototype

Object Nav	2+ LW	1+

eval
toString
unwatch
valueOf	
watch

constructor
prototype

Option Nav	2+

defaultSelected
selected
text
value

Password Nav	2+

blur
focus
handleEvent
select

defaultValue
form
name
type

onBlur
onFocus

value

Plugin Nav	3+

description
filename
length
name

project LW	1+ lock
unlock

Radio Nav	2+

blur
click
focus
handleEvent

checked
defaultChecked
form	
name
type
value

onBlur
onClick
onFocus

RegExp Nav	4 Svr	3
compile
exec
test

$1,	...,	$9
global
ignoreCase
input	($_)
lastIndex
lastMatch	($&)
lastParen	($+)
leftContext	($`)
multiline	($*)
rightContext	($')
source

request LW	1+

agent
imageX	
imageY	
inputName
ip

protocol

Reset Nav	2+

blur
click
focus
handleEvent

form	
name
type
value

onBlur
onClick
onFocus

close
columnName

Resultset Svr	3 columns
next

prototype

screen Nav	4

availHeight
availWidth
colorDepth
height
pixelDepth
width

Select Nav	2+
blur
focus
handleEvent	

form
length
name
options
selectedIndex	
type

onBlur
onChange
onFocus

SendMail Svr	3
errorCode
errorMessage
send

Bcc
Body
Cc
Errorsto
From
Organization
Replyto
Smtpserver
Subject
To

server LW	1+ lock
unlock

host
hostname
port
protocol

Stproc Svr	3

close
outParamCount
outParameters
resultSet
returnValue

prototype

anchor
big
blink
bold

String Nav	2+ LW	1+

charAt
charCodeAt
concat
fixed	
fontcolor	
fontsize
fromCharCode
indexOf
italics
lastIndexOf
link
match
replace
search
slice
small
split
strike
sub
substr
substring
sup
toLowerCase
toUpperCase

length
prototype

Submit Nav	2+

blur
click
focus
handleEvent

form
name
type
value

onBlur
onClick
onFocus

Text Nav	2+

blur
focus
handleEvent
select

defaultValue
form
name
type	
value

onBlur
onChange
onFocus
onSelect

Textarea Nav	2+

blur
focus
handleEvent

defaultValue
form
name
type

onBlur
onChange
onFocus
onKeyDown
onKeyPress

select value onKeyUp
onSelect

Window Nav	2+

alert
back
blur
captureEvents							
clearInterval	
clearTimeout
close	
confirm	
disableExternalCapture
enableExternalCapture
find
focus	
forward	
handleEvent	
home
moveBy	
moveTo	
open
print
prompt	
releaseEvents
resizeBy	
resizeTo	
routeEvent
scroll
scrollBy	
scrollTo
setInterval
setTimeout	
stop

closed
defaultStatus
document
frames
history
innerHeight
innerWidth
length
location
locationbar
menubar
name
opener	
outerHeight
outerWidth
pageXOffset
pageYOffset
parent	
personalbar
scrollbars
self
status
statusbar
toolbar
top
window

onBlur
onDragDrop
onError
onFocus
onLoad
onMove
onResize
onUnload

			4	Methods		

Method Of	 Client
version

Server
Version

abs Math Nav	2+ LW	1+

acos Math Nav	2+ LW	1+
alert Window Nav	2+
anchor String Nav	2+ LW	1+
asin Math Nav	2+ LW	1+
atan Math Nav	2+ LW	1+
atan2 Math Nav	2+ LW	1+
back History Nav	2+
back Window Nav	4
beginTransaction Connection Svr	3
beginTransaction database LW	1+
big String Nav	2+ LW	1+
blink String Nav	2+ LW	1+
blobImage blob LW	1+
blobLink blob LW	1+
blur Button Nav	2+
blur Checkbox Nav	2+
blur FileUpload Nav	2+
blur Password Nav	2+
blur Radio Nav	2+
blur Reset Nav	2+
blur Select Nav	2+
blur Submit Nav	2+
blur Text Nav	2+
blur Textarea Nav	2+
blur Window Nav	3+
bold String Nav	2+ LW	1+
byteToString File LW	1+
captureEvents document Nav	4
captureEvents Layer Nav	4
captureEvents Window Nav	4
ceil Math Nav	2+ LW	1+

charAt String Nav	2+ LW	1+
charCodeAt String Nav	4 Svr	3
clearError File LW	1+
clearInterval Window Nav	4
clearTimeout Window Nav	2+
click Button Nav	2+
click Checkbox Nav	2+
click Radio Nav	2+
click Reset Nav	2+
click Submit Nav	2+
close Cursor LW	1+
close document Nav	2+
close File LW	1+
close Resultset Svr	3
close Stproc Svr	3
close Window Nav	2+
columnName Cursor LW	1+
columnName Resultset Svr	3
columns Cursor LW	1+
columns Resultset Svr	3
commitTransaction Connection Svr	3
commitTransaction database LW	1+
compile RegExp Nav	4 Svr	3
concat Array Nav	4 Svr	3
concat String Nav	4 Svr	3
confirm Window Nav	2+
connect database LW	1+
connect DbPool Svr	3
connected Connection Svr	3
connected database LW	1+
connected DbPool Svr	3

connection DbPool Svr	3
cos Math Nav	2+ LW	1+
cursor Connection Svr	3
cursor database LW	1+
DbPool DbPool Svr	3
deleteRow Cursor LW	1+
destroy client LW	1+
disableExternalCapture Window Nav	4
disconnect database LW	1+
disconnect DbPool Svr	3
enableExternalCapture Window Nav	4
eof File LW	1+
error File LW	1+
errorCode SendMail Svr	3
errorMessage SendMail Svr	3
eval Object Nav	3 LW	1+
exec RegExp Nav	4 Svr	3
execute Connection Svr	3
execute database LW	1+
exists File LW	1+
exp Math Nav	2+ LW	1+
expiration client LW	1+
find Window Nav	4
fixed String Nav	2+ LW	1+
floor Math Nav	2+ LW	1+
flush File LW	1+
focus Button Nav	2+
focus Checkbox Nav	2+
focus FileUpload Nav	2+
focus Password Nav	2+
focus Radio Nav	2+

focus Reset Nav	2+
focus Select Nav	2+
focus Submit Nav	2+
focus Text Nav	2+
focus Textarea Nav	2+
focus Window Nav	3+
fontcolor String Nav	2+ LW	1+
fontsize String Nav	2+ LW	1+
forward History Nav	2+
forward Window Nav	4
fromCharCode String Nav	4 Svr	3
getDate Date Nav	2+ LW	1+
getDay Date Nav	2+ LW	1+
getHours Date Nav	2+ LW	1+
getLength File LW	1+
getMinutes Date Nav	2+ LW	1+
getMonth Date Nav	2+ LW	1+
getPosition File LW	1+
getSeconds Date Nav	2+ LW	1+
getSelection document Nav	4
getTime Date Nav	2+ LW	1+
getTimezoneOffset Date Nav	2+ LW	1+
getYear Date Nav	2+ LW	1+
go History Nav	2+
handleEvent Button Nav	4
handleEvent Checkbox Nav	4
handleEvent document Nav	4
handleEvent FileUpload Nav	4
handleEvent Form Nav	4
handleEvent Image Nav	4
handleEvent Layer Nav	4

handleEvent Link Nav	4
handleEvent Password Nav	4
handleEvent Radio Nav	4
handleEvent Reset Nav	4
handleEvent Select Nav	4
handleEvent Submit Nav	4
handleEvent Text Nav	4
handleEvent Textarea Nav	4
handleEvent Window Nav	4
home Window Nav	4
indexOf String Nav	2+ LW	1+
insertRow Cursor LW	1+
isValid Lock Svr	3
italics String Nav	2+ LW	1+
javaEnabled navigator Nav	3+
join Array Nav	3+ LW	1+
lastIndexOf String Nav	2+ LW	1+
link String Nav	2+ LW	1+
load Layer Nav	4
lock Lock Svr	3
lock project LW	1+
lock server LW	1+
log Math Nav	2+ LW	1+
majorErrorCode Connection Svr	3
majorErrorCode database LW	1+
majorErrorCode DbPool Svr	3
majorErrorMessage Connection Svr	3
majorErrorMessage database LW	1+
majorErrorMessage DbPool Svr	3
match String Nav	4 Svr	3
max Math Nav	2+ LW	1+

min Math Nav	2+ LW	1+
minorErrorCode Connection Svr	3
minorErrorCode database LW	1+
minorErrorCode DbPool Svr	3
minorErrorMessage Connection Svr	3
minorErrorMessage database LW	1+
minorErrorMessage DbPool Svr	3
moveAbove Layer Nav	4
moveBelow Layer Nav	4
moveBy Layer Nav	4
moveBy Window Nav	4
moveTo Layer Nav	4
moveTo Window Nav	4
moveToAbsolute Layer Nav	4
next Cursor LW	1+
next Resultset Svr	3
open document Nav	2+
open File LW	1+
open Window Nav	2+
outParamCount Stproc Svr	3
outParameters Stproc Svr	3
parse Date Nav	2+ LW	1+
plugins.refresh navigator Nav	3+
pop Array Nav	4 Svr	3
pow Math Nav	2+ LW	1+
preference navigator Nav	4
print Window Nav	4
prompt Window Nav	2+
push Array Nav	4 Svr	3
random Math Nav	2+ LW	1+
read File LW	1+

readByte File LW	1+
readln File LW	1+
refresh navigator.plugins Nav	3+
release Connection Svr	3
releaseEvents document Nav	4
releaseEvents Layer Nav	4
releaseEvents Window Nav	4
reload Location Nav	3+
replace Location Nav	3+
replace String Nav	4 Svr	3
reset Form Nav	3+
resizeBy Layer Nav	4
resizeBy Window Nav	4
resizeTo Layer Nav	4
resizeTo Window Nav	4
resultSet Stproc Svr	3
returnValue Stproc Svr	3
reverse Array Nav	3+ LW	1+
rollbackTransaction Connection Svr	3
rollbackTransaction database LW	1+
round Math Nav	2+ LW	1+
routeEvent document Nav	4
routeEvent Layer Nav	4
routeEvent Window Nav	4
scroll Window Nav	2-3
scrollBy Window Nav	4
scrollTo Window Nav	4
search String Nav	4 Svr	3
select FileUpload Nav	2+
select Password Nav	2+
select Text Nav	2+

select Textarea Nav	2+
send SendMail Svr	3
setDate Date Nav	2+ LW	1+
setHours Date Nav	2+ LW	1+
setInterval Window Nav	4
setMinutes Date Nav	2+ LW	1+
setMonth Date Nav	2+ LW	1+
setPosition File LW	1+
setSeconds Date Nav	2+ LW	1+
setTime Date Nav	2+ LW	1+
setTimeout Window Nav	2+
setYear Date Nav	2+ LW	1+
shift Array Nav	4 Svr	3
sin Math Nav	2+ LW	1+
slice Array Nav	4 Svr	3
slice String Nav	4 Svr	3
small String Nav	2+ LW	1+
sort Array Nav	3+ LW	1+
splice Array Nav	4 Svr	3
split String Nav	3+ LW	1+
SQL Connection Svr	3
SQL database LW	1+
sqrt Math Nav	2+ LW	1+
stop Window Nav	4
storedProc Connection Svr	3
storedProc database Svr	3
storedProcArgs database Svr	3
storedProcArgs DbPool Svr	3
strike String Nav	2+ LW	1+
stringToByte File LW	1+
sub String Nav	2+ LW	1+

submit Form Nav	2+
substr String Nav	4 Svr	3
substring String Nav	2+ LW	1+
sup String Nav	2+ LW	1+
taintEnabled navigator Nav	3 LW	1
tan Math Nav	2+ LW	1+
test RegExp Nav	4 Svr	3
toGMTString Date Nav	2+ LW	1+
toLocaleString Date Nav	2+ LW	1+
toLowerCase String Nav	2+ LW	1+
toString Array Nav	3+ LW	1+
toString Boolean Nav	3+ LW	1+
toString Connection Svr	3
toString database LW	1+
toString DbPool Svr	3
toString Number Nav	3+ LW	1+
toString Object Nav	2+ LW	1+
toUpperCase String Nav	2+ LW	1+
unlock Lock Svr	3
unlock project LW	1+
unlock server LW	1+
unshift Array Nav	4 Svr	3
unwatch Object Nav	4 Svr	3
updateRow Cursor LW	1+
UTC Date Nav	2+ LW	1+
valueOf Object Nav	3+ LW	1+
watch Object Nav	4 Svr	3
write document Nav	2+
write File LW	1+
writeByte File LW	1+
writeln document Nav	2+

writeln File LW	1+

			5	Properties		

Property Of	 Client
version

Server
version

$1,	...,	$9 RegExp Nav	4 Svr	3
$_ RegExp Nav	4 Svr	3
$* RegExp Nav	4 Svr	3
$& RegExp Nav	4 Svr	3
$+ RegExp Nav	4 Svr	3
$` RegExp Nav	4 Svr	3
$' RegExp Nav	4 Svr	3
above Layer Nav	4
action Form Nav	2+
agent request LW	1+
alinkColor document Nav	2+
anchors document Nav	2+
appCodeName navigator Nav	2+
applets document Nav	3+
appName navigator Nav	2+
appVersion navigator Nav	2+
arguments Nav	3+ LW	1+
arity Nav	4 LW	1+
background Layer Nav	4
below Layer Nav	4
bgColor document Nav	2+
bgColor Layer Nav	4
border Image Nav	3+
caller Nav	3+ LW	1+
checked Checkbox Nav	2+
checked Radio Nav	2+

clip.bottom Layer Nav	4
clip.height Layer Nav	4
clip.left Layer Nav	4
clip.right Layer Nav	4
clip.top Layer Nav	4
clip.width Layer Nav	4
closed Window Nav	3+
colorDepth screen Nav	4
complete Image Nav	3+
constructor Object Nav	3+ LW	1+
cookie document Nav	2+
current History Nav	3+
cursorColumn Cursor LW	1+
data event Nav	4
defaultChecked Checkbox Nav	2+
defaultChecked Radio Nav	2+
defaultStatus Window Nav	2+
defaultSelected Option Nav	3+
defaultValue Password Nav	2+
defaultValue Text Nav	2+
defaultValue Textarea Nav	2+
description MimeType Nav	3+
description Plugin Nav	3+
document Layer Nav	4
document Window Nav	2+
domain document Nav	3+
E Math Nav	2+ LW	1+
elements Form Nav	2+
embeds document Nav	3+
enabledPlugin MimeType Nav	3+
encoding Form Nav	2+

fgColor document Nav	2+
filename Plugin Nav	3+
form Button Nav	2+
form Checkbox Nav	2+
form FileUpload Nav	2+
form Hidden Nav	2+
form Password Nav	2+
form Radio Nav	2+
form Reset Nav	2+
form Select Nav	2+
form Submit Nav	2+
form Text Nav	2+
form Textarea Nav	2+
formName document Nav	3+
forms document Nav	3+
frames Window Nav	2+
global RegExp Nav	4 Svr	3
hash Link Nav	2+
hash Location Nav	2+
height event Nav	4
height Image Nav	3+
height screen Nav	4
history Window Nav	2+
host Link Nav	2+
host Location Nav	2+
host server LW	1+
hostname Link Nav	2+
hostname Location Nav	2+
hostname server LW	1+
href Link Nav	2+
href Location Nav	2+

hspace Image Nav	3+
ignoreCase RegExp Nav	4 Svr	3
images document Nav	3+
imageX request LW	1+
imageY request LW	1+
index Array Nav	4 Svr	3
input Array Nav	4 Svr	3
innerHeight Window Nav	4
innerWidth Window Nav	4
input RegExp Nav	4 Svr	3
inputName request LW	1+
ip request LW	1+
language navigator Nav	4
lastIndex RegExp Nav	4 Svr	3
lastMatch RegExp Nav	4 Svr	3
lastModified document Nav	2+
lastParen RegExp Nav	4 Svr	3
layerX event Nav	4
layerY event Nav	4
layers document Nav	4
left Layer Nav	4
leftContext RegExp Nav	4 Svr	3
length Array Nav	3+ LW	1+
length Form Nav	2+
length History Nav	2+
length Plugin Nav	3+
length Select Nav	2+
length String Nav	2+ LW	1+
length Window Nav	2+
linkColor document Nav	2+
links document Nav	2+

location Window Nav	2+
locationbar Window Nav	4
LN10 Math Nav	2+ LW	1+
LN2 Math Nav	2+ LW	1+
LOG10E Math Nav	2+ LW	1+
LOG2E Math Nav	2+ LW	1+
lowsrc Image Nav	3+
MAX_VALUE Number Nav	3+ LW	1+
menubar Window Nav	4

Form Nav	2+
request LW	1+

mimeTypes navigator Nav	3+
modifiers event Nav	4
MIN_VALUE Number Nav	3+ LW	1+
multiline RegExp Nav	4 Svr	3
name Button Nav	2+
name Checkbox Nav	2+
name FileUpload Nav	2+
name Form Nav	2+
name Hidden Nav	2+
name Image Nav	3+
name Layer Nav	4
name Password Nav	2+
name Plugin Nav	3+
name Radio Nav	2+
name Reset Nav	2+
name Select Nav	2+
name Submit Nav	2+
name Text Nav	2+
name Textarea Nav	2+
name Window Nav	2+

NaN Number Nav	3+ LW	1+
NEGATIVE_INFINITY Number Nav	3+ LW	1+
next History Nav	3+
opener Window Nav	3+
options Select Nav	2+
outerHeight Window Nav	4
outerWidth Window Nav	4
pageX event Nav	4
pageX Layer Nav	4
pageXOffset Window Nav	4
pageY event Nav	4
pageY Layer Nav	4
pageYOffset Window Nav	4
parent Window Nav	2+
parentLayer Layer Nav	4
pathname Link Nav	2+
pathname Location Nav	2+
personalbar Window Nav	4
PI Math Nav	2+ LW	1+
pixelDepth screen Nav	4
platform navigator Nav	4
plugins document Nav	3+
plugins navigator Nav	3+
port Link Nav	2+
port Location Nav	2+
port server LW	1+
POSITIVE_INFINITY Number Nav	3+ LW	1+
previous History Nav	3+
protocol Link Nav	2+
protocol Location Nav	2+
protocol request LW	1+

protocol server LW	1+
prototype Array Nav	3+ LW	1+
prototype Boolean Nav	3+ LW	1+
prototype Connection Svr	3
prototype Cursor Nav	3+ LW	1+
prototype database LW	1+
prototype Date Nav	3+ LW	1+
prototype DbPool Svr	3
prototype File LW	1+
prototype Nav	3+ LW	1+
prototype Image Nav	3+ LW	1+
prototype Number Nav	3+ LW	1+
prototype Object Nav	3+ LW	1+
prototype Resultset Svr	3
prototype SendMail Svr	3
prototype Stproc Svr	3
prototype String Nav	3+ LW	1+
referrer document Nav	2+
rightContext RegExp Nav	4 Svr	3
screenX event Nav	4
screenY event Nav	4
scrollbars Window Nav	4
search Link Nav	2+
search Location Nav	2+
selected Option Nav	2+
selectedIndex Select Nav	2+
self Window Nav	2+
siblingAbove Layer Nav	4
siblingBelow Layer Nav	4
source RegExp Nav	4 Svr	3
SQRT1_2 Math Nav	2+ LW	1+

SQRT2 Math Nav	2+ LW	1+
src Image Nav	3+
src Layer Nav	4
status Window Nav	2+
statusbar Window Nav	4
suffixes MimeType Nav	3+
target event Nav	4
target Form Nav	2+
target Link Nav	2+
text Option Nav	2+
text Link Nav	4
title document Nav	2+
toolbar Window Nav	4
top Layer Nav	4
top Window Nav	2+
type Button Nav	3+
type Checkbox Nav	3+
type event Nav	4
type FileUpload Nav	3+
type Hidden Nav	3+
type Password Nav	3+
type MimeType Nav	3+
type Radio Nav	3+
type Reset Nav	3+
type Select Nav	3+
type Submit Nav	3+
type Text Nav	3+
type Textarea Nav	3+
URL document Nav	2+
userAgent navigator Nav	2+
value Button Nav	2+

value Checkbox Nav	2+
value FileUpload Nav	2+
value Hidden Nav	2+
value Option Nav	2+
value Password Nav	2+
value Radio Nav	2+
value Reset Nav	2+
value Submit Nav	2+
value Text Nav	2+
value Textarea Nav	2+
visibility Layer Nav	4
vlinkColor document Nav	2+
vspace Image Nav	3+
which event Nav	4
width event Nav	4
width Image Nav	3+
width screen Nav	4
window Window Nav	2+
zIndex Layer Nav	4

			6	Global	s		
Client
version

Server
version

addClient LW	1+
addResponseHeader Svr	3
blob LW	1+
callC LW	1+
debug LW	1+
deleteResponseHeader Svr	3
escape Nav	2+ LW	1+
eval Nav	2+ LW	1+

flush LW	1+
getOptionValue LW	1+
getOptionValueCount LW	1+
isNaN Nav	3+ LW	1+
Number Nav	4 Svr	3
parseFloat Nav	3+ LW	1+
parseInt Nav	3+ LW	1+
redirect LW	1+
registerC LW	1+
ssjs_generateClientID Svr	3
ssjs_getCGIVariable Svr	3
ssjs_getClientID Svr	3
String Nav	4 Svr	3
taint Nav	3 LW	1+
unescape Nav	2+ LW	1+
untaint Nav	3 LW	1+
write LW	1+

			7	Event	handlers	

Event	handler Client
version Handler	for

onAbort Nav	3+ Image

onBlur Nav	3+ Button,	Checkbox,	FileUpload,	Layer,	Password,	Radio
Select,	Submit,	Text,	Textarea,	Window

onChange Nav	3+ FileUpload,	Select,	Text,	Textarea
onClick Nav	3+ Button,	Checkbox,	document,	Link,	Radio,	Reset,	Submit
onDblClick Nav	4 document,	Link
onDragDrop Nav	4 Window
onError Nav	3+ Image,	Window

onFocus Nav	3+ Button,	Checkbox,	FileUpload,	Layer,	Password,	Radio
Select,	Submit,	Text,	Textarea,	Window

onKeyDown Nav	4 document,	Image,	Link,	Textarea

onKeyPress Nav	4 document,	Image,	Link,	Textarea
onKeyUp Nav	4 document,	Image,	Link,	Textarea
onLoad Nav	3+ Image,	Layer,	Window
onMouseDown Nav	4 Button,	document,	Link
onMouseMove Nav	4
onMouseOut Nav	3+ Layer,	Link
onMouseOver Nav	3+ Layer,	Link
onMouseUp Nav	4 Button,	document,	Link
onMove Nav	4 Window
onReset Nav	3+ Form
onResize Nav	4 Window
onSelect Nav	3+ Text,	Textarea
onSubmit Nav	3+ Form
onUnload Nav	3+ Window

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	JavaScript	JavaScript		Netscape	

	JavaScript	

	Internet		(WWW)	

	(HTML)		(CGI)	

	LiveWire		(SQL)	

	JavaScript	

	JavaScript		JavaScript	

JavaScript		JavaScript	

	JavaScript	 	JavaScript		JavaScript	

JavaScript		()		JavaScript		JavaScript	

DevEdge	 	 JavaScript		JavaScript	

	Netscape		JavaScript

Netscape		JavaScript		URL	

http://home.netscape.com/one_stop/intranet_apps/index.html
	Netscape	AppFoundry	Online	Netscape	AppFoundry	Online	
	Intranet		JavaScript	

http://help.netscape.com/products/tools/livewire
	Netscape		LiveWire		JavaScript		LiveWire	

http://developer.netscape.com/library/one/sdk/livewire/
	Netscape		JavaScript		Netscape	

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/enterprise/wrijsap/index.htm
http://developer.netscape.com/library/documentation/
http://developer.netscape.com/library/documentation/javascript.html
http://home.netscape.com/one_stop/intranet_apps/index.html
http://help.netscape.com/products/tools/livewire/
http://developer.netscape.com/library/one/sdk/livewire/

	Netscape	Navigator		Navigator	4.0	

JavaScript		Windows		()		Unix	

	(URL)

http://server.domain/path/file.html		URL	server		research1	
www	domain		Internet		netscape.com		uiuc.edu	path	
file.html	URL		(SSL)	URL		https		http

API	()HTML	()

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	JavaScriptNetscape	/

JavaScript		Internet		JavaScript	HTML	
JavaScript		LiveConnect		Java		CORBA	

	JavaScript		ECMA-262	Array		Date	
	JavaScript		

JavaScript	 	1.1

	1.1	JavaScript	

	JavaScript	(Navigator	JavaScript)		JavaScript		JavaScript	
	JavaScript	

	JavaScript		HTML		JavaScript		JavaScript	

http://developer.netscape.com/library/javascript/e262-pdf.pdf

	JavaScript

	Netscape	Navigator	2.0()		Web		HTML		JavaScript	(
)(HTML		JavaScript)	HTML		JavaScript	

	1.2

	1.2		JavaScript

	HTML		JavaScript		JavaScript		HTML	
	JavaScript	

	JavaScript

JavaScript		HTML		LiveConnect		Java	
JavaScript		JavaScript		JavaScript

	JavaScript		JavaScript		JavaScript		Web	
JavaScript	

	1.3 ()	HTML	(JavaScript)		JavaScript	

	1.3		JavaScript

	1.4 	HTML		JavaScript		HTML		HTML	
JavaScript		Navigator	

	1.4		JavaScript

(CGI)	JavaScript		HTML	JavaScript	JavaScript	
LiveWire		SQL	

JavaScript	

JavaScript		JavaScript	

JavaScript	

Array,	Boolean,	Date,	Function,	Math,	Number,	Object,	String

Anchor,	Applet,	Area,	Button,	Checkbox,	document,	event,	FileUpload,	Form,
Frame,	Hidden,	History,	Image,	Layer,	Link,	Location,	MimeType,	navigator,
Option,	Password,	Plugin,	Radio,	Reset,	screen,	Select,	Submit,	Text,	Textarea,
Window

	Web		JavaScript		
	1.5 	

	1.5	

blob,	client,	Connection,	Cursor,	database,	DbPool,	File,	Lock,	project,	request,
Resultset,	SendMail,	server,	Stproc

	1.6

	1.6	LiveWire	

JavaScript	

Navigator	2.02	

	Navigator	3.0		JavaScript	

	JavaScript		JavaScript	

	Navigator	4.0	Navigator	4.0		JavaScript	

“ JavaScript	” “JavaScript	”

	 	 	

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm
javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

JavaScript	

	2.1 	JavaScript	

	2.1	JavaScript	

+ ()	
++ ()	()

- ()	

-- ()	()
* ()	
/ ()	
% ()	
+ ()	
+=
&& ()	
|| ()	

! ()	

& ()		1		1
^ ()		1		1
| ()		0		0
~ ()	
<< ()	
>> ()	

>>> ()	

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=
>>>=
==
!=
>
>=
<
<=
?: “if...else”
,
delete
new
this
typeof
void

Navigator	2.0

(=)x	=	y		y		x

	2.2	

x	+=	y x	=	x	+	y
x	-=	y x	=	x	-	y
x	*=	y x	=	x	*	y
x	/=	y x	=	x	/	y
x	%=	y x	=	x	%	y
x	<<=	y x	=	x	<<	y
x	>>=	y x	=	x	>>	y
x	>>>=	y x	=	x	>>>	y
x	&=	y x	=	x	&	y
x	^=	y x	=	x	^	y
x	|=	y x	=	x	|	y

Navigator	2.0

	2.3 		 var1		3	var2		4

	2.3	

(==) 3	==	var1
(!=) var1	!=	4
(>) var2	>	var1

(>=) var2	>=	var1
var1	>=	3

(<) var1	<	var2

(<=) var1	<=	var2
var2	<=	5

()(+)(-)(*)(/)

Navigator	2.0

%	()

var1	%	var2

	var1		var2	12	%	5		2

++	()

var++		++var

(1)(x++)(++x)

	x		3	y	=	x++		y		3		x		4	y	=	++x		x	
4	y		4

--	()

var--		--var

(1)(x--)(--x)

	x		3	y	=	x--		y		3		x		2	y	=	--x		x		2
	y		2

-	()

y	=	-x		x		y	x		3	y		-3		x		3

(10)	9		1001	JavaScript	

	2.4 	JavaScript	

	2.4	

a	&	b 	1		1
a	|	b 	0		0
a	^	b 	1		1
~	a
a	<<	b 	a		b	
a	>>	b 	a		b	

a	>>>	b 	a		b	0

Navigator	2.0

	32	

9		100115		1111

15	&	9		9	(1111	&	1001	=	1001)

15	|	9		15	(1111	|	1001	=	1111)

15	^	9		6	(1111	^	1001	=	0110)

Navigator	2.0

	32	

<<	()

9<<2		36	1001		100100	36

>>	()

9>>2		2	1001		10	2-9>>2		-3

>>>	()

19>>>2		4	10011		100	4

	Boolean	()	Boolean	

Navigator	2.0

	2.5 	

	2.5	

(&&) expr1	&&	expr2 	expr1	expr2

(||) expr1	||	expr2 	expr1	
expr2

(!) !expr 	expr	

<script	language="JavaScript1.2">"
v1	=	"";
v2	=	"";
v3	=	false;
document.writeln("t	&&	t		"	 +	(v1	&&	v2));
document.writeln("f	&&	t		"	+	(v3	&&	v1));
document.writeln("t	&&	f		"	+	(v1	&&	v3));
document.writeln("f	&&	f		"	+	(v3	&&	(3	==	4))); 	document.writeln("t	||	t	
	"	+	(v1	||	v2));
document.writeln("f	||	t		"	+	(v3	||	v1));
document.writeln("t	||	f		"	+	(v1	||	v3));
document.writeln("f	||	f		"	+	(v3	||	(3	==	4)));
document.writeln("!t		"	+	(!v1));
document.writeln("!f		"	+	(!v3));
</script>

t	&&	t		
f	&&	t		false
t	&&	f		false
f	&&	f		false
t	||	t		
f	||	t		
t	||	f		
f	||	f		false
!t		false
!f		true

“”

false	&&			false

true	||			true

(+)“my	”	+“string”“my	string”

Navigator	2.0

	+=		mystring	“alpha”	mystring	+=	"bet"	“alphabet”
	mystring

?:	()

	JavaScript		if	

Navigator	2.0

condition	?	expr1	:	expr2

condition 	true		false

expr1,	expr2

	condition		expr1		expr2		isMember	

document.write	("	"	+	(isMember	?	"$2.00"	:	"$10.00"))

,	()

Navigator	2.0

expr1,	expr2

expr1,	expr2

	 for	

	a		10x10	

for	(var	i=0,	j=10;	i	<=	10;	i++,	j--)
			document.writeln("a["+i+","+j+"]=	"	+	a[i,j])

delete

Navigator	2.0

delete	objectName.property
delete	objectName[index]
delete	property

objectName

index

	with	

delete		undefined()delete		undefined

new

Navigator	2.0

objectName	=	new	objectType	(param1	[,param2]	...[,paramN])

objectName
objectType

param1...paramN 	objectType	

1.	

2.	 	new	

car1.color	=	"black"		car1		color	“black”	car

	 Function.prototype			car		color		car1		color	
	 prototype

Car.prototype.color=null
car1.color="black"

	1 	car	make,	model,		year

function	car(make,	model,	year)	{
			this.make	=	make
			this.model	=	model
			this.year	=	year
}
	mycar	

mycar	=	new	car("Eagle",	"Talon	TSi",	1993)

	mycar	mycar.make	“Eagle”mycar.year		1993

	new		car	

kenscar	=	new	car("Nissan",	"300ZX",	1992)		2:	 	person	

function	person(name,	age,	sex)	{
			this.name	=	name
			this.age	=	age
			this.sex	=	sex
}
	person	

rand	=	new	person("Rand	McNally",	33,	"M")
ken	=	new	person("Ken	Jones",	39,	"M")
	car		person		owner	

function	car(make,	model,	year,	owner)	{
			this.make	=	make;	
			this.model	=	model;
			this.year	=	year;
			this.owner	=	owner;
}

car1	=	new	car("Eagle",	"Talon	TSi",	1993,	rand);
car2	=	new	car("Nissan",	"300ZX",	1992,	ken)

	kand		ken		owner		car2	

car2.owner.name

this

	this	

Navigator	2.0

this[.propertyName]

	validate		value	

function	validate(obj,	lowval,	hival)	{
			if	((obj.value	<	lowval)	||	(obj.value	>	hival))
						alert("e!")
}

	 onChange		validate	this	

	18		99	
<INPUT	TYPE	=	"text"	NAME	=	"age"	SIZE	=	3
			onChange="validate(this,	18,	99)">

typeof

typeof	

1.	typeof	operand
2.	typeof	(operand)

typeof		operand	operand	

Navigator	3.0

var	myFun	=	new	Function("5+2")
var	shape="round"
var	size=1
var	today=new	Date()

typeof	

typeof	myFun	is	object
typeof	shape	is	string
typeof	size	is	number
typeof	today	is	object
typeof	dontExist	is	undefined

	true		nulltypeof	

typeof	true	is	boolean
typeof	null	is	object

typeof	

typeof	62	is	number
typeof	'Hello	world'	is	string

typeof	

typeof	document.lastModified	is	string
typeof	window.length	is	number
typeof	Math.LN2	is	number

typeof	

typeof	blur	is	function
typeof	eval	is	function
typeof	parseInt	is	function
typeof	shape.split	is	function

typeof	

typeof	Date	is	function
typeof	Function	is	function
typeof	Math	is	function
typeof	Option	is	function
typeof	String	is	function

void

void	

1.	javascript:void	(expression)
2.	javascript:void	expression

void	expression		JavaScript	

Navigator	3.0

	void	

void(0)		0	JavaScript	

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	JavaScript	JavaScript	

“[]”{}“{}”

	3.1 		JavaScript	

	3.1	JavaScript	
break 	while		for	
comment
continue 	while		for	
delete
do...while
export
for
for...in JavaScript	
function 	JavaScript	
if...else
import

labeled 	break		continue	

return
switch 	case	
var
while
with

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	JavaScript		 Array,	Boolean,	Date,	Function,	Math,	Number,	Object	
String	JavaScript

	4.1 	

	4.1	

Array
Boolean
Date

Function 	JavaScript	

Math 	PI	π
Number

Object 	JavaScript	

RegExp

String 	JavaScript	

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	 documentLayerLinkAnchorAreaImage		 Applet

	5.1	

	5.1	

Anchor

Applet 	Web		Java	

Area

document 	HTML	

Image HTML	

Layer 	HTML	

Link

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	Window	 FrameLocation		 History	

	6.1	

	6.1	Window	

Frame 	URL	
History 	URL	
Location 	URL	
screen

Window 	 documentLocation		 History	

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	7.1 	

	7.1	

Button HTML	
Checkbox HTML	
FileUpload HTML	
Form
Hidden HTML	
Option Select	

Password HTML	(*)

Radio HTML	
Reset HTML	
Select HTML	
Submit HTML	
Text HTML	
Textarea HTML	

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	8.1 	

	8.1	

navigator 	Navigator	

MimeType 	MIME	(
)

Plugin

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

This	chapter	contains	the	event	object	and	the	event	handlers	that	are	used	withs
in	JavaScript	to	evoke	particular	actions.	In	addition,	it	contains	general
information	about	using	events	and	event	handlers.

	9.1	

	9.1	

event Represents	a	JavaScript	event.	Passed	to	every	event	handler.

	9.2		JavaScript	

	9.2	
……

abort onAbort
The	user	aborts	the	loading	of	an	image	(for
example	by	clicking	a	link	or	clicking	the	Stop
button).

blur onBlur A	form	element	loses	focus	or	when	a	window	or
frame	loses	focus.

change onChange A	select,	text,	or	textarea	field	loses	focus	and	its
value	has	been	modified.

click onClick An	object	on	a	form	is	clicked.
dblclick onDblClick The	user	double-clicks	a	form	element	or	a	link.

dragdrop onDragDrop
The	user	drops	an	object	onto	the	browser
window,	such	as	dropping	a	file	on	the	browser
window.

error onError The	loading	of	a	document	or	image	causes	an
error.

focus onFocus A	window,	frame,	or	frameset	receives	focus	or
when	a	form	element	receives	input	focus.

keydown onKeyDown The	user	depresses	a	key.

keypress onKeyPress The	user	presses	or	holds	down	a	key.
keyup onKeyUp The	user	releases	a	key.

load onLoad The	browser	finishes	loading	a	window	or	all	of
the	frames	within	a	FRAMESET	tag.

mousedown onMouseDown The	user	depresses	a	mouse	button.
mousemove onMouseMove The	user	moves	the	cursor.

mouseout onMouseOut The	cursor	leaves	an	area	(client-side	image	map)
or	link	from	inside	that	area	or	link.

mouseover onMouseOver The	cursor	moves	over	an	object	or	area	from
outside	that	object	or	area.

mouseup onMouseUp The	user	releases	a	mouse	button.
move onMove The	user	or	script	moves	a	window	or	frame.
reset onReset The	user	resets	a	form	(clicks	a	Reset	button).
resize onResize The	user	or	script	resizes	a	window	or	frame.

select onSelect The	user	selects	some	of	the	text	within	a	text	or
textarea	field.

submit onSubmit The	user	submits	a	form.
unload onUnload The	user	exits	a	document.

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags11.htm#tags:FRAMESET

General	Information	about	Events

JavaScript	applications	in	the	browser	are	largely	event-driven.	Events	are
actions	that	occur	usually	as	a	result	of	something	the	user	does.	For	example,
clicking	a	button	is	an	event,	as	is	changing	a	text	field	or	moving	the	mouse
over	a	link.	For	your	script	to	react	to	an	event,	you	define	event	handlers,	such
as	onChangeandonClick.

If	an	event	applies	to	an	HTML	tag,	then	you	can	define	anit.	The	name	of	an
event	handler	is	the	name	of	the	event,	preceded	by	"on".	For	example,	thethe
focus	event	is	onFocus.

To	create	anan	HTML	tag,	add	an	event	handler	attribute	to	the	tag.	Put
JavaScript	code	in	quotation	marks	as	the	attribute	value.	The	general	is

<TAG	eventHandler="JavaScript	Code">	where	TAG	is	an	HTML	tag	and
eventHandler	is	the	name	of	the	event	handler.	For	example,	suppose	you	have
created	a	JavaScript	function	called	compute.	You	can	cause	the	browser	to
perform	this	function	when	the	user	clicks	a	button	by	assigning	the	function
call	to	the	button's	onClick	event	handler:

<INPUT	TYPE="button"	VALUE="Calculate"	onClick="compute(this.form)">
You	can	put	any	JavaScript	statements	inside	the	quotation	marks	following
onClick.	These	statements	are	executed	when	the	user	clicks	the	button.	If	you
want	to	include	more	than	one	statement,	separate	statements	with	a	semicolon.

When	you	create	an	event	handler,	the	corresponding	JavaScript	object	gets	a
property	with	the	name	of	the	event	handler	in	lower	case	letters.	(In
Navigator	4.0,	you	can	also	use	the	mixed	case	name	of	thethe	property	name.)
This	property	allows	you	to	access	the	object's	event	handler.	For	example,	in
the	preceding	example,	JavaScript	creates	a	Button	object	with	an	onclick
property	whose	value	is	"compute(this.form)".

Chapter	7,	"JavaScript	Security,"	in	JavaScript	Guide	contains	more	information
about	creating	and	using	event	handlers.

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

Events	in	Navigator	4.0

In	Navigator	4.0,	JavaScript	includes	event	objects	as	well	as	event	handlers.
Each	event	has	an	event	object	associated	with	it.	The	event	object	provides
information	about	the	event,	such	as	the	type	of	event	and	the	location	of	the
cursor	at	the	time	of	the	event.	When	an	event	occurs,	and	if	an	event	handler
has	been	written	to	handle	the	event,	the	event	object	is	sent	as	an	argument	to
the	event	handler.

Typically,	the	object	on	which	the	event	occurs	handles	the	event.	For	example,
when	the	user	clicks	a	button,	it	is	often	the	button's	event	handler	that	handles
the	event.	Sometimes	you	may	want	the	Window	or	document	object	to	handle
certain	types	of	events.	For	example,	you	may	want	the	document	object	to
handle	all	MouseDown	events	no	matter	where	they	occur	in	the	document.
JavaScript's	event	capturing	model	allows	you	to	define	methods	that	capture
and	handle	events	before	they	reach	their	intended	target.

In	addition	to	providing	the	event	object,	Navigator	4.0	allows	a	Window	or
document	to	capture	and	handle	an	event	before	it	reaches	its	intended	target.	To
accomplish	this,	the	Window,	document,	and	Layer	objects	have	these	new
methods:

captureEvents
releaseEvents
routeEvent
handleEvent	(Not	a	method	of	the	Layer	object)

For	example,	suppose	you	want	to	capture	all	click	events	that	occur	in	a
window.	First,	you	need	to	set	up	the	window	to	capture	click	events:

window.captureEvents(Event.CLICK);	The	argument	to	Window.captureEvents
is	a	property	of	the	event	object	and	indicates	the	type	of	event	to	capture.	To
capture	multiple	events,	the	argument	is	a	list	separated	by	vertical	slashes	(|).
For	example:

window.captureEvents(Event.CLICK	|	Event.MOUSEDOWN	|
Event.MOUSEUP)	Next,	you	need	to	define	a	function	that	handles	the	event.
The	argument	evnt	is	the	event	object	for	the	event.

function	clickHandler(evnt)	{
			//What	goes	here	depends	on	how	you	want	to	handle	the	event.
			//This	is	described	below.
}	You	have	four	options	for	handling	the	event:

Return	true.	In	the	case	of	a	link,	the	link	is	followed	and	no	other	event
handler	is	checked.	If	the	event	cannot	be	canceled,	this	ends	the	event
handling	for	that	event.
function	clickHandler(evnt)	{	return	true;	}

Return	false.	In	the	case	of	a	link,	the	link	is	not	followed.	If	the	event	is
non-cancelable,	this	ends	the	event	handling	for	that	event.
function	clickHandler(evnt)	{	return	false;	}

Call	routeEvent.	JavaScript	looks	for	other	event	handlers	for	the	event.	If
another	object	is	attempting	to	capture	the	event	(such	as	the	document),
JavaScript	calls	its	event	handler.	If	no	other	object	is	attempting	to	capture
the	event,	JavaScript	looks	for	anthe	event's	original	target	(such	as	a
button).	The	routeEvent	method	returns	the	value	returned	by	the	event
handler.	The	capturing	object	can	look	at	this	return	value	and	decide	how
to	proceed.
function	clickHandler(evnt)	{
var	retval	=	routeEvent(evnt);
if	(retval	==	false)	return	false;
else	return	true;
}	Note:	When	routeEvent	calls	an	event	handler,	the	event	handler	is
activated.	If	routeEvent	calls	an	event	handler	whose	function	is	to	display
a	new	page,	the	action	takes	place	without	returning	to	the	capturing
object.

Call	the	handleEvent	method	of	an	event	receiver.	Any	object	that	can
register	event	handlers	is	an	event	receiver.	This	method	explicitly	calls	the
event	handler	of	the	event	receiver	and	bypasses	the	capturing	hierarchy.
For	example,	if	you	wanted	all	click	events	to	go	to	the	first	link	on	the
page,	you	could	use:
function	clickHandler(evnt)	{
window.document.links[0].handleEvent(evnt);
}	As	long	as	the	link	has	an	onClick	handler,	the	link	handles	any	click
event	it	receives.

Finally,	you	need	to	register	the	function	as	the	window'sthat	event:

window.onClick	=	clickHandler;

If	a	window	with	frames	wants	to	capture	events	in	pages	loaded	from	different
locations,	you	need	to	use	captureEvents	in	a	signed	script	and	call
Window.enableExternalCapture.	In	the	following	example,	the	window	and
document	capture	and	release	events:

<HTML>
<SCRIPT>	function	fun1(evnt)	{
			alert	("The	window	got	an	event	of	type:	"	+	evnt.type	+	
						"	and	will	call	routeEvent.");
			window.routeEvent(evnt);
			alert	("The	window	returned	from	routeEvent.");
			return	true;
}	function	fun2(evnt)	{
			alert	("The	document	got	an	event	of	type:	"	+	evnt.type);
			return	false;
}	function	setWindowCapture()	{
			window.captureEvents(Event.CLICK);
}	function	releaseWindowCapture()	{
			window.releaseEvents(Event.CLICK);
}	function	setDocCapture()	{
			document.captureEvents(Event.CLICK);
}	function	releaseDocCapture()	{
			document.releaseEvents(Event.CLICK);	}
window.onclick=fun1;
document.onclick=fun2;	</SCRIPT>
...
</HTML>

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

LiveWire	

	LiveWire	 databaseDbPoolConnectionCursorStproc

	10.1	

	10.1	LiveWire	

blob 	BLOb	

Connection
Cursor
database
DbPool
Resultset
Stproc

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	 requestclientprojectserver		 Lock	

	11.1	

	11.1	

client /	HTTP	

Lock
project
request 	HTTP	
server

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	 File		 SendMail	

	12.1 	

	12	

File

SendMail 	JavaScript	

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

	JavaScript	

	13.1 	

	13.1	

addClient Appends	client	information	to	URLs.

addResponseHeader Adds	new	information	to	the	response	header	sent	to
the	client.

blob Assigns	BLOb	data	to	a	column	in	a	cursor.
callC Calls	a	native	function.

debug Displays	values	of	expressions	in	the	trace	window	or
frame.

deleteResponseHeader Removes	information	from	the	header	of	the	responsesent	to	the	client.

escape
Returns	the	hexadecimal	encoding	of	an	argument	in
the	ISO	Latin-1	character	set;	used	to	create	strings	to
add	to	a	URL.

eval Evaluates	a	string	of	JavaScript	code	without	reference
to	a	particular	object.

flush Flushes	the	output	buffer.

getOptionValue Gets	values	of	individual	options	in	an	HTML
SELECT	form	element.

getOptionValueCount Gets	the	number	of	options	in	an	HTML	SELECT
form	element.

isNaN Evaluates	an	argument	to	determine	if	it	is	not	a
number.

Number Converts	an	object	to	a	number.

parseFloat Parses	a	string	argument	and	returns	a	floating-point
number.

parseInt Parses	a	string	argument	and	returns	an	integer.
redirect Redirects	the	client	to	the	specified	URL.

registerCFunction Registers	a	native	function	for	use	in	server-side
JavaScript.

ssjs_generateClientID Returns	an	identifier	you	can	use	to	uniquely	specify
the	client	object.

ssjs_getCGIVariable
Returns	the	value	of	the	specified	environment
variable	set	in	the	server	process,	including	some	CGI
variables.

ssjs_getClientID Returns	the	identifier	for	the	client	object	used	by
some	of	JavaScript's	client-maintenance	techniques.

String Converts	an	object	to	a	string.
taint Adds	tainting	to	a	data	element	or	script.

unescape Returns	the	ASCII	string	for	the	specified	value;	used
in	parsing	a	string		to	a	URL.

untaint Removes	tainting	from	a	data	element	or	script.

write Adds	statements	to	the	client-side	HTML	page	being
generated.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

LiveConnect		Java	

LiveConnect		JavaScript		Java		Java		JavaScript	

LiveConnect		 Java		API		JavaScript		netscape.javascript	
netscape.plugin	

netscape.javascript	

netscape.javascript.JSObject
netscape.javascript.JSException

netscape.plugin		API	

netscape.plugin.Plugin

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	

Index

Note:	This	index	has	not	yet	been	updated.

Symbols

!	operator	66
#	(hash	mark	in	URL)	254
%	operator	62
&	operator	63
&&	operator	66
*/	comment	78
--	operator	63
++	operator	62
/*	comment	78
//	comment	78
^	operator	63
|	operator	63
||	operator	66
~	operator	63

A

A	HTML	tag	277
abort	event	499
about:	(URL)	346 ,	347
abs	method	141
acos	method	142
action	property	376
addClient	function	669
agent	property	620
alert	method	317
alinkColor	property	226
anchor	method	174
Anchor	object	262
anchors

Anchor	object	262
creating	174

animation	266
appCodeName	property	474
APPLET	HTML	tag	276
Applet	object	276
applets

including	in	a	web	page	276
appName	property	475
appVersion	property	475
AREA	HTML	tag	277
Area	object	249,	261
arguments	array	130
arithmetic	operators

decrement	62
increment	62
modulus	62
unary	negation	63

Array	object	94
arrays

Array	object	94
creating	from	strings	192

dense	95
increasing	length	of	94
indexing	95
initial	length	of	94
joining	100
length	of,	determining	98,	173,	363,	377
referring	to	elements	95
sorting	106

asin	method	143
assignment	operators	60
atan	method	143
atan2	method	144
AUTH_TYPE	CGI	variable	687

B

back	method	318,	365
background	color	280
beginTransaction	method

of	Connection	objects	533,	571
bgColor	property	228,	280
BIG	HTML	tag	175
big	method	175
binary	data,	converting	to	string	642
bitwise	operators

logical	64
overview	63
shift	65

BLINK	HTML	tag	175
blink	method	175
blob	function	671
Blob	objects	610-614

blobImage	method	611
blobLink	method	613

blobImage	method
of	Blob	objects	611

blobLink	method
of	Blob	objects	613

BOLD	HTML	tag	176
bold	method	176
Boolean	object	111
border	property	270
break	statement	77
browser

about:	(URL)	347
code	name	of	474
name	of	475

Button	object	416
buttons

Button	object	416
clicking	programmatically	428,	435,	445

submit	423
bytes,	converting	to	string	642
byteToString	method	642

C

C	functions
calling	667
registering	668

caching	graphics	266
call	method	(LiveConnect)	697
callC	function	672
caller	property	132
ceil	method	145
CGI	programs,	and	LiveWire	xliii
CGI	variables

AUTH_TYPE	687
HTTPS	687
HTTPS_KEYSIZE	687
HTTPS_SECRETKEYSIZE	687
PATH_TRANSLATED	687
QUERY_STRING	687
REMOTE_ADDR	687
REMOTE_HOST	687
REMOTE_USER	687
REQUEST_METHOD	687
SCRIPT_NAME	687
SERVER_NAME	688
SERVER_PORT	688
SERVER_PROTOCOL	688
SERVER_URL	688

charAt	method	177
Checkbox	object	446
checkboxes

Checkbox	object	446
clicking	programmatically	428,	435,	445
default	selection	state	441
defining	446

clearError	method	643
clearInterval	method	320
client

preserving	properties	669
client	JavaScript	49
client	object	625

getting	identifier	668,	688
maintaining	667
storing	properties	on	project	or	server	??-689
uniquely	referring	to	??-689

close	method
document	object	241
File	object	644
window	object	321

closed	property	301
colors

background	280
comment	statement	78
comments	78
comparison	operators	61
complete	property	270
confirm	method	322
connection	method

of	DbPool	objects	562
Connection	objects	??-553,	??-569,	570-588

beginTransaction	method	533,	571
scope	554

constructor	property	161
containership

specifying	default	object	90
with	statement	and	90

continue	statement	78
conventions	75
cookie	property	228
cos	method	146
cosine	146
creating	668,	688
current	property	363
cursor	method	539,	575
Cursor	objects	588-??

deleteRow	method	594
insertRow	method	595

next	method	597,	609
properties	590
See	also	cursors.
updateRow	method	598

D

database	object	530
Date	object	113
dates

converting	to	string	125
Date	object	113
day	of	week	116
defining	113
milliseconds	since	1970	126
month	117

DbPool	objects	553-??
connection	method	562
disconnect	method	542,	562
storedProcArgs	method	551,	567

debug	function	673
decrement	operator	62
default	objects,	specifying	90
defaultChecked	property	441,	449
defaultSelected	property	467
defaultStatus	property	302
deleteRow	method

of	Cursor	objects	594
dense	arrays	95
destroy	method	627
destroy	method	(LiveConnect)	702
dialog	boxes

Confirm	322
Prompt	333

directories
conventions	used	xlv

disconnect	method
of	DbPool	objects	542,	562

DNS	687
document	conventions	??-xlv
document	object	222

embeds	array	231

documents
color	of	280
document	object	222
embeds	array	231

domain	property	230

E

E	property	138
elements	array	376
embeds	array	231
enabledPlugin	property	484
encoding	property	377
ENCTYPE	attribute	377
environment	variables

accessing	687
eof	method	644
error	method	645
errors

status	641,	643
escape	function	674
Euler's	constant	138

raised	to	a	power	146
eval	method	162,	675
eval	method	(LiveConnect)	698
event	handlers	499-??

defining	493
event	object	497
in	Function	objects	129
specifying	object	names	in	321

event	object	497
events

event	object	497
handling	specific	242,	260,	275,	326,	379,	393,	402,	409,	415,	422,
429,	436,	446,	453,	463

events,	defined	493
exists	method	646
exp	method	146
expiration	method	628
expressions

that	return	no	value	73

F

fgColor	property	232
File	object	639
file:	(URL)	346
filename	property	489
files

error	status	641,	643
FileUpload	object	410
find	method	324
fixed	method	179
floor	method	147
flush	function	677

described	677
flush	method	647
focus

removing	319,	392,	401,	421,	424,	428,	435,	444,	463
focus	method	325,	393,	401,	408,	414,	422,	429,	436,	445,	452,	463
fontcolor	method	180
fonts

big	175
blinking	175
bold	176

fontsize	method	181
for	loops

continuation	of	78
syntax	of	82
termination	of	77

for	statement	82
for...in	statement	83
FORM	HTML	tag	372
Form	object	372

elements	array	376
form	property	383,	388,	397,	405,	412,	417,	425,	432,	442,	450,	458
forms

checkboxes	446
defining	372

element	focus	319,	392,	401,	421,	424,	428,	435,	444,	463
element	names	307,	378,	390,	399,	450
elements	array	376
ENCTYPE	attribute	377
Form	object	372
and	LiveWire	xliii
MIME	encoding	377
submit	buttons	423
submitting	423

Forward	button	325
forward	method	325,	366
Frame	object	344
frames

Frame	object	344
top	285,	315

ftp:	(URL)	346
Function	object	126

specifying	arguments	for	128
specifying	event	handler	with	129
as	variable	value	127

function	statement	83
functions	141-??

addClient	669
arguments	array	130
blob	671
callC	672
caller	property	132
calling	external	672
debug	673
escape	674
flush	677
Function	object	126
isNAN	680
number	of	arguments	98,	173,	363,	377
parseFloat	627,	681
parseInt	627,	682
redirect	684
registerCFunction	685
return	values	of	87

unescape	691
as	variable	value	127
write	693

G

getDate	method	115
getDay	method	116
getHours	method	116
getLength	method	647
getMember	method	(LiveConnect)	698
getMinutes	method	117
getMonth	method	117
getOptionValue	property	678
getPeer	method	(LiveConnect)	702
getPosition	method	648
getSeconds	method	118
getSelection	method	242
getSlot	method	(LiveConnect)	698
getTime	method	118
getTimezoneOffset	method	119
getWindow	method	(LiveConnect)	702
getWindow	static	method	(LiveConnect)	698
getYear	method	119
Go	menu	361
go	method	366
gopher:	(URL)	346

H

handleEvent	method	242,	260,	275,	326,	379,	393,	402,	409,	415,	422,
429,	436,	446,	453,	463
handling	specific	events	242,	260,	275,	326,	379,	393,	402,	409,	415,	422,
429,	436,	446,	453,	463
height	property	271
Hidden	object	382
history	list

next	URL	in	325
history	object	361

current	property	363
next	property	364
previous	property	364

home	method	327
host	property	633
hostname	688
hostname	property	256,	351,	634
href	property	256,	352
hspace	property	272
HTML

generated	247
generating	668
and	Livewire	xliii

HTML	tags
A	277
APPLET	276
AREA	277
BIG	175
BLINK	175
BOLD	176
FORM	372
IMG	612
INPUT	423,	446
MAP	277

HTTP	method	687
HTTP	protocol	level	688

HTTP	user	687
http:	(URL)	346
HTTPS	CGI	variable	687
HTTPS_KEYSIZE	CGI	variable	687
HTTPS_SECRETKEYSIZE	CGI	variable	687

I

if...else	statement	84
Image	object	264
images

and	animation	266
Area	object	249
border	270
caching	266
preloading	266
size	of	265
source	285

imageX	property	621,	622
imageY	property	622
IMG	HTML	tag	612
increment	operator	62
indexOf	method	183
init	method	(LiveConnect)	703
INPUT	HTML	tag	423,	446
inputName	property	623
insertRow	method

of	Cursor	objects	595
ip	property	623
isActive	method	(LiveConnect)	703
isNaN	function	680
italics	method	184

J

javaEnabled	method	480
JavaScript

debugging	667
LiveWire	50-52
Navigator	49-50

javascript:	(URL)	346 ,	347
join	method	100
JSException	class	699
JSException	constructor	(LiveConnect)	700
JSObject	class	695

L

lastIndexOf	method	185
lastModified	property	234
Layer	object	277
layers	277
left	shift	operator	65
link	method	186
Link	object	249
linkColor	property	236
links

anchors	for	174
and	areas	277
for	BLOb	data	611,	613
defining	277
and	images	277
Link	object	249
with	no	destination	73

lists,	selection	453
LiveConnect

packages	695-703
LiveWire

background	for	using	xliii
LN10	property	138
LN2	property	139
load	event	515
location	object	344
location	property	239
log	method	148
LOG10E	property	139
LOG2E	property	140
logarithms

base	of	natural	138,	146
natural	logarithm	of	10	138

logical	operators
overview	66
short-circuit	evaluation	67

loops
continuation	of	78
for	82
termination	of	77
while	89

lowercase	172,	200
lowsrc	property	272

M

mailto:	(URL)	346
MAP	HTML	tag	277
Math	object	136
max	method	148
MAX_VALUE	property	155
MAYSCRIPT	attribute	276
messages

Confirm	dialog	box	322
Prompt	dialog	box	333

method	property	378,	624
methods	141-??
MIME	encoding	377
MIME	types

configured	plug-in	for	484
plug-ins	supported	486

MimeType	object	482
min	method	149
MIN_VALUE	property	156
modulo	function	62
modulus	operator	62
mouseout	event	519
mouseOver	event	520
moveBy	method	327
moveTo	method	288,	328
multimedia

and	blobLink	613

N

name	property	272,	283,	307,	378,	384,	390,	399,	406,	412,	419,	426,	432,
442,	450,	459,	489
NaN	property	156
natural	logarithms

base	of	138
e	138
e	raised	to	a	power	146
of	10	138

Navigator
about:	(URL)	347
code	name	of	474
and	JavaScript	49,	50
name	of	475

navigator	object	473
NEGATIVE_INFINITY	property	157
netscape.javascript.JSException	class	699
netscape.javascript.JSObject	class	695
netscape.javascript.Plugin	class	701
new	operator	69
news:	(URL)	346
next	method

of	Cursor	objects	597,	609
of	ResultSet	objects	597,	609

next	property	364
Number	object	154
numbers

cosine	of	146
greater	of	two	148
identifying	668
Number	object	154
obtaining	integer	145
parsing	from	strings	681
square	root	152

O

Objects
Blob	610

objects	141-??
creating	new	types	69
establishing	default	90
focus	319,	392,	401,	421,	424,	428,	435,	444,	463
specifying	names	in	event	handlers	321

onAbort	event	handler	499
onLoad	event	handler	515
onMouseOut	event	handler	519
onMouseOver	event	handler	520
onReset	event	handler	523
onSelect	event	handler	525
onSubmit	event	handler	526
onUnload	event	handler	527
open	method	649

document	object	242
window	object	328

opener	property	307
operators

arithmetic	62-63
assignment	60
bitwise	63-65
comparison	61
logical	66
special	68
string	67

outParamCount	method
of	StoredProc	objects	602

outParameters	method
of	StoredProc	objects	602,	604

output	buffer
flushing	667

P

packages	695-703
parent	property	310
parse	method	120
parseFloat	function	627,	681
parseInt	function	627,	682
Password	object	403

default	value	388,	397,	405
PATH_INFO	CGI	variable	687
PATH_TRANSLATED	CGI	variable	687
pathname	property	257,	353
PI	property	140
Plugin	class	701
Plugin	constructor	(LiveConnect)	703
Plugin	object	486
plug-ins

defined	486
determining	installed	487

port	property	257,	354,	634
POSITIVE_INFINITY	property	158
pow	method	150
previous	property	364
printing	generated	HTML	247
project	object	629
prompt	method	333
Properties

of	Cursor	objects	590
properties	141-??

preserving	client	values	669
protocol	property	258,	355

request	object	624
server	object	635

prototype	property	99,	112,	115,	158,	162,	173,	273,	533,	555,	571,	592,
601,	606,	642,	663

Q

QUERY_STRING	CGI	variable	687

R

radio	buttons
clicking	programmatically	428,	435,	445
default	selection	state	441
Radio	object	437

Radio	object	437
random	method	150
read	method	651
readByte	method	652
readln	method	653
redirect	function	684
referrer	property	238
refresh	method	479
registerCFunction	function	685
reload	method	358
REMOTE_ADDR	CGI	variable	687
REMOTE_HOST	CGI	variable	687
REMOTE_USER	CGI	variable	687
removeMember	method	(LiveConnect)	698
replace	method	359
request

changing	668
request	object	618
REQUEST_METHOD	CGI	variable	687
reset	buttons

clicking	programmatically	428,	435,	445
Reset	object	429

reset	event	523
reset	method	380
Reset	object	429
resizeBy	method	334
resizeTo	method	335
response	headers

manipulating	667,	670
ResultSet	objects	604-??

next	method	597,	609

return	statement	87
returnValue	method

of	StoredProc	objects	603,	604
reverse	method	102
right	shift	operators	65
round	method	151

S

scope
of	connection	objects	554

SCRIPT_NAME	CGI	variable	687
scroll	method	336
scrollBy	method	336
scrollTo	method	337
search	property	259,	356
security

closing	windows	321
select	event	525
Select	object	453
SELECT	tag	668
selectedIndex	property	461
selection	lists

adding	options	465
changing	option	text	465
default	selection	state	467
deleting	options	460
number	of	options	98,	173,	363,	377
option	text	468
Select	object	453

self	property	312
server

global	data	for	632
server	JavaScript	50
server	object	632
SERVER_NAME	CGI	variable	688
SERVER_PORT	CGI	variable	688
SERVER_PROTOCOL	CGI	variable	688
SERVER_URL	CGI	variable	688
session	key	687
setDate	method	121
setHours	method	121
setMember	method	(LiveConnect)	698
setMinutes	method	122

setMonth	method	122
setPosition	method	654
setSeconds	method	123
setSlot	method	(LiveConnect)	699
setTime	method	123
setTimeout	method	340
setYear	method	124
sin	method	152
small	method	191
sort	method	106
special	operators	68

typeof	72
void	73

split	method	192
SQL	xliii
sqrt	method	152
SQRT1_2	property	140
SQRT2	property	141
square	roots	152
src	property	273,	285
ssjs_getCGIVariable	function	687
ssjs_getClientID	function	688
statements	75-91

syntax	conventions	75
status	property	313
stop	method	342
StoredProc	objects	??-603

outParamCount	method	602
outParameters	method	602,	604
returnValue	method	603,	604

storedProcArgs	method
of	DbPool	objects	551,	567

strike	method	195
String	object	170
string	operators	67
strings

blinking	175
bold	176
character	position	within	171,	177,	183

converting	from	bytes	642
converting	from	date	125
converting	to	floating	point	681
creating	from	arrays	100
defining	170
fontsize	of	175
length	of	98,	173,	363,	377
lowercase	172,	200
parsing	668
splitting	into	arrays	192
String	object	170

stringToByte	method	655
sub	method	195
submit	buttons

clicking	programmatically	428,	435,	445
defining	423
Submit	object	423

submit	event	526
submit	method	381
Submit	object	423
substring	method	197
suffixes	property	485
sup	method	199
syntax	conventions	75

T

tan	method	153
target	property	259,	379
TCP	port	688
Text	object	386

default	value	388,	397,	405
Textarea	object	394

default	value	388,	397,	405
this	keyword	72
this.form	383,	388,	397,	405,	412,	417,	425,	432,	442,	450,	458
timeouts

canceling	320
times

Date	object	113
defining	113
minutes	117

title	property	239
toGMTString	method	124
toLocaleString	method	125
toLowerCase	method	200
top	property	285,	315
toString	method	109,	112,	135,	159,	164,	552,	568,	587

built-in	164
user-defined	165

toString	method	(LiveConnect)	699
toUpperCase	method	200
Trace	facility	673
transactions

committing	537,	557
overview	532
rolling	back	537,	557
scope	of	532,	533,	535,	548,	572,	573,	584

trigonometric	methods
cos	146

typeof	operator	72

U

unary	negation	63
unescape	function	691
unique	identifier	668,	688
unload	event	527
updateRow	method

of	Cursor	objects	598
URL

redirecting	to	668
URLs	688

adding	information	to	667
anchor	name	in	254
conventions	used	xlv
current	344
escaping	characters	in	667
examples	of	common	346
history	list	361
next	325
syntax	of	346

user	interaction
applets	276
area	objects	277
checkboxes	446
Confirm	dialog	box	322
image	objects	277
link	objects	277
Prompt	dialog	box	333
submit	buttons	423

userAgent	property	479
UTC	method	126

V

valueOf	method	167
var	statement	88
variables

declaring	88
initializing	88
syntax	for	declaring	88

view-source:	(URL)	346
vlinkColor	property	240
void	function	251,	347
void	operator	73
vspace	property	275

W

while	loops
continuation	of	78
syntax	of	89
termination	of	77

while	statement	89
width	property	275
window	object	294
windows

closed	301
closing	321
name	of	307,	378,	390,	399,	450
top	285,	315
window	object	294

with	statement	90
write	function	693

and	flush	677
write	method	246

generated	HTML	247
writeByte	method	657
writeln	method	249,	658

	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

Netscape	Communications	Corporation	("Netscape")	and	its	licensors	retain	all
ownership	rights	to	this	document	(the	"Document").	Use	of	the	Document	is
governed	by	applicable	copyright	law.	Netscape	may	revise	this	Document	from
time	to	time	without	notice.

THIS	DOCUMENT	IS	PROVIDED	"AS	IS"	WITHOUT	WARRANTY	OF
ANY	KIND.	IN	NO	EVENT	SHALL	NETSCAPE	BE	LIABLE	FOR	ANY
LOSS	OF	PROFITS,	LOSS	OF	BUSINESS,	LOSS	OF	USE	OR	DATA,
INTERRUPTION	OF	BUSINESS,	OR	FOR	INDIRECT,	SPECIAL,
INCIDENTAL,	OR	CONSEQUENTIAL	DAMAGES	OF	ANY	KIND,
ARISING	FROM	ANY	ERROR	IN	THIS	DOCUMENT.

The	Document	is	copyright	©	1997	Netscape	Communications	Corporation.	All
rights	reserved.

The	Software	includes	encryption	software	from	RSA	Data	Security,	Inc.
Copyright	©	1994,	1995	RSA	Data	Security,	Inc.	All	rights	reserved.	Portions
of	the	Software	include	technology	used	under	license	from	Verity,	Inc.	and	are
copyrighted.	Portions	of	the	Software	copyright	©	1994,	1995	Sun
Microsystems,	Inc.	All	rights	reserved.	Portions	of	the	Software	copyright	©
1995	PEER	Networks,	Inc.	All	rights	reserved.	Portions	of	the	Software
copyright	©	1996	Mortice	Kern	Systems,	Inc.	All	rights	reserved.	The	portion
of	the	Software	that	provides	the	DBM	function	is	copyright	(c)	1990,	1993,
1994	The	Regents	of	the	University	of	California.	All	rights	reserved.	This	code
is	derived	from	software	contributed	to	Berkeley	by	Margo	Seltzer.
Redistribution	and	use	in	source	and	binary	forms	of	the	DBM	code,	with	or
without	modification,	are	permitted	provided	that	the	following	conditions	are
met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation	and/or
other	materials	provided	with	the	distribution.

3.	All	advertising	materials	mentioning	features	or	use	of	this	software	must
display	the	following	acknowledgement:

This	product	includes	software	developed	by	the	University	of	California,
Berkeley	and	its	contributors.

4.	Neither	the	name	of	the	University	nor	the	names	of	its	contributors	may	be
used	to	endorse	or	promote	products	derived	from	this	software	without	specific
prior	written	permission.

THE	SOFTWARE	WHICH	PROVIDES	THE	DBM	FUNCTION	IS
PROVIDED	BY	THE	REGENTS	AND	CONTRIBUTORS	''AS	IS''	AND	ANY
EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED
TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO
EVENT	SHALL	THE	REGENTS	OR	CONTRIBUTORS	BE	LIABLE	FOR
ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF
USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.

Netscape	and	Netscape	Navigator	are	registered	trademarks	of	Netscape
Communications	Corporation	in	the	United	States	and	other	countries.
Netscape's	logos	and	Netscape	product	and	service	names	are	also	trademarks
of	Netscape	Communications	Corporation,	which	may	be	registered	in	other
countries.	Other	product	and	brand	names	are	trademarks	of	their	respective
owners.

The	downloading,	export	or	reexport	of	Netscape	software	or	any	underlying
information	or	technology	must	be	in	full	compliance	with	all	United	States	and
other	applicable	laws	and	regulations.	Any	provision	of	Netscape	software	or
documentation	to	the	U.S.	Government	is	with	restricted	rights	as	described	in
the	license	agreement	accompanying	Netscape	software.

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onKeyUp
	KeyUp		JavaScript		KeyUp	

document,	Image,	Link,	Textarea
Navigator	4.0

onKeyUp="handlerText"

handlerText JavaScript		JavaScript	

type
target
layerX,
layerY,
pageX,
pageY,
screenX,
screenY

which 	ASCII		 String.fromCharCode		ASCII	
	 String.charCodeAt	

modifiers

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onMouseDown
	MouseDown		JavaScript		MouseDown	

Button,	document,	Link
Navigator	4.0

onMouseDown="handlerText"

handlerText JavaScript		JavaScript	

type
target
layerX,
layerY,
pageX,
pageY,
screenX,
screenY

	MouseDown	

which Represents	1	for	a	left-mouse-button	down	and	3	for	a	right-
mouse-button	down.

modifiers 	MouseDown	

	onMouseDown		false	()

	MouseDown	

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Image
An	image	on	an	HTML	form.

Navigator	3.0
Navigator	4.0:	
handleEvent	

The	Image	constructor	or	the	IMG	tag.

The	JavaScript	runtime	engine	creates	an	Image	object	corresponding	to	each
IMG	tag	in	your	document.	It	puts	these	objects	in	an	array	in	the
document.images	property.	You	access	an	Image	object	by	indexing	this	array.

To	define	an	image	with	the	IMG	tag,	use	standard	HTML	with	the	addition
of	JavaScript	event	handlers.	If	specify	a	value	for	the	NAME	attribute,	you	can
use	that	name	when	indexing	the	images	array.

To	define	an	image	with	its	constructor,	use	the	following:

new	Image(width,	height)

width (Optional)	The	image	width,	in	pixels.
height (Optional)	The	image	height,	in	pixels.

onAbort
onError
onKeyDown
onKeyPress

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags8.htm#tags:IMG

onKeyUp
onLoad

To	define	anan	Image	object	created	with	the	Image	constructor,	set	the
appropriate	property	of	the	object.	For	example,	if	you	have	an	Image	object
named	imageName	and	you	want	to	set	one	of	its	event	handlers	to	a	function
whose	name	is	handlerFunction,	use	one	of	the	following	statements:

imageName.onabort	=	handlerFunction
imageName.onerror	=	handlerFunction
imageName.onkeydown	=	handlerFunction
imageName.onkeypress	=	handlerFunction
imageName.onkeyup	=	handlerFunction
imageName.onload	=	handlerFunction	Image	objects	do	not	have	onClick,
onMouseOut,	and	onMouseOver	event	handlers.	However,	if	you	define	an
Area	object	for	the	image	or	place	the	IMG	tag	within	a	Link	object,	you	can
use	the	Area	or	Link	object's	event	handlers.	See	Link.

The	position	and	size	of	an	image	in	a	document	are	set	when	the	document	is
displayed	in	the	web	browser	and	cannot	be	changed	using	JavaScript	(the
width	and	height	properties	are	read-only	for	these	objects).	You	can	change
which	image	is	displayed	by	setting	the	src	and	lowsrc	properties.	(See	thes	of
Image.src	and	Image.lowsrc.)

You	can	use	JavaScript	to	create	an	animation	with	an	Image	object	by
repeatedly	setting	the	src	property,	as	shown	in	Example	4	below.	JavaScript
animation	is	slower	than	GIF	animation,	because	with	GIF	animation	the	entire
animation	is	in	one	file;	with	JavaScript	animation,	each	frame	is	in	a	separate
file,	and	each	file	must	be	loaded	across	the	network	(host	contacted	and	data
transferred).

The	primary	use	for	an	Image	object	created	with	the	Image	constructor	is	to
load	an	image	from	the	network	(and	decode	it)	before	it	is	actually	needed	for
display.	Then	when	you	need	to	display	the	image	within	an	existing	image	cell,
you	can	set	the	src	property	of	the	displayed	image	to	the	same	value	as	that
used	for	the	previously	fetched	image,	as	follows.

myImage	=	new	Image()
myImage.src	=	"seaotter.gif"
...
document.images[0].src	=	myImage.src	The	resulting	image	will	be	obtained
from	cache,	rather	than	loaded	over	the	network,	assuming	that	sufficient	time
has	elapsed	to	load	and	decode	the	entire	image.	You	can	use	this	technique	to
create	smooth	animations,	or	you	could	display	one	of	several	images	based	on
form	input.

border Reflects	the	BORDER	attribute.

complete Boolean	value	indicating	whether	the	web	browser	has	completed	itsattempt	to	load	the	image.
height Reflects	the	HEIGHT	attribute.
hspace Reflects	the	HSPACE	attribute.
lowsrc Reflects	the	LOWSRC	attribute.
name Reflects	the	NAME	attribute.
prototype Allows	the	addition	of	properties	to	an	Image	object.
src Reflects	the	SRC	attribute.
vspace Reflects	the	VSPACE	attribute.
width Reflects	the	WIDTH	attribute.

handleEvent

	1:	Create	an	image	with	the 	IMG	tag.	The	following	code	defines	an	image
using	the	IMG	tag:

	The
following	code	refers	to	the	image:

document.aircraft.src='f15e.gif'	When	you	refer	to	an	image	by	its	name,	you

must	include	the	form	name	if	the	image	is	on	a	form.	The	following	code	refers
to	the	image	if	it	is	on	a	form:

document.myForm.aircraft.src='f15e.gif'		2:	Create	an	image	with	the
Image	constructor.	The	following	example	creates	an	Image	object,	myImage,
that	is	70	pixels	wide	and	50	pixels	high.	If	the	source	URL,	seaotter.gif,	does
not	have	dimensions	of	70x50	pixels,	it	is	scaled	to	that	size.

myImage	=	new	Image(70,	50)
myImage.src	=	"seaotter.gif"	If	you	omit	the	width	and	height	arguments	from
the	Image	constructor,	myImage	is	created	with	dimensions	equal	to	that	of	the
image	named	in	the	source	URL.

myImage	=	new	Image()
myImage.src	=	"seaotter.gif"		3:	Display	an	image	based	on	form	input. 	In
the	following	example,	the	user	selects	which	image	is	displayed.	The	user
orders	a	shirt	by	filling	out	a	form.	The	image	displayed	depends	on	the	shirt
color	and	size	that	the	user	chooses.	All	possible	image	choices	are	preloaded	to
speed	response	time.	When	the	user	clicks	the	button	to	order	the	shirt,	the
allShirts	function	displays	the	images	of	all	the	shirts.

<SCRIPT>
shirts	=	new	Array()
shirts[0]	=	"R-S"
shirts[1]	=	"R-M"
shirts[2]	=	"R-L"
shirts[3]	=	"W-S"
shirts[4]	=	"W-M"
shirts[5]	=	"W-L"
shirts[6]	=	"B-S"
shirts[7]	=	"B-M"
shirts[8]	=	"B-L"	doneThis	=	0
shirtImg	=	new	Array()	//	Preload	shirt	images
for(idx=0;	idx	<	9;	idx++)	{
			shirtImg[idx]	=	new	Image()
			shirtImg[idx].src	=	"shirt-"	+	shirts[idx]	+	".gif"
}	function	changeShirt(form)
{
			shirtColor	=	form.color.options[form.color.selectedIndex].text

			shirtSize	=	form.size.options[form.size.selectedIndex].text				newSrc	=	"shirt-"
+	shirtColor.charAt(0)	+	"-"	+	shirtSize.charAt(0)	+	".gif"
			document.shirt.src	=	newSrc
}	function	allShirts()
{
			document.shirt.src	=	shirtImg[doneThis].src
			doneThis++
			if(doneThis	!=	9)setTimeout("allShirts()",	500)
			else	doneThis	=	0				return
}	</SCRIPT>	Netscape	Polo	Shirts!	<
CELLSPACING=20	BORDER=0>
<TR>
<TD></TD>	<TD>
<FORM>
Color
<SELECT	SIZE=3	NAME="color"	onChange="changeShirt(this.form)">
<OPTION>	Red
<OPTION	SELECTED>	White
<OPTION>	Blue
</SELECT>	<P>
Size
<SELECT	SIZE=3	NAME="size"	onChange="changeShirt(this.form)">
<OPTION>	Small
<OPTION>	Medium
<OPTION	SELECTED>	Large
</SELECT>	<P><INPUT	type="button"	name="buy"	value="Buy	This	Shirt!"
			onClick="allShirts()">
</FORM>	</TD>
</TR>
</>		4:	JavaScript	animation. 	The	following	example	uses	JavaScript	to
create	an	animation	with	an	Image	object	by	repeatedly	changing	the	value	the
src	property.	The	script	begins	by	preloading	the	10	images	that	make	up	the
animation	(image1.gif,	image2.gif,	image3.gif,	and	so	on).	When	the	Image
object	is	placed	on	the	document	with	the	IMG	tag,	image1.gif	is	displayed	and
the	onLoad	event	handler	starts	the	animation	by	calling	the	animate	function.
Notice	that	the	animate	function	does	not	call	itself	after	changing	the	src
property	of	the	Image	object.	This	is	because	when	the	src	property	changes,	the
image's	onLoad	event	handler	is	triggered	and	the	animate	function	is	called.

<SCRIPT>
delay	=	100
imageNum	=	1	//	Preload	animation	images
theImages	=	new	Array()
for(i	=	1;	i	<	11;	i++)	{
			theImages[i]	=	new	Image()
			theImages[i].src	=	"image"	+	i	+	".gif"
}	function	animate()	{
			document.animation.src	=	theImages[imageNum].src
			imageNum++
			if(imageNum	>	10)	{
						imageNum	=	1
			}
}	function	slower()	{
			delay+=10
			if(delay	>	4000)	delay	=	4000
}	function	faster()	{
			delay-=10
			if(delay	<	0)	delay	=	0
}
</SCRIPT>	<BODY	BGCOLOR="white">	<IMG	NAME="animation"
SRC="image1.gif"	ALT="[Animation]"
			onLoad="setTimeout('animate()',	delay)">	<FORM>
			<INPUT	TYPE="button"	Value="Slower"	onClick="slower()">
			<INPUT	TYPE="button"	Value="Faster"	onClick="faster()">
</FORM>
</BODY>	See	also	the	for	the	 onAbort,	onError,	and	onLoad	event	handlers.

Link,	onClick,	onMouseOut,	onMouseOver

border

A	string	specifying	the	width,	in	pixels,	of	an	image	border.

Image

Navigator	3.0:

The	border	property	reflects	the	BORDER	attribute	of	the	IMG	tag.	For	images
created	with	the	Image	constructor,	the	value	of	the	border	property	is	0.

The	following	function	displays	the	value	of	an	image's	border	property	if	the
value	is	not	0.

function	checkBorder(theImage)	{
			if	(theImage.border==0)	{
						alert('The	image	has	no	border!')
			}
			else	alert('The	image's	border	is	'	+	theImage.border)
}

Image.height,	Image.hspace,	Image.vspace,	Image.width

complete

A	boolean	value	that	indicates	whether	the	web	browser	has	completed	its
attempt	to	load	an	image.

Image

Navigator	3.0:

The	following	example	displays	an	image	and	three	radio	buttons.	The	user	can
click	the	radio	buttons	to	choose	which	image	is	displayed.	Clicking	another
button	lets	the	user	see	the	current	value	of	the	complete	property.

Choose	an	image:

<INPUT	TYPE="radio"	NAME="imageChoice"	VALUE="image1"
CHECKED
			onClick="document.images[0].src='f15e.gif'">F-15	Eagle

<INPUT	TYPE="radio"	NAME="imageChoice"	VALUE="image2"
			onClick="document.images[0].src='f15e2.gif'">F-15	Eagle	2

<INPUT	TYPE="radio"	NAME="imageChoice"	VALUE="image3"
			onClick="document.images[0].src='ah64.gif'">AH-64	Apache	
<INPUT
TYPE="button"	VALUE="Is	the	image	completely	loaded?"
			onClick="alert('The	value	of	the	complete	property	is	'
						+	document.images[0].complete)">

Image.lowsrc,	Image.src

height

A	string	specifying	the	height	of	an	image	in	pixels.

Image

Navigator	3.0:

The	height	property	reflects	the	HEIGHT	attribute	of	the	IMG	tag.	For	images
created	with	the	Image	constructor,	the	value	of	the	height	property	is	the	actual,
not	the	displayed,	height	of	the	image.

The	following	function	displays	the	values	of	an	image's	height,	width,	hspace,
and	vspace	properties.

function	showImageSize(theImage)	{
			alert('height='	+	theImage.height+
						';	width='	+	theImage.width	+
						';	hspace='	+	theImage.hspace	+
						';	vspace='	+	theImage.vspace)
}

Image.border,	Image.hspace,	Image.vspace,	Image.width

hspace

A	string	specifying	a	margin	in	pixels	between	the	left	and	right	edges	of	an
image	and	the	surrounding	text.

Image

Navigator	3.0:

The	hspace	property	reflects	the	HSPACE	attribute	of	the	IMG	tag.	For	images
created	with	the	Image	constructor,	the	value	of	the	hspace	property	is	0.

See	the	for	the	 height	property.

Image.border,	Image.height,	Image.vspace,	Image.width

lowsrc

A	string	specifying	the	URL	of	a	low-resolution	version	of	an	image	to	be
displayed	in	a	document.

Image
Navigator	3.0:

The	lowsrc	property	initially	reflects	the	LOWSRC	attribute	of	the	IMG	tag.
The	web	browser	loads	the	smaller	image	specified	by	lowsrc	and	then	replaces
it	with	the	larger	image	specified	by	the	src	property.	You	can	change	the	lowsrc
property	at	any	time.

See	the	for	the	 src	property.

Image.complete,	Image.src

name

A	string	specifying	the	name	of	an	object.

Image

Navigator	3.0:

Navigator	3.0 “JavaScript	”

Represents	the	value	of	the	NAME	attribute.	For	images	created	with	the	Image
constructor,	the	value	of	the	name	property	is	null.

In	the	following	example,	the	valueGetter	function	uses	a	for	loop	to	iterate	over	the
array	of	elements	on	the	valueTest	form.	The	msgWindow	window	displays	the
names	of	all	the	elements	on	the	form:

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name
+	"
")
			}
}	In	the	following	example,	the	first	statement	creates	a	window	called
netscapeWin.	The	second	statement	displays	the	value	"netscapeHomePage"	in	the
Alert	dialog	box,	because	"netscapeHomePage"	is	the	value	of	the	windowName
argument	of	netscapeWin.

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	more	information,	see
Function.prototype.

Image
Navigator	3.0

src

A	string	specifying	the	URL	of	an	image	to	be	displayed	in	a	document.

Image
Navigator	3.0:

The	src	property	initially	reflects	the	SRC	attribute	of	the	IMG	tag.	Setting	the
src	property	begins	loading	the	new	URL	into	the	image	area	(and	aborts	the
transfer	of	any	image	data	that	is	already	loading	into	the	same	area).	Therefore,
if	you	plan	to	alter	the	lowsrc	property,	you	should	do	so	before	setting	the	src
property.

If	the	URL	in	the	src	property	refers	to	an	image	that	is	not	the	same	size	as	the
image	cell	it	is	loaded	into,	the	source	image	is	scaled	to	fit.

When	you	change	the	src	property	of	a	displayed	image,	the	new	image	you
specify	is	displayed	in	the	area	defined	for	the	original	image.	For	example,
suppose	an	Image	object	originally	displays	the	file	beluga.gif:

	If	you	set
myImage.src='seaotter.gif',	the	image	seaotter.gif	is	scaled	to	fit	in	the	same
space	originally	used	by	beluga.gif,	even	if	seaotter.gif	is	not	the	same	size	as
beluga.gif.

You	can	change	the	src	property	at	any	time.

The	following	example	displays	an	image	and	three	radio	buttons.	The	user	can
click	the	radio	buttons	to	choose	which	image	is	displayed.	Each	image	also
uses	the	lowsrc	property	to	display	a	low-resolution	image.

<SCRIPT>
function	displayImage(lowRes,highRes)	{

			document.images[0].lowsrc=lowRes
			document.images[0].src=highRes
}
</SCRIPT>	<FORM	NAME="imageForm">
Choose	an	image:

<INPUT	TYPE="radio"	NAME="imageChoice"	VALUE="image1"
CHECKED
			onClick="displayImage('f15el.gif','f15e.gif')">F-15	Eagle

<INPUT	TYPE="radio"	NAME="imageChoice"	VALUE="image2"
			onClick="displayImage('f15e2l.gif','f15e2.gif')">F-15	Eagle	2

<INPUT	TYPE="radio"	NAME="imageChoice"	VALUE="image3"
			onClick="displayImage('ah64l.gif','ah64.gif')">AH-64	Apache	

<IMG	NAME="aircraft"	SRC="f15e.gif"	LOWSRC="f15el.gif"	ALIGN="left"
VSPACE="10">

</FORM>

Image.complete,	Image.lowsrc

vspace

A	string	specifying	a	margin	in	pixels	between	the	top	and	bottom	edges	of	an
image	and	the	surrounding	text.

Image

Navigator	3.0:

The	vspace	property	reflects	the	VSPACE	attribute	of	the	IMG	tag.	For	images
created	with	the	Image	constructor,	the	value	of	the	vspace	property	is	0.

See	the	for	the	 height	property.

Image.border,	Image.height,	Image.hspace,	Image.width

width

A	string	specifying	the	width	of	an	image	in	pixels.

Image

Navigator	3.0:

The	width	property	reflects	the	WIDTH	attribute	of	the	IMG	tag.	For	images
created	with	the	Image	constructor,	the	value	of	the	width	property	is	the	actual,
not	the	displayed,	width	of	the	image.

See	the	for	the	 height	property.

Image.border,	Image.height,	Image.hspace,	Image.vspace

handleEvent

Image
Navigator	4.0:

handleEvent(event)

event

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Layer
Corresponds	to	a	layer	in	an	HTML	page	and	provides	a	means	for
manipulating	that	layer.

Navigator	4.0

The	HTML	LAYER	or	ILAYER	tag,	or	using	cascading	style	sheet.	The
JavaScript	runtime	engine	creates	a	Layer	object	corresponding	to	each	layer	in
your	document.	It	puts	these	objects	in	an	array	in	the	document.layers	property.
You	access	a	Layer	object	by	indexing	this	array.

To	define	a	layer,	use	standard	HTML.	If	you	specify	the	ID	attribute,	you	can
use	the	value	of	that	attribute	to	index	into	the	layers	array.

For	a	complete	of	layers,	see	 Dynamic	HTML	in	Netscape	Communicator1.

Some	layer	properties	can	be	directly	modified	by	assignment;	for	example,
"mylayer.visibility	=	hide".	A	layer	object	also	has	methods	that	can	affect	these
properties.

onMouseOver
onMouseOut
onLoad
onFocus
onBlur

above The	layer	object	above	this	one	in	z-order,	among	all	layers	in	the
document	or	the	enclosing	window	object	if	this	layer	is	topmost.

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags12.htm#tags:LAYER
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags12.htm#tags:ILAYER
http://developer.netscape.com/library/documentation/communicator/dynhtml/index.htm

background The	image	to	use	as	the	background	for	the	layer's	canvas.

bgColor The	color	to	use	as	a	solid	background	color	for	the	layer's
canvas.

below The	layer	object	below	this	one	in	z-order,	among	all	layers	in
the	document	or	null	if	this	layer	is	at	the	bottom.

clip.bottom The	bottom	edge	of	the	clipping	rectangle	(the	part	of	the	layer
that	is	visible.)

clip.height The	height	of	the	clipping	rectangle	(the	part	of	the	layer	that	is
visible.)

clip.left The	left	edge	of	the	clipping	rectangle	(the	part	of	the	layer	that
is	visible.)

clip.right The	right	edge	of	the	clipping	rectangle	(the	part	of	the	layer	that
is	visible.)

clip.top The	top	edge	of	the	clipping	rectangle	(the	part	of	the	layer	that	is
visible.)

clip.width The	width	of	the	clipping	rectangle	(the	part	of	the	layer	that	is
visible.)

document The	layer's	associated	document.

left The	horizontal	position	of	the	layer's	left	edge,	in	pixels,	relative
to	the	origin	of	its	parent	layer.

name A	string	specifying	the	name	assigned	to	the	layer	through	the	ID
attribute	in	the	LAYER	tag.

pageX The	horizontal	position	of	the	layer,	in	pixels,	relative	to	the
page.

page	y The	vertical	position	of	the	layer,	in	pixels,	relative	to	the	page.

parentLayer The	layer	object	that	contains	this	layer,	or	the	enclosing	window
object	if	this	layer	is	not	nested	in	another	layer.

siblingAbove
The	layer	object	above	this	one	in	z-order,	among	all	layers	that
share	the	same	parent	layer,	or	null	if	the	layer	has	no	sibling
above.

siblingBelow The	layer	object	below	this	one	in	z-order,	among	all	layers	that
share	the	same	parent	layer,	or	null	if	layer	is	at	the	bottom.

src A	string	specifying	the	URL	of	the	layer's	content.

top The	vertical	position	of	the	layer's	top	edge,	in	pixels,	relative	to
the	origin	of	its	parent	layer.

visibility Whether	or	not	the	layer	is	visible.
zIndex The	relative	z-order	of	this	layer	with	respect	to	its	siblings.

captureEvents Sets	the	window	or	document	to	capture	all	events	of	the
specified	type.

handleEvent

load
Changes	the	source	of	a	layer	to	the	contents	of	the	specified
file,	and	simultaneously	changes	the	width	at	which	the
layer's	HTML	contents	will	be	wrapped.

moveAbove Stacks	this	layer	above	the	layer	specified	in	the	argument,
without	changing	either	layer's	horizontal	or	vertical	position.

moveBelow Stacks	this	layer	below	the	specified	layer,	without	changing
either	layer's	horizontal	or	vertical	position.

moveBy Changes	the	layer	position	by	applying	the	specified	deltas,
measured	in	pixels.

moveTo Moves	the	top-left	corner	of	the	window	to	the	specified
screen	coordinates.

moveToAbsolute Changes	the	layer	position	to	the	specified	pixel	coordinateswithin	the	page	(instead	of	the	containing	layer.)

releaseEvents Sets	the	layer	to	release	captured	events	of	the	specified	type,
sending	the	event	to	objects	further	along	the	event	hierarchy.

resizeBy Resizes	the	layer	by	the	specified	height	and	width	values	(in
pixels).

resizeTo Resizes	the	layer	to	have	the	specified	height	and	width
values	(in	pixels).

routeEvent Passes	a	captured	event	along	the	normal	event	hierarchy.

Note

Just	as	in	the	case	of	a	document,	if	you	want	to	define	mouse	click	response	for
a	layer,	you	must	capture	onMouseDown	and	onMouseUp	events	at	the	level	of
the	layer	and	process	them	as	you	want.

See	"Events	in	Navigator	4.0"	for	more	details	about	capturing	events.

If	an	event	occurs	in	a	point	where	multiple	layers	overlap,	the	topmost	layer
gets	the	event,	even	if	it	is	transparent.	However,	if	a	layer	is	hidden,	it	does	not
get	events.

above

The	layer	object	above	this	one	in	z-order,	among	all	layers	in	the	document	or
the	enclosing	window	object	if	this	layer	is	topmost.

Layer

Navigator	4.0

background

The	image	to	use	as	the	background	for	the	layer's	canvas	(which	is	the	part	of
the	layer	within	the	clip	rectangle).

Layer
Navigator	4.0

Each	layer	has	a	background	property,	whose	value	is	an	image	object,	whose
src	attribute	is	a	URL	that	indicates	the	image	to	use	to	provide	a	tiled	backdrop.
The	value	is	null	if	the	layer	has	no	backdrop.	For	example:

layer.background.src	=	"fishbg.gif";

bgColor

A	string	specifying	the	color	to	use	as	a	solid	background	color	for	the	layer's
canvas	(the	part	of	the	layer	within	the	clip	rectangle).

Layer
Navigator	4.0

The	bgColor	property	is	expressed	as	a	hexadecimal	RGB	triplet	or	as	one	of
the	string	literals	listed	in	the	JavaScript	Guide.	This	property	is	the	JavaScript
reflection	of	the	BGCOLOR	attribute	of	the	BODY	tag.

You	can	set	the	bgColor	property	at	any	time.

If	you	express	the	color	as	a	hexadecimal	RGB	triplet,	you	must	use	the	format
rrggbb.	For	example,	the	hexadecimal	RGB	values	for	salmon	are	red=FA,
green=80,	and	blue=72,	so	the	RGB	triplet	for	salmon	is	"FA8072".

The	following	example	sets	the	background	color	of	the	myLayer	layer's	canvas
to	aqua	using	a	string	literal:

myLayer.bgColor="aqua"	The	following	example	sets	the	background	color	of
the	myLayer	layer's	canvas	to	aqua	using	a	hexadecimal	triplet:

myLayer.bgColor="00FFFF"

Layer.bgColor

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

below

The	layer	object	below	this	one	in	z-order,	among	all	layers	in	the	document	or
null	if	this	layer	is	at	the	bottom.

Layer

Navigator	4.0

clip.bottom

The	bottom	edge	of	the	clipping	rectangle	(the	part	of	the	layer	that	is	visible.)
Any	part	of	a	layer	that	is	outside	the	clipping	rectangle	is	not	displayed.

Layer
Navigator	4.0

clip.height

The	height	of	the	clipping	rectangle	(the	part	of	the	layer	that	is	visible.)	Any
part	of	a	layer	that	is	outside	the	clipping	rectangle	is	not	displayed.

Layer
Navigator	4.0

clip.left

The	left	edge	of	the	clipping	rectangle	(the	part	of	the	layer	that	is	visible.)	Any
part	of	a	layer	that	is	outside	the	clipping	rectangle	is	not	displayed.

Layer
Navigator	4.0

clip.right

The	right	edge	of	the	clipping	rectangle	(the	part	of	the	layer	that	is	visible.)
Any	part	of	a	layer	that	is	outside	the	clipping	rectangle	is	not	displayed.

Layer
Navigator	4.0

clip.top

The	top	edge	of	the	clipping	rectangle	(the	part	of	the	layer	that	is	visible.)	Any
part	of	a	layer	that	is	outside	the	clipping	rectangle	is	not	displayed.

Layer
Navigator	4.0

clip.width

The	width	of	the	clipping	rectangle	(the	part	of	the	layer	that	is	visible.)	Any
part	of	a	layer	that	is	outside	the	clipping	rectangle	is	not	displayed.

Layer
Navigator	4.0

document

The	layer's	associated	document.

Layer

Navigator	4.0

Each	layer	object	contains	its	own	document	object.	This	object	can	be	used	to
access	the	images,	applets,	embeds,	links,	anchors	and	layers	that	are	contained
within	the	layer.	Methods	of	the	document	object	can	also	be	invoked	to	change
the	contents	of	the	layer.

left

The	horizontal	position	of	the	layer's	left	edge,	in	pixels,	relative	to	the	origin	of
its	parent	layer.

Layer
Navigator	4.0

name

A	string	specifying	the	name	assigned	to	the	layer	through	the	ID	attribute	in	the
LAYER	tag.

Layer

Navigator	4.0

pageX

The	horizontal	position	of	the	layer,	in	pixels,	relative	to	the	page.

Layer
Navigator	4.0

pageY

The	vertical	position	of	the	layer,	in	pixels,	relative	to	the	page.

Layer
Navigator	4.0

parentLayer

The	layer	object	that	contains	this	layer,	or	the	enclosing	window	object	if	this
layer	is	not	nested	in	another	layer.

Layer

Navigator	4.0

siblingAbove

The	layer	object	above	this	one	in	z-order,	among	all	layers	that	share	the	same
parent	layer	or	null	if	the	layer	has	no	sibling	above.

Layer

Navigator	4.0

siblingBelow

The	layer	object	below	this	one	in	z-order,	among	all	layers	that	share	the	same
parent	layer	or	null	if	layer	is	at	the	bottom.

Layer

Navigator	4.0

src

A	URL	string	specifying	the	source	of	the	layer's	content.	Corresponds	to	the
SRC	attribute.

Layer
Navigator	4.0

top

The	top	property	is	a	synonym	for	the	topmost	Navigator	window,	which	is	a
document	window	or	web	browser	window.

Layer

Navigator	4.0

The	top	property	refers	to	the	topmost	window	that	contains	frames	or	nested
framesets.	Use	the	top	property	to	refer	to	this	ancestor	window.

The	value	of	the	top	property	is

<object	objectReference>	where	objectReference	is	an	internal	reference.

The	statement	top.close()	closes	the	topmost	ancestor	window.

The	statement	top.length	specifies	the	number	of	frames	contained	within	the
topmost	ancestor	window.	When	the	topmost	ancestor	is	defined	as	follows,
top.length	returns	three:

<FRAMESET	COLS="30%,40%,30%">
<FRAME	SRC=child1.htm	NAME="childFrame1">
<FRAME	SRC=child2.htm	NAME="childFrame2">
<FRAME	SRC=child3.htm	NAME="childFrame3">
</FRAMESET>

visibility

Whether	or	not	the	layer	is	visible.

Layer
Navigator	4.0

A	value	of	show	means	show	the	layer;	hide	means	hide	the	layer;	inherit	means
inherit	the	visibility	of	the	parent	layer.

zIndex

The	relative	z-order	of	this	layer	with	respect	to	its	siblings.

Layer
Navigator	4.0

Sibling	layers	with	lower	numbered	z-indexes	are	stacked	underneath	this	layer.
The	value	of	zIndex	must	be	0	or	a	positive	integer.

captureEvents

Sets	the	window	or	document	to	capture	all	events	of	the	specified	type.

Layer
Navigator	4.0

captureEvents(eventType)

eventType Type	of	event	to	be	captured.	Available	event	types	are	listed	withevent.

When	a	window	with	frames	wants	to	capture	events	in	pages	loaded	from
different	locations	(servers),	you	need	to	use	captureEvents	in	a	signed	script
and	precede	it	with	enableExternalCapture.	For	more	information	and	an
example,	see	enableExternalCapture.

captureEvents	works	in	tandem	with	releaseEvents,	routeEvent,	and
handleEvent.	For	more	information,	see	"Events	in	Navigator	4.0".

handleEvent

Layer
Navigator	4.0

handleEvent(event)

event Name	of	an	event	for	which	the	specified	object	has	an	event	handler.

handleEvent	works	in	tandem	with	captureEvents,	releaseEvents,	and
routeEvent.	For	more	information,	see	"Events	in	Navigator	4.0".

load

Changes	the	source	of	a	layer	to	the	contents	of	the	specified	file	and
simultaneously	changes	the	width	at	which	the	layer's	HTML	contents	are
wrapped.

Layer
Navigator	4.0

load(sourcestring,	width)

sourcestring A	string	indicating	the	external	file	name.
width The	width	of	the	layer	as	a	pixel	value.

moveAbove

Stacks	this	layer	above	the	layer	specified	in	the	argument,	without	changing
either	layer's	horizontal	or	vertical	position.	After	re-stacking,	both	layers	will
share	the	same	parent	layer.

Layer
Navigator	4.0

moveAbove(aLayer)

aLayer The	layer	above	which	to	move	the	current	layer.

moveBelow

Stacks	this	layer	below	the	specified	layer,	without	changing	either	layer's
horizontal	or	vertical	position.	After	re-stacking,	both	layers	will	share	the	same
parent	layer.

Layer
Navigator	4.0

moveBelow(aLayer)

aLayer The	layer	below	which	to	move	the	current	layer.

moveBy

Changes	the	layer	position	by	applying	the	specified	deltas,	measured	in	pixels.

Layer
Navigator	4.0

moveBy(horizontal,	vertical)

horizontal The	number	of	pixels	by	which	to	move	the	layer	horizontally.
vertical The	number	of	pixels	by	which	to	move	the	layer	vertically.

moveTo

Moves	the	top-left	corner	of	the	window	to	the	specified	screen	coordinates.

Layer
Navigator	4.0

moveTo(x-coordinate,	y-coordinate)

x-
coordinate

An	integer	representing	the	top	edge	of	the	window	in	screen
coordinates.

y-
coordinate

An	integer	representing	the	left	edge	of	the	window	in	screen
coordinates.

To	move	a	window	offscreen,	call	the	moveTo	method	in	a	signed	script.	
Navigator	4.0	 “JavaScript	” “JavaScript	”

Changes	the	layer	position	to	the	specified	pixel	coordinates	within	the
containing	layer.	For	ILayers,	moves	the	layer	relative	to	the	natural	inflow
position	of	the	layer.

Layer.moveBy

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

moveToAbsolute

Changes	the	layer	position	to	the	specified	pixel	coordinates	within	the	page
(instead	of	the	containing	layer.)

Layer
Navigator	4.0

moveToAbsolute(x,	y)

x An	integer	representing	the	top	edge	of	the	window	in	pixel	coordinates.
y An	integer	representing	the	left	edge	of	the	window	in	pixel	coordinates.

This	method	is	equivalent	to	setting	both	the	pageX	and	pageY	properties	of	the
layer	object.

releaseEvents

Sets	the	window	or	document	to	release	captured	events	of	the	specified	type,
sending	the	event	to	objects	further	along	the	event	hierarchy.

Layer
Navigator	4.0

releaseEvents(eventType)

eventType Type	of	event	to	be	captured.

If	the	original	target	of	the	event	is	a	window,	the	window	receives	the	event
even	if	it	is	set	to	release	that	type	of	event.	releaseEvents	works	in	tandem	with
captureEvents,	routeEvent,	and	handleEvent.	For	more	information,	see	"Events
in	Navigator	4.0".

resizeBy

Resizes	the	layer	by	the	specified	height	and	width	values	(in	pixels).

Layer
Navigator	4.0

resizeBy(width,	height)

width The	number	of	pixels	by	which	to	resize	the	layer	horizontally.
height The	number	of	pixels	by	which	to	resize	the	layer	vertically.

This	does	not	layout	any	HTML	contained	in	the	layer	again.	Instead,	the	layer
contents	may	be	clipped	by	the	new	boundaries	of	the	layer.	This	method	has
the	same	effect	as	adding	width	and	height	to	clip.width	and	clip.height.

resizeTo

Resizes	the	layer	to	have	the	specified	height	and	width	values	(in	pixels).

Layer
Navigator	4.0

This	does	not	layout	any	HTML	contained	in	the	layer	again.	Instead,	the	layer
contents	may	be	clipped	by	the	new	boundaries	of	the	layer.

resizeBy(width,	height)

width An	integer	representing	the	layer's	width	in	pixels.
height An	integer	representing	the	layer's	height	in	pixels.

This	method	has	the	same	effect	setting	clip.width	and	clip.height.

routeEvent

Passes	a	captured	event	along	the	normal	event	hierarchy.

Layer
Navigator	4.0

routeEvent(event)

event The	event	to	route.

If	a	subobject	(document	or	layer)	is	also	capturing	the	event,	the	event	is	sent
to	that	object.	Otherwise,	it	is	sent	to	its	original	target.

routeEvent	works	in	tandem	with	captureEvents,	releaseEvents,	and
handleEvent.	For	more	information,	see	"Events	in	Navigator	4.0".

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Window
Represents	a	browser	window	or	frame.	This	is	the	top-level	object	for	each
document,	Location,	and	History	object	group.

Navigator	2.0
Navigator	3.0:		 closed,	history,	and	opener	properties;		 blur,	focus,	and
scroll	;		 onBlur,	onError,	and	onFocus	event	handlers
Navigator	4.0:		 innerHeight,	innerWidth,	locationbar,	menubar,
outerHeight,	outerWidth,	pageXOffset,	pageYOffset,	personalbar,	scrollbars,
statusbar,	and	toolbar	properties;		 back,	captureEvents,	clearInterval,
disableExternalCapture,	enableExternalCapture,	find,	forward,	handleEvent,
home,	moveBy,	moveTo,	releaseEvents,	resizeBy,	resizeTo,	routeEvent,
scrollBy,	scrollTo,	setInterval,	and	stop	s;	deprecated	scroll	

The	JavaScript	runtime	engine	creates	a	Window	object	for	each	BODY	or
FRAMESET	tag.	It	also	creates	a	Window	object	to	represent	each	frame
defined	in	a	FRAME	tag.	In	addition,	you	can	create	other	windows	by	calling
the	Window.open	method.	For	details	on	defining	a	window,	see	open.

onBlur
onDragDrop
onError
onFocus
onLoad
onMove
onResize
onUnload

In	Navigator	3.0,	on	some	platforms,	placing	an	onBlur	or	onFocus	event
handler	in	a	FRAMESET	tag	has	no	effect.

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags2.htm#tags:BODY
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags11.htm#tags:FRAMESET
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags11.htm#tags:FRAME

The	Window	object	is	the	top-level	object	in	the	JavaScript	client	hierarchy.	A
Window	object	can	represent	either	a	top-level	window	or	a	frame	inside	a
frameset.	As	a	matter	of	convenience,	you	can	think	about	a	Frame	object	as	a
Window	object	that	isn't	a	top-level	window.	However,	there	is	not	really	a
separate	Frame	class;	these	objects	really	are	Window	objects,	with	a	very	few
minor	differences:

For	a	top-level	window,	the	parent	and	top	properties	are	references	to	the
window	itself.	For	a	frame,	the	top	refers	to	the	topmost	browser	window,
and	parent	refers	to	the	parent	window	of	the	current	window.

For	a	top-level	window,	setting	the	defaultStatus	or	status	property	sets	the
text	appearing	in	the	browser	status	line.	For	a	frame,	setting	these
properties	only	sets	the	status	line	text	when	the	cursor	is	over	the	frame.

The	close	method	is	not	useful	for	windows	that	are	frames.

To	create	an	onBlur	or	onFocus	event	handler	for	a	frame,	you	must	set	the
onblur	or	onfocus	property	and	specify	it	in	all	lowercase	(you	cannot
specify	it	in	HTML).

If	a	FRAME	tag	contains	SRC	and	NAME	attributes,	you	can	refer	to	that
frame	from	a	sibling	frame	by	using	parent.frameName	or
parent.frames.	For	example,	if	the	fourth	frame	in	a	set	has
NAME="homeFrame",	sibling	frames	can	refer	to	that	frame	using
parent.homeFrame	or	parent.frames[3].

For	all	windows,	the	self	and	window	properties	of	a	Window	object	are
synonyms	for	the	current	window,	and	you	can	optionally	use	them	to	refer	to
the	current	window.	For	example,	you	can	close	the	current	window	by	calling
the	close	method	of	either	window	or	self.	You	can	use	these	properties	to	make
your	code	more	readable	or	to	disambiguate	the	property	reference	self.status
from	a	form	called	status.	See	the	properties	and	methods	listed	below	for	more
.

Because	the	existence	of	the	current	window	is	assumed,	you	do	not	have	to
refer	to	the	name	of	the	window	when	you	call	its	methods	and	assign	its

properties.	For	example,	status="Jump	to	a	new	location"	is	a	valid	property
assignment,	and	close()	is	a	valid	method	call.

However,	when	you	open	or	close	a	window	within	an	event	handler,	you	must
specify	window.open()	or	window.close()	instead	of	simply	using	open()	or
close().	Due	to	the	scoping	of	static	objects	in	JavaScript,	a	call	to	close()
without	specifying	an	object	name	is	equivalent	to	document.close().

For	the	same	reason,	when	you	refer	to	the	location	object	within	an	event
handler,	you	must	specify	window.location	instead	of	simply	using	location.	A
call	to	location	without	specifying	an	object	name	is	equivalent	to
document.location,	which	is	a	synonym	for	document.URL.

You	can	refer	to	a	window's	Frame	objects	in	your	code	by	using	the	frames
array.	In	a	window	with	a	FRAMESET	tag,	the	frames	array	contains	an	entry
for	each	frame.

A	windows	lacks	event	handlers	until	HTML	that	contains	a	BODY	or
FRAMESET	tag	is	loaded	into	it.

closed Specifies	whether	a	window	has	been	closed.
defaultStatus Reflects	the	default	message	displayed	in	the	window's	status	bar.

document Contains	information	on	the	current	document,	and	provides	s
for	displaying	HTML	output	to	the	user.

frames An	array	reflecting	all	the	frames	in	a	window.

history Contains	information	on	the	URLs	that	the	client	has	visited
within	a	window.

innerHeight Specifies	the	vertical	dimension,	in	pixels,	of	the	window's
content	area.

innerWidth Specifies	the	horizontal	dimension,	in	pixels,	of	the	window's
content	area.

length The	number	of	frames	in	the	window.
location Contains	information	on	the	current	URL.
locationbar Represents	the	browser	window's	location	bar.
menubar Represents	the	browser	window's	menu	bar.

name A	unique	name	used	to	refer	to	this	window.

opener Specifies	the	window	name	of	the	calling	document	when	a
window	is	opened	using	the	open	

outerHeight Specifies	the	vertical	dimension,	in	pixels,	of	the	window's
outside	boundary.

outerWidth Specifies	the	horizontal	dimension,	in	pixels,	of	the	window's
outside	boundary.

pageXOffset Provides	the	current	x-position,	in	pixels,	of	a	window's	viewedpage.

pageYOffset Provides	the	current	y-position,	in	pixels,	of	a	window's	viewedpage.

parent A	synonym	for	a	window	or	frame	whose	frameset	contains	the
current	frame.

personalbar Represents	the	browser	window's	personal	bar	(also	called	the
directories	bar).

scrollbars Represents	the	browser	window's	scroll	bars.
self A	synonym	for	the	current	window.

status Specifies	a	priority	or	transient	message	in	the	window's	status
bar.

statusbar Represents	the	browser	window's	status	bar.
toolbar Represents	the	browser	window's	tool	bar.
top A	synonym	for	the	topmost	browser	window.
window A	synonym	for	the	current	window.

alert Displays	an	Alert	dialog	box	with	a	message	and	an
OK	button.

back Undoes	the	last	history	step	in	any	frame	within	the
top-level	window.

blur Removes	focus	from	the	specified	object.

captureEvents Sets	the	window	or	document	to	capture	all	events	of
the	specified	type.

clearInterval Cancels	a	timeout	that	was	set	with	the	setInterval	

clearTimeout Cancels	a	timeout	that	was	set	with	the	setTimeout	

close Closes	the	specified	window.

confirm Displays	a	Confirm	dialog	box	with	the	specified
message	and	OK	and	Cancel	buttons.

disableExternalCapture Disables	external	event	capturing	set	by	theenableExternalCapture	

enableExternalCapture Allows	a	window	with	frames	to	capture	events	in
pages	loaded	from	different	locations	(servers).

find Finds	the	specified	text	string	in	the	contents	of	the
specified	window.

focus Gives	focus	to	the	specified	object.
forward Loads	the	next	URL	in	the	history	list.
handleEvent

home Points	the	browser	to	the	URL	specified	in	preferences
as	the	user's	home	page.

moveBy Moves	the	window	by	the	specified	amounts.

moveTo Moves	the	top-left	corner	of	the	window	to	the
specified	screen	coordinates.

open Opens	a	new	web	browser	window.
print Prints	the	contents	of	the	window	or	frame.

prompt Displays	a	Prompt	dialog	box	with	a	message	and	an
input	field.

releaseEvents
Sets	the	window	to	release	captured	events	of	the
specified	type,	sending	the	event	to	objects	further
along	the	event	hierarchy.

resizeBy Resizes	an	entire	window	by	moving	the	window's
bottom-right	corner	by	the	specified	amount.

resizeTo Resizes	an	entire	window	to	the	specified	outer	height
and	width.

routeEvent Passes	a	captured	event	along	the	normal	event
hierarchy.

scroll Scrolls	a	window	to	a	specified	coordinate.

scrollBy Scrolls	the	viewing	area	of	a	window	by	the	specified
amount.

scrollTo
Scrolls	the	viewing	area	of	the	window	to	the	specified
coordinates,	such	that	the	specified	point	becomes	the
top-left	corner.

setInterval Evaluates	an	expression	or	calls	a	function	every	time	a
specified	number	of	milliseconds	elapses.

setTimeout Evaluates	an	expression	or	calls	a	function	once	after	a
specified	number	of	milliseconds	has	elapsed.

stop Stops	the	current	download.

	1.	Windows	opening	other	windows.	 In	the	following	example,	the
document	in	the	top	window	opens	a	second	window,	window2,	and	defines
push	buttons	that	open	a	message	window,	write	to	the	message	window,	close
the	message	window,	and	close	window2.	The	onLoad	and	onUnload	event
handlers	of	the	document	loaded	into	window2	display	alerts	when	the	window
opens	and	closes.

win1.html,	which	defines	the	frames	for	the	first	window,	contains	the	following
code:

<HTML>
<HEAD>
<TITLE>Window	object	example:	Window	1</TITLE>
</HEAD>
<BODY	BGCOLOR="antiquewhite">
<SCRIPT>
window2=open("win2.html","secondWindow",
			"scrollbars=yes,width=250,	height=400")
document.writeln("The	first	window	has	no	name:	"	
			+	window.name	+	"")
document.writeln("
The	second	window	is	named:	"	
			+	window2.name	+	"")
</SCRIPT>
<FORM	NAME="form1">
<P><INPUT	TYPE="button"	VALUE="Open	a	message	window"
			onClick	=	"window3=window.open('','messageWindow',
			'scrollbars=yes,width=175,	height=300')">

<P><INPUT	TYPE="button"	VALUE="Write	to	the	message	window"
			onClick="window3.document.writeln('Hey	there');	
			window3.document.close()">
<P><INPUT	TYPE="button"	VALUE="Close	the	message	window"
			onClick="window3.close()">
<P><INPUT	TYPE="button"	VALUE="Close	window2"
			onClick="window2.close()">
</FORM>
</BODY>
</HTML>	win2.html,	which	defines	the	content	for	window2,	contains	the
following	code:

<HTML>
<HEAD>
<TITLE>Window	object	example:	Window	2</TITLE>
</HEAD>
<BODY	BGCOLOR="oldlace"
			onLoad="alert('Message	from	'	+	window.name	+	':	Hello,	World.')"
			onUnload="alert('Message	from	'	+	window.name	+	':	I\'m	closing')">
Some	numbers
one
two
three
four
</BODY>
</HTML>		2.	Creating	frames.	 The	following	example	creates	two	windows,
each	with	four	frames.	In	the	first	window,	the	first	frame	contains	push	buttons
that	change	the	background	colors	of	the	frames	in	both	windows.
framset1.html,	which	defines	the	frames	for	the	first	window,	contains	the
following	code:

<HTML>
<HEAD>
<TITLE>Frames	and	Framesets:	Window	1</TITLE>
</HEAD>
<FRAMESET	ROWS="50%,50%"	COLS="40%,60%"	
			onLoad="alert('Hello,	World.')">
<FRAME	SRC=framcon1.html	NAME="frame1">
<FRAME	SRC=framcon2.html	NAME="frame2">

<FRAME	SRC=framcon2.html	NAME="frame3">
<FRAME	SRC=framcon2.html	NAME="frame4">
</FRAMESET>
</HTML>	framset2.html,	which	defines	the	frames	for	the	second	window,
contains	the	following	code:

<HTML>
<HEAD>
<TITLE>Frames	and	Framesets:	Window	2</TITLE>
</HEAD>
<FRAMESET	ROWS="50%,50%"	COLS="40%,60%">
<FRAME	SRC=framcon2.html	NAME="frame1">
<FRAME	SRC=framcon2.html	NAME="frame2">
<FRAME	SRC=framcon2.html	NAME="frame3">
<FRAME	SRC=framcon2.html	NAME="frame4">
</FRAMESET>
</HTML>	framcon1.html,	which	defines	the	content	for	the	first	frame	in	the
first	window,	contains	the	following	code:

<HTML>
<BODY>
<H1>Frame1</H1>
<P>Click	here
			to	load	a	different	file	into	frame	2.
<SCRIPT>
window2=open("framset2.htm","secondFrameset")
</SCRIPT>
<FORM>
<P><INPUT	TYPE="button"	VALUE="Change	frame2	to	teal"
			onClick="parent.frame2.document.bgColor='teal'">
<P><INPUT	TYPE="button"	VALUE="Change	frame3	to	slateblue"
			onClick="parent.frames[2].document.bgColor='slateblue'">
<P><INPUT	TYPE="button"	VALUE="Change	frame4	to	darkturquoise"
			onClick="top.frames[3].document.bgColor='darkturquoise'">	<P><INPUT
TYPE="button"	VALUE="window2.frame2	to	violet"
			onClick="window2.frame2.document.bgColor='violet'">
<P><INPUT	TYPE="button"	VALUE="window2.frame3	to	fuchsia"
			onClick="window2.frames[2].document.bgColor='fuchsia'">
<P><INPUT	TYPE="button"	VALUE="window2.frame4	to	deeppink"

			onClick="window2.frames[3].document.bgColor='deeppink'">
</FORM>
</BODY>
</HTML>	framcon2.html,	which	defines	the	content	for	the	remaining	frames,
contains	the	following	code:

<HTML>
<BODY>
<P>This	is	a	frame.
</BODY>
</HTML>	framcon3.html,	which	is	referenced	in	a	Link	object	in
framcon1.html,	contains	the	following	code:

<HTML>
<BODY>
<P>This	is	a	frame.	What	do	you	think?
</BODY>
</HTML>

document,	Frame

closed

Specifies	whether	a	window	is	closed.

Window

Navigator	3.0

The	closed	property	is	a	boolean	value	that	specifies	whether	a	window	has
been	closed.	When	a	window	closes,	the	window	object	that	represents	it
continues	to	exist,	and	its	closed	property	is	set	to	true.

Use	closed	to	determine	whether	a	window	that	you	opened,	and	to	which	you
still	hold	a	reference	(from	the	return	value	of	window.open),	is	still	open.	Once
a	window	is	closed,	you	should	not	attempt	to	manipulate	it.

	1. 	The	following	code	opens	a	window,	win1,	then	later	checks	to	see	if	that
window	has	been	closed.	A	function	is	called	depending	on	whether	win1	is
closed.

win1=window.open('opener1.html','window1','width=300,height=300')
...
if	(win1.closed)
			function1()
			else
			function2()		2. 	The	following	code	determines	if	the	current	window's
opener	window	is	still	closed,	and	calls	the	appropriate	function.

if	(window.opener.closed)
			function1()
			else
			function2()

Window.close,	Window.open

defaultStatus

The	default	message	displayed	in	the	status	bar	at	the	bottom	of	the	window.

Window
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	defaultStatus	message	appears	when	nothing	else	is	in	the	status	bar.	Do	not
confuse	the	defaultStatus	property	with	the	status	property.	The	status	property
reflects	a	priority	or	transient	message	in	the	status	bar,	such	as	the	message	that
appears	when	a	mouseOver	event	occurs	over	an	anchor.

You	can	set	the	defaultStatus	property	at	any	time.	You	must	return	true	if	you
want	to	set	the	defaultStatus	property	in	the	onMouseOut	or	onMouseOver
event	handlers.

In	the	following	example,	the	statusSetter	function	sets	both	the	status	and
defaultStatus	properties	in	an	onMouseOver	event	handler:

function	statusSetter()	{
			window.defaultStatus	=	"Click	the	link	for	the	Netscape	home	page"
			window.status	=	"Netscape	home	page"
}	<A	HREF="http://home.netscape.com"
			onMouseOver	=	"statusSetter();	return	true">Netscape	In	the	previous
example,	notice	that	the	onMouseOver	event	handler	returns	a	value	of	true.
You	must	return	true	to	set	status	or	defaultStatus	in	an	event	handler.

Window.status

document

Contains	information	on	the	current	document,	and	provides	methods	for
displaying	HTML	output	to	the	user.

Window
Navigator	2.0

The	value	of	this	property	is	the	window's	associated	document	object.

frames

An	array	of	objects	corresponding	to	child	frames	(created	with	the	FRAME
tag)	in	source	order.

Window

Navigator	2.0

You	can	refer	to	the	child	frames	of	a	window	by	using	the	frames	array.	This
array	contains	an	entry	for	each	child	frame	(created	with	the	FRAME	tag)	in	a
window	containing	a	FRAMESET	tag;	the	entries	are	in	source	order.	For
example,	if	a	window	contains	three	child	frames	whose	NAME	attributes	are
fr1,	fr2,	and	fr3,	you	can	refer	to	the	objects	in	the	images	array	either	as:

parent.frames["fr1"]
parent.frames["fr2"]
parent.frames["fr3"]	or	as:

parent.frames[0]
parent.frames[1]
parent.frames[2]	You	can	find	out	how	many	child	frames	the	window	has	by
using	the	length	property	of	the	Window	itself	or	of	the	frames	array.

The	value	of	each	element	in	the	frames	array	is	<object	nameAttribute>,	where
nameAttribute	is	the	NAME	attribute	of	the	frame.

history

Contains	information	on	the	URLs	that	the	client	has	visited	within	a	window.

Window
Navigator	3.0

The	value	of	this	property	is	the	window's	associated	History	object.

innerHeight

Specifies	the	vertical	dimension,	in	pixels,	of	the	window's	content	area.

Window
Navigator	4.0

To	create	a	window	smaller	than	100	x	100	pixels,	set	this	property	in	a	signed
script.

To	set	the	inner	height	of	a	window	to	a	size	smaller	than	100	x	100	or	larger
than	the	screen	can	accommodate,	you	need	the	UniversalBrowserWrite
privilege.		Navigator	4.0	 “JavaScript	” “JavaScript	”

Window.innerWidth,	Window.outerHeight,	Window.outerWidth

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

innerWidth

Specifies	the	horizontal	dimension,	in	pixels,	of	the	window's	content	area.

Window
Navigator	4.0

To	create	a	window	smaller	than	100	x	100	pixels,	set	this	property	in	a	signed
script.

To	set	the	inner	width	of	a	window	to	a	size	smaller	than	100	x	100	or	larger
than	the	screen	can	accommodate,	you	need	the	UniversalBrowserWrite
privilege.		Navigator	4.0	 “JavaScript	” “JavaScript	”

Window.innerHeight,	Window.outerHeight,	Window.outerWidth

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

length

The	number	of	child	frames	in	the	window.

Window

Navigator	2.0

This	property	gives	you	the	same	result	as	using	the	length	property	of	the
frames	array.

location

Contains	information	on	the	current	URL.

Window
Navigator	2.0

The	value	of	this	property	is	the	window's	associated	Location	object.

locationbar

Represents	the	browser	window's	location	bar	(the	region	containing	the
bookmark	and	URL	areas).

Window
Navigator	4.0

The	value	of	the	locationbar	property	itself	has	one	property,	visible.	If	true,	the
location	bar	is	visible;	if	false,	it	is	hidden.

Setting	the	value	of	the	location	bar's	visible	property	requires	the
UniversalBrowserWrite	privilege.		Navigator	4.0	
“JavaScript	”

The	following	example	would	make	the	referenced	window	"chromeless"
(chromeless	windows	lack	toolbars,	scrollbars,	status	areas,	and	so	on,	much
like	a	dialog	box)	by	hiding	most	of	the	user	interface	toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

menubar

Represents	the	browser	window's	menu	bar.	This	region	contains	browser's
drop-down	menus	such	as	File,	Edit,	View,	Go,	Communicator,	and	so	on.

Window
Navigator	4.0

The	value	of	the	menubar	property	itself	one	property,	visible.	If	true,	the	menu
bar	is	visible;	if	false,	it	is	hidden.

Setting	the	value	of	the	menu	bar's	visible	property	requires	the
UniversalBrowserWrite	privilege.		Navigator	4.0	
“JavaScript	”

The	following	example	would	make	the	referenced	window	"chromeless"
(chromeless	windows	lack	toolbars,	scrollbars,	status	areas,	and	so	on,	much
like	a	dialog	box)	by	hiding	most	of	the	user	interface	toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

name

A	string	specifying	the	window's	name.

Window
	(2.0);	Modifiable	(later	versions)
Navigator	2.0

Navigator	3.0 “JavaScript	”

In	Navigator	2.0,	NAME	was	a	read-only	property.	In	later	versions,	this
property	is	modifiable	by	your	code.	This	allows	you	to	assign	a	name	to	a	top-
level	window.

In	the	following	example,	the	first	statement	creates	a	window	called
netscapeWin.	The	second	statement	displays	the	value	"netscapeHomePage"	in
the	Alert	dialog	box,	because	"netscapeHomePage"	is	the	value	of	the
windowName	argument	of	netscapeWin.

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)

opener

Specifies	the	window	of	the	calling	document	when	a	window	is	opened	using
the	open	method.

Window
Navigator	3.0

When	a	source	document	opens	a	destination	window	by	calling	the	open
method,	the	opener	property	specifies	the	window	of	the	source	document.
Evaluate	the	opener	property	from	the	destination	window.

This	property	persists	across	document	unload	in	the	opened	window.

You	can	change	the	opener	property	at	any	time.

You	may	use	Window.open	to	open	a	new	window	and	then	use	Window.open
on	that	window	to	open	another	window,	and	so	on.	In	this	way,	you	can	end	up
with	a	chain	of	opened	windows,	each	of	which	has	an	opener	property	pointing
to	the	window	that	opened	it.

Communicator	allows	a	maximum	of	100	windows	to	be	around	at	once.	If	you
open	window2	from	window1	and	then	are	done	with	window1,	be	sure	to	set
the	opener	property	of	window2	to	null.	This	allows	JavaScript	to	garbage
collect	window1.	If	you	do	not	set	the	opener	property	to	null,	the	window1
object	remains,	even	though	it's	no	longer	really	needed.

	1:	Close	the	opener. 	The	following	code	closes	the	window	that	opened	the
current	window.	When	the	opener	window	closes,	opener	is	unchanged.
However,	window.opener.name	then	evaluates	to	undefined.

window.opener.close()		2:	Close	the	main	browser	window.

top.opener.close()		3:	Evaluate	the	name	of	the	opener. 	A	window	can
determine	the	name	of	its	opener	as	follows:

document.write("
opener	property	is	"	+	window.opener.name)		4:
Change	the	value	of	opener.	The	following	code	changes	the	value	of	the
opener	property	to	null.	After	this	code	executes,	you	cannot	close	the	opener
window	as	shown	in	Example	1.

window.opener=null		5:	Change	a	property	of	the	opener. 	The	following
code	changes	the	background	color	of	the	window	specified	by	the	opener
property.

window.opener.document.bgColor='bisque'

Window.close,	Window.open

outerHeight

Specifies	the	vertical	dimension,	in	pixels,	of	the	window's	outside	boundary.

Window
Navigator	4.0

The	outer	boundary	includes	the	scroll	bars,	the	status	bar,	the	tool	bars,	and
other	"chrome"	(window	border	user	interface	elements).	To	create	a	window
smaller	than	100	x	100	pixels,	set	this	property	in	a	signed	script.

Window.innerWidth,	Window.innerHeight,	Window.outerWidth

outerWidth

Specifies	the	horizontal	dimension,	in	pixels,	of	the	window's	outside	boundary.

Window
Navigator	4.0

The	outer	boundary	includes	the	scroll	bars,	the	status	bar,	the	tool	bars,	and
other	"chrome"	(window	border	user	interface	elements).	To	create	a	window
smaller	than	100	x	100	pixels,	set	this	property	in	a	signed	script.

Window.innerWidth,	Window.innerHeight,	Window.outerHeight

pageXOffset

Provides	the	current	x-position,	in	pixels,	of	a	window's	viewed	page.

Window

Navigator	4.0

The	pageXOffset	property	provides	the	current	x-position	of	a	page	as	it	relates
to	the	upper-left	corner	of	the	window's	content	area.	This	property	is	useful
when	you	need	to	find	the	current	location	of	the	scrolled	page	before	using
scrollTo	or	scrollBy.

The	following	example	returns	the	x-position	of	the	viewed	page.

x	=	myWindow.pageXOffset

Window.pageYOffset

pageYOffset

Provides	the	current	y-position,	in	pixels,	of	a	window's	viewed	page.

Window

Navigator	4.0

The	pageYOffset	property	provides	the	current	y-position	of	a	page	as	it	relates
to	the	upper-left	corner	of	the	window's	content	area.	This	property	is	useful
when	you	need	to	find	the	current	location	of	the	scrolled	page	before	using
scrollTo	or	scrollBy.

The	following	example	returns	the	y-position	of	the	viewed	page.

x	=	myWindow.pageYOffset

Window.pageXOffset

parent

The	parent	property	is	the	window	or	frame	whose	frameset	contains	the	current
frame.

Window

Navigator	2.0

This	property	is	only	meaningful	for	frames;	that	is,	windows	that	are	not	top-
level	windows.

The	parent	property	refers	to	the	FRAMESET	window	of	a	frame.	Child	frames
within	a	frameset	refer	to	sibling	frames	by	using	parent	in	place	of	the	window
name	in	one	of	the	following	ways:

parent.frameName
parent.frames 	For	example,	if	the	fourth	frame	in	a	set	has
NAME="homeFrame",	sibling	frames	can	refer	to	that	frame	using
parent.homeFrame	or	parent.frames[3].

You	can	use	parent.parent	to	refer	to	the	"grandparent"	frame	or	window	when	a
FRAMESET	tag	is	nested	within	a	child	frame.

The	value	of	the	parent	property	is

<object	nameAttribute>	where	nameAttribute	is	the	NAME	attribute	if	the
parent	is	a	frame,	or	an	internal	reference	if	the	parent	is	a	window.

See	for	 Frame.

personalbar

Represents	the	browser	window's	personal	bar	(also	called	the	directories	bar).
This	is	the	region	the	user	can	use	for	easy	access	to	certain	bookmarks.

Window
Navigator	4.0

The	value	of	the	personalbar	property	itself	one	property,	visible.	If	true,	the
personal	bar	is	visible;	if	false,	it	is	hidden.

Setting	the	value	of	the	personal	bar's	visible	property	requires	the
UniversalBrowserWrite	privilege.		Navigator	4.0	
“JavaScript	”

The	following	example	would	make	the	referenced	window	"chromeless"
(chromeless	windows	lack	toolbars,	scrollbars,	status	areas,	and	so	on,	much
like	a	dialog	box)	by	hiding	most	of	the	user	interface	toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

scrollbars

Represents	the	browser	window's	vertical	and	horizontal	scroll	bars	for	the
document	area.

Window
Navigator	4.0

The	value	of	the	scrollbars	property	itself	has	one	property,	visible.	If	true,	both
scrollbars	are	visible;	if	false,	they	are	hidden.

Setting	the	value	of	the	scrollbars'	visible	property	requires	the
UniversalBrowserWrite	privilege.		Navigator	4.0	
“JavaScript	”

The	following	example	would	make	the	referenced	window	"chromeless"
(chromeless	windows	lack	toolbars,	scrollbars,	status	areas,	and	so	on,	much
like	a	dialog	box)	by	hiding	most	of	the	user	interface	toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

self

The	self	property	is	a	synonym	for	the	current	window.

Window

Navigator	2.0

The	self	property	refers	to	the	current	window.	That	is,	the	value	of	this	property
is	a	synonym	for	the	object	itself.

Use	the	self	property	to	disambiguate	a	window	property	from	a	form	or	form
element	of	the	same	name.	You	can	also	use	the	self	property	to	make	your	code
more	readable.

The	value	of	the	self	property	is

<object	nameAttribute>	where	nameAttribute	is	the	NAME	attribute	if	self
refers	to	a	frame,	or	an	internal	reference	if	self	refers	to	a	window.

In	the	following	example,	self.status	is	used	to	set	the	status	property	of	the
current	window.	This	usage	disambiguates	the	status	property	of	the	current
window	from	a	form	or	form	element	called	status	within	the	current	window.

<A	HREF=""
			onClick="this.href=pickRandomURL()"
			onMouseOver="self.status='Pick	a	random	URL'	;	return	true">
Go!

status

Specifies	a	priority	or	transient	message	in	the	status	bar	at	the	bottom	of	the
window,	such	as	the	message	that	appears	when	a	mouseOver	event	occurs	over
an	anchor.

Window
Navigator	2.0

Navigator	3.0 “JavaScript	”

Do	not	confuse	the	status	property	with	the	defaultStatus	property.	The
defaultStatus	property	reflects	the	default	message	displayed	in	the	status	bar.

You	can	set	the	status	property	at	any	time.	You	must	return	true	if	you	want	to
set	the	status	property	in	the	onMouseOver	event	handler.

Suppose	you	have	created	a	JavaScript	function	called	pickRandomURL	that
lets	you	select	a	URL	at	random.	You	can	use	the	onClick	event	handler	of	an
anchor	to	specify	a	value	for	the	HREF	attribute	of	the	anchor	dynamically,	and
the	onMouseOver	event	handler	to	specify	a	custom	message	for	the	window	in
the	status	property:

<A	HREF=""
			onClick="this.href=pickRandomURL()"
			onMouseOver="self.status='Pick	a	random	URL';	return	true">
Go!	In	the	preceding	example,	the	status	property	of	the	window	is
assigned	to	the	window's	self	property,	as	self.status.

Window.defaultStatus

statusbar

Represents	the	browser	window's	status	bar.	This	is	the	region	containing	the
security	indicator,	browser	status,	and	so	on.

Window
Navigator	4.0

The	value	of	the	statusbar	property	itself	one	property,	visible.	If	true,	the	status
bar	is	visible;	if	false,	it	is	hidden.

Setting	the	value	of	the	status	bar's	visible	property	requires	the
UniversalBrowserWrite	privilege.		Navigator	4.0	
“JavaScript	”

The	following	example	would	make	the	referenced	window	"chromeless"
(chromeless	windows	lack	toolbars,	scrollbars,	status	areas,	and	so	on,	much
like	a	dialog	box)	by	hiding	most	of	the	user	interface	toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

toolbar

Represents	the	browser	window's	tool	bar,	containing	the	navigation	buttons,
such	as	Back,	Forward,	Reload,	Home,	and	so	on.

Window
Navigator	4.0

The	value	of	the	toolbar	property	itself	one	property,	visible.	If	true,	the	tool	bar
is	visible;	if	false,	it	is	hidden.

Setting	the	value	of	the	tool	bar's	visible	property	requires	the
UniversalBrowserWrite	privilege.		Navigator	4.0	
“JavaScript	”

The	following	example	would	make	the	referenced	window	"chromeless"
(chromeless	windows	lack	toolbars,	scrollbars,	status	areas,	and	so	on,	much
like	a	dialog	box)	by	hiding	most	of	the	user	interface	toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

top

The	top	property	is	a	synonym	for	the	topmost	browser	window,	which	is	a
document	window	or	web	browser	window.

Window

Navigator	2.0

The	top	property	refers	to	the	topmost	window	that	contains	frames	or	nested
framesets.	Use	the	top	property	to	refer	to	this	ancestor	window.

The	value	of	the	top	property	is

<object	objectReference>	where	objectReference	is	an	internal	reference.

The	statement	top.close()	closes	the	topmost	ancestor	window.

The	statement	top.length	specifies	the	number	of	frames	contained	within	the
topmost	ancestor	window.	When	the	topmost	ancestor	is	defined	as	follows,
top.length	returns	three:

<FRAMESET	COLS="30%,40%,30%">
<FRAME	SRC=child1.htm	NAME="childFrame1">
<FRAME	SRC=child2.htm	NAME="childFrame2">
<FRAME	SRC=child3.htm	NAME="childFrame3">
</FRAMESET>	The	following	example	sets	the	background	color	of	a	frame
called	myFrame	to	red.	myFrame	is	a	child	of	the	topmost	ancestor	window.

top.myFrame.document.bgColor="red"

window

The	window	property	is	a	synonym	for	the	current	window	or	frame.

Window

Navigator	2.0

The	window	property	refers	to	the	current	window	or	frame.	That	is,	the	value
of	this	property	is	a	synonym	for	the	object	itself.

Although	you	can	use	the	window	property	as	a	synonym	for	the	current	frame,
your	code	may	be	more	readable	if	you	use	the	self	property.	For	example,
window.name	and	self.name	both	specify	the	name	of	the	current	frame,	but
self.name	may	be	easier	to	understand	(because	a	frame	is	not	displayed	as	a
separate	window).

Use	the	window	property	to	disambiguate	a	property	of	the	window	object	from
a	form	or	form	element	of	the	same	name.	You	can	also	use	the	window
property	to	make	your	code	more	readable.

The	value	of	the	window	property	is

<object	nameAttribute>	where	nameAttribute	is	the	NAME	attribute	if	window
refers	to	a	frame,	or	an	internal	reference	if	window	refers	to	a	window.

In	the	following	example,	window.status	is	used	to	set	the	status	property	of	the
current	window.	This	usage	disambiguates	the	status	property	of	the	current
window	from	a	form	called	"status"	within	the	current	window.

<A	HREF=""
			onClick="this.href=pickRandomURL()"
			onMouseOver="window.status='Pick	a	random	URL'	;	return	true">

Go!

Window.self

alert

Displays	an	Alert	dialog	box	with	a	message	and	an	OK	button.

Window
Navigator	2.0

alert("message")

message A	string.

An	alert	dialog	box	looks	as	follows:

Use	the	alert	method	to	display	a	message	that	does	not	require	a	user	decision.
The	message	argument	specifies	a	message	that	the	dialog	box	contains.

You	cannot	specify	a	title	for	an	alert	dialog	box,	but	you	can	use	the	open
method	to	create	your	own	alert	dialog	box.	See	open.

In	the	following	example,	the	testValue	function	checks	the	name	entered	by	a
user	in	the	Text	object	of	a	form	to	make	sure	that	it	is	no	more	than	eight

characters	in	length.	This	example	uses	the	alert	method	to	prompt	the	user	to
enter	a	valid	value.

function	testValue(textElement)	{
			if	(textElement.length	>	8)	{
						alert("Please	enter	a	name	that	is	8	characters	or	less")
			}
}	You	can	call	the	testValue	function	in	the	onBlur	event	handler	of	a	form's
Text	object,	as	shown	in	the	following	example:

Name:	<INPUT	TYPE="text"	NAME="userName"
			onBlur="testValue(userName.value)">

Window.confirm,	Window.prompt

back

Undoes	the	last	history	step	in	any	frame	within	the	top-level	window;
equivalent	to	the	user	pressing	the	browser's	Back	button.

Window
Navigator	4.0

back()

Calling	the	back	method	is	equivalent	to	the	user	pressing	the	browser's	Back
button.	That	is,	back	undoes	the	last	step	anywhere	within	the	top-level	window,
whether	it	occurred	in	the	same	frame	or	in	another	frame	in	the	tree	of	frames
loaded	from	the	top-level	window.	In	contrast,	the	history	object's	back	method
backs	up	the	current	window	or	frame	history	one	step.

For	example,	consider	the	following	scenario.	While	in	Frame	A,	you	click	the
Forward	button	to	change	Frame	A's	content.	You	then	move	to	Frame	B	and
click	the	Forward	button	to	change	Frame	B's	content.	If	you	move	back	to
Frame	A	and	call	FrameA.back(),	the	content	of	Frame	B	changes	(clicking	the
Back	button	behaves	the	same).

If	you	want	to	navigate	Frame	A	separately,	use	FrameA.history.back().

The	following	custom	buttons	perform	the	same	operation	as	the	browser's	Back
button:

<P><INPUT	TYPE="button"	VALUE="<	Go	Back"
			onClick="history.back()">
<P><INPUT	TYPE="button"	VALUE=">	Go	Back"
			onClick="myWindow.back()">

Window.forward,	History.back

blur

Removes	focus	from	the	specified	object.

Window
Navigator	2.0

blur()

Use	the	blur	method	to	remove	focus	from	a	specific	window	or	frame.
Removing	focus	from	a	window	sends	the	window	to	the	background	in	most
windowing	systems.

Window.focus

captureEvents

Sets	the	window	to	capture	all	events	of	the	specified	type.

Window
Navigator	4.0

captureEvents(eventType)

eventType The	type	of	event	to	be	captured.	The	available	event	types	are	listedwith	the	event	object.

When	a	window	with	frames	wants	to	capture	events	in	pages	loaded	from
different	locations	(servers),	you	need	to	use	captureEvents	in	a	signed	script
and	precede	it	with	enableExternalCapture.	You	must	have	the
UniversalBrowserWrite	privilege.	For	more	information	and	an	example,	see
enableExternalCapture.		Navigator	4.0	 “JavaScript	” “JavaScript
”

captureEvents	works	in	tandem	with	releaseEvents,	routeEvent,	and
handleEvent.	For	more	information,	see	"Events	in	Navigator	4.0".

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

clearInterval

Cancels	a	timeout	that	was	set	with	the	setInterval	method.

Window
Navigator	4.0

clearInterval(intervalID)

intervalID Timeout	setting	that	was	returned	by	a	previous	call	to	the
setInterval	

See	setInterval.

See	setInterval.

Window.setInterval

clearTimeout

Cancels	a	timeout	that	was	set	with	the	setTimeout	method.

Window
Navigator	2.0

clearTimeout(timeoutID)

timeoutID A	timeout	setting	that	was	returned	by	a	previous	call	to	the
setTimeout	

See	setTimeout.

See	setTimeout.

Window.clearInterval,	Window.setTimeout

close

Closes	the	specified	window.

Window
Navigator	2.0:	closes	any	window.
Navigator	3.0:	closes	only	windows	opened	by	JavaScript.
Navigator	4.0:	must	use	signed	scripts	to	unconditionally	close	a	window.

close()

Navigator	4.0:	To	unconditionally	close	a	window,	you	need	the
UniversalBrowserWrite	privilege.		Navigator	4.0	
“JavaScript	”

The	close	method	closes	the	specified	window.	If	you	call	close	without
specifying	a	windowReference,	JavaScript	closes	the	current	window.

The	close	method	closes	only	windows	opened	by	JavaScript	using	the	open
method.	If	you	attempt	to	close	any	other	window,	a	confirm	is	generated,
which	lets	the	user	choose	whether	the	window	closes.	This	is	a	security	feature
to	prevent	"mail	bombs"	containing	self.close().	However,	if	the	window	has
only	one	document	(the	current	one)	in	its	session	history,	the	close	is	allowed
without	any	confirm.	This	is	a	special	case	for	one-off	windows	that	need	to
open	other	windows	and	then	dispose	of	themselves.

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

In	event	handlers,	you	must	specify	window.close()	instead	of	simply	using
close().	Due	to	the	scoping	of	static	objects	in	JavaScript,	a	call	to	close()
without	specifying	an	object	name	is	equivalent	to	document.close().

	1. 	Any	of	the	following	closes	the	current	window:

window.close()
self.close()
close()		2:	Close	the	main	browser	window. 	The	following	code	closes	the
main	browser	window.

top.opener.close()		3. 	The	following	example	closes	the	messageWin	window:

messageWin.close()	This	example	assumes	that	the	window	was	opened	in	a
manner	similar	to	the	following:

messageWin=window.open("")

Window.closed,	Window.open

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

confirm

Displays	a	Confirm	dialog	box	with	the	specified	message	and	OK	and	Cancel
buttons.

Window
Navigator	2.0

confirm("message")

message A	string.

A	confirm	dialog	box	looks	as	follows:

Use	the	confirm	method	to	ask	the	user	to	make	a	decision	that	requires	either
an	OK	or	a	Cancel.	The	message	argument	specifies	a	message	that	prompts	the
user	for	the	decision.	The	confirm	method	returns	true	if	the	user	chooses	OK
and	false	if	the	user	chooses	Cancel.

You	cannot	specify	a	title	for	a	confirm	dialog	box,	but	you	can	use	the	open
method	to	create	your	own	confirm	dialog.	See	open.

This	example	uses	the	confirm	method	in	the	confirmCleanUp	function	to
confirm	that	the	user	of	an	application	really	wants	to	quit.	If	the	user	chooses
OK,	the	custom	cleanUp	function	closes	the	application.

function	confirmCleanUp()	{
			if	(confirm("Are	you	sure	you	want	to	quit	this	application?"))	{
						cleanUp()
			}
}	You	can	call	the	confirmCleanUp	function	in	the	onClick	event	handler	of	a
form's	push	button,	as	shown	in	the	following	example:

<INPUT	TYPE="button"	VALUE="Quit"	onClick="confirmCleanUp()">

Window.alert,	Window.prompt

disableExternalCapture

Disables	external	event	capturing	set	by	the	enableExternalCapture	method.

Window
Navigator	4.0

disableExternalCapture()

See	enableExternalCapture.

enableExternalCapture

Allows	a	window	with	frames	to	capture	events	in	pages	loaded	from	different
locations	(servers).

Window
Navigator	4.0

enableExternalCapture()

Use	this	method	in	a	signed	script	requesting	UniversalBrowserWrite	privileges,
and	use	it	before	calling	the	captureEvents	method.

If	Communicator	sees	additional	scripts	that	cause	the	set	of	principals	in	effect
for	the	container	to	be	downgraded,	it	disables	external	capture	of	events.
Additional	calls	to	enableExternalCapture	(after	acquiring	the
UniversalBrowserWrite	privilege	under	the	reduced	set	of	principals)	can	be
made	to	enable	external	capture	again.

In	the	following	example,	the	window	is	able	to	capture	all	Click	events	that
occur	across	its	frames.

<SCRIPT	ARCHIVE="myArchive.jar"	ID="2">
function	captureClicks()	{
			netscape.security.PrivilegeManager.enablePrivilege(
						"UniversalBrowserWrite");	

			enableExternalCapture();
			captureEvents(Event.CLICK);
			...
}	</SCRIPT>

Window.disableExternalCapture,	Window.captureEvents

find

Finds	the	specified	text	string	in	the	contents	of	the	specified	window.

Window
Navigator	4.0

find(string,	casesensitive,	backward)

string (Optional)	The	text	string	for	which	to	search.

casesensitive
(Optional)	Boolean	value.	If	true,	specifies	a	case-sensitive
search.	If	you	supply	this	parameter,	you	must	also	supply
backward.

backward (Optional)	Boolean.	If	true,	specifies	a	backward	search.	If	you
supply	this	parameter,	you	must	also	supply	casesensitive.

true	if	the	string	is	found;	otherwise,	false.

When	a	string	is	specified,	the	browser	performs	a	case-insensitive,	forward
search.	If	a	string	is	not	specified,	the	method	displays	the	Find	dialog	box,
allowing	the	user	to	enter	a	search	string.

focus

Gives	focus	to	the	specified	object.

Window
Navigator	3.0

focus()

Use	the	focus	method	to	navigate	to	a	specific	window	or	frame,	and	give	it
focus.	Giving	focus	to	a	window	brings	the	window	forward	in	most	windowing
systems.

In	Navigator	3.0,	on	some	platforms,	the	focus	method	gives	focus	to	a	frame
but	the	focus	is	not	visually	apparent	(for	example,	the	frame's	border	is	not
darkened).

In	the	following	example,	the	checkPassword	function	confirms	that	a	user	has
entered	a	valid	password.	If	the	password	is	not	valid,	the	focus	method	returns
focus	to	the	Password	object	and	the	select	method	highlights	it	so	the	user	can
reenter	the	password.

function	checkPassword(userPass)	{
			if	(badPassword)	{
						alert("Please	enter	your	password	again.")
						userPass.focus()

						userPass.select()
			}
}	This	example	assumes	that	the	Password	object	is	defined	as

<INPUT	TYPE="password"	NAME="userPass">

Window.blur

forward

Points	the	browser	to	the	next	URL	in	the	current	history	list;	equivalent	to	the
user	pressing	the	browser's	Forward	button

Window
Navigator	4.0

history.forward()	forward()

This	method	performs	the	same	action	as	a	user	choosing	the	Forward	button	in
the	browser.	The	forward	method	is	the	same	as	history.go(1).

When	used	with	the	Frame	object,	forward	behaves	as	follows:	While	in	Frame
A,	you	click	the	Back	button	to	change	Frame	A's	content.	You	then	move	to
Frame	B	and	click	the	Back	button	to	change	Frame	B's	content.	If	you	move
back	to	Frame	A	and	call	FrameA.forward(),	the	content	of	Frame	B	changes
(clicking	the	Forward	button	behaves	the	same).	If	you	want	to	navigate	Frame
A	separately,	use	FrameA.history.forward().

The	following	custom	buttons	perform	the	same	operation	as	the	browser's
Forward	button:

<P><INPUT	TYPE="button"	VALUE="<	Go	Forth"
			onClick="history.forward()">
<P><INPUT	TYPE="button"	VALUE=">	Go	Forth"

			onClick="myWindow.forward()">

Window.back

handleEvent

Window
Navigator	4.0

handleEvent(event)

event

handleEvent	works	in	tandem	with	captureEvents,	releaseEvents,	and
routeEvent.	For	more	information,	see	"Events	in	Navigator	4.0".

home

Points	the	browser	to	the	URL	specified	in	preferences	as	the	user's	home	page;
equivalent	to	the	user	pressing	the	browser's	Home	button.

Window
Navigator	4.0

home()

This	method	performs	the	same	action	as	a	user	choosing	the	Home	button	in
the	browser.

moveBy

Moves	the	window	relative	to	its	current	position,	moving	the	specified	number
of	pixels.

Window
Navigator	4.0

moveBy(horizontal,	vertical)

horizontal The	number	of	pixels	by	which	to	move	the	window	horizontally.
vertical The	number	of	pixels	by	which	to	move	the	window	vertically.

This	method	moves	the	window	by	adding	or	subtracting	the	specified	number
of	pixels	to	the	current	location.

Exceeding	any	of	the	boundaries	of	the	screen	(to	hide	some	or	all	of	a	window)
requires	signed	JavaScript,	so	a	window	won't	move	past	the	screen	boundaries.
You	need	the	UniversalBrowserWrite	privilege	for	this.		Navigator	4.0	

“JavaScript	” “JavaScript	”

:

To	move	the	current	window	5	pixels	up	towards	the	top	of	the	screen	(x-axis),
and	10	pixels	towards	the	right	(y-axis)	of	the	current	window	position,	use	this
statement:

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

self.moveBy(-5,10);	//	relative	positioning

Window.moveTo

moveTo

Moves	the	top-left	corner	of	the	window	to	the	specified	screen	coordinates.

Window
Navigator	4.0

moveTo(x-coordinate,	y-coordinate)

x-coordinate The	left	edge	of	the	window	in	screen	coordinates.
y-coordinate The	top	edge	of	the	window	in	screen	coordinates.

This	method	moves	the	window	to	the	absolute	pixel	location	indicated	by	its
parameters.	The	origin	of	the	axes	is	at	absolute	position	(0,0);	this	is	the	upper
left-hand	corner	of	the	display.

Exceeding	any	of	the	boundaries	of	the	screen	(to	hide	some	or	all	of	a	window)
requires	signed	JavaScript,	so	a	window	won't	move	past	the	screen	boundaries.
You	need	the	UniversalBrowserWrite	privilege	for	this.		Navigator	4.0	

“JavaScript	” “JavaScript	”

:

To	move	the	current	window	to	25	pixels	from	the	top	boundary	of	the	screen
(x-axis),	and	10	pixels	from	the	left	boundary	of	the	screen	(y-axis),	use	this
statement:

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

self.moveTo(25,10);	//	absolute	positioning

Window.moveBy

open

Opens	a	new	web	browser	window.

Window
Navigator	2.0
Navigator	4.0:		several	new
windowFeatures

open(URL,	windowName,	windowFeatures)

URL A	string	specifying	the	URL	to	open	in	the	new	window.	See
the	Location	object	for	a	of	the	URL	components.

windowName
A	string	specifying	the	window	name	to	use	in	the	TARGET
attribute	of	a	FORM	or	A	tag.	windowName	can	contain	only
alphanumeric	or	underscore	(_)	characters.

windowFeatures
(Optional)	A	string	containing	a	comma-separated	list
determining	whether	or	not	to	create	various	standard	window
features.	These	options	are	described	below.

In	event	handlers,	you	must	specify	window.open()	instead	of	simply	using
open().	Due	to	the	scoping	of	static	objects	in	JavaScript,	a	call	to	open()
without	specifying	an	object	name	is	equivalent	to	document.open().

The	open	method	opens	a	new	Web	browser	window	on	the	client,	similar	to
choosing	New	Navigator	Window	from	the	File	menu	of	the	browser.	The	URL
argument	specifies	the	URL	contained	by	the	new	window.	If	URL	is	an	empty
string,	a	new,	empty	window	is	created.

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags7.htm#tags:A

You	can	use	open	on	an	existing	window,	and	if	you	pass	the	empty	string	for
the	URL,	you	will	get	a	reference	to	the	existing	window,	but	not	load	anything
into	it.	You	can,	for	example,	then	look	for	properties	in	the	window.

windowFeatures	is	an	optional	string	containing	a	comma-separated	list	of
options	for	the	new	window	(do	not	include	any	spaces	in	this	list).	After	a
window	is	open,	you	cannot	use	JavaScript	to	change	the	windowFeatures.	The
features	you	can	specify	are:

alwaysLowered
(Navigator	4.0)	If	yes,	creates	a	new	window	that	floats	below
other	windows,	whether	it	is	active	or	not.	This	is	a	secure
feature	and	must	be	set	in	signed	scripts.

alwaysRaised
(Navigator	4.0)	If	yes,	creates	a	new	window	that	floats	on	top
of	other	windows,	whether	it	is	active	or	not.	This	is	a	secure
feature	and	must	be	set	in	signed	scripts.

dependent

(Navigator	4.0)	If	yes,	creates	a	new	window	as	a	child	of	the
current	window.	A	dependent	window	closes	when	its	parent
window	closes.	On	Windows	platforms,	a	dependent	window
does	not	show	on	the	task	bar.

directories If	yes,	creates	the	standard	browser	directory	buttons,	such	as
What's	New	and	What's	Cool.

height (Navigator	2.0	and	3.0)	Specifies	the	height	of	the	window	in
pixels.

hotkeys
(Navigator	4.0)	If	no	(or	0),	disables	most	hotkeys	in	a	new
window	that	has	no	menu	bar.	The	security	and	quit	hotkeys
remain	enabled.

innerHeight

(Navigator	4.0)	Specifies	the	height,	in	pixels,	of	the	window's
content	area.	To	create	a	window	smaller	than	100	x	100
pixels,	set	this	feature	in	a	signed	script.	This	feature	replaces
height,	which	remains	for	backwards	compatibility.

innerWidth

(Navigator	4.0)	Specifies	the	width,	in	pixels,	of	the	window's
content	area.	To	create	a	window	smaller	than	100	x	100
pixels,	set	this	feature	in	a	signed	script.	This	feature	replaces
width,	which	remains	for	backwards	compatibility.

location If	yes,	creates	a	Location	entry	field.
menubar If	yes,	creates	the	menu	at	the	top	of	the	window.

(Navigator	4.0)	Specifies	the	vertical	dimension,	in	pixels,	of

outerHeight the	outside	boundary	of	the	window.	To	create	a	window
smaller	than	100	x	100	pixels,	set	this	feature	in	a	signed
script.

resizable If	yes,	allows	a	user	to	resize	the	window.

screenX
(Navigator	4.0)	Specifies	the	distance	the	new	window	is
placed	from	the	left	side	of	the	screen.	To	place	a	window
offscreen,	set	this	feature	in	a	signed	scripts.

screenY
(Navigator	4.0)	Specifies	the	distance	the	new	window	is
placed	from	the	top	of	the	screen.	To	place	a	window
offscreen,	set	this	feature	in	a	signed	scripts.

scrollbars If	yes,	creates	horizontal	and	vertical	scrollbars	when	the
Document	grows	larger	than	the	window	dimensions.

status If	yes,	creates	the	status	bar	at	the	bottom	of	the	window.

titlebar (Navigator	4.0)	If	yes,	creates	a	window	with	a	title	bar.	To	set
the	titlebar	to	no,	set	this	feature	in	a	signed	script.

toolbar If	yes,	creates	the	standard	browser	toolbar,	with	buttons	such
as	Back	and	Forward.

width (Navigator	2.0	and	3.0)	Specifies	the	width	of	the	window	in
pixels.

z-lock
(Navigator	4.0)	If	yes,	creates	a	new	window	that	does	not	rise
above	other	windows	when	activated.	This	is	a	secure	feature
and	must	be	set	in	signed	scripts.

Many	of	these	features	(as	noted	above)	can	either	be	yes	or	no.	For	these
features,	you	can	use	1	instead	of	yes	and	0	instead	of	no.	If	you	want	to	turn	a
feature	on,	you	can	also	simply	list	the	feature	name	in	the	windowFeatures
string.

If	windowName	does	not	specify	an	existing	window	and	you	do	not	supply	the
windowFeatures	parameter,	all	of	the	features	which	have	a	yes/no	choice	are
yes	by	default.	However,	if	you	do	supply	the	windowFeatures	parameter,	then
the	titlebar	and	hotkeys	are	still	yes	by	default,	but	the	other	features	which
have	a	yes/no	choice	are	no	by	default.

For	example,	all	of	the	following	statements	turn	on	the	toolbar	option	and	turn
off	all	other	Boolean	options:

open("",	"messageWindow",	"toolbar")
open("",	"messageWindow",	"toolbar=yes")
open("",	"messageWindow",	"toolbar=1")	The	following	statement	turn	on	the
location	and	directories	options	and	turns	off	all	other	Boolean	options:

open("",	"messageWindow",	"toolbar,directories=yes")	How	the
alwaysLowered,	alwaysRaised,	and	z-lock	features	behave	depends	on	the
windowing	hierarchy	of	the	platform.	For	example,	on	Windows,	an
alwaysLowered	or	z-locked	browser	window	is	below	all	windows	in	all	open
applications.	On	Macintosh,	an	alwaysLowered	browser	window	is	below	all
browser	windows,	but	not	necessarily	below	windows	in	other	open
applications.	Similarly	for	an	alwaysRaised	window.

You	may	use	open	to	open	a	new	window	and	then	use	open	on	that	window	to
open	another	window,	and	so	on.	In	this	way,	you	can	end	up	with	a	chain	of
opened	windows,	each	of	which	has	an	opener	property	pointing	to	the	window
that	opened	it.

Communicator	allows	a	maximum	of	100	windows	to	be	around	at	once.	If	you
open	window2	from	window1	and	then	are	done	with	window1,	be	sure	to	set
the	opener	property	of	window2	to	null.	This	allows	JavaScript	to	garbage
collect	window1.	If	you	do	not	set	the	opener	property	to	null,	the	window1
object	remains,	even	though	it's	no	longer	really	needed.

To	perform	the	following	operations	using	the	specified	screen	features,	you
need	the	UniversalBrowserWrite	privilege:

To	create	a	window	smaller	than	100	x	100	pixels	or	larger	than	the	screen
can	accommodate	by	using	innerWidth,	innerHeight,	outerWidth,	and
outerHeight.

To	place	a	window	off	screen	by	using	screenX	and	screenY.

To	create	a	window	without	a	titlebar	by	using	titlebar.

To	use	alwaysRaised,	alwaysLowered,	or	z-lock	for	any	setting.

	Navigator	4.0	 “JavaScript	” “JavaScript	”

	1.	 In	the	following	example,	the	windowOpener	function	opens	a	window
and	uses	write	methods	to	display	a	message:

function	windowOpener()	{
			msgWindow=window.open("","displayWindow","menubar=yes")
			msgWindow.document.write
						("<HEAD><TITLE>Message	window</TITLE></HEAD>")
			msgWindow.document.write
						("<CENTER><BIG>Hello,	world!</BIG></CENTER>")
}		2.	 The	following	is	an	onClick	event	handler	that	opens	a	new	client
window	displaying	the	content	specified	in	the	file	sesame.html.	The	window
opens	with	the	specified	option	settings;	all	other	options	are	false	because	they
are	not	specified.

<FORM	NAME="myform">
<INPUT	TYPE="button"	NAME="Button1"	VALUE="Open	Sesame!"
			onClick="window.open	('sesame.html',	'newWin',	
			'scrollbars=yes,status=yes,width=300,height=300')">
</FORM>

Window.close

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

print

Prints	the	contents	of	the	window.

Window
Navigator	4.0

print()

prompt

Displays	a	Prompt	dialog	box	with	a	message	and	an	input	field.

Window
Navigator	2.0

prompt(message,	inputDefault)

message A	string	to	be	displayed	as	the	message.

inputDefault (Optional)	A	string	or	integer	representing	the	default	value	of	theinput	field.

A	prompt	dialog	box	looks	as	follows:

Use	the	prompt	method	to	display	a	dialog	box	that	receives	user	input.	If	you
do	not	specify	an	initial	value	for	inputDefault,	the	dialog	box	displays
<undefined>.

You	cannot	specify	a	title	for	a	prompt	dialog	box,	but	you	can	use	the	open
method	to	create	your	own	prompt	dialog.	See	open.

prompt("Enter	the	number	of	cookies	you	want	to	order:",	12)

Window.alert,	Window.confirm

releaseEvents

Sets	the	window	or	document	to	release	captured	events	of	the	specified	type,
sending	the	event	to	objects	further	along	the	event	hierarchy.

Window
Navigator	4.0

Note

If	the	original	target	of	the	event	is	a	window,	the	window	receives	the	event
even	if	it	is	set	to	release	that	type	of	event.

releaseEvents(eventType)

eventType Type	of	event	to	be	captured.

releaseEvents	works	in	tandem	with	captureEvents,	routeEvent,	and
handleEvent.	For	more	information,	see	"Events	in	Navigator	4.0".

resizeBy

Resizes	an	entire	window	by	moving	the	window's	bottom-right	corner	by	the
specified	amount.

Window
Navigator	4.0

resizeBy(horizontal,	vertical)

horizontal The	number	of	pixels	by	which	to	resize	the	window	horizontally.
vertical The	number	of	pixels	by	which	to	resize	the	window	vertically.

This	method	changes	the	window's	dimensions	by	setting	its	outerWidth	and
outerHeight	properties.	The	upper	left-hand	corner	remains	anchored	and	the
lower	right-hand	corner	moves.	resizeBy	moves	the	window	by	adding	or
subtracting	the	specified	number	of	pixels	to	that	corner's	current	location.

Exceeding	any	of	the	boundaries	of	the	screen	(to	hide	some	or	all	of	a	window)
requires	signed	JavaScript,	so	a	window	won't	move	past	the	screen	boundaries.
In	addition,	windows	have	an	enforced	minimum	size	of	100	x	100	pixels;
resizing	a	window	to	be	smaller	than	this	minimum	requires	signed	JavaScript.
You	need	the	UniversalBrowserWrite	privilege	for	this.		Navigator	4.0	

“JavaScript	” “JavaScript	”

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

To	make	the	current	window	5	pixels	narrower	and	10	pixels	taller	than	its
current	dimensions,	use	this	statement:

self.resizeBy(-5,10);	//	relative	positioning

Window.resizeTo

resizeTo

Resizes	an	entire	window	to	the	specified	pixel	dimensions.

Window
Navigator	4.0

resizeTo(outerWidth,	outerHeight)

outerWidth An	integer	representing	the	window's	width	in	pixels.
outerHeight An	integer	representing	the	window's	height	in	pixels.

This	method	changes	the	window's	dimensions	by	setting	its	outerWidth	and
outerHeight	properties.	The	upper	left-hand	corner	remains	anchored	and	the
lower	right-hand	corner	moves.	resizeBy	moves	to	the	specified	position.	The
origin	of	the	axes	is	at	absolute	position	(0,0);	this	is	the	upper	left-hand	corner
of	the	display.

Exceeding	any	of	the	boundaries	of	the	screen	(to	hide	some	or	all	of	a	window)
requires	signed	JavaScript,	so	a	window	won't	move	past	the	screen	boundaries.
In	addition,	windows	have	an	enforced	minimum	size	of	100	x	100	pixels;
resizing	a	window	to	be	smaller	than	this	minimum	requires	signed	JavaScript.
You	need	the	UniversalBrowserWrite	privilege	for	this.		Navigator	4.0	

“JavaScript	” “JavaScript	”

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

To	make	the	window	225	pixels	wide	and	200	pixels	tall,	use	this	statement:

self.resizeTo(225,200);	//	absolute	positioning

Window.resizeBy

routeEvent

Passes	a	captured	event	along	the	normal	event	hierarchy.

Window
Navigator	4.0

routeEvent(event)

event Name	of	the	event	to	be	routed.

If	a	subobject	(document	or	layer)	is	also	capturing	the	event,	the	event	is	sent
to	that	object.	Otherwise,	it	is	sent	to	its	original	target.

routeEvent	works	in	tandem	with	captureEvents,	releaseEvents,	and
handleEvent.	For	more	information,	see	"Events	in	Navigator	4.0".

scroll

Scrolls	a	window	to	a	specified	coordinate.

Window
Navigator	3.0;	deprecated	in	4.0

In	Navigator	4.0,	scroll	is	no	longer	used	and	has	been	replaced	by	scrollTo.
scrollTo	extends	the	capabilities	of	scroll.	scroll	remains	for	backward
compatibility.

scrollBy

Scrolls	the	viewing	area	of	a	window	by	the	specified	amount.

Window
Navigator	4.0

scrollBy(horizontal,	vertical)

horizontal The	number	of	pixels	by	which	to	scroll	the	viewing	areahorizontally.
vertical The	number	of	pixels	by	which	to	scroll	the	viewing	area	vertically.

This	method	scrolls	the	content	in	the	window	if	portions	that	can't	be	seen	exist
outside	of	the	window.	scrollBy	scrolls	the	window	by	adding	or	subtracting	the
specified	number	of	pixels	to	the	current	scrolled	location.

For	this	method	to	have	an	effect	the	visible	property	of	Window.scrollbars
must	be	true.

To	scroll	the	current	window	5	pixels	towards	the	left	and	30	pixels	down	from
the	current	position,	use	this	statement:

self.scrollBy(-5,30);	//	relative	positioning

Window.scrollTo

scrollTo

Scrolls	the	viewing	area	of	the	window	so	that	the	specified	point	becomes	the
top-left	corner.

Window
Navigator	4.0

scrollTo(x-coordinate,	y-coordinate)

x-
coordinate

An	integer	representing	the	x-coordinate	of	the	viewing	area	in
pixels.

y-
coordinate

An	integer	representing	the	y-coordinate	of	the	viewing	area	in
pixels.

scrollTo	replaces	scroll.	scroll	remains	for	backward	compatibility.

The	scrollTo	method	scrolls	the	content	in	the	window	if	portions	that	can't	be
seen	exist	outside	of	the	window.	For	this	method	to	have	an	effect	the	visible
property	of	Window.scrollbars	must	be	true.

	1:	Scroll	the	current	viewing	area. 	To	scroll	the	current	window	to	the
leftmost	boundary	and	20	pixels	down	from	the	top	of	the	window,	use	this
statement:

self.scrollTo(0,20);	//	absolute	positioning		2:	Scroll	a	different	viewing
area.	The	following	code,	which	exists	in	one	frame,	scrolls	the	viewing	area	of

a	second	frame.	Two	Text	objects	let	the	user	specify	the	x	and	y	coordinates.
When	the	user	clicks	the	Go	button,	the	document	in	frame2	scrolls	to	the
specified	coordinates.

<SCRIPT>
function	scrollIt(form)	{
			var	x	=	parseInt(form.x.value)
			var	y	=	parseInt(form.y.value)
			parent.frame2.scrollTo(x,	y)
}
</SCRIPT>
<BODY>	<FORM	NAME="myForm">
<P>Specify	the	coordinates	to	scroll	to:

Horizontal:
<INPUT	TYPE="text"	NAME=x	VALUE="0"	SIZE=4>

Vertical:
<INPUT	TYPE="text"	NAME=y	VALUE="0"	SIZE=4>

<INPUT	TYPE="button"	VALUE="Go"
			onClick="scrollIt(document.myForm)">
</FORM>

Window.scrollBy

setInterval

Evaluates	an	expression	or	calls	a	function	every	time	a	specified	number	of
milliseconds	elapses,	until	canceled	by	a	call	to	clearInterval.

Window
Navigator	4.0

setInterval(expression,	msec)
setInterval(function,	msec,	arg1,	...,	argN)

function Any	function.

expression
A	string	containing	a	JavaScript	expression.	The	expression	must	be
quoted;	otherwise,	setInterval	calls	it	immediately.	For	example,
setInterval("calcnum(3,	2)",	25).

msec A	numeric	value	or	numeric	string,	in	millisecond	units.
arg1,	...,
argn (Optional)	The	arguments,	if	any,	passed	to	function.

The	timeouts	continue	to	fire	until	the	associated	window	or	frame	is	destroyed
or	the	interval	is	canceled	using	the	clearInterval	method.

Window.clearInterval,	Window.setTimeout

setTimeout

Evaluates	an	expression	or	calls	a	function	once	after	a	specified	number	of
milliseconds	elapses.

Window
Navigator	2.0:	Evaluating	an	expression.
Navigator	4.0:	Calling	a	function.

setTimeout(expression,	msec)
setTimeout(function,	msec,	arg1,	...,	argN)

expression
A	string	containing	a	JavaScript	expression.	The	expression	must	be
quoted;	otherwise,	setTimeout	calls	it	immediately.	For	example,
setTimeout("calcnum(3,	2)",	25).

msec A	numeric	value	or	numeric	string,	in	millisecond	units.
function Any	function.
arg1,	...,
argN (Optional)	The	arguments,	if	any,	passed	to	function.

The	setTimeout	method	evaluates	an	expression	or	calls	a	function	after	a
specified	amount	of	time.	It	does	not	act	repeatedly.	For	example,	if	a
setTimeout	method	specifies	five	seconds,	the	expression	is	evaluated	or	the
function	is	called	after	five	seconds,	not	every	five	seconds.	For	repetitive
timeouts,	use	the	setInterval	method.

setTimeout	does	not	stall	the	script.	The	script	continues	immediately	(not
waiting	for	the	timeout	to	expire).	The	call	simply	schedules	an	additional
future	event.

	1. 	The	following	example	displays	an	alert	message	five	seconds	(5,000
milliseconds)	after	the	user	clicks	a	button.	If	the	user	clicks	the	second	button
before	the	alert	message	is	displayed,	the	timeout	is	canceled	and	the	alert	does
not	display.

<SCRIPT	LANGUAGE="JavaScript">
function	displayAlert()	{
			alert("5	seconds	have	elapsed	since	the	button	was	clicked.")
}
</SCRIPT>
<BODY>
<FORM>
Click	the	button	on	the	left	for	a	reminder	in	5	seconds;	
click	the	button	on	the	right	to	cancel	the	reminder	before	
it	is	displayed.
<P>
<INPUT	TYPE="button"	VALUE="5-second	reminder"
			NAME="remind_button"
			onClick="timerID=setTimeout('displayAlert()',5000)">
<INPUT	TYPE="button"	VALUE="Clear	the	5-second	reminder"
			NAME="remind_disable_button"
			onClick="clearTimeout(timerID)">
</FORM>
</BODY>		2. 	The	following	example	displays	the	current	time	in	a	Text
object.	The	showtime	function,	which	is	called	recursively,	uses	the	setTimeout
method	to	update	the	time	every	second.

<HEAD>
<SCRIPT	LANGUAGE="JavaScript">
<!--
var	timerID	=	null
var	timerRunning	=	false
function	stopclock(){
			if(timerRunning)
						clearTimeout(timerID)
			timerRunning	=	false
}

function	startclock(){
			//	Make	sure	the	clock	is	stopped
			stopclock()
			showtime()
}
function	showtime(){
			var	now	=	new	Date()
			var	hours	=	now.getHours()
			var	minutes	=	now.getMinutes()
			var	seconds	=	now.getSeconds()
			var	timeValue	=	""	+	((hours	>	12)	?	hours	-	12	:	hours)
			timeValue	+=	((minutes	<	10)	?	":0"	:	":")	+	minutes
			timeValue	+=	((seconds	<	10)	?	":0"	:	":")	+	seconds
			timeValue	+=	(hours	>=	12)	?	"	P.M."	:	"	A.M."
			document.clock.face.value	=	timeValue	
			timerID	=	setTimeout("showtime()",1000)
			timerRunning	=	true
}
//-->
</SCRIPT>
</HEAD>	<BODY	onLoad="startclock()">
<FORM	NAME="clock"	onSubmit="0">
			<INPUT	TYPE="text"	NAME="face"	SIZE=12	VALUE	="">
</FORM>
</BODY>

Window.clearTimeout,	Window.setInterval

stop

Stops	the	current	download.

Window
Navigator	4.0

stop()

Definition

This	method	performs	the	same	action	as	a	user	choosing	the	Stop	button	in	the
browser.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onAbort
	abort		JavaScript	()	abort	

Image
Navigator	3.0

onAbort="handlerText"

handlerText JavaScript		JavaScript	

type
target

Image		onAbort	

<IMG	NAME="aircraft"	SRC="f15e.gif"
			onAbort="alert('')">

onError,	onLoad

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

event
The	event	object	contains	properties	that	describe	a	JavaScript	event,	and	is
passed	as	an	argument	to	an	event	handler	when	the	event	occurs.

Navigator	4.0
In	the	case	of	a	mouse-down	event,	for	example,	the	event	object	contains	the
type	of	event	(in	this	case	MouseDown),	the	x	and	y	position	of	the	cursor	at	the
time	of	the	event,	a	number	representing	the	mouse	button	used,	and	a	field
containing	the	modifier	keys	(Control,	Alt,	Meta,	or	Shift)	that	were	depressed
at	the	time	of	the	event.	The	properties	used	within	the	event	object	vary	from
one	type	of	event	to	another.	This	variation	is	provided	in	thes	of	individual
event	handlers.

For	more	information,	see	"General	Information	about	Events".

event	objects	are	created	by	Communicator	when	an	event	occurs.	You	do	not
create	them	yourself.

Setting	any	property	of	this	object	requires	the	UniversalBrowserWrite
privilege.	In	addition,	getting	the	data	property	of	the	DragDrop	event	requires
the	UniversalBrowserRead	privilege.		Navigator	4.0	
“JavaScript	”

Not	all	of	these	properties	are	relevant	to	each	event	type.	To	learn	which
properties	are	used	by	an	event,	see	the	"Event	object	properties	used"	section
of	the	individual	event	handler.

target String	representing	the	object	to	which	the	event	was	originally	sent.

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

(All	events)
type String	representing	the	event	type.	(All	events)

data Returns	an	array	of	strings	containing	the	URLs	of	the	dropped
objects.	Passed	with	the	DragDrop	event.

height Represents	the	height	of	the	window	or	frame.

layerX

Number	specifying	either	the	object	width	when	passed	with	the
resize	event,	or	the	cursor's	horizontal	position	in	pixels	relative	to
the	layer	in	which	the	event	occurred.	Note	that	layerX	is
synonymous	with	x.

layerY

Number	specifying	either	the	object	height	when	passed	with	the
resize	event,	or	the	cursor's	vertical	position	in	pixels	relative	to	the
layer	in	which	the	event	occurred.	Note	that	layerY	is	synonymous
with	y.

modifiers
String	specifying	the	modifier	keys	associated	with	a	mouse	or	key
event.	Modifier	key	values	are:	ALT_MASK,	CONTROL_MASK,
SHIFT_MASK,	and	META_MASK.

pageX Number	specifying	the	cursor's	horizontal	position	in	pixels,	relative
to	the	page.

pageY Number	specifying	the	cursor's	vertical	position	in	pixels	relative	to
the	page.

screenX Number	specifying	the	cursor's	horizontal	position	in	pixels,	relative
to	the	screen.

screenY Number	specifying	the	cursor's	vertical	position	in	pixels,	relative	to
the	screen.

which
Number	specifying	either	the	mouse	button	that	was	pressed	or	the
ASCII	value	of	a	pressed	key.	For	a	mouse,	1	is	the	left	button,	2	is
the	middle	button,	and	3	is	the	right	button.

width Represents	the	width	of	the	window	or	frame.

The	following	example	uses	the	event	object	to	provide	the	type	of	event	to	the
alert	message.	<A	HREF="http://home.netscape.com"	onClick='alert("Link	got
an	event:	"
+	event.type)'>Click	for	link	event	The	following	example	uses	the	event
object	in	an	explicitly	called	event	handler.

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

<SCRIPT>
function	fun1(evnt)	{
			alert	("Document	got	an	event:	"	+	evnt.type);
			alert	("x	position	is	"	+	evnt.layerX);
			alert	("y	position	is	"	+	evnt.layerY);
			if	(evnt.modifiers	&	Event.ALT_MASK)
						alert	("Alt	key	was	down	for	event.");
			return	true;
			}
document.onmousedown	=	fun1;
</SCRIPT>

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onUnload
	unload		JavaScript		unload	

Window
Navigator	2.0

onUnload="handlerText"

handlerText JavaScript		JavaScript	

onUnload		BODY		FRAMESET	<BODY	onUnload="...">

	onUnload	(BODY)	onUnload	(FRAMESET)

type
target

	Web		onUnload		cleanUp	

<BODY	onUnload="cleanUp()">

onLoad

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

break
Terminates	the	current	while	or	for	loop	and	transfers	program	control	to	the
statement	following	the	terminated	loop.

Navigator	2.0,	LiveWire	1.0

break
break	label

Argument

label Identifier	associated	with	the	label	of	the	statement.

The	break	statement	can	now	include	an	optional	label	that	allows	the	program
to	break	out	of	a	labeled	statement.	This	type	of	break	must	be	in	a	statement
identified	by	the	label	used	by	break.

The	statements	in	a	labeled	statement	can	be	of	any	type.

The	following	function	has	a	break	statement	that	terminates	the	while	loop
when	e	is	3,	and	then	returns	the	value	3	*	x.

function	testBreak(x)	{
			var	i	=	0
			while	(i	<	6)	{
						if	(i	==	3)
									break
						i++

			}
			return	i*x
}	In	the	following	example,	a	statement	labeled	checkiandj	contains	a	statement
labeled	checkj.	If	break	is	encountered,	the	program	breaks	out	of	the	checkj
statement	and	continues	with	the	remainder	of	the	checkiandj	statement.	If
break	had	a	label	of	checkiandj,	the	program	would	break	out	of	the	checkiandj
statement	and	continue	at	the	statement	following	checkiandj.

checkiandj	:	
			if	(4==i)	{	
						document.write("You've	entered	"	+	i	+	".
");
						checkj	:	
									if	(2==j)	{
												document.write("You've	entered	"	+	j	+	".
");	
												break	checkj;	
												document.write("The	sum	is	"	+	(i+j)	+	".
");	
									}	
						document.write(i	+	"-"	+	j	+	"="	+	(i-j)	+	".
");	
			}

labeled,	switch

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

comment

Navigator	2.0,	LiveWire	1.0

//	
/*		*/

JavaScript		Java	

	/*	*/	

//	
/*	
*/

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

continue
Terminates	execution	of	the	block	of	statements	in	a	while	or	for	loop,	and
continues	execution	of	the	loop	with	the	next	iteration.

Navigator	2.0,	LiveWire	1.0

continue
continue	label

Argument

label Identifier	associated	with	the	label	of	the	statement.

In	contrast	to	the	break	statement,	continue	does	not	terminate	the	execution	of
the	loop	entirely:	instead,

In	a	while	loop,	it	jumps	back	to	the	condition.

In	a	for	loop,	it	jumps	to	the	update	expression.

The	continue	statement	can	now	include	an	optional	label	that	allows	the
program	to	terminate	execution	of	a	labeled	statement	and	continue	to	the
specified	labeled	statement.	This	type	of	continue	must	be	in	a	looping
statement	identified	by	the	label	used	by	continue.

The	following	example	shows	a	while	loop	that	has	a	continue	statement	that
executes	when	the	value	of	i	is	3.	Thus,	n	takes	on	the	values	1,	3,	7,	and	12.

i	=	0

n	=	0
while	(i	<	5)	{
			i++
			if	(i	==	3)
						continue
			n	+=	i
}	In	the	following	example,	a	statement	labeled	checkiandj	contains	a	statement
labeled	checkj.	If	continue	is	encountered,	the	program	continues	at	the	top	of
the	checkj	statement.	Each	time	continue	is	encountered,	checkj	reiterates	until
its	condition	returns	false.	When	false	is	returned,	the	remainder	of	the
checkiandj	statement	is	completed.	checkiandj	reiterates	until	its	condition
returns	false.	When	false	is	returned,	the	program	continues	at	the	statement
following	checkiandj.

If	continue	had	a	label	of	checkiandj,	the	program	would	continue	at	the	top	of
the	checkiandj	statement.

checkiandj	:	
while	(i<4)	{
			document.write(i	+	"
");	
			i+=1;				checkj	:	
			while	(j>4)	{
						document.write(j	+	"
");	
						j-=1;	
						if	((j%2)==0)
									continue	checkj;	
						document.write(j	+	"	is	odd.
");
			}	
			document.write("i	=	"	+	i	+	"
");
			document.write("j	=	"	+	j	+	"
");	
}

labeled

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

delete

Navigator	4.0,	Netscape	Server	3.0

delete	objectName.property
delete	objectName[index]
delete	property

objectName

index

	delete	

	delete		with	

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

do...while

Navigator	4.0,	Netscape	Server	3.0

do	
			statement
while	(condition);

statement

condition 	do	while	

do		i		5

do	{
			i+=1
			document.write(i);
while	(i<5);

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

export

Navigator	4.0,	Netscape	Server	3.0

export	name1,	name2,	...,	nameN
export	*

nameN
*

()	import	

import

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

for

Navigator	2.0,	LiveWire	1.0

for	([initial-expression;]	[condition;]	[increment-expression])	{
			statements
}

initial-expression 	var	

condition 	statements	 	break	

increment-expression
statements

	i		0	i		9	i		1

for	(var	i	=	0;	i	<	9;	i++)	{
			n	+=	i
			myfunc(n)
}

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

for...in
JavaScript	

Navigator	2.0,	LiveWire	1.0

for	(variable	in	object)	{
			statements}

variable
object
statements

function	dump_props(obj,	objName)	{
			var	result	=	""
			for	(var	i	in	obj)	{
						result	+=	objName	+	"."	+	i	+	"	=	"	+	obj[i]	+	"
"
			}
			result	+=	"<HR>"
			return	result
}

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

function
	JavaScript	

Navigator	2.0,	LiveWire	1.0

function	name([param]	[,	param]	[...,	param])	{
			statements}

name

param 	255	

	 return		function	

	 Function	

//
//	abc	
function	calc_sales(units_a,	units_b,	units_c)	{
			return	units_a*79	+	units_b*129	+	units_c*699
}

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

if...else

Navigator	2.0,	LiveWire	1.0

if	(condition)	{
			statements1}
[else	{
			statements2}]

condition 	JavaScript		condition	
statements1	

statements1
statements2 	JavaScript		if	

if	(cipher_char	==	from_char)	{
			result	=	result	+	to_char
			x++}
else
			result	=	result	+	clear_char

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

import

Navigator	4.0,	Netscape	Server	3.0

import	objectName.name1,	objectName.name2,	...,	objectName.nameN
import	objectName.*

nameN
objectName
*

objectName		f		pobj	

import	obj.f,	obj.p		f		p		obj	

(export)()	import	

export

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

labeled
	 break		 continue	

Navigator	4.0,	Netscape	Server	3.0

break		 continue		label		label		 break		 continue	

label	:
			statement

statement break	continue	

	 break		 break		 continue		 continue	

break,	continue

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

return

Navigator	2.0,	LiveWire	1.0

return	

	x		x	

function	square(x)	{
			return	x	*	x
}

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

switch
Allows	a	program	to	evaluate	an	expression	and	attempt	to	match	the
expression's	value	to	a	case	label.

Navigator	4.0,	Netscape	Server	3.0

switch	(expression){
			case	label	:	
						statement;
						break;
			case	label	:	
						statement;
						break;
			...
			default	:	statement;
}

expression Value	matched	against	label.
label Identifier	used	to	match	against	expression.
statement Any	statement.

If	a	match	is	found,	the	program	executes	the	associated	statement.

The	program	first	looks	for	a	label	matching	the	value	of	expression	and	then
executes	the	associated	statement.	If	no	matching	label	is	found,	the	program
looks	for	the	optional	default	statement,	and	if	found,	executes	the	associated
statement.	If	no	default	statement	is	found,	the	program	continues	execution	at
the	statement	following	the	end	of	switch.

The	optional	break	statement	associated	with	each	case	label	ensures	that	the
program	breaks	out	of	switch	once	the	matched	statement	is	executed	and
continues	execution	at	the	statement	following	switch.	If	break	is	omitted,	the
program	continues	execution	at	the	next	statement	in	the	switch	statement.

In	the	following	example,	if	expression	evaluates	to	"Bananas,"	the	program
matches	the	value	with	case	"Bananas"	and	executes	the	associated	statement.
When	break	is	encountered,	the	program	breaks	out	of	switch	and	executes	the
statement	following	switch.	If	break	were	omitted,	the	statement	for	case
"Cherries"	would	also	be	executed.

switch	(i)	{
			case	"Oranges"	:	
						document.write("Oranges	are	$0.59	a	pound.
");	
						break;	
			case	"Apples"	:	
						document.write("Apples	are	$0.32	a	pound.
");	
						break;	
			case	"Bananas"	:	
						document.write("Bananas	are	$0.48	a	pound.
");	
						break;	
			case	"Cherries"	:	
						document.write("Cherries	are	$3.00	a	pound.
");	
						break;	
			default	:	
						document.write("Sorry,	we	are	out	of	"	+	i	+	".
");	
}	
document.write("Is	there	anything	else	you'd	like?
");

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

var

Navigator	2.0,	LiveWire	1.0

var	varname	[=	value]	[...,	varname	[=	value]]

varname
value

var	num_hits	=	0,	cust_no	=	0

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

while

Navigator	2.0,	LiveWire	1.0

while	(condition)	{
			statements
}

condition 	while	

statements

	while		n		3	

n	=	0
x	=	0
while(n	<	3)	{
			n	++
			x	+=	n
}
n		x	x		n	

n	=	1x	=	1

n	=	2x	=	3

n	=	3x	=	6

	n	<	3	

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

with

Navigator	2.0,	LiveWire	1.0

with	(object){
			statements
}

object
statements

	 Math		with		 PI	 cos		 sin	JavaScript		 Math	

var	a,	x,	y
var	r=10
with	(Math)	{
			a	=	PI	*	r	*	r
			x	=	r	*	cos(PI)
			y	=	r	*	sin(PI/2)
}

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Array
Represents	an	array	of	elements.

Core	object
Navigator	3.0,	LiveWire	1.0

The	Array	object	constructor:

new	Array(arrayLength);
new	Array(element0,	element1,	...,	elementN);

arrayLength (Optional)	The	initial	length	of	the	array.	You	can	access	this	valueusing	the	length	.

elementN

(Optional)	A	list	of	values	for	the	array's	elements.	When	this	form
is	specified,	the	array	is	initialized	with	the	specified	values	as	its
elements,	and	the	array's	length		is	set	to	the	number	of
arguments.

In	Navigator	3.0,	you	can	specify	an	initial	length	when	you	create	the	array.
The	following	code	creates	an	array	of	five	elements:

billingMethod	=	new	Array(5)	When	you	create	an	array,	all	of	its	elements	are
initially	null.	The	following	code	creates	an	array	of	25	elements,	then	assigns
values	to	the	first	three	elements:

musicTypes	=	new	Array(25)
musicTypes[0]	=	"R&B"
musicTypes[1]	=	"Blues"
musicTypes[2]	=	"Jazz"	However,	in	Navigator	4.0,	if	you	specify

LANGUAGE="JavaScript1.2"	in	the	<SCRIPT>	tag,	using	new	Array(1)
creates	a	new	array	with	a[0]=1.

An	array's	length	increases	if	you	assign	a	value	to	an	element	higher	than	the
current	length	of	the	array.	The	following	code	creates	an	array	of	length	0,	then
assigns	a	value	to	element	99.	This	changes	the	length	of	the	array	to	100.

colors	=	new	Array()
colors[99]	=	"midnightblue"	You	can	construct	a	dense	array	of	two	or	more
elements	starting	with	index	0	if	you	define	initial	values	for	all	elements.	A
dense	array	is	one	in	which	each	element	has	a	value.	The	following	code
creates	a	dense	array	with	three	elements:

myArray	=	new	Array("Hello",	myVar,	3.14159)	In	Navigator	2.0,	you	must
index	an	array	by	its	ordinal	number,	for	example	document.forms[0].	In
Navigator	3.0	and	later,	you	can	index	an	array	by	either	its	ordinal	number	or
by	its	name	(if	defined).	For	example,	assume	you	define	the	following	array:

myArray	=	new	Array("Wind","Rain","Fire")	You	can	then	refer	to	the	first
element	of	the	array	as	myArray[0]	or	myArray["Wind"].

In	Navigator	4.0,	the	result	of	a	match	between	a	regular	expression	and	a	string
can	create	an	array.	This	array	has	properties	and	elements	that	provide
information	about	the	match.	An	array	is	the	return	value	of	RegExp.exec,
String.match,	and	String.replace.	To	help	explain	these	properties	and	elements,
look	at	the	following	example	and	then	refer	to	the		below:

<SCRIPT	LANGUAGE="JavaScript1.2">
//Match	one	d	followed	by	one	or	more	b's	followed	by	one	d
//Remember	matched	b's	and	the	following	d
//Ignore	case	myRe=/d(b+)(d)/i;
myArray	=	myRe.exec("cdbBdbsbz");	</SCRIPT>	The	properties	and	elements
returned	from	this	match	are	as	follows:

Property/Element Example

input
A			that	reflects	the	original	string
against	which	the	regular	expression	was
matched.

cdbBdbsbz

A			that	is	the	zero-based	index	of	the

index match	in	the	string. 1

[0] A		element	that	specifies	the	last	matched
characters. dbBd

[1],	...[n]

	elements	that	specify	the	parenthesized
substring	matches,	if	included	in	the	regular
expression.	The	number	of	possible
parenthesized	substrings	is	unlimited.

[1]=bB		
[2]=d

						

index For	an	array	created	by	a	regular	expression	match,	the	zero-based
index	of	the	match	in	the	string.

input For	an	array	created	by	a	regular	expression	match,	reflects	the
original	string	against	which	the	regular	expression	was	matched.

length Reflects	the	number	of	elements	in	an	array
prototype Allows	the	addition	of	properties	to	an	Array	object.

concat Joins	two	arrays	and	returns	a	new	array.
join Joins	all	elements	of	an	array	into	a	string.
pop Removes	the	last	element	from	an	array	and	returns	that	element.

push Adds	one	or	more	elements	to	the	end	of	an	array	and	returns	that	last
element	added.

reverse Transposes	the	elements	of	an	array:	the	first	array	element	becomes
the	last	and	the	last	becomes	the	first.

shift Removes	the	first	element	from	an	array	and	returns	that	element
slice Extracts	a	section	of	an	array	and	returns	a	new	array.
splice Adds	and/or	removes	elements	from	an	array.
sort Sorts	the	elements	of	an	array.
toString Returns	a	string	representing	the	specified	object.

unshift Adds	one	or	more	elements	to	the	front	of	an	array	and	returns	the	new
length	of	the	array.

	1. 	The	following	example	creates	an	array,	msgArray,	with	a	length	of	0,	then
assigns	values	to	msgArray[0]	and	msgArray[99],	changing	the	length	of	the
array	to	100.

msgArray	=	new	Array()
msgArray	[0]	=	"Hello"
msgArray	[99]	=	"world"
//	The	following	statement	is	true,
//	because	defined	msgArray	[99]	element.
if	(msgArray	.length	==	100)	
			document.write("The	length	is	100.")	See	also	for	 onError.

	2:	Two-dimensional	array. 	The	following	code	creates	a	two-dimensional
array	and	displays	the	results.

a	=	new	Array(4)
for	(i=0;	i	<	4;	i++)	{
			a[i]	=	new	Array(4)
			for	(j=0;	j	<	4;	j++)	{
						a[i][j]	=	"["+i+","+j+"]"
			}
}
for	(i=0;	i	<	4;	i++)	{
			str	=	"Row	"+i+":"
			for	(j=0;	j	<	4;	j++)	{
						str	+=	a[i][j]
			}
			document.write(str,"<p>")
}	This	example	displays	the	following	results:

Multidimensional	array	test
Row	0:[0,0][0,1][0,2][0,3]
Row	1:[1,0][1,1][1,2][1,3]
Row	2:[2,0][2,1][2,2][2,3]
Row	3:[3,0][3,1][3,2][3,3]

Image

index

For	an	array	created	by	a	regular	expression	match,	the	zero-based	index	of	the
match	in	the	string.

Array

Navigator	4.0,	Netscape	Server	3.0

input

For	an	array	created	by	a	regular	expression	match,	reflects	the	original	string
against	which	the	regular	expression	was	matched.

Array

Navigator	4.0,	Netscape	Server	3.0

length

An	integer	that	specifies	the	number	of	elements	in	an	array.	You	can	set	the
length	property	to	truncate	an	array	at	any	time.	You	cannot	extend	an	array;	for
example,	if	you	set	length	to	3	when	it	is	currently	2,	the	array	will	still	contain
only	2	elements.

Array
Navigator	3.0,	LiveWire	1.0

In	the	following	example,	the	getChoice	function	uses	the	length	property	to
iterate	over	every	element	in	the	musicType	array.	musicType	is	a	select	element
on	the	musicForm	form.

function	getChoice()	{
			for	(var	i	=	0;	i	<	document.musicForm.musicType.length;	i++)	{
						if	(document.musicForm.musicType.options[i].selected	==	true)	{
									return	document.musicForm.musicType.options[i].text
						}
			}
}	The	following	example	shortens	the	array	statesUS	to	a	length	of	50	if	the
current	length	is	greater	than	50.

if	(statesUS.length	>	50)	{
			statesUS.length=50
			alert("The	U.S.	has	only	50	states.	New	length	is	"	+	statesUS.length)
}

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

Array
Navigator	3.0,	LiveWire	1.0

concat

Joins	two	arrays	and	returns	a	new	array.

Array
Navigator	4.0,	Netscape	Server	3.0

concat(arrayName2)

arrayName2 Name	of	the	array	to	concatenate	to	this	array.

concat	does	not	alter	the	original	arrays,	but	returns	a	"one	level	deep"	copy	that
contains	copies	of	the	same	elements	combined	from	the	original	arrays.
Elements	of	the	original	arrays	are	copied	into	the	new	array	as	follows:

Object	references	(and	not	the	actual	object)	--	concat	copies	object
references	into	the	new	array.	Both	the	original	and	new	array	refer	to	the
same	object.	If	a	referenced	object	changes,	the	changes	are	visible	to	both
the	new	and	original	arrays.

Strings	and	numbers	(not	String	and	Number	objects)--	concat	copies
strings	and	numbers	into	the	new	array.	Changes	to	the	string	or	number	in
one	array	does	not	affect	the	other	arrays.

If	a	new	element	is	added	to	either	array,	the	other	array	is	not	affected.

join

Joins	all	elements	of	an	array	into	a	string.

Array
Navigator	3.0,	LiveWire	1.0

join(separator)

separator
Specifies	a	string	to	separate	each	element	of	the	array.	The	separator
is	converted	to	a	string	if	necessary.	If	omitted,	the	array	elements	are
separated	with	a	comma.

The	string	conversion	of	all	array	elements	are	joined	into	one	string.

The	following	example	creates	an	array,	a	with	three	elements,	then	joins	the
array	three	times:	using	the	default	separator,	then	a	comma	and	a	space,	and
then	a	plus.

a	=	new	Array("Wind","Rain","Fire")
document.write(a.join()	+"
")
document.write(a.join(",	")	+"
")
document.write(a.join("	+	")	+"
")	This	code	produces	the	following
output:

Wind,Rain,Fire
Wind,	Rain,	Fire

Wind	+	Rain	+	Fire

Array.reverse

pop

Removes	the	last	element	from	an	array	and	returns	that	element.	This	method
changes	the	length	of	the	array.

Array
Navigator	4.0,	Netscape	Server	3.0

pop()

The	following	code	displays	the	myFish	array	before	and	after	removing	its	last
element.	It	also	displays	the	removed	element:

myFish	=	["angel",	"clown",	"mandarin",	"surgeon"];
document.writeln("myFish	before:	"	+	myFish);
popped	=	myFish.pop();
document.writeln("myFish	after:	"	+	myFish);
document.writeln("popped	this	element:	"	+	popped);	This	example	displays	the
following:

myFish	before:	["angel",	"clown",	"mandarin",	"surgeon"]
myFish	after:	["angel",	"clown",	"mandarin"]
popped	this	element:	surgeon

push,	shift,	unshift

push

Adds	one	or	more	elements	to	the	end	of	an	array	and	returns	that	last	element
added.	This	method	changes	the	length	of	the	array.

Array
Navigator	4.0,	Netscape	Server	3.0

push(elt1,	...,	eltN)

elt1,	...,	eltN The	elements	to	add	to	the	end	of	the	array.

The	behavior	of	the	push	method	is	analogous	to	the	push	function	in	Perl	4.
Note	that	this	behavior	is	different	in	Perl	5.

The	following	code	displays	the	myFish	array	before	and	after	adding	elements
to	its	end.	It	also	displays	the	last	element	added:

myFish	=	["angel",	"clown"];
document.writeln("myFish	before:	"	+	myFish);
pushed	=	myFish.push("drum",	"lion");
document.writeln("myFish	after:	"	+	myFish);
document.writeln("pushed	this	element	last:	"	+	pushed);	This	example	displays
the	following:

myFish	before:	["angel",	"clown"]
myFish	after:	["angel",	"clown",	"drum",	"lion"]

pushed	this	element	last:	lion

pop,	shift,	unshift

reverse

Transposes	the	elements	of	an	array:	the	first	array	element	becomes	the	last	and
the	last	becomes	the	first.

Array
Navigator	3.0,	LiveWire	1.0

reverse()

The	reverse	method	transposes	the	elements	of	the	calling	array	object.

The	following	example	creates	an	array	myArray,	containing	three	elements,
then	reverses	the	array.

myArray	=	new	Array("one",	"two",	"three")
myArray.reverse()	This	code	changes	myArray	so	that:

myArray[0]	is	"three"
myArray[1]	is	"two"
myArray[2]	is	"one"

Array.join,	Array.sort

shift

Removes	the	first	element	from	an	array	and	returns	that	element.	This	method
changes	the	length	of	the	array.

Array
Navigator	4.0,	Netscape	Server	3.0

shift()

The	following	code	displays	the	myFish	array	before	and	after	removing	its	first
element.	It	also	displays	the	removed	element:

myFish	=	["angel",	"clown",	"mandarin",	"surgeon"];
document.writeln("myFish	before:	"	+	myFish);
shifted	=	myFish.shift();
document.writeln("myFish	after:	"	+	myFish);
document.writeln("Removed	this	element:	"	+	shifted);	This	example	displays
the	following:

myFish	before:	["angel",	"clown",	"mandarin",	"surgeon"]
myFish	after:	["clown",	"mandarin",	"surgeon"]
Removed	this	element:	angel

pop,	push,	unshift

slice

Extracts	a	section	of	an	array	and	returns	a	new	array.

Array
Navigator	4.0,	Netscape	Server	3.0

slice(begin,end)

begin Zero-based	index	at	which	to	begin	extraction.

end

(Optional)	Zero-based	index	at	which	to	end	extraction:

slice	extracts	up	to	but	not	including	end.	slice(1,4)	extracts	the
second	element	through	the	fourth	element	(elements	indexed	1,	2,
and	3)
As	a	negative	index,	end	indicates	an	offset	from	the	end	of	the
sequence.	slice(2,-1)	extracts	the	third	element	through	the	second
to	last	element	in	the	sequence.
If	end	is	omitted,	slice	extracts	to	the	end	of	the	sequence.

slice	does	not	alter	the	original	array,	but	returns	a	new	"one	level	deep"	copy
that	contains	copies	of	the	elements	sliced	from	the	original	array.	Elements	of
the	original	array	are	copied	into	the	new	array	as	follows:

Object	references	(and	not	the	actual	object)	--	slice	copies	object	references
into	the	new	array.	Both	the	original	and	new	array	refer	to	the	same	object.	If	a
referenced	object	changes,	the	changes	are	visible	to	both	the	new	and	original
arrays.

Strings	and	numbers	(not	String	and	Number	objects)--	slice	copies	strings	and
numbers	into	the	new	array.	Changes	to	the	string	or	number	in	one	array	does
not	affect	the	other	array.

If	a	new	element	is	added	to	either	array,	the	other	array	is	not	affected.

In	the	following	example,	slice	creates	a	new	array,	newCar,	from	myCar.	Both
include	a	reference	to	the	object	myHonda.	When	the	color	of	myHonda	is
changed	to	purple,	both	arrays	reflect	the	change.

<SCRIPT	LANGUAGE="JavaScript1.2">	//Using	slice,	create	newCar	from
myCar.
myHonda	=	{color:"red",wheels:4,engine:{cylinders:4,size:2.2}}	
myCar	=	[myHonda,	2,	"cherry	condition",	"purchased	1997"]	
newCar	=	myCar.slice(0,2)	//Write	the	values	of	myCar,	newCar,	and	the	color
of	myHonda	
//	referenced	from	both	arrays.
document.write("myCar	=	"	+	myCar	+	"
")
document.write("newCar	=	"	+	newCar	+	"
")	
document.write("myCar[0].color	=	"	+	myCar[0].color	+	"
")	
document.write("newCar[0].color	=	"	+	newCar[0].color	+	"

")
//Change	the	color	of	myHonda.
myHonda.color	=	"purple"
document.write("The	new	color	of	my	Honda	is	"	+	myHonda.color	+	"

")	//Write	the	color	of	myHonda	referenced	from	both	arrays.
document.write("myCar[0].color	=	"	+	myCar[0].color	+	"
")	
document.write("newCar[0].color	=	"	+	newCar[0].color	+	"
")
</SCRIPT>	This	script	writes:

myCar	=	[{color:"red",	wheels:4,	engine:{cylinders:4,	size:2.2}},	2,
			"cherry	condition",	"purchased	1997"]	
newCar	=	[{color:"red",	wheels:4,	engine:{cylinders:4,	size:2.2}},	2]	
myCar[0].color	=	red	newCar[0].color	=	red	
The	new	color	of	my	Honda	is	purple	
myCar[0].color	=	purple	
newCar[0].color	=	purple

splice

Changes	the	content	of	an	array,	adding	new	elements	while	removing	old
elements.

Array
Navigator	4.0,	Netscape	Server	3.0

splice(index,	howMany,	newElt1,	...,	newEltN)

index Index	at	which	to	start	changing	the	array.

howMany
An	integer	indicating	the	number	of	old	array	elements	to	remove.	If
howMany	is	0,	no	elements	are	removed.	In	this	case,	you	should
specify	at	least	one	new	element.

newElt1,
...,
newEltN

(Optional)	The	elements	to	add	to	the	array.	If	you	don't	specify	any
elements,	splice	simply	removes	elements	from	the	array.

If	you	specify	a	different	number	of	elements	to	insert	than	the	number	you're
removing,	the	array	will	have	a	different	length	at	the	end	of	the	call.

If	howMany	is	1,	this	method	returns	the	single	element	that	it	removes.	If
howMany	is	more	than	1,	the	method	returns	an	array	containing	the	removed
elements.

The	following	script	illustrate	the	use	of	splice:

<SCRIPT	LANGUAGE="JavaScript1.2">	myFish	=	["angel",	"clown",
"mandarin",	"surgeon"];
document.writeln("myFish:	"	+	myFish	+	"
");	removed	=	myFish.splice(2,
0,	"drum");
document.writeln("After	adding	1:	"	+	myFish);
document.writeln("removed	is:	"	+	removed	+	"
");	removed	=
myFish.splice(3,	1)
document.writeln("After	removing	1:	"	+	myFish);
document.writeln("removed	is:	"	+	removed	+	"
");	removed	=
myFish.splice(2,	1,	"trumpet")
document.writeln("After	replacing	1:	"	+	myFish);
document.writeln("removed	is:	"	+	removed	+	"
");	removed	=
myFish.splice(0,	2,	"parrot",	"anemone",	"blue")
document.writeln("After	replacing	2:	"	+	myFish);
document.writeln("removed	is:	"	+	removed);	</SCRIPT>	This	script	displays:

myFish:	["angel",	"clown",	"mandarin",	"surgeon"]	After	adding	1:	["angel",
"clown",	"drum",	"mandarin",	"surgeon"]
removed	is:	undefined	After	removing	1:	["angel",	"clown",	"drum",	"surgeon"]
removed	is:	mandarin	After	replacing	1:	["angel",	"clown",	"trumpet",
"surgeon"]
removed	is:	drum	After	replacing	2:	["parrot",	"anemone",	"blue",	"trumpet",
"surgeon"]
removed	is:	["angel",	"clown"]

sort

Sorts	the	elements	of	an	array.

Array
Navigator	3.0,	LiveWire	1.0
Navigator	4.0:	modified	behavior.

sort(compareFunction)

compareFunction
Specifies	a	function	that	defines	the	sort	order.	If	omitted,	the
array	is	sorted	lexicographically	(in	dictionary	order)
according	to	the	string	conversion	of	each	element.

If	compareFunction	is	not	supplied,	elements	are	sorted	by	converting	them	to
strings	and	comparing	strings	in	lexicographic	("dictionary"	or	"telephone
book,"	not	numerical)	order.	For	example,	"80"	comes	before	"9"	in
lexicographic	order,	but	in	a	numeric	sort	9	comes	before	80.

If	compareFunction	is	supplied,	the	array	elements	are	sorted	according	to	the
return	value	of	the	compare	function.	If	a	and	b	are	two	elements	being
compared,	then:

If	compareFunction(a,	b)	is	less	than	0,	sort	b	to	a	lower	index	than	a.

If	compareFunction(a,	b)	returns	0,	leave	a	and	b	unchanged	with	respect
to	each	other,	but	sorted	with	respect	to	all	different	elements.

If	compareFunction(a,	b)	is	greater	than	0,	sort	b	to	a	higher	index	than	a.

So,	the	compare	function	has	the	following	form:

function	compare(a,	b)	{
			if	(a	is	less	than	b	by	some	ordering	criterion)
						return	-1
			if	(a	is	greater	than	b	by	the	ordering	criterion)
						return	1
			//	a	must	be	equal	to	b
			return	0
}	To	compare	numbers	instead	of	strings,	the	compare	function	can	simply
subtract	b	from	a:

function	compareNumbers(a,	b)	{
			return	a	-	b
}	JavaScript	uses	a	s	sort:	the	index	partial	order	of	a	and	b	does	not	change	if
a	and	b	are	equal.	If	a's	index	was	less	than	b's	before	sorting,	it	will	be	after
sorting,	no	matter	how	a	and	b	move	due	to	sorting.

The	behavior	of	the	sort	method	changed	between	Navigator	3.0	and
Navigator	4.0.	In	Navigator	3.0,	on	some	platforms,	the	sort	method	does	not
work.	This	method	works	on	all	platforms	for	Navigator	4.0.

In	Navigator	4.0,	this	method	no	longer	converts	undefined	elements	to	null;
instead	it	sorts	them	to	the	high	end	of	the	array.	For	example,	assume	you	have
this	script:

<SCRIPT>
a	=	new	Array();
a[0]	=	"Ant";
a[5]	=	"Zebra";	function	writeArray(x)	{
			for	(i	=	0;	i	<	x.length;	i++)	{
						document.write(x[i]);
						if	(i	<	x.length-1)	document.write(",	");
			}
}	writeArray(a);
a.sort();
document.write("

");
writeArray(a);
</SCRIPT>	In	Navigator	3.0,	JavaScript	prints:

ant,	null,	null,	null,	null,	zebra	
ant,	null,	null,	null,	null,	zebra	In	Navigator	4.0,	JavaScript	prints:

ant,	undefined,	undefined,	undefined,	undefined,	zebra	
ant,	zebra,	undefined,	undefined,	undefined,	undefined

The	following	example	creates	four	arrays	and	displays	the	original	array,	then
the	sorted	arrays.	The	numeric	arrays	are	sorted	without,	then	with,	a	compare
function.

<SCRIPT>
stringArray	=	new	Array("Blue","Humpback","Beluga")
numericStringArray	=	new	Array("80","9","700")
numberArray	=	new	Array(40,1,5,200)
mixedNumericArray	=	new	Array("80","9","700",40,1,5,200)	function
compareNumbers(a,	b)	{
			return	a	-	b
}	document.write("stringArray:	"	+	stringArray.join()	+"
")
document.write("Sorted:	"	+	stringArray.sort()	+"<P>")
document.write("numberArray:	"	+	numberArray.join()	+"
")
document.write("Sorted	without	a	compare	function:	"	+
numberArray.sort()	+"
")
document.write("Sorted	with	compareNumbers:	"	+
numberArray.sort(compareNumbers)	+"<P>")	document.write("
numericStringArray:	"	+	numericStringArray.join()	+"
")
document.write("Sorted	without	a	compare	function:	"	+
numericStringArray.sort()	+"
")
document.write("Sorted	with	compareNumbers:	"	+
numericStringArray.sort(compareNumbers)	+"<P>")	document.write("
mixedNumericArray:	"	+	mixedNumericArray.join()	+"
")
document.write("Sorted	without	a	compare	function:	"	+
mixedNumericArray.sort()	+"
")
document.write("Sorted	with	compareNumbers:	"	+
mixedNumericArray.sort(compareNumbers)	+"
")
</SCRIPT>	This	example	produces	the	following	output.	As	the	output	shows,
when	a	compare	function	is	used,	numbers	sort	correctly	whether	they	are
numbers	or	numeric	strings.

stringArray:	Blue,Humpback,Beluga
Sorted:	Beluga,Blue,Humpback	numberArray:	40,1,5,200
Sorted	without	a	compare	function:	1,200,40,5
Sorted	with	compareNumbers:	1,5,40,200	numericStringArray:	80,9,700
Sorted	without	a	compare	function:	700,80,9
Sorted	with	compareNumbers:	9,80,700	mixedNumericArray:
80,9,700,40,1,5,200
Sorted	without	a	compare	function:	1,200,40,5,700,80,9
Sorted	with	compareNumbers:	1,5,9,40,80,200,700

Array.join,	Array.reverse

toString

Returns	a	string	representing	the	specified	object.

Array
Navigator	3.0,	LiveWire	1.0

toString()

Every	object	has	a	toString	method	that	is	automatically	called	when	it	is	to	be
represented	as	a	text	value	or	when	an	object	is	referred	to	in	a	string
concatenation.

You	can	use	toString	within	your	own	code	to	convert	an	object	into	a	string,
and	you	can	create	your	own	function	to	be	called	in	place	of	the	default
toString	method.

For	Array	objects,	the	built-in	toString	method	joins	the	array	and	returns	one
string	containing	each	array	element	separated	by	commas.	For	example,	the
following	code	creates	an	array	and	uses	toString	to	convert	the	array	to	a	string
while	writing	output.

var	monthNames	=	new	Array("Jan","Feb","Mar","Apr")
document.write("monthNames.toString()	is	"	+	monthNames.toString())	The
output	is	as	follows:

monthNames.toString()	is	Jan,Feb,Mar,Apr	For	information	on	defining	your
own	toString	method,	see	the	Object.toString	method.

unshift

Adds	one	or	more	elements	to	the	beginning	of	an	array	and	returns	the	new
length	of	the	array.

Array
Navigator	4.0,	Netscape	Server	3.0

arrayName.unshift(elt1,...,	eltN)

elt1,...,eltN The	elements	to	add	to	the	front	of	the	array.

The	following	code	displays	the	myFish	array	before	and	after	adding	elements
to	it.

myFish	=	["angel",	"clown"];
document.writeln("myFish	before:	"	+	myFish);
unshifted	=	myFish.unshift("drum",	"lion");
document.writeln("myFish	after:	"	+	myFish);
document.writeln("New	length:	"	+	unshifted);	This	example	displays	the
following:

myFish	before:	["angel",	"clown"]
myFish	after:	["drum",	"lion",	"angel",	"clown"]
New	length:	4

pop,	push,	shift

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Boolean
The	Boolean	object	is	an	object	wrapper	for	a	boolean	value.

Core	object
Navigator	3.0,	LiveWire	1.0

The	Boolean	constructor:

new	Boolean(value)

value

The	initial	value	of	the	Boolean	object.	The	value	is	converted	to	a
boolean	value,	if	necessary.	If	value	is	omitted	or	is	0,	null,	false,	or	the
empty	string	(""),	the	object	has	an	initial	value	of	false.	All	other	values,
including	the	string	"false",	create	an	object	with	an	initial	value	of	true.

Use	a	Boolean	object	when	you	need	to	convert	a	non-boolean	value	to	a
boolean	value.	You	can	use	the	Boolean	object	any	place	JavaScript	expects	a
primitive	boolean	value.	JavaScript	returns	the	primitive	value	of	the	Boolean
object	by	automatically	invoking	the	valueOf	method.

prototype Defines	a		that	is	shared	by	all	Booleanobjects.

toString Returns	a	string	representing	the	specified	object.

The	following	create	Boolean	objects	with	an	initial	value	of	false:

bNoParam	=	new	Boolean()
bZero	=	new	Boolean(0)
bNull	=	new	Boolean(null)
bEmptyString	=	new	Boolean("")
bfalse	=	new	Boolean(false)	The	following	create	Boolean	objects	with	an
initial	value	of	true:

btrue	=	new	Boolean(true)
btrueString	=	new	Boolean("true")
bfalseString	=	new	Boolean("false")
bSuLin	=	new	Boolean("Su	Lin")

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

Boolean
Navigator	3.0,	LiveWire	1.0

toString

Returns	a	string	representing	the	specified	object.

Boolean
Navigator	3.0,	LiveWire	1.0

toString()

Every	object	has	a	toString	method	that	is	automatically	called	when	it	is	to	be
represented	as	a	text	value	or	when	an	object	is	referred	to	in	a	string
concatenation.

You	can	use	toString	within	your	own	code	to	convert	an	object	into	a	string,
and	you	can	create	your	own	function	to	be	called	in	place	of	the	default
toString	method.

For	Boolean	objects	and	values,	the	built-in	toString	method	returns	"true"	or
"false"	depending	on	the	value	of	the	boolean	object.	In	the	following	code,
flag.toString	returns	"true".

flag	=	new	Boolean(true)
document.write("flag.toString()	is	"	+	flag.toString()	+	"
")	For
information	on	defining	your	own	toString	method,	see	the	Object.toString
method.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Date
Lets	you	work	with	dates	and	times.

Core	object
Navigator	2.0,	LiveWire	1.0
Navigator	3.0:	
prototype	

The	Date	constructor:

new	Date()
new	Date("month	day,	year	hours:minutes:seconds")
new	Date(yr_num,	mo_num,	day_num)
new	Date(yr_num,	mo_num,	day_num,	hr_num,	min_num,	sec_num)

month,
day,	year,
hours,
minutes,
seconds

String	values	representing	part	of	a	date.

yr_num,
mo_num,
day_num,
hr_num,
min_num,
sec_num

Integer	values	representing	part	of	a	date.	As	an	integer	value,	the
month	is	represented	by	0	to	11	with	0=January	and	11=December.

If	you	supply	no	arguments,	the	constructor	creates	a	Date	object	for	today's

date	and	time.	If	you	supply	some	arguments,	but	not	others,	the	missing
arguments	are	set	to	0.	If	you	supply	any	arguments,	you	must	supply	at	least
the	year,	month,	and	day.	You	can	omit	the	hours,	minutes,	and	seconds.

The	way	JavaScript	handles	dates	is	very	similar	to	the	way	Java	handles	dates:
both	languages	have	many	of	the	same	date	methods,	and	both	store	dates
internally	as	the	number	of	milliseconds	since	January	1,	1970	00:00:00.	Dates
prior	to	1970	are	not	allowed.

prototype Allows	the	addition	of	properties	to	a	Date	object.

getDate Returns	the	day	of	the	month	for	the	specified	date.
getDay Returns	the	day	of	the	week	for	the	specified	date.
getHours Returns	the	hour	in	the	specified	date.
getMinutes Returns	the	minutes	in	the	specified	date.
getMonth Returns	the	month	in	the	specified	date.
getSeconds Returns	the	seconds	in	the	specified	date.

getTime Returns	the	numeric	value	corresponding	to	the	time	for	the
specified	date.

getTimezoneOffset Returns	the	time-zone	offset	in	minutes	for	the	currentlocale.
getYear Returns	the	year	in	the	specified	date.

parse Returns	the	number	of	milliseconds	in	a	date	string	since
January	1,	1970,	00:00:00,	local	time.

setDate Sets	the	day	of	the	month	for	a	specified	date.
setHours Sets	the	hours	for	a	specified	date.
setMinutes Sets	the	minutes	for	a	specified	date.
setMonth Sets	the	month	for	a	specified	date.
setSeconds Sets	the	seconds	for	a	specified	date.
setTime Sets	the	value	of	a	Date	object.
setYear Sets	the	year	for	a	specified	date.

toGMTString Converts	a	date	to	a	string,	using	the	Internet	GMT
conventions.

toLocaleString Converts	a	date	to	a	string,	using	the	current	locale's
conventions.

UTC
Returns	the	number	of	milliseconds	in	a	Date	object	since
January	1,	1970,	00:00:00,	Universal	Coordinated	Time
(GMT).

The	following	show	several	ways	to	assign	dates:

today	=	new	Date()
birthday	=	new	Date("December	17,	1995	03:24:00")
birthday	=	new	Date(95,11,17)
birthday	=	new	Date(95,11,17,3,24,0)

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

Date
Navigator	3.0,	LiveWire	1.0

getDate

Returns	the	day	of	the	month	for	the	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

getDate()

The	value	returned	by	getDate	is	an	integer	between	1	and	31.

The	second	statement	below	assigns	the	value	25	to	the	variable	day,	based	on
the	value	of	the	Date	object	Xmas95.

Xmas95	=	new	Date("December	25,	1995	23:15:00")
day	=	Xmas95.getDate()

Date.setDate

getDay

Returns	the	day	of	the	week	for	the	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

getDay()

The	value	returned	by	getDay	is	an	integer	corresponding	to	the	day	of	the
week:	0	for	Sunday,	1	for	Monday,	2	for	Tuesday,	and	so	on.

The	second	statement	below	assigns	the	value	1	to	weekday,	based	on	the	value
of	the	Date	object	Xmas95.	December	25,	1995,	is	a	Monday.

Xmas95	=	new	Date("December	25,	1995	23:15:00")
weekday	=	Xmas95.getDay()

getHours

Returns	the	hour	for	the	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

getHours()

The	value	returned	by	getHours	is	an	integer	between	0	and	23.

The	second	statement	below	assigns	the	value	23	to	the	variable	hours,	based	on
the	value	of	the	Date	object	Xmas95.

Xmas95	=	new	Date("December	25,	1995	23:15:00")
hours	=	Xmas95.getHours()

Date.setHours

getMinutes

Returns	the	minutes	in	the	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

getMinutes()

The	value	returned	by	getMinutes	is	an	integer	between	0	and	59.

The	second	statement	below	assigns	the	value	15	to	the	variable	minutes,	based
on	the	value	of	the	Date	object	Xmas95.

Xmas95	=	new	Date("December	25,	1995	23:15:00")
minutes	=	Xmas95.getMinutes()

Date.setMinutes

getMonth

Returns	the	month	in	the	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

getMonth()

The	value	returned	by	getMonth	is	an	integer	between	0	and	11.	0	corresponds
to	January,	1	to	February,	and	so	on.

The	second	statement	below	assigns	the	value	11	to	the	variable	month,	based
on	the	value	of	the	Date	object	Xmas95.

Xmas95	=	new	Date("December	25,	1995	23:15:00")
month	=	Xmas95.getMonth()

Date.setMonth

getSeconds

Returns	the	seconds	in	the	current	time.

Date
Navigator	2.0,	LiveWire	1.0

getSeconds()

The	value	returned	by	getSeconds	is	an	integer	between	0	and	59.

The	second	statement	below	assigns	the	value	30	to	the	variable	secs,	based	on
the	value	of	the	Date	object	Xmas95.

Xmas95	=	new	Date("December	25,	1995	23:15:30")
secs	=	Xmas95.getSeconds()

Date.setSeconds

getTime

Returns	the	numeric	value	corresponding	to	the	time	for	the	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

getTime()

The	value	returned	by	the	getTime	method	is	the	number	of	milliseconds	since	1
January	1970	00:00:00.	You	can	use	this	method	to	help	assign	a	date	and	time
to	another	Date	object.

The	following	example	assigns	the	date	value	of	theBigDay	to	sameAsBigDay:

theBigDay	=	new	Date("July	1,	1999")
sameAsBigDay	=	new	Date()
sameAsBigDay.setTime(theBigDay.getTime())

Date.setTime

getTimezoneOffset

Returns	the	time-zone	offset	in	minutes	for	the	current	locale.

Date
Navigator	2.0,	LiveWire	1.0

getTimezoneOffset()

The	time-zone	offset	is	the	difference	between	local	time	and	Greenwich	Mean
Time	(GMT).	Daylight	savings	time	prevents	this	value	from	being	a	constant.

x	=	new	Date()
currentTimeZoneOffsetInHours	=	x.getTimezoneOffset()/60

getYear

Returns	the	year	in	the	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

getYear()

The	getYear	method	returns	either	a	2-digit	or	4-digit	year:

For	years	between	and	including	1900	and	1999,	the	value	returned	by
getYear	is	the	year	minus	1900.	For	example,	if	the	year	is	1976,	the	value
returned	is	76.

For	years	less	than	1900	or	greater	than	1999,	the	value	returned	by
getYear	is	the	four-digit	year.	For	example,	if	the	year	is	1856,	the	value
returned	is	1856.	If	the	year	is	2026,	the	value	returned	is	2026.

	1. 	The	second	statement	assigns	the	value	95	to	the	variable	year.

Xmas	=	new	Date("December	25,	1995	23:15:00")
year	=	Xmas.getYear()		2. 	The	second	statement	assigns	the	value	2000	to	the
variable	year.

Xmas	=	new	Date("December	25,	2000	23:15:00")

year	=	Xmas.getYear()		3. 	The	second	statement	assigns	the	value	95	to	the
variable	year,	representing	the	year	1995.

Xmas.setYear(95)
year	=	Xmas.getYear()

Date.setYear

parse

Returns	the	number	of	milliseconds	in	a	date	string	since	January	1,	1970,
00:00:00,	local	time.

Date

Navigator	2.0,	LiveWire	1.0

Date.parse(dateString)

:

dateString A	string	representing	a	date.

The	parse	method	takes	a	date	string	(such	as	"Dec	25,	1995")	and	returns	the
number	of	milliseconds	since	January	1,	1970,	00:00:00	(local	time).	This
function	is	useful	for	setting	date	values	based	on	string	values,	for	example	in
conjunction	with	the	setTime	method	and	the	Date	object.

Given	a	string	representing	a	time,	parse	returns	the	time	value.	It	accepts	the
IETF	standard	date:	"Mon,	25	Dec	1995	13:30:00	GMT".	It	understands	the
continental	US	time-zone	abbreviations,	but	for	general	use,	use	a	time-zone
offset,	for	example,	"Mon,	25	Dec	1995	13:30:00	GMT+0430"	(4	hours,	30
minutes	west	of	the	Greenwich	meridian).	If	you	do	not	specify	a	time	zone,	the
local	time	zone	is	assumed.	GMT	and	UTC	are	considered	equivalent.

Because	parse	is	a	static	method	of	Date,	you	always	use	it	as	Date.parse(),
rather	than	as	a	method	of	a	Date	object	you	created.

If	IPOdate	is	an	existing	Date	object,	then	you	can	set	it	to	August	9,	1995	as
follows:

IPOdate.setTime(Date.parse("Aug	9,	1995"))

Date.UTC

setDate

Sets	the	day	of	the	month	for	a	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

setDate(dayValue)

dayValue An	integer	from	1	to	31,	representing	the	day	of	the	month.

The	second	statement	below	changes	the	day	for	theBigDay	to	July	24	from	its
original	value.

theBigDay	=	new	Date("July	27,	1962	23:30:00")
theBigDay.setDate(24)

Date.getDate

setHours

Sets	the	hours	for	a	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

setHours(hoursValue)

hoursValue An	integer	between	0	and	23,	representing	the	hour.

theBigDay.setHours(7)

Date.getHours

setMinutes

Sets	the	minutes	for	a	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

setMinutes(minutesValue)

minutesValue An	integer	between	0	and	59,	representing	the	minutes.

theBigDay.setMinutes(45)

Date.getMinutes

setMonth

Sets	the	month	for	a	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

setMonth(monthValue)

monthValue An	integer	between	0	and	11	(representing	the	months	Januarythrough	December).

theBigDay.setMonth(6)

Date.getMonth

setSeconds

Sets	the	seconds	for	a	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

setSeconds(secondsValue)

secondsValue An	integer	between	0	and	59.

theBigDay.setSeconds(30)

Date.getSeconds

setTime

Sets	the	value	of	a	Date	object.

Date
Navigator	2.0,	LiveWire	1.0

setTime(timevalue)

timevalue An	integer	representing	the	number	of	milliseconds	since	1	January1970	00:00:00.

Use	the	setTime	method	to	help	assign	a	date	and	time	to	another	Date	object.

theBigDay	=	new	Date("July	1,	1999")
sameAsBigDay	=	new	Date()
sameAsBigDay.setTime(theBigDay.getTime())

Date.getTime

setYear

Sets	the	year	for	a	specified	date.

Date
Navigator	2.0,	LiveWire	1.0

setYear(yearValue)

yearValue An	integer.

If	yearValue	is	a	number	between	0	and	99	(inclusive),	then	the	year	for
dateObjectName	is	set	to	1900	+	yearValue.	Otherwise,	the	year	for
dateObjectName	is	set	to	yearValue.

Note	that	there	are	two	ways	to	set	years	in	the	20th	century.

	1. 	The	year	is	set	to	1996.

theBigDay.setYear(96)		2. 	The	year	is	set	to	1996.

theBigDay.setYear(1996)		3. 	The	year	is	set	to	2000.

theBigDay.setYear(2000)

Date.getYear

toGMTString

Converts	a	date	to	a	string,	using	the	Internet	GMT	conventions.

Date
Navigator	2.0,	LiveWire	1.0

toGMTString()

The	exact	format	of	the	value	returned	by	toGMTString	varies	according	to	the
platform.

In	the	following	example,	today	is	a	Date	object:

today.toGMTString()	In	this	example,	the	toGMTString	method	converts	the
date	to	GMT	(UTC)	using	the	operating	system's	time-zone	offset	and	returns	a
string	value	that	is	similar	to	the	following	form.	The	exact	format	depends	on
the	platform.

Mon,	18	Dec	1995	17:28:35	GMT

Date.toLocaleString

toLocaleString

Converts	a	date	to	a	string,	using	the	current	locale's	conventions.

Date
Navigator	2.0,	LiveWire	1.0

toLocaleString()

If	you	pass	a	date	using	toLocaleString,	be	aware	that	different	platforms
assemble	the	string	in	different	ways.	Using	methods	such	as	getHours,
getMinutes,	and	getSeconds	gives	more	por	results.

In	the	following	example,	today	is	a	Date	object:

today	=	new	Date(95,11,18,17,28,35)	//months	are	represented	by	0	to	11
today.toLocaleString()	In	this	example,	toLocaleString	returns	a	string	value
that	is	similar	to	the	following	form.	The	exact	format	depends	on	the	platform.

12/18/95	17:28:35

Date.toGMTString

UTC

Returns	the	number	of	milliseconds	in	a	Date	object	since	January	1,	1970,
00:00:00,	Universal	Coordinated	Time	(GMT).

Date

Navigator	2.0,	LiveWire	1.0

Date.UTC(year,	month,	day,	hrs,	min,	sec)

year A	year	after	1900.
month A	month	between	0	and	11.
date A	day	of	the	month	between	1	and	31.
hrs (Optional)	A	number	of	hours	between	0	and	23.
min (Optional)	A	number	of	minutes	between	0	and	59.
sec (Optional)	A	number	of	seconds	between	0	and	59.

UTC	takes	comma-delimited	date	parameters	and	returns	the	number	of
milliseconds	since	January	1,	1970,	00:00:00,	Universal	Coordinated	Time
(GMT).

Because	UTC	is	a	static	method	of	Date,	you	always	use	it	as	Date.UTC(),
rather	than	as	a	method	of	a	Date	object	you	created.

The	following	statement	creates	a	Date	object	using	GMT	instead	of	local	time:

gmtDate	=	new	Date(Date.UTC(96,	11,	1,	0,	0,	0))

Date.parse

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Function
Specifies	a	string	of	JavaScript	code	to	be	compiled	as	a	function.

Core	object
Navigator	3.0,	LiveWire	1.0
Navigator	4.0:		 arity	
.

The	Function	constructor:

new	Function	(arg1,	arg2,	...	argN,	functionBody)

arg1,	arg2,	...
argN

(Optional)	Names	to	be	used	by	the	function	as	formal	argument
names.	Each	must	be	a	string	that	corresponds	to	a	valid
JavaScript	identifier;	for	example	"x"	or	"theForm".

functionBody A	string	containing	the	JavaScript	statements	comprising	thefunction	definition.

Function	objects	are	evaluated	each	time	they	are	used.	This	is	less	efficient
than	declaring	a	function	and	calling	it	within	your	code,	because	declared
functions	are	compiled.

In	addition	to	defining	functions	as	described	here,	you	can	also	use	the
function	statement,	as	described	in	the	JavaScript	Guide.

arguments An	array	corresponding	to	the	arguments	passed	to	a	function.

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

arity Indicates	the	number	of	arguments	expected	by	the	function.
caller Specifies	which	function	called	the	current	function.
prototype Allows	the	addition	of	properties	to	a	Function	object.

toString Returns	a	string	representing	the	specified	object.

Specifying	a	variable	value	with	a	Function	object

The	following	code	assigns	a	function	to	the	variable	setBGColor.	This	function
sets	the	current	document's	background	color.

var	setBGColor	=	new	Function("document.bgColor='antiquewhite'")	To	call
the	Function	object,	you	can	specify	the	variable	name	as	if	it	were	a	function.
The	following	code	executes	the	function	specified	by	the	setBGColor	variable:

var	colorChoice="antiquewhite"
if	(colorChoice=="antiquewhite")	{setBGColor()}	You	can	assign	the	function
to	an	event	handler	in	either	of	the	following	ways:

document.form1.colorButton.onclick=setBGColor	<INPUT
NAME="colorButton"	TYPE="button"
			VALUE="Change	background	color"
			onClick="setBGColor()">	Creating	the	variable	setBGColor	shown	above	is
similar	to	declaring	the	following	function:

function	setBGColor()	{
			document.bgColor='antiquewhite'
}	Assigning	a	function	to	a	variable	is	similar	to	declaring	a	function,	but	they
have	differences:

When	you	assign	a	function	to	a	variable	using	var	setBGColor	=	new
Function("..."),	setBGColor	is	a	variable	for	which	the	current	value	is	a
reference	to	the	function	created	with	new	Function().

When	you	create	a	function	using	function	setBGColor()	{...},	setBGColor
is	not	a	variable,	it	is	the	name	of	a	function.

Specifyingin	a	Function	object

The	following	code	specifies	a	Function	object	that	takes	two	arguments.

var	multFun	=	new	Function("x",	"y",	"return	x	*	y")	The	string	arguments	"x"
and	"y"	are	formal	argument	names	that	are	used	in	the	function	body,	"return	x
*	y".

The	following	code	shows	several	ways	to	call	the	function	multFun:

var	theAnswer	=	multFun(7,6)	document.write("15*2	=	"	+	multFun(15,2))
<INPUT	NAME="operand1"	TYPE="text"	VALUE="5"	SIZE=5>
<INPUT	NAME="operand2"	TYPE="text"	VALUE="6"	SIZE=5>
<INPUT	NAME="result"	TYPE="text"	VALUE=""	SIZE=10>
<INPUT	NAME="buttonM"	TYPE="button"	VALUE="Multiply"
			onClick="document.form1.result.value=
						multFun(document.form1.operand1.value,
									document.form1.operand2.value)">	You	cannot	call	the	function	multFun
in	an	object's	event	handler	property,	because	event	handler	properties	cannot
take	arguments.	For	example,	you	cannot	call	the	function	multFun	by	setting	a
button's	onclick	property	as	follows:

document.form1.button1.onclick=multFun(5,10)

Specifying	an	event	handler	with	a	Function	object

The	following	code	assigns	a	function	to	a	window's	onFocus	event	handler	(the
event	handler	must	be	spelled	in	all	lowercase):

window.onfocus	=	new	Function("document.bgColor='antiquewhite'")	Once
you	have	a	reference	to	a	function	object,	you	can	use	it	like	a	function	and	it
will	convert	from	an	object	to	a	function:

window.onfocus()	Event	handlers	do	not	take	arguments,	so	you	cannot	declare
any	arguments	in	the	Function	constructor	for	an	event	handler.

	1. 	The	following	example	creates	onFocus	and	onBlur	event	handlers	for	a

frame.	This	code	exists	in	the	same	file	that	contains	the	FRAMESET	tag.	Note
that	this	is	the	only	way	to	create	onFocus	and	onBlur	event	handlers	for	a
frame,	because	you	cannot	specify	the	event	handlers	in	the	FRAME	tag.

frames[0].onfocus	=	new	Function("document.bgColor='antiquewhite'")
frames[0].onblur	=	new	Function("document.bgColor='lightgrey'")		2. 	You
can	determine	whether	a	function	exists	by	comparing	the	function	name	to
null.	In	the	following	example,	func1	is	called	if	the	function	noFunc	does	not
exist;	otherwise	func2	is	called.	Notice	that	the	window	name	is	needed	when
referring	to	the	function	name	noFunc.

if	(window.noFunc	==	null)
			func1()
else	func2()

arguments

An	array	corresponding	to	the	arguments	passed	to	a	function.

Function
Navigator	3.0,	LiveWire	1.0
Navigator	4.0

You	can	call	a	function	with	more	arguments	than	it	is	formally	declared	to
accept	by	using	the	arguments	array.	This	technique	is	useful	if	a	function	can
be	passed	a	variable	number	of	arguments.	You	can	use	arguments.length	to
determine	the	number	of	arguments	passed	to	the	function,	and	then	treat	each
argument	by	using	the	arguments	array.

The	arguments	array	is	available	only	within	a	function	declaration.	Attempting
to	access	the	arguments	array	outside	a	function	declaration	results	in	an	error.

The	this	keyword	does	not	refer	to	the	currently	executing	function,	so	you	must
refer	to	functions	and	Function	objects	by	name,	even	within	the	function	body.
In	JavaScript	1.2,	arguments	includes	these	additional	properties:

formal	arguments--each	formal	argument	of	a	function	is	a	property	of	the
arguments	array.

local	variables--each	local	variable	of	a	function	is	a	property	of	the
arguments	array.

caller--a	property	whose	value	is	the	arguments	array	of	the	outer	function.
If	there	is	no	outer	function,	the	value	is	undefined.

callee--a	property	whose	value	is	the	function	reference.

For	example,	the	following	script	demonstrates	several	of	the	arguments
properties:

<SCRIPT>	function	b(z)	{	
			document.write(arguments.z	+	"
")	
			document.write	(arguments.caller.x	+	"
")	
			return	99	
}	function	a(x,	y)	{	
			return	b(534)	
}	document.write	(a(2,3)	+	"
")	</SCRIPT>	This	displays:

534
2	
99

534	is	the	actual	parameter	to	b,	so	it	is	the	value	of	arguments.z.

2	is	a's	actual	x	parameter,	so	(viewed	within	b)	it	is	the	value	of
arguments.caller.x.

99	is	what	a(2,3)	returns.

This	example	defines	a	function	that	creates	HTML	lists.	The	only	formal
argument	for	the	function	is	a	string	that	is	"U"	if	the	list	is	to	be	unordered
(bulleted),	or	"O"	if	the	list	is	to	be	ordered	(numbered).	The	function	is	defined
as	follows:

function	list(type)	{
			document.write("<"	+	type	+	"L>")
			for	(var	i=1;	i<list.arguments.length;	i++)	{
						document.write(""	+	list.arguments[i])
						document.write("</"	+	type	+	"L>")
			}
}	You	can	pass	any	number	of	arguments	to	this	function,	and	it	displays	each
argument	as	an	item	in	the	type	of	list	indicated.	For	example,	the	following	call
to	the	function

list("U",	"One",	"Two",	"Three")	results	in	this	output:

One
Two
Three
	In	server-side	JavaScript,	you	can	display	the	same	output	by	calling	the
write	function	instead	of	using	document.write.

arity

When	the	LANGUAGE	attribute	of	the	SCRIPT	tag	is	"JavaScript1.2",	this
property	indicates	the	number	of	arguments	expected	by	a	function.

Function
Navigator	4.0,	Netscape	Server	3.0

arity	is	external	to	the	function,	and	indicates	how	many	arguments	the	function
expects.	By	contrast,	arguments.length	provides	the	number	of	arguments
actually	passed	to	the	function.

The	following	example	demonstrates	the	use	of	arity	and	arguments.length.

<SCRIPT	LANGUAGE	=	"JavaScript1.2">
function	addNumbers(x,y){	
			document.write("length	=	"	+	arguments.length	+	"
")	
			z	=	x	+	y	
}	
document.write("arity	=	"	+	addNumbers.arity	+	"
")	
addNumbers(3,4,5)
</SCRIPT>	This	script	writes:

arity	=	2	
length	=	3

caller

Returns	the	name	of	the	function	that	invoked	the	currently	executing	function.

Function
Navigator	3.0,	LiveWire	1.0

The	caller	property	is	available	only	within	the	body	of	a	function.	If	used
outside	a	function	declaration,	the	caller	property	is	null.

If	the	currently	executing	function	was	invoked	by	the	top	level	of	a	JavaScript
program,	the	value	of	caller	is	null.

The	this	keyword	does	not	refer	to	the	currently	executing	function,	so	you	must
refer	to	functions	and	Function	objects	by	name,	even	within	the	function	body.

The	caller	property	is	a	reference	to	the	calling	function,	so

If	you	use	it	in	a	string	context,	you	get	the	result	of	calling
functionName.toString.	That	is,	the	decompiled	canonical	source	form	of
the	function.

You	can	also	call	the	calling	function,	if	you	know	what	arguments	it	might
want.	Thus,	a	called	function	can	call	its	caller	without	knowing	the	name
of	the	particular	caller,	provided	it	knows	that	all	of	its	callers	have	the
same	form	and	fit,	and	that	they	will	not	call	the	called	function	again
unconditionally	(which	would	result	in	infinite	recursion).

The	following	code	checks	the	value	of	a	function's	caller	property.

function	myFunc()	{
			if	(myFunc.caller	==	null)	{
						alert("The	function	was	called	from	the	top!")

			}	else	alert("This	function's	caller	was	"	+	myFunc.caller)
}

Function.arguments

prototype

A	value	from	which	instances	of	a	particular	class	are	created.	Every	object	that
can	be	created	by	calling	a	constructor	function	has	an	associated	prototype
property.

Object
Navigator	3.0,	LiveWire	1.0

You	can	add	new	properties	or	methods	to	an	existing	class	by	adding	them	to
the	prototype	associated	with	the	constructor	function	for	that	class.	The	for
adding	a	new	property	or	method	is:

fun.prototype.name	=	value	where

fun The	name	of	the	constructor	function	object	you	want	to	change.
name The	name	of	the		or		to	be	created.
value The	value	initially	assigned	to	the	new		or	

If	you	add	a	new	property	to	the	prototype	for	an	object,	then	all	objects	created
with	that	object's	constructor	function	will	have	that	new	property,	even	if	the
objects	existed	before	you	created	the	new	property.	For	example,	assume	you
have	the	following	statements:

var	array1	=	new	Array();
var	array2	=	new	Array(3);
Array.prototype.description=null;
array1.description="Contains	some	stuff"
array2.description="Contains	other	stuff"	After	you	set	a	property	for	the
prototype,	all	subsequent	objects	created	with	Array	will	have	the	property:

anotherArray=new	Array()
anotherArray.description="Currently	empty"

The	following	example	creates	a	method,	str_rep,	and	uses	the	statement
String.prototype.rep	=	str_rep	to	add	the	method	to	all	String	objects.	All
objects	created	with	new	String()	then	have	that	method,	even	objects	already
created.	The	example	then	creates	an	alternate	method	and	adds	that	to	one	of
the	String	objects	using	the	statement	s1.rep	=	fake_rep.	The	str_rep	method	of
the	remaining	String	objects	is	not	altered.

var	s1	=	new	String("a")
var	s2	=	new	String("b")
var	s3	=	new	String("c")	//	Create	a	repeat-string-N-times	method	for	all	String
objects
function	str_rep(n)	{
var	s	=	"",	t	=	this.toString()
while	(--n	>=	0)	s	+=	t
return	s
}
String.prototype.rep	=	str_rep	//	Display	the	results
document.write("<P>s1.rep(3)	is	"	+	s1.rep(3))	//	"aaa"
document.write("
s2.rep(5)	is	"	+	s2.rep(5))	//	"bbbbb"
document.write("
s3.rep(2)	is	"	+	s3.rep(2))	//	"cc"	//	Create	an	alternate
method	and	assign	it	to	only	one	String	variable
function	fake_rep(n)	{
return	"repeat	"	+	this	+	n	+	"	times."
}	s1.rep	=	fake_rep	document.write("<P>s1.rep(1)	is	"	+	s1.rep(1))	//	"repeat	a	1
times."
document.write("
s2.rep(4)	is	"	+	s2.rep(4))	//	"bbbb"
document.write("
s3.rep(6)	is	"	+	s3.rep(6))	//	"cccccc"	This	example
produces	the	following	output:

s1.rep(3)	is	aaa
s2.rep(5)	is	bbbbb
s3.rep(2)	is	cc	s1.rep(1)	is	repeat	a1	times.
s2.rep(4)	is	bbbb
s3.rep(6)	is	cccccc	The	function	in	this	example	also	works	on	String	objects
not	created	with	the	String	constructor.	The	following	code	returns	"zzz".

"z".rep(3)

toString

Returns	a	string	representing	the	specified	object.

Function
Navigator	3.0,	LiveWire	1.0

toString()

Every	object	has	a	toString	method	that	is	automatically	called	when	it	is	to	be
represented	as	a	text	value	or	when	an	object	is	referred	to	in	a	string
concatenation.

You	can	use	toString	within	your	own	code	to	convert	an	object	into	a	string,
and	you	can	create	your	own	function	to	be	called	in	place	of	the	default
toString	method.

For	Function	objects,	the	built-in	toString	method	decompiles	the	function	back
into	the	JavaScript	source	that	defines	the	function.	This	string	includes	the
function	keyword,	the	argument	list,	curly	braces,	and	function	body.

For	example,	assume	you	have	the	following	code	that	defines	the	Dog	object
type	and	creates	theDog,	an	object	of	type	Dog:

function	Dog(name,breed,color,sex)	{
			this.name=name
			this.breed=breed
			this.color=color

			this.sex=sex
}	theDog	=	new	Dog("Gabby","Lab","chocolate","girl")	Any	time	Dog	is	used
in	a	string	context,	JavaScript	automatically	calls	the	toString	function,	which
returns	the	following	string:

function	Dog(name,	breed,	color,	sex)	{	this.name	=	name;	this.breed	=
breed;	this.color	=	color;	this.sex	=	sex;	}

For	information	on	defining	your	own	toString	method,	see	the	Object.toString
method.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Math
A	built-in	object	that	has	properties	and	methods	for	mathematical	constants	and
functions.	For	example,	the	Math	object's	PI	property	has	the	value	of	pi.

Core	object.
Navigator	2.0,	LiveWire	1.0

The	Math	object	is	a	top-level,	predefined	JavaScript	object.	You	can
automatically	access	it	without	using	a	constructor	or	calling	a	method.

All	properties	and	methods	of	Math	are	static.	You	refer	to	the	constant	PI	as
Math.PI	and	you	call	the	sine	function	as	Math.sin(x),	where	x	is	the	method's
argument.	Constants	are	defined	with	the	full	precision	of	real	numbers	in
JavaScript.

It	is	often	convenient	to	use	the	with	statement	when	a	section	of	code	uses
several	Math	constants	and	methods,	so	you	don't	have	to	type	"Math"
repeatedly.	For	example,

with	(Math)	{
			a	=	PI	*	r*r
			y	=	r*sin(theta)
			x	=	r*cos(theta)
}

E Euler's	constant	and	the	base	of	natural	logarithms,	approximately
2.718.

LN10 Natural	logarithm	of	10,	approximately	2.302.

LN2 Natural	logarithm	of	2,	approximately	0.693.
LOG10E Base	10	logarithm	of	E	(approximately	0.434).
LOG2E Base	2	logarithm	of	E	(approximately	1.442).

PI Ratio	of	the	circumference	of	a	circle	to	its	diameter,	approximately
3.14159.

SQRT1_2 Square	root	of	1/2;	equivalently,	1	over	the	square	root	of	2,approximately	0.707.
SQRT2 Square	root	of	2,	approximately	1.414.

abs Returns	the	absolute	value	of	a	number.
acos Returns	the	arccosine	(in	radians)	of	a	number.
asin Returns	the	arcsine	(in	radians)	of	a	number.
atan Returns	the	arctangent	(in	radians)	of	a	number.
atan2 Returns	the	arctangent	of	the	quotient	of	its	arguments.
ceil Returns	the	smallest	integer	greater	than	or	equal	to	a	number.
cos Returns	the	cosine	of	a	number.

exp Returns	Enumber,	where	number	is	the	argument,	and	E	is	Euler's
constant,	the	base	of	the	natural	logarithms.

floor Returns	the	largest	integer	less	than	or	equal	to	a	number.
log Returns	the	natural	logarithm	(base	E)	of	a	number.
max Returns	the	greater	of	two	numbers.
min Returns	the	lesser	of	two	numbers.
pow Returns	base	to	the	exponent	power,	that	is,	baseexponent.
random Returns	a	pseudo-random	number	between	0	and	1.
round Returns	the	value	of	a	number	rounded	to	the	nearest	integer.
sin Returns	the	sine	of	a	number.
sqrt Returns	the	square	root	of	a	number.
tan Returns	the	tangent	of	a	number.

E

Euler's	constant	and	the	base	of	natural	logarithms,	approximately	2.718.

Math
,	
Navigator	2.0,	LiveWire	1.0

The	following	function	returns	Euler's	constant:

function	getEuler()	{
			return	Math.E
}

Because	E	is	a	static	property	of	Math,	you	always	use	it	as	Math.E,	rather	than
as	a	property	of	a	Math	object	you	created.

LN10

The	natural	logarithm	of	10,	approximately	2.302.

Math
,	
Navigator	2.0,	LiveWire	1.0

The	following	function	returns	the	natural	log	of	10:

function	getNatLog10()	{
			return	Math.LN10
}

Because	LN10	is	a	static	property	of	Math,	you	always	use	it	as	Math.LN10,
rather	than	as	a	property	of	a	Math	object	you	created.

LN2

The	natural	logarithm	of	2,	approximately	0.693.

Math
,	
Navigator	2.0,	LiveWire	1.0

The	following	function	returns	the	natural	log	of	2:

function	getNatLog2()	{
			return	Math.LN2
}

Because	LN2	is	a	static	property	of	Math,	you	always	use	it	as	Math.LN2,
rather	than	as	a	property	of	a	Math	object	you	created.

LOG10E

The	base	10	logarithm	of	E	(approximately	0.434).

Math
,	
Navigator	2.0,	LiveWire	1.0

The	following	function	returns	the	base	10	logarithm	of	E:

function	getLog10e()	{
			return	Math.LOG10E
}

Because	LOG10E	is	a	static	property	of	Math,	you	always	use	it	as
Math.LOG10E,	rather	than	as	a	property	of	a	Math	object	you	created.

LOG2E

The	base	2	logarithm	of	E	(approximately	1.442).

Math
,	
Navigator	2.0,	LiveWire	1.0

The	following	function	returns	the	base	2	logarithm	of	E:

function	getLog2e()	{
			return	Math.LOG2E
}

Because	LOG2E	is	a	static	property	of	Math,	you	always	use	it	as
Math.LOG2E,	rather	than	as	a	property	of	a	Math	object	you	created.

PI

The	ratio	of	the	circumference	of	a	circle	to	its	diameter,	approximately
3.14159.

Math
,	
Navigator	2.0,	LiveWire	1.0

The	following	function	returns	the	value	of	pi:

function	getPi()	{
			return	Math.PI
}

Because	PI	is	a	static	property	of	Math,	you	always	use	it	as	Math.PI,	rather
than	as	a	property	of	a	Math	object	you	created.

SQRT1_2

The	square	root	of	1/2;	equivalently,	1	over	the	square	root	of	2,	approximately
0.707.

Math
,	
Navigator	2.0,	LiveWire	1.0

The	following	function	returns	1	over	the	square	root	of	2:

function	getRoot1_2()	{
			return	Math.SQRT1_2
}

Because	SQRT1_2	is	a	static	property	of	Math,	you	always	use	it	as
Math.SQRT1_2,	rather	than	as	a	property	of	a	Math	object	you	created.

SQRT2

The	square	root	of	2,	approximately	1.414.

Math
,	
Navigator	2.0,	LiveWire	1.0

The	following	function	returns	the	square	root	of	2:

function	getRoot2()	{
			return	Math.SQRT2
}

Because	SQRT2	is	a	static	property	of	Math,	you	always	use	it	as	Math.SQRT2,
rather	than	as	a	property	of	a	Math	object	you	created.

abs

Returns	the	absolute	value	of	a	number.

Math

Navigator	2.0,	LiveWire	1.0

abs(x)

x A	number

The	following	function	returns	the	absolute	value	of	the	variable	x:

function	getAbs(x)	{
			return	Math.abs(x)
}

Because	abs	is	a	static	method	of	Math,	you	always	use	it	as	Math.abs(),	rather
than	as	a	method	of	a	Math	object	you	created.

acos

Returns	the	arccosine	(in	radians)	of	a	number.

Math

Navigator	2.0,	LiveWire	1.0

acos(x)

x A	number

The	acos	method	returns	a	numeric	value	between	0	and	pi	radians.	If	the	value
of	number	is	outside	this	range,	it	returns	0.

Because	acos	is	a	static	method	of	Math,	you	always	use	it	as	Math.acos(),
rather	than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	arccosine	of	the	variable	x:

function	getAcos(x)	{
			return	Math.acos(x)
}	If	you	pass	-1	to	getAcos,	it	returns	3.141592653589793;	if	you	pass	2,	it
returns	0	because	2	is	out	of	range.

Math.asin,	Math.atan,	Math.atan2,	Math.cos,	Math.sin,	Math.tan

asin

Returns	the	arcsine	(in	radians)	of	a	number.

Math

Navigator	2.0,	LiveWire	1.0

asin(x)

x A	number

The	asin	method	returns	a	numeric	value	between	-pi/2	and	pi/2	radians.	If	the
value	of	number	is	outside	this	range,	it	returns	0.

Because	asin	is	a	static	method	of	Math,	you	always	use	it	as	Math.asin(),	rather
than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	arcsine	of	the	variable	x:

function	getAsin(x)	{
			return	Math.asin(x)
}	If	you	pass	getAsin	the	value	1,	it	returns	1.570796326794897	(pi/2);	if	you
pass	it	the	value	2,	it	returns	0	because	2	is	out	of	range.

Math.acos,	Math.atan,	Math.atan2,	Math.cos,	Math.sin,	Math.tan

atan

Returns	the	arctangent	(in	radians)	of	a	number.

Math

Navigator	2.0,	LiveWire	1.0

atan(x)

x A	number

The	atan	method	returns	a	numeric	value	between	-pi/2	and	pi/2	radians.

Because	atan	is	a	static	method	of	Math,	you	always	use	it	as	Math.atan(),	rather
than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	arctangent	of	the	variable	x:

function	getAtan(x)	{
			return	Math.atan(x)
}	If	you	pass	getAtan	the	value	1,	it	returns	0.7853981633974483;	if	you	pass	it
the	value	.5,	it	returns	0.4636476090008061.

Math.acos,	Math.asin,	Math.atan2,	Math.cos,	Math.sin,	Math.tan

atan2

Returns	the	arctangent	of	the	quotient	of	its	arguments.

Math

Navigator	2.0,	LiveWire	1.0

atan2(y,	x)

y,	x Number

The	atan2	method	returns	a	numeric	value	between	-pi	and	pi	representing	the
angle	theta	of	an	(x,y)	point.	This	is	the	counterclockwise	angle,	measured	in
radians,	between	the	positive	X	axis,	and	the	point	(x,y).	Note	that	the
arguments	to	this	function	pass	the	y-coordinate	first	and	the	x-coordinate
second.

atan2	is	passed	separate	x	and	y	arguments,	and	atan	is	passed	the	ratio	of	those
two	arguments.

Because	atan2	is	a	static	method	of	Math,	you	always	use	it	as	Math.atan2(),
rather	than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	angle	of	the	polar	coordinate:

function	getAtan2(x,y)	{

			return	Math.atan2(x,y)
}	If	you	pass	getAtan2	the	values	(90,15),	it	returns	1.4056476493802699;	if
you	pass	it	the	values	(15,90),	it	returns	0.16514867741462683.

Math.acos,	Math.asin,	Math.atan,	Math.cos,	Math.sin,	Math.tan

ceil

Returns	the	smallest	integer	greater	than	or	equal	to	a	number.

Math

Navigator	2.0,	LiveWire	1.0

ceil(x)

x A	number

Because	ceil	is	a	static	method	of	Math,	you	always	use	it	as	Math.ceil(),	rather
than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	ceil	value	of	the	variable	x:

function	getCeil(x)	{
			return	Math.ceil(x)
}	If	you	pass	45.95	to	getCeil,	it	returns	46;	if	you	pass	-45.95,	it	returns	-45.

Math.floor

cos

Returns	the	cosine	of	a	number.

Math

Navigator	2.0,	LiveWire	1.0

cos(x)

x A	number

The	cos	method	returns	a	numeric	value	between	-1	and	1,	which	represents	the
cosine	of	the	angle.

Because	cos	is	a	static	method	of	Math,	you	always	use	it	as	Math.cos(),	rather
than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	cosine	of	the	variable	x:

function	getCos(x)	{
			return	Math.cos(x)
}	If	x	equals	Math.PI/2,	getCos	returns	6.123031769111886e-017;	if	x	equals
Math.PI,	getCos	returns	-1.

Math.acos,	Math.asin,	Math.atan,	Math.atan2,	Math.sin,	Math.tan

exp

Returns	Ex,	where	x	is	the	argument,	and	E	is	Euler's	constant,	the	base	of	the
natural	logarithms.

Math

Navigator	2.0,	LiveWire	1.0

exp(x)

x A	number

Because	exp	is	a	static	method	of	Math,	you	always	use	it	as	Math.exp(),	rather
than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	exponential	value	of	the	variable	x:

function	getExp(x)	{
			return	Math.exp(x)
}	If	you	pass	getExp	the	value	1,	it	returns	2.718281828459045.

Math.E,	Math.log,	Math.pow

floor

Returns	the	largest	integer	less	than	or	equal	to	a	number.

Math

Navigator	2.0,	LiveWire	1.0

floor(x)

x A	number

Because	floor	is	a	static	method	of	Math,	you	always	use	it	as	Math.floor(),
rather	than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	floor	value	of	the	variable	x:

function	getFloor(x)	{
			return	Math.floor(x)
}	If	you	pass	45.95	to	getFloor,	it	returns	45;	if	you	pass	-45.95,	it	returns	-46.

Math.ceil

log

Returns	the	natural	logarithm	(base	E)	of	a	number.

Math

Navigator	2.0,	LiveWire	1.0

log(x)

x A	number

If	the	value	of	number	is	outside	the	suggested	range,	the	return	value	is	always
-1.797693134862316e+308.

Because	log	is	a	static	method	of	Math,	you	always	use	it	as	Math.log(),	rather
than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	natural	log	of	the	variable	x:

function	getLog(x)	{
			return	Math.log(x)
}	If	you	pass	getLog	the	value	10,	it	returns	2.302585092994046;	if	you	pass	it
the	value	0,	it	returns	-1.797693134862316e+308	because	0	is	out	of	range.

Math.exp,	Math.pow

max

Returns	the	larger	of	two	numbers.

Math

Navigator	2.0,	LiveWire	1.0

max(x,y)

x,	y Numbers.

Because	max	is	a	static	method	of	Math,	you	always	use	it	as	Math.max(),
rather	than	as	a	method	of	a	Math	object	you	created.

The	following	function	evaluates	the	variables	x	and	y:

function	getMax(x,y)	{
			return	Math.max(x,y)
}	If	you	pass	getMax	the	values	10	and	20,	it	returns	20;	if	you	pass	it	the	values
-10	and	-20,	it	returns	-10.

Math.min

min

Returns	the	smaller	of	two	numbers.

Math

Navigator	2.0,	LiveWire	1.0

min(x,y)

x,	y Numbers.

Because	min	is	a	static	method	of	Math,	you	always	use	it	as	Math.min(),	rather
than	as	a	method	of	a	Math	object	you	created.

The	following	function	evaluates	the	variables	x	and	y:

function	getMin(x,y)	{
			return	Math.min(x,y)
}	If	you	pass	getMin	the	values	10	and	20,	it	returns	10;	if	you	pass	it	the	values
-10	and	-20,	it	returns	-20.

Math.max

pow

Returns	base	to	the	exponent	power,	that	is,	baseexponent.

Math

Navigator	2.0,	LiveWire	1.0

pow(x,y)

base The	base	number
exponent The	exponent	to	which	to	raise	base

Because	pow	is	a	static	method	of	Math,	you	always	use	it	as	Math.pow(),
rather	than	as	a	method	of	a	Math	object	you	created.

function	raisePower(x,y)	{
			return	Math.pow(x,y)
}	If	x	is	7	and	y	is	2,	raisePower	returns	49	(7	to	the	power	of	2).

Math.exp,	Math.log

random

Returns	a	pseudo-random	number	between	0	and	1.	The	random	number
generator	is	seeded	from	the	current	time,	as	in	Java.

Math

Navigator	2.0,	LiveWire	1.0:	Unix	only
Navigator	3.0,	LiveWire	1.0:	all	platforms

random()

Because	random	is	a	static	method	of	Math,	you	always	use	it	as
Math.random(),	rather	than	as	a	method	of	a	Math	object	you	created.

//Returns	a	random	number	between	0	and	1
function	getRandom()	{
			return	Math.random()
}

round

Returns	the	value	of	a	number	rounded	to	the	nearest	integer.

Math

Navigator	2.0,	LiveWire	1.0

round(x)

x A	number

If	the	fractional	portion	of	number	is	.5	or	greater,	the	argument	is	rounded	to
the	next	highest	integer.	If	the	fractional	portion	of	number	is	less	than	.5,	the
argument	is	rounded	to	the	next	lowest	integer.

Because	round	is	a	static	method	of	Math,	you	always	use	it	as	Math.round(),
rather	than	as	a	method	of	a	Math	object	you	created.

//Displays	the	value	20
document.write("The	rounded	value	is	"	+	Math.round(20.49))	//Displays	the
value	21
document.write("<P>The	rounded	value	is	"	+	Math.round(20.5))	//Displays	the
value	-20
document.write("<P>The	rounded	value	is	"	+	Math.round(-20.5))	//Displays
the	value	-21
document.write("<P>The	rounded	value	is	"	+	Math.round(-20.51))	In	server-

side	JavaScript,	you	can	display	the	same	output	by	calling	the	write	function
instead	of	using	document.write.

sin

Returns	the	sine	of	a	number.

Math

Navigator	2.0,	LiveWire	1.0

sin(x)

x A	number

The	sin	method	returns	a	numeric	value	between	-1	and	1,	which	represents	the
sine	of	the	argument.

Because	sin	is	a	static	method	of	Math,	you	always	use	it	as	Math.sin(),	rather
than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	sine	of	the	variable	x:

function	getSine(x)	{
			return	Math.sin(x)
}	If	you	pass	getSine	the	value	Math.PI/2,	it	returns	1.

Math.acos,	Math.asin,	Math.atan,	Math.atan2,	Math.cos,	Math.tan

sqrt

Returns	the	square	root	of	a	number.

Math

Navigator	2.0,	LiveWire	1.0

sqrt(x)

x A	number

If	the	value	of	number	is	outside	the	required	range,	sqrt	returns	0.

Because	sqrt	is	a	static	method	of	Math,	you	always	use	it	as	Math.sqrt(),	rather
than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	square	root	of	the	variable	x:

function	getRoot(x)	{
			return	Math.sqrt(x)
}	If	you	pass	getRoot	the	value	9,	it	returns	3;	if	you	pass	it	the	value	2,	it
returns	1.414213562373095.

tan

Returns	the	tangent	of	a	number.

Math

Navigator	2.0,	LiveWire	1.0

tan(x)

x A	number

The	tan	method	returns	a	numeric	value	that	represents	the	tangent	of	the	angle.

Because	tan	is	a	static	method	of	Math,	you	always	use	it	as	Math.tan(),	rather
than	as	a	method	of	a	Math	object	you	created.

The	following	function	returns	the	tangent	of	the	variable	x:

function	getTan(x)	{
			return	Math.tan(x)
}	If	you	pass	Math.PI/4	to	getTan,	it	returns	0.9999999999999999.

Math.acos,	Math.asin,	Math.atan,	Math.atan2,	Math.cos,	Math.sin

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Number
Lets	you	work	with	numeric	values.	The	Number	object	is	an	object	wrapper	for
primitive	numeric	values.

Core	object
Navigator	3.0,	LiveWire	1.0
Navigator	4.0:	modified	behavior	of	Number	constructor

The	Number	constructor:

new	Number(value);

value The	numeric	value	of	the	object	being	created.

The	primary	uses	for	the	Number	object	are:

To	access	its	constant	properties,	which	represent	the	largest	and	smallest
represen	numbers,	positive	and	negative	infinity,	and	the	Not-a-Number
value.

To	create	numeric	objects	that	you	can	add	properties	to.	Most	likely,	you
will	rarely	need	to	create	a	Number	object.

The	properties	of	Number	are	properties	of	the	class	itself,	not	of	individual
Number	objects.

Navigator	4.0:	Number(x)	now	produces	NaN	rather	than	an	error	if	x	is	a	string
that	does	not	contain	a	well-formed	numeric	literal.	For	example,

x=Number("three");	document.write(x	+	"
");	prints	NaN

MAX_VALUE The	largest	represen	number.
MIN_VALUE The	smallest	represen	number.
NaN Special	"not	a	number"	value.
NEGATIVE_INFINITY Special	infinite	value;	returned	on	overflow.
POSITIVE_INFINITY Special	negative	infinite	value;	returned	on	overflow.
prototype Allows	the	addition	of	properties	to	a	Number	object.

toString Returns	a	string	representing	the	specified	object.

	1. 	The	following	example	uses	the	Number	object's	properties	to	assign
values	to	several	numeric	variables:

biggestNum	=	Number.MAX_VALUE
smallestNum	=	Number.MIN_VALUE
infiniteNum	=	Number.POSITIVE_INFINITY
negInfiniteNum	=	Number.NEGATIVE_INFINITY
notANum	=	Number.NaN		2. 	The	following	example	creates	a	Number
object,	myNum,	then	adds	a	property	to	all	Number	objects.	Then	a	value	is
assigned	to	the	myNum	object's	property.

myNum	=	new	Number(65)
Number.prototype.description=null
myNum.description="wind	speed"

MAX_VALUE

The	maximum	numeric	value	represen	in	JavaScript.

Number
,	
Navigator	3,0,	LiveWire	1.0

The	MAX_VALUE	property	has	a	value	of	approximately	1.79E+308.	Values
larger	than	MAX_VALUE	are	represented	as	"Infinity".

Because	MAX_VALUE	is	a	static	property	of	Number,	you	always	use	it	as
Number.MAX_VALUE,	rather	than	as	a	property	of	a	Number	object	you
created.

The	following	code	multiplies	two	numeric	values.	If	the	result	is	less	than	or
equal	to	MAX_VALUE,	the	func1	function	is	called;	otherwise,	the	func2
function	is	called.

if	(num1	*	num2	<=	Number.MAX_VALUE)
			func1()
else
			func2()

MIN_VALUE

The	smallest	positive	numeric	value	represen	in	JavaScript.

Number
,	
Navigator	3,0,	LiveWire	1.0

The	MIN_VALUE	property	is	the	number	closest	to	0,	not	the	most	negative
number,	that	JavaScript	can	represent.

MIN_VALUE	has	a	value	of	approximately	2.22E-308.	Values	smaller	than
MIN_VALUE	("underflow	values")	are	converted	to	0.

Because	MIN_VALUE	is	a	static	property	of	Number,	you	always	use	it	as
Number.MIN_VALUE,	rather	than	as	a	property	of	a	Number	object	you
created.

The	following	code	divides	two	numeric	values.	If	the	result	is	greater	than	or
equal	to	MIN_VALUE,	the	func1	function	is	called;	otherwise,	the	func2
function	is	called.

if	(num1	/	num2	>=	Number.MIN_VALUE)
			func1()
else
			func2()

NaN

A	special	value	representing	Not-A-Number.	This	value	is	represented	as	the
unquoted	literal	NaN.

Number

Navigator	3,0,	LiveWire	1.0

JavaScript	prints	the	value	Number.NaN	as	NaN.

NaN	is	always	unequal	to	any	other	number,	including	NaN	itself;	you	cannot
check	for	the	not-a-number	value	by	comparing	to	Number.NaN.	Use	the	isNaN
function	instead.

You	might	use	the	NaN	property	to	indicate	an	error	condition	for	a	function
that	should	return	a	valid	number.

In	the	following	example,	if	month	has	a	value	greater	than	12,	it	is	assigned
NaN,	and	a	message	is	displayed	indicating	valid	values.

var	month	=	13
if	(month	<	1	||	month	>	12)	{
			month	=	Number.NaN
			alert("Month	must	be	between	1	and	12.")
}

isNaN,	parseFloat,	parseInt

NEGATIVE_INFINITY

A	special	numeric	value	representing	negative	infinity.	This	value	is	displayed
as	"-Infinity".

Number
,	
Navigator	3,0,	LiveWire	1.0

This	value	behaves	mathematically	like	infinity;	for	example,	anything
multiplied	by	infinity	is	infinity,	and	anything	divided	by	infinity	is	0.

Because	NEGATIVE_INFINITY	is	a	static	property	of	Number,	you	always	use
it	as	Number.NEGATIVE_INFINITY,	rather	than	as	a	property	of	a	Number
object	you	created.

In	the	following	example,	the	variable	smallNumber	is	assigned	a	value	that	is
smaller	than	the	minimum	value.	When	the	if	statement	executes,	smallNumber
has	the	value	"-Infinity",	so	the	func1	function	is	called.

var	smallNumber	=	-Number.MAX_VALUE*10
if	(smallNumber	==	Number.NEGATIVE_INFINITY)
			func1()
else
			func2()

POSITIVE_INFINITY

A	special	numeric	value	representing	infinity.	This	value	is	displayed	as
"Infinity".

Number
,	
Navigator	3,0,	LiveWire	1.0

This	value	behaves	mathematically	like	infinity;	for	example,	anything
multiplied	by	infinity	is	infinity,	and	anything	divided	by	infinity	is	0.

JavaScript	does	not	have	a	literal	for	Infinity.

Because	POSITIVE_INFINITY	is	a	static	property	of	Number,	you	always	use
it	as	Number.POSITIVE_INFINITY,	rather	than	as	a	property	of	a	Number
object	you	created.

In	the	following	example,	the	variable	bigNumber	is	assigned	a	value	that	is
larger	than	the	maximum	value.	When	the	if	statement	executes,	bigNumber	has
the	value	"Infinity",	so	the	func1	function	is	called.

var	bigNumber	=	Number.MAX_VALUE	*	10
if	(bigNumber	==	Number.POSITIVE_INFINITY)
			func1()
else
			func2()

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

Number
Navigator	3.0,	LiveWire	1.0

toString

Returns	a	string	representing	the	specified	object.

Number
Navigator	3.0

toString()
toString(radix)

radix (Optional)	An	integer	between	2	and	16	specifying	the	base	to	use	forrepresenting	numeric	values.

Every	object	has	a	toString	method	that	is	automatically	called	when	it	is	to	be
represented	as	a	text	value	or	when	an	object	is	referred	to	in	a	string
concatenation.

You	can	use	toString	within	your	own	code	to	convert	an	object	into	a	string,
and	you	can	create	your	own	function	to	be	called	in	place	of	the	default
toString	method.

You	can	use	toString	on	numeric	values,	but	not	on	numeric	literals:

//	The	next	two	lines	are	valid
var	howMany=10
document.write("howMany.toString()	is	"	+	howMany.toString()	+	"
")	//
The	next	line	causes	an	error
document.write("45.toString()	is	"	+	45.toString()	+	"
")	For	information
on	defining	your	own	toString	method,	see	the	Object.toString	method.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Object
Object	is	the	primitive	JavaScript	object	type.	All	JavaScript	objects	are
descended	from	Object.	That	is,	all	JavaScript	objects	have	the	methods	defined
for	Object.

Core	object
Navigator	2.0:	toString	
Navigator	3.0,	LiveWire	1.0:		eval	and	valueOf	s;
constructor	
Navigator	3.0:	removed	eval	

The	Object	constructor:

new	Object();

constructor Specifies	the	function	that	creates	an	object's	prototype.
prototype Allows	the	addition	of	properties	to	all	objects.

eval Evaluates	a	string	of	JavaScript	code	in	the	context	of	the	specified
object.

toString Returns	a	string	representing	the	specified	object.
unwatch Removes	a	watchpoint	from	a		the	object.
valueOf Returns	the	primitive	value	of	the	specified	object.

watch Adds	a	watchpoint	to	a		the	object.

constructor

Specifies	the	function	that	creates	an	object's	prototype.	Note	that	the	value	of
this	property	is	a	reference	to	the	function	itself,	not	a	string	containing	the
function's	name.

Object
Navigator	3.0,	LiveWire	1.0

All	objects	inherit	a	constructor	property	from	their	prototype:

o	=	new	Object	//	or	o	=	{}	in	Navigator	4.0
o.constructor	==	Object
a	=	new	Array	//	or	a	=	[]	in	Navigator	4.0
a.constructor	==	Array
n	=	new	Number(3)
n.constructor	==	Number	Even	though	you	cannot	construct	most	HTML
objects,	you	can	do	comparisons.	For	example,

document.constructor	==	Document
document.form3.constructor	==	Form

The	following	example	creates	a	prototype,	Tree,	and	an	object	of	that	type,
theTree.	The	example	then	displays	the	constructor	property	for	the	object
theTree.

function	Tree(name)	{
			this.name=name
}
theTree	=	new	Tree("Redwood")
document.writeln("theTree.constructor	is	"	+
			theTree.constructor	+	"<P>")	This	example	displays	the	following	output:

theTree.constructor	is	function	Tree(name)	{	this.name	=	name;	}

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	more	information,	see
Function.prototype.

Object
Navigator	3.0

eval

Evaluates	a	string	of	JavaScript	code	in	the	context	of	this	object.

Object
Navigator	3.0,	LiveWire	1.0
Navigator	4.0,	Netscape	Server	3.0:	removed	as		objects;	retained	as	global
function.

eval(string)

string
Any	string	representing	a	JavaScript	expression,	statement,	or	sequence
of	statements.	The	expression	can	include	variables	and	properties	of
existing	objects.

The	argument	of	the	eval	method	is	a	string.	If	the	string	represents	an
expression,	eval	evaluates	the	expression.	If	the	argument	represents	one	or
more	JavaScript	statements,	eval	performs	the	statements.	Do	not	call	eval	to
evaluate	an	arithmetic	expression;	JavaScript	evaluates	arithmetic	expressions
automatically.

If	you	construct	an	arithmetic	expression	as	a	string,	you	can	use	eval	to
evaluate	it	at	a	later	time.	For	example,	suppose	you	have	a	variable	x.	You	can
postpone	evaluation	of	an	expression	involving	x	by	assigning	the	string	value
of	the	expression,	say	"3	*	x	+	2",	to	a	variable,	and	then	calling	eval	at	a	later
point	in	your	script.

eval	is	also	a	global	function,	not	associated	with	any	object.

NOTE:	In	Navigator	2.0,	eval	was	a	top-level	function.	In	Navigator	3.0

eval	was	also	a	method	of	every	object.	The	ECMA-262	standard	for
JavaScript	made	eval	available	only	as	a	top-level	function.	For	this
reason,	in	Navigator	4.0,	eval	is	once	again	a	top-level	function.	In
Navigator	4.02,	obj.eval(str)	is	equivalent	in	all	scopes	to
with(obj)eval(str),	except	of	course	that	the	latter	is	a	statement,	not	an
expression.

	1. 	The	following	example	creates	breed	as	a	property	of	the	object	myDog,
and	also	as	a	variable.	The	first	write	statement	uses	eval('breed')	without
specifying	an	object;	the	string	"breed"	is	evaluated	without	regard	to	any
object,	and	the	write	method	displays	"Shepherd",	which	is	the	value	of	the
breed	variable.	The	second	write	statement	uses	myDog.eval('breed')	which
specifies	the	object	myDog;	the	string	"breed"	is	evaluated	with	regard	to	the
myDog	object,	and	the	write	method	displays	"Lab",	which	is	the	value	of	the
breed	property	of	the	myDog	object.

function	Dog(name,breed,color)	{
			this.name=name
			this.breed=breed
			this.color=color
}
myDog	=	new	Dog("Gabby")
myDog.breed="Lab"
var	breed='Shepherd'
document.write("<P>"	+	eval('breed'))
document.write("
"	+	myDog.eval('breed'))		2. 	The	following	example
uses	eval	within	a	function	that	defines	an	object	type,	stone.	The	statement	flint
=	new	stone("x=42")	creates	the	object	flint	with	the	properties	x,	y,	z,	and	z2.
The	write	statements	display	the	values	of	these	properties	as	42,	43,	44,	and	45,
respectively.

function	stone(str)	{
			this.eval("this."+str)
			this.eval("this.y=43")
			this.z=44
			this["z2"]	=	45
}

flint	=	new	stone("x=42")
document.write("
flint.x	is	"	+	flint.x)
document.write("
flint.y	is	"	+	flint.y)
document.write("
flint.z	is	"	+	flint.z)
document.write("
flint.z2	is	"	+	flint.z2)

eval

toString

Returns	a	string	representing	the	specified	object.

Object
Navigator	2.0

toString()
toString(radix)

radix (Optional)	An	integer	between	2	and	16	specifying	the	base	to	use	forrepresenting	numeric	values.

Navigator	3.0:	This	method	is	tainted	by	default	for	the	following	objects:
Button,	Checkbox,	FileUpload,	Hidden,	History,	Link,	Location,	Password,
Radio,	Reset,	Select,	Submit,	Text,	and	Textarea.

For	information	on	data	tainting,	see	"JavaScript	Security".

Every	object	has	a	toString	method	that	is	automatically	called	when	it	is	to	be
represented	as	a	text	value	or	when	an	object	is	referred	to	in	a	string
concatenation.	For	example,	the	following	require	theDog	to	be	represented	as
a	string:

document.write(theDog)
document.write("The	dog	is	"	+	theDog)	You	can	use	toString	within	your	own
code	to	convert	an	object	into	a	string,	and	you	can	create	your	own	function	to

be	called	in	place	of	the	default	toString	method.

Built-in	toString	methods

Every	object	type	has	a	built-in	toString	method,	which	JavaScript	calls
whenever	it	needs	to	convert	an	object	to	a	string.	If	an	object	has	no	string
value	and	no	user-defined	toString	method,	toString	returns	"[object	type]",
where	type	is	the	object	type	or	the	name	of	the	constructor	function	that	created
the	object.	For	example,	if	for	an	Image	object	named	sealife	defined	as	shown
below,	sealife.toString()	returns	[object	Image].

<IMG	NAME="sealife"	SRC="images\seaotter.gif"	ALIGN="left"
VSPACE="10">	Some	built-in	classes	have	special	definitions	for	their	toString
methods.	See	thes	of	this	method	for	these	objects:

Array,	Boolean,	Connection,	database,	DbPool,	Function,	Number

User-defined	toString	methods

You	can	create	a	function	to	be	called	in	place	of	the	default	toString	method.
The	toString	method	takes	no	arguments	and	should	return	a	string.	The
toString	method	you	create	can	be	any	value	you	want,	but	it	will	be	most
useful	if	it	carries	information	about	the	object.

The	following	code	defines	the	Dog	object	type	and	creates	theDog,	an	object
of	type	Dog:

function	Dog(name,breed,color,sex)	{
			this.name=name
			this.breed=breed
			this.color=color
			this.sex=sex
}	theDog	=	new	Dog("Gabby","Lab","chocolate","girl")	The	following	code
creates	dogToString,	the	function	that	will	be	used	in	place	of	the	default
toString	method.	This	function	generates	a	string	containing	each	property,	of
the	form	"property	=	value;".

function	dogToString()	{
			var	ret	=	"Dog	"	+	this.name	+	"	is	["

			for	(var	prop	in	this)
						ret	+=	"	"	+	prop	+	"	is	"	+	this[prop]	+	";"
			return	ret	+	"]"
}	The	following	code	assigns	the	user-defined	function	to	the	object's	toString
method:

Dog.prototype.toString	=	dogToString	With	the	preceding	code	in	place,	any
time	theDog	is	used	in	a	string	context,	JavaScript	automatically	calls	the
dogToString	function,	which	returns	the	following	string:

Dog	Gabby	is	[name	is	Gabby;	breed	is	Lab;	color	is	chocolate;	sex	is	girl;
toString	is	function	dogToString()	{	var	ret	=	"Object	"	+	this.name	+	"	is
[";	for	(var	prop	in	this)	{	ret	+=	"	"	+	prop	+	"	is	"	+	this[prop]	+	";";	}
return	ret	+	"]";	}	;]

An	object's	toString	method	is	usually	invoked	by	JavaScript,	but	you	can
invoke	it	yourself	as	follows:

alert(theDog.toString())

	1:	The	location	object. 	The	following	example	prints	the	string	equivalent	of
the	current	location.

document.write("location.toString()	is	"	+	location.toString()	+	"
")	The
output	is	as	follows:

location.toString()	is	file:///C|/TEMP/myprog.html		2:	Object	with	no	string
value.	Assume	you	have	an	Image	object	named	sealife	defined	as	follows:

<IMG	NAME="sealife"	SRC="images\seaotter.gif"	ALIGN="left"
VSPACE="10">	Because	the	Image	object	itself	has	no	special	toString
method,	sealife.toString()	returns	the	following:

[object	Image]		3:	The	radix	parameter. 	The	following	example	prints	the
string	equivalents	of	the	numbers	0	through	9	in	decimal	and	binary.

for	(x	=	0;	x	<	10;	x++)	{

			document.write("Decimal:	",	x.toString(10),	"	Binary:	",
						x.toString(2),	"
")
}	The	preceding	example	produces	the	following	output:

Decimal:	0	Binary:	0
Decimal:	1	Binary:	1
Decimal:	2	Binary:	10
Decimal:	3	Binary:	11
Decimal:	4	Binary:	100
Decimal:	5	Binary:	101
Decimal:	6	Binary:	110
Decimal:	7	Binary:	111
Decimal:	8	Binary:	1000
Decimal:	9	Binary:	1001

Object.valueOf

unwatch

Removes	a	watchpoint	set	with	the	watch	method.

Object
Navigator	4.0,	Netscape	Server	3.0

unwatch(prop)

prop The	name	of	a		theobject.

The	JavaScript	debugger	has	functionality	similar	to	that	provided	by	this
method,	as	well	as	other	debugging	options.	For	information	on	the	debugger,
see	Getting	Started	with	Netscape	JavaScript	Debugger.

See	watch.

http://developer.netscape.com/library/documentation/jsdebug/index.htm

valueOf

Returns	the	primitive	value	of	the	specified	object.

Object
Navigator	3.0

valueOf()

Every	object	has	a	valueOf	method	that	is	automatically	called	when	it	is	to	be
represented	as	a	primitive	value.	If	an	object	has	no	primitive	value,	valueOf
returns	the	object	itself.

You	can	use	valueOf	within	your	own	code	to	convert	an	object	into	a	primitive
value,	and	you	can	create	your	own	function	to	be	called	in	place	of	the	default
valueOf	method.

Every	object	type	has	a	built-in	valueOf	method,	which	JavaScript	calls
whenever	it	needs	to	convert	an	object	to	a	primitive	value.

You	rarely	need	to	invoke	the	valueOf	method	yourself.	JavaScript
automatically	invokes	it	when	encountering	an	object	where	a	primitive	value	is
expected.

	4.2	shows	the	object	types	for	which	the	valueOf	method	is	most	useful.	Most
other	objects	have	no	primitive	value.

	4.2	Use	valueOf	for	these	object	types

	type Value	returned	by	valueOf
Number Primitive	numeric	value	associated	with	the	object.
Boolean Primitive	boolean	value	associated	with	the	object.
String String	associated	with	the	object.

Function
Function	reference	associated	with	the	object.	For	example,	typeof
funObj	returns	"object",	but	typeof	funObj.valueOf()	returns
"function".

You	can	create	a	function	to	be	called	in	place	of	the	default	valueOf	method.
Your	function	must	take	no	arguments.

Suppose	you	have	an	object	type	myNumberType	and	you	want	to	create	a
valueOf	method	for	it.	The	following	code	assigns	a	user-defined	function	to	the
object's	valueOf	method:

myNumberType.prototype.valueOf	=	new	Function(functionText)	With	the
preceding	code	in	place,	any	time	an	object	of	type	myNumberType	is	used	in	a
context	where	it	is	to	be	represented	as	a	primitive	value,	JavaScript
automatically	calls	the	function	defined	in	the	preceding	code.

An	object's	valueOf	method	is	usually	invoked	by	JavaScript,	but	you	can
invoke	it	yourself	as	follows:

myNumber.valueOf()

NOTE:	Objects	in	string	contexts	convert	via	the	toString	method,	which
is	different	from	String	objects	converting	to	string	primitives	using
valueOf.	All	string	objects	have	a	string	conversion,	if	only	"[object	type]".
But	many	objects	do	not	convert	to	number,	boolean,	or	function.

parseInt,	Object.toString

watch

Watches	for	a	property	to	be	assigned	a	value	and	runs	a	function	when	that
occurs.

Object
Navigator	4.0,	Netscape	Server	3.0

watch(prop,	handler)

prop The	name	of	a		the
object.

handler A	function	to	call.

Watches	for	assignment	to	a	property	named	prop	in	this	object,	calling
handler(prop,	oldval,	newval)	whenever	prop	is	set	and	storing	the	return	value
in	that	property.	A	watchpoint	can	filter	(or	nullify)	the	value	assignment,	by
returning	a	modified	newval	(or	oldval).

If	you	delete	a	property	for	which	a	watchpoint	has	been	set,	that	watchpoint
does	not	disappear.	If	you	later	recreate	the	property,	the	watchpoint	is	still	in
effect.

To	remove	a	watchpoint,	use	the	unwatch	method.

The	JavaScript	debugger	has	functionality	similar	to	that	provided	by	this
method,	as	well	as	other	debugging	options.	For	information	on	the	debugger,
see	Getting	Started	with	Netscape	JavaScript	Debugger.

http://developer.netscape.com/library/documentation/jsdebug/index.htm

<script	language="JavaScript1.2">
o	=	{p:1}
o.watch("p",
			function	(id,oldval,newval)	{
						document.writeln("o."	+	id	+	"	changed	from	"	
									+	oldval	+	"	to	"	+	newval)
						return	newval
			})	o.p	=	2
o.p	=	3
delete	o.p
o.p	=	4	o.unwatch('p')
o.p	=	5	</script>	This	script	displays	the	following:

o.p	changed	from	1	to	2
o.p	changed	from	2	to	3
o.p	changed	from	3	to	4

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

String
An	object	representing	a	series	of	characters	in	a	string.

Core	object
Navigator	2.0:	Create	a	String	object	only	by	quoting	characters.
Navigator	3.0,	LiveWire	1.0:		String	constructor;		prototype	;	
split	;		ability	to	pass	strings	among	scripts	in	different	windows	or
frames	(in	previous	releases,	you	had	to	add	an	empty	string	to	another
window's	string	to	refer	to	it)
Navigator	4.0,	Netscape	Server	3.0:		 concat,	match,	replace,	search,	slice,
and	substr	s.

The	String	constructor:

new	String(string);

string Any	string.

The	String	object	is	a	built-in	JavaScript	object.	You	an	treat	any	JavaScript
string	as	a	String	object.

A	string	can	be	represented	as	a	literal	enclosed	by	single	or	double	quotation
marks;	for	example,	"Netscape"	or	'Netscape'.

length Reflects	the	length	of	the	string.
prototype Allows	the	addition	of	properties	to	a	String	object.

anchor Creates	an	HTML	anchor	that	is	used	as	a	hypertext	target.

big Causes	a	string	to	be	displayed	in	a	big	font	as	if	it	were	in	a
BIG	tag.

blink Causes	a	string	to	blink	as	if	it	were	in	a	BLINK	tag.
bold Causes	a	string	to	be	displayed	as	if	it	were	in	a	B	tag.
charAt Returns	the	character	at	the	specified	index.

charCodeAt Returns	a	number	indicating	the	ISO-Latin-1	codeset	value	of
the	character	at	the	given	index.

concat Combines	the	text	of	two	strings	and	returns	a	new	string.

fixed Causes	a	string	to	be	displayed	in	fixed-pitch	font	as	if	it	were
in	a	TT	tag.

fontcolor Causes	a	string	to	be	displayed	in	the	specified	color	as	if	it
were	in	a		tag.

fontsize Causes	a	string	to	be	displayed	in	the	specified	font	size	as	if	it
were	in	a		tag.

fromCharCode Returns	a	string	from	the	specified	sequence	of	numbers	thatareISO-Latin-1	codeset	values.

indexOf Returns	the	index	within	the	calling	String	object	of	the	first
occurrence	of	the	specified	value.

italics Causes	a	string	to	be	italic,	as	if	it	were	in	an	I	tag.

lastIndexOf Returns	the	index	within	the	calling	String	object	of	the	last
occurrence	of	the	specified	value.

link Creates	an	HTML	hypertext	link	that	requests	another	URL.
match Used	to	match	a	regular	expression	against	a	string.

replace Used	to	find	a	match	between	a	regular	expression	and	a	string,
and	to	replace	the	matched	substring	with	a	new	substring.

search Executes	the	search	for	a	match	between	a	regular	expression
and	a	specified	string.

slice Extracts	a	section	of	a	string	and	returns	a	new	string.

small Causes	a	string	to	be	displayed	in	a	small	font,	as	if	it	were	in	a
SMALL	tag.

split Splits	a	String	object	into	an	array	of	strings	by	separating	the
string	into	substrings.

strike Causes	a	string	to	be	displayed	as	struck-out	text,	as	if	it	were
in	a	STRIKE	tag.

sub Causes	a	string	to	be	displayed	as	a	subscript,	as	if	it	were	in	a
SUB	tag.

substr Returns	the	characters	in	a	string	beginning	at	the	specified
location	through	the	specified	number	of	characters.

substring Returns	the	characters	in	a	string	between	two	indexes	into	the
string.

sup Causes	a	string	to	be	displayed	as	a	superscript,	as	if	it	were	in	a
SUP	tag.

toLowerCase Returns	the	calling	string	value	converted	to	lowercase.
toUpperCase Returns	the	calling	string	value	converted	to	uppercase.

	1:	String	variable. 	The	following	statement	creates	a	string	variable:

var	last_name	=	"Schaefer"		2:	String	object	properties. 	The	following
statements	evaluate	to	8,	"SCHAEFER,"	and	"schaefer":

last_name.length
last_name.toUpperCase()
last_name.toLowerCase()		3:	Accessing	individual	characters	in	a	string.
You	can	think	of	a	string	as	an	array	of	characters.	In	this	way,	you	can	access
the	individual	characters	in	the	string	by	indexing	that	array.	For	example,	the
following	code:

var	myString	=	"Hello"
document.write	("The	first	character	in	the	string	is	"	+	myString[0])	displays
"The	first	character	in	the	string	is	H"

	4:	Pass	a	string	among	scripts	in	different	windows	or	frames. 	The
following	code	creates	two	string	variables	and	opens	a	second	window:

var	lastName	=	new	String("Schaefer")
var	firstName	=	new	String	("Jesse")
empWindow=window.open('string2.html','window1','width=300,height=300')	If
the	HTML	source	for	the	second	window	(string2.html)	creates	two	string

variables,	empLastName	and	empFirstName,	the	following	code	in	the	first
window	assigns	values	to	the	second	window's	variables:

empWindow.empFirstName=firstName
empWindow.empLastName=lastName	The	following	code	in	the	first	window
displays	the	values	of	the	second	window's	variables:

alert('empFirstName	in	empWindow	is	'	+	empWindow.empFirstName)
alert('empLastName	in	empWindow	is	'	+	empWindow.empLastName)

length

The	length	of	the	string.

String

Navigator	2.0,	LiveWire	1.0

For	a	null	string,	length	is	0.

The	following	example	displays	8	in	an	Alert	dialog	box:

var	x="Netscape"
alert("The	string	length	is	"	+	x.length)

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

String
Navigator	3.0,	Netscape	Server	3.0

anchor

Creates	an	HTML	anchor	that	is	used	as	a	hypertext	target.

String
Navigator	2.0,	LiveWire	1.0

anchor(nameAttribute)

nameAttribute A	string.

Use	the	anchor	method	with	the	document.write	or	document.writeln	methods
to	programmatically	create	and	display	an	anchor	in	a	document.	Create	the
anchor	with	the	anchor	method,	and	then	call	write	or	writeln	to	display	the
anchor	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to
display	the	anchor.

In	the,	the	text	string	represents	the	literal	text	that	you	want	the	user	to	see.
The	nameAttribute	string	represents	the	NAME	attribute	of	the	A	tag.

Anchors	created	with	the	anchor	method	become	elements	in	the
document.anchors	array.

The	following	example	opens	the	msgWindow	window	and	creates	an	anchor
for	the		of	contents:

var	myString="	of	Contents"
msgWindow.document.writeln(myString.anchor("contents_anchor"))	The

previous	example	produces	the	same	output	as	the	following	HTML:

	of	Contents 	In	server-side	JavaScript,
you	can	generate	this	HTML	by	calling	the	write	function	instead	of	using
document.writeln.

String.link

big

Causes	a	string	to	be	displayed	in	a	big	font	as	if	it	were	in	a	BIG	tag.

String
Navigator	2.0,	LiveWire	1.0

big()

Use	the	big	method	with	the	write	or	writeln	methods	to	format	and	display	a
string	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to	display
the	string.

The	following	example	uses	string	methods	to	change	the	size	of	a	string:

var	worldString="Hello,	world"	document.write(worldString.small())
document.write("<P>"	+	worldString.big())
document.write("<P>"	+	worldString.fontsize(7))	The	previous	example
produces	the	same	output	as	the	following	HTML:

<SMALL>Hello,	world</SMALL>
<P><BIG>Hello,	world</BIG>
<P><FONTSIZE=7>Hello,	world</FONTSIZE>

String.fontsize,	String.small

blink

Causes	a	string	to	blink	as	if	it	were	in	a	BLINK	tag.

String
Navigator	2.0,	LiveWire	1.0

blink()

Use	the	blink	method	with	the	write	or	writeln	methods	to	format	and	display	a
string	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to	display
the	string.

The	following	example	uses	string	methods	to	change	the	formatting	of	a	string:

var	worldString="Hello,	world"	document.write(worldString.blink())
document.write("<P>"	+	worldString.bold())
document.write("<P>"	+	worldString.italics())
document.write("<P>"	+	worldString.strike())	The	previous	example	produces
the	same	output	as	the	following	HTML:

<BLINK>Hello,	world</BLINK>
<P>Hello,	world
<P><I>Hello,	world</I>
<P><STRIKE>Hello,	world</STRIKE>

String.bold,	String.italics,	String.strike

bold

Causes	a	string	to	be	displayed	as	bold	as	if	it	were	in	a	B	tag.

String
Navigator	2.0,	LiveWire	1.0

bold()

Use	the	bold	method	with	the	write	or	writeln	methods	to	format	and	display	a
string	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to	display
the	string.

The	following	example	uses	string	methods	to	change	the	formatting	of	a	string:

var	worldString="Hello,	world"	
document.write(worldString.blink())
document.write("<P>"	+	worldString.bold())
document.write("<P>"	+	worldString.italics())
document.write("<P>"	+	worldString.strike())	The	previous	example	produces
the	same	output	as	the	following	HTML:

<BLINK>Hello,	world</BLINK>
<P>Hello,	world
<P><I>Hello,	world</I>
<P><STRIKE>Hello,	world</STRIKE>

String.blink,	String.italics,	String.strike

charAt

Returns	the	specified	character	from	the	string.

String
Navigator	2.0,	LiveWire	1.0

charAt(index)

index An	integer	between	0	and	1	less	than	the	length	of	the	string.

Characters	in	a	string	are	indexed	from	left	to	right.	The	index	of	the	first
character	is	0,	and	the	index	of	the	last	character	in	a	string	called	stringName	is
stringName.length	-	1.	If	the	index	you	supply	is	out	of	range,	JavaScript
returns	an	empty	string.

The	following	example	displays	characters	at	different	locations	in	the	string
"Brave	new	world":

var	anyString="Brave	new	world"	document.writeln("The	character	at	index	0
is	"	+	anyString.charAt(0))
document.writeln("The	character	at	index	1	is	"	+	anyString.charAt(1))
document.writeln("The	character	at	index	2	is	"	+	anyString.charAt(2))
document.writeln("The	character	at	index	3	is	"	+	anyString.charAt(3))
document.writeln("The	character	at	index	4	is	"	+	anyString.charAt(4))	These
lines	display	the	following:

The	character	at	index	0	is	B
The	character	at	index	1	is	r
The	character	at	index	2	is	a
The	character	at	index	3	is	v
The	character	at	index	4	is	e

In	server-side	JavaScript,	you	can	display	the	same	output	by	calling	the	write
function	instead	of	using	document.write.

String.indexOf,	String.lastIndexOf,	String.split

charCodeAt

Returns	a	number	indicating	the	ISO-Latin-1	codeset	value	of	the	character	at
the	given	index.

String
Navigator	4.0,	Netscape	Server	3.0

charCodeAt(index)

index (Optional)	An	integer	between	0	and	1	less	than	the	length	of	the	string.The	default	value	is	0.

The	ISO-Latin-1	codeset	ranges	from	0	to	255.	The	first	0	to	127	are	a	direct
match	of	the	ASCII	character	set.

The	following	example	returns	65,	the	ISO-Latin-1	codeset	value	for	A.

"ABC".charCodeAt(0)

concat

Combines	the	text	of	two	strings	and	returns	a	new	string.

String
Navigator	4.0,	Netscape	Server	3.0

concat(string2)

string1 The	first	string.
string2 The	second	string.

concat	combines	the	text	from	two	strings	and	returns	a	new	string.	Changes	to
the	text	in	one	string	do	not	affect	the	other	string.

The	following	example	combines	two	strings	into	a	new	string.

<SCRIPT>
str1="The	morning	is	upon	us.	"
str2="The	sun	is	bright."
str3=str1.concat(str2)
document.writeln(str1)
document.writeln(str2)
document.writeln(str3)
</SCRIPT>	This	writes:

The	morning	is	upon	us.	

The	sun	is	bright.
The	morning	is	upon	us.	The	sun	is	bright.

fixed

Causes	a	string	to	be	displayed	in	fixed-pitch	font	as	if	it	were	in	a	TT	tag.

String
Navigator	2.0,	LiveWire	1.0

fixed()

Use	the	fixed	method	with	the	write	or	writeln	methods	to	format	and	display	a
string	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to	display
the	string.

The	following	example	uses	the	fixed	method	to	change	the	formatting	of	a
string:

var	worldString="Hello,	world"
document.write(worldString.fixed())	The	previous	example	produces	the	same
output	as	the	following	HTML:

<TT>Hello,	world</TT>

fontcolor

Causes	a	string	to	be	displayed	in	the	specified	color	as	if	it	were	in	a		tag.

String
Navigator	2.0,	LiveWire	1.0

fontcolor(color)

color
A	string	expressing	the	color	as	a	hexadecimal	RGB	triplet	or	as	a	string
literal.	String	literals	for	color	names	are	listed	in	Appendix	B,	"Color
Values,"	in	the	JavaScript	Guide.

Use	the	fontcolor	method	with	the	write	or	writeln	methods	to	format	and
display	a	string	in	a	document.	In	server-side	JavaScript,	use	the	write	function
to	display	the	string.

If	you	express	color	as	a	hexadecimal	RGB	triplet,	you	must	use	the	format
rrggbb.	For	example,	the	hexadecimal	RGB	values	for	salmon	are	red=FA,
green=80,	and	blue=72,	so	the	RGB	triplet	for	salmon	is	"FA8072".

The	fontcolor	method	overrides	a	value	set	in	the	fgColor	property.

The	following	example	uses	the	fontcolor	method	to	change	the	color	of	a
string:

var	worldString="Hello,	world"

http://developer.netscape.com/communicator/library/documentation/communicator/jsguide4/index.htm?content=colors.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

document.write(worldString.fontcolor("maroon")	+
			"	is	maroon	in	this	line")
document.write("<P>"	+	worldString.fontcolor("salmon")	+
			"	is	salmon	in	this	line")
document.write("<P>"	+	worldString.fontcolor("red")	+
			"	is	red	in	this	line")	document.write("<P>"	+	worldString.fontcolor("8000")	+
			"	is	maroon	in	hexadecimal	in	this	line")
document.write("<P>"	+	worldString.fontcolor("FA8072")	+
			"	is	salmon	in	hexadecimal	in	this	line")
document.write("<P>"	+	worldString.fontcolor("FF00")	+
			"	is	red	in	hexadecimal	in	this	line")	The	previous	example	produces	the	same
output	as	the	following	HTML:

Hello,	world	is	maroon	in	this	line
<P>Hello,	world	is	salmon	in	this	line
<P>Hello,	world	is	red	in	this	line	Hello,	world	
is	maroon	in	hexadecimal	in	this	line
<P>Hello,	world	
is	salmon	in	hexadecimal	in	this	line
<P>Hello,	world	
is	red	in	hexadecimal	in	this	line

fontsize

Causes	a	string	to	be	displayed	in	the	specified	font	size	as	if	it	were	in	a
	tag.

String
Navigator	2.0,	LiveWire	1.0

fontsize(size)

size An	integer	between	1	and	7,	a	string	representing	a	signed	integer	between1	and	7.

Use	the	fontsize	method	with	the	write	or	writeln	methods	to	format	and	display
a	string	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to
display	the	string.

When	you	specify	size	as	an	integer,	you	set	the	size	of	stringName	to	one	of
the	7	defined	sizes.	When	you	specify	size	as	a	string	such	as	"-2",	you	adjust
the	font	size	of	stringName	relative	to	the	size	set	in	the	BASEFONT	tag.

The	following	example	uses	string	methods	to	change	the	size	of	a	string:

var	worldString="Hello,	world"	document.write(worldString.small())
document.write("<P>"	+	worldString.big())
document.write("<P>"	+	worldString.fontsize(7))	The	previous	example
produces	the	same	output	as	the	following	HTML:

<SMALL>Hello,	world</SMALL>
<P><BIG>Hello,	world</BIG>
<P><FONTSIZE=7>Hello,	world</FONTSIZE>

String.big,	String.small

fromCharCode

Returns	a	string	created	by	using	the	specified	sequence	ISO-Latin-1	codeset
values.

String

Navigator	4.0,	Netscape	Server	3.0

fromCharCode(num1,	...,	numN)

num1,	...,	numN A	sequence	of	numbers	that	are	ISO-Latin-1	codeset	values.

This	method	returns	a	string	and	not	a	String	object.

Because	fromCharCode	is	a	static	method	of	String,	you	always	use	it	as
String.fromCharCode(),	rather	than	as	a	method	of	a	String	object	you	created.

	1 .	The	following	example	returns	the	string	"ABC".

String.fromCharCode(65,66,67)		2 .	The	which	property	of	the	KeyDown,
KeyPress,	and	KeyUp	events	contains	the	ASCII	value	of	the	key	pressed	at	the
time	the	event	occurred.	If	you	want	to	get	the	actual	letter,	number,	or	symbol
of	the	key,	you	can	use	fromCharCode.	The	following	example	returns	the
letter,	number,	or	symbol	of	the	KeyPress	event's	which	property.

String.fromCharCode(KeyPress.which)

indexOf

Returns	the	index	within	the	calling	String	object	of	the	first	occurrence	of	the
specified	value,	starting	the	search	at	fromIndex,	or	-1	if	the	value	is	not	found.

String
Navigator	2.0,	LiveWire	1.0

indexOf(searchValue,	fromIndex)

searchValue A	string	representing	the	value	to	search	for.

fromIndex
(Optional)	The	location	within	the	calling	string	to	start	the	search
from.	It	can	be	any	integer	between	0	and	1	less	than	the	length	of
the	string.	The	default	value	is	0.

Characters	in	a	string	are	indexed	from	left	to	right.	The	index	of	the	first
character	is	0,	and	the	index	of	the	last	character	of	a	string	called	stringName	is
stringName.length	-	1.

If	stringName	contains	an	empty	string	(""),	indexOf	returns	an	empty	string.

The	indexOf	method	is	case	sensitive.	For	example,	the	following	expression
returns	-1:

"Blue	Whale".indexOf("blue")

	1. 	The	following	example	uses	indexOf	and	lastIndexOf	to	locate	values	in

the	string	"Brave	new	world."

var	anyString="Brave	new	world"	//Displays	8
document.write("<P>The	index	of	the	first	w	from	the	beginning	is	"	+
			anyString.indexOf("w"))
//Displays	10
document.write("<P>The	index	of	the	first	w	from	the	end	is	"	+
			anyString.lastIndexOf("w"))
//Displays	6
document.write("<P>The	index	of	'new'	from	the	beginning	is	"	+
			anyString.indexOf("new"))
//Displays	6
document.write("<P>The	index	of	'new'	from	the	end	is	"	+
			anyString.lastIndexOf("new"))		2. 	The	following	example	defines	two	string
variables.	The	variables	contain	the	same	string	except	that	the	second	string
contains	uppercase	letters.	The	first	writeln	method	displays	19.	But	because	the
indexOf	method	is	case	sensitive,	the	string	"cheddar"	is	not	found	in
myCapString,	so	the	second	writeln	method	displays	-1.

myString="brie,	pepper	jack,	cheddar"
myCapString="Brie,	Pepper	Jack,	Cheddar"
document.writeln('myString.indexOf("cheddar")	is	'	+
			myString.indexOf("cheddar"))
document.writeln('<P>myCapString.indexOf("cheddar")	is	'	+
			myCapString.indexOf("cheddar"))		3. 	The	following	example	sets	count	to
the	number	of	occurrences	of	the	letter	x	in	the	string	str:

count	=	0;
pos	=	str.indexOf("x");
while	(pos	!=	-1)	{
			count++;
			pos	=	str.indexOf("x",pos+1);
}

String.charAt,	String.lastIndexOf,	String.split

italics

Causes	a	string	to	be	italic,	as	if	it	were	in	an	I	tag.

String
Navigator	2.0,	LiveWire	1.0

italics()

Use	the	italics	method	with	the	write	or	writeln	methods	to	format	and	display	a
string	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to	display
the	string.

The	following	example	uses	string	methods	to	change	the	formatting	of	a	string:

var	worldString="Hello,	world"	document.write(worldString.blink())
document.write("<P>"	+	worldString.bold())
document.write("<P>"	+	worldString.italics())
document.write("<P>"	+	worldString.strike())	The	previous	example	produces
the	same	output	as	the	following	HTML:

<BLINK>Hello,	world</BLINK>
<P>Hello,	world
<P><I>Hello,	world</I>
<P><STRIKE>Hello,	world</STRIKE>

String.blink,	String.bold,	String.strike

lastIndexOf

Returns	the	index	within	the	calling	String	object	of	the	last	occurrence	of	the
specified	value.	The	calling	string	is	searched	backward,	starting	at	fromIndex,
or	-1	if	not	found.

String
Navigator	2.0,	LiveWire	1.0

lastIndexOf(searchValue,	fromIndex)

searchValue A	string	representing	the	value	to	search	for.

fromIndex
(Optional)	The	location	within	the	calling	string	to	start	the	search
from.	It	can	be	any	integer	between	0	and	1	less	than	the	length	of
the	string.	The	default	value	is	1	less	than	the	length	of	the	string.

Characters	in	a	string	are	indexed	from	left	to	right.	The	index	of	the	first
character	is	0,	and	the	index	of	the	last	character	is	stringName.length	-	1.

The	lastIndexOf	method	is	case	sensitive.	For	example,	the	following
expression	returns	-1:

"Blue	Whale,	Killer	Whale".lastIndexOf("blue")

The	following	example	uses	indexOf	and	lastIndexOf	to	locate	values	in	the
string	"Brave	new	world."

var	anyString="Brave	new	world"	//Displays	8
document.write("<P>The	index	of	the	first	w	from	the	beginning	is	"	+
			anyString.indexOf("w"))
//Displays	10
document.write("<P>The	index	of	the	first	w	from	the	end	is	"	+
			anyString.lastIndexOf("w"))
//Displays	6
document.write("<P>The	index	of	'new'	from	the	beginning	is	"	+
			anyString.indexOf("new"))
//Displays	6
document.write("<P>The	index	of	'new'	from	the	end	is	"	+
			anyString.lastIndexOf("new"))	In	server-side	JavaScript,	you	can	display	the
same	output	by	calling	the	write	function	instead	of	using	document.write.

String.charAt,	String.indexOf,	String.split

link

Creates	an	HTML	hypertext	link	that	requests	another	URL.

String
Navigator	2.0,	LiveWire	1.0

link(hrefAttribute)

hrefAttribute Any	string	that	specifies	the	HREF	attribute	of	the	A	tag;	itshould	be	a	valid	URL	(relative	or	absolute).

Use	the	link	method	to	programmatically	create	a	hypertext	link,	and	then	call
write	or	writeln	to	display	the	link	in	a	document.	In	server-side	JavaScript,	use
the	write	function	to	display	the	link.

Links	created	with	the	link	method	become	elements	in	the	links	array	of	the
document	object.	See	document.links.

The	following	example	displays	the	word	"Netscape"	as	a	hypertext	link	that
returns	the	user	to	the	Netscape	home	page:

var	hotText="Netscape"
var	URL="http://home.netscape.com"	document.write("Click	to	return	to	"	+
hotText.link(URL))	The	previous	example	produces	the	same	output	as	the
following	HTML:

Click	to	return	to	Netscape

Anchor

match

Used	to	match	a	regular	expression	against	a	string.

String
Navigator	4.0

match(regexp)

regexp Name	of	the	regular	expression.	It	can	be	a	variable	name	or	a	literal.

If	you	want	to	execute	a	global	match,	or	a	case	insensitive	match,	include	the	g
(for	global)	and	i	(for	ignore	case)	flags	in	the	regular	expression.	These	can	be
included	separately	or	together.	The	following	two	below	show	how	to	use
these	flags	with	match.

Note

If	you	execute	a	match	simply	to	find	true	or	false,	use	String.search	or	the
regular	expression	test	method.

	1 .	In	the	following	example,	match	is	used	to	find	'Chapter'	followed	by	1	or
more	numeric	characters	followed	by	a	decimal	point	and	numeric	character	0
or	more	times.	The	regular	expression	includes	the	i	flag	so	that	case	will	be
ignored.

<SCRIPT>	

str	=	"For	more	information,	see	Chapter	3.4.5.1";
re	=	/(chapter	\d+(\.\d)*)/i;	
found	=	str.match(re);	
document.write(found);	
</SCRIPT>	This	returns	the	array	containing	Chapter	3.4.5.1,Chapter	3.4.5.1,.1

'Chapter	3.4.5.1'	is	the	first	match	and	the	first	value	remembered	from	(Chapter
\d+(\.\d)*).

'.1'	is	the	second	value	remembered	from	(\.\d).

	2 .	The	following	example	demonstrates	the	use	of	the	global	and	ignore	case
flags	with	match.

<SCRIPT>	
str	=	"abcDdcba";	
newArray	=	str.match(/d/gi);	
document.write(newArray);	
</SCRIPT>	The	returned	array	contains	D,	d.

replace

Used	to	find	a	match	between	a	regular	expression	and	a	string,	and	to	replace
the	matched	substring	with	a	new	substring.

String
Navigator	4.0

replace(regexp,	newSubStr)

regexp The	name	of	the	regular	expression.	It	can	be	a	variable	name	or	a
literal.

newSubStr
The	string	to	put	in	place	of	the	string	found	with	regexp.	This
string	can	include	the	RegExp	properties	$1,	...,	$9,	lastMatch,
lastParen,	leftContext,	and	rightContext.

This	method	does	not	change	the	String	object	it	is	called	on;	it	simply	returns	a
new	string.

If	you	want	to	execute	a	global	search	and	replace,	or	a	case	insensitive	search,
include	the	g	(for	global)	and	i	(for	ignore	case)	flags	in	the	regular	expression.
These	can	be	included	separately	or	together.	The	following	two	below	show
how	to	use	these	flags	with	replace.

	1 .	In	the	following	example,	the	regular	expression	includes	the	global	and
ignore	case	flags	which	permits	replace	to	replace	each	occurrence	of	'apples'	in
the	string	with	'oranges.'

<SCRIPT>
re	=	/apples/gi;
str	=	"Apples	are	round,	and	apples	are	juicy.";
newstr=str.replace(re,	"oranges");
document.write(newstr)
</SCRIPT>	This	prints	"oranges	are	round,	and	oranges	are	juicy."

	2 .	In	the	following	example,	the	regular	expression	is	defined	in	replace	and
includes	the	ignore	case	flag.

<SCRIPT>
str	=	"Twas	the	night	before	Xmas...";
newstr=str.replace(/xmas/i,	"Christmas");
document.write(newstr)
</SCRIPT>	This	prints	"Twas	the	night	before	Christmas..."

	3.	 The	following	script	switches	the	words	in	the	string.	For	the	replacement
text,	the	script	uses	the	values	of	the	$1	and	$2	properties.

<SCRIPT	LANGUAGE="JavaScript1.2">
re	=	/(\w+)\s(\w+)/;
str	=	"John	Smith";
newstr	=	str.replace(re,	"$2,	$1");
document.write(newstr)
</SCRIPT>	This	prints	"Smith,	John".

search

Executes	the	search	for	a	match	between	a	regular	expression	and	this	String
object.

String
Navigator	4.0

search(regexp)

regexp Name	of	the	regular	expression.	It	can	be	a	variable	name	or	a	literal.

If	successful,	search	returns	the	index	of	the	regular	expression	inside	the	string.
Otherwise,	it	returns	-1.

When	you	want	to	know	whether	a	pattern	is	found	in	a	string	use	search
(similar	to	the	regular	expression	test	method);	for	more	information	(but	slower
execution)	use	match	(similar	to	the	regular	expression	exec	method).

The	following	example	prints	a	message	which	depends	on	the	success	of	the
test.

function	testinput(re,	str){
			if	(str.search(re)	!=	-1)
						midstring	=	"	contains	";
			else	
						midstring	=	"	does	not	contain	";

			document.write	(str	+	midstring	+	re.source);
}

slice

Extracts	a	section	of	a	string	and	returns	a	new	string.

String
Navigator	2.0,	LiveWire	1.0

slice(beginslice,endSlice)

beginSlice The	zero-based	index	at	which	to	begin	extraction.

endSlice (Optional)	The	zero-based	index	at	which	to	end	extraction.	If
omitted,	slice	extracts	to	the	end	of	the	string.

slice	extracts	the	text	from	one	string	and	returns	a	new	string.	Changes	to	the
text	in	one	string	do	not	affect	the	other	string.

slice	extracts	up	to	but	not	including	endSlice.	string.slice(1,4)	extracts	the
second	character	through	the	fourth	character	(characters	indexed	1,	2,	and	3).

As	a	negative	index,	endSlice	indicates	an	offset	from	the	end	of	the	string.
string.slice(2,-1)	extracts	the	third	character	through	the	second	to	last	character
in	the	string.

The	following	example	uses	slice	to	create	a	new	string.

<SCRIPT>
str1="The	morning	is	upon	us.	"

str2=str1.slice(3,-5)
document.write(str2)
</SCRIPT>	This	writes:

morning	is	upon

small

Causes	a	string	to	be	displayed	in	a	small	font,	as	if	it	were	in	a	SMALL	tag.

String
Navigator	2.0,	LiveWire	1.0

small()

Use	the	small	method	with	the	write	or	writeln	methods	to	format	and	display	a
string	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to	display
the	string.

The	following	example	uses	string	methods	to	change	the	size	of	a	string:

var	worldString="Hello,	world"	document.write(worldString.small())
document.write("<P>"	+	worldString.big())
document.write("<P>"	+	worldString.fontsize(7))	The	previous	example
produces	the	same	output	as	the	following	HTML:

<SMALL>Hello,	world</SMALL>
<P><BIG>Hello,	world</BIG>
<P><FONTSIZE=7>Hello,	world</FONTSIZE>

String.big,	String.fontsize

split

Splits	a	String	object	into	an	array	of	strings	by	separating	the	string	into
substrings.

String
Navigator	3.0,	LiveWire	1.0

split(separator,	limit)

separator
(Optional)	Specifies	the	character	to	use	for	separating	the	string.	The
separator	is	treated	as	a	string.	If	separator	is	omitted,	the	array
returned	contains	one	element	consisting	of	the	entire	string.

limit (Optional)	Integer	specifying	a	limit	on	the	number	of	splits	to	be
found.

The	split	method	returns	the	new	array.

When	found,	separator	is	removed	from	the	string	and	the	substrings	are
returned	in	an	array.	If	separator	is	omitted,	the	array	contains	one	element
consisting	of	the	entire	string.

In	Navigator	4.0,	Split	has	the	following	additions:

It	can	take	a	regular	expression	argument,	as	well	as	a	fixed	string,	by
which	to	split	the	object	string.	If	separator	is	a	regular	expression,	any
included	parenthesis	cause	submatches	to	be	included	in	the	returned	array.

It	can	take	a	limit	count	so	that	it	won't	include	trailing	empty	elements	in
the	resulting	array.

If	you	specify	LANGUAGE="JavaScript1.2"	in	the	SCRIPT	tag,
string.split("	")	splits	on	any	run	of	1	or	more	white	space	characters
including	spaces,	tabs,	line	feeds,	and	carriage	returns.

	1 .	The	following	example	defines	a	function	that	splits	a	string	into	an	array
of	strings	using	the	specified	separator.	After	splitting	the	string,	the	function
displays	messages	indicating	the	original	string	(before	the	split),	the	separator
used,	the	number	of	elements	in	the	array,	and	the	individual	array	elements.

function	splitString	(stringToSplit,separator)	{
			arrayOfStrings	=	stringToSplit.split(separator)
			document.write	('<P>The	original	string	is:	"'	+	stringToSplit	+	'"')
			document.write	('
The	separator	is:	"'	+	separator	+	'"')
			document.write	("
The	array	has	"	+	arrayOfStrings.length	+	"	elements:
")				for	(var	i=0;	i	<	arrayOfStrings.length;	i++)	{
						document.write	(arrayOfStrings[i]	+	"	/	")
			}
}	var	tempestString="Oh	brave	new	world	that	has	such	people	in	it."
var	monthString="Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"	var
space="	"
var	comma=","	splitString(tempestString,space)
splitString(tempestString)
splitString(monthString,comma)	This	example	produces	the	following	output:

The	original	string	is:	"Oh	brave	new	world	that	has	such	people	in	it."
The	separator	is:	"	"
The	array	has	10	elements:	Oh	/	brave	/	new	/	world	/	that	/	has	/	such	/	people	/
in	/	it.	/	The	original	string	is:	"Oh	brave	new	world	that	has	such	people	in	it."
The	separator	is:	"undefined"
The	array	has	1	elements:	Oh	brave	new	world	that	has	such	people	in	it.	/	The
original	string	is:	"Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
The	separator	is:	","
The	array	has	12	elements:	Jan	/	Feb	/	Mar	/	Apr	/	May	/	Jun	/	Jul	/	Aug	/	Sep	/
Oct	/	Nov	/	Dec	/		2 .	Consider	the	following	script:

<SCRIPT	LANGUAGE="JavaScript1.2">	
str="She	sells	seashells	\nby	the\n	seashore"

document.write(str	+	"
")
a=str.split("	")
document.write(a)
</SCRIPT>	Using	LANGUAGE="JavaScript1.2",	this	script	produces

"She",	"sells",	"seashells",	"by",	"the",	"seashore"	Without
LANGUAGE="JavaScript1.2",	this	script	splits	only	on	single	space	characters,
producing

"She",	"sells",	,	,	,	"seashells",	"by",	,	,	"the",	"seashore"		3 .	In	the	following
example,	split	looks	for	0	or	more	spaces	followed	by	a	semicolon	followed	by
0	or	more	spaces	and,	when	found,	removes	the	spaces	from	the	string.
nameList	is	the	array	returned	as	a	result	of	split.

<SCRIPT>
names	=	"Harry	Trump	;Fred	Barney;	Helen	Rigby	;	Bill	Abel	;Chris	Hand	";
document.write	(names	+	"
"	+	"
");
re	=	/\s*;\s*/;
nameList	=	names.split	(re);
document.write(nameList);
</SCRIPT>	This	prints	two	lines;	the	first	line	prints	the	original	string,	and	the
second	line	prints	the	resulting	array.

Harry	Trump	;Fred	Barney;	Helen	Rigby	;	Bill	Abel	;Chris	Hand	
Harry	Trump,Fred	Barney,Helen	Rigby,Bill	Abel,Chris	Hand

	4 .	In	the	following	example,	split	looks	for	0	or	more	spaces	in	a	string	and
returns	the	first	3	splits	that	it	finds.

<SCRIPT	LANGUAGE="JavaScript1.2">
myVar	=	"	Hello	World.	How	are	you	doing?	";
splits	=	myVar.split("	",	3);
document.write(splits)
</SCRIPT>	This	script	displays	the	following:

["Hello",	"World.",	"How"]

String.charAt,	String.indexOf,	String.lastIndexOf

strike

Causes	a	string	to	be	displayed	as	struck-out	text,	as	if	it	were	in	a	STRIKE	tag.

String
Navigator	2.0,	LiveWire	1.0

strike()

Use	the	strike	method	with	the	write	or	writeln	methods	to	format	and	display	a
string	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to	display
the	string.

The	following	example	uses	string	methods	to	change	the	formatting	of	a	string:

var	worldString="Hello,	world"	document.write(worldString.blink())
document.write("<P>"	+	worldString.bold())
document.write("<P>"	+	worldString.italics())
document.write("<P>"	+	worldString.strike())	The	previous	example	produces
the	same	output	as	the	following	HTML:

<BLINK>Hello,	world</BLINK>
<P>Hello,	world
<P><I>Hello,	world</I>
<P><STRIKE>Hello,	world</STRIKE>

String.blink,	String.bold,	String.italics

sub

Causes	a	string	to	be	displayed	as	a	subscript,	as	if	it	were	in	a	SUB	tag.

String
Navigator	2.0,	LiveWire	1.0

sub()

Use	the	sub	method	with	the	write	or	writeln	methods	to	format	and	display	a
string	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to
generate	the	HTML.

The	following	example	uses	the	sub	and	sup	methods	to	format	a	string:

var	superText="superscript"
var	subText="subscript"	document.write("This	is	what	a	"	+	superText.sup()	+	"
looks	like.")
document.write("<P>This	is	what	a	"	+	subText.sub()	+	"	looks	like.")	The
previous	example	produces	the	same	output	as	the	following	HTML:

This	is	what	a	^{superscript}	looks	like.
<P>This	is	what	a	_{subscript}	looks	like.

String.sup

substr

Returns	the	characters	in	a	string	beginning	at	the	specified	location	through	the
specified	number	of	characters.

String
Navigator	2.0,	LiveWire	1.0

substr(start,	length)

start Location	at	which	to	begin	extracting	characters.
length (Optional)	The	number	of	characters	to	extract

start	is	a	character	index.	The	index	of	the	first	character	is	0,	and	the	index	of
the	last	character	is	1	less	than	the	length	of	the	string.	substr	begins	extracting
characters	at	start	and	collects	length	number	of	characters.

If	start	is	positive	and	is	the	length	of	the	string	or	longer,	substr	returns	no
characters.

If	start	is	negative,	substr	uses	it	as	a	character	index	from	the	end	of	the	string.
If	start	is	negative	and	abs(start)	is	larger	than	the	length	of	the	string,	substr
uses	0	is	the	start	index.

If	length	is	0	or	negative,	substr	returns	no	characters.	If	length	is	omitted,	start
extracts	characters	to	the	end	of	the	string.

Consider	the	following	script:

<SCRIPT	LANGUAGE="JavaScript1.2">	str	=	"abcdefghij"
document.writeln("(1,2):	",	str.substr(1,2))
document.writeln("(-2,2):	",	str.substr(-2,2))
document.writeln("(1):	",	str.substr(1))
document.writeln("(-20,	2):	",	str.substr(1,20))
document.writeln("(20,	2):	",	str.substr(20,2))	</SCRIPT>	This	script	displays:

(1,2):	bc
(-2,2):	ij
(1):	bcdefghij
(-20,	2):	bcdefghij
(20,	2):

substring

substring

Returns	a	subset	of	a	String	object.

String
Navigator	2.0,	LiveWire	1.0

substring(indexA,	indexB)

indexA An	integer	between	0	and	1	less	than	the	length	of	the	string.
indexB An	integer	between	0	and	1	less	than	the	length	of	the	string.

substring	extracts	characters	from	indexA	up	to	but	not	including	indexB.	In
particular:

If	indexA	is	less	than	0,	indexA	is	treated	as	if	it	were	0.

If	indexB	is	greater	than	stringName.length,	indexB	is	treated	as	if	it	were
stringName.length.

If	indexA	equals	indexB,	substring	returns	an	empty	string.

If	indexB	is	omitted,	indexA	extracts	characters	to	the	end	of	the	string.

Using	LANGUAGE="JavaScript1.2"	in	the	SCRIPT	tag,

If	indexA	is	greater	than	indexB,	JavaScript	produces	a	runtime	error	(out
of	memory).

Without	LANGUAGE="JavaScript1.2",

If	indexA	is	greater	than	indexB,	JavaScript	returns	a	substring	beginning
with	indexB	and	ending	with	indexA	-	1.

	1. 	The	following	example	uses	substring	to	display	characters	from	the	string
"Netscape":

var	anyString="Netscape"	//Displays	"Net"
document.write(anyString.substring(0,3))
document.write(anyString.substring(3,0))
//Displays	"cap"
document.write(anyString.substring(4,7))
document.write(anyString.substring(7,4))
//Displays	"Netscap"
document.write(anyString.substring(0,7))
//Displays	"Netscape"
document.write(anyString.substring(0,8))
document.write(anyString.substring(0,10))		2. 	The	following	example
replaces	a	substring	within	a	string.	It	will	replace	both	individual	characters
and	substrings.	The	function	call	at	the	end	of	the	example	changes	the	string
"Brave	New	World"	into	"Brave	New	Web".

function	replaceString(oldS,newS,fullS)	{
//	Replaces	oldS	with	newS	in	the	string	fullS
			for	(var	i=0;	i<fullS.length;	i++)	{
						if	(fullS.substring(i,i+oldS.length)	==	oldS)	{
									fullS	=
fullS.substring(0,i)+newS+fullS.substring(i+oldS.length,fullS.length)
						}
			}
			return	fullS
}	replaceString("World","Web","Brave	New	World")		3.	 Using
LANGUAGE="JavaScript1.2",	the	following	script	produces	a	runtime	error
(out	of	memory).

<SCRIPT	LANGUAGE="JavaScript1.2">
str="Netscape"
document.write(str.substring(0,3);

document.write(str.substring(3,0);
</SCRIPT>	Without	LANGUAGE="JavaScript1.2",	the	above	script	prints

Net	Net

In	the	second	write,	the	index	numbers	are	swapped.

substr

sup

Causes	a	string	to	be	displayed	as	a	superscript,	as	if	it	were	in	a	SUP	tag.

String
Navigator	2.0,	LiveWire	1.0

sup()

Use	the	sup	method	with	the	write	or	writeln	methods	to	format	and	display	a
string	in	a	document.	In	server-side	JavaScript,	use	the	write	function	to
generate	the	HTML.

The	following	example	uses	the	sub	and	sup	methods	to	format	a	string:

var	superText="superscript"
var	subText="subscript"	document.write("This	is	what	a	"	+	superText.sup()	+	"
looks	like.")
document.write("<P>This	is	what	a	"	+	subText.sub()	+	"	looks	like.")	The
previous	example	produces	the	same	output	as	the	following	HTML:

This	is	what	a	^{superscript}	looks	like.
<P>This	is	what	a	_{subscript}	looks	like.

String.sub

toLowerCase

Returns	the	calling	string	value	converted	to	lowercase.

String
Navigator	2.0,	LiveWire	1.0

toLowerCase()

The	toLowerCase	method	returns	the	value	of	the	string	converted	to	lowercase.
toLowerCase	does	not	affect	the	value	of	the	string	itself.

The	following	example	displays	the	lowercase	string	"alphabet":

var	upperText="ALPHABET"
document.write(upperText.toLowerCase())

String.toUpperCase

toUpperCase

Returns	the	calling	string	value	converted	to	uppercase.

String
Navigator	2.0,	LiveWire	1.0

toUpperCase()

The	toUpperCase	method	returns	the	value	of	the	string	converted	to	uppercase.
toUpperCase	does	not	affect	the	value	of	the	string	itself.

The	following	example	displays	the	string	"ALPHABET":

var	lowerText="alphabet"
document.write(lowerText.toUpperCase())

String.toLowerCase

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

RegExp
A	regular	expression	object	contains	the	pattern	of	a	regular	expression.	It	has
properties	and	methods	for	using	that	regular	expression	to	find	and	replace
matches	in	strings.

In	addition	to	the	properties	of	an	individual	regular	expression	object	that	you
create	using	the	RegExp	constructor	function,	the	predefined	RegExp	object	has
static	properties	that	are	set	whenever	any	regular	expression	is	used.

Core	object
Navigator	4.0,	Netscape	Server	3.0

A	literal	text	format	or	the	RegExp	constructor	function.

The	literal	format	is	used	as	follows:

/pattern/flags	The	constructor	function	is	used	as	follows:

new	RegExp("pattern",	"flags")

pattern The	text	of	the	regular	expression.

flags

(Optional)	If	specified,	flags	can	have	one	of	the	following	3	values:

g:	global	match
i:	ignore	case
gi:	both	global	match	and	ignore	case

Notice	that	the	parameters	to	the	literal	format	do	not	use	quotation	marks	to
indicate	strings,	while	the	parameters	to	the	constructor	function	do	use
quotation	marks.	So	the	following	expressions	create	the	same	regular

expression:

/ab+c/i
new	RegExp("ab+c",	"i")

When	using	the	constructor	function,	the	normal	string	escape	rules	(preceding
special	characters	with	\	when	included	in	a	string)	are	necessary.	For	example,
the	following	are	equivalent:

re	=	new	RegExp("\\w+")
re	=	/\w+/		4.3	provides	a	complete	list	and	of	the	special	characters	that	can
be	used	in	regular	expressions.

	4.3	Special	characters	in	regular	expressions.		
Character Meaning

\

For	characters	that	are	usually	treated	literally,	indicates	that	the
next	character	is	special	and	not	to	be	interpreted	literally.	For
example,	/b/	matches	the	character	'b'.	By	placing	a	backslash	in
front	of	b,	that	is	by	using	/\b/,	the	character	becomes	special	to
mean	match	a	word	boundary.-or-For	characters	that	are	usually
treated	specially,	indicates	that	the	next	character	is	not	special	and
should	be	interpreted	literally.	For	example,	*	is	a	special	character
that	means	0	or	more	occurrences	of	the	preceding	character	should
be	matched;	for	example,	/a*/	means	match	0	or	more	a's.	To	match
*	literally,	precede	the	it	with	a	backslash;	for	example,	/a*/
matches	'a*'.

^ Matches	beginning	of	input	or	line.For	example,	/^A/	does	not
match	the	'A'	in	"an	A,"	but	does	match	it	in	"An	A."

$ Matches	end	of	input	or	line.For	example,	/t$/	does	not	match	the	't'
in	"eater",	but	does	match	it	in	"eat"

*
Matches	the	preceding	character	0	or	more	times.For	example,
/bo*/	matches	'boooo'	in	"A	ghost	booooed"	and	'b'	in	"A	bird
warbled",	but	nothing	in	"A	goat	grunted".

+
Matches	the	preceding	character	1	or	more	times.	Equivalent	to
{1,}.For	example,	/a+/	matches	the	'a'	in	"candy"	and	all	the	a's	in
"caaaaaaandy."

? Matches	the	preceding	character	0	or	1	time.For	example,	/e?le?/
matches	the	'el'	in	"angel"	and	the	'le'	in	"angle."

.
(The	decimal	point)	matches	any	single	character	except	the
newline	character.For	example,	/.n/	matches	'an'	and	'on'	in	"nay,	an
apple	is	on	the	tree",	but	not	'nay'.

(x)

Matches	'x'	and	remembers	the	match.For	example,	/(foo)/	matches
and	remembers	'foo'	in	"foo	bar."	The	matched	substring	can	be
recalled	from	the	resulting	array's	elements	[1],	...,	[n],	or	from	the
predefined	RegExp	object's	properties	$1,	...,	$9.

x|y Matches	either	'x'	or	'y'.For	example,	/green|red/	matches	'green'	in
"green	apple"	and	'red'	in	"red	apple."

{n}

Where	n	is	a	positive	integer.	Matches	exactly	n	occurrences	of	the
preceding	character.For	example,	/a{2}/	doesn't	match	the	'a'	in
"candy,"	but	it	matches	all	of	the	a's	in	"caandy,"	and	the	first	two
a's	in	"caaandy."

{n,}

Where	n	is	a	positive	integer.	Matches	at	least	n	occurrences	of	the
preceding	character.For	example,	/a{2,}	doesn't	match	the	'a'	in
"candy",	but	matches	all	of	the	a's	in	"caandy"	and	in
"caaaaaaandy."

{n,m}

Where	n	and	m	are	positive	integers.	Matches	at	least	n	and	at	most
m	occurrences	of	the	preceding	character.For	example,	/a{1,3}/
matches	nothing	in	"cndy",	the	'a'	in	"candy,"	the	first	two	a's	in
"caandy,"	and	the	first	three	a's	in	"caaaaaaandy"	Notice	that	when
matching	"caaaaaaandy",	the	match	is	"aaa",	even	though	the
original	string	had	more	a's	in	it.

[xyz]

A	character	set.	Matches	any	one	of	the	enclosed	characters.	You
can	specify	a	range	of	characters	by	using	a	hyphen.For	example,
[abcd]	is	the	same	as	[a-c].	They	match	the	'b'	in	"brisket"	and	the
'c'	in	"ache".

[^xyz]

A	negated	or	complemented	character	set.	That	is,	it	matches
anything	that	is	not	enclosed	in	the	brackets.	You	can	specify	a
range	of	characters	by	using	a	hyphen.For	example,	[^abc]	is	the
same	as	[^a-c].	They	initially	match	'r'	in	"brisket"	and	'h'	in	"chop."

[\b] Matches	a	backspace.	(Not	to	be	confused	with	\b.)

\b
Matches	a	word	boundary,	such	as	a	space.	(Not	to	be	confused
with	[\b].)For	example,	/\bn\w/	matches	the	'no'	in
"noonday";/\wy\b/	matches	the	'ly'	in	"possibly	yesterday."

\B Matches	a	non-word	boundary.For	example,	/\w\Bn/	matches	'on'	in
"noonday",	and	/y\B\w/	matches	'ye'	in	"possibly	yesterday."

\cX Where	X	is	a	control	character.	Matches	a	control	character	in	a
string.For	example,	/\cM/	matches	control-M	in	a	string.

\d Matches	a	digit	character.	Equivalent	to	[0-9].For	example,	/\d/	or
/[0-9]/	matches	'2'	in	"B2	is	the	suite	number."

\D Matches	any	non-digit	character.	Equivalent	to	[^0-9].For	example,
/\D/	or	/[^0-9]/	matches	'B'	in	"B2	is	the	suite	number."

\f Matches	a	form-feed.
\n Matches	a	linefeed.
\r Matches	a	carriage	return.

\s
Matches	a	single	white	space	character,	including	space,	tab,	form
feed,	line	feed.	Equivalent	to	[\f\n\r\t\v].for	example,	/\s\w*/
matches	'	bar'	in	"foo	bar."

\S Matches	a	single	character	other	than	white	space.	Equivalent	to	[^
\f\n\r\t\v].For	example,	/\S/\w*	matches	'foo'	in	"foo	bar."

\t Matches	a	tab
\v Matches	a	vertical	tab.

\w
Matches	any	alphanumeric	character	including	the	underscore.
Equivalent	to	[A-Za-z0-9_].For	example,	/\w/	matches	'a'	in
"apple,"	'5'	in	"$5.28,"	and	'3'	in	"3D."

\W Matches	any	non-word	character.	Equivalent	to	[^A-Za-z0-9_].For
example,	/\W/	or	/[^$A-Za-z0-9_]/	matches	'%'	in	"50%."

\n

Where	n	is	a	positive	integer.	A	back	reference	to	the	last	substring
matching	the	n	parenthetical	in	the	regular	expression	(counting	left
parentheses).For	example,	/apple(,)\sorange\1/	matches	'apple,
orange',	in	"apple,	orange,	cherry,	peach."	A	more	complete
example	follows	this	. Note:	If	the	number	of	left	parentheses	is
less	than	the	number	specified	in	\n,	the	\n	is	taken	as	an	octal
escape	as	described	in	the	next	row.

\ooctal
\xhex

Where	\ooctal	is	an	octal	escape	value	or	\xhex	is	a	hexadecimal
escape	value.	Allows	you	to	embed	ASCII	codes	into	regular
expressions.

The	literal	notation	provides	compilation	of	the	regular	expression	when	the
expression	is	evaluated.	Use	literal	notation	when	the	regular	expression	will

remain	constant.	For	example,	if	you	use	literal	notation	to	construct	a	regular
expression	used	in	a	loop,	the	regular	expression	won't	be	recompiled	on	each
iteration.

The	constructor	of	the	regular	expressionobject,	for	example,
new	RegExp("ab+c"),	provides	runtime	compilation	of	the	regular	expression.
Use	the	constructor	function	when	you	know	the	regular	expression	pattern	will
be	changing,	or	you	don't	know	the	pattern	and	are	getting	it	from	another
source,	such	as	user	input.	Once	you	have	a	defined	regular	expression,	and	if
the	regular	expression	is	used	throughout	the	script	and	may	change,	you	can
use	the	compile	method	to	compile	a	new	regular	expression	for	efficient	reuse.

A	separate	predefined	RegExp	object	is	available	in	each	window;	that	is,	each
separate	thread	of	JavaScript	execution	gets	its	own	RegExp	object.	Because
each	script	runs	to	completion	without	interruption	in	a	thread,	this	assures	that
different	scripts	do	not	overwrite	values	of	the	RegExp	object.

The	predefined	RegExp	object	contains	the	static	properties	input,	multiline,
lastMatch,	lastParen,	leftContext,	rightContext,	and	$1	through	$9.	The	input
and	multiline	properties	can	be	preset.	The	values	for	the	other	static	properties
are	set	after	execution	of	the	exec	and	test	methods	of	an	individual	regular
expression	object,	and	after	execution	of	the	match	and	replace	methods	of
String.

Note	that	several	of	the	RegExp	properties	have	both	long	and	short	(Perl-like)
names.	Both	names	always	refer	to	the	same	value.	Perl	is	the	programming
language	from	which	JavaScript	modeled	its	regular	expressions.

$1,	...,	$9 Parenthesized	substring	matches,	if	any.
$_ See	input.
$* See	multiline.
$& See	lastMatch.
$+ See	lastParen.
$` See	leftContext.
$' See	rightContext.

global Whether	or	not	to	test	the	regular	expression	against	all	possible
matches	in	a	string,	or	only	against	the	first.

ignoreCase Whether	or	not	to	ignore	case	while	attempting	a	match	in	a
string.

input The	string	against	which	a	regular	expression	is	matched.
lastIndex The	index	at	which	to	start	the	next	match.
lastMatch The	last	matched	characters.
lastParen The	last	parenthesized	substring	match,	if	any.
leftContext The	substring	preceding	the	most	recent	match.
multiline Whether	or	not	to	search	in	strings	across	multiple	lines.
rightContext The	substring	following	the	most	recent	match.
source The	text	of	the	pattern.

compile Compiles	a	regular	expression	object.
exec Executes	a	search	for	a	match	in	its	string	parameter.
test Tests	for	a	match	in	its	string	parameter.

	1. 	The	following	script	uses	the	replace	method	to	switch	the	words	in	the
string.	For	the	replacement	text,	the	script	uses	the	values	of	the	$1	and	$2
properties	of	the	global	RegExp	object.	Note	that	the	RegExp	object	name	is	not
be	prepended	to	the	$	properties	when	they	are	passed	as	the	second	argument
to	the	replace	method.

<SCRIPT	LANGUAGE="JavaScript1.2">
re	=	/(\w+)\s(\w+)/;
str	=	"John	Smith";
newstr=str.replace(re,	"$2,	$1");
document.write(newstr)
</SCRIPT>	This	displays	"Smith,	John".

	2. 	In	the	following	example,	RegExp.input	is	set	by	the	Change	event.	In	the
getInfo	function,	the	exec	method	uses	the	value	of	RegExp.input	as	its

argument.	Note	that	RegExp	is	prepended	to	the	$	properties.

<HTML>	<SCRIPT	LANGUAGE="JavaScript1.2">
function	getInfo()	{
			re	=	/(\w+)\s(\d+)/;
			re.exec();
			window.alert(RegExp.$1	+	",	your	age	is	"	+	RegExp.$2);
}
</SCRIPT>	Enter	your	first	name	and	your	age,	and	then	press	Enter.	<FORM>
<INPUT	TYPE:"TEXT"	NAME="NameAge"	onChange="getInfo(this);">
</FORM>	</HTML>

$1,	...,	$9

Properties	that	contain	parenthesized	substring	matches,	if	any.

RegExp
,	
Navigator	4.0,	Netscape	Server	3.0

Because	input	is	static,	it	is	not	a	property	of	an	individual	regular	expression
object.	Instead,	you	always	use	it	as	RegExp.input.

The	number	of	possible	parenthesized	substrings	is	unlimited,	but	the
predefined	RegExp	object	can	only	hold	the	last	nine.	You	can	access	all
parenthesized	substrings	through	the	returned	array's	indexes.

These	properties	can	be	used	in	the	replacement	text	for	the	String.replace
method.	When	used	this	way,	do	not	prepend	them	with	RegExp.	The	example
below	illustrates	this.	When	parentheses	are	not	included	in	the	regular
expression,	the	script	interprets	$n's	literally	(where	n	is	a	positive	integer).

The	following	script	uses	the	replace	method	to	switch	the	words	in	the	string.
For	the	replacement	text,	the	script	uses	the	values	of	the	$1	and	$2	properties
of	the	global	RegExp	object.	Note	that	the	RegExp	object	name	is	not	be
prepended	to	the	$	properties	when	they	are	passed	as	the	second	argument	to
the	replace	method.

<SCRIPT	LANGUAGE="JavaScript1.2">
re	=	/(\w+)\s(\w+)/;
str	=	"John	Smith";
newstr=str.replace(re,	"$2,	$1");
document.write(newstr)
</SCRIPT>	This	displays	"Smith,	John".

$_

See	input.

$*

See	multiline.

$&

See	lastMatch.

$+

See	lastParen.

$`

See	leftContext.

$'

See	rightContext.

global

Whether	or	not	the	"g"	flag	is	used	with	the	regular	expression.

RegExp

Navigator	4.0,	Netscape	Server	3.0

global	is	a	property	of	an	individual	regular	expression	object.

The	value	of	global	is	true	if	the	"g"	flag	was	used;	otherwise,	false.	The	"g"
flag	indicates	that	the	regular	expression	should	be	tested	against	all	possible
matches	in	a	string.

You	cannot	change	this	property	directly.	However,	calling	the	compile	method
changes	the	value	of	this	property.

ignoreCase

Whether	or	not	the	"i"	flag	is	used	with	the	regular	expression.

RegExp

Navigator	4.0,	Netscape	Server	3.0

ignoreCase	is	a	property	of	an	individual	regular	expression	object.

The	value	of	ignoreCase	is	true	if	the	"i"	flag	was	used;	otherwise,	false.	The	"i"
flag	indicates	that	case	should	be	ignored	while	attempting	a	match	in	a	string.

You	cannot	change	this	property	directly.	However,	calling	the	compile	method
changes	the	value	of	this	property.

input

The	string	against	which	a	regular	expression	is	matched.	$_	is	another	name
for	the	same	property.

RegExp

Navigator	4.0,	Netscape	Server	3.0

Because	input	is	static,	it	is	not	a	property	of	an	individual	regular	expression
object.	Instead,	you	always	use	it	as	RegExp.input.

If	no	string	argument	is	provided	to	a	regular	expression's	exec	or	test	methods,
and	if	RegExp.input	has	a	value,	its	value	is	used	as	the	argument	to	that
method.

The	script	or	the	browser	can	preset	the	input	property.	If	preset	and	if	no	string
argument	is	explicitly	provided,	the	value	of	input	is	used	as	the	string	argument
to	the	exec	or	test	methods	of	the	regular	expression	object.	input	is	set	by	the
browser	in	the	following	cases:

When	an	event	handler	is	called	for	a	TEXT	form	element,	input	is	set	to
the	value	of	the	contained	text.

When	an	event	handler	is	called	for	a	TEXTAREA	form	element,	input	is
set	to	the	value	of	the	contained	text.	Note	that	multiline	is	also	set	to	true
so	that	the	match	can	be	executed	over	the	multiple	lines	of	text.

When	an	event	handler	is	called	for	a	SELECT	form	element,	input	is	set
to	the	value	of	the	selected	text.

When	an	event	handler	is	called	for	a	Link	object,	input	is	set	to	the	value
of	the	text	between		and	.

The	value	of	the	input	property	is	cleared	after	the	event	handler	completes.

lastIndex

A	read/write	integer	property	that	specifies	the	index	at	which	to	start	the	next
match.

RegExp
Navigator	4.0,	Netscape	Server	3.0

lastIndex	is	a	property	of	an	individual	regular	expression	object.

This	property	is	set	only	if	the	regular	expression	used	the	"g"	flag	to	indicate	a
global	search.	The	following	rules	apply:

If	lastIndex	is	greater	than	the	length	of	the	string,	regexp.test	and
regexp.exec	fail,	and	lastIndex	is	set	to	0.

If	lastIndex	is	equal	to	the	length	of	the	string	and	if	the	regular	expression
matches	the	empty	string,	then	the	regular	expression	matches	input
starting	at	lastIndex.

If	lastIndex	is	equal	to	the	length	of	the	string	and	if	the	regular	expression
does	not	match	the	empty	string,	then	the	regular	expression	mismatches
input,	and	lastIndex	is	reset	to	0.

Otherwise,	lastIndex	is	set	to	the	next	position	following	the	most	recent
match.

For	example,	consider	the	following	sequence	of	statements:

re	=
/(hi)?/g Matches	the	empty	string.

re("hi") Returns	["hi",	"hi"]	with	lastIndex	equal	to	2.

re("hi")
Returns	[""],	an	empty	array	whose	zeroth	element	is	the	match	string.
In	this	case,	the	empty	string	because	lastIndex	was	2	(and	still	is	2)
and	"hi"	has	length	2.

lastMatch

The	last	matched	characters.	$&	is	another	name	for	the	same	property.

RegExp
,	
Navigator	4.0,	Netscape	Server	3.0

Because	lastMatch	is	static,	it	is	not	a	property	of	an	individual	regular
expression	object.	Instead,	you	always	use	it	as	RegExp.lastMatch.

lastParen

The	last	parenthesized	substring	match,	if	any.	$+	is	another	name	for	the	same
property.

RegExp
,	
Navigator	4.0,	Netscape	Server	3.0

Because	lastParen	is	static,	it	is	not	a	property	of	an	individual	regular
expression	object.	Instead,	you	always	use	it	as	RegExp.lastParen.

leftContext

The	substring	preceding	the	most	recent	match.	$`	is	another	name	for	the	same
property.

RegExp
,	
Navigator	4.0,	Netscape	Server	3.0

Because	leftContext	is	static,	it	is	not	a	property	of	an	individual	regular
expression	object.	Instead,	you	always	use	it	as	RegExp.leftContext.

multiline

Reflects	whether	or	not	to	search	in	strings	across	multiple	lines.	$*	is	another
name	for	the	same	property.

RegExp

Navigator	4.0,	Netscape	Server	3.0

Because	multiline	is	static,	it	is	not	a	property	of	an	individual	regular
expression	object.	Instead,	you	always	use	it	as	RegExp.multiline.

The	value	of	multiline	is	true	if	multiple	lines	are	searched,	false	if	searches
must	stop	at	line	breaks.

The	script	or	the	browser	can	preset	the	multiline	property.	When	an	event
handler	is	called	for	a	TEXTAREA	form	element,	the	browser	sets	multiline	to
true.	multiline	is	cleared	after	the	event	handler	completes.	This	means	that,	if
you've	preset	multiline	to	true,	it	is	reset	to	false	after	the	execution	of	any	event
handler.

rightContext

The	substring	following	the	most	recent	match.	$'	is	another	name	for	the	same
property.

RegExp
,	
Navigator	4.0,	Netscape	Server	3.0

Because	rightContext	is	static,	it	is	not	a	property	of	an	individual	regular
expression	object.	Instead,	you	always	use	it	as	RegExp.rightContext.

source

A	read-only	property	that	contains	the	text	of	the	pattern,	excluding	the	forward
slashes	and	"g"	or	"i"	flags.

RegExp

Navigator	4.0,	Netscape	Server	3.0

source	is	a	property	of	an	individual	regular	expression	object.

You	cannot	change	this	property	directly.	However,	calling	the	compile	method
changes	the	value	of	this	property.

compile

Compiles	a	regular	expression	object	during	execution	of	a	script.

RegExp
Navigator	4.0,	Netscape	Server	3.0

regexp.compile(pattern,	flags)

regexp The	name	of	the	regular	expression.	It	can	be	a	variable	name	or	aliteral.
pattern A	string	containing	the	text	of	the	regular	expression.

flags

(Optional)	If	specified,	flags	can	have	one	of	the	following	3	values:

"g":	global	match
"i":	ignore	case
"gi":	both	global	match	and	ignore	case

Use	the	compile	method	to	compile	a	regular	expression	created	with	the
RegExp	constructor	function.	This	forces	compilation	of	the	regular	expression
once	only	which	means	the	regular	expression	isn't	compiled	each	time	it	is
encountered.	Use	the	compile	method	when	you	know	the	regular	expression
will	remain	constant	(after	getting	its	pattern)	and	will	be	used	repeatedly
throughout	the	script.

You	can	also	use	the	compile	method	to	change	the	regular	expression	during
execution.	For	example,	if	the	regular	expression	changes,	you	can	use	the
compile	method	to	recompile	the	object	for	more	efficient	repeated	use.

Calling	this	method	changes	the	value	of	the	regular	expression's	source,	global,
and	ignoreCase	properties.

exec

Executes	the	search	for	a	match	in	a	specified	string.	Returns	a	result	array.

RegExp
Navigator	4.0,	Netscape	Server	3.0

regexp.exec(str)
regexp(str)

regexp The	name	of	the	regular	expression.	It	can	be	a	variable	name	or	aliteral.

str (Optional)	The	string	against	which	to	match	the	regular	expression.	If
omitted,	the	value	of	RegExp.input	is	used.

As	shown	in	the,	a	regular	expression's	exec	method	call	be	called	either
directly,	(with	regexp.exec(str))	or	indirectly	(with	regexp(str)).

If	you	are	executing	a	match	simply	to	find	true	or	false,	use	the	test	method	or
the	String	search	method.

If	the	match	succeeds,	the	exec	method	returns	an	array	and	updates	properties
of	the	regular	expression	object	and	the	predefined	regular	expression	object,
RegExp.	If	the	match	fails,	the	exec	method	returns	null.

Consider	the	following	example:

<SCRIPT	LANGUAGE="JavaScript1.2">
//Match	one	d	followed	by	one	or	more	b's	followed	by	one	d
//Remember	matched	b's	and	the	following	d

//Ignore	case
myRe=/d(b+)(d)/ig;
myArray	=	myRe.exec("cdbBdbsbz");
</SCRIPT>	The	following		shows	the	results	for	this	script:

Property/Index Example

myArray

The	contents	of	myArray ["dbBd",
"bB",	"d"]

index The	0-based	index	of	the	match	in	the
string 1

input The	original	string cdbBdbsbz
[0] The	last	matched	characters dbBd

[1],	...[n]
The	parenthesized	substring	matches,	if
any.	The	number	of	possible
parenthesized	substrings	is	unlimited.

[1]	=	bB
[2]	=	d

myRe

lastIndex The	index	at	which	to	start	the	next
match. 5

ignoreCase Indicates	if	the	"i"	flag	was	used	to
ignore	case true

global Indicates	if	the	"g"	flag	was	used	for	a
global	match true

source The	text	of	the	pattern d(b+)(d)

RegExp

lastMatch
$& The	last	matched	characters dbBd

leftContext
$\Q

The	substring	preceding	the	most	recent
match c

rightContext
$'

The	substring	following	the	most	recent
match bsbz

$1,	...$9

The	parenthesized	substring	matches,	if
any.	The	number	of	possible
parenthesized	substrings	is	unlimited,	but
RegExp	can	only	hold	the	last	nine.

$1	=	bB		
$2	=	d

lastParen		
$+

The	last	parenthesized	substring	match,
if	any. d

If	your	regular	expression	uses	the	"g"	flag,	you	can	use	the	exec	method

multiple	times	to	find	successive	matches	in	the	same	string.	When	you	do	so,
the	search	starts	at	the	substring	of	str	specified	by	the	regular	expression's
lastIndex	property.	For	example,	assume	you	have	this	script:

<SCRIPT	LANGUAGE="JavaScript1.2">
myRe=/ab*/g;
str	=	"abbcdefabh"
myArray	=	myRe.exec(str);
document.writeln("Found	"	+	myArray[0]	+	
			".	Next	match	starts	at	"	+	myRe.lastIndex)
mySecondArray	=	myRe.exec(str);
document.writeln("Found	"	+	mySecondArray[0]	+	
			".	Next	match	starts	at	"	+	myRe.lastIndex)
</SCRIPT>	This	script	displays	the	following	text:

Found	abb.	Next	match	starts	at	3
Found	ab.	Next	match	starts	at	9

In	the	following	example,	the	user	enters	a	name	and	the	script	executes	a	match
against	the	input.	It	then	cycles	through	the	array	to	see	if	other	names	match
the	user's	name.

This	script	assumes	that	first	names	of	registered	party	attendees	are	preloaded
into	the	array	A,	perhaps	by	gathering	them	from	a	party	database.

<HTML>	<SCRIPT	LANGUAGE="JavaScript1.2">
A	=	["Frank",	"Emily",	"Jane",	"Harry",	"Nick",	"Beth",	"Rick",	
						"Terrence",	"Carol",	"Ann",	"Terry",	"Frank",	"Alice",	"Rick",	
						"Bill",	"Tom",	"Fiona",	"Jane",	"William",	"Joan",	"Beth"]	function	lookup()
{
			firstName	=	/\w+/i();
			if	(!firstName)
						window.alert	(RegExp.input	+	"	isn't	a	name!");
			else	{
						count	=	0;
						for	(i=0;	i<A.length;	i++)
									if	(firstName[0].toLowerCase()	==	A[i].toLowerCase())	count++;

						if	(count	==1)
									midstring	=	"	other	has	";
						else
									midstring	=	"	others	have	";
						window.alert	("Thanks,	"	+	count	+	midstring	+	"the	same	name!")
			}
}	</SCRIPT>	Enter	your	first	name	and	then	press	Enter.	<FORM>	<INPUT
TYPE:"TEXT"	NAME="FirstName"	onChange="lookup(this);">	</FORM>
</HTML>

test

Executes	the	search	for	a	match	between	a	regular	expression	and	a	specified
string.	Returns	true	or	false.

RegExp
Navigator	4.0,	Netscape	Server	3.0

regexp.test(str)

regexp The	name	of	the	regular	expression.	It	can	be	a	variable	name	or	aliteral.

str (Optional)	The	string	against	which	to	match	the	regular	expression.	If
omitted,	the	value	of	RegExp.input	is	used.

When	you	want	to	know	whether	a	pattern	is	found	in	a	string	use	the	test
method	(similar	to	the	String.search	method);	for	more	information	(but	slower
execution)	use	the	exec	method	(similar	to	the	String.match	method).

The	following	example	prints	a	message	which	depends	on	the	success	of	the
test:

function	testinput(re,	str){
			if	(re.test(str))
						midstring	=	"	contains	";
			else
						midstring	=	"	does	not	contain	";

			document.write	(str	+	midstring	+	re.source);
}

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

document
Contains	information	about	the	current	document,	and	provides	methods	for
displaying	HTML	output	to	the	user.

Navigator	2.0
Navigator	3.0:		onBlur	and	onFocus;		applets,	domain,	embeds,
forms,	formName,	images,	and	plugins	properties.
Navigator	4.0:		layers	;		captureEvents,	getSelection,	handleEvent,
releaseEvents,	and	routeEvent	s.

The	HTML	BODY	tag.	The	JavaScript	runtime	engine	creates	a	document	object
for	each	HTML	page.	Each	Window	object	has	a	document	property	whose
value	is	a	document	object.

To	define	a	document	object,	use	standard	HTML	for	the	BODY	tag	with	the
addition	of	JavaScript	event	handlers.

The	onBlur,	onFocus,	onLoad,	and	onUnload	event	handlers	are	specified	in	the
BODY	tag	but	are	actually	event	handlers	for	the	Window	object.	The	following
are	event	handlers	for	the	document	object.

onClick
onDblClick
onKeyDown
onKeyPress
onKeyUp
onMouseDown
onMouseUp

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags2.htm#tags:BODY

An	HTML	document	consists	of	HEAD	and	BODY	tags.	The	HEAD	tag
includes	information	on	the	document's	title	and	base	(the	absolute	URL	base	to
be	used	for	relative	URL	links	in	the	document).	The	BODY	tag	encloses	the
body	of	a	document,	which	is	defined	by	the	current	URL.	The	entire	body	of
the	document	(all	other	HTML	elements	for	the	document)	goes	within	the
BODY	tag.

You	can	load	a	new	document	by	setting	the	Window.location	property.

You	can	clear	the	document	pane	(and	remove	the	text,	form	elements,	and	so
on	so	they	do	not	redisplay)	with	these	statements:

document.close();
document.open();
document.write();	You	can	omit	the	document.open	call	if	you	are	writing	text
or	HTML,	since	write	does	an	implicit	open	of	that	MIME	type	if	the	document
stream	is	closed.

You	can	refer	to	the	anchors,	forms,	and	links	of	a	document	by	using	the
anchors,	forms,	and	links	arrays.	These	arrays	contain	an	entry	for	each	anchor,
form,	or	link	in	a	document	and	are	properties	of	the	document	object.

Do	not	use	location	as	a	property	of	the	document	object;	use	the
document.URL	property	instead.	The	document.location	property,	which	is	a
synonym	for	document.URL,	will	be	removed	in	a	future	release.

alinkColor A	string	that	specifies	the	ALINK	attribute.
anchors An	array	containing	an	entry	for	each	anchor	in	the	document.
applets An	array	containing	an	entry	for	each	applet	in	the	document.
bgColor A	string	that	specifies	the	BGCOLOR	attribute.
cookie Specifies	a	cookie.
domain Specifies	the	domain	name	of	the	server	that	served	a	document.
embeds An	array	containing	an	entry	for	each	plug-in	in	the	document.
fgColor A	string	that	specifies	the	TEXT	attribute.
formName A	separate		for	each	named	form	in	the	document.

forms An	array	a	containing	an	entry	for	each	form	in	the	document.
images An	array	containing	an	entry	for	each	image	in	the	document.
lastModified A	string	that	specifies	the	date	the	document	was	last	modified.
layers Array	containing	an	entry	for	each	layer	within	the	document.
linkColor A	string	that	specifies	the	LINK	attribute.
links An	array	containing	an	entry	for	each	link	in	the	document.
plugins An	array	containing	an	entry	for	each	plug-in	in	the	document.
referrer A	string	that	specifies	the	URL	of	the	calling	document.
title A	string	that	specifies	the	contents	of	the	TITLE	tag.
URL A	string	that	specifies	the	complete	URL	of	a	document.
vlinkColor A	string	that	specifies	the	VLINK	attribute.

captureEvents Sets	the	document	to	capture	all	events	of	the	specified	type.
close Closes	an	output	stream	and	forces	data	to	display.
getSelection Returns	a	string	containing	the	text	of	the	current	selection.
handleEvent
open Opens	a	stream	to	collect	the	output	of	write	or	writeln	s.

releaseEvents
Sets	the	window	or	document	to	release	captured	events	of
thespecified	type,	sending	the	event	to	objects	further	along	the
event	hierarchy.

routeEvent Passes	a	captured	event	along	the	normal	event	hierarchy.

write Writes	one	or	more	HTML	expressions	to	a	document	in	the
specified	window.

writeln Writes	one	or	more	HTML	expressions	to	a	document	in	the
specified	window	and	follows	them	with	a	newline	character.

The	following	example	creates	two	frames,	each	with	one	document.	The
document	in	the	first	frame	contains	links	to	anchors	in	the	document	of	the
second	frame.	Each	document	defines	its	colors.

doc0.html,	which	defines	the	frames,	contains	the	following	code:

<HTML>
<HEAD>
<TITLE>Document	object	example</TITLE>
</HEAD>
<FRAMESET	COLS="30%,70%">
<FRAME	SRC="doc1.html"	NAME="frame1">
<FRAME	SRC="doc2.html"	NAME="frame2">
</FRAMESET>
</HTML>	doc1.html,	which	defines	the	content	for	the	first	frame,	contains	the
following	code:

<HTML>
<SCRIPT>
</SCRIPT>
<BODY
			BGCOLOR="antiquewhite"
			TEXT="darkviolet"
			LINK="fuchsia"
			ALINK="forestgreen"
			VLINK="navy">
<P>Some	links
Numbers
Colors
Music
types
Countries
</BODY>
</HTML>	doc2.html,	which	defines	the	content	for	the	second	frame,	contains
the	following	code:

<HTML>
<SCRIPT>
</SCRIPT>
<BODY
			BGCOLOR="oldlace"	onLoad="alert('Hello,	World.')"
			TEXT="navy">
<P>Some	numbers
one
two

three
four
<P>Some	colors
red
orange
yellow
green
<P>Some	music	types
R&B
Jazz
Soul
Reggae
<P>Some	countries
Afghanistan
Brazil
Canada
Finland
</BODY>
</HTML>

Frame,	Window

alinkColor

A	string	specifying	the	color	of	an	active	link	(after	mouse-button	down,	but
before	mouse-button	up).

document
Navigator	2.0

The	alinkColor	property	is	expressed	as	a	hexadecimal	RGB	triplet	or	as	one	of
the	string	literals	listed	in	Appendix	B,	"Color	Values,"	in	the	JavaScript	Guide
This	property	is	the	JavaScript	reflection	of	the	ALINK	attribute	of	the	BODY
tag.	You	cannot	set	this	property	after	the	HTML	source	has	been	through
layout.

If	you	express	the	color	as	a	hexadecimal	RGB	triplet,	you	must	use	the	format
rrggbb.	For	example,	the	hexadecimal	RGB	values	for	salmon	are	red=FA,
green=80,	and	blue=72,	so	the	RGB	triplet	for	salmon	is	"FA8072".

The	following	example	sets	the	color	of	active	links	using	a	string	literal:

document.alinkColor="aqua"	The	following	example	sets	the	color	of	active
links	to	aqua	using	a	hexadecimal	triplet:

document.alinkColor="00FFFF"

document.bgColor,	document.fgColor,	document.linkColor,
document.vlinkColor

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=colors.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

anchors

An	array	of	objects	corresponding	to	named	anchors	in	source	order.

document

Navigator	2.0

You	can	refer	to	the	Anchor	objects	in	your	code	by	using	the	anchors	array.
This	array	contains	an	entry	for	each	A	tag	containing	a	NAME	attribute	in	a
document;	these	entries	are	in	source	order.	For	example,	if	a	document	contains
three	named	anchors	whose	NAME	attributes	are	anchor1,	anchor2,	and
anchor3,	you	can	refer	to	the	anchors	either	as:

document.anchors["anchor1"]
document.anchors["anchor2"]
document.anchors["anchor3"]	or	as:

document.anchors[0]
document.anchors[1]
document.anchors[2]	To	obtain	the	number	of	anchors	in	a	document,	use	the
length	property:	document.anchors.length.	If	a	document	names	anchors	in	a
systematic	way	using	natural	numbers,	you	can	use	the	anchors	array	and	its
length	property	to	validate	an	anchor	name	before	using	it	in	operations	such	as
setting	location.hash.

applets

An	array	of	objects	corresponding	to	the	applets	in	a	document	in	source	order.

document

Navigator	3.0

You	can	refer	to	the	applets	in	your	code	by	using	the	applets	array.	This	array
contains	an	entry	for	each	Applet	object	(APPLET	tag)	in	a	document;	these
entries	are	in	source	order.	For	example,	if	a	document	contains	three	applets
whose	NAME	attributes	are	app1,	app2,	and	app3,	you	can	refer	to	the	anchors
either	as:

document.applets["app1"]
document.applets["app2"]
document.applets["app3"]	or	as:

document.applets[0]
document.applets[1]
document.applets[2]

bgColor

A	string	specifying	the	color	of	the	document	background.

document
Navigator	2.0

The	bgColor	property	is	expressed	as	a	hexadecimal	RGB	triplet	or	as	one	of
the	string	literals	listed	in	Appendix	B,	"Color	Values,"	in	the	JavaScript	Guide.
This	property	is	the	JavaScript	reflection	of	the	BGCOLOR	attribute	of	the
BODY	tag.	The	default	value	of	this	property	is	set	by	the	user	with	the
preferences	dialog	box.

If	you	express	the	color	as	a	hexadecimal	RGB	triplet,	you	must	use	the	format
rrggbb.	For	example,	the	hexadecimal	RGB	values	for	salmon	are	red=FA,
green=80,	and	blue=72,	so	the	RGB	triplet	for	salmon	is	"FA8072".

The	following	example	sets	the	color	of	the	document	background	to	aqua	using
a	string	literal:

document.bgColor="aqua"	The	following	example	sets	the	color	of	the
document	background	to	aqua	using	a	hexadecimal	triplet:

document.bgColor="00FFFF"

document.alinkColor,	document.fgColor,	document.linkColor,
document.vlinkColor

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=colors.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

cookie

String	value	representing	all	of	the	cookies	associated	with	this	document.

document
Navigator	2.0

Navigator	3.0 “JavaScript	”

A	cookie	is	a	small	piece	of	information	stored	by	the	web	browser	in	the
cookies.txt	file.	Use	string	methods	such	as	substring,	charAt,	indexOf,	and
lastIndexOf	to	determine	the	value	stored	in	the	cookie.	See	the	JavaScript
Guide	for	a	complete	specification	of	the	cookie.

You	can	set	the	cookie	property	at	any	time.

The	"expires="	component	in	the	cookie	file	sets	an	expiration	date	for	the
cookie,	so	it	persists	beyond	the	current	browser	session.	This	date	string	is
formatted	as	follows:

Wdy,	DD-Mon-YY	HH:MM:SS	GMT	This	format	represents	the	following
values:

Wdy	is	a	string	representing	the	full	name	of	the	day	of	the	week.

DD	is	an	integer	representing	the	day	of	the	month.

Mon	is	a	string	representing	the	three-character	abbreviation	of	the	month.

YY	is	an	integer	representing	the	last	two	digits	of	the	year.

HH,	MM,	and	SS	are	2-digit	representations	of	hours,	minutes,	and
seconds,	respectively.

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

For	example,	a	valid	cookie	expiration	date	is

expires=Wednesday,	09-Nov-99	23:12:40	GMT	The	cookie	date	format	is	the
same	as	the	date	returned	by	toGMTString,	with	the	following	exceptions:

Dashes	are	added	between	the	day,	month,	and	year.

The	year	is	a	2-digit	value	for	cookies.

The	following	function	uses	the	cookie	property	to	record	a	reminder	for	users
of	an	application.	The	cookie	expiration	date	is	set	to	one	day	after	the	date	of
the	reminder.

function	RecordReminder(time,	expression)	{
			//	Record	a	cookie	of	the	form	"@<T>=<E>"	to	map
			//	from	<T>	in	milliseconds	since	the	epoch,
			//	returned	by	Date.getTime(),	onto	an	encoded	expression,
			//	<E>	(encoded	to	contain	no	white	space,	semicolon,
			//	or	comma	characters)
			document.cookie	=	"@"	+	time	+	"="	+	expression	+	";"
			//	set	the	cookie	expiration	time	to	one	day
			//	beyond	the	reminder	time
			document.cookie	+=	"expires="	+	cookieDate(time	+	24*60*60*1000)
			//	cookieDate	is	a	function	that	formats	the	date
			//according	to	the	cookie	spec	
}

Hidden

domain

Specifies	the	domain	name	of	the	server	that	served	a	document.

document
Navigator	3.0

Navigator	3.0 “JavaScript	”

Navigator	3.0:	The	domain	property	lets	scripts	on	multiple	servers	share
properties	when	data	tainting	is	not	enabled.	With	tainting	disabled,	a	script
running	in	one	window	can	read	properties	of	another	window	only	if	both
windows	come	from	the	same	Web	server.	But	large	Web	sites	with	multiple
servers	might	need	to	share	properties	among	servers.	For	example,	a	script	on
the	host	www.royalairways.com	might	need	to	share	properties	with	a	script	on
the	host	search.royalairways.com.

If	scripts	on	two	different	servers	change	their	domain	property	so	that	both
scripts	have	the	same	domain	name,	both	scripts	can	share	properties.	For
example,	a	script	loaded	from	search.royalairways.com	could	set	its	domain
property	to	"royalairways.com".	A	script	from	www.royalairways.com	running
in	another	window	could	also	set	its	domain	property	to	"royalairways.com".
Then,	since	both	scripts	have	the	domain	"royalairways.com",	these	two	scripts
can	share	properties,	even	though	they	did	not	originate	from	the	same	server.

You	can	change	domain	only	in	a	restricted	way.	Initially,	domain	contains	the
hostname	of	the	Web	server	from	which	the	document	was	loaded.	You	can	set
domain	only	to	a	domain	suffix	of	itself.	For	example,	a	script	from
search.royalairways.com	can't	set	its	domain	property	to	"search.royalairways".
And	a	script	from	IWantYourMoney.com	cannot	set	its	domain	to
"royalairways.com".

Once	you	change	the	domain	property,	you	cannot	change	it	back	to	its	original
value.	For	example,	if	you	change	domain	from	"search.royalairways.com"	to
"royalairways.com",	you	cannot	reset	it	to	"search.royalairways.com".

The	following	statement	changes	the	domain	property	to
"braveNewWorld.com".	This	statement	is	valid	only	if	"braveNewWorld.com"
is	a	suffix	of	the	current	domain,	such	as	"www.braveNewWorld.com".

document.domain="braveNewWorld.com"

embeds

An	array	containing	an	entry	for	each	object	embedded	in	the	document.

document

Navigator	3.0

You	can	refer	to	embedded	objects	(created	with	the	EMBED	tag)	in	your	code	by
using	the	embeds	array.	This	array	contains	an	entry	for	each	EMBED	tag	in	a
document	in	source	order.	For	example,	if	a	document	contains	three	embedded
objects	whose	NAME	attributes	are	e1,	e2,	and	e3,	you	can	refer	to	the	objects
either	as:

document.embeds["e1"]
document.embeds["e2"]
document.embeds["e3"]	or	as:

document.embeds[0]
document.embeds[1]
document.embeds[2]	Elements	in	the	embeds	array	may	have	public	callable
functions,	if	they	refer	to	a	plug-in	that	uses	LiveConnect.	See	the	JavaScript
Guide.

Use	the	elements	in	the	embeds	array	to	interact	with	the	plug-in	that	is
displaying	the	embedded	object.	If	a	plug-in	is	not	Java-enabled,	you	cannot	do
anything	with	its	element	in	the	embeds	array.	The	fields	and	methods	of	the
elements	in	the	embeds	array	vary	from	plug-in	to	plug-in;	see	the
documentation	supplied	by	the	plug-in	manufacturer.

When	you	use	the	EMBED	tag	to	generate	output	from	a	plug-in	application,
you	are	not	creating	a	Plugin	object.

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags14.htm#tags:EMBED
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

The	following	code	includes	an	audio	plug-in	in	a	document.

<EMBED	SRC="train.au"	HEIGHT=50	WIDTH=250>

Plugin

fgColor

A	string	specifying	the	color	of	the	document	(foreground)	text.

document
Navigator	2.0

The	fgColor	property	is	expressed	as	a	hexadecimal	RGB	triplet	or	as	one	of	the
string	literals	listed	in	Appendix	B,	"Color	Values,"	in	the	JavaScript	Guide.
This	property	is	the	JavaScript	reflection	of	the	TEXT	attribute	of	the	BODY
tag.	The	default	value	of	this	property	is	set	by	the	user	with	the	preferences
dialog	box	You	cannot	set	this	property	after	the	HTML	source	has	been
through	layout.

If	you	express	the	color	as	a	hexadecimal	RGB	triplet,	you	must	use	the	format
rrggbb.	For	example,	the	hexadecimal	RGB	values	for	salmon	are	red=FA,
green=80,	and	blue=72,	so	the	RGB	triplet	for	salmon	is	"FA8072".

You	can	override	the	value	set	in	the	fgColor	property	in	either	of	the	following
ways:

Setting	the	COLOR	attribute	of	the	FONT	tag.

Using	the	fontcolor	method.

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=colors.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

formName

document
Navigator	3.0
The	document	object	contains	a	separate	property	for	each	form	in	the
document.	The	name	of	this	property	is	the	value	of	its	NAME	attribute.	See
Form	for	information	on	Form	objects.	You	cannot	add	new	forms	to	the
document	by	creating	new	properties,	but	you	can	modify	the	form	by
modifying	this	object.

forms

An	array	containing	an	entry	for	each	form	in	the	document.

document

Navigator	3.0

Navigator	3.0 “JavaScript	”

You	can	refer	to	the	forms	in	your	code	by	using	the	forms	array	(you	can	also
use	the	form	name).	This	array	contains	an	entry	for	each	Form	object	(FORM
tag)	in	a	document;	these	entries	are	in	source	order.	For	example,	if	a	document
contains	three	forms	whose	NAME	attributes	are	form1,	form2,	and	form3,	you
can	refer	to	the	objects	in	the	forms	array	either	as:

document.forms["form1"]
document.forms["form2"]
document.forms["form3"]	or	as:

document.forms[0]
document.forms[1]
document.forms[2]	Additionally,	the	document	object	has	a	separate	property
for	each	named	form,	so	you	could	refer	to	these	forms	also	as:

document.form1
document.form2
document.form3	For	example,	you	would	refer	to	a	Text	object	named	quantity
in	the	second	form	as	document.forms[1].quantity.	You	would	refer	to	the	value
property	of	this	Text	object	as	document.forms[1].quantity.value.

The	value	of	each	element	in	the	forms	array	is	<object	nameAttribute>,	where

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

nameAttribute	is	the	NAME	attribute	of	the	form.

images

An	array	containing	an	entry	for	each	image	in	the	document.

document

Navigator	3.0

You	can	refer	to	the	images	in	a	document	by	using	the	images	array.	This	array
contains	an	entry	for	each	Image	object	(IMG	tag)	in	a	document;	the	entries	are
in	source	order.	Images	created	with	the	Image	constructor	are	not	included	in
the	images	array.	For	example,	if	a	document	contains	three	images	whose
NAME	attributes	are	im1,	im2,	and	im3,	you	can	refer	to	the	objects	in	the
images	array	either	as:

document.images["im1"]
document.images["im2"]
document.images["im3"]	or	as:

document.images[0]
document.images[1]
document.images[2]

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags8.htm#tags:IMG

lastModified

A	string	representing	the	date	that	a	document	was	last	modified.

document

Navigator	2.0

Navigator	3.0 “JavaScript	”

The	lastModified	property	is	derived	from	the	HTTP	header	data	sent	by	the
web	server.	Servers	generally	obtain	this	date	by	examining	the	file's
modification	date.

The	last	modified	date	is	not	a	required	portion	of	the	header,	and	some	servers
do	not	supply	it.	If	the	server	does	not	return	the	last	modified	information,
JavaScript	receives	a	0,	which	it	displays	as	January	1,	1970	GMT.	The
following	code	checks	the	date	returned	by	lastModified	and	prints	out	a	value
that	corresponds	to	unknown.

lastmod	=	document.lastModified	//	get	string	of	last	modified	date
lastmoddate	=	Date.parse(lastmod)			//	convert	modified	string	to	date
if(lastmoddate	==	0){															//	unknown	date	(or	January	1,	1970	GMT)
			document.writeln("Lastmodified:	Unknown")
			}	else	{
			document.writeln("LastModified:	"	+	lastmod)
}

In	the	following	example,	the	lastModified	property	is	used	in	a	SCRIPT	tag	at
the	end	of	an	HTML	file	to	display	the	modification	date	of	the	page:

document.write("This	page	updated	on	"	+	document.lastModified)

layers

The	layers	property	is	an	array	containing	an	entry	for	each	layer	within	the
document.

document
Navigator	4.0

You	can	refer	to	the	layers	in	your	code	by	using	the	layers	array.	This	array
contains	an	entry	for	each	Layer	object	(LAYER	or	ILAYER	tag)	in	a	document;
these	entries	are	in	source	order.	For	example,	if	a	document	contains	three
layers	whose	NAME	attributes	are	layer1,	layer2,	and	layer3,	you	can	refer	to
the	objects	in	the	layers	array	either	as:

document.layers["layer1"]
document.layers["layer2"]
document.layers["layer3"]	or	as:

document.layers[0]
document.layers[1]
document.layers[2]	When	accessed	by	integer	index,	array	elements	appear	in	z-
order	from	back	to	front,	where	0	is	the	bottommost	layer	and	higher	layers	are
indexed	by	consecutive	integers.	The	index	of	a	layer	is	not	the	same	as	its
zIndex	property,	as	the	latter	does	not	necessarily	enumerate	layers	with
consecutive	integers.	Adjacent	layers	can	have	the	same	zIndex	property	values.

These	are	valid	ways	of	accessing	layer	objects:

document.layerName	
document.layers	
document.layers["layerName"]	
//	example	of	using	layers	property	to	access	nested	layers:
document.layers["parentlayer"].layers["childlayer"]	Elements	of	a	layers	array
are	JavaScript	objects	that	cannot	be	set	by	assignment,	though	their	properties
can	be	set.	For	example,	the	statement

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags12.htm#tags:LAYER
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags12.htm#tags:ILAYER

document.layers[0]="music"	is	invalid	(and	ignored)	because	it	attempts	to	alter
the	layers	array.	However,	the	properties	of	the	objects	in	the	array	readable	and
some	are	wri.	For	example,	the	statement

document.layers["suspect1"].left	=	100;	is	valid.	This	sets	the	layer's	horizontal
position	to	100.	The	following	example	sets	the	background	color	to	blue	for
the	layer	bluehouse	which	is	nested	in	the	layer	houses.

document.layers["houses"].layers["bluehouse"].bgColor="blue";

linkColor

A	string	specifying	the	color	of	the	document	hyperlinks.

document
Navigator	2.0

The	linkColor	property	is	expressed	as	a	hexadecimal	RGB	triplet	or	as	one	of
the	string	literals	listed	in	the	JavaScript	Guide.	This	property	is	the	JavaScript
reflection	of	the	LINK	attribute	of	the	BODY	tag.	The	default	value	of	this
property	is	set	by	the	user	with	the	preferences	dialog	box.	You	cannot	set	this
property	after	the	HTML	source	has	been	through	layout.

If	you	express	the	color	as	a	hexadecimal	RGB	triplet,	you	must	use	the	format
rrggbb.	For	example,	the	hexadecimal	RGB	values	for	salmon	are	red=FA,
green=80,	and	blue=72,	so	the	RGB	triplet	for	salmon	is	"FA8072".

The	following	example	sets	the	color	of	document	links	to	aqua	using	a	string
literal:

document.linkColor="aqua"	The	following	example	sets	the	color	of	document
links	to	aqua	using	a	hexadecimal	triplet:

document.linkColor="00FFFF"

document.alinkColor,	document.bgColor,	document.fgColor,
document.vlinkColor

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

links

An	array	of	objects	corresponding	to	Area	and	Link	objects	in	source	order.

document

Navigator	2.0

Navigator	3.0 “JavaScript	”

You	can	refer	to	the	Area	and	Link	objects	in	your	code	by	using	the	links	array.
This	array	contains	an	entry	for	each	Area	(<AREA	HREF="...">	tag)	and	Link
(tag)	object	in	a	document	in	source	order.	It	also	contains
links	created	with	the	link	method.	For	example,	if	a	document	contains	three
links,	you	can	refer	to	them	as:

document.links[0]
document.links[1]
document.links[2]

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags8.htm#tags:AREA
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags7.htm#tags:A

plugins

An	array	of	objects	corresponding	to	Plugin	objects	in	source	order.

document

Navigator	3.0

You	can	refer	to	the	Plugin	objects	in	your	code	by	using	the	plugins	array.	This
array	contains	an	entry	for	each	Plugin	object	in	a	document	in	source	order.	For
example,	if	a	document	contains	three	plugins,	you	can	refer	to	them	as:

document.plugins[0]
document.plugins[1]
document.plugins[2]

referrer

Specifies	the	URL	of	the	calling	document	when	a	user	clicks	a	link.

document

Navigator	2.0

Navigator	3.0 “JavaScript	”

When	a	user	navigates	to	a	destination	document	by	clicking	a	Link	object	on	a
source	document,	the	referrer	property	contains	the	URL	of	the	source
document.

referrer	is	empty	if	the	user	typed	a	URL	in	the	Location	box,	or	used	some
other	means	to	get	to	the	current	URL.	referrer	is	also	empty	if	the	server	does
not	provide	environment	variable	information.

In	the	following	example,	the	getReferrer	function	is	called	from	the	destination
document.	It	returns	the	URL	of	the	source	document.

function	getReferrer()	{
			return	document.referrer
}

title

A	string	representing	the	title	of	a	document.

document

Navigator	2.0

Navigator	3.0 “JavaScript	”

The	title	property	is	a	reflection	of	the	value	specified	between	the	TITLE	start
and	end	tags.	If	a	document	does	not	have	a	title,	the	title	property	is	null.

In	the	following	example,	the	value	of	the	title	property	is	assigned	to	a	variable
called	docTitle:

var	newWindow	=	window.open("http://home.netscape.com")
var	docTitle	=	newWindow.document.title

URL

A	string	specifying	the	complete	URL	of	the	document.

document

Navigator	2.0

Navigator	3.0 “JavaScript	”

URL	is	a	string-valued	property	containing	the	full	URL	of	the	document.	It
usually	matches	what	window.location.href	is	set	to	when	you	load	the
document,	but	redirection	may	change	location.href.

The	following	example	displays	the	URL	of	the	current	document:

document.write("The	current	URL	is	"	+	document.URL)

Location.href

vlinkColor

A	string	specifying	the	color	of	visited	links.

document
Navigator	2.0

The	vlinkColor	property	is	expressed	as	a	hexadecimal	RGB	triplet	or	as	one	of
the	string	literals	listed	in	the	JavaScript	Guide.	This	property	is	the	JavaScript
reflection	of	the	VLINK	attribute	of	the	BODY	tag.	The	default	value	of	this
property	is	set	by	the	user	with	the	preferences	dialog	box.	You	cannot	set	this
property	after	the	HTML	source	has	been	through	layout.

If	you	express	the	color	as	a	hexadecimal	RGB	triplet,	you	must	use	the	format
rrggbb.	For	example,	the	hexadecimal	RGB	values	for	salmon	are	red=FA,
green=80,	and	blue=72,	so	the	RGB	triplet	for	salmon	is	"FA8072".

The	following	example	sets	the	color	of	visited	links	to	aqua	using	a	string
literal:

document.vlinkColor="aqua"	The	following	example	sets	the	color	of	active
links	to	aqua	using	a	hexadecimal	triplet:

document.vlinkColor="00FFFF"

document.alinkColor,	document.bgColor,	document.fgColor,
document.linkColor

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

captureEvents

Sets	the	document	to	capture	all	events	of	the	specified	type.

document
Navigator	4.0

captureEvents(eventType)

eventType The	type	of	event	to	be	captured.	The	available	event	types	are	listedwith	the	event	object.

When	a	window	with	frames	wants	to	capture	events	in	pages	loaded	from
different	locations	(servers),	you	need	to	use	Window.captureEvents	in	a	signed
script	and	precede	it	with	Window.enableExternalCapture.	For	more
information	and	an	example,	see	Window.enableExternalCapture.	captureEvents
works	in	tandem	with	releaseEvents,	routeEvent,	and	handleEvent.	For	more
information,	see	"Events	in	Navigator	4.0".

close

Closes	an	output	stream	and	forces	data	sent	to	layout	to	display.

document
Navigator	2.0

close()

The	close	method	closes	a	stream	opened	with	the	document.open	method.	If
the	stream	was	opened	to	layout,	the	close	method	forces	the	content	of	the
stream	to	display.	Font	style	tags,	such	as	BIG	and	CENTER,	automatically
flush	a	layout	stream.

The	close	method	also	stops	the	"meteor	shower"	in	the	Netscape	icon	and
displays	Document:	Done	in	the	status	bar.

The	following	function	calls	document.close	to	close	a	stream	that	was	opened
with	document.open.	The	document.close	method	forces	the	content	of	the
stream	to	display	in	the	window.

function	windowWriter1()	{
			var	myString	=	"Hello,	world!"
			msgWindow.document.open()
			msgWindow.document.write(myString	+	"<P>")
			msgWindow.document.close()

}

document.open,	document.write,	document.writeln

getSelection

Returns	a	string	containing	the	text	of	the	current	selection.

document
Navigator	4.0

getSelection()

This	method	works	only	on	the	current	document.

You	cannot	determine	selected	areas	in	another	window.

If	you	have	a	form	with	the	following	code	and	you	click	on	the	button,
JavaScript	displays	an	alert	box	containing	the	currently	selected	text	from	the
window	containing	the	button:

<INPUT	TYPE="BUTTON"	NAME="getstring"	
			VALUE="Show	highlighted	text	(if	any)"	
			onClick="alert('You	have	selected:\n'+document.getSelection());">

handleEvent

document
Navigator	4.0

handleEvent(event)

event

“”

open

Opens	a	stream	to	collect	the	output	of	write	or	writeln	methods.

document
Navigator	2.0
Navigator	3.0:		"replace"	parameter;	document.open()	or
document.open("text/html")	clears	the	current	document	if	it	has	finished
loading

open(mimeType,	replace)

mimeType
(Optional)	A	string	specifying	the	type	of	document	to	which	you
are	writing.	If	you	do	not	specify	mimeType,	text/html	is	the
default.

replace
(Optional)	The	string	"replace".	If	you	supply	this	parameter,
mimeType	must	be	"text/html".	Causes	the	new	document	to	reuse
the	history	entry	that	the	previous	document	used.

Sample	values	for	mimeType	are:

text/html	specifies	a	document	containing	ASCII	text	with	HTML
formatting.

text/plain	specifies	a	document	containing	plain	ASCII	text	with	end-of-
line	characters	to	delimit	displayed	lines.

image/gif	specifies	a	document	with	encoded	bytes	constituting	a	GIF
header	and	pixel	data.

image/jpeg	specifies	a	document	with	encoded	bytes	constituting	a	JPEG
header	and	pixel	data.

image/x-bitmap	specifies	a	document	with	encoded	bytes	constituting	a
bitmap	header	and	pixel	data.

plugIn	loads	the	specified	plug-in	and	uses	it	as	the	destination	for	write
and	writeln	methods.	For	example,	"x-world/vrml"	loads	the	VR	Scout
VRML	plug-in	from	Chaco	Communications,	and	"application/x-director"
loads	the	Macromedia	Shockwave	plug-in.	Plug-in	MIME	types	are	only
valid	if	the	user	has	installed	the	required	plug-in	software.

The	open	method	opens	a	stream	to	collect	the	output	of	write	or	writeln
methods.	If	the	mimeType	is	text	or	image,	the	stream	is	opened	to	layout;
otherwise,	the	stream	is	opened	to	a	plug-in.	If	a	document	exists	in	the	target
window,	the	open	method	clears	it.

End	the	stream	by	using	the	document.close	method.	The	close	method	causes
text	or	images	that	were	sent	to	layout	to	display.	After	using	document.close,
call	document.open	again	when	you	want	to	begin	another	output	stream.

In	Navigator	3.0	and	later,	document.open	or	document.open("text/html")	clears
the	current	document	if	it	has	finished	loading.	This	is	because	this	type	of	open
call	writes	a	default	<BASE	HREF=>	tag	so	you	can	generate	relative	URLs
based	on	the	generating	script's	document	base.

The	"replace"	keyword	causes	the	new	document	to	reuse	the	history	entry	that
the	previous	document	used.	When	you	specify	"replace"	while	opening	a
document,	the	target	window's	history	length	is	not	incremented	even	after	you
write	and	close.

"replace"	is	typically	used	on	a	window	that	has	a	blank	document	or	an
"about:blank"	URL.	After	"replace"	is	specified,	the	write	method	typically
generates	HTML	for	the	window,	replacing	the	history	entry	for	the	blank	URL.
Take	care	when	using	generated	HTML	on	a	window	with	a	blank	URL.	If	you
do	not	specify	"replace",	the	generated	HTML	has	its	own	history	entry,	and	the
user	can	press	the	Back	button	and	back	up	until	the	frame	is	empty.

After	document.open("text/html","replace")	executes,	history.current	for	the
target	window	is	the	URL	of	document	that	executed	document.open.

	1. 	The	following	function	calls	document.open	to	open	a	stream	before
issuing	a	write	method:

function	windowWriter1()	{
			var	myString	=	"Hello,	world!"
			msgWindow.document.open()
			msgWindow.document.write("<P>"	+	myString)
			msgWindow.document.close()
}		2. 	The	following	function	calls	document.open	with	the	"replace"	keyword
to	open	a	stream	before	issuing	write	methods.	The	HTML	code	in	the	write
methods	is	written	to	msgWindow,	replacing	the	current	history	entry.	The
history	length	of	msgWindow	is	not	incremented.

function	windowWriter2()	{
			var	myString	=	"Hello,	world!"
			msgWindow.document.open("text/html","replace")
			msgWindow.document.write("<P>"	+	myString)
			msgWindow.document.write("<P>history.length	is	"	+	
						msgWindow.history.length)
			msgWindow.document.close()
}	The	following	code	creates	the	msgWindow	window	and	calls	the	function:

msgWindow=window.open('','',
			'toolbar=yes,scrollbars=yes,width=400,height=300')
windowWriter2()		3. 	In	the	following	example,	the	probePlugIn	function
determines	whether	a	user	has	the	Shockwave	plug-in	installed:

function	probePlugIn(mimeType)	{
			var	havePlugIn	=	false
			var	tiny	=	window.open("",	"teensy",	"width=1,height=1")
			if	(tiny	!=	null)	{
						if	(tiny.document.open(mimeType)	!=	null)
									havePlugIn	=	true
						tiny.close()
			}
			return	havePlugIn
}	var	haveShockwavePlugIn	=	probePlugIn("application/x-director")

document.close,	document.write,	document.writeln,	Location.reload,
Location.replace

releaseEvents

Sets	the	document	to	release	captured	events	of	the	specified	type,	sending	the
event	to	objects	further	along	the	event	hierarchy.

document
Navigator	4.0

Note

If	the	original	target	of	the	event	is	a	window,	the	window	receives	the	event
even	if	it	is	set	to	release	that	type	of	event.

releaseEvents(eventType)

eventType Type	of	event	to	be	captured.

releaseEvents	works	in	tandem	with	captureEvents,	routeEvent,	and
handleEvent.	For	more	information,	see	"Events	in	Navigator	4.0".

routeEvent

Passes	a	captured	event	along	the	normal	event	hierarchy.

document
Navigator	4.0

routeEvent(event)

event Name	of	the	event	to	be	routed.

If	a	subobject	(document	or	layer)	is	also	capturing	the	event,	the	event	is	sent
to	that	object.	Otherwise,	it	is	sent	to	its	original	target.

routeEvent	works	in	tandem	with	captureEvents,	releaseEvents,	and
handleEvent.	For	more	information,	see	"Events	in	Navigator	4.0".

write

Writes	one	or	more	HTML	expressions	to	a	document	in	the	specified	window.

document
Navigator	2.0
Navigator	3.0:	users	can	print	and	save	generated	HTML	using	the	commands
on	the	File	menu

document.write(expr1,	...,exprN)

expr1,	...	exprN Any	JavaScript	expressions.

The	write	method	displays	any	number	of	expressions	in	the	document	window.
You	can	specify	any	JavaScript	expression	with	the	write	method,	including
numeric,	string,	or	logical	expressions.

The	write	method	is	the	same	as	the	writeln	method,	except	the	write	method
does	not	append	a	newline	character	to	the	end	of	the	output.

Use	the	write	method	within	any	SCRIPT	tag	or	within	an	event	handler.	Event
handlers	execute	after	the	original	document	closes,	so	the	write	method
implicitly	opens	a	new	document	of	mimeType	text/html	if	you	do	not	explicitly
issue	a	document.open	method	in	the	event	handler.

You	can	use	the	write	method	to	generate	HTML	and	JavaScript	code.	However,
the	HTML	parser	reads	the	generated	code	as	it	is	being	written,	so	you	might
have	to	escape	some	characters.	For	example,	the	following	write	method
generates	a	comment	and	writes	it	to	window2:

window2=window.open('','window2')
beginComment="\<!--"
endComment="--\>"
window2.document.write(beginComment)
window2.document.write("	This	some	text	inside	a	comment.	")
window2.document.write(endComment)

Printing,	saving,	and	viewing	generated	HTML

In	Navigator	3.0	and	later,	users	can	print	and	save	generated	HTML	using	the
commands	on	the	File	menu.

If	you	choose	Document	Source	or	Frame	Source	from	the	View	menu,	the	web
browser	displays	the	content	of	the	HTML	file	with	the	generated	HTML.	(This
is	what	would	be	displayed	using	a	wysiwyg:	URL.)

If	you	instead	want	to	view	the	HTML	source	showing	the	scripts	which
generate	HTML	(with	the	document.write	and	document.writeln	methods),	do
not	use	the	Document	Source	or	Frame	Source	menu	item.	In	this	situation,	use
the	view-source:	protocol.

For	example,	assume	the	file	file://c|/test.html	contains	this	text:

<HTML>
<BODY>
Hello,	
<SCRIPT>document.write("	there.")</SCRIPT>
</BODY>
</HTML>	If	you	load	this	URL	into	the	web	browser,	it	displays	the	following:

Hello,	there.	If	you	choose	View	Document	Source,	the	browser	displays:

<HTML>
<BODY>
Hello,	
	there.
</BODY>
</HTML>	If	you	load	view-source:file://c|/test.html,	the	browser	displays:

<HTML>
<BODY>
Hello,	
<SCRIPT>document.write("	there.")</SCRIPT>
</BODY>
</HTML>	For	information	on	specifying	the	view-source:	protocol	in	the
location	object,	see	the	Location	object.

In	the	following	example,	the	write	method	takes	several	arguments,	including
strings,	a	numeric,	and	a	variable:

var	mystery	=	"world"
//	Displays	Hello	world	testing	123
msgWindow.document.write("Hello	",	mystery,	"	testing	",	123)	In	the
following	example,	the	write	method	takes	two	arguments.	The	first	argument	is
an	assignment	expression,	and	the	second	argument	is	a	string	literal.

//Displays	Hello	world...
msgWindow.document.write(mystr	=	"Hello	",	"world...")	In	the	following
example,	the	write	method	takes	a	single	argument	that	is	a	conditional
expression.	If	the	value	of	the	variable	age	is	less	than	18,	the	method	displays
"Minor."	If	the	value	of	age	is	greater	than	or	equal	to	18,	the	method	displays
"Adult."

msgWindow.document.write(status	=	(age	>=	18)	?	"Adult"	:	"Minor")

document.close,	document.open,	document.writeln

writeln

Writes	one	or	more	HTML	expressions	to	a	document	in	the	specified	window
and	follows	them	with	a	newline	character.

document
Navigator	2.0
Navigator	3.0:	users	can	print	and	save	generated	HTML	using	the	commands
on	the	File	menu

writeln(expr1,	...	exprN)

expr1,	...	exprN Any	JavaScript	expressions.

The	writeln	method	displays	any	number	of	expressions	in	a	document	window.
You	can	specify	any	JavaScript	expression,	including	numeric,	string,	or	logical
expressions.

The	writeln	method	is	the	same	as	the	write	method,	except	the	writeln	method
appends	a	newline	character	to	the	end	of	the	output.	HTML	ignores	the
newline	character,	except	within	certain	tags	such	as	the	PRE	tag.

Use	the	writeln	method	within	any	SCRIPT	tag	or	within	an	event	handler.
Event	handlers	execute	after	the	original	document	closes,	so	the	writeln
method	will	implicitly	open	a	new	document	of	mimeType	text/html	if	you	do
not	explicitly	issue	a	document.open	method	in	the	event	handler.

All	the	used	for	the	write	method	are	also	valid	with	the	writeln	method.

document.close,	document.open,	document.write

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Link
A	piece	of	text,	an	image,	or	an	area	of	an	image	identified	as	a	hypertext	link.
When	the	user	clicks	the	link	text,	image,	or	area,	the	link	hypertext	reference	is
loaded	into	its	target	window.	Area	objects	are	a	type	of	Link	object.

Navigator	2.0
Navigator	3.0:		onMouseOut	event	handler;		Area	objects;	links	array
contains	areas	created	with	<AREA	HREF="...">
Navigator	4.0:		handleEvent	

By	using	the	HTML	A	or	AREA	tag	or	by	a	call	to	the	String.link	method.	The
JavaScript	runtime	engine	creates	a	Link	object	corresponding	to	each	A	and
AREA	tag	in	your	document	that	supplies	the	HREF	attribute.	It	puts	these
objects	as	an	array	in	the	document.links	property.	You	access	a	Link	object	by
indexing	this	array.

To	define	a	link	with	the	String.link	method:

theString.link(hrefAttribute)	where:

theString A	String	object.

hrefAttribute Any	string	that	specifies	the	HREF	attribute	of	the	A	tag;	itshould	be	a	valid	URL	(relative	or	absolute).

To	define	a	link	with	the	A	or	MAP	tag,	use	standard	HTML	with	the	addition
of	JavaScript	event	handlers.	If	you're	going	to	use	the	onMouseOut	or
onMouseOver	event	handlers,	you	must	supply	a	value	for	the	HREF	attribute.

Area	objects	have	the	following	event	handlers:

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags7.htm#tags:A
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags8.htm#tags:AREA

onDblClick
onMouseOut
onMouseOver

Link	objects	have	the	following	event	handlers:

onClick
onDblClick
onKeyDown
onKeyPress
onKeyUp
onMouseDown
onMouseOut
onMouseUp
onMouseOver

Each	Link	object	is	a	location	object	and	has	the	same	properties	as	a	location
object.

If	a	Link	object	is	also	an	Anchor	object,	the	object	has	entries	in	both	the
anchors	and	links	arrays.

When	a	user	clicks	a	Link	object	and	navigates	to	the	destination	document
(specified	by	HREF="locationOrURL"),	the	destination	document's	referrer
property	contains	the	URL	of	the	source	document.	Evaluate	the	referrer
property	from	the	destination	document.

You	can	use	a	Link	object	to	execute	a	JavaScript	function	rather	than	link	to	a
hypertext	reference	by	specifying	the	javascript:	URL	protocol	for	the	link's
HREF	attribute.	You	might	want	to	do	this	if	the	link	surrounds	an	Image	object
and	you	want	to	execute	JavaScript	code	when	the	image	is	clicked.	Or	you
might	want	to	use	a	link	instead	of	a	button	to	execute	JavaScript	code.

For	example,	when	a	user	clicks	the	following	links,	the	slower	and	faster
functions	execute:

Slower

Faster	You	can	use	a	Link	object	to	do
nothing	rather	than	link	to	a	hypertext	reference	by	specifying	the
javascript:void(0)	URL	protocol	for	the	link's	HREF	attribute.	You	might	want
to	do	this	if	the	link	surrounds	an	Image	object	and	you	want	to	use	the	link's
event	handlers	with	the	image.	When	a	user	clicks	the	following	link	or	image,
nothing	happens:

Click	here	to	do	nothing	
			<IMG	SRC="images\globe.gif"	ALIGN="top"	HEIGHT="50"
WIDTH="50">

hash Specifies	an	anchor	name	in	the	URL.

host Specifies	the	host	and	domain	name,	or	IP	address,	of	a	network
host.

hostname Specifies	the	host:port	portion	of	the	URL.
href Specifies	the	entire	URL.
pathname Specifies	the	URL-path	portion	of	the	URL.
port Specifies	the	communications	port	that	the	server	uses.
protocol Specifies	the	beginning	of	the	URL,	including	the	colon.
search Specifies	a	query	string.
target Reflects	the	TARGET	attribute.
text A	string	containing	the	content	of	the	corresponding	A	tag.

handleEvent

	1. 	The	following	example	creates	a	hypertext	link	to	an	anchor	named
javascript_intro:

Introduction	to	JavaScript		2. 	The
following	example	creates	a	hypertext	link	to	an	anchor	named	numbers	in	the
file	doc3.html	in	the	window	window2.	If	window2	does	not	exist,	it	is	created.

Numbers	
3.	The	following	example	takes	the	user	back	x	entries	in	the	history	list:

Click	here		4. 	The	following
example	creates	a	hypertext	link	to	a	URL.	The	user	can	use	the	set	of	radio
buttons	to	choose	between	three	URLs.	The	link's	onClick	event	handler	sets	the
URL	(the	link's	href	property)	based	on	the	selected	radio	button.	The	link	also
has	an	onMouseOver	event	handler	that	changes	the	window's	status	property.
As	the	example	shows,	you	must	return	true	to	set	the	window.status	property	in
the	onMouseOver	event	handler.

<SCRIPT>
var	destHREF="http://home.netscape.com/"
</SCRIPT>
<FORM	NAME="form1">
Choose	a	destination	from	the	following	list,	then	click	"Click	me"	below.

<INPUT	TYPE="radio"	NAME="destination"	VALUE="netscape"
			onClick="destHREF='http://home.netscape.com/'">	Netscape	home	page

<INPUT	TYPE="radio"	NAME="destination"	VALUE="sun"
			onClick="destHREF='http://www.sun.com/'">	Sun	home	page

<INPUT	TYPE="radio"	NAME="destination"	VALUE="rfc1867"
			onClick="destHREF='http://www.ics.uci.edu/pub/ietf/html/rfc1867.txt'">
RFC	1867
<P><A	HREF=""
			onMouseOver="window.status='Click	this	if	you	dare!';	return	true"
			onClick="this.href=destHREF">
			Click	me
</FORM>		5:	links	array. 	In	the	following	example,	the	linkGetter	function
uses	the	links	array	to	display	the	value	of	each	link	in	the	current	document.
The	example	also	defines	several	links	and	a	button	for	running	linkGetter.

function	linkGetter()	{
			msgWindow=window.open("","msg","width=400,height=400")
			msgWindow.document.write("links.length	is	"	+

						document.links.length	+	"
")
			for	(var	i	=	0;	i	<	document.links.length;	i++)	{
						msgWindow.document.write(document.links[i]	+	"
")
			}
}	Netscape	Home	Page
China	Adoptions
Bad	Dog	Chronicles
Lab	Rescue
<P>
<INPUT	TYPE="button"	VALUE="Display	links"
			onClick="linkGetter()">		6:	Refer	to	Area	object	with	links	array. 	The
following	code	refers	to	the	href	property	of	the	first	Area	object	shown	in
Example	1.

document.links[0].href		7:	Area	object	with	onMouseOver	and
onMouseOut	event	handlers.	The	following	example	displays	an	image,
globe.gif.	The	image	uses	an	image	map	that	defines	areas	for	the	top	half	and
the	bottom	half	of	the	image.	The	onMouseOver	and	onMouseOut	event
handlers	display	different	status	bar	messages	depending	on	whether	the	mouse
passes	over	or	leaves	the	top	half	or	bottom	half	of	the	image.	The	HREF
attribute	is	required	when	using	the	onMouseOver	and	onMouseOut	event
handlers,	but	in	this	example	the	image	does	not	need	a	hypertext	link,	so	the
HREF	attribute	executes	javascript:void(0),	which	does	nothing.

<MAP	NAME="worldMap">
			<AREA	NAME="topWorld"	COORDS="0,0,50,25"
HREF="javascript:void(0)"
						onMouseOver="self.status='You	are	on	top	of	the	world';return	true"
						onMouseOut="self.status='You	have	left	the	top	of	the	world';return	true">
			<AREA	NAME="bottomWorld"	COORDS="0,25,50,50"
HREF="javascript:void(0)"
						onMouseOver="self.status='You	are	on	the	bottom	of	the	world';return	true"
						onMouseOut="self.status='You	have	left	the	bottom	of	the	world';return
true">
</MAP>
<IMG	SRC="images\globe.gif"	ALIGN="top"	HEIGHT="50"	WIDTH="50"
USEMAP="#worldMap">		8:	Simulate	an	Area	object's	onClick	using	the
HREF	attribute.	The	following	example	uses	an	Area	object's	HREF	attribute
to	execute	a	JavaScript	function.	The	image	displayed,	colors.gif,	shows	two

sample	colors.	The	top	half	of	the	image	is	the	color	antiquewhite,	and	the
bottom	half	is	white.	When	the	user	clicks	the	top	or	bottom	half	of	the	image,
the	function	setBGColor	changes	the	document's	background	color	to	the	color
shown	in	the	image.

<SCRIPT>
function	setBGColor(theColor)	{
			document.bgColor=theColor
}
</SCRIPT>
Click	the	color	you	want	for	this	document's	background	color
<MAP	NAME="colorMap">
			<AREA	NAME="topColor"	COORDS="0,0,50,25"
HREF="javascript:setBGColor('antiquewhite')">
			<AREA	NAME="bottomColor"	COORDS="0,25,50,50"
HREF="javascript:setBGColor('white')">
</MAP>
<IMG	SRC="images\colors.gif"	ALIGN="top"	HEIGHT="50"	WIDTH="50"
USEMAP="#colorMap">

Anchor,	Image,	link

hash

A	string	beginning	with	a	hash	mark	(#)	that	specifies	an	anchor	name	in	the
URL.

Link
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	hash	property	specifies	a	portion	of	the	URL.	This	property	applies	to
HTTP	URLs	only.

Be	careful	using	this	property.	Assume	document.links[0]	contains:

http://royalairways.com/fish.htm#angel	Then	document.links[0].hash	returns
#angel.	Assume	you	have	this	code:

hash	=	document.links[0].hash;
document.links[0].hash	=	hash;	Now,	document.links[0].hash	returns	##angel.

This	behavior	may	change	in	a	future	release.

You	can	set	the	hash	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	hash	that	you	specify	cannot	be	found	in
the	current	location,	you	get	an	error.

Setting	the	hash	property	navigates	to	the	named	anchor	without	reloading	the
document.	This	differs	from	the	way	a	document	is	loaded	when	other	link
properties	are	set.

See	RFC	1738	(http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html)	for
complete	information	about	the	hash.

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

Link.host,	Link.hostname,	Link.href,	Link.pathname,	Link.port,	Link.protocol,
Link.search

host

A	string	specifying	the	server	name,	subdomain,	and	domain	name.

Link
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	host	property	specifies	a	portion	of	a	URL.	The	host	property	is	a	substring
of	the	hostname	property.	The	hostname	property	is	the	concatenation	of	the
host	and	port	properties,	separated	by	a	colon.	When	the	port	property	is	null,
the	host	property	is	the	same	as	the	hostname	property.

You	can	set	the	host	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	host	that	you	specify	cannot	be	found	in	the
current	location,	you	get	an	error.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	hostname
and	port.

Link.hash,	Link.hostname,	Link.href,	Link.pathname,	Link.port,	Link.protocol,
Link.search

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

hostname

A	string	containing	the	full	hostname	of	the	server,	including	the	server	name,
subdomain,	domain,	and	port	number.

Link
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	hostname	property	specifies	a	portion	of	a	URL.	The	hostname	property	is
the	concatenation	of	the	host	and	port	properties,	separated	by	a	colon.	When
the	port	property	is	80	(the	default),	the	host	property	is	the	same	as	the
hostname	property.

You	can	set	the	hostname	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	hostname	that	you	specify	cannot	be	found
in	the	current	location,	you	get	an	error.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	hostname.

Link.host,	Link.hash,	Link.href,	Link.pathname,	Link.port,	Link.protocol,
Link.search

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

href

A	string	specifying	the	entire	URL.

Link
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	href	property	specifies	the	entire	URL.	Other	link	object	properties	are
substrings	of	the	href	property.

You	can	set	the	href	property	at	any	time.

See	RFC	1738	(http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html)	for
complete	information	about	the	URL.

Link.hash,	Link.host,	Link.hostname,	Link.pathname,	Link.port,	Link.protocol,
Link.search

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

pathname

A	string	specifying	the	URL-path	portion	of	the	URL.

Link
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	pathname	property	specifies	a	portion	of	the	URL.	The	pathname	supplies
the	details	of	how	the	specified	resource	can	be	accessed.

You	can	set	the	pathname	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	pathname	that	you	specify	cannot	be	found
in	the	current	location,	you	get	an	error.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	pathname.

Link.host,	Link.hostname,	Link.hash,	Link.href,	Link.port,	Link.protocol,
Link.search

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

port

A	string	specifying	the	communications	port	that	the	server	uses.

Link
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	port	property	specifies	a	portion	of	the	URL.	The	port	property	is	a
substring	of	the	hostname	property.	The	hostname	property	is	the	concatenation
of	the	host	and	port	properties,	separated	by	a	colon.	When	the	port	property	is
80	(the	default),	the	host	property	is	the	same	as	the	hostname	property.

You	can	set	the	port	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	port	that	you	specify	cannot	be	found	in	the
current	location,	you	will	get	an	error.	If	the	port	property	is	not	specified,	it
defaults	to	80	on	the	server.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	port.

Link.host,	Link.hostname,	Link.hash,	Link.href,	Link.pathname,	Link.protocol,
Link.search

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

protocol

A	string	specifying	the	beginning	of	the	URL,	up	to	and	including	the	first
colon.

Link
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	protocol	property	specifies	a	portion	of	the	URL.	The	protocol	indicates	the
access	method	of	the	URL.	For	example,	the	value	"http:"	specifies	HyperText
Transfer	Protocol,	and	the	value	"javascript:"	specifies	JavaScript	code.

You	can	set	the	protocol	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	protocol	that	you	specify	cannot	be	found
in	the	current	location,	you	get	an	error.

The	protocol	property	represents	the	scheme	name	of	the	URL.	See	Section	2.1
of	RFC	1738	(http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html)	for
complete	information	about	the	protocol.

Link.host,	Link.hostname,	Link.hash,	Link.href,	Link.pathname,	Link.port,
Link.search

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

search

A	string	beginning	with	a	question	mark	that	specifies	any	query	information	in
the	URL.

Link
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	search	property	specifies	a	portion	of	the	URL.	This	property	applies	to
http	URLs	only.

The	search	property	contains	variable	and	value	pairs;	each	pair	is	separated	by
an	ampersand.	For	example,	two	pairs	in	a	search	string	could	look	like	the
following:

?x=7&y=5	You	can	set	the	search	property	at	any	time,	although	it	is	safer	to	set
the	href	property	to	change	a	location.	If	the	search	that	you	specify	cannot	be
found	in	the	current	location,	you	get	an	error.

See	Section	3.3	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	search.

Link.host,	Link.hostname,	Link.hash,	Link.href,	Link.pathname,	Link.port,
Link.protocol

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.htm

target

A	string	specifying	the	name	of	the	window	that	displays	the	content	of	a
clicked	hypertext	link.

Link
Navigator	2.0

The	target	property	initially	reflects	the	TARGET	attribute	of	the	A	or	AREA
tags;	however,	setting	target	overrides	this	attribute.

You	can	set	target	using	a	string,	if	the	string	represents	a	window	name.	The
target	property	cannot	be	assigned	the	value	of	a	JavaScript	expression	or
variable.

You	can	set	the	target	property	at	any	time.

The	following	example	specifies	that	responses	to	the	musicInfo	form	are
displayed	in	the	msgWindow	window:

document.musicInfo.target="msgWindow"

Form

text

A	string	containing	the	content	of	the	corresponding	A	tag.

Link
Navigator	4.0

handleEvent

Link
Navigator	4.0

handleEvent(event)

event

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Area
Area	

Navigator	3.0:

	Area		 Link	

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Anchor

Navigator	2.0

	HTML	 A		 String.anchor	JavaScript		NAME		A		Anchor
	 document.anchors		Anchor	

	 String.anchor	

theString.anchor(nameAttribute)

theString 	 String	

nameAttribute

	A		HTML		NAME		anchors		Anchor	

	Anchor		Link		anchors		links	

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags7.htm#tags:A

	1:	 “	JavaScript”

<H2>	JavaScript</H2>
	intro.html	

	2:	anchors	 	location.hash	“0”“1”“2”“3”
(012……(document.anchors.length-1))onClick	
window2.locatin.hash	

link1.html

<HTML>
<HEAD>
<TITLE>	1</TITLE>
</HEAD>
<BODY>
<SCRIPT>
window2=open("link2.html","secondLinkWindow",
			"scrollbars=yes,width=250,	height=400")
function	linkToWindow(num)	{
			if	(window2.document.anchors.length	>	num)
						window2.location.hash=num
			else
						alert("")
}
</SCRIPT>

<FORM>
<P>	2	
<P><INPUT	TYPE="button"	VALUE="0"	NAME="link0_button"
			onClick="linkToWindow(this.value)">
<INPUT	TYPE="button"	VALUE="1"	NAME="link0_button"
			onClick="linkToWindow(this.value)">
<INPUT	TYPE="button"	VALUE="2"	NAME="link0_button"
			onClick="linkToWindow(this.value)">

<INPUT	TYPE="button"	VALUE="3"	NAME="link0_button"
			onClick="linkToWindow(this.value)">
<INPUT	TYPE="button"	VALUE="4"	NAME="link0_button"
			onClick="linkToWindow(this.value)">
</FORM>
</BODY>
</HTML>

link2.html

<HTML>
<HEAD>
<TITLE>	2</TITLE>
</HEAD>
<BODY>
	(0)

<P>	(1)

<P>	(2)

<P>	(3)

</BODY>
</HTML>

Link

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Applet
Includes	a	Java	applet	in	a	web	page.

Navigator	3.0

The	HTML	APPLET	tag.	The	JavaScript	runtime	engine	creates	an	Applet
object	corresponding	to	each	applet	in	your	document.	It	puts	these	objects	in	an
array	in	the	document.applets	property.	You	access	an	Applet	object	by	indexing
this	array.

To	define	an	applet,	use	standard	HTML.	If	you	specify	the	NAME	attribute,
you	can	use	the	value	of	that	attribute	to	index	into	the	applets	array.	To	refer	to
an	applet	in	JavaScript,	you	must	supply	the	MAYSCRIPT	attribute	in	its
definition.

The	author	of	an	HTML	page	must	permit	an	applet	to	access	JavaScript	by
specifying	the	MAYSCRIPT	attribute	of	the	APPLET	tag.	This	prevents	an
applet	from	accessing	JavaScript	on	a	page	without	the	knowledge	of	the	page
author.	For	example,	to	allow	the	musicPicker.class	applet	access	to	JavaScript
on	your	page,	specify	the	following:

<APPLET	CODE="musicPicker.class"	WIDTH=200	HEIGHT=35
			NAME="musicApp"	MAYSCRIPT>	Accessing	JavaScript	when	the
MAYSCRIPT	attribute	is	not	specified	results	in	an	exception.

For	more	information	on	using	applets,	see	the	JavaScript	Guide.

All	public	properties	of	the	applet	are	available	for	JavaScript	access	to	the

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags14.htm#tags:APPLET
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

Applet	object.

All	public	methods	of	the	applet

The	following	code	launches	an	applet	called	musicApp:

<APPLET	CODE="musicSelect.class"	WIDTH=200	HEIGHT=35
			NAME="musicApp"	MAYSCRIPT>
</APPLET>

	 JavaScript	

MimeType,	Plugin

	 	 	

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Frame
	URL		 FRAMESET		 FRAME

Frame	JavaScript	 Window
Window		 Window	

Navigator	2.0
Navigator	3.0:		blur		focus	;		onBlur	
onFocus	

	 	 	

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags11.htm#tags:FRAMESET
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags11.htm#tags:FRAME
javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Location
	URL	

Navigator	2.0
Navigator	3.0:		reload,
replace	

Location		JavaScript		Window		location	

location		 Window		URLlocation		URL	

	URL	

//:/#? 	

http://home.netscape.com/assist/extensions.html#topic1?x=7&y=2	

“”	URL	

“”	IP	

“”

	URL	

“”	URL	(#)	HTTP		URL

“”	URL		HTTP		URL“”“&”

A	Location	object	has	a	property	for	each	of	these	parts	of	the	URL.	See	the
individual	properties	for	more	information.	A	Location	object	has	two	other

properties	not	shown	here:

href	represents	a	complete	URL.

hostname	represents	the	concatenation	host:port.

If	you	assign	a	string	to	the	location	property	of	an	object,	JavaScript	creates	a
location	object	and	assigns	that	string	to	its	href	property.	For	example,	the
following	two	statements	are	equivalent	and	set	the	URL	of	the	current	window
to	the	Netscape	home	page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"	The	location	object	is	contained
by	the	window	object	and	is	within	its	scope.	If	you	refer	to	a	location	object
without	specifying	a	window,	the	location	object	represents	the	current	location.
If	you	refer	to	a	location	object	and	specify	a	window	name,	as	in
windowReference.location,	the	location	object	represents	the	location	of	the
specified	window.

In	event	handlers,	you	must	specify	window.location	instead	of	simply	using
location.	Due	to	the	scoping	of	static	objects	in	JavaScript,	a	call	to	location
without	specifying	an	object	name	is	equivalent	to	document.location,	which	is
a	synonym	for	document.URL.

Location	is	not	a	property	of	the	document	object;	its	equivalent	is	the
document.URL	property.	The	document.location	property,	which	is	a	synonym
for	document.URL,	will	be	removed	in	a	future	release.

How	documents	are	loaded	when	location	is	set

When	you	set	the	location	object	or	any	of	its	properties	except	hash,	whether	a
new	document	is	loaded	depends	on	which	version	of	the	browser	you	are
running:

In	Navigator	2.0,	setting	location	does	a	conditional	("If-modified-since")
HTTP	GET	operation,	which	returns	no	data	from	the	server	unless	the
document	has	been	modified	since	the	last	version	downloaded.

In	Navigator	3.0	and	later,	the	effect	of	setting	location	depends	on	the

user's	setting	for	comparing	a	document	to	the	original	over	the	network.
The	user	interface	option	for	setting	this	preference	differs	in	browser
versions.	The	user	decides	whether	to	check	a	document	in	cache	every
time	it	is	accessed,	once	per	session,	or	never.	The	document	is	reloaded
from	cache	if	the	user	sets	never	or	once	per	session;	the	document	is
reloaded	from	the	server	only	if	the	user	chooses	every	time.

	for	common	URL	types

When	you	specify	a	URL,	you	can	use	standard	URL	formats	and	JavaScript
statements.		6.2	shows	the	for	specifying	some	of	the	most	common	types	of
URLs.

	6.2	URL.		
URL	type Protocol Example
JavaScript	code javascript: javascript:history.go(-1)
Navigator	source
viewer

view-
source:

view-
source:wysiwyg://0/file:/c|/temp/genhtml.html

Navigator	info about: about:cache
World	Wide	Web http: http://home.netscape.com/
File file:/ file:///javascript/s.html
FTP ftp: ftp://ftp.mine.com/home/mine
MailTo mailto: mailto:info@netscape.com
Usenet news: news://news.scruznet.com/comp.lang.javascript
Gopher gopher: gopher.myhost.com

The	javascript:	protocol	evaluates	the	expression	after	the	colon	(:),	if	there	is
one,	and	loads	a	page	containing	the	string	value	of	the	expression,	unless	it	is
undefined.	If	the	expression	evaluates	to	undefined	(by	calling	a	void	function,
for	example	javascript:void(0)),	no	new	page	loads.	Note	that	loading	a	new
page	over	your	script's	page	clears	the	page's	variables,	functions,	and	so	on.

The	view-source:	protocol	displays	HTML	code	that	was	generated	with
JavaScript	document.write	and	document.writeln	methods.	For	information	on
printing	and	saving	generated	HTML,	see	write.

The	about:	protocol	provides	information	on	Navigator	and	has	the	following:

about:
about:cache
about:plugins

about:	by	itself	is	the	same	as	choosing	About	Communicator	from	the
Navigator	Help	menu.

about:cache	displays	disk-cache	statistics.

about:plugins	displays	information	about	plug-ins	you	have	configured.
This	is	the	same	as	choosing	About	Plug-ins	from	the	Navigator	Help
menu.

hash Specifies	an	anchor	name	in	the	URL.

host Specifies	the	host	and	domain	name,	or	IP	address,	of	a	network
host.

hostname Specifies	the	host:port	portion	of	the	URL.
href Specifies	the	entire	URL.
pathname Specifies	the	URL-path	portion	of	the	URL.
port Specifies	the	communications	port	that	the	server	uses.
protocol Specifies	the	beginning	of	the	URL,	including	the	colon.
search Specifies	a	query.

reload Forces	a	reload	of	the	window's	current	document.
replace Loads	the	specified	URL	over	the	current	history	entry.

	1. 	The	following	two	statements	are	equivalent	and	set	the	URL	of	the	current
window	to	the	Netscape	home	page:

window.location.href="http://home.netscape.com/"

window.location="http://home.netscape.com/"		2. 	The	following	statement
sets	the	URL	of	a	frame	named	frame2	to	the	Sun	home	page:

parent.frame2.location.href="http://www.sun.com/"	See	also	the	for	 Anchor.

History,	document.URL

hash

A	string	beginning	with	a	hash	mark	(#)	that	specifies	an	anchor	name	in	the
URL.

Location
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	hash	property	specifies	a	portion	of	the	URL.	This	property	applies	to
HTTP	URLs	only.

You	can	set	the	hash	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	hash	that	you	specify	cannot	be	found	in
the	current	location,	you	get	an	error.

Setting	the	hash	property	navigates	to	the	named	anchor	without	reloading	the
document.	This	differs	from	the	way	a	document	is	loaded	when	other	location
properties	are	set	(see	"How	documents	are	loaded	when	location	is	set").

See	RFC	1738	(http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html)	for
complete	information	about	the	hash.

In	the	following	example,	the	window.open	statement	creates	a	window	called
newWindow	and	loads	the	specified	URL	into	it.	The	document.write
statements	display	properties	of	newWindow.location	in	a	window	called
msgWindow.

newWindow=window.open

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

			("http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href	=	"	+
			newWindow.location.href	+	"<P>")
msgWindow.document.write("newWindow.location.hash	=	"	+
			newWindow.location.hash	+	"<P>")
msgWindow.document.close()	The	previous	example	displays	output	such	as
the	following:

newWindow.location.href	=
			http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.hash	=	#checkbox_object

Location.host,	Location.hostname,	Location.href,	Location.pathname,
Location.port,	Location.protocol,	Location.search

host

A	string	specifying	the	server	name,	subdomain,	and	domain	name.

Location
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	host	property	specifies	a	portion	of	a	URL.	The	host	property	is	a	substring
of	the	hostname	property.	The	hostname	property	is	the	concatenation	of	the
host	and	port	properties,	separated	by	a	colon.	When	the	port	property	is	null,
the	host	property	is	the	same	as	the	hostname	property.

You	can	set	the	host	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	host	that	you	specify	cannot	be	found	in	the
current	location,	you	get	an	error.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	hostname
and	port.

In	the	following	example,	the	window.open	statement	creates	a	window	called
newWindow	and	loads	the	specified	URL	into	it.	The	document.write
statements	display	properties	of	newWindow.location	in	a	window	called
msgWindow.

newWindow=window.open
			("http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object")

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

msgWindow.document.write("newWindow.location.href	=	"	+
			newWindow.location.href	+	"<P>")
msgWindow.document.write("newWindow.location.host	=	"	+
			newWindow.location.host	+	"<P>")
msgWindow.document.close()	The	previous	example	displays	output	such	as
the	following:

newWindow.location.href	=
			http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.host	=	home.netscape.com

Location.hash,	Location.hostname,	Location.href,	Location.pathname,
Location.port,	Location.protocol,	Location.search

hostname

A	string	containing	the	full	hostname	of	the	server,	including	the	server	name,
subdomain,	domain,	and	port	number.

Location
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	hostname	property	specifies	a	portion	of	a	URL.	The	hostname	property	is
the	concatenation	of	the	host	and	port	properties,	separated	by	a	colon.	When
the	port	property	is	80	(the	default),	the	host	property	is	the	same	as	the
hostname	property.

You	can	set	the	hostname	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	hostname	that	you	specify	cannot	be	found
in	the	current	location,	you	get	an	error.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	hostname.

In	the	following	example,	the	window.open	statement	creates	a	window	called
newWindow	and	loads	the	specified	URL	into	it.	The	document.write
statements	display	properties	of	newWindow.location	in	a	window	called
msgWindow.

newWindow=window.open
			("http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object")

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

msgWindow.document.write("newWindow.location.href	=	"	+
			newWindow.location.href	+	"<P>")
msgWindow.document.write("newWindow.location.hostName	=	"	+
			newWindow.location.hostName	+	"<P>")
msgWindow.document.close()	The	previous	example	displays	output	such	as
the	following:

newWindow.location.href	=
			http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.hostName	=	home.netscape.com

Location.hash,	Location.host,	Location.href,	Location.pathname,	Location.port,
Location.protocol,	Location.search

href

A	string	specifying	the	entire	URL.

Location
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	href	property	specifies	the	entire	URL.	Other	location	object	properties	are
substrings	of	the	href	property.	If	you	want	to	change	the	URL	associated	with	a
window,	you	should	do	so	by	changing	the	href	property;	this	correctly	updates
all	of	the	other	properties.

You	can	set	the	href	property	at	any	time.

Omitting	a	property	name	from	the	location	object	is	equivalent	to	specifying
location.href.	For	example,	the	following	two	statements	are	equivalent	and	set
the	URL	of	the	current	window	to	the	Netscape	home	page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"	See	RFC	1738
(http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html)	for	complete	information
about	the	URL.

In	the	following	example,	the	window.open	statement	creates	a	window	called
newWindow	and	loads	the	specified	URL	into	it.	The	document.write
statements	display	all	the	properties	of	newWindow.location	in	a	window	called
msgWindow.

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

newWindow=window.open
			("http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href	=	"	+
			newWindow.location.href	+	"<P>")
msgWindow.document.write("newWindow.location.protocol	=	"	+
			newWindow.location.protocol	+	"<P>")
msgWindow.document.write("newWindow.location.host	=	"	+
			newWindow.location.host	+	"<P>")
msgWindow.document.write("newWindow.location.hostName	=	"	+
			newWindow.location.hostName	+	"<P>")
msgWindow.document.write("newWindow.location.port	=	"	+
			newWindow.location.port	+	"<P>")
msgWindow.document.write("newWindow.location.pathname	=	"	+
			newWindow.location.pathname	+	"<P>")
msgWindow.document.write("newWindow.location.hash	=	"	+
			newWindow.location.hash	+	"<P>")
msgWindow.document.write("newWindow.location.search	=	"	+
			newWindow.location.search	+	"<P>")
msgWindow.document.close()	The	previous	example	displays	output	such	as
the	following:

newWindow.location.href	=
			http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.protocol	=	http:
newWindow.location.host	=	home.netscape.com
newWindow.location.hostName	=	home.netscape.com
newWindow.location.port	=	
newWindow.location.pathname	=
			/comprod/products/navigator/version_2.0/script/
			script_info/objects.html
newWindow.location.hash	=	#checkbox_object
newWindow.location.search	=

Location.hash,	Location.host,	Location.hostname,	Location.pathname,

Location.port,	Location.protocol,	Location.search

pathname

A	string	specifying	the	URL-path	portion	of	the	URL.

Location
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	pathname	property	specifies	a	portion	of	the	URL.	The	pathname	supplies
the	details	of	how	the	specified	resource	can	be	accessed.

You	can	set	the	pathname	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	pathname	that	you	specify	cannot	be	found
in	the	current	location,	you	get	an	error.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	pathname.

In	the	following	example,	the	window.open	statement	creates	a	window	called
newWindow	and	loads	the	specified	URL	into	it.	The	document.write
statements	display	properties	of	newWindow.location	in	a	window	called
msgWindow.

newWindow=window.open
			("http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href	=	"	+
			newWindow.location.href	+	"<P>")
msgWindow.document.write("newWindow.location.pathname	=	"	+

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

			newWindow.location.pathname	+	"<P>")
msgWindow.document.close()	The	previous	example	displays	output	such	as
the	following:

newWindow.location.href	=
			http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.pathname	=
			/comprod/products/navigator/version_2.0/script/
			script_info/objects.html

Location.hash,	Location.host,	Location.hostname,	Location.href,	Location.port,
Location.protocol,	Location.search

port

A	string	specifying	the	communications	port	that	the	server	uses.

Location
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	port	property	specifies	a	portion	of	the	URL.	The	port	property	is	a
substring	of	the	hostname	property.	The	hostname	property	is	the	concatenation
of	the	host	and	port	properties,	separated	by	a	colon.

You	can	set	the	port	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	port	that	you	specify	cannot	be	found	in	the
current	location,	you	get	an	error.	If	the	port	property	is	not	specified,	it	defaults
to	80.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	port.

In	the	following	example,	the	window.open	statement	creates	a	window	called
newWindow	and	loads	the	specified	URL	into	it.	The	document.write
statements	display	properties	of	newWindow.location	in	a	window	called
msgWindow.

newWindow=window.open
			("http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href	=	"	+

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

			newWindow.location.href	+	"<P>")
msgWindow.document.write("newWindow.location.port	=	"	+
			newWindow.location.port	+	"<P>")
msgWindow.document.close()	The	previous	example	displays	output	such	as
the	following:

newWindow.location.href	=
			http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.port	=

Location.hash,	Location.host,	Location.hostname,	Location.href,
Location.pathname,	Location.protocol,	Location.search

protocol

A	string	specifying	the	beginning	of	the	URL,	up	to	and	including	the	first
colon.

Location
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	protocol	property	specifies	a	portion	of	the	URL.	The	protocol	indicates	the
access	method	of	the	URL.	For	example,	the	value	"http:"	specifies	HyperText
Transfer	Protocol,	and	the	value	"javascript:"	specifies	JavaScript	code.

You	can	set	the	protocol	property	at	any	time,	although	it	is	safer	to	set	the	href
property	to	change	a	location.	If	the	protocol	that	you	specify	cannot	be	found
in	the	current	location,	you	get	an	error.

The	protocol	property	represents	the	scheme	name	of	the	URL.	See	Section	2.1
of	RFC	1738	(http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html)	for
complete	information	about	the	protocol.

In	the	following	example,	the	window.open	statement	creates	a	window	called
newWindow	and	loads	the	specified	URL	into	it.	The	document.write
statements	display	properties	of	newWindow.location	in	a	window	called
msgWindow.

newWindow=window.open
			("http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object")

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

msgWindow.document.write("newWindow.location.href	=	"	+
			newWindow.location.href	+	"<P>")
msgWindow.document.write("newWindow.location.protocol	=	"	+
			newWindow.location.protocol	+	"<P>")
msgWindow.document.close()	The	previous	example	displays	output	such	as
the	following:

newWindow.location.href	=
			http://home.netscape.com/comprod/products/navigator/
			version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.protocol	=	http:

Location.hash,	Location.host,	Location.hostname,	Location.href,
Location.pathname,	Location.port,	Location.search

search

A	string	beginning	with	a	question	mark	that	specifies	any	query	information	in
the	URL.

Location
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	search	property	specifies	a	portion	of	the	URL.	This	property	applies	to
HTTP	URLs	only.

The	search	property	contains	variable	and	value	pairs;	each	pair	is	separated	by
an	ampersand.	For	example,	two	pairs	in	a	search	string	could	look	as	follows:

?x=7&y=5	You	can	set	the	search	property	at	any	time,	although	it	is	safer	to	set
the	href	property	to	change	a	location.	If	the	search	that	you	specify	cannot	be
found	in	the	current	location,	you	get	an	error.

See	Section	3.3	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	search.

In	the	following	example,	the	window.open	statement	creates	a	window	called
newWindow	and	loads	the	specified	URL	into	it.	The	document.write
statements	display	properties	of	newWindow.location	in	a	window	called
msgWindow.

newWindow=window.open
			("http://guide-p.infoseek.com/WW/NS/Titles?qt=RFC+1738+&col=WW")

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.htm

msgWindow.document.write("newWindow.location.href	=	"	+
			newWindow.location.href	+	"<P>")
msgWindow.document.close()
msgWindow.document.write("newWindow.location.search	=	"	+
			newWindow.location.search	+	"<P>")
msgWindow.document.close()	The	previous	example	displays	the	following
output:

newWindow.location.href	=
			http://guide-p.infoseek.com/WW/NS/Titles?qt=RFC+1738+&col=WW
newWindow.location.search	=	?qt=RFC+1738+&col=WW

Location.hash,	Location.host,	Location.hostname,	Location.href,
Location.pathname,	Location.port,	Location.protocol

reload

Forces	a	reload	of	the	window's	current	document	(the	document	specified	by
the	Location.href	property).

Location
Navigator	3.0

reload(forceGet)

forceGet

(Optional)	If	you	supply	true,	forces	an	unconditional	HTTP	GET	of
the	document	from	the	server.	This	should	not	be	used	unless	you
have	reason	to	believe	that	disk	and	memory	caches	are	off	or	broken,
or	the	server	has	a	new	version	of	the	document	(for	example,	if	it	is
generated	by	a	CGI	on	each	request).

This	method	uses	the	same	policy	that	the	browser's	Reload	button	uses.	The
user	interface	for	setting	the	default	value	of	this	policy	varies	for	different
browser	versions.

By	default,	the	reload	method	does	not	force	a	transaction	with	the	server.
However,	if	the	user	has	set	the	preference	to	check	every	time,	the	method	does
a	"conditional	GET"	request	using	an	If-modified-since	HTTP	header,	to	ask	the
server	to	return	the	document	only	if	its	last-modified	time	is	newer	than	the
time	the	client	keeps	in	its	cache.	In	other	words,	reload	reloads	from	the	cache,
unless	the	user	has	specified	to	check	every	time	and	the	document	has	changed
on	the	server	since	it	was	last	loaded	and	saved	in	the	cache.

The	following	example	displays	an	image	and	three	radio	buttons.	The	user	can
click	the	radio	buttons	to	choose	which	image	is	displayed.	Clicking	another
button	lets	the	user	reload	the	document.

<SCRIPT>
function	displayImage(theImage)	{
			document.images[0].src=theImage
}
</SCRIPT>	<FORM	NAME="imageForm">
Choose	an	image:

<INPUT	TYPE="radio"	NAME="imageChoice"	VALUE="image1"
CHECKED
			onClick="displayImage('seaotter.gif')">Sea	otter

<INPUT	TYPE="radio"	NAME="imageChoice"	VALUE="image2"
			onClick="displayImage('orca.gif')">Killer	whale

<INPUT	TYPE="radio"	NAME="imageChoice"	VALUE="image3"
			onClick="displayImage('humpback.gif')">Humpback	whale	

<IMG	NAME="marineMammal"	SRC="seaotter.gif"	ALIGN="left"
VSPACE="10">	<P><INPUT	TYPE="button"	VALUE="Click	here	to	reload"
			onClick="window.location.reload()">
</FORM>

Location.replace

replace

Loads	the	specified	URL	over	the	current	history	entry.

Location
Navigator	3.0

replace("URL")

URL Specifies	the	URL	to	load.

The	replace	method	loads	the	specified	URL	over	the	current	history	entry.
After	calling	the	replace	method,	the	user	cannot	navigate	to	the	previous	URL
by	using	browser's	Back	button.

If	your	program	will	be	run	with	JavaScript	in	Navigator	2.0,	you	could	put	the
following	line	in	a	SCRIPT	tag	early	in	your	program.	This	emulates	replace,
which	was	introduced	in	Navigator	3.0:

if	(location.replace	==	null)
			location.replace	=	location.assign	The	replace	method	does	not	create	a	new
entry	in	the	history	list.	To	create	an	entry	in	the	history	list	while	loading	a
URL,	use	the	History.go	method.

The	following	example	lets	the	user	choose	among	several	catalogs	to	display.
The	example	displays	two	sets	of	radio	buttons	which	let	the	user	choose	a
season	and	a	category,	for	example	the	Spring/Summer	Clothing	catalog	or	the

Fall/Winter	Home	&	Garden	catalog.	When	the	user	clicks	the	Go	button,	the
displayCatalog	function	executes	the	replace	method,	replacing	the	current	URL
with	the	URL	appropriate	for	the	catalog	the	user	has	chosen.	After	invoking
displayCatalog,	the	user	cannot	navigate	to	the	previous	URL	(the	list	of
catalogs)	by	using	browser's	Back	button.

<SCRIPT>
function	displayCatalog()	{
			var	seaName=""
			var	catName=""				for	(var	i=0;	i	<	document.catalogForm.season.length;	i++)
{
						if	(document.catalogForm.season[i].checked)	{
									seaName=document.catalogForm.season[i].value
									i=document.catalogForm.season.length
						}
			}				for	(var	i	in	document.catalogForm.category)	{
						if	(document.catalogForm.category[i].checked)	{
									catName=document.catalogForm.category[i].value
									i=document.catalogForm.category.length
						}
			}
			fileName=seaName	+	catName	+	".html"
			location.replace(fileName)
}
</SCRIPT>	<FORM	NAME="catalogForm">
Which	catalog	do	you	want	to	see?	<P>Season

<INPUT	TYPE="radio"	NAME="season"	VALUE="q1"
CHECKED>Spring/Summer

<INPUT	TYPE="radio"	NAME="season"	VALUE="q3">Fall/Winter
<P>Category

<INPUT	TYPE="radio"	NAME="category"	VALUE="clo"
CHECKED>Clothing

<INPUT	TYPE="radio"	NAME="category"	VALUE="lin">Linens

<INPUT	TYPE="radio"	NAME="category"	VALUE="hom">Home	&
Garden	<P><INPUT	TYPE="button"	VALUE="Go"
onClick="displayCatalog()">
</FORM>

History,	Window.open,	History.go,	Location.reload

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

History
Contains	an	array	of	information	on	the	URLs	that	the	client	has	visited	within	a
window.	This	information	is	stored	in	a	history	list	and	is	accessible	through	the
browser's	Go	menu.

Navigator	2.0
Navigator	3.0:		current,	next,	and	previous
properties;

History	objects	are	predefined	JavaScript	objects	that	you	access	through	the
history	property	of	a	Window	object.

To	change	a	window's	current	URL	without	generating	a	history	entry,	you	can
use	the	Location.replace	method.	This	replaces	the	current	page	with	a	new	one
without	generating	a	history	entry.	See	Location.replace.

You	can	refer	to	the	history	entries	by	using	the	Window.history	array.	This
array	contains	an	entry	for	each	history	entry	in	source	order.	Each	array	entry	is
a	string	containing	a	URL.	For	example,	if	the	history	list	contains	three	named
entries,	these	entries	are	reflected	as	history[0],	history[1],	and	history[2].

If	you	access	the	history	array	without	specifying	an	array	element,	the	browser
returns	a	string	of	HTML	which	displays	a		of	URLs,	each	of	which	is	a	link.

current Specifies	the	URL	of	the	current	history	entry.
length Reflects	the	number	of	entries	in	the	history	list.
next Specifies	the	URL	of	the	next	history	entry.

previous Specifies	the	URL	of	the	previous	history	entry.

back Loads	the	previous	URL	in	the	history	list.
forward Loads	the	next	URL	in	the	history	list.
go Loads	a	URL	from	the	history	list.

	1. 	The	following	example	goes	to	the	URL	the	user	visited	three	clicks	ago	in
the	current	window.

history.go(-3)		2. 	You	can	use	the	history	object	with	a	specific	window	or
frame.	The	following	example	causes	window2	to	go	back	one	item	in	its
window	(or	session)	history:

window2.history.back()		3. 	The	following	example	causes	the	second	frame	in
a	frameset	to	go	back	one	item:

parent.frames[1].history.back()		4. 	The	following	example	causes	the	frame
named	frame1	in	a	frameset	to	go	back	one	item:

parent.frame1.history.back()		5. 	The	following	example	causes	the	frame
named	frame2	in	window2	to	go	back	one	item:

window2.frame2.history.back()		6. 	The	following	code	determines	whether
the	first	entry	in	the	history	array	contains	the	string	"NETSCAPE".	If	it	does,
the	function	myFunction	is	called.

if	(history[0].indexOf("NETSCAPE")	!=	-1)	{
			myFunction(history[0])
}		7. 	The	following	example	displays	the	entire	history	list:

document.writeln("history	is	"	+	history)	This	code	displays	output
similar	to	the	following:

history	is

Welcome	to	Netscape	http://home.netscape.com/
Sun	Microsystems	http://www.sun.com/
Royal	Airways	http://www.supernet.net/~dugbrown/

Location,	Location.replace

current

A	string	specifying	the	complete	URL	of	the	current	history	entry.

History

Navigator	3.0

Navigator	3.0:	This	property	is	tainted	by	default.	It	has	no	value	of	data
tainting	is	disabled.	For	information	on	data	tainting,	see	"JavaScript	Security".

Navigator	4.0:	Getting	the	value	of	this	property	requires	the
UniversalBrowserRead	privilege.	It	has	no	value	if	you	do	not	have	this
privilege.		Navigator	4.0	 “JavaScript	” “JavaScript	”

The	following	example	determines	whether	history.current	contains	the	string
"netscape.com".	If	it	does,	the	function	myFunction	is	called.

if	(history.current.indexOf("netscape.com")	!=	-1)	{
			myFunction(history.current)
}

History.next,	History.previous

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

length

The	number	of	elements	in	the	history	array.

History

Navigator	2.0

Navigator	4.0:	Getting	the	value	of	this	property	requires	the
UniversalBrowserRead	privilege.		Navigator	4.0	
“JavaScript	”

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

next

A	string	specifying	the	complete	URL	of	the	next	history	entry.

History

Navigator	3.0

Navigator	3.0:	This	property	is	tainted	by	default.	It	has	no	value	of	data
tainting	is	disabled.	For	information	on	data	tainting,	see	"JavaScript	Security".

Navigator	4.0:	Getting	the	value	of	this	property	requires	the
UniversalBrowserRead	privilege.	It	has	no	value	if	you	do	not	have	this
privilege.		Navigator	4.0	 “JavaScript	” “JavaScript	”

The	next	property	reflects	the	URL	that	would	be	used	if	the	user	chose
Forward	from	the	Go	menu.

The	following	example	determines	whether	history.next	contains	the	string
"NETSCAPE.COM".	If	it	does,	the	function	myFunction	is	called.

if	(history.next.indexOf("NETSCAPE.COM")	!=	-1)	{
			myFunction(history.next)
}

History.current,	History.previous

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

previous

A	string	specifying	the	complete	URL	of	the	previous	history	entry.

History

Navigator	3.0

Navigator	3.0:	This	property	is	tainted	by	default.	It	has	no	value	of	data
tainting	is	disabled.	For	information	on	data	tainting,	see	"JavaScript	Security".

Navigator	4.0:	Getting	the	value	of	this	property	requires	the
UniversalBrowserRead	privilege.	It	has	no	value	if	you	do	not	have	this
privilege.		Navigator	4.0	 “JavaScript	” “JavaScript	”

The	previous	property	reflects	the	URL	that	would	be	used	if	the	user	chose
Back	from	the	Go	menu.

The	following	example	determines	whether	history.previous	contains	the	string
"NETSCAPE.COM".	If	it	does,	the	function	myFunction	is	called.

if	(history.previous.indexOf("NETSCAPE.COM")	!=	-1)	{
			myFunction(history.previous)
}

History.current,	History.next

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

back

Loads	the	previous	URL	in	the	history	list.

History
Navigator	2.0

back()

This	method	performs	the	same	action	as	a	user	choosing	the	Back	button	in	the
browser.	The	back	method	is	the	same	as	history.go(-1).

The	following	custom	buttons	perform	the	same	operation	as	the	browser's	Back
button:

<P><INPUT	TYPE="button"	VALUE="<	Go	Back"
			onClick="history.back()">
<P><INPUT	TYPE="button"	VALUE=">	Go	Back"
			onClick="myWindow.back()">

History.forward,	History.go

forward

Loads	the	next	URL	in	the	history	list.

History
Navigator	2.0

forward()

This	method	performs	the	same	action	as	a	user	choosing	the	Forward	button	in
the	browser.	The	forward	method	is	the	same	as	history.go(1).

The	following	custom	buttons	perform	the	same	operation	as	the	browser's
Forward	button:

<P><INPUT	TYPE="button"	VALUE="<	Forward"
			onClick="history.forward()">
<P><INPUT	TYPE="button"	VALUE=">	Forward"
			onClick="myWindow.forward()">

History.back,	History.go

go

Loads	a	URL	from	the	history	list.

History
Navigator	2.0

go(delta)
go(location)

delta An	integer	representing	a	relative	position	in	the	history	list.
location A	string	representing	all	or	part	of	a	URL	in	the	history	list.

The	go	method	navigates	to	the	location	in	the	history	list	determined	by	the
specified	parameter.

If	the	delta	argument	is	0,	the	browser	reloads	the	current	page.	If	it	is	an	integer
greater	than	0,	the	go	method	loads	the	URL	that	is	that	number	of	entries
forward	in	the	history	list;	otherwise,	it	loads	the	URL	that	is	that	number	of
entries	backward	in	the	history	list.

The	location	argument	is	a	string.	Use	location	to	load	the	nearest	history	entry
whose	URL	contains	location	as	a	substring.	Matching	the	URL	to	the	location
parameter	is	case-insensitive.	Each	section	of	a	URL	contains	different
information.	See	Location	for	a	of	the	URL	components.

The	go	method	creates	a	new	entry	in	the	history	list.	To	load	a	URL	without
creating	an	entry	in	the	history	list,	use	Location.replace.

The	following	button	navigates	to	the	nearest	history	entry	that	contains	the
string	"home.netscape.com":

<P><INPUT	TYPE="button"	VALUE="Go"
			onClick="history.go('home.netscape.com')">	The	following	button	navigates
to	the	URL	that	is	three	entries	backward	in	the	history	list:

<P><INPUT	TYPE="button"	VALUE="Go"
			onClick="history.go(-3)">

History.back,	History.forward,	Location.reload,	Location.replace

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

screen

Navigator	4.0

The	JavaScript	runtime	engine	creates	the	screen	object	for	you.	You	can	access
its	properties	automatically.

availHeight
minus	permanent	or	semipermanent	user	interface	features
displayed	by	the	operating	system,	such	as	the	Taskbar	on
Windows.

availWidth
Specifies	the	width	of	the	screen,	in	pixels,	minus	permanent	or
semipermanent	user	interface	features	displayed	by	the	operating
system,	such	as	the	Taskbar	on	Windows.

colorDepth The	bit	depth	of	the	color	palette,	if	one	is	in	use;	otherwise,	the
value	is	derived	from	screen.pixelDepth.

height Display	screen	height.
pixelDepth Display	screen	color	resolution	(bits	per	pixel).
width Display	screen	width.

The	following	function	creates	a	string	containing	the	current	display	properties:

function	screen_properties()	{
			document.examples.results.value	=	"("+screen.width+"	x
						"+screen.height+")	pixels,	"+
						screen.pixelDepth	+"	bit	depth,	"+
						screen.colorDepth	+"	bit	color	palette	depth.";
}	//	end	function	screen_properties

availHeight

Specifies	the	height	of	the	screen,	in	pixels,	minus	permanent	or	semipermanent
user	interface	features	displayed	by	the	operating	system,	such	as	the	Taskbar
on	Windows.

screen
Navigator	4.0

availWidth

Specifies	the	width	of	the	screen,	in	pixels,	minus	permanent	or	semipermanent
user	interface	features	displayed	by	the	operating	system,	such	as	the	Taskbar
on	Windows.

screen
Navigator	4.0

colorDepth

The	bit	depth	of	the	color	palette	in	bits	per	pixel,	if	a	color	palette	is	in	use.
Otherwise,	this	property	is	derived	from	screen.pixelDepth.

screen
Navigator	4.0

height

Display	screen	height,	in	pixels.

screen
Navigator	4.0

pixelDepth

Display	screen	color	resolution,	in	bits	per	pixel.

screen
Navigator	4.0

width

Display	screen	width,	in	pixels.

screen
Navigator	4.0

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Form
Lets	users	input	text	and	make	choices	from	Form	elements	such	as	checkboxes,	radio	buttons,	and
selection	lists.	You	can	also	use	a	form	to	post	data	to	a	server.

Navigator	2.0
Navigator	3.0:		reset	
Navigator	4.0:		handleEvent	

The	HTML	FORM	tag.	The	JavaScript	runtime	engine	creates	a	Form	object	for	each	FORM	tag	in
the	document.	You	access	FORM	objects	through	the	document.forms	property	and	through	named
properties	of	that	object.

To	define	a	form,	use	standard	HTML	with	the	addition	of	JavaScript	event	handlers.	If	you	supply
a	value	for	the	NAME	attribute,	you	can	use	that	value	to	index	into	the	forms	array.	In	addition,	the
associated	document	object	has	a	named	property	for	each	named	form.

onReset
onSubmit

Each	form	in	a	document	is	a	distinct	object.	You	can	refer	to	a	form's	elements	in	your	code	by	using
the	element's	name	(from	the	NAME	attribute)	or	the	Form.elements	array.	The	elements
contains	an	entry	for	each	element	(such	as	a	Checkbox,	Radio,	or	Text	object)	in	a	form.

If	multiple	objects	on	the	same	form	have	the	same	NAME	attribute,	an	array	of	the	given	name	is
created	automatically.	Each	element	in	the	array	represents	an	individual	Form	object.	Elements	are
indexed	in	source	order	starting	at	0.	For	example,	if	two	Text	elements	and	a	Textarea
same	form	have	their	NAME	attribute	set	to	"myField",	an	array	with	the	elements	myField[0],

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

myField[1],	and	myField[2]	is	created.	You	need	to	be	aware	of	this	situation	in	your	code	and	know
whether	myField	refers	to	a	single	element	or	to	an	array	of	elements.

action Reflects	the	ACTION	attribute.
elements An	array	reflecting	all	the	elements	in	a	form.
encoding Reflects	the	ENCTYPE	attribute.
length Reflects	the	number	of	elements	on	a	form.

Reflects	the	METHOD	attribute.
name Reflects	the	NAME	attribute.
target Reflects	the	TARGET	attribute.

handleEvent
reset Simulates	a	mouse	click	on	a	reset	button	for	the	calling	form.
submit Submits	a	form.

	1:	Named	form. 	The	following	example	creates	a	form	called	myForm	that	contains	text	fields	for
first	name	and	last	name.	The	form	also	contains	two	buttons	that	change	the	names	to	all	uppercase
or	all	lowercase.	The	function	setCase	shows	how	to	refer	to	the	form	by	its	name.

<HTML>
<HEAD>
<TITLE>Form	object	example</TITLE>
</HEAD>
<SCRIPT>
function	setCase	(caseSpec){
if	(caseSpec	==	"upper")	{
			document.myForm.firstName.value=document.myForm.firstName.value.toUpperCase()
			document.myForm.lastName.value=document.myForm.lastName.value.toUpperCase()}
else	{
			document.myForm.firstName.value=document.myForm.firstName.value.toLowerCase()

			document.myForm.lastName.value=document.myForm.lastName.value.toLowerCase()}
}
</SCRIPT>	<BODY>
<FORM	NAME="myForm">
First	name:
<INPUT	TYPE="text"	NAME="firstName"	SIZE=20>

Last	name:
<INPUT	TYPE="text"	NAME="lastName"	SIZE=20>
<P><INPUT	TYPE="button"	VALUE="Names	to	uppercase"	NAME="upperButton"
			onClick="setCase('upper')">
<INPUT	TYPE="button"	VALUE="Names	to	lowercase"	NAME="lowerButton"
			onClick="setCase('lower')">
</FORM>
</BODY>
</HTML>		2:	forms	array. 	The	onLoad	event	handler	in	the	following	example	displays	the	name
of	the	first	form	in	an	Alert	dialog	box.

<BODY	onLoad="alert('You	are	looking	at	the	'	+	document.forms[0]	+	'	form!')">
is	musicType,	the	alert	displays	the	following	message:

You	are	looking	at	the	<object	musicType>	form!		3:	onSubmit	event	handler.
example	shows	an	onSubmit	event	handler	that	determines	whether	to	submit	a	form.	The	form
contains	one	Text	object	where	the	user	enters	three	characters.	onSubmit	calls	a	function,	checkData,
that	returns	true	if	there	are	3	characters;	otherwise,	it	returns	false.	Notice	that	the	form's	onSubmit
event	handler,	not	the	submit	button's	onClick	event	handler,	calls	the	checkData	function.	
onSubmit	contains	a	return	statement	that	returns	the	value	obtained	with	the	function	call.

<HTML>
<HEAD>
<TITLE>Form	object/onSubmit	event	handler	example</TITLE>
<TITLE>Form	object	example</TITLE>
</HEAD>
<SCRIPT>
var	dataOK=false
function	checkData	(){
if	(document.myForm.threeChar.value.length	==	3)	{
			return	true}
			else	{
						alert("Enter	exactly	three	characters.	"	+	document.myForm.threeChar.value	+

									"	is	not	valid.")
						return	false}
}
</SCRIPT>
<BODY>
<FORM	NAME="myForm"	onSubmit="return	checkData()">
Enter	3	characters:
<INPUT	TYPE="text"	NAME="threeChar"	SIZE=3>
<P><INPUT	TYPE="submit"	VALUE="Done"	NAME="submit1"
			onClick="document.myForm.threeChar.value=document.myForm.threeChar.value.toUpperCase()">
</FORM>
</BODY>
</HTML>		4:	submit	method. 	The	following	example	is	similar	to	the	previous	one,	except	it
submits	the	form	using	the	submit	method	instead	of	a	Submit	object.	The	form's	onSubmit	event
handler	does	not	prevent	the	form	from	being	submitted.	The	form	uses	a	button's	onClick	event
handler	to	call	the	checkData	function.	If	the	value	is	valid,	the	checkData	function	submits	the	form
by	calling	the	form's	submit	method.

<HTML>
<HEAD>
<TITLE>Form	object/submit	method	example</TITLE>
</HEAD>
<SCRIPT>
var	dataOK=false
function	checkData	(){
if	(document.myForm.threeChar.value.length	==	3)	{
			document.myForm.submit()}
			else	{
						alert("Enter	exactly	three	characters.	"	+	document.myForm.threeChar.value	+
									"	is	not	valid.")
						return	false}
}
</SCRIPT>
<BODY>
<FORM	NAME="myForm"	onSubmit="alert('Form	is	being	submitted.')">
Enter	3	characters:
<INPUT	TYPE="text"	NAME="threeChar"	SIZE=3>
<P><INPUT	TYPE="button"	VALUE="Done"	NAME="button1"
			onClick="checkData()">

</FORM>
</BODY>
</HTML>

Button,	Checkbox,	FileUpload,	Hidden,	Password,	Radio,	Reset,	Select,	Submit,	

action

A	string	specifying	a	destination	URL	for	form	data	that	is	submitted

Form
Navigator	2.0

Navigator	3.0 “JavaScript	”

Navigator	4.0:	Submitting	a	form	to	a	mailto:	or	news:	URL	requires	the
UniversalSendMail	privilege.		Navigator	4.0	 “JavaScript	”
“JavaScript	”

The	action	property	is	a	reflection	of	the	ACTION	attribute	of	the	FORM	tag.
Each	section	of	a	URL	contains	different	information.	See	Location	for	a	of
the	URL	components.

The	following	example	sets	the	action	property	of	the	musicForm	form	to	the
value	of	the	variable	urlName:

document.musicForm.action=urlName

Form.encoding,	Form.method,	Form.target

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

elements

An	array	of	objects	corresponding	to	form	elements	(such	as	checkbox,	radio,
and	Text	objects)	in	source	order.

Form

Navigator	2.0

You	can	refer	to	a	form's	elements	in	your	code	by	using	the	elements	array.
This	array	contains	an	entry	for	each	object	(Button,	Checkbox,	FileUpload,
Hidden,	Password,	Radio,	Reset,	Select,	Submit,	Text,	or	Textarea	object)	in	a
form	in	source	order.	Each	radio	button	in	a	Radio	object	appears	as	a	separate
element	in	the	elements	array.	For	example,	if	a	form	called	myForm	has	a	text
field	and	two	checkboxes,	you	can	refer	to	these	elements	myForm.elements[0],
myForm.elements[1],	and	myForm.elements[2].

Although	you	can	also	refer	to	a	form's	elements	by	using	the	element's	name
(from	the	NAME	attribute),	the	elements	array	provides	a	way	to	refer	to	Form
objects	programmatically	without	using	their	names.	For	example,	if	the	first
object	on	the	userInfo	form	is	the	userName	Text	object,	you	can	evaluate	it	in
either	of	the	following	ways:

userInfo.userName.value
userInfo.elements[0].value	The	value	of	each	element	in	the	elements	array	is
the	full	HTML	statement	for	the	object.

See	the	for	 Frame.

encoding

A	string	specifying	the	MIME	encoding	of	the	form.

Form
Navigator	2.0

The	encoding	property	initially	reflects	the	ENCTYPE	attribute	of	the	FORM
tag;	however,	setting	encoding	overrides	the	ENCTYPE	attribute.

The	following	function	returns	the	value	of	the	encoding	property	of
musicForm:

function	getEncoding()	{
			return	document.musicForm.encoding
}

Form.action,	Form.method,	Form.target

length

The	number	of	elements	in	the	form.

Form

Navigator	2.0

The	form.length	property	tells	you	how	many	elements	are	in	the	form.	You	can
get	the	same	information	using	form.elements.length.

method

A	string	specifying	how	form	field	input	information	is	sent	to	the	server.

Form
Navigator	2.0

The	method	property	is	a	reflection	of	the	METHOD	attribute	of	the	FORM	tag.
The	method	property	should	evaluate	to	either	"get"	or	"post".

The	following	function	returns	the	value	of	the	musicForm	method	property:

function	getMethod()	{
			return	document.musicForm.method
}

Form.action,	Form.encoding,	Form.target

name

A	string	specifying	the	name	of	the	form.

Form
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	name	property	initially	reflects	the	value	of	the	NAME	attribute.	Changing	the
name	property	overrides	this	setting.

In	the	following	example,	the	valueGetter	function	uses	a	for	loop	to	iterate	over	the
array	of	elements	on	the	valueTest	form.	The	msgWindow	window	displays	the
names	of	all	the	elements	on	the	form:

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name
+	"
")
			}
}

target

A	string	specifying	the	name	of	the	window	that	responses	go	to	after	a	form
has	been	submitted.

Form
Navigator	2.0

The	target	property	initially	reflects	the	TARGET	attribute	of	the	A,	AREA,	and
FORM	tags;	however,	setting	target	overrides	these	attributes.

You	can	set	target	using	a	string,	if	the	string	represents	a	window	name.	The
target	property	cannot	be	assigned	the	value	of	a	JavaScript	expression	or
variable.

The	following	example	specifies	that	responses	to	the	musicInfo	form	are
displayed	in	the	msgWindow	window:

document.musicInfo.target="msgWindow"

Form.action,	Form.encoding,	Form.method

handleEvent

Form
Navigator	4.0

handleEvent(event)

event

“”

reset

Simulates	a	mouse	click	on	a	reset	button	for	the	calling	form.

Form
Navigator	3.0

reset()

The	reset	method	restores	a	form	element's	default	values.	A	reset	button	does
not	need	to	be	defined	for	the	form.

The	following	example	displays	a	Text	object	in	which	the	user	is	to	type	"CA"
or	"AZ".	The	Text	object's	onChange	event	handler	calls	a	function	that
executes	the	form's	reset	method	if	the	user	provides	incorrect	input.	When	the
reset	method	executes,	defaults	are	restored	and	the	form's	onReset	event
handler	displays	a	message.

<SCRIPT>
function	verifyInput(textObject)	{
			if	(textObject.value	==	'CA'	||	textObject.value	==	'AZ')	{
						alert('Nice	input')
			}
			else	{	document.myForm.reset()	}
}
</SCRIPT>	<FORM	NAME="myForm"	onReset="alert('Please	enter	CA	or

AZ.')">
Enter	CA	or	AZ:
<INPUT	TYPE="text"	NAME="state"	SIZE="2"	onChange=verifyInput(this)>
<P>
</FORM>

onReset,	Reset

submit

Submits	a	form.

Form
Navigator	2.0

submit()

Navigator	3.0:	The	submit	method	fails	without	notice	if	the	form's	action	is	a
mailto:,	news:,	or	snews:	URL.	Users	can	submit	forms	with	such	URLs	by
clicking	a	submit	button,	but	a	confirming	dialog	will	tell	them	that	they	are
about	to	give	away	private	or	sensitive	information.

Navigator	4.0:	Submitting	a	form	to	a	mailto:	or	news:	URL	requires	the
UniversalSendMail	privilege.		Navigator	4.0	 “JavaScript	”
“JavaScript	”

The	submit	method	submits	the	specified	form.	It	performs	the	same	action	as	a
submit	button.

Use	the	submit	method	to	send	data	back	to	an	HTTP	server.	The	submit
method	returns	the	data	using	either	"get"	or	"post,"	as	specified	in
Form.method.

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

The	following	example	submits	a	form	called	musicChoice:

document.musicChoice.submit()	If	musicChoice	is	the	first	form	created,	you
also	can	submit	it	as	follows:

document.forms[0].submit()	See	also	the	example	for	Form.

Submit,	onSubmit

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Hidden
A	Text	object	that	is	suppressed	from	form	display	on	an	HTML	form.	A	Hidden	object	is
used	for	passing	name/value	pairs	when	a	form	submits.

Navigator	2.0
Navigator	3.0:	
type	

The	HTML	INPUT	tag,	with	"hidden"	as	the	value	of	the	TYPE	attribute.	For	a	given
form,	the	JavaScript	runtime	engine	creates	appropriate	Hidden	objects	and	puts	these
objects	in	the	elements	array	of	the	corresponding	Form	object.	You	access	a	Hidden	object
by	indexing	this	array.	You	can	index	the	array	either	by	number	or,	if	supplied,	by	using
the	value	of	the	NAME	attribute.

A	Hidden	object	is	a	form	element	and	must	be	defined	within	a	FORM	tag.

A	Hidden	object	cannot	be	seen	or	modified	by	an	end	user,	but	you	can	programmatically
change	the	value	of	the	object	by	changing	its	value	property.	You	can	use	Hidden	objects
for	client/server	communication.

form Specifies	the	form	containing	the	Hidden	object.
name Reflects	the	NAME	attribute.
type Reflects	the	TYPE	attribute.
value Reflects	the	current	value	of	the	Hidden	object.

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:INPUT

The	following	example	uses	a	Hidden	object	to	store	the	value	of	the	last	object	the	user
clicked.	The	form	contains	a	"Display	hidden	value"	button	that	the	user	can	click	to
display	the	value	of	the	Hidden	object	in	an	Alert	dialog	box.

<HTML>
<HEAD>
<TITLE>Hidden	object	example</TITLE>
</HEAD>
<BODY>
Click	some	of	these	objects,	then	click	the	"Display	value"	button

to	see	the	value	of	the	last	object	clicked.
<FORM	NAME="myForm">
<INPUT	TYPE="hidden"	NAME="hiddenObject"	VALUE="">
<P>
<INPUT	TYPE="button"	VALUE="Click	me"	NAME="button1"	
			onClick="document.myForm.hiddenObject.value=this.value">
<P>
<INPUT	TYPE="radio"	NAME="musicChoice"	VALUE="soul-and-r&b"
			onClick="document.myForm.hiddenObject.value=this.value">	Soul	and	R&B
<INPUT	TYPE="radio"	NAME="musicChoice"	VALUE="jazz"
			onClick="document.myForm.hiddenObject.value=this.value">	Jazz
<INPUT	TYPE="radio"	NAME="musicChoice"	VALUE="classical"
			onClick="document.myForm.hiddenObject.value=this.value">	Classical
<P>
<SELECT	NAME="music_type_single"
			onFocus="document.myForm.hiddenObject.value=this.options[this.selectedIndex].text">
			<OPTION	SELECTED>	Red	<OPTION>	Orange	<OPTION>	Yellow
</SELECT>
<P><INPUT	TYPE="button"	VALUE="Display	hidden	value"	NAME="button2"
			onClick="alert('Last	object	clicked:	'	+	document.myForm.hiddenObject.value)">
</FORM>
</BODY>
</HTML>

document.cookie

form

An	object	reference	specifying	the	form	containing	this	object.

Hidden

Navigator	2.0

	form	

	1. 	In	the	following	example,	the	form	myForm	contains	a	Hidden	object	and
a	button.	When	the	user	clicks	the	button,	the	value	of	the	Hidden	object	is	set
to	the	form's	name.	The	button's	onClick	event	handler	uses	this.form	to	refer	to
the	parent	form,	myForm.

<FORM	NAME="myForm">
Form	name:<INPUT	TYPE="hidden"	NAME="h1"	VALUE="Beluga">
<P>
<INPUT	NAME="button1"	TYPE="button"	VALUE="Store	Form	Name"
			onClick="this.form.h1.value=this.form.name">
</FORM>		2. 	The	following	example	uses	an	object	reference,	rather	than	the
this	keyword,	to	refer	to	a	form.	The	code	returns	a	reference	to	myForm,	which
is	a	form	containing	myHiddenObject.

document.myForm.myHiddenObject.form

Form

name

A	string	specifying	the	name	of	this	object.

Hidden
Navigator	2.0

Navigator	3.0 “JavaScript	”

type

For	all	Hidden	objects,	the	value	of	the	type	property	is	"hidden".	This	property
specifies	the	form	element's	type.

Hidden

Navigator	3.0

The	following	example	writes	the	value	of	the	type	property	for	every	element
on	a	form.

for	(var	i	=	0;	i	<	document.myForm.elements.length;	i++)	{
			document.writeln("
type	is	"	+	document.myForm.elements[i].type)
}

value

A	string	that	reflects	the	VALUE	attribute	of	the	object.

Hidden
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	following	function	evaluates	the	value	property	of	a	group	of	buttons	and
displays	it	in	the	msgWindow	window:

function	valueGetter()	{
			var	msgWindow=window.open("")
			msgWindow.document.write("The	submit	button	says	"	+
						document.valueTest.submitButton.value	+	"
")
			msgWindow.document.write("The	reset	button	says	"	+
						document.valueTest.resetButton.value	+	"
")
			msgWindow.document.write("The	hidden	field	says	"	+
						document.valueTest.hiddenField.value	+	"
")
			msgWindow.document.close()
}	This	example	displays	the	following	values:

The	submit	button	says	Query	Submit
The	reset	button	says	Reset
The	hidden	field	says	pipefish	are	cute.	The	previous	example	assumes	the
buttons	have	been	defined	as	follows:

<INPUT	TYPE="submit"	NAME="submitButton">
<INPUT	TYPE="reset"	NAME="resetButton">
<INPUT	TYPE="hidden"	NAME="hiddenField"	VALUE="pipefish	are	cute.">

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Text
A	text	input	field	on	an	HTML	form.	The	user	can	enter	a	word,	phrase,	or
series	of	numbers	in	a	text	field.

Navigator	2.0
Navigator	3.0:		type	.
Navigator	4.0:		handleEvent	

The	HTML	INPUT	tag,	with	"text"	as	the	value	of	the	TYPE	attribute.	For	a
given	form,	the	JavaScript	runtime	engine	creates	appropriate	Text	objects	and
puts	these	objects	in	the	elements	array	of	the	corresponding	Form	object.	You
access	a	Text	object	by	indexing	this	array.	You	can	index	the	array	either	by
number	or,	if	supplied,	by	using	the	value	of	the	NAME	attribute.

To	define	a	Text	object,	use	standard	HTML	with	the	addition	of	JavaScript
event	handlers.

onBlur
onChange
onFocus
onSelect

A	Text	object	on	a	form	looks	as	follows:

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:INPUT

A	Text	object	is	a	form	element	and	must	be	defined	within	a	FORM	tag.

Text	objects	can	be	updated	(redrawn)	dynamically	by	setting	the	value	property
(this.value).

defaultValue Reflects	the	VALUE	attribute.
form Specifies	the	form	containing	the	Text	object.
name Reflects	the	NAME	attribute.
type Reflects	the	TYPE	attribute.
value Reflects	the	current	value	of	the	Text	object's	field.

blur Removes	focus	from	the	object.
focus Gives	focus	to	the	object.
handleEvent
select Selects	the	input	area	of	the	object.

	1. 	The	following	example	creates	a	Text	object	that	is	25	characters	long.	The
text	field	appears	immediately	to	the	right	of	the	words	"Last	name:".	The	text
field	is	blank	when	the	form	loads.

Last	name:	<INPUT	TYPE="text"	NAME="last_name"	VALUE=""
SIZE=25>		2. 	The	following	example	creates	two	Text	objects	on	a	form.

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

Each	object	has	a	default	value.	The	city	object	has	an	onFocus	event	handler
that	selects	all	the	text	in	the	field	when	the	user	tabs	to	that	field.	The	state
object	has	an	onChange	event	handler	that	forces	the	value	to	uppercase.

<FORM	NAME="form1">

City:	<INPUT	TYPE="text"	NAME="city"
VALUE="Anchorage"
			SIZE="20"	onFocus="this.select()">
State:	<INPUT	TYPE="text"	NAME="state"	VALUE="AK"
SIZE="2"
			onChange="this.value=this.value.toUpperCase()">
</FORM>	See	also	the	for	the	 onBlur,	onChange,	onFocus,	and	onSelect.

Text,	Form,	Password,	String,	Textarea

defaultValue

A	string	indicating	the	default	value	of	a	Text	object.

Text
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	initial	value	of	defaultValue	reflects	the	value	of	the	VALUE	attribute.
Setting	defaultValue	programmatically	overrides	the	initial	setting.

You	can	set	the	defaultValue	property	at	any	time.	The	display	of	the	related
object	does	not	update	when	you	set	the	defaultValue	property,	only	when	you
set	the	value	property.

The	following	function	evaluates	the	defaultValue	property	of	objects	on	the
surfCity	form	and	displays	the	values	in	the	msgWindow	window:

function	defaultGetter()	{
			msgWindow=window.open("")
			msgWindow.document.write("hidden.defaultValue	is	"	+
						document.surfCity.hiddenObj.defaultValue	+	"
")
			msgWindow.document.write("password.defaultValue	is	"	+
						document.surfCity.passwordObj.defaultValue	+	"
")
			msgWindow.document.write("text.defaultValue	is	"	+
						document.surfCity.textObj.defaultValue	+	"
")
			msgWindow.document.write("textarea.defaultValue	is	"	+
						document.surfCity.textareaObj.defaultValue	+	"
")
			msgWindow.document.close()

}

Text.value

form

An	object	reference	specifying	the	form	containing	this	object.

Text

Navigator	2.0

	form	

	1. 	In	the	following	example,	the	form	myForm	contains	a	Text	object	and	a
button.	When	the	user	clicks	the	button,	the	value	of	the	Text	object	is	set	to	the
form's	name.	The	button's	onClick	event	handler	uses	this.form	to	refer	to	the
parent	form,	myForm.

<FORM	NAME="myForm">
Form	name:<INPUT	TYPE="text"	NAME="text1"	VALUE="Beluga">
<P>
<INPUT	NAME="button1"	TYPE="button"	VALUE="Show	Form	Name"
			onClick="this.form.text1.value=this.form.name">
</FORM>		2. 	The	following	example	shows	a	form	with	several	elements.
When	the	user	clicks	button2,	the	function	showElements	displays	an	alert
dialog	box	containing	the	names	of	each	element	on	the	form	myForm.

function	showElements(theForm)	{
			str	=	"Form	Elements	of	form	"	+	theForm.name	+	":	\n	"
			for	(i	=	0;	i	<	theForm.length;	i++)	
						str	+=	theForm.elements[i].name	+	"\n"
			alert(str)
}
</script>
<FORM	NAME="myForm">

Form	name:<INPUT	TYPE="text"	NAME="text1"	VALUE="Beluga">
<P>
<INPUT	NAME="button1"	TYPE="button"	VALUE="Show	Form	Name"
			onClick="this.form.text1.value=this.form.name">
<INPUT	NAME="button2"	TYPE="button"	VALUE="Show	Form	Elements"
			onClick="showElements(this.form)">
</FORM>	The	alert	dialog	box	displays	the	following	text:

JavaScript	Alert:
Form	Elements	of	form	myForm:
text1
button1
button2		3. 	The	following	example	uses	an	object	reference,	rather	than	the
this	keyword,	to	refer	to	a	form.	The	code	returns	a	reference	to	myForm,	which
is	a	form	containing	myTextObject.

document.myForm.myTextObject.form

Form

name

A	string	specifying	the	name	of	this	object.

Text
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	name	property	initially	reflects	the	value	of	the	NAME	attribute.	Changing	the
name	property	overrides	this	setting.	The	name	property	is	not	displayed	on-screen;
it	is	used	to	refer	to	the	objects	programmatically.

If	multiple	objects	on	the	same	form	have	the	same	NAME	attribute,	an	array	of	the
given	name	is	created	automatically.	Each	element	in	the	array	represents	an
individual	Form	object.	Elements	are	indexed	in	source	order	starting	at	0.	For
example,	if	two	Text	elements	and	a	Textarea	element	on	the	same	form	have	their
NAME	attribute	set	to	"myField",	an	array	with	the	elements	myField[0],
myField[1],	and	myField[2]	is	created.	You	need	to	be	aware	of	this	situation	in
your	code	and	know	whether	myField	refers	to	a	single	element	or	to	an	array	of
elements.

In	the	following	example,	the	valueGetter	function	uses	a	for	loop	to	iterate	over	the
array	of	elements	on	the	valueTest	form.	The	msgWindow	window	displays	the
names	of	all	the	elements	on	the	form:

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name

+	"
")
			}
}

type

For	all	Text	objects,	the	value	of	the	type	property	is	"text".	This	property
specifies	the	form	element's	type.

Text

Navigator	3.0

The	following	example	writes	the	value	of	the	type	property	for	every	element
on	a	form.

for	(var	i	=	0;	i	<	document.form1.elements.length;	i++)	{
			document.writeln("
type	is	"	+	document.form1.elements[i].type)
}

value

A	string	that	reflects	the	VALUE	attribute	of	the	object.

Text
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	value	property	is	a	string	that	initially	reflects	the	VALUE	attribute.	This
string	is	displayed	in	the	text	field.	The	value	of	this	property	changes	when	a
user	or	a	program	modifies	the	field.

You	can	set	the	value	property	at	any	time.	The	display	of	the	Text	object
updates	immediately	when	you	set	the	value	property.

The	following	function	evaluates	the	value	property	of	a	group	of	buttons	and
displays	it	in	the	msgWindow	window:

function	valueGetter()	{
			var	msgWindow=window.open("")
			msgWindow.document.write("submitButton.value	is	"	+
						document.valueTest.submitButton.value	+	"
")
			msgWindow.document.write("resetButton.value	is	"	+
						document.valueTest.resetButton.value	+	"
")
			msgWindow.document.write("myText.value	is	"	+
						document.valueTest.myText.value	+	"
")
			msgWindow.document.close()
}	This	example	displays	the	following:

submitButton.value	is	Query	Submit
resetButton.value	is	Reset
myText.value	is	Stonefish	are	dangerous.	The	previous	example	assumes	the
buttons	have	been	defined	as	follows:

<INPUT	TYPE="submit"	NAME="submitButton">
<INPUT	TYPE="reset"	NAME="resetButton">
<INPUT	TYPE="text"	NAME="myText"	VALUE="Stonefish	are	dangerous.">

Text.defaultValue

blur

Removes	focus	from	the	text	field.

Text
Navigator	2.0

blur()

The	following	example	removes	focus	from	the	text	element	userText:

userText.blur()	This	example	assumes	that	the	text	element	is	defined	as

<INPUT	TYPE="text"	NAME="userText">

Text.focus,	Text.select

focus

Navigates	to	the	text	field	and	gives	it	focus.

Text
Navigator	2.0

focus()

Use	the	focus	method	to	navigate	to	a	text	field	and	give	it	focus.	You	can	then
either	programmatically	enter	a	value	in	the	field	or	let	the	user	enter	a	value.	If
you	use	this	method	without	the	select	method,	the	cursor	is	positioned	at	the
beginning	of	the	field.

See	example	for	select.

Text.blur,	Text.select

handleEvent

Text
Navigator	4.0

handleEvent(event)

event

select

Selects	the	input	area	of	the	text	field.

Text
Navigator	2.0

select()

Use	the	select	method	to	highlight	the	input	area	of	a	text	field.	You	can	use	the
select	method	with	the	focus	method	to	highlight	a	field	and	position	the	cursor
for	a	user	response.	This	makes	it	easy	for	the	user	to	replace	all	the	text	in	the
field.

The	following	example	uses	an	onClick	event	handler	to	move	the	focus	to	a
text	field	and	select	that	field	for	changing:

<FORM	NAME="myForm">
Last	name:	<INPUT	TYPE="text"	NAME="lastName"	SIZE=20
VALUE="Pigman">

First	name:	<INPUT	TYPE="text"	NAME="firstName"
SIZE=20	VALUE="Victoria">

<INPUT	TYPE="button"	VALUE="Change	last	name"
			onClick="this.form.lastName.select();this.form.lastName.focus();">
</FORM>

Text.blur,	Text.focus

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Textarea
A	multiline	input	field	on	an	HTML	form.	The	user	can	use	a	textarea	field	to
enter	words,	phrases,	or	numbers.

Navigator	2.0
Navigator	3.0:		type	.
Navigator	4.0:		handleEvent	

The	HTML	TEXTAREA	tag.	For	a	given	form,	the	JavaScript	runtime	engine
creates	appropriate	Textarea	objects	and	puts	these	objects	in	the	elements	array
of	the	corresponding	Form	object.	You	access	a	Textarea	object	by	indexing	this
array.	You	can	index	the	array	either	by	number	or,	if	supplied,	by	using	the
value	of	the	NAME	attribute.

To	define	a	text	area,	use	standard	HTML	with	the	addition	of	JavaScript
event	handlers.

onBlur
onChange
onFocus
onKeyDown
onKeyPress
onKeyUp
onSelect

A	Textarea	object	on	a	form	looks	as	follows:

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:TEXTAREA

A	Textarea	object	is	a	form	element	and	must	be	defined	within	a	FORM	tag.

Textarea	objects	can	be	updated	(redrawn)	dynamically	by	setting	the	value
property	(this.value).

To	begin	a	new	line	in	a	Textarea	object,	you	can	use	a	newline	character.
Although	this	character	varies	from	platform	to	platform	(Unix	is	\n,	Windows
is	\r,	and	Macintosh	is	\n),	JavaScript	checks	for	all	newline	characters	before
setting	a	string-valued	property	and	translates	them	as	needed	for	the	user's
platform.	You	could	also	enter	a	newline	character	programmatically--one	way
is	to	test	the	navigator.appVersion	property	to	determine	the	current	platform,
then	set	the	newline	character	accordingly.	See	navigator.appVersion	for	an
example.

defaultValue Reflects	the	VALUE	attribute.
form Specifies	the	form	containing	the	Textarea	object.
name Reflects	the	NAME	attribute.
type Specifies	that	the	object	is	a	Textarea	object.
value Reflects	the	current	value	of	the	Textarea	object.

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

blur Removes	focus	from	the	object.
focus Gives	focus	to	the	object.
handleEvent
select Selects	the	input	area	of	the	object.

	1. 	The	following	example	creates	a	Textarea	object	that	is	six	rows	long	and
55	columns	wide.	The	textarea	field	appears	immediately	below	the	word
"Description:".	When	the	form	loads,	the	Textarea	object	contains	several	lines
of	data,	including	one	blank	line.

Description:

<TEXTAREA	NAME="item_description"	ROWS=6	COLS=55>
Our	storage	ottoman	provides	an	attractive	way	to
store	lots	of	CDs	and	videos--and	it's	versatile
enough	to	store	other	things	as	well.	It	can	hold	up	to	72	CDs	under	the	lid	and
20	videos
in	the	drawer	below.
</TEXTAREA>		2. 	The	following	example	creates	a	string	variable
containing	newline	characters	for	different	platforms.	When	the	user	clicks	the
button,	the	Textarea	object	is	populated	with	the	value	from	the	string	variable.
The	result	is	three	lines	of	text	in	the	Textarea	object.

<SCRIPT>
myString="This	is	line	one.\nThis	is	line	two.\rThis	is	line	three."
</SCRIPT>
<FORM	NAME="form1">
<INPUT	TYPE="button"	Value="Populate	the	textarea"
onClick="document.form1.textarea1.value=myString">
			<P>
<TEXTAREA	NAME="textarea1"	ROWS=6	COLS=55></TEXTAREA>

Form,	Password,	String,	Text

defaultValue

A	string	indicating	the	default	value	of	a	Textarea	object.

Textarea
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	initial	value	of	defaultValue	reflects	the	value	specified	between	the
TEXTAREA	start	and	end	tags.	Setting	defaultValue	programmatically
overrides	the	initial	setting.

You	can	set	the	defaultValue	property	at	any	time.	The	display	of	the	related
object	does	not	update	when	you	set	the	defaultValue	property,	only	when	you
set	the	value	property.

The	following	function	evaluates	the	defaultValue	property	of	objects	on	the
surfCity	form	and	displays	the	values	in	the	msgWindow	window:

function	defaultGetter()	{
			msgWindow=window.open("")
			msgWindow.document.write("hidden.defaultValue	is	"	+
						document.surfCity.hiddenObj.defaultValue	+	"
")
			msgWindow.document.write("password.defaultValue	is	"	+
						document.surfCity.passwordObj.defaultValue	+	"
")
			msgWindow.document.write("text.defaultValue	is	"	+
						document.surfCity.textObj.defaultValue	+	"
")
			msgWindow.document.write("textarea.defaultValue	is	"	+
						document.surfCity.textareaObj.defaultValue	+	"
")

			msgWindow.document.close()
}

Textarea.value

form

An	object	reference	specifying	the	form	containing	this	object.

Textarea

Navigator	2.0

	form	

	1. 	The	following	example	shows	a	form	with	several	elements.	When	the	user
clicks	button2,	the	function	showElements	displays	an	alert	dialog	box
containing	the	names	of	each	element	on	the	form	myForm.

function	showElements(theForm)	{
			str	=	"Form	Elements	of	form	"	+	theForm.name	+	":	\n	"
			for	(i	=	0;	i	<	theForm.length;	i++)	
						str	+=	theForm.elements[i].name	+	"\n"
			alert(str)
}
</script>
<FORM	NAME="myForm">
Form	name:<INPUT	TYPE="textarea"	NAME="text1"	VALUE="Beluga">
<P>
<INPUT	NAME="button1"	TYPE="button"	VALUE="Show	Form	Name"
			onClick="this.form.text1.value=this.form.name">
<INPUT	NAME="button2"	TYPE="button"	VALUE="Show	Form	Elements"
			onClick="showElements(this.form)">
</FORM>	The	alert	dialog	box	displays	the	following	text:

JavaScript	Alert:
Form	Elements	of	form	myForm:

text1
button1
button2		2. 	The	following	example	uses	an	object	reference,	rather	than	the
this	keyword,	to	refer	to	a	form.	The	code	returns	a	reference	to	myForm,	which
is	a	form	containing	myTextareaObject.

document.myForm.myTextareaObject.form

Form

name

A	string	specifying	the	name	of	this	object.

Textarea
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	name	property	initially	reflects	the	value	of	the	NAME	attribute.	Changing	the
name	property	overrides	this	setting.	The	name	property	is	not	displayed	on-screen;
it	is	used	to	refer	to	the	objects	programmatically.

If	multiple	objects	on	the	same	form	have	the	same	NAME	attribute,	an	array	of	the
given	name	is	created	automatically.	Each	element	in	the	array	represents	an
individual	Form	object.	Elements	are	indexed	in	source	order	starting	at	0.	For
example,	if	two	Text	elements	and	a	Textarea	element	on	the	same	form	have	their
NAME	attribute	set	to	"myField",	an	array	with	the	elements	myField[0],
myField[1],	and	myField[2]	is	created.	You	need	to	be	aware	of	this	situation	in
your	code	and	know	whether	myField	refers	to	a	single	element	or	to	an	array	of
elements.

In	the	following	example,	the	valueGetter	function	uses	a	for	loop	to	iterate	over	the
array	of	elements	on	the	valueTest	form.	The	msgWindow	window	displays	the
names	of	all	the	elements	on	the	form:

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name

+	"
")
			}
}

type

For	all	Textarea	objects,	the	value	of	the	type	property	is	"textarea".	This
property	specifies	the	form	element's	type.

Textarea

Navigator	3.0

The	following	example	writes	the	value	of	the	type	property	for	every	element
on	a	form.

for	(var	i	=	0;	i	<	document.form1.elements.length;	i++)	{
			document.writeln("
type	is	"	+	document.form1.elements[i].type)
}

value

A	string	that	initially	reflects	the	VALUE	attribute.

Textarea
Navigator	2.0

Navigator	3.0 “JavaScript	”

This	string	is	displayed	in	the	textarea	field.	The	value	of	this	property	changes
when	a	user	or	a	program	modifies	the	field.

You	can	set	the	value	property	at	any	time.	The	display	of	the	Textarea	object
updates	immediately	when	you	set	the	value	property.

The	following	function	evaluates	the	value	property	of	a	group	of	buttons	and
displays	it	in	the	msgWindow	window:

function	valueGetter()	{
			var	msgWindow=window.open("")
			msgWindow.document.write("submitButton.value	is	"	+
						document.valueTest.submitButton.value	+	"
")
			msgWindow.document.write("resetButton.value	is	"	+
						document.valueTest.resetButton.value	+	"
")
			msgWindow.document.write("blurb.value	is	"	+
						document.valueTest.blurb.value	+	"
")
			msgWindow.document.close()
}	This	example	displays	the	following:

submitButton.value	is	Query	Submit

resetButton.value	is	Reset
blurb.value	is	Tropical	waters	contain	all	sorts	of	cool	fish,	
such	as	the	harlequin	ghost	pipefish,	dragonet,	and	cuttlefish.
A	cuttlefish	looks	much	like	a	football	wearing	a	tutu	and	a	mop.	The	previous
example	assumes	the	buttons	have	been	defined	as	follows:

<INPUT	TYPE="submit"	NAME="submitButton">
<INPUT	TYPE="reset"	NAME="resetButton">
<TEXTAREA	NAME="blurb"	rows=3	cols=60>
Tropical	waters	contain	all	sorts	of	cool	fish,	
such	as	the	harlequin	ghost	pipefish,	dragonet,	and	cuttlefish.
A	cuttlefish	looks	much	like	a	football	wearing	a	tutu	and	a	mop.
</TEXTAREA>

Textarea.defaultValue

blur

Removes	focus	from	the	object.

Textarea
Navigator	2.0

blur()

The	following	example	removes	focus	from	the	textarea	element	userText:

userText.blur()	This	example	assumes	that	the	textarea	is	defined	as

<TEXTAREA	NAME="userText">
Initial	text	for	the	text	area.
</TEXTAREA>

Textarea.focus,	Textarea.select

focus

Navigates	to	the	textarea	field	and	gives	it	focus.

Textarea
Navigator	2.0

focus()

Use	the	focus	method	to	navigate	to	the	textarea	field	and	give	it	focus.	You	can
then	either	programmatically	enter	a	value	in	the	field	or	let	the	user	enter	a
value.	If	you	use	this	method	without	the	select	method,	the	cursor	is	positioned
at	the	beginning	of	the	field.

Textarea.blur,	Textarea.select

See	example	for	Textarea.select.

handleEvent

Textarea
Navigator	4.0

handleEvent(event)

event

“”

select

Selects	the	input	area	of	the	object.

Textarea
Navigator	2.0

select()

Use	the	select	method	to	highlight	the	input	area	of	a	textarea	field.	You	can	use
the	select	method	with	the	focus	method	to	highlight	the	field	and	position	the
cursor	for	a	user	response.	This	makes	it	easy	for	the	user	to	replace	all	the	text
in	the	field.

The	following	example	uses	an	onClick	event	handler	to	move	the	focus	to	a
textarea	field	and	select	that	field	for	changing:

<FORM	NAME="myForm">
Last	name:	<INPUT	TYPE="text"	NAME="lastName"	SIZE=20
VALUE="Pigman">

First	name:	<INPUT	TYPE="text"	NAME="firstName"
SIZE=20	VALUE="Victoria">

Description:

<TEXTAREA	NAME="desc"	ROWS=3	COLS=40>An	avid	scuba	diver.
</TEXTAREA>

<INPUT	TYPE="button"	VALUE="Change"
			onClick="this.form.desc.select();this.form.desc.focus();">
</FORM>

Textarea.blur,	Textarea.focus

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Password
A	text	field	on	an	HTML	form	that	conceals	its	value	by	displaying	asterisks
(*).	When	the	user	enters	text	into	the	field,	asterisks	(*)	hide	entries	from	view.

Navigator	2.0
Navigator	3.0:		type	;		onBlur	and	onFocus	event
handlers
Navigator	4.0:		handleEvent	

The	HTML	INPUT	tag,	with	"password"	as	the	value	of	the	TYPE	attribute.	For
a	given	form,	the	JavaScript	runtime	engine	creates	appropriate	Password
objects	and	puts	these	objects	in	the	elements	array	of	the	corresponding	Form
object.	You	access	a	Password	object	by	indexing	this	array.	You	can	index	the
array	either	by	number	or,	if	supplied,	by	using	the	value	of	the	NAME
attribute.

onBlur
onFocus

A	Password	object	on	a	form	looks	as	follows:

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:INPUT

A	Password	object	is	a	form	element	and	must	be	defined	within	a	FORM	tag.

Navigator	3.0:	If	a	user	interactively	modifies	the	value	in	a	password	field,	you
cannot	evaluate	it	accurately	unless	data	tainting	is	enabled.	See	the	JavaScript
Guide.

defaultValue Reflects	the	VALUE	attribute.
form Specifies	the	form	containing	the	Password	object.
name Reflects	the	NAME	attribute.
type Reflects	the	TYPE	attribute.
value Reflects	the	current	value	of	the	Password	object's	field.

blur Removes	focus	from	the	object.
focus Gives	focus	to	the	object.
handleEvent
select Selects	the	input	area	of	the	object.

The	following	example	creates	a	Password	object	with	no	default	value:

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

Password:	
<INPUT	TYPE="password"	NAME="password"	VALUE=""	SIZE=25>

Form,	Text

defaultValue

A	string	indicating	the	default	value	of	a	Password	object.

Password
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	initial	value	of	defaultValue	is	null	(for	security	reasons),	regardless	of	the
value	of	the	VALUE	attribute.

Setting	defaultValue	programmatically	overrides	the	initial	setting.	If	you
programmatically	set	defaultValue	for	the	Password	object	and	then	evaluate	it,
JavaScript	returns	the	current	value.

You	can	set	the	defaultValue	property	at	any	time.	The	display	of	the	related
object	does	not	update	when	you	set	the	defaultValue	property,	only	when	you
set	the	value	property.

Password.value

form

An	object	reference	specifying	the	form	containing	this	object.

Password

Navigator	2.0

	form	

name

A	string	specifying	the	name	of	this	object.

Password
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	name	property	initially	reflects	the	value	of	the	NAME	attribute.	Changing	the
name	property	overrides	this	setting.	The	name	property	is	not	displayed	on-screen;
it	is	used	to	refer	to	the	objects	programmatically.

If	multiple	objects	on	the	same	form	have	the	same	NAME	attribute,	an	array	of	the
given	name	is	created	automatically.	Each	element	in	the	array	represents	an
individual	Form	object.	Elements	are	indexed	in	source	order	starting	at	0.	For
example,	if	two	Text	elements	and	a	Password	element	on	the	same	form	have	their
NAME	attribute	set	to	"myField",	an	array	with	the	elements	myField[0],
myField[1],	and	myField[2]	is	created.	You	need	to	be	aware	of	this	situation	in
your	code	and	know	whether	myField	refers	to	a	single	element	or	to	an	array	of
elements.

In	the	following	example,	the	valueGetter	function	uses	a	for	loop	to	iterate	over	the
array	of	elements	on	the	valueTest	form.	The	msgWindow	window	displays	the
names	of	all	the	elements	on	the	form:

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name

+	"
")
			}
}

type

For	all	Password	objects,	the	value	of	the	type	property	is	"password".	This
property	specifies	the	form	element's	type.

Password

Navigator	3.0

The	following	example	writes	the	value	of	the	type	property	for	every	element
on	a	form.

for	(var	i	=	0;	i	<	document.form1.elements.length;	i++)	{
			document.writeln("
type	is	"	+	document.form1.elements[i].type)
}

value

A	string	that	initially	reflects	the	VALUE	attribute.

Password
Navigator	2.0

Navigator	3.0 “JavaScript	”
value	property	and	then	evaluate	it,	JavaScript	returns	the	current	value.	If	a
user	interactively	modifies	the	value	in	the	password	field,	you	cannot	evaluate
it	accurately	unless	data	tainting	is	enabled.	See	the	JavaScript	Guide.

This	string	is	represented	by	asterisks	in	the	Password	object	field.	The	value	of
this	property	changes	when	a	user	or	a	program	modifies	the	field,	but	the	value
is	always	displayed	as	asterisks.

Password.defaultValue

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm

blur

Removes	focus	from	the	object.

Password
Navigator	2.0

blur()

The	following	example	removes	focus	from	the	password	element	userPass:

userPass.blur()	This	example	assumes	that	the	password	is	defined	as

<INPUT	TYPE="password"	NAME="userPass">

Password.focus,	Password.select

focus

Gives	focus	to	the	password	object.

Password
Navigator	2.0

focus()

Use	the	focus	method	to	navigate	to	the	password	field	and	give	it	focus.	You
can	then	either	programmatically	enter	a	value	in	the	field	or	let	the	user	enter	a
value.

In	the	following	example,	the	checkPassword	function	confirms	that	a	user	has
entered	a	valid	password.	If	the	password	is	not	valid,	the	focus	method	returns
focus	to	the	Password	object	and	the	select	method	highlights	it	so	the	user	can
reenter	the	password.

function	checkPassword(userPass)	{
			if	(badPassword)	{
						alert("Please	enter	your	password	again.")
						userPass.focus()
						userPass.select()
			}
}	This	example	assumes	that	the	Password	object	is	defined	as

<INPUT	TYPE="password"	NAME="userPass">

Password.blur,	Password.select

handleEvent

Password
Navigator	4.0

handleEvent(event)

event

“”

select

Selects	the	input	area	of	the	password	field.

Password
Navigator	2.0

select()

Use	the	select	method	to	highlight	the	input	area	of	the	password	field.	You	can
use	the	select	method	with	the	focus	method	to	highlight	a	field	and	position	the
cursor	for	a	user	response.

In	the	following	example,	the	checkPassword	function	confirms	that	a	user	has
entered	a	valid	password.	If	the	password	is	not	valid,	the	select	method
highlights	the	password	field	and	the	focus	method	returns	focus	to	it	so	the
user	can	reenter	the	password.

function	checkPassword(userPass)	{
			if	(badPassword)	{
						alert("Please	enter	your	password	again.")
						userPass.focus()
						userPass.select()
			}
}	This	example	assumes	that	the	password	is	defined	as

<INPUT	TYPE="password"	NAME="userPass">

Password.blur,	Password.focus

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

FileUpload
A	file	upload	element	on	an	HTML	form.	A	file	upload	element	lets	the	user
supply	a	file	as	input.

Navigator	2.0
Navigator	3.0:		type	
Navigator	4.0:		handleEvent	

The	HTML	INPUT	tag,	with	"file"	as	the	value	of	the	TYPE	attribute.	For	a
given	form,	the	JavaScript	runtime	engine	creates	appropriate	FileUpload
objects	and	puts	these	objects	in	the	elements	array	of	the	corresponding	Form
object.	You	access	a	FileUpload	object	by	indexing	this	array.	You	can	index	the
array	either	by	number	or,	if	supplied,	by	using	the	value	of	the	NAME
attribute.

onBlur
onChange
onFocus

A	FileUpload	object	on	a	form	looks	as	follows:

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:INPUT

A	FileUpload	object	is	a	form	element	and	must	be	defined	within	a	FORM	tag.

form Specifies	the	form	containing	the	FileUpload	object.
name Reflects	the	NAME	attribute.
type Reflects	the	TYPE	attribute.

value Reflects	the	current	value	of	the	file	upload	element's	field;	thiscorresponds	to	the	name	of	the	file	to	upload.

blur Removes	focus	from	the	object.
focus Gives	focus	to	the	object.
handleEvent
select Selects	the	input	area	of	the	file	upload	field.

The	following	example	places	a	FileUpload	object	on	a	form	and	provides	two
buttons	that	let	the	user	display	current	values	of	the	name	and	value	properties.

<FORM	NAME="form1">
File	to	send:	<INPUT	TYPE="file"	NAME="myUploadObject">

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

<P>Get	properties

<INPUT	TYPE="button"	VALUE="name"
			onClick="alert('name:	'	+	document.form1.myUploadObject.name)">
<INPUT	TYPE="button"	VALUE="value"
			onClick="alert('value:	'	+	document.form1.myUploadObject.value)">

</FORM>

Text

form

An	object	reference	specifying	the	form	containing	the	object.

FileUpload

Navigator	2.0

	form	

name

A	string	specifying	the	name	of	this	object.

FileUpload

Navigator	2.0

Navigator	3.0 “JavaScript	”

The	name	property	initially	reflects	the	value	of	the	NAME	attribute.	The	name
property	is	not	displayed	on-screen;	it	is	used	to	refer	to	the	objects
programmatically.

If	multiple	objects	on	the	same	form	have	the	same	NAME	attribute,	an	array	of	the
given	name	is	created	automatically.	Each	element	in	the	array	represents	an
individual	Form	object.	Elements	are	indexed	in	source	order	starting	at	0.	For
example,	if	two	Text	elements	and	a	FileUpload	element	on	the	same	form	have
their	NAME	attribute	set	to	"myField",	an	array	with	the	elements	myField[0],
myField[1],	and	myField[2]	is	created.	You	need	to	be	aware	of	this	situation	in
your	code	and	know	whether	myField	refers	to	a	single	element	or	to	an	array	of
elements.

In	the	following	example,	the	valueGetter	function	uses	a	for	loop	to	iterate	over	the
array	of	elements	on	the	valueTest	form.	The	msgWindow	window	displays	the
names	of	all	the	elements	on	the	form:

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{

						msgWindow.document.write(newWindow.document.valueTest.elements[i].name
+	"
")
			}
}

type

For	all	FileUpload	objects,	the	value	of	the	type	property	is	"file".	This	property
specifies	the	form	element's	type.

FileUpload

Navigator	3.0

The	following	example	writes	the	value	of	the	type	property	for	every	element
on	a	form.

for	(var	i	=	0;	i	<	document.form1.elements.length;	i++)	{
			document.writeln("
type	is	"	+	document.form1.elements[i].type)
}

value

A	string	that	reflects	the	VALUE	attribute	of	the	object.

FileUpload

Navigator	2.0

Navigator	3.0 “JavaScript	”

Navigator	4.0:	Setting	a	file	upload	widget	requires	the	UniversalFileRead
privilege.		Navigator	4.0	 “JavaScript	” “JavaScript	”

Use	the	value	property	to	obtain	the	file	name	that	the	user	typed	into	a
FileUpload	object.

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

blur

Removes	focus	from	the	object.

FileUpload
Navigator	2.0

blur()

FileUpload.focus,	FileUpload.select

focus

Navigates	to	the	FileUpload	field	and	give	it	focus.

FileUpload
Navigator	2.0

focus()

FileUpload.blur,	FileUpload.select

handleEvent

handleEvent(event)

FileUpload
Navigator	4.0

event

“”

select

Selects	the	input	area	of	the	file	upload	field.

FileUpload
Navigator	2.0

select()

Use	the	select	method	to	highlight	the	input	area	of	a	file	upload	field.	You	can
use	the	select	method	with	the	focus	method	to	highlight	a	field	and	position	the
cursor	for	a	user	response.	This	makes	it	easy	for	the	user	to	replace	all	the	text
in	the	field.

FileUpload.blur,	FileUpload.focus

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Button
HTML	

Navigator	2.0
Navigator	3.0:		type	;		onBlur		onFocus		blur	
focus	
Navigator	4.0:		handleEvent	

TYPE	“button”	HTML	 INPUT	JavaScript		Button	
Form		 elements		Button		NAME	

onBlur
onClick
onFocus
onMouseDown
onMouseUp

	Button	

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:INPUT

	Button		 FORM	

Button		onClick	

form 	Button	

name 	NAME	

type 	TYPE	

value 	VALUE	

blur
click
focus
handleEvent

“calcButton”“”	calcFunction	

<INPUT	TYPE="button"	VALUE="Calculate"	NAME="calcButton"
			onClick="calcFunction(this.form)">

Form,	Reset,	Submit

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

form

Button

Navigator	2.0

	form		form	

	1. 		myForm		Text		Text		onClick		this.form
	myForm

<FORM	NAME="myForm">
<INPUT	TYPE="text"	NAME="text1"	VALUE="">
<P>
<INPUT	NAME="button1"	TYPE="button"	VALUE=""
			onClick="this.form.text1.value=this.form.name">
</FORM>

	2. 		button2		showElements		myForm	

function	showElements(theForm)	{
			str	=	"	"	+	theForm.name	+	"	\n	"
			for	(i	=	0;	i	<	theForm.length;	i++)	
						str	+=	theForm.elements[i].name	+	"\n"
			alert(str)
}
</script>
<FORM	NAME="myForm">
<INPUT	TYPE="text"	NAME="text1"	VALUE="">
<P>

<INPUT	NAME="button1"	TYPE="button"	VALUE=""
			onClick="this.form.text1.value=this.form.name">
<INPUT	NAME="button2"	TYPE="button"	VALUE=""
			onClick="showElements(this.form)">
</FORM>

JavaScript	
	myForm	
text1
button1
button2

	3. 		myForm		myButton

document.myForm.myButton.form

Form

name

Button
Navigator	2.0

Navigator	3.0 “JavaScript	”

name		NAME		name	

	name	value	name	

	NAME		0		NAME	“myField”	
	myField[0]myField[1]		myField[2]		myField	

valueGetter		valueTest	msgWindow	

newWindow=window.open("http://home.netscape.com")
function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name
+	"
")
			}
}

	netscapeWin	“netscapeHomePage”“netscapeHomePage”
netscapeWin		windowName	

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)

Button.value

type

	Button	type	“button”

Button

Navigator	3.0

	type	

for	(var	i	=	0;	i	<	document.form1.elements.length;	i++)	{
			document.writeln("
type	is	"	+	document.form1.elements[i].type)
}

value

	VALUE	

Button
Mac	and	UNIX
Navigator	2.0

Navigator	3.0 “JavaScript	”

	Macintosh		UNIX		Windows	

	HTML		VALUE	value	

	value		name	name	

	value		msgWindow	

function	valueGetter()	{
			var	msgWindow=window.open("")
			msgWindow.document.write("submitButton.value		"	+
						document.valueTest.submitButton.value	+	"
")
			msgWindow.document.write("resetButton.value		"	+
						document.valueTest.resetButton.value	+	"
")
			msgWindow.document.write("helpButton.value		"	+
						document.valueTest.helpButton.value	+	"
")
			msgWindow.document.close()
}

Query	Submit
Reset

<INPUT	TYPE="submit"	NAME="submitButton">
<INPUT	TYPE="reset"	NAME="resetButton">
<INPUT	TYPE="button"	NAME="helpButton"	VALUE="">

Button.name

blur

Button
Navigator	2.0

blur()

	userButton	

userButton.blur()

<INPUT	TYPE="button"	NAME="userButton">

Button.focus

click

	onClick	

Button
Navigator	2.0

click()

Navigator	4.0	mailto:		news:	URL		UniversalSendMail	
Navigator	4.0	 “JavaScript	” “JavaScript	”

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

focus

Button
Navigator	2.0

focus()

Button.blur

handleEvent

Button
Navigator	4.0

handleEvent(event)

event

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Submit
	HTML	

Navigator	2.0
Navigator	3.0:		type	;		onBlur		onFocus		blur	
focus	
Navigator	4.0:		handleEvent	

“submit”	TYPE		HTML	 INPUT	JavaScript		Submit	
Form		 elements		Submit		NAME		NAME	

onBlur
onClick
onFocus

Navigator	4.0	mailto:		news:	URL		UniversalSendMail	
Navigator	4.0	 “JavaScript	” “JavaScript	”

	Submit	

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:INPUT
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

Submit		 FORM	

	action		URL	action		action	

	onClick		onSubmit		submit		Submit		Form	

form 	Submit	

name 	NAME	

type 	TYPE	

value 	VALUE	

blur
click
focus
handleEvent

	submitButton		Submit	“”

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

<INPUT	TYPE="submit"	NAME="submitButton"	VALUE="">

	 Form	

Button,	Form,	Reset,	Form.submit,	onSubmit

form

Submit

Navigator	2.0

	form	

	button2		showElements		myForm	

<SCRIPT>
function	showElements(theForm)	{
			str	=	"	"	+	theForm.name	+	"	\n	"
			for	(i	=	0;	i	<	theForm.length;	i++)	
						str	+=	theForm.elements[i].name	+	"\n"
			alert(str)
}
</SCRIPT>
<FORM	NAME="myForm">
<INPUT	TYPE="text"	NAME="text1"	VALUE="Beluga">
<P>
<INPUT	NAME="button1"	TYPE="button"	VALUE=""
			onClick="this.form.text1.value=this.form.name">
<INPUT	NAME="button2"	TYPE="submit"	VALUE=""
			onClick="showElements(this.form)">
</FORM>	

	myForm	
text1
button1

button2

Form

name

Submit
Navigator	2.0

Navigator	3.0 “JavaScript	”

name		NAME		name	

	name	value	name	

	NAME		Form		0		
“myField”	myField[0]myField[1]		myField[2]		myField	

valueGetter		for		valueTest	msgWindow	

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name
+	"
")
			}
}

Submit.value

type

	Submit	“submit”

Submit

Navigator	3.0

	type	

for	(var	i	=	0;	i	<	document.form1.elements.length;	i++)	{
			document.writeln("
type		"	+	document.form1.elements[i].type)
}

value

	VALUE	

Submit

Navigator	2.0

Navigator	3.0 “JavaScript	”

	HTML		VALUE	value		HTML		VALUE		value
“Submit	Query”

	value		name	name	

	value		msgWindow	

function	valueGetter()	{
			var	msgWindow=window.open("")
			msgWindow.document.write("submitButton.value		"	+
						document.valueTest.submitButton.value	+	"
")
			msgWindow.document.write("resetButton.value		"	+
						document.valueTest.resetButton.value	+	"
")
			msgWindow.document.write("helpButton.value		"	+
						document.valueTest.helpButton.value	+	"
")
			msgWindow.document.close()
}	

Submit	Query
Reset

	

<INPUT	TYPE="submit"	NAME="submitButton">
<INPUT	TYPE="reset"	NAME="resetButton">
<INPUT	TYPE="button"	NAME="helpButton"	VALUE="">

Submit.name

blur

Submit
Navigator	2.0

blur()

Submit.focus

click

	onClick	

Submit
Navigator	2.0

click()

focus

Submit
Navigator	2.0

focus()

Submit.blur

handleEvent

Submit
Navigator	4.0

handleEvent(event)

event

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Reset
A	reset	button	on	an	HTML	form.	A	reset	button	resets	all	elements	in	a	form	to
their	defaults.

Navigator	2.0
Navigator	3.0:		type	;		onBlur	and	onFocus	event	handlers;	
blur	and	focus	s
Navigator	4.0:		handleEvent	

The	HTML	INPUT	tag,	with	"reset"	as	the	value	of	the	TYPE	attribute.	For	a
given	form,	the	JavaScript	runtime	engine	creates	an	appropriate	Reset	object
and	puts	it	in	the	elements	array	of	the	corresponding	Form	object.	You	access	a
Reset	object	by	indexing	this	array.	You	can	index	the	array	either	by	number
or,	if	supplied,	by	using	the	value	of	the	NAME	attribute.

onBlur
onClick
onFocus

A	Reset	object	on	a	form	looks	as	follows:

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:INPUT

A	Reset	object	is	a	form	element	and	must	be	defined	within	a	FORM	tag.

The	reset	button's	onClick	event	handler	cannot	prevent	a	form	from	being
reset;	once	the	button	is	clicked,	the	reset	cannot	be	canceled.

form Specifies	the	form	containing	the	Reset	object.
name Reflects	the	NAME	attribute.
type Reflects	the	TYPE	attribute.
value Reflects	the	VALUE	attribute.

blur Removes	focus	from	the	reset	button.
click Simulates	a	mouse-click	on	the	reset	button.
focus Gives	focus	to	the	reset	button.
handleEvent

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

	1. 	The	following	example	displays	a	Text	object	with	the	default	value	"CA"
and	a	reset	button	with	the	text	"Clear	Form"	displayed	on	its	face.	If	the	user
types	a	state	abbreviation	in	the	Text	object	and	then	clicks	the	Clear	Form
button,	the	original	value	of	"CA"	is	restored.

State:	<INPUT	TYPE="text"	NAME="state"	VALUE="CA"
SIZE="2">
<P><INPUT	TYPE="reset"	VALUE="Clear	Form">		2. 	The	following
example	displays	two	Text	objects,	a	Select	object,	and	three	radio	buttons;	all
of	these	objects	have	default	values.	The	form	also	has	a	reset	button	with	the
text	"Defaults"	on	its	face.	If	the	user	changes	the	value	of	any	of	the	objects
and	then	clicks	the	Defaults	button,	the	original	values	are	restored.

<HTML>
<HEAD>
<TITLE>Reset	object	example</TITLE>
</HEAD>
<BODY>
<FORM	NAME="form1">

City:	<INPUT	TYPE="text"	NAME="city"	VALUE="Santa
Cruz"	SIZE="20">
State:	<INPUT	TYPE="text"	NAME="state"	VALUE="CA"
SIZE="2">
<P><SELECT	NAME="colorChoice">
			<OPTION	SELECTED>	Blue
			<OPTION>	Yellow
			<OPTION>	Green
			<OPTION>	Red
</SELECT>
<P><INPUT	TYPE="radio"	NAME="musicChoice"	VALUE="soul-and-r&b"
			CHECKED>	Soul	and	R&B

<INPUT	TYPE="radio"	NAME="musicChoice"	VALUE="jazz">
			Jazz

<INPUT	TYPE="radio"	NAME="musicChoice"	VALUE="classical">
			Classical
<P><INPUT	TYPE="reset"	VALUE="Defaults"	NAME="reset1">
</FORM>

</BODY>
</HTML>

Button,	Form,	onReset,	Form.reset,	Submit

form

An	object	reference	specifying	the	form	containing	the	reset	button.

Reset

Navigator	2.0

	form	

Form

name

A	string	specifying	the	name	of	the	reset	button.

Reset
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	value	of	the	name	property	initially	reflects	the	value	of	the	NAME	attribute.
Changing	the	name	property	overrides	this	setting.

Do	not	confuse	the	name	property	with	the	label	displayed	on	the	reset	button.	The
value	property	specifies	the	label	for	this	button.	The	name	property	is	not	displayed
on	the	screen;	it	is	used	to	refer	programmatically	to	the	button.

If	multiple	objects	on	the	same	form	have	the	same	NAME	attribute,	an	array	of	the
given	name	is	created	automatically.	Each	element	in	the	array	represents	an
individual	Form	object.	Elements	are	indexed	in	source	order	starting	at	0.	For
example,	if	two	Text	elements	and	a	Reset	element	on	the	same	form	have	their
NAME	attribute	set	to	"myField",	an	array	with	the	elements	myField[0],
myField[1],	and	myField[2]	is	created.	You	need	to	be	aware	of	this	situation	in
your	code	and	know	whether	myField	refers	to	a	single	element	or	to	an	array	of
elements.

In	the	following	example,	the	valueGetter	function	uses	a	for	loop	to	iterate	over	the
array	of	elements	on	the	valueTest	form.	The	msgWindow	window	displays	the
names	of	all	the	elements	on	the	form:

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{

			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name
+	"
")
			}
}

Reset.value

type

For	all	Reset	objects,	the	value	of	the	type	property	is	"reset".	This	property
specifies	the	form	element's	type.

Reset

Navigator	3.0

The	following	example	writes	the	value	of	the	type	property	for	every	element
on	a	form.

for	(var	i	=	0;	i	<	document.form1.elements.length;	i++)	{
			document.writeln("
type	is	"	+	document.form1.elements[i].type)
}

value

A	string	that	reflects	the	reset	button's	VALUE	attribute.

Reset

Navigator	2.0

Navigator	3.0 “JavaScript	”

This	string	is	displayed	on	the	face	of	the	button.	When	a	VALUE	attribute	is
not	specified	in	HTML,	the	value	property	is	the	string	"Reset".

Do	not	confuse	the	value	property	with	the	name	property.	The	name	property	is
not	displayed	on	the	screen;	it	is	used	to	refer	programmatically	to	the	button.

The	following	function	evaluates	the	value	property	of	a	group	of	buttons	and
displays	it	in	the	msgWindow	window:

function	valueGetter()	{
			var	msgWindow=window.open("")
			msgWindow.document.write("submitButton.value	is	"	+
						document.valueTest.submitButton.value	+	"
")
			msgWindow.document.write("resetButton.value	is	"	+
						document.valueTest.resetButton.value	+	"
")
			msgWindow.document.write("helpButton.value	is	"	+
						document.valueTest.helpButton.value	+	"
")
			msgWindow.document.close()
}	This	example	displays	the	following	values:

Query	Submit
Reset
Help	The	previous	example	assumes	the	buttons	have	been	defined	as	follows:

<INPUT	TYPE="submit"	NAME="submitButton">
<INPUT	TYPE="reset"	NAME="resetButton">
<INPUT	TYPE="button"	NAME="helpButton"	VALUE="Help">

Reset.name

blur

Removes	focus	from	the	reset	button.

Reset
Navigator	2.0

blur()

The	following	example	removes	focus	from	the	reset	button	userReset:

userReset.blur()	This	example	assumes	that	the	button	is	defined	as

<INPUT	TYPE="reset"	NAME="userReset">

Reset.focus

click

Simulates	a	mouse-click	on	the	reset	button,	but	does	not	trigger	an	object's
onClick	event	handler.

Reset
Navigator	2.0

click()

focus

Navigates	to	the	reset	button	and	gives	it	focus.

Reset
Navigator	2.0

focus()

Reset.blur

handleEvent

Reset
Navigator	4.0

handleEvent(event)

event

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Radio
HTML	

Navigator	2.0
Navigator	3.0:		type		blur		focus

Navigator	4.0:		handleEvent	

	TYPE	“radio”	HTML	 INPUT		NAME	

JavaScript		Radio		NAME		Radio		
elements		 elements		Radio	

	 Form.elements	(NAME)	emp		NAME
“dept”	document.emp.dept[0]document.emp.dept[1]	

onBlur
onClick
onFocus

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:INPUT

	Radio		 FORM	

checked ()

defaultChecked 	CHECKED	()
form 	Radio	()
name 	NAME	()
type 	TYPE	()
value 	VALUE	()

blur
click
focus
handleEvent

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

	1. 	NAME="musicChoice"onClick	

<INPUT	TYPE="text"	NAME="catalog"	SIZE="20">
<INPUT	TYPE="radio"	NAME="musicChoice"	VALUE="rock"
			onClick="musicForm.catalog.value	=	''">	
<INPUT	TYPE="radio"	NAME="musicChoice"	VALUE="jazz"
			onClick="musicForm.catalog.value	=	''">	
<INPUT	TYPE="radio"	NAME="musicChoice"	VALUE="classical"
			onClick="musicForm.catalog.value	=	''">	

	2. 		onChange		onClick	

<HTML>
<HEAD>
<TITLE>Radio	</TITLE>
</HEAD>
<SCRIPT>
function	convertField(field)	{
			if	(document.form1.conversion[0].checked)	{
						field.value	=	field.value.toUpperCase()}
			else	{
			if	(document.form1.conversion[1].checked)	{
						field.value	=	field.value.toLowerCase()}
			}
}
function	convertAllFields(caseChange)	{
			if	(caseChange=="upper")	{
			document.form1.lastName.value	=
document.form1.lastName.value.toUpperCase()
			document.form1.firstName.value	=
document.form1.firstName.value.toUpperCase()
			document.form1.cityName.value	=
document.form1.cityName.value.toUpperCase()}
			else	{
			document.form1.lastName.value	=
document.form1.lastName.value.toLowerCase()
			document.form1.firstName.value	=

document.form1.firstName.value.toLowerCase()
			document.form1.cityName.value	=
document.form1.cityName.value.toLowerCase()
			}
}
</SCRIPT>
<BODY>
<FORM	NAME="form1">

<INPUT	TYPE="text"	NAME="lastName"	SIZE=20
onChange="convertField(this)">

<INPUT	TYPE="text"	NAME="firstName"	SIZE=20
onChange="convertField(this)">

<INPUT	TYPE="text"	NAME="cityName"	SIZE=20
onChange="convertField(this)">
<P>

<INPUT	TYPE="radio"	NAME="conversion"	VALUE="upper"
			onClick="if	(this.checked)	{convertAllFields('upper')}">

<INPUT	TYPE="radio"	NAME="conversion"	VALUE="lower"
			onClick="if	(this.checked)	{convertAllFields('lower')}">

<INPUT	TYPE="radio"	NAME="conversion"	VALUE="noChange">
</FORM>
</BODY>
</HTML>	See	also	the	example	for	Link.

Checkbox,	Form,	Select

checked

	Boolean	

Radio
Navigator	2.0

Navigator	3.0 “JavaScript	”

If	a	radio	button	is	selected,	the	value	of	its	checked	property	is	true;	otherwise,
it	is	false.	You	can	set	the	checked	property	at	any	time.	The	display	of	the	radio
button	updates	immediately	when	you	set	the	checked	property.

At	any	given	time,	only	one	button	in	a	set	of	radio	buttons	can	be	checked.
When	you	set	the	checked	property	for	one	radio	button	in	a	group	to	true,	that
property	for	all	other	buttons	in	the	group	becomes	false.

The	following	example	examines	an	array	of	radio	buttons	called	musicType	on
the	musicForm	form	to	determine	which	button	is	selected.	The	VALUE
attribute	of	the	selected	button	is	assigned	to	the	checkedButton	variable.

function	stateChecker()	{
			var	checkedButton	=	""
			for	(var	i	in	document.musicForm.musicType)	{
						if	(document.musicForm.musicType[i].checked=="1")	{
									checkedButton=document.musicForm.musicType[i].value
						}
			}
}

Radio.defaultChecked

defaultChecked

A	Boolean	value	indicating	the	default	selection	state	of	a	radio	button.

Radio
Navigator	2.0

Navigator	3.0 “JavaScript	”

If	a	radio	button	is	selected	by	default,	the	value	of	the	defaultChecked	property
is	true;	otherwise,	it	is	false.	defaultChecked	initially	reflects	whether	the
CHECKED	attribute	is	used	within	an	INPUT	tag;	however,	setting
defaultChecked	overrides	the	CHECKED	attribute.

Unlike	for	the	checked	property,	changing	the	value	of	defaultChecked	for	one
button	in	a	radio	group	does	not	change	its	value	for	the	other	buttons	in	the
group.

You	can	set	the	defaultChecked	property	at	any	time.	The	display	of	the	radio
button	does	not	update	when	you	set	the	defaultChecked	property,	only	when
you	set	the	checked	property.

The	following	example	resets	an	array	of	radio	buttons	called	musicType	on	the
musicForm	form	to	the	default	selection	state:

function	radioResetter()	{
			var	i=""
			for	(i	in	document.musicForm.musicType)	{
						if	(document.musicForm.musicType[i].defaultChecked==true)	{
									document.musicForm.musicType[i].checked=true

						}
			}
}

Radio.checked

form

An	object	reference	specifying	the	form	containing	the	radio	button.

Radio

Navigator	2.0

	form	

name

A	string	specifying	the	name	of	the	set	of	radio	buttons	with	which	this	button	is
associated.

Radio
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	name	property	initially	reflects	the	value	of	the	NAME	attribute.	Changing	the
name	property	overrides	this	setting.

All	radio	buttons	that	have	the	same	value	for	their	name	property	are	in	the	same
group	and	are	treated	together.	If	you	change	the	name	of	a	single	radio	button,	you
change	which	group	of	buttons	it	belongs	to.

Do	not	confuse	the	name	property	with	the	label	displayed	on	a	Button.	The	value
property	specifies	the	label	for	the	button.	The	name	property	is	not	displayed
onscreen;	it	is	used	to	refer	programmatically	to	the	button.

In	the	following	example,	the	valueGetter	function	uses	a	for	loop	to	iterate	over	the
array	of	elements	on	the	valueTest	form.	The	msgWindow	window	displays	the
names	of	all	the	elements	on	the	form:

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name
+	"
")

			}
}

type

For	all	Radio	objects,	the	value	of	the	type	property	is	"radio".	This	property
specifies	the	form	element's	type.

Radio

Navigator	3.0

The	following	example	writes	the	value	of	the	type	property	for	every	element
on	a	form.

for	(var	i	=	0;	i	<	document.form1.elements.length;	i++)	{
			document.writeln("
type	is	"	+	document.form1.elements[i].type)
}

value

A	string	that	reflects	the	VALUE	attribute	of	the	radio	button.

Radio

Navigator	2.0

Navigator	3.0 “JavaScript	”

When	a	VALUE	attribute	is	specified	in	HTML,	the	value	property	is	a	string
that	reflects	it.	When	a	VALUE	attribute	is	not	specified	in	HTML,	the	value
property	is	a	string	that	evaluates	to	"on".	The	value	property	is	not	displayed
on	the	screen	but	is	returned	to	the	server	if	the	radio	button	or	checkbox	is
selected.

Do	not	confuse	the	property	with	the	selection	state	of	the	radio	button	or	the
text	that	is	displayed	next	to	the	button.	The	checked	property	determines	the
selection	state	of	the	object,	and	the	defaultChecked	property	determines	the
default	selection	state.	The	text	that	is	displayed	is	specified	following	the
INPUT	tag.

The	following	function	evaluates	the	value	property	of	a	group	of	radio	buttons
and	displays	it	in	the	msgWindow	window:

function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	document.valueTest.radioObj.length;	i++)	{
							msgWindow.document.write
										("The	value	of	radioObj["	+	i	+	"]	is	"	+

										document.valueTest.radioObj[i].value	+"
")
			}
			msgWindow.document.close()
}	This	example	displays	the	following	values:

on
on
on
on	The	previous	example	assumes	the	buttons	have	been	defined	as	follows:

<INPUT	TYPE="radio"	NAME="radioObj">R&B

<INPUT	TYPE="radio"	NAME="radioObj"	CHECKED>Soul

<INPUT	TYPE="radio"	NAME="radioObj">Rock	and	Roll

<INPUT	TYPE="radio"	NAME="radioObj">Blues

Radio.checked,	Radio.defaultChecked

blur

Removes	focus	from	the	radio	button.

Radio
Navigator	2.0

blur()

Radio.focus

click

Simulates	a	mouse-click	on	the	radio	button,	but	does	not	trigger	the	button's
onClick	event	handler.

Radio
Navigator	2.0

click()

The	following	example	toggles	the	selection	status	of	the	first	radio	button	in
the	musicType	Radio	object	on	the	musicForm	form:

document.musicForm.musicType[0].click()	The	following	example	toggles	the
selection	status	of	the	newAge	checkbox	on	the	musicForm	form:

document.musicForm.newAge.click()

focus

Gives	focus	to	the	radio	button.

Radio
Navigator	2.0

focus()

Use	the	focus	method	to	navigate	to	the	radio	button	and	give	it	focus.	The	user
can	then	easily	toggle	that	button.

Radio.blur

handleEvent

Radio
Navigator	4.0

handleEvent(event)

event

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Checkbox
A	checkbox	on	an	HTML	form.	A	checkbox	is	a	toggle	switch	that	lets	the	user
set	a	value	on	or	off.

Navigator	2.0
Navigator	3.0:		type	;		onBlur	and	onFocus	event	handlers;	
blur	and	focus	s.
Navigator	4.0:		handleEvent	

The	HTML	INPUT	tag,	with	"checkbox"	as	the	value	of	the	TYPE	attribute.	For
a	given	form,	the	JavaScript	runtime	engine	creates	appropriate	Checkbox
objects	and	puts	these	objects	in	the	elements	array	of	the	corresponding	Form
object.	You	access	a	Checkbox	object	by	indexing	this	array.	You	can	index	the
array	either	by	number	or,	if	supplied,	by	using	the	value	of	the	NAME
attribute.

onBlur
onClick
onFocus

A	Checkbox	object	on	a	form	looks	as	follows:

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:INPUT

A	Checkbox	object	is	a	form	element	and	must	be	defined	within	a	FORM	tag.

Use	the	checked	property	to	specify	whether	the	checkbox	is	currently	checked.
Use	the	defaultChecked	property	to	specify	whether	the	checkbox	is	checked
when	the	form	is	loaded	or	reset.

checked Boolean		that	reflects	the	current	state	of	the
checkbox.

defaultChecked Boolean		that	reflects	the	CHECKED	attribute.
form Specifies	the	form	containing	the	Checkbox	object.
name Reflects	the	NAME	attribute.
type Reflects	the	TYPE	attribute.
value Reflects	the	TYPE	attribute.

blur Removes	focus	from	the	checkbox.
click Simulates	a	mouse-click	on	the	checkbox.
focus Gives	focus	to	the	checkbox.

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

handleEvent

	1. 	The	following	example	displays	a	group	of	four	checkboxes	that	all	appear
checked	by	default:

Specify	your	music	preferences	(check	all	that	apply):

<INPUT	TYPE="checkbox"	NAME="musicpref_rnb"	CHECKED>	R&B

<INPUT	TYPE="checkbox"	NAME="musicpref_jazz"	CHECKED>	Jazz

<INPUT	TYPE="checkbox"	NAME="musicpref_blues"	CHECKED>
Blues

<INPUT	TYPE="checkbox"	NAME="musicpref_newage"	CHECKED>
New	Age		2. 	The	following	example	contains	a	form	with	three	text	boxes	and
one	checkbox.	The	user	can	use	the	checkbox	to	choose	whether	the	text	fields
are	converted	to	uppercase.	Each	text	field	has	an	onChange	event	handler	that
converts	the	field	value	to	uppercase	if	the	checkbox	is	checked.	The	checkbox
has	an	onClick	event	handler	that	converts	all	fields	to	uppercase	when	the	user
checks	the	checkbox.

<HTML>
<HEAD>
<TITLE>Checkbox	object	example</TITLE>
</HEAD>
<SCRIPT>
function	convertField(field)	{
			if	(document.form1.convertUpper.checked)	{
						field.value	=	field.value.toUpperCase()}
}
function	convertAllFields()	{
			document.form1.lastName.value	=
document.form1.lastName.value.toUpperCase()
			document.form1.firstName.value	=
document.form1.firstName.value.toUpperCase()
			document.form1.cityName.value	=
document.form1.cityName.value.toUpperCase()
}
</SCRIPT>

<BODY>
<FORM	NAME="form1">
Last	name:
<INPUT	TYPE="text"	NAME="lastName"	SIZE=20
onChange="convertField(this)">

First	name:
<INPUT	TYPE="text"	NAME="firstName"	SIZE=20
onChange="convertField(this)">

City:
<INPUT	TYPE="text"	NAME="cityName"	SIZE=20
onChange="convertField(this)">
<P><INPUT	TYPE="checkBox"	NAME="convertUpper"
			onClick="if	(this.checked)	{convertAllFields()}"
			>	Convert	fields	to	upper	case
</FORM>
</BODY>
</HTML>

Form,	Radio

checked

A	Boolean	value	specifying	the	selection	state	of	the	checkbox.

Checkbox
Navigator	2.0

Navigator	3.0 “JavaScript	”

If	a	checkbox	button	is	selected,	the	value	of	its	checked	property	is	true;
otherwise,	it	is	false.

You	can	set	the	checked	property	at	any	time.	The	display	of	the	checkbox
button	updates	immediately	when	you	set	the	checked	property.

Checkbox.defaultChecked

defaultChecked

A	Boolean	value	indicating	the	default	selection	state	of	a	checkbox	button.

Checkbox
Navigator	2.0

Navigator	3.0 “JavaScript	”

If	a	checkbox	is	selected	by	default,	the	value	of	the	defaultChecked	property	is
true;	otherwise,	it	is	false.	defaultChecked	initially	reflects	whether	the
CHECKED	attribute	is	used	within	an	INPUT	tag;	however,	setting
defaultChecked	overrides	the	CHECKED	attribute.

You	can	set	the	defaultChecked	property	at	any	time.	The	display	of	the
checkbox	does	not	update	when	you	set	the	defaultChecked	property,	only	when
you	set	the	checked	property.

Checkbox.checked

form

An	object	reference	specifying	the	form	containing	the	checkbox.

Checkbox

Navigator	2.0

	form	

Form

name

A	string	specifying	the	checkbox's	name.

Checkbox
Navigator	2.0

Navigator	3.0 “JavaScript	”

If	multiple	objects	on	the	same	form	have	the	same	NAME	attribute,	an	array	of	the
given	name	is	created	automatically.	Each	element	in	the	array	represents	an
individual	Form	object.	Elements	are	indexed	in	source	order	starting	at	0.	For
example,	if	two	Text	elements	and	a	Button	element	on	the	same	form	have	their
NAME	attribute	set	to	"myField",	an	array	with	the	elements	myField[0],
myField[1],	and	myField[2]	is	created.	You	need	to	be	aware	of	this	situation	in
your	code	and	know	whether	myField	refers	to	a	single	element	or	to	an	array	of
elements.

In	the	following	example,	the	valueGetter	function	uses	a	for	loop	to	iterate	over	the
array	of	elements	on	the	valueTest	form.	The	msgWindow	window	displays	the
names	of	all	the	elements	on	the	form:

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name
+	"
")
			}
}

type

For	all	Checkbox	objects,	the	value	of	the	type	property	is	"checkbox".	This
property	specifies	the	form	element's	type.

Checkbox

Navigator	3.0

The	following	example	writes	the	value	of	the	type	property	for	every	element
on	a	form.

for	(var	i	=	0;	i	<	document.form1.elements.length;	i++)	{
			document.writeln("
type	is	"	+	document.form1.elements[i].type)
}

value

A	string	that	reflects	the	VALUE	attribute	of	the	checkbox.

Checkbox
Navigator	2.0

Navigator	3.0 “JavaScript	”

Checkbox.checked,	Checkbox.defaultChecked

blur

Removes	focus	from	the	checkbox.

Checkbox
Navigator	2.0

blur()

Checkbox.focus

click

Simulates	a	mouse-click	on	the	checkbox,	but	does	not	trigger	its	onClick	event
handler.	The	method	checks	the	checkbox	and	sets	toggles	its	value.

Checkbox
Navigator	2.0

click()

The	following	example	toggles	the	selection	status	of	the	newAge	checkbox	on
the	musicForm	form:

document.musicForm.newAge.click()

focus

Gives	focus	to	the	checkbox.

Checkbox
Navigator	2.0

focus()

Use	the	focus	method	to	navigate	to	a	the	checkbox	and	give	it	focus.	The	user
can	then	toggle	the	state	of	the	checkbox.

Checkbox.blur

handleEvent

Checkbox
Navigator	4.0

handleEvent(event)

event

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Select
A	selection	list	on	an	HTML	form.	The	user	can	choose	one	or	more	items	from	a	selection	list,
depending	on	how	the	list	was	created.

Navigator	2.0
Navigator	3.0:		type	;		the	ability	to	add	and	delete
options.
Navigator	4.0:		handleEvent	

The	HTML	SELECT	tag.	For	a	given	form,	the	JavaScript	runtime	engine	creates	appropriate
Select	objects	for	each	selection	list	and	puts	these	objects	in	the	elements	array	of	the
corresponding	Form	object.	You	access	a	Select	object	by	indexing	this	array.	You	can	index	the
array	either	by	number	or,	if	supplied,	by	using	the	value	of	the	NAME	attribute.

The	runtime	engine	also	creates	Option	objects	for	each	OPTION	tag	inside	the	SELECT	tag.

onBlur
onChange
onFocus

The	following	figure	shows	a	form	containing	two	selection	lists.	The	user	can	choose	one	item
from	the	list	on	the	left	and	can	choose	multiple	items	from	the	list	on	the	right:

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:SELECT
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:OPTION

A	Select	object	is	a	form	element	and	must	be	defined	within	a	FORM	tag.

form Specifies	the	form	containing	the	selection	list.
length Reflects	the	number	of	options	in	the	selection	list.
name Reflects	the	NAME	attribute.
options Reflects	the	OPTION	tags.

selectedIndex Reflects	the	index	of	the	selected	option	(or	the	first	selected	option,	if	multipleoptions	are	selected).

type Specifies	that	the	object	is	represents	a	selection	list	and	whether	it	can	have	one	or
more	selected	options.

blur Removes	focus	from	the	selection	list.
focus Gives	focus	to	the	selection	list.
handleEvent

	1. 	The	following	example	displays	two	selection	lists.	In	the	first	list,	the	user	can	select	only

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:FORM

one	item;	in	the	second	list,	the	user	can	select	multiple	items.

Choose	the	music	type	for	your	free	CD:
<SELECT	NAME="music_type_single">
			<OPTION	SELECTED>	R&B
			<OPTION>	Jazz
			<OPTION>	Blues
			<OPTION>	New	Age
</SELECT>
<P>Choose	the	music	types	for	your	free	CDs:

<SELECT	NAME="music_type_multi"	MULTIPLE>
			<OPTION	SELECTED>	R&B
			<OPTION>	Jazz
			<OPTION>	Blues
			<OPTION>	New	Age
</SELECT>		2. 	The	following	example	displays	two	selection	lists	that	let	the	user	choose	a
month	and	day.	These	selection	lists	are	initialized	to	the	current	date.	The	user	can	change	the
month	and	day	by	using	the	selection	lists	or	by	choosing	preset	dates	from	radio	buttons.	Text
fields	on	the	form	display	the	values	of	the	Select	object's	properties	and	indicate	the	date	chosen
and	whether	it	is	Cinco	de	Mayo.

<HTML>
<HEAD>
<TITLE>Select	object	example</TITLE>
</HEAD>
<BODY>
<SCRIPT>
var	today	=	new	Date()
//---------------
function	updatePropertyDisplay(monthObj,dayObj)	{
			//	Get	date	strings
			var	monthInteger,	dayInteger,	monthString,	dayString
			monthInteger=monthObj.selectedIndex
			dayInteger=dayObj.selectedIndex
			monthString=monthObj.options[monthInteger].text
			dayString=dayObj.options[dayInteger].text
			//	Display	property	values
			document.selectForm.textFullDate.value=monthString	+	"	"	+	dayString
			document.selectForm.textMonthLength.value=monthObj.length

			document.selectForm.textDayLength.value=dayObj.length
			document.selectForm.textMonthName.value=monthObj.name
			document.selectForm.textDayName.value=dayObj.name
			document.selectForm.textMonthIndex.value=monthObj.selectedIndex
			document.selectForm.textDayIndex.value=dayObj.selectedIndex
			//	Is	it	Cinco	de	Mayo?
			if	(monthObj.options[4].selected	&&	dayObj.options[4].selected)
						document.selectForm.textCinco.value="Yes!"
			else
						document.selectForm.textCinco.value="No"
}
</SCRIPT>
<!--------------->
<FORM	NAME="selectForm">
<P>Choose	a	month	and	day:	
Month:	<SELECT	NAME="monthSelection"
			onChange="updatePropertyDisplay(this,document.selectForm.daySelection)">
			<OPTION>	January	<OPTION>	February	<OPTION>	March
			<OPTION>	April	<OPTION>	May	<OPTION>	June
			<OPTION>	July	<OPTION>	August	<OPTION>	September
			<OPTION>	October	<OPTION>	November	<OPTION>	December
</SELECT>
Day:	<SELECT	NAME="daySelection"
			onChange="updatePropertyDisplay(document.selectForm.monthSelection,this)">
			<OPTION>	1	<OPTION>	2	<OPTION>	3	<OPTION>	4	<OPTION>	5
			<OPTION>	6	<OPTION>	7	<OPTION>	8	<OPTION>	9	<OPTION>	10
			<OPTION>	11	<OPTION>	12	<OPTION>	13	<OPTION>	14	<OPTION>	15
			<OPTION>	16	<OPTION>	17	<OPTION>	18	<OPTION>	19	<OPTION>	20
			<OPTION>	21	<OPTION>	22	<OPTION>	23	<OPTION>	24	<OPTION>	25
			<OPTION>	26	<OPTION>	27	<OPTION>	28	<OPTION>	29	<OPTION>	30
			<OPTION>	31
</SELECT>
<P>Set	the	date	to:	
<INPUT	TYPE="radio"	NAME="dateChoice"
			onClick="
						monthSelection.selectedIndex=0;
						daySelection.selectedIndex=0;
						updatePropertyDisplay
									document.selectForm.monthSelection,document.selectForm.daySelection)">

			New	Year's	Day
<INPUT	TYPE="radio"	NAME="dateChoice"
			onClick="
						monthSelection.selectedIndex=4;
						daySelection.selectedIndex=4;
						updatePropertyDisplay
									(document.selectForm.monthSelection,document.selectForm.daySelection)">
			Cinco	de	Mayo
<INPUT	TYPE="radio"	NAME="dateChoice"
			onClick="
						monthSelection.selectedIndex=5;
						daySelection.selectedIndex=20;
						updatePropertyDisplay
									(document.selectForm.monthSelection,document.selectForm.daySelection)">
			Summer	Solstice
<P>Property	values:

Date	chosen:	<INPUT	TYPE="text"	NAME="textFullDate"	VALUE=""	SIZE=20">

monthSelection.length<INPUT	TYPE="text"	NAME="textMonthLength"	VALUE=""
SIZE=20">

daySelection.length<INPUT	TYPE="text"	NAME="textDayLength"	VALUE=""
SIZE=20">

monthSelection.name<INPUT	TYPE="text"	NAME="textMonthName"	VALUE=""
SIZE=20">

daySelection.name<INPUT	TYPE="text"	NAME="textDayName"	VALUE=""	SIZE=20">

monthSelection.selectedIndex
			<INPUT	TYPE="text"	NAME="textMonthIndex"	VALUE=""	SIZE=20">

daySelection.selectedIndex<INPUT	TYPE="text"	NAME="textDayIndex"	VALUE=""
SIZE=20">

Is	it	Cinco	de	Mayo?	<INPUT	TYPE="text"	NAME="textCinco"	VALUE=""	SIZE=20">
<SCRIPT>
document.selectForm.monthSelection.selectedIndex=today.getMonth()
document.selectForm.daySelection.selectedIndex=today.getDate()-1
updatePropertyDisplay(document.selectForm.monthSelection,document.selectForm.daySelection)
</SCRIPT>
</FORM>
</BODY>
</HTML>		3.	Add	an	option	with	the	Option	constructor. 	The	following	example	creates	two
Select	objects,	one	with	and	one	without	the	MULTIPLE	attribute.	No	options	are	initially	defined
for	either	object.	When	the	user	clicks	a	button	associated	with	the	Select	object,	the	populate

function	creates	four	options	for	the	Select	object	and	selects	the	first	option.

<SCRIPT>
function	populate(inForm)	{
			colorArray	=	new	Array("Red",	"Blue",	"Yellow",	"Green")				var	option0	=	new	Option("Red",
"color_red")
			var	option1	=	new	Option("Blue",	"color_blue")
			var	option2	=	new	Option("Yellow",	"color_yellow")
			var	option3	=	new	Option("Green",	"color_green")				for	(var	i=0;	i	<	4;	i++)	{
						eval("inForm.selectTest.options[i]=option"	+	i)
						if	(i==0)	{
									inForm.selectTest.options[i].selected=true
						}
			}				history.go(0)
}
</SCRIPT>	
<H3>Select	Option()	constructor</H3>
<FORM>
<SELECT	NAME="selectTest"></SELECT><P>
<INPUT	TYPE="button"	VALUE="Populate	Select	List"	onClick="populate(this.form)">
<P>
</FORM>	<HR>
<H3>Select-Multiple	Option()	constructor</H3>
<FORM>
<SELECT	NAME="selectTest"	multiple></SELECT><P>
<INPUT	TYPE="button"	VALUE="Populate	Select	List"	onClick="populate(this.form)">
</FORM>		4.	Delete	an	option. 	The	following	function	removes	an	option	from	a	Select
object.

function	deleteAnItem(theList,itemNo)	{
			theList.options[itemNo]=null
			history.go(0)
}

Form,	Radio

form

An	object	reference	specifying	the	form	containing	the	selection	list.

Select

Navigator	2.0

	form	

Form

length

The	number	of	options	in	the	selection	list.

Select

Navigator	2.0

name

A	string	specifying	the	name	of	the	selection	list.

Select
Navigator	2.0

Navigator	3.0 “JavaScript	”

The	name	property	initially	reflects	the	value	of	the	NAME	attribute.	Changing	the
name	property	overrides	this	setting.	The	name	property	is	not	displayed	on	the
screen;	it	is	used	to	refer	to	the	list	programmatically.

If	multiple	objects	on	the	same	form	have	the	same	NAME	attribute,	an	array	of	the
given	name	is	created	automatically.	Each	element	in	the	array	represents	an
individual	Form	object.	Elements	are	indexed	in	source	order	starting	at	0.	For
example,	if	two	Text	elements	and	a	Select	element	on	the	same	form	have	their
NAME	attribute	set	to	"myField",	an	array	with	the	elements	myField[0],
myField[1],	and	myField[2]	is	created.	You	need	to	be	aware	of	this	situation	in
your	code	and	know	whether	myField	refers	to	a	single	element	or	to	an	array	of
elements.

In	the	following	example,	the	valueGetter	function	uses	a	for	loop	to	iterate	over	the
array	of	elements	on	the	valueTest	form.	The	msgWindow	window	displays	the
names	of	all	the	elements	on	the	form:

newWindow=window.open("http://home.netscape.com")	function	valueGetter()	{
			var	msgWindow=window.open("")
			for	(var	i	=	0;	i	<	newWindow.document.valueTest.elements.length;	i++)	{
						msgWindow.document.write(newWindow.document.valueTest.elements[i].name

+	"
")
			}
}

options

An	array	corresponding	to	options	in	a	Select	object	in	source	order.

Select

Navigator	2.0

You	can	refer	to	the	options	of	a	Select	object	by	using	the	options	array.	This
array	contains	an	entry	for	each	option	in	a	Select	object	(OPTION	tag)	in
source	order.	For	example,	if	a	Select	object	named	musicStyle	contains	three
options,	you	can	access	these	options	as	musicStyle.options[0],
musicStyle.options[1],	and	musicStyle.options[2].

To	obtain	the	number	of	options	in	the	selection	list,	you	can	use	either
Select.length	or	the	length	property	of	the	options	array.	For	example,	you	can
get	the	number	of	options	in	the	musicStyle	selection	list	with	either	of	these
expressions:

musicStyle.length
musicStyle.options.length	You	can	add	or	remove	options	from	a	selection	list
using	this	array.	To	add	or	replace	an	option	to	an	existing	Select	object,	you
assign	a	new	Option	object	to	a	place	in	the	array.	For	example,	to	create	a	new
Option	object	called	jeans	and	add	it	to	the	end	of	the	selection	list	named
myList,	you	could	use	this	code:

jeans	=	new	Option("Blue	Jeans",	"jeans",	false,	false);
myList.options[myList.length]	=	jeans;	To	delete	an	option	from	a	Select	object,
you	set	the	appropriate	index	of	the	options	array	to	null.	Removing	an	option
compresses	the	options	array.	For	example,	assume	that	myList	has	5	elements
in	it,	the	value	of	the	fourth	element	is	"foo",	and	you	execute	this	statement:

myList.options[1]	=	null	Now,	myList	has	4	elements	in	it	and	the	value	of	the
third	element	is	"foo".

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:OPTION

After	you	delete	an	option,	you	must	refresh	the	document	by	using
history.go(0).	This	statement	must	be	last.	When	the	document	reloads,
variables	are	lost	if	not	saved	in	cookies	or	form	element	values.

You	can	determine	which	option	in	a	selection	list	is	currently	selected	by	using
either	the	selectedIndex	property	of	the	options	array	or	of	the	Select	object
itself.	That	is,	the	following	expressions	return	the	same	value:

musicStyle.selectedIndex
musicStyle.options.selectedIndex	For	more	information	about	this	property,	see
Select.selectedIndex.

For	Select	objects	that	can	have	multiple	selections	(that	is,	the	SELECT	tag	has
the	MULTIPLE	attribute),	the	selectedIndex	property	is	not	very	useful.	In	this
case,	it	returns	the	index	of	the	first	selection.	To	find	all	the	selected	options,
you	have	to	loop	and	test	each	option	individually.	For	example,	to	print	a	list	of
all	selected	options	in	a	selection	list	named	mySelect,	you	could	use	code	such
as	this:

document.write("You've	selected	the	following	options:\n")
for	(var	i	=	0;	i	<	mySelect.options.length;	i++)	{
			if	(mySelect.options[i].selected)
						document.write("	mySelect.options[i].text\n")
}	In	general,	to	work	with	individual	options	in	a	selection	list,	you	work	with
the	appropriate	Option	object.

selectedIndex

An	integer	specifying	the	index	of	the	selected	option	in	a	Select	object.

Select
Navigator	2.0

Navigator	3.0 “JavaScript	”

Options	in	a	Select	object	are	indexed	in	the	order	in	which	they	are	defined,
starting	with	an	index	of	0.	You	can	set	the	selectedIndex	property	at	any	time.
The	display	of	the	Select	object	updates	immediately	when	you	set	the
selectedIndex	property.

If	no	option	is	selected,	selectedIndex	has	a	value	of	-1.

In	general,	the	selectedIndex	property	is	more	useful	for	Select	objects	that	are
created	without	the	MULTIPLE	attribute.	If	you	evaluate	selectedIndex	when
multiple	options	are	selected,	the	selectedIndex	property	specifies	the	index	of
the	first	option	only.	Setting	selectedIndex	clears	any	other	options	that	are
selected	in	the	Select	object.

The	Option.selected	property	is	more	useful	in	conjunction	with	Select	objects
that	are	created	with	the	MULTIPLE	attribute.	With	the	Option.selected
property,	you	can	evaluate	every	option	in	the	options	array	to	determine
multiple	selections,	and	you	can	select	individual	options	without	clearing	the
selection	of	other	options.

In	the	following	example,	the	getSelectedIndex	function	returns	the	selected
index	in	the	musicType	Select	object:

function	getSelectedIndex()	{
			return	document.musicForm.musicType.selectedIndex
}	The	previous	example	assumes	that	the	Select	object	is	similar	to	the
following:

<SELECT	NAME="musicType">	
			<OPTION	SELECTED>	R&B
			<OPTION>	Jazz
			<OPTION>	Blues
			<OPTION>	New	Age
</SELECT>

Option.defaultSelected,	Option.selected

type

For	all	Select	objects	created	with	the	MULTIPLE	keyword,	the	value	of	the
type	property	is	"select-multiple".	For	Select	objects	created	without	this
keyword,	the	value	of	the	type	property	is	"select-one".	This	property	specifies
the	form	element's	type.

Select

Navigator	3.0

The	following	example	writes	the	value	of	the	type	property	for	every	element
on	a	form.

for	(var	i	=	0;	i	<	document.form1.elements.length;	i++)	{
			document.writeln("
type	is	"	+	document.form1.elements[i].type)
}

blur

Removes	focus	from	the	selection	list.

Select
Navigator	2.0

blur()

Select.focus

focus

Navigates	to	the	selection	list	and	gives	it	focus.

Select
Navigator	2.0

focus()

Use	the	focus	method	to	navigate	to	a	selection	list	and	give	it	focus.	The	user
can	then	make	selections	from	the	list.

Select.blur

handleEvent

Select
Navigator	4.0

handleEvent(event)

event

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Option
An	option	in	a	selection	list.

Navigator	2.0
Navigator	3.0:		defaultSelected	;	text		can	be	changed	to	change	the
text	of	an	option

The	Option	constructor	or	the	HTML	OPTION	tag.	To	create	an	Option	object
with	its	constructor:

new	Option(text,	value,	defaultSelected,	selected)	Once	you've	created	an
Option	object,	you	can	add	it	to	a	selection	list	using	the	Select.options	array.

text (Optional)	Specifies	the	text	to	display	in	the	select	list.

value (Optional)	Specifies	a	value	that	is	returned	to	the	server	when
the	option	is	selected	and	the	form	is	submitted.

defaultSelected (Optional)	Specifies	whether	the	option	is	initially	selected(true	or	false).

selected (Optional)	Specifies	the	current	selection	state	of	the	option
(true	or	false).

defaultSelected Specifies	the	initial	selection	state	of	the	option
selected Specifies	the	current	selection	state	of	the	option
text Specifies	the	text	for	the	option

value Specifies	the	value	that	is	returned	to	the	server	when	the
option	is	selected	and	the	form	is	submitted

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:OPTION

Usually	you	work	with	Option	objects	in	the	context	of	a	selection	list	(a	Select
object).	When	JavaScript	creates	a	Select	object	for	each	SELECT	tag	in	the
document,	it	creates	Option	objects	for	the	OPTION	tags	inside	the	SELECT
tag	and	puts	those	objects	in	the	options	array	of	the	Select	object.

In	addition,	you	can	create	new	options	using	the	Option	constructor	and	add
those	to	a	selection	list.	After	you	create	an	option	and	add	it	to	the	Select
object,	you	must	refresh	the	document	by	using	history.go(0).	This	statement
must	be	last.	When	the	document	reloads,	variables	are	lost	if	not	saved	in
cookies	or	form	element	values.

You	can	use	the	Option.selected	and	Select.selectedIndex	properties	to	change
the	selection	state	of	an	option.

The	Select.selectedIndex	property	is	an	integer	specifying	the	index	of	the
selected	option.	This	is	most	useful	for	Select	objects	that	are	created
without	the	MULTIPLE	attribute.	The	following	statement	sets	a	Select
object's	selectedIndex	property:

document.myForm.musicTypes.selectedIndex	=	i

The	Option.selected	property	is	a	Boolean	value	specifying	the	current
selection	state	of	the	option	in	a	Select	object.	If	an	option	is	selected,	its
selected	property	is	true;	otherwise	it	is	false.	This	is	more	useful	for	Select
objects	that	are	created	with	the	MULTIPLE	attribute.	The	following
statement	sets	an	option's	selected	property	to	true:

document.myForm.musicTypes.options[i].selected	=	true

To	change	an	option's	text,	use	is	Option.text	property.	For	example,	suppose	a
form	has	the	following	Select	object:

<SELECT	name="userChoice">
			<OPTION>Choice	1
			<OPTION>Choice	2
			<OPTION>Choice	3
</SELECT>	You	can	set	the	text	of	the	ith	item	in	the	selection	based	on	text

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:SELECT
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags10.htm#tags:OPTION

entered	in	a	text	field	named	whatsNew	as	follows:

myform.userChoice.options[i].text	=	myform.whatsNew.value	You	do	not	need
to	reload	or	refresh	after	changing	an	option's	text.

The	following	example	creates	two	Select	objects,	one	with	and	one	without	the
MULTIPLE	attribute.	No	options	are	initially	defined	for	either	object.	When
the	user	clicks	a	button	associated	with	the	Select	object,	the	populate	function
creates	four	options	for	the	Select	object	and	selects	the	first	option.

<SCRIPT>
function	populate(inForm)	{
			colorArray	=	new	Array("Red",	"Blue",	"Yellow",	"Green")				var	option0	=
new	Option("Red",	"color_red")
			var	option1	=	new	Option("Blue",	"color_blue")
			var	option2	=	new	Option("Yellow",	"color_yellow")
			var	option3	=	new	Option("Green",	"color_green")				for	(var	i=0;	i	<	4;	i++)	{
						eval("inForm.selectTest.options[i]=option"	+	i)
						if	(i==0)	{
									inForm.selectTest.options[i].selected=true
						}
			}				history.go(0)
}
</SCRIPT>	
<H3>Select	Option()	constructor</H3>
<FORM>
<SELECT	NAME="selectTest"></SELECT><P>
<INPUT	TYPE="button"	VALUE="Populate	Select	List"
onClick="populate(this.form)">
<P>
</FORM>	<HR>
<H3>Select-Multiple	Option()	constructor</H3>
<FORM>
<SELECT	NAME="selectTest"	multiple></SELECT><P>
<INPUT	TYPE="button"	VALUE="Populate	Select	List"
onClick="populate(this.form)">
</FORM>

defaultSelected

A	Boolean	value	indicating	the	default	selection	state	of	an	option	in	a	selection
list.

Option
Navigator	3.0

Navigator	3.0 “JavaScript	”

If	an	option	is	selected	by	default,	the	value	of	the	defaultSelected	property	is
true;	otherwise,	it	is	false.	defaultSelected	initially	reflects	whether	the
SELECTED	attribute	is	used	within	an	OPTION	tag;	however,	setting
defaultSelected	overrides	the	SELECTED	attribute.

You	can	set	the	defaultSelected	property	at	any	time.	The	display	of	the
corresponding	Select	object	does	not	update	when	you	set	the	defaultSelected
property	of	an	option,	only	when	you	set	the	Option.selected	or
Select.selectedIndex	properties.

A	Select	object	created	without	the	MULTIPLE	attribute	can	have	only	one
option	selected	by	default.	When	you	set	defaultSelected	in	such	an	object,	any
previous	default	selections,	including	defaults	set	with	the	SELECTED
attribute,	are	cleared.	If	you	set	defaultSelected	in	a	Select	object	created	with
the	MULTIPLE	attribute,	previous	default	selections	are	not	affected.

In	the	following	example,	the	restoreDefault	function	returns	the	musicType
Select	object	to	its	default	state.	The	for	loop	uses	the	options	array	to	evaluate
every	option	in	the	Select	object.	The	if	statement	sets	the	selected	property	if
defaultSelected	is	true.

function	restoreDefault()	{
			for	(var	i	=	0;	i	<	document.musicForm.musicType.length;	i++)	{
						if	(document.musicForm.musicType.options[i].defaultSelected	==	true)	{
									document.musicForm.musicType.options[i].selected=true
						}
			}
}	The	previous	example	assumes	that	the	Select	object	is	similar	to	the
following:

<SELECT	NAME="musicType">	
			<OPTION	SELECTED>	R&B
			<OPTION>	Jazz
			<OPTION>	Blues
			<OPTION>	New	Age
</SELECT>

Option.selected,	Select.selectedIndex

selected

A	Boolean	value	indicating	whether	an	option	in	a	Select	object	is	selected.

Option
Navigator	2.0

Navigator	3.0 “JavaScript	”

If	an	option	in	a	Select	object	is	selected,	the	value	of	its	selected	property	is
true;	otherwise,	it	is	false.	You	can	set	the	selected	property	at	any	time.	The
display	of	the	associated	Select	object	updates	immediately	when	you	set	the
selected	property	for	one	of	its	options.

In	general,	the	Option.selected	property	is	more	useful	than	the
Select.selectedIndex	property	for	Select	objects	that	are	created	with	the
MULTIPLE	attribute.	With	the	Option.selected	property,	you	can	evaluate	every
option	in	the	Select.options	array	to	determine	multiple	selections,	and	you	can
select	individual	options	without	clearing	the	selection	of	other	options.

See	the	for	 defaultSelected.

Option.defaultSelected,	Select.selectedIndex

text

A	string	specifying	the	text	of	an	option	in	a	selection	list.

Option
Navigator	2.0
Navigator	3.0:	The	text		can	be	changed	to	updated	the	selection	option.	In
previous	releases,	you	could	set	the	text		but	the	new	value	was	not
reflected	in	the	Select	object.

Navigator	3.0 “JavaScript	”

The	text	property	initially	reflects	the	text	that	follows	an	OPTION	tag	of	a
SELECT	tag.	You	can	set	the	text	property	at	any	time	and	the	text	displayed	by
the	option	in	the	selection	list	changes.

	1.	 In	the	following	example,	the	getChoice	function	returns	the	value	of	the
text	property	for	the	selected	option.	The	for	loop	evaluates	every	option	in	the
musicType	Select	object.	The	if	statement	finds	the	option	that	is	selected.

function	getChoice()	{
			for	(var	i	=	0;	i	<	document.musicForm.musicType.length;	i++)	{
						if	(document.musicForm.musicType.options[i].selected	==	true)	{
									return	document.musicForm.musicType.options[i].text
						}
			}
			return	null
}	The	previous	example	assumes	that	the	Select	object	is	similar	to	the
following:

<SELECT	NAME="musicType">
			<OPTION	SELECTED>	R&B
			<OPTION>	Jazz
			<OPTION>	Blues
			<OPTION>	New	Age
</SELECT>		2.	 In	the	following	form,	the	user	can	enter	some	text	in	the	first
text	field	and	then	enter	a	number	between	0	and	2	(inclusive)	in	the	second	text
field.	When	the	user	clicks	the	button,	the	text	is	substituted	for	the	indicated
option	number	and	that	option	is	selected.

The	code	for	this	example	looks	as	follows:

<SCRIPT>
function	updateList(theForm,	i)	{
			theForm.userChoice.options[i].text	=	theForm.whatsNew.value
			theForm.userChoice.options[i].selected	=	true
}
</SCRIPT>
<FORM>
<SELECT	name="userChoice">
			<OPTION>Choice	1
			<OPTION>Choice	2
			<OPTION>Choice	3
</SELECT>

New	text	for	the	option:	<INPUT	TYPE="text"	NAME="whatsNew">

Option	to	change	(0,	1,	or	2):	<INPUT	TYPE="text"	NAME="idx">

<INPUT	TYPE="button"	VALUE="Change	Selection"

onClick="updateList(this.form,	this.form.idx.value)">
</FORM>

getOptionValue

value

A	string	that	reflects	the	VALUE	attribute	of	the	option.

Option

Navigator	2.0

Navigator	3.0 “JavaScript	”

When	a	VALUE	attribute	is	specified	in	HTML,	the	value	property	is	a	string
that	reflects	it.	When	a	VALUE	attribute	is	not	specified	in	HTML,	the	value
property	is	the	empty	string.	The	value	property	is	not	displayed	on	the	screen
but	is	returned	to	the	server	if	the	option	is	selected.

Do	not	confuse	the	property	with	the	selection	state	of	the	option	or	the	text	that
is	displayed	next	to	it.	The	selected	property	determines	the	selection	state	of
the	object,	and	the	defaultSelected	property	determines	the	default	selection
state.	The	text	that	is	displayed	is	specified	following	the	OPTION	tag	and
corresponds	to	the	text	property.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

navigator
	Navigator	

Navigator	2.0
Navigator	3.0:		mimeTypes		plugins		javaEnabled	
taintEnabled	
Navigator	4.0:		language		platform		 preference	

JavaScript		navigator	

	navigator		Navigator		Navigator		MIME		navigator

appCodeName
appName

appVersion 	Navigator	

language 	Navigator	

mimeTypes 	MIME	

platform 	Navigator	

plugins
userAgent

javaEnabled 	Java
plugins.refresh

preference 	Navigator	

taintEnabled

appCodeName

navigator

Navigator	2.0

	appCodeName	

document.write("navigator.appCodeName		"	+
			navigator.appCodeName)
	Navigator	2.0		3.0

navigator.appCodeName		Mozilla

appName

navigator

Navigator	2.0

	appName	

document.write("navigator.appName		"	+
			navigator.appName)
	Navigator	2.0		3.0

navigator.appName		Netscape

appVersion

	Navigator	

navigator

Navigator	2.0

appVersion	

releaseNumber	(platform;	country)

releaseNumber		Navigator	“2.0b4
”	Navigator	2.0,	beta	4

platform		Navigator	“Win16”	16		Windows
Windows	3.1

country	“I”“U”

	1. 		Navigator	

document.write("navigator.appVersion		"	+
			navigator.appVersion)
	Windows	95		Navigator	2.0	
navigator.appVersion		2.0	(Win95,	I)

	Windows	NT		Navigator	3.0	
navigator.appVersion		3.0	(WinNT,	I)

	2. 		Textarea		appVersion		Windows	(appVersion	

Windows	“Win”)	Windows	\r\n	\n	Unix		Macintosh	

<SCRIPT>
var	newline=null
function	populate(textareaObject){
			if	(navigator.appVersion.lastIndexOf('Win')	!=	-1)
						newline="\r\n"
						else	newline="\n"
			textareaObject.value=""	+	newline	+	""	+	newline	
			+	"line	3"
}
</SCRIPT>
<FORM	NAME="form1">

<TEXTAREA	NAME="testLines"	ROWS=8	COLS=55></TEXTAREA>
<P><INPUT	TYPE="button"	VALUE="	Textarea	"
			onClick="populate(document.form1.testLines)">
</TEXTAREA>
</FORM>

language

	Navigator	

navigator

Navigator	4.0

language	“en”“zh_CN”

	Navigator	

mimeTypes

	MIME	

navigator

Navigator	3.0

mimeTypes		MIME	()	MIME		MIME	
navigator.mimeTypes[0]navigator.mimeTypes[1]	navigator.mimeTypes[2]

mimeTypes		 MimeType	

MimeType

platform

	Navigator	

navigator

Navigator	4.0

Platform		Win32Win16Mac68kMacPPC		Unix

Navigator	

	SmartUpdate		JAR		platform		Navigator	
SmartUpdate	 	 JAR		SmartUpdate

http://developer.netscape.com/library/documentation/communicator/jarman/index.htm

plugins

navigator

Navigator	3.0

	Plugin	plugins		Plugin		navigator.plugins[0]
navigator.plugins[1]		navigator.plugins[2].

	plugins	

1.	navigator.plugins[index]
2.	navigator.plugins[index][mimeTypeIndex]
index		Plugin	(name)	plugins		 Plugin	
Plugin		 MimeType	

	length	navigator.plugins.length

plugins.refresh:	plugins	refresh	plugins	

navigator.plugins.refresh(true)
navigator.plugins.refresh(false)
	true	refresh	(EMBED)	false		plugins	

	refresh	Navigator

navigator.plugins.refresh(true)
	 Plugin	

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags14.htm#tags:EMBED

userAgent

	HTTP	

navigator

Navigator	2.0

	Navigator		userAgent	

document.write("navigator.userAgent		"	+
			navigator.userAgent)
	Navigator	2.0

navigator.userAgent		Mozilla/2.0	(Win16;	I)

javaEnabled

	Java

navigator

Navigator	3.0

javaEnabled()

	Java	javaEnabled		true	false	Java

	Java		function1	function2

if	(navigator.javaEnabled())	{
			function1()
}
else	function2()

navigator.appCodeName,	navigator.appName,	navigator.userAgent

preference

	Navigator	

navigator

Navigator	4.0

preference(prefName)
preference(prefName,	setValue)

prefName
setValue

	preference		UniversalPreferencesRead	
UniversalPreferencesWrite	

	Navigator	4.0	 “JavaScript	” “JavaScript	”

	8.2 	

	8.2	
...

general.always_load_images true		false
	Java security.enable_java true		false

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

	JavaScript javascript.enabled true		false
browser.enable_style_sheets true		false

	SmartUpdate autoupdate.enabled true		false
	cookie network.cookie.cookieBehavior 0
	cookie network.cookie.cookieBehavior 1
	cookie network.cookie.cookieBehavior 2
	cookie	 network.cookie.warnAboutCookies true		false

taintEnabled

navigator

Navigator	3.0;		Navigator	4.0

navigator.taintEnabled()

JavaScript	

	taintEnabled	taintEnabled		true	false
NS_ENABLE_TAINT	

	function1	function2

if	(navigator.taintEnabled())	{
			function1()
			}
else	function2()

taint,	untaint

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

MimeType
	MIME(Multipart	Internet	Mail	Extension)	

Navigator	3.0

	MimeType		JavaScript		 navigator

navigator.mimeTypes[index]
	index		MIME		MimeType	(MimeType.type)

	MimeType		mimeTypes	mimeTypes		 navigator
	JPEG	

navigator.mimeTypes["image/jpeg"].type image/jpeg
navigator.mimeTypes["image/jpeg"].description JPEG	Image

navigator.mimeTypes["image/jpeg"].suffixes jpeg,	jpg,	jpe,	jfif,	pjpeg,
pjp

navigator.mimeTypes["image/jpeg"].enabledPlugins null

description MIME	
enabledPlugin 	MIME		Plugin	

suffixes 	MIME	“mpeg,	mpg,	mpe,	mpv,	vbs,
mpegv”

type 	MIME	“video/mpeg”“audio/x-wav”

	MimeType		typedescriptionsuffixes		enabledPlugin	

document.writeln("<TABLE	BORDER=1><TR	VALIGN=TOP>",
			"<TH	ALIGN=left>i",
			"<TH	ALIGN=left>type",
			"<TH	ALIGN=left>description",
			"<TH	ALIGN=left>suffixes",
			"<TH	ALIGN=left>enabledPlugin.name</TR>")
for	(i=0;	i	<	navigator.mimeTypes.length;	i++)	{
			document.writeln("<TR	VALIGN=TOP><TD>",i,
						"<TD>",navigator.mimeTypes[i].type,
						"<TD>",navigator.mimeTypes[i].description,
						"<TD>",navigator.mimeTypes[i].suffixes)
			if	(navigator.mimeTypes[i].enabledPlugin==null)	{
						document.writeln(
						"<TD>",
						"</TR>")
			}	else	{
						document.writeln(
						"<TD>",navigator.mimeTypes[i].enabledPlugin.name,
						"</TR>")
			}
}
document.writeln("</TABLE>")

i type description suffixes enabledPlugin.name
0 audio/aiff AIFF aif,	aiff LiveAudio
1 audio/wav WAV wav LiveAudio

2 audio/x-midi MIDI mid,
midi LiveAudio

3 audio/midi MIDI mid,
midi

LiveAudio

4 video/msvideo Video	for
Windows avi NPAVI32	Dynamic

Link	Library

5 * Netscape	Default
Plugin Netscape	Default	Plugin

6 zz-application/zz-winassoc-TGZ TGZ

navigator,	navigator.mimeTypes,	Plugin

description

	MIME	

MimeType

Navigator	3.0

enabledPlugin

	MIME		 Plugin		MIME		enabledPlugin	

MimeType

Navigator	3.0

	enabledPlugin		MIME		MIME		MIME		MIME
(Macintosh		Unix		MIME		Windows)

enabledPlugin		MIME		Plugin	

	MIME		MIME		

	Shockwave	

//		Shockwave	
mimetype	=	navigator.mimeTypes["application/x-director"]
if	(mimetype)	{
			//	
			plugin	=	mimetype.enabledPlugin
			if	(plugin)
						//	
						document.writeln("<EMBED	SRC=mymovie.dir	HEIGHT=100
WIDTH=100>")
						else
						//	
						document.writeln("")
			}	else	{
			//	
			document.writeln("")

}

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags14.htm#tags:EMBED

suffixes

	MIME	()

MimeType

Navigator	3.0

suffixes	()“audio/x-midi”MIME		suffixes	“mid,
midi”

type

	MIME		MIME	“video/mpeg”“audio/x-wav”

MimeType

Navigator	3.0

MimeType

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Plugin

Navigator	3.0

Plugin		JavaScript		 navigator.plugins	

	Plugin	

	Plugin		MIME		MimeType		Plugin		MimeType
	type		

myPlugin=navigator.plugins[0]
myMimeType=myPlugin[0]
document.writeln('myMimeType.type		',myMimeType.type,"
")
document.writeln('myMimeType.description		',myMimeType.description)

myMimeType.type		video/quicktime
myMimeType.description		QuickTime	for	Windows

Plugin	

	Plugin		MimeType	

	Plugin		plugins	

	 EMBED		Plugin		 document.embeds		 EMBED	
document.embeds	

http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags14.htm#tags:EMBED
http://developer.netscape.com/library/documentation/htmlguid/index.htm?content=tags14.htm#tags:EMBED

description
filename

length 	 MimeType	

name

	1 	

	2 		LiveAudio	

var	myPluginName	=	navigator.plugins["LiveAudio"].name
var	myPluginFile	=	navigator.plugins["LiveAudio"].filename
var	myPluginDesc	=	navigator.plugins["LiveAudio"].description

	3 		LiveAudio	“LiveAudio		audio/wav”“audio/wav”MIME

var	myPlugin	=	navigator.plugins["LiveAudio"]
var	myType	=	myPlugin["audio/wav"]
if	(myType	&&	myType.enabledPlugin	==	myPlugin)
			document.writeln("LiveAudio		audio/wav")

	4 		Shockwave		MIME	

navigator.plugins["Shockwave"].length

	5 		Plugin		namefilenamedescription		length	

document.writeln("<TABLE	BORDER=1><TR	VALIGN=TOP>",
			"<TH	ALIGN=left>i",
			"<TH	ALIGN=left>",
			"<TH	ALIGN=left>",
			"<TH	ALIGN=left>",
			"<TH	ALIGN=left></TR>")
for	(i=0;	i	<	navigator.plugins.length;	i++)	{

			document.writeln("<TR	VALIGN=TOP><TD>",i,
						"<TD>",navigator.plugins[i].name,
						"<TD>",navigator.plugins[i].filename,
						"<TD>",navigator.plugins[i].description,
						"<TD>",navigator.plugins[i].length,
						"</TR>")
}
document.writeln("</TABLE>")	

i

0 QuickTime	Plug-In
d:\nettools\netscape\nav30\Program\
plugins\NPQTW32.DLL

QuickTime	Plug-In
for	Win32	v.1.0.0 1

1 LiveAudio d:\nettools\netscape\nav30\Program\
plugins\NPAUDIO.DLL

LiveAudio	-
Netscape
Navigator	sound
playing	component

7

2
NPAVI32
Dynamic	Link
Library

d:\nettools\netscape\nav30\Program\
plugins\npavi32.dll

NPAVI32,	avi
plugin	DLL 2

3 Netscape	DefaultPlugin
d:\nettools\netscape\nav30\Program\
plugins\npnul32.dll Null	Plugin 1

MimeType,	document.embeds

description

Plugin

Navigator	3.0

filename

Plugin

Navigator	3.0

filename	

	 Plugin	

length

MimeType	

Plugin

Navigator	3.0

name

Plugin

Navigator	3.0

Navigator	3.0:	 “JavaScript	”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onBlur
Executes	JavaScript	code	when	a	blur	event	occurs;	that	is,	when	a	form
element	loses	focus	or	when	a	window	or	frame	loses	focus.

Button,	Checkbox,	FileUpload,	Layer,	Password,	Radio,	Reset,	Select,	Submit,
Text,	Textarea,	Window
Navigator	2.0
Navigator	3.0:	event	handler	of	Button,	Checkbox,	FileUpload,	Frame,
Password,	Radio,	Reset,	Submit,	and	Window

onBlur="handlerText"

handlerText JavaScript		JavaScript	

The	blur	event	can	result	from	a	call	to	the	Window.blur	method	or	from	the
user	clicking	the	mouse	on	another	object	or	window	or	tabbing	with	the
keyboard.

For	windows,	frames,	and	framesets,	onBlur	specifies	JavaScript	code	to
execute	when	a	window	loses	focus.

A	frame's	onBlur	event	handler	overrides	an	onBlur	event	handler	in	the	BODY
tag	of	the	document	loaded	into	frame.

Note	In	Navigator	3.0,	on	some	platforms	placing	an	onBlur	event	handler
in	a	FRAMESET	tag	has	no	effect.

type
target

	1:	Validate	form	input. 	In	the	following	example,	userName	is	a	required
text	field.	When	a	user	attempts	to	leave	the	field,	the	onBlur	event	handler	calls
the	required	function	to	confirm	that	userName	has	a	legal	value.

<INPUT	TYPE="text"	VALUE=""	NAME="userName"
			onBlur="required(this.value)">		2:	Change	the	background	color	of	a
window.	In	the	following	example,	a	window's	onBlur	and	onFocus	event
handlers	change	the	window's	background	color	depending	on	whether	the
window	has	focus.

<BODY	BGCOLOR="lightgrey"
			onBlur="document.bgColor='lightgrey'"
			onFocus="document.bgColor='antiquewhite'">		3:	Change	the
background	color	of	a	frame.	The	following	example	creates	four	frames.	The
source	for	each	frame,	onblur2.html	has	the	BODY	tag	with	the	onBlur	and
onFocus	event	handlers	shown	in	Example	1.	When	the	document	loads,	all
frames	are	light	grey.	When	the	user	clicks	a	frame,	the	onFocus	event	handler
changes	the	frame's	background	color	to	antique	white.	The	frame	that	loses
focus	is	changed	to	light	grey.	Note	that	the	onBlur	and	onFocus	event	handlers
are	within	the	BODY	tag,	not	the	FRAME	tag.

<FRAMESET	ROWS="50%,50%"	COLS="40%,60%">
<FRAME	SRC=onblur2.html	NAME="frame1">
<FRAME	SRC=onblur2.html	NAME="frame2">
<FRAME	SRC=onblur2.html	NAME="frame3">
<FRAME	SRC=onblur2.html	NAME="frame4">
</FRAMESET>	The	following	code	has	the	same	effect	as	the	previous	code,
but	is	implemented	differently.	The	onFocus	and	onBlur	event	handlers	are
associated	with	the	frame,	not	the	document.	The	onBlur	and	onFocus	event
handlers	for	the	frame	are	specified	by	setting	the	onblur	and	onfocus
properties.

<SCRIPT>

function	setUpHandlers()	{
			for	(var	i	=	0;	i	<	frames.length;	i++)	{
						frames[i].onfocus=new	Function("document.bgColor='antiquewhite'")
						frames[i].onblur=new	Function("document.bgColor='lightgrey'")
			}
}
</SCRIPT>	<FRAMESET	ROWS="50%,50%"	COLS="40%,60%"
onLoad=setUpHandlers()>
<FRAME	SRC=onblur2.html	NAME="frame1">
<FRAME	SRC=onblur2.html	NAME="frame2">
<FRAME	SRC=onblur2.html	NAME="frame3">
<FRAME	SRC=onblur2.html	NAME="frame4">
</FRAMESET>		4:	Close	a	window. 	In	the	following	example,	a	window's
onBlur	event	handler	closes	the	window	when	the	window	loses	focus.

<BODY	onBlur="window.close()">
This	is	some	text
</BODY>

onChange,	onFocus

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onChange
	change		JavaScript		SelectText	Textarea		change	

FileUpload,	Select,	Text,	Textarea
Navigator	2.0:	 Select,	Text,		 Textarea
Navigator	3.0:		FileUpload	

onChange="handlerText"

handlerText JavaScript		JavaScript	

	onChange	

type
target

userName	onChange		checkValue		userName	

<INPUT	TYPE="text"	VALUE=""	NAME="userName"
onChange="checkValue(this.value)">

onBlur,	onFocus

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onClick
Executes	JavaScript	code	when	a	click	event	occurs;	that	is,	when	an	object	on	a
form	is	clicked.	(A	Click	event	is	a	combination	of	the	MouseDown	and
MouseUp	events).

Button,	document,	Checkbox,	Link,	Radio,	Reset,	Submit
Navigator	2.0
Navigator	3.0:		the	ability	to	return	false	to	cancel	the	action	associated
with	a	click	event

onClick="handlerText"

handlerText JavaScript		JavaScript	

type
target
When	a	link	is
clicked,
layerX,	layerY,
pageX,	pageY,
screenX,	screenY

Represent	the	cursor	location	at	the	time	the	event
occurred.

which Represents	1	for	a	left-mouse	click	and	3	for	a	right-mouse
click.

modifiers Contains	the	list	of	modifier	keys	held	down	when	the
event	occurred.

For	checkboxes,	links,	radio	buttons,	reset	buttons,	and	submit	buttons,	onClick
can	return	false	to	cancel	the	action	normally	associated	with	a	click	event.

For	example,	the	following	code	creates	a	link	that,	when	clicked,	displays	a
confirm	dialog	box.	If	the	user	clicks	the	link	and	then	chooses	cancel,	the	page
specified	by	the	link	is	not	loaded.

<A	HREF	=	"http://home.netscape.com/"
			onClick="return	confirm('Load	Netscape	home	page?')">
Netscape	If	the	event	handler	returns	false,	the	default	action	of	the	object
is	canceled	as	follows:

Buttons--no	default	action;	nothing	is	canceled

Radio	buttons	and	checkboxes--nothing	is	set

Submit	buttons--form	is	not	submitted

Reset	buttons--form	is	not	reset

Note	In	Navigator	3.0,	on	some	platforms,	returning	false	in	an
onClicka	reset	button	has	no	effect.

	1:	Call	a	function	when	a	user	clicks	a	button. 	Suppose	you	have	created	a
JavaScript	function	called	compute.	You	can	execute	the	compute	function
when	the	user	clicks	a	button	by	calling	the	function	in	the	onClick	event
handler,	as	follows:

<INPUT	TYPE="button"	VALUE="Calculate"	onClick="compute(this.form)">
In	the	preceding	example,	the	keyword	this	refers	to	the	current	object;	in	this
case,	the	Calculate	button.	The	construct	this.form	refers	to	the	form	containing
the	button.

For	another	example,	suppose	you	have	created	a	JavaScript	function	called
pickRandomURL	that	lets	you	select	a	URL	at	random.	You	can	use	onClick	to

specify	a	value	for	the	HREF	attribute	of	the	A	tag	dynamically,	as	shown	in	the
following	example:

<A	HREF=""
			onClick="this.href=pickRandomURL()"
			onMouseOver="window.status='Pick	a	random	URL';	return	true">
Go!	In	the	above	example,	onMouseOver	specifies	a	custom	message	for
the	browser's	status	bar	when	the	user	places	the	mouse	pointer	over	the	Go!
anchor.	As	this	example	shows,	you	must	return	true	to	set	the	window.status
property	in	the	onMouseOver	event	handler.

	2:	Cancel	the	checking	of	a	checkbox. 	The	following	example	creates	a
checkbox	with	onClick.	The	event	handler	displays	a	confirm	that	warns	the
user	that	checking	the	checkbox	purges	all	files.	If	the	user	chooses	Cancel,
onClick	returns	false	and	the	checkbox	is	not	checked.

<INPUT	TYPE="checkbox"	NAME="check1"	VALUE="check1"
			onClick="return	confirm('This	purges	all	your	files.	Are	you	sure?')">
Remove	files

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onDblClick
	DblClick		JavaScript		DblClick	

document,	Link
Navigator	4.0

onDblClick="handlerText"

handlerText JavaScript		JavaScript	

DblClick		Macintosh	

type
target
layerX,
layerY,
pageX,
pageY,
screenX,
screenY

which 	1	3Represents	1	for	a	left-mouse	double-click	and
3	for	a	right-mouse	double-click.

modifiers

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onDragDrop
Executes	JavaScript	code	when	a	DragDrop	event	occurs;	that	is,	when	the	user
drops	an	object	onto	the	browser	window,	such	as	dropping	a	file.

Window
Navigator	4.0

onDragDrop="handlerText"

handlerText JavaScript		JavaScript	

type
target

data Returns	an	Array	of	Strings	containing	the	URLs	of	the	dropped
objects.

modifiers Contains	the	list	of	modifier	keys	held	down	when	the	eventoccurred.
screenX,
screenY Represent	the	cursor	location	at	the	time	the	event	occurred.

Getting	the	data	property	of	the	DragDrop	event	requires	the
UniversalBrowserRead	privilege.		Navigator	4.0	
“JavaScript	”

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

The	DragDrop	event	is	fired	whenever	a	system	item	(file,	shortcut,	and	so	on)
is	dropped	onto	the	browser	window	using	the	native	system's	drag	and	drop
mechanism.	The	normal	response	for	the	browser	is	to	attempt	to	load	the	item
into	the	browser	window.	If	thethe	DragDrop	event	returns	true,	the	browser
loads	the	item	normally.	If	the	event	handler	returns	false,	the	drag	and	drop	is
canceled.

“”

	 	 	

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onError
Executes	JavaScript	code	when	an	error	event	occurs;	that	is,	when	the	loading
of	a	document	or	image	causes	an	error.

Image,	Window
Navigator	3.0

onError="handlerText"

handlerText JavaScript		JavaScript	

An	error	event	occurs	only	when	a	JavaScript	or	runtime	error	occurs,	not
when	a	browser	error	occurs.	For	example,	if	you	try	set
window.location.href='notThere.html'	and	notThere.html	does	not	exist,	the
resulting	error	message	is	a	browser	error	message;	therefore,	onError	would
not	intercept	that	message.	However,	an	error	event	is	triggered	by	a	bad	URL
within	an	IMG	tag	or	by	corrupted	image	data.

window.onerror	applies	only	to	errors	that	occur	in	the	window	containing
window.onerror,	not	in	other	windows.

onError	can	be	any	of	the	following:

null	to	suppress	all	JavaScript	error	dialogs.	Setting	window.onerror	to	null
means	your	users	won't	see	JavaScript	errors	caused	by	your	own	code.

The	name	of	a	function	that	handles	errors	(arguments	are	message	text,
URL,	and	line	number	of	the	offending	line).	To	suppress	the	standard

JavaScript	error	dialog,	the	function	must	return	true.	See	Example	3
below.

A	variable	or	property	that	contains	null	or	a	valid	function	reference.

If	you	write	an	error-handling	function,	you	have	three	options	for	reporting
errors:

Trace	errors	but	let	the	standard	JavaScript	dialog	report	them	(use	an	error
handling	function	that	returns	false	or	does	not	return	a	value)

Report	errors	yourself	and	disable	the	standard	error	dialog	(use	an	error
handling	function	that	returns	true)

Turn	off	all	error	reporting	(set	the	onError	event	handler	to	null)

type
target

	1:	Null	event	handler. 	In	the	following	IMG	tag,	the	code	onError="null"
suppresses	error	messages	if	errors	occur	when	the	image	loads.

<IMG	NAME="imageBad1"	SRC="corrupt.gif"	ALIGN="left"	BORDER="2"
			onError="null">		2:	Nulla	window. 	The	onErrorwindows	cannot	be
expressed	in	HTML.	Therefore,	you	must	spell	it	all	lowercase	and	set	it	in	a
SCRIPT	tag.	The	following	code	assigns	null	to	the	onError	handler	for	the
entire	window,	not	just	the	Image	object.	This	suppresses	all	JavaScript	error
messages,	including	those	for	the	Image	object.

<SCRIPT>
window.onerror=null
</SCRIPT>
<IMG	NAME="imageBad1"	SRC="corrupt.gif"	ALIGN="left"
BORDER="2">	However,	if	the	Image	object	has	a	custom	onError	event

handler,	the	handler	would	execute	if	the	image	had	an	error.	This	is	because
window.onerror=null	suppresses	JavaScript	error	messages,	not	onError	event
handlers.

<SCRIPT>
window.onerror=null
function	myErrorFunc()	{
			alert("The	image	had	a	nasty	error.")
}
</SCRIPT>
<IMG	NAME="imageBad1"	SRC="corrupt.gif"	ALIGN="left"	BORDER="2"
			onError="myErrorFunc()">	In	the	following	example,	window.onerror=null
suppresses	all	error	reporting.	Without	onerror=null,	the	code	would	cause	a
stack	overflow	error	because	of	infinite	recursion.

<SCRIPT>
window.onerror	=	null;
function	testErrorFunction()	{
			testErrorFunction();
}
</SCRIPT>
<BODY	onload="testErrorFunction()">
test	message
</BODY>		3:	Error	handling	function. 	The	following	example	defines	a
function,	myOnError,	that	intercepts	JavaScript	errors.	The	function	uses	three
arrays	to	store	the	message,	URL,	and	line	number	for	each	error.	When	the	user
clicks	the	Display	Error	Report	button,	the	displayErrors	function	opens	a
window	and	creates	an	error	report	in	that	window.	Note	that	the	function
returns	true	to	suppress	the	standard	JavaScript	error	dialog.

<SCRIPT>
window.onerror	=	myOnError	msgArray	=	new	Array()
urlArray	=	new	Array()
lnoArray	=	new	Array()	function	myOnError(msg,	url,	lno)	{
			msgArray[msgArray.length]	=	msg
			urlArray[urlArray.length]	=	url
			lnoArray[lnoArray.length]	=	lno
			return	true
}	function	displayErrors()	{

			win2=window.open('','window2','scrollbars=yes')
			win2.document.writeln('Error	Report<P>')				for	(var	i=0;	i	<
msgArray.length;	i++)	{
						win2.document.writeln('Error	in	file:	'	+	urlArray[i]	+	'
')
						win2.document.writeln('Line	number:	'	+	lnoArray[i]	+	'
')
						win2.document.writeln('Message:	'	+	msgArray[i]	+	'<P>')
			}
			win2.document.close()
}
</SCRIPT>	<BODY	onload="noSuchFunction()">
<FORM>

<INPUT	TYPE="button"	VALUE="This	button	has	a	error"
			onClick="alert('unterminated	string)">	<P><INPUT	TYPE="button"
VALUE="Display	Error	Report"
			onClick="displayErrors()">
</FORM>	This	example	produces	the	following	output:

Error	Report	Error	in	file:	file:///c%7C/temp/onerror.html
Line	number:	34
Message:	unterminated	string	literal	Error	in	file:
file:///c%7C/temp/onerror.html
Line	number:	34
Message:	missing)	after	argument	list	Error	in	file:
file:///c%7C/temp/onerror.html
Line	number:	30
Message:	noSuchFunction	is	not	defined		4:	Event	handler	calls	a	function.
In	the	following	IMG	tag,	onError	calls	the	function	badImage	if	errors	occur
when	the	image	loads.

<SCRIPT>
function	badImage(theImage)	{
			alert('Error:	'	+	theImage.name	+	'	did	not	load	properly.')
}
</SCRIPT>
<FORM>
<IMG	NAME="imageBad2"	SRC="orca.gif"	ALIGN="left"	BORDER="2"
			onError="badImage(this)">
</FORM>

onAbort,	onLoad

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onFocus
Executes	JavaScript	code	when	a	focus	event	occurs;	that	is,	when	a	window,
frame,	or	frameset	receives	focus	or	when	a	form	element	receives	input	focus.

Button,	Checkbox,	FileUpload,	Layer,	Password,	Radio,	Reset,	Select,	Submit,
Text,	Textarea,	Window
Navigator	2.0
Navigator	3.0:	event	handler	of	Button,	Checkbox,	FileUpload,	Frame,
Password,	Radio,	Reset,	Submit,	and	Window
Navigator	4.0:	event	handler	of	Layer

onFocus="handlerText"

handlerText JavaScript		JavaScript	

The	focus	event	can	result	from	a	focus	method	or	from	the	user	clicking	the
mouse	on	an	object	or	window	or	tabbing	with	the	keyboard.	Selecting	within	a
field	results	in	a	select	event,	not	a	focus	event.	onFocus	executes	JavaScript
code	when	a	focus	event	occurs.

A	frame's	onFocus	event	handler	overrides	an	onFocus	event	handler	in	the
BODY	tag	of	the	document	loaded	into	frame.

Note	that	placing	an	alert	in	an	onFocus	event	handler	results	in	recurrent	alerts:
when	you	press	OK	to	dismiss	the	alert,	the	underlying	window	gains	focus
again	and	produces	another	focus	event.

Note

In	Navigator	3.0,	on	some	platforms,	placing	an	onFocus	event	handler	in	a
FRAMESET	tag	has	no	effect.

type
target

The	following	example	uses	an	onFocus	handler	in	the	valueField	Textarea
object	to	call	the	valueCheck	function.

<INPUT	TYPE="textarea"	VALUE=""	NAME="valueField"
			onFocus="valueCheck()">	See	also	for	 onBlur.

onBlur,	onChange

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onKeyDown
Executes	JavaScript	code	when	a	KeyDown	event	occurs;	that	is,	when	the	user
depresses	a	key.

document,	Image,	Link,	Textarea
Navigator	4.0

onKeyDown="handlerText"

handlerText JavaScript		JavaScript	

type
target
layerX,
layerY,
pageX,
pageY,
screenX,
screenY

For	an	event	over	a	window,	these	represent	the	cursor	location	at	the
time	the	event	occurred.	For	an	event	over	a	form,	they	represent	the
position	of	the	form	element.

which

Represents	the	ASCII	value	of	the	key	pressed.	To	get	the	actual
letter,	number,	or	symbol	of	the	pressed	key,	use	the
String.fromCharCode		To	set	this		when	the	ASCII	value	is
unknown,	use	the	String.charCodeAt	

modifiers Contains	the	list	of	modifier	keys	held	down	when	the	eventoccurred.

A	KeyDown	event	always	occurs	before	a	KeyPress	event.	If	onKeyDown
returns	false,	no	KeyPress	events	occur.	This	prevents	KeyPress	events
occurring	due	to	the	user	holding	down	a	key.

onKeyPress,	onKeyUp

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onKeyPress
Executes	JavaScript	code	when	a	KeyPress	event	occurs;	that	is,	when	the	user
presses	or	holds	down	a	key.

document,	Image,	Link,	Textarea
Navigator	4.0

onKeyPress="handlerText"

handlerText JavaScript		JavaScript	

type
target
layerX,
layerY,
pageX,
pageY,
screenX,
screenY

For	an	event	over	a	window,	these	represent	the	cursor	location	at	the
time	the	event	occurred.	For	an	event	over	a	form,	they	represent	the
position	of	the	form	element.

which

Represents	the	ASCII	value	of	the	key	pressed.	To	get	the	actual
letter,	number,	or	symbol	of	the	pressed	key,	use	the
String.fromCharCode		To	set	this		when	the	ASCII	value	is
unknown,	use	the	String.charCodeAt	

modifiers Contains	the	list	of	modifier	keys	held	down	when	the	eventoccurred.

A	KeyPress	event	occurs	immediately	after	a	KeyDown	event	only	if
onKeyDown	returns	something	other	than	false.	A	KeyPress	event	repeatedly
occurs	until	the	user	releases	the	key.	You	can	cancel	individual	KeyPress
events.

onKeyDown,	onKeyUp

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onLoad
Executes	JavaScript	code	when	a	load	event	occurs;	that	is,	when	the	browser
finishes	loading	a	window	or	all	frames	within	a	FRAMESET	tag.

Image,	Layer,	Window
Navigator	2.0
Navigator	3.0:	event	handler	of	Image

onLoad="handlerText"

handlerText JavaScript		JavaScript	

Use	the	onLoad	event	handler	within	either	the	BODY	or	the	FRAMESET	tag,
for	example,	<BODY	onLoad="...">.

In	a	FRAMESET	and	FRAME	relationship,	an	onLoad	event	within	a	frame
(placed	in	the	BODY	tag)	occurs	before	an	onLoad	event	within	the
FRAMESET	(placed	in	the	FRAMESET	tag).

For	images,	the	onLoad	event	handler	indicates	the	script	to	execute	when	an
image	is	displayed.	Do	not	confuse	displaying	an	image	with	loading	an	image.
You	can	load	several	images,	then	display	them	one	by	one	in	the	same	Image
object	by	setting	the	object's	src	property.	If	you	change	the	image	displayed	in
this	way,	onLoad	executes	every	time	an	image	is	displayed,	not	just	when	the
image	is	loaded	into	memory.

If	you	specify	an	onLoadan	Image	object	that	displays	a	looping	GIF	animation
(multi-image	GIF),	each	loop	of	the	animation	triggers	the	onLoad	event,	and

the	event	handler	executes	once	for	each	loop.

You	can	use	the	onLoad	event	handler	to	create	a	JavaScript	animation	by
repeatedly	setting	the	src	property	of	an	Image	object.	See	Image	for
information.

type
target
width,
height

For	an	event	over	a	window,	but	not	over	a	layer,	these	represent	the
width	and	height	of	the	window.

	1:	Display	message	when	page	loads. 	In	the	following	example,	the	onLoad
event	handler	displays	a	greeting	message	after	a	Web	page	is	loaded.

<BODY	onLoad="window.alert("Welcome	to	the	Brave	New	World	home
page!")>		2:	Display	alert	when	image	loads. 	The	following	example	creates
two	Image	objects,	one	with	the	Image	constructor	and	one	with	the	IMG	tag.
Each	Image	object	has	an	onLoad	event	handler	that	calls	the	displayAlert
function,	which	displays	an	alert.	For	the	image	created	with	the	IMG	tag,	the
alert	displays	the	image	name.	For	the	image	created	with	the	Image
constructor,	the	alert	displays	a	message	without	the	image	name.	This	is
because	the	onLoad	handler	for	an	object	created	with	the	Image	constructor
must	be	the	name	of	a	function,	and	it	cannot	specify	parameters	for	the
displayAlert	function.

<SCRIPT>
imageA	=	new	Image(50,50)
imageA.onload=displayAlert
imageA.src="cyanball.gif"	function	displayAlert(theImage)	{
			if	(theImage==null)	{
						alert('An	image	loaded')
			}
			else	alert(theImage.name	+	'	has	been	loaded.')
}

</SCRIPT>	<IMG	NAME="imageB"	SRC="greenball.gif"	ALIGN="top"
			onLoad=displayAlert(this)>
		3:	Looping	GIF	animation. 	The
following	example	displays	an	image,	birdie.gif,	that	is	a	looping	GIF
animation.	The	onLoadthe	image	increments	the	variable	cycles,	which	keeps
track	of	the	number	of	times	the	animation	has	looped.	To	see	the	value	of
cycles,	the	user	clicks	the	button	labeled	Count	Loops.

<SCRIPT>
var	cycles=0
</SCRIPT>
<IMG	ALIGN="top"	SRC="birdie.gif"	BORDER=0
			onLoad="++cycles">
<INPUT	TYPE="button"	VALUE="Count	Loops"
			onClick="alert('The	animation	has	looped	'	+	cycles	+	'	times.')">		4:
Change	GIF	animation	displayed.	The	following	example	uses	an	onLoad
event	handler	to	rotate	the	display	of	six	GIF	animations.	Each	animation	is
displayed	in	sequence	in	one	Image	object.	When	the	document	loads,
!anim0.html	is	displayed.	When	that	animation	completes,	the	onLoad	event
handler	causes	the	next	file,	!anim1.html,	to	load	in	place	of	the	first	file.	After
the	last	animation,	!anim5.html,	completes,	the	first	file	is	again	displayed.
Notice	that	the	changeAnimation	function	does	not	call	itself	after	changing	the
src	property	of	the	Image	object.	This	is	because	when	the	src	property	changes,
the	image's	onLoad	event	handler	is	triggered	and	the	changeAnimation
function	is	called.

<SCRIPT>
var	whichImage=0
var	maxImages=5	function	changeAnimation(theImage)	{
			++whichImage
			if	(whichImage	<=	maxImages)	{
						var	imageName="!anim"	+	whichImage	+	".gif"
						theImage.src=imageName
			}	else	{
						whichImage=-1
						return
			}
}
</SCRIPT>	<IMG	NAME="changingAnimation"	SRC="!anim0.gif"
BORDER=0	ALIGN="top"

			onLoad="changeAnimation(this)">	See	also	for	 Image.

onAbort,	onError,	onUnload

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onMouseMove
	MouseMove		JavaScript	

Navigator	4.0

onMouseMove="handlerText"

handlerText JavaScript		JavaScript	

	onMouseMove	You	must	explicitly	set	it	to	be	associated	with	a
particular	object.

type
target
layerX,	layerY,
pageX,	pageY,
screenX,	screenY

	MouseMove	

	MouseMove	(“Navigator	4.0	”)

document.captureEvents

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onMouseOut
	MouseOut		JavaScript	()	MouseOut	

Layer,	Link
Navigator	3.0

onMouseOut="handlerText"

handlerText JavaScript		JavaScript	

	onMouseOut		onMouseOver	

	onMouseOver		Area		AREA		HREF	

	onMouseOver		status		defaultStatus		true

type
target
layerX,	layerY,
pageX,	pageY,
screenX,	screenY

	MouseOut	

	 Link	

onMouseOver

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onMouseOver
Executes	JavaScript	code	when	a	MouseOver	event	occurs;	that	is,	once	each
time	the	mouse	pointer	moves	over	an	object	or	area	from	outside	that	object	or
area.

Layer,	Link
Navigator	2.0
Navigator	3.0:	event	handler	of	Area

onMouseOver="handlerText"

handlerText JavaScript		JavaScript	

If	the	mouse	moves	from	one	area	into	another	in	a	client-side	image	map,
you'll	get	onMouseOut	for	the	first	area,	then	onMouseOver	for	the	second.

Area	objects	that	use	onMouseOver	must	include	the	HREF	attribute	within	the
AREA	tag.

You	must	return	true	within	the	event	handler	if	you	want	to	set	the	status	or
defaultStatus	properties	with	onMouseOver.

type
target
layerX,	layerY,

pageX,	pageY,
screenX,
screenY

Represent	the	cursor	location	at	the	time	the	MouseOver	event
occurred.

By	default,	the	HREF	value	of	an	anchor	displays	in	the	status	bar	at	the	bottom
of	the	browser	when	a	user	places	the	mouse	pointer	over	the	anchor.	In	the
following	example,	onMouseOver	provides	the	custom	message	"Click	this	if
you	dare."

<A	HREF="http://home.netscape.com/"
			onMouseOver="window.status='Click	this	if	you	dare!';	return	true">
Click	me	See	onClick	for	an	example	of	using	onMouseOver	when	the	A
tag's	HREF	attribute	is	set	dynamically.

See	also	for	 Link.

onMouseOut

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onMouseUp
	MouseUp		JavaScript		MouseUp	

Button,	document,	Link
Navigator	4.0

onMouseUp="handlerText"

handlerText JavaScript		JavaScript	

type
target
layerX,
layerY,
pageX,	pageY,
screenX,
screenY

	MouseUp	

which Represents	1	for	a	left-mouse-button	up	and	3	for	a	right-
mouse-button	up.

modifiers 	MouseUp	

	onMouseUp		false		onMouseUp		false	
MouseUp	(onMouseDown		false)

	MouseDown

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onMove
	move		JavaScript		move	

Window
Navigator	4.0

onMove="handlerText"

handlerText JavaScript		JavaScript	

type
target
screenX,	screenY

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onReset
	reset		JavaScript	()	reset	

Form
Navigator	3.0

onReset="handlerText"

handlerText JavaScript		JavaScript	

“CA”	Text		Text	“CA”	onReset		
NAME="form1"	onReset="alert('')">
:
<INPUT	TYPE="text"	NAME="state"	VALUE="CA"	SIZE="2"><P>
<INPUT	TYPE="reset"	VALUE=""	NAME="reset1">
</FORM>

type
target

Form.reset,	Reset

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onResize
	resize		JavaScript		resize	

Window
Navigator	4.0

onResize="handlerText"

handlerText JavaScript		JavaScript	

type
target
width,	height

	HTML		SRC	

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onSelect
	select		JavaScript		select	

Text,	Textarea
Navigator	2.0

onSelect="handlerText"

handlerText JavaScript		JavaScript	

type
target

	valueField		onSelect		selectState	

<INPUT	TYPE="text"	VALUE=""	NAME="valueField"
onSelect="selectState()">

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

onSubmit
Executes	JavaScript	code	when	a	submit	event	occurs;	that	is,	when	a	user
submits	a	form.

Form
Navigator	2.0

onSubmit="handlerText"

handlerText JavaScript		JavaScript	

Navigator	4.0:	Submitting	a	form	to	a	mailto:	or	news:	URL	requires	the
UniversalSendMail	privilege.		Navigator	4.0	 “JavaScript	”
“JavaScript	”

You	can	use	onSubmit	to	prevent	a	form	from	being	submitted;	to	do	so,	put	a
return	statement	that	returns	false	in	the	event	handler.	Any	other	returned	value
lets	the	form	submit.	If	you	omit	the	return	statement,	the	form	is	submitted.

type
target

http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm
http://developer.netscape.com/library/documentation/communicator/jsguide4/index.htm?content=sec.htm

In	the	following	example,	onSubmit	calls	the	validate	function	to	evaluate	the
data	being	submitted.	If	the	data	is	valid,	the	form	is	submitted;	otherwise,	the
form	is	not	submitted.

<FORM	onSubmit="return	validate(this)">
...
</FORM>	See	also	the	for	 Form.

Submit,	Form.submit

“”

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

database
Lets	an	application	interact	with	a	relational	database.

LiveWire	1.0
Netscape	Server	3.0:		storedProc	and	storedProcArgs
s.

The	JavaScript	runtime	engine	on	the	server	automatically	creates	the	database
object.	You	indicate	that	you	want	to	use	this	object	by	calling	its	connect
method.

The	JavaScript	runtime	engine	on	the	server	creates	a	database	object	when	an
application	connects	to	a	database	server.	Each	application	has	only	one
database	object.	You	can	use	the	database	object	to	interact	with	the	database	on
the	server.	Alternatively,	you	can	use	the	DbPool	and	Connection	objects.

You	can	use	the	database	object	to	connect	to	the	database	server	and	perform
the	following	tasks:

Display	the	results	of	a	query	as	an	HTML	
Execute	SQL	statements	on	the	database	server
Manage	transactions
Run	stored	procedures
Handle	errors	returned	by	the	target	database

The	scope	of	a	database	connection	created	with	the	database	object	is	a	single
HTML	page.	That	is,	as	soon	as	control	leaves	the	HTML	page,	the	runtime
engine	closes	the	database	connection.	You	should	close	all	open	cursors,
stored-procedure	objects,	and	result	sets	before	the	end	of	the	page.

If	possible,	your	application	should	make	the	database	connection	on	its	initial
page.	Doing	so	prevents	conflicts	from	multiple	client	requests	trying	to
manipulate	the	status	of	the	connections	at	once.

Internally,	JavaScript	creates	the	database	object	as	an	instance	of	the	DbBuiltin
class.	In	most	circumstances,	this	is	an	implementation	detail	you	do	not	need	to
be	aware	of,	because	you	cannot	create	instances	of	this	class.	However,	you
can	use	the	prototype	property	of	the	DbBuiltin	class	to	add	a	property	to	the
predefined	database	object.	If	you	do	so,	that	addition	applies	to	the	database
object	when	used	in	all	applications	on	your	server,	not	just	in	the	single
application	that	made	the	change.	This	allows	you	to	expand	the	capabilities	of
this	object	for	your	entire	server.

prototype Allows	the	addition	of	properties	to	the	database	object.

beginTransaction Begins	an	SQL	transaction.
commitTransaction Commits	the	current	SQL	transaction.

connect Connects	to	a	particular	configuration	of	database	and
user.

connected Returns	true	if	the	database	pool	(and	hence	this
connection)	is	connected	to	a	database.

cursor Creates	a	database	cursor	for	the	specified	SQL	SELECT
statement.

disconnect Disconnects	all	connections	from	the	database.
execute Performs	the	specified	SQL	statement.

majorErrorCode Major	error	code	returned	by	the	database	server	or
ODBC.

majorErrorMessage Major	error	message	returned	by	the	database	server	or
ODBC.

minorErrorCode Secondary	error	code	returned	by	vendor	library.
minorErrorMessage Secondary	message	returned	by	vendor	library.
rollbackTransaction Rolls	back	the	current	SQL	transaction.

SQL Displays	query	results.	Creates	an	HTML		for	results	of
an	SQL	SELECT	statement.

storedProc Creates	a	stored-procedure	object	and	runs	the	specified
stored	procedure.

storedProcArgs Creates	a	prototype	for	a	Sybase	stored	procedure.
toString Returns	a	string	representing	the	specified	object.

The	following	example	creates	a	database	object	and	opens	a	standard
connection	to	the	customer	database	on	an	Informix	server.	The	name	of	the
server	is	blue,	the	user	name	is	ADMIN,	and	the	password	is	MANAGER.

database.connect("INFORMIX",	"blue",	"ADMIN",	"MANAGER",
"inventory")	In	this	example,	many	clients	can	connect	to	the	database
simultaneously,	but	they	all	share	the	same	connection,	user	name,	and
password.

Cursor,	database.connect

Transactions

A	transaction	is	a	group	of	database	actions	that	are	performed	together.	Either
all	the	actions	succeed	together	or	all	fail	together.	When	you	attempt	to	have	all
of	the	actions	make	permanent	changes	to	the	database,	you	are	said	to	commit
a	transaction.	You	can	also	roll	back	a	transaction	that	you	have	not	committed;
this	cancels	all	the	actions.

You	can	use	explicit	transaction	control	for	any	set	of	actions,	by	using	the
beginTransaction,	commitTransaction,	and	rollbackTransaction	methods.	If	you
do	not	control	transactions	explicitly,	the	runtime	engine	uses	the	underlying
database's	autocommit	feature	to	treat	each	database	modification	as	a	separate
transaction.	Each	statement	is	either	committed	or	rolled	back	immediately,
based	on	the	success	or	failure	of	the	individual	statement.	Explicitly	managing
transactions	overrides	this	default	behavior.

In	some	databases,	such	as	Oracle,	autocommit	is	an	explicit	feature	that
LiveWire	turns	on	for	individual	statements.	In	others,	such	as	Informix,	it	is	the
default	behavior	when	you	do	not	create	a	transaction.

NOTE:	You	must	use	explicit	transaction	control	any	time	you	make
changes	to	a	database.	If	you	do	not,	your	database	may	return	errors;	even
it	does	not,	you	cannot	be	guaranteed	of	data	integrity	without	using
transactions.	In	addition,	any	time	you	use	cursors,	you	are	encourage	to
use	explicit	transactions	to	control	the	consistency	of	your	data.

For	the	database	object,	the	scope	of	a	transaction	is	limited	to	the	current
request	(HTML	page)	in	an	application.	If	the	application	exits	the	page	before
calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	depending	on	the
setting	for	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	either	to	the	pool	object's	constructor	or	to	its	connect
method.	For	further	information,	see	connect.

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	of	the
DbBuiltin	class	to	add	properties	or	methods	to	the	database	object.	For
information	on	prototypes,	see	Function.prototype.

database
LiveWire	1.0

beginTransaction

Begins	a	new	SQL	transaction.

database
LiveWire	1.0

beginTransaction()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

All	subsequent	actions	that	modify	the	database	are	grouped	with	this
transaction,	known	as	the	current	transaction.

For	the	database	object,	the	scope	of	a	transaction	is	limited	to	the	current
request	(HTML	page)	in	the	application.	If	the	application	exits	the	page	before
calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	by	calling
database.connect.

For	Connection	objects,	the	scope	of	a	transaction	is	limited	to	the	lifetime	of

that	object.	If	the	connection	is	released	or	the	pool	of	connections	is	closed
before	calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	by	calling	the	connect
method	or	in	the	DbPool	constructor.

If	there	is	no	current	transaction	(that	is,	if	the	application	has	not	called
beginTransaction),	calls	to	commitTransaction	and	rollbackTransaction	are
ignored.

The	LiveWire	Database	Service	does	not	support	nested	transactions.	If	you	call
beginTransaction	when	a	transaction	is	already	open	(that	is,	you've	called
beginTransaction	and	have	yet	to	commit	or	roll	back	that	transaction),	you'll
get	an	error	message.

This	example	updates	the	rentals		within	a	transaction.	The	values	of
customerID	and	videoID	are	passed	into	the	cursor	method	as	properties	of	the
request	object.	When	the	videoReturn	Cursor	object	opens,	the	next	method
navigates	to	the	only	record	in	the	virtual		and	updates	the	value	in	the
returnDate	field.

The	variable	x	is	assigned	a	database	status	code	to	indicate	if	the	updateRow
method	is	successful.	If	updateRow	succeeds,	the	value	of	x	is	0,	and	the
transaction	is	committed;	otherwise,	the	transaction	is	rolled	back.

//	Begin	a	transaction
database.beginTransaction();	//	Create	a	Date	object	with	the	value	of	today's
date
today	=	new	Date();	//	Create	a	cursor	with	the	rented	video	in	the	virtual	
videoReturn	=	database.cursor("SELECT	*	FROM	rentals	WHERE
			customerId	=	"	+	request.customerID	+	"	AND
			videoId	=	"	+	request.videoID,	true);	//	Position	the	pointer	on	the	first	row	of
the	cursor
//	and	update	the	row
videoReturn.next()
videoReturn.returndate	=	today;

x	=	videoReturn.updateRow("rentals");	//	End	the	transaction	by	committing	or
rolling	back
if	(x	==	0)	{
			database.commitTransaction()	}
else	{
			database.rollbackTransaction()	}	//	Close	the	cursor
videoReturn.close();

commitTransaction

Commits	the	current	transaction.

database
LiveWire	1.0

commitTransaction()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

This	method	attempts	to	commit	all	actions	since	the	last	call	to
beginTransaction.

For	the	database	object,	the	scope	of	a	transaction	is	limited	to	the	current
request	(HTML	page)	in	the	application.	If	the	application	exits	the	page	before
calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	with	the	database	or
DbPool	object.

For	Connection	objects,	the	scope	of	a	transaction	is	limited	to	the	lifetime	of

that	object.	If	the	connection	is	released	or	the	pool	of	connections	is	closed
before	calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
commitFlag	value.

If	there	is	no	current	transaction	(that	is,	if	the	application	has	not	called
beginTransaction),	calls	to	commitTransaction	and	rollbackTransaction	are
ignored.

The	LiveWire	Database	Service	does	not	support	nested	transactions.	If	you	call
beginTransaction	when	a	transaction	is	already	open	(that	is,	you've	called
beginTransaction	and	have	yet	to	commit	or	roll	back	that	transaction),	you'll
get	an	error	message.

connect

Connects	the	pool	to	a	particular	configuration	of	database	and	user.

database
LiveWire	1.0

connect	(dbtype,	serverName,	username,	password,	databaseName)	connect
(dbtype,	serverName,	username,	password,	databaseName,	maxConnections)
connect	(dbtype,	serverName,	username,	password,	databaseName,
maxConnections,	commitflag)

dbtype Database	type;	one	of	ORACLE,	SYBASE,	INFORMIX,
DB2,	or	ODBC.

serverName

Name	of	the	database	server	to	which	to	connect.	The	server
name	typically	is	established	when	the	database	is	installed
and	is	different	for	different	database	types:DB2:	Local
database	alias.	On	both	NT	and	UNIX,	this	is	set	up	by	the
client	or	the	DB2	Command	Line	Processor.Informix:
Informix	server.	On	NT,	this	is	specified	with	the	setnet32
utility;	on	UNIX,	in	the	sqlhosts	file.Oracle:	Service.	On	both
NT	and	UNIX,	this	specified	in	the	tnsnames.ora	file.	On	NT,
you	can	use	the	SQL*Net	easy	configuration	to	specify	it.	If
your	Oracle	database	server	is	local,	specify	the	empty	string
for	this	argument.ODBC:	Data	source	name.	On	NT,	this	is
specified	in	the	ODBC	Administrator;	on	UNIX,	in	the
.odbc.ini	file.	If	you	are	using	the	Web	Server	as	a	user	the
file	.odbc.ini	must	be	in	your	home	directory;	if	as	a	system,	it
must	be	in	the	root	directory.Sybase:	Server	name	(the
DSQUERY	parameter).	On	NT,	this	is	specified	with	the
sqledit	utility;	on	UNIX,	with	the	sybinit	utility.If	in	doubt,
see	your	database	or	system	administrator.	For	ODBC,	this	is

the	name	of	the	ODBC	service	as	specified	in	Control	Panel.

userName

Name	of	the	user	to	connect	to	the	database.	Some	relational
database	management	systems	(RDBMS)	require	that	this	be
the	same	as	your	operating	system	login	name;	others
maintain	their	own	collections	of	valid	user	names.	See	your
system	administrator	if	you	are	in	doubt.

password User's	password.	If	the	database	does	not	require	a	password,
use	an	empty	string	("").

databaseName

Name	of	the	database	to	connect	to	for	the	given	serverName.
If	your	database	server	supports	the	notion	of	multiple
databases	on	a	single	server,	supply	the	name	of	the	database
to	use.	If	it	does	not,	use	an	empty	string	("").	For	Oracle,
ODBC,	and	DB2,	you	must	always	use	an	empty	string.For
Oracle,	specify	this	information	in	the	tnsnames.ora	file.For
ODBC,	if	you	want	to	connect	to	a	particular	database,
specify	the	database	name	specified	in	the	datasource
definition.For	DB2,	there	is	no	concept	of	a	database	name;
the	database	name	is	always	the	server	name	(as	specified
with	serverName).

maxConnections

(Optional)	Number	of	connections	to	be	created	and	cached	in
the	pool.	The	runtime	engine	attempts	to	create	as	many
connections	as	specified	with	this	parameter.	If	successful,	it
stores	those	connections	for	later	use.If	you	do	not	supply	this
parameter,	its	value	is	whatever	you	specify	in	the
Application	Manager	when	you	install	the	application	as	the
value	for	Built-in	Maximum	Database
Connections.Remember	that	your	database	client	license
probably	specifies	a	maximum	number	of	connections.	Do
not	set	this	parameter	to	a	number	higher	than	your	license
allows.	For	Sybase,	you	can	have	at	most	100	connections.If
your	database	client	library	is	not	multithreaded,	it	can	only
support	one	connection	at	a	time.	In	this	case,	your
application	performs	as	though	you	specified	1	for	this
parameter.	For	a	current	list	of	which	database	client	libraries
are	multithreaded,	see	the	Enterprise	Server	3.0	Release	Notes
(Optional)	A	Boolean	value	indicating	whether	to	commit	a
pending	transaction	when	the	connection	is	released	or	the
object	is	finalized.(If	the	transaction	is	on	a	single	page,	the

http://home.netscape.com/eng/server/webserver/3.0/

commitFlag

object	is	finalized	at	the	end	of	the	page.	If	the	transaction
spans	multiple	pages,	the	object	is	finalized	when	the
connection	returns	to	the	pool.)If	this	parameter	is	false,	a
pending	transaction	is	rolled	back.	If	this	parameter	is	true,	a
pending	transaction	if	committed.	For	DbPool,	the	default
value	is	false;	for	database,	the	default	value	is	true.	If	you
specify	this	parameter,	you	must	also	specify	the
maxConnections	parameter.

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

When	you	call	this	method,	the	runtime	engine	first	closes	and	releases	any
currently	open	connections.	It	then	reconnects	the	pool	with	the	new
configuration.	You	should	be	sure	that	all	connections	have	been	released	before
calling	this	method.

The	first	version	of	this	method	creates	and	caches	one	connection.	When	this
connection	goes	out	of	scope,	pending	transactions	are	rolled	back.

The	second	version	of	this	method	attempts	to	create	as	many	connections	as
specified	by	the	maxConnections	parameter.	If	successful,	it	stores	those
connections	for	later	use.	If	the	runtime	engine	does	not	obtain	the	requested
connections,	it	returns	an	error.	When	this	connection	goes	out	of	scope,
pending	transactions	are	rolled	back.

The	third	version	of	this	method	does	everything	the	second	version	does.	In
addition,	the	commitflag	parameter	indicates	what	to	do	with	pending
transactions	when	this	connection	goes	out	of	scope.	If	this	parameter	is	false
(the	default),	a	pending	transaction	is	rolled	back.	If	this	parameter	is	true,	a
pending	transaction	if	committed.

If	possible,	your	application	should	call	this	method	on	its	initial	page.	Doing	so
prevents	conflicts	from	multiple	client	requests	trying	to	connect	and
disconnect.

The	following	statement	creates	four	connections	to	an	Informix	database
named	mydb	on	a	server	named	myserver,	with	user	name	SYSTEM	and
password	MANAGER.	Pending	transactions	are	rolled	back	at	the	end	of	a
client	request:

connected

Tests	whether	the	database	pool	and	all	of	its	connections	are	connected	to	a
database.

database
LiveWire	1.0

connected()

True	if	the	pool	(and	hence	a	particular	connection	in	the	pool)	is	currently
connected	to	a	database;	otherwise,	false.

The	connected	method	indicates	whether	this	object	is	currently	connected	to	a
database.

If	this	method	returns	false	for	a	Connection	object,	you	cannot	use	any	other
methods	of	that	object.	You	must	reconnect	to	the	database,	using	the	DbPool
object,	and	then	get	a	new	Connection	object.	Similarly,	if	this	method	returns
false	for	the	database	object,	you	must	reconnect	before	using	other	methods	of
that	object.

	1: 	The	following	code	fragment	checks	to	see	if	the	connection	is	currently

open.	If	it's	not,	it	reconnects	the	pool	and	reassigns	a	new	value	to	the	myconn
variable.

if	(!myconn.connected())	{
			mypool.connect	("INFORMIX",	"myserver",	"SYSTEM",	"MANAGER",
"mydb",	4);
			myconn	=	mypool.connection;
}		2:	 The	following	example	uses	an	if	condition	to	determine	if	an
application	is	connected	to	a	database	server.	If	the	application	is	connected,	the
isConnectedRoutine	function	runs;	if	the	application	is	not	connected,	the
isNotConnected	routine	runs.

if(database.connected())	{
			isConnectedRoutine()	}
else	{
			isNotConnectedRoutine()	}

cursor

Creates	a	Cursor	object.

database
LiveWire	1.0

cursor("sqlStatement",upda)

sqlStatement A	JavaScript	string	representing	a	SQL	SELECT	statementsupported	by	the	database	server.

upda (Optional)	A	Boolean	parameter	indicating	whether	or	not	the
cursor	is	upda.

A	new	Cursor	object.

The	cursor	method	creates	a	Cursor	object	that	contains	the	rows	returned	by	a
SQL	SELECT	statement.	The	SELECT	statement	is	passed	to	the	cursor	method
as	the	sqlStatement	argument.	If	the	SELECT	statement	does	not	return	any
rows,	the	resulting	Cursor	object	has	no	rows.	The	first	time	you	use	the	next
method	on	the	object,	it	returns	false.

You	can	perform	the	following	tasks	with	the	Cursor	object:

Modify	data	in	a	server	.
Navigate	in	a	server	.
Customize	the	display	of	the	virtual		returned	by	a	database	query.

Run	stored	procedures.

The	cursor	method	does	not	automatically	display	the	returned	data.	To	display
this	data,	you	must	create	custom	HTML	code.	This	HTML	code	may	display
the	rows	in	an	HTML	,	as	shown	in	Example	3.	The	SQL	method	is	an
easier	way	to	display	the	output	of	a	database	query,	but	you	cannot	navigate,
modify	data,	or	control	the	format	of	the	output.

The	optional	parameter	upda	specifies	whether	you	can	modify	the	Cursor
object	you	create	with	the	cursor	method.	To	create	a	Cursor	object	you	can
modify,	specify	upda	as	true.	If	you	do	not	specify	a	value	for	the	upda
parameter,	it	is	false	by	default.

If	you	create	an	upda	Cursor	object,	the	virtual		returned	by	the	sqlStatement
parameter	must	be	upda.	For	example,	the	SELECT	statement	in	the
sqlStatement	parameter	cannot	contain	a	GROUP	BY	clause;	in	addition,	the
query	usually	must	retrieve	key	values	from	a	.	For	more	information	on
constructing	upda	queries,	consult	your	database	vendor's	documentation.

	1. 	The	following	example	creates	the	upda	cursor	custs	and	returns	the
columns	ID,	CUST_NAME,	and	CITY	from	the	customer	:

custs	=	database.cursor("select	id,	cust_name,	city	from	customer",	true)		2.
You	can	construct	the	SELECT	statement	with	the	string	concatenation	operator
(+)	and	string	variables	such	as	client	or	request	property	values,	as	shown	in
the	following	example:

custs	=	database.cursor("select	*	from	customer
			where	customerID	=	"	+	request.customerID);		3. 	The	following	example
demonstrates	how	to	format	the	virtual		returned	by	the	cursor	method	as	an
HTML	.	This	example	first	creates	Cursor	object	named	videoSet	and	then
displays	two	columns	of	its	data	(videoSet.title	and	videoSet.synopsis).

//	Create	the	videoSet	cursor
<SERVER>
videoSet	=	database.cursor("select	*	from	videos
			where	videos.numonhand	>	0	order	by	title");

</SERVER>	//	Begin	creating	an	HTML		to	contain	the	virtual	
//	Specify	titles	for	the	two	columns	in	the	virtual	
<	BORDER>
<CAPTION>	Videos	on	Hand	</CAPTION>
<TR>
			<TH>Title</TH>
			<TH>Synopsis</TH>
</TR>	//	Use	a	while	loop	to	iterate	over	each	row	in	the	cursor
<SERVER>
while(videoSet.next())	{
</SERVER>	//	Use	write	statements	to	display	the	data	in	both	columns
<TR>
			<TH>
							<SERVER>write(videoSet.title)</SERVER></TH>
			<TD><SERVER>write(videoSet.synopsis)</SERVER></TD>
</TR>	//	End	the	while	loop
<SERVER>
}
</SERVER>	//	End	the	HTML	
</>	The	values	in	the	videoSet.title	column	are	displayed	within	the	A	tag	so	a
user	can	click	them	as	links.	When	a	user	clicks	a	title,	the	rent.html	page	opens
and	the	column	value	videoSet.id	is	passed	to	it	as	the	value	of	request.videoID.

database.SQL,	database.cursor

disconnect

Disconnects	all	connections	in	the	pool	from	the	database.

database
LiveWire	1.0

disconnect()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

Before	calling	the	disconnect	method,	you	must	first	call	the	release	method	for
all	connections	in	this	database	pool.	Otherwise,	the	connection	is	still
considered	in	use	by	the	system,	so	the	disconnect	waits	until	all	connections
are	released.

After	disconnecting	from	a	database,	the	only	methods	of	this	object	you	can
use	are	connect	and	connected.

The	following	example	uses	an	if	condition	to	determine	if	an	application	is

connected	to	a	database	server.	If	the	application	is	connected,	the	application
calls	the	disconnect	method;	if	the	application	is	not	connected,	the
isNotConnected	routine	runs.

if(database.connected())	{
			database.disconnect()	}
else	{
			isNotConnectedRoutine()	}

execute

Performs	the	specified	SQL	statement.	Use	for	SQL	statements	other	than
queries.

database
LiveWire	1.0

execute	(stmt)

stmt A	string	representing	the	SQL	statement	to	execute.

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

This	method	enables	an	application	to	execute	any	data	definition	language
(DDL)	or	data	manipulation	language	(DML)	SQL	statement	supported	by	the
database	server	that	does	not	return	a	cursor,	such	as	CREATE,	ALTER,	or
DROP.

Each	database	supports	a	standard	core	of	DDL	and	DML	statements.	In
addition,	they	may	each	also	support	DDL	and	DML	statements	specific	to	that
database	vendor.	You	can	use	execute	to	call	any	of	those	statements.	However,
each	database	vendor	may	also	provide	functions	you	can	use	with	the	database
that	are	not	DDL	or	DML	statements.	You	cannot	use	execute	to	call	those

functions.	For	example,	you	cannot	call	the	Oracle	describe	function	or	the
Informix	load	function	from	the	execute	method.

Although	technically	you	can	use	execute	to	perform	data	modification
(INSERT,	UPDATE,	and	DELETE	statements),	you	should	instead	use	Cursor
objects.	This	makes	your	application	more	database-independent.	Cursors	also
provide	support	for	binary	large	object	(BLOb)	data.

When	using	the	execute	method,	your	SQL	statement	must	strictly	conform	to
the	requirements	of	the	database	server.	For	example,	some	servers	require
each	SQL	statement	to	be	terminated	by	a	semicolon.	See	your	server
documentation	for	more	information.

If	you	have	not	explicitly	started	a	transaction,	the	single	statement	is
automatically	committed.

In	the	following	example,	the	execute	method	is	used	to	delete	a	customer	from
the	customer	.	customer.ID	represents	the	unique	ID	of	a	customer	that	is	in
the	ID	column	of	the	customer	.	The	value	for	customer.ID	is	passed	into	the
DELETE	statement	as	the	value	of	the	ID	property	of	request.

if(request.ID	!=	null)	{
			database.execute("delete	from	customer
						where	customer.ID	=	"	+	request.ID)
}

majorErrorCode

Major	error	code	returned	by	the	database	server	or	ODBC.

database
LiveWire	1.0

majorErrorCode()

The	result	returned	by	this	method	depends	on	the	database	server	being	used:

Informix:	the	Informix	error	code.

Oracle:	the	code	as	reported	by	Oracle	Call-level	Interface	(OCI).

Sybase:	the	DB-Library	error	number	or	the	SQL	server	message	number.

SQL	statements	can	fail	for	a	variety	of	reasons,	including	referential	integrity
constraints,	lack	of	user	privileges,	record	or		locking	in	a	multiuser	database,
and	so	on.	When	an	action	fails,	the	database	server	returns	an	error	message
indicating	the	reason	for	failure.	The	LiveWire	Database	Service	provides	two
ways	of	getting	error	information:	from	the	status	code	returned	by	various
methods	or	from	special	properties	containing	error	messages	and	codes.

Status	codes	are	integers	between	0	and	27,	with	0	indicating	a	successful
execution	of	the	statement	and	other	numbers	indicating	an	error,	as	shown	in

	10.2.:

	10.2	Database	status	codes.		
Status
Code Explanation Status

Code Explanation

0 No	error 14 Null	reference	parameter

1 Out	of	memory 15 Connection	object	not
found

2 Object	never	initialized 16 Required	information	is
missing

3 Type	conversion	error 17 Object	cannot	support
multiple	readers

4 Database	not	registered 18 Object	cannot	support
deletions

5 Error	reported	by	server 19 Object	cannot	support
insertions

6 Message	from	server 20 Object	cannot	support
updates

7 Error	from	vendor's	library 21 Object	cannot	support
updates

8 Lost	connection 22 Object	cannot	support
indices

9 End	of	fetch 23 Object	cannot	be	dropped

10 Invalid	use	of	object 24 Incorrect	connection
supplied

11 Column	does	not	exist 25 Object	cannot	support
privileges

12 Invalid	positioning	within	object
(bounds	error) 26 Object	cannot	support

cursors
13 Unsupported	feature 27 Unable	to	open

This	example	updates	the	rentals		within	a	transaction.	The	updateRow
method	assigns	a	database	status	code	to	the	statusCode	variable	to	indicate
whether	the	method	is	successful.

If	updateRow	succeeds,	the	value	of	statusCode	is	0,	and	the	transaction	is
committed.	If	updateRow	returns	a	statusCode	value	of	either	five	or	seven,	the
values	of	majorErrorCode,	majorErrorMessage,	minorErrorCode,	and
minorErrorMessage	are	displayed.	If	statusCode	is	set	to	any	other	value,	the
errorRoutine	function	is	called.

database.beginTransaction()
statusCode	=	cursor.updateRow("rentals")	if	(statusCode	==	0)	{
			database.commitTransaction()
			}	if	(statusCode	==	5	||	statusCode	==	7)	{
			write("The	operation	failed	to	complete.
"
			write("Contact	your	system	administrator	with	the	following:<P>"
			write("The	value	of	statusCode	is	"	+	statusCode	+	"
")
			write("The	value	of	majorErrorCode	is	"	+
						database.majorErrorCode()	+	"
")
			write("The	value	of	majorErrorMessage	is	"	+
						database.majorErrorMessage()	+	"
")
			write("The	value	of	minorErrorCode	is	"	+
						database.minorErrorCode()	+	"
")
			write("The	value	of	minorErrorMessage	is	"	+
						database.minorErrorMessage()	+	"
")
			database.rollbackTransaction()
			}	else	{
			errorRoutine()
			}

majorErrorMessage

Major	error	message	returned	by	database	server	or	ODBC.	For	server	errors,
this	typically	corresponds	to	the	server's	SQLCODE.

database
LiveWire	1.0

majorErrorMessage()

A	string	describing	that	depends	on	the	database	server:

Informix:	"Vendor	Library	Error:	string,"	where	string	is	the	error	text	from
Informix.

Oracle:	"Server	Error:	string,"	where	string	is	the	translation	of	the	return
code	supplied	by	Oracle.

Sybase:	"Vendor	Library	Error:	string,"	where	string	is	the	error	text	from
DB-Library	or	"Server	Error	string,"	where	string	is	text	from	the	SQL
server,	unless	the	severity	and	message	number	are	both	0,	in	which	case	it
returns	just	the	message	text.

SQL	statements	can	fail	for	a	variety	of	reasons,	including	referential	integrity
constraints,	lack	of	user	privileges,	record	or		locking	in	a	multiuser	database,
and	so	on.	When	an	action	fails,	the	database	server	returns	an	error	message

indicating	the	reason	for	failure.	The	LiveWire	Database	Service	provides	two
ways	of	getting	error	information:	from	the	status	code	returned	by	connection
and	DbPool	methods	or	from	special	connection	or	DbPool	properties
containing	error	messages	and	codes.

See	database.majorErrorCode.

minorErrorCode

Secondary	error	code	returned	by	database	vendor	library.

database
LiveWire	1.0

minorErrorCode()

The	result	returned	by	this	method	depends	on	the	database	server:

Informix:	the	ISAM	error	code,	or	0	if	there	is	no	ISAM	error.

Oracle:	the	operating	system	error	code	as	reported	by	OCI.

Sybase:	the	severity	level,	as	reported	by	DB-Library	or	the	severity	level,
as	reported	by	the	SQL	server.

minorErrorMessage

Secondary	message	returned	by	database	vendor	library.

database
LiveWire	1.0

minorErrorMessage()

The	string	returned	by	this	method	depends	on	the	database	server:

Informix:	"ISAM	Error:	string,"	where	string	is	the	text	of	the	ISAM	error
code	from	Informix,	or	an	empty	string	if	there	is	no	ISAM	error.

Oracle:	the	Oracle	server	name.

Sybase:	the	operating	system	error	text,	as	reported	by	DB-Library	or	the
SQL	server	name.

rollbackTransaction

Rolls	back	the	current	transaction.

database
LiveWire	1.0

rollbackTransaction()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

This	method	will	undo	all	modifications	since	the	last	call	to	beginTransaction.

For	the	database	object,	the	scope	of	a	transaction	is	limited	to	the	current
request	(HTML	page)	in	the	application.	If	the	application	exits	the	page	before
calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	with	the	database	or
DbPool	object.

For	Connection	objects,	the	scope	of	a	transaction	is	limited	to	the	lifetime	of
that	object.	If	the	connection	is	released	or	the	pool	of	connections	is	closed

before	calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
commitFlag	value.

If	there	is	no	current	transaction	(that	is,	if	the	application	has	not	called
beginTransaction),	calls	to	commitTransaction	and	rollbackTransaction	are
ignored.

The	LiveWire	Database	Service	does	not	support	nested	transactions.	If	you	call
beginTransaction	when	a	transaction	is	already	open	(that	is,	you've	called
beginTransaction	and	have	yet	to	commit	or	roll	back	that	transaction),	you'll
get	an	error	message.

SQL

Displays	query	results.	Creates	an	HTML		for	results	of	an	SQL	SELECT
statement.

database
LiveWire	1.0

SQL	(stmt)

stmt A	string	representing	an	SQL	SELECT	statement.

A	string	representing	an	HTML	,	with	each	row	and	column	in	the	query	as	a
row	and	column	of	the	.

Although	SQL	does	not	give	explicit	control	over	how	the	output	is	formatted,
it	is	the	easiest	way	to	display	query	results.	If	you	want	to	customize	the
appearance	of	the	output,	use	a	Cursor	object	to	create	your	own	display
function.

Note

Every	Sybase		you	use	with	a	cursor	must	have	a	unique	index.

If	connobj	is	a	Connection	object	and	request.sql	contains	an	SQL	query,	then

the	following	JavaScript	statements	display	the	result	of	the	query	in	a	:

write(request.sql)
connobj.SQL(request.sql)	The	first	line	simply	displays	the	SELECT	statement,
and	the	second	line	displays	the	results	of	the	query.	This	is	the	first	part	of	the
HTML	generated	by	these	statements:

select	*	from	videos
<	BORDER>
<TR>
<TH>title</TH>
<TH>id</TH>
<TH>year</TH>
<TH>category</TH>
<TH>quantity</TH>
<TH>numonhand</TH>
<TH>synopsis</TH>
</TR>
<TR>
<TD>A	Clockwork	Orange</TD>
<TD>1</TD>
<TD>1975</TD>
<TD>Science	Fiction</TD>
<TD>5</TD>
<TD>3</TD>
<TD>	Little	Alex,	played	by	Malcolm	Macdowell,
and	his	droogies	stop	by	the	Miloko	bar	for	a	
refreshing	libation	before	a	wild	night	on	the	town.
</TD>
</TR>
<TR>
<TD>Sleepless	In	Seattle</TD>
...	As	this	example	illustrates,	SQL	generates	an	HTML	,	with	column
headings	for	each	column	in	the	database		and	a	row	in	the		for	each	row	in
the	database	.

storedProc

Creates	a	stored-procedure	object	and	runs	the	specified	stored	procedure.

database
Netscape	Server	3.0

storedProc	(procName,	inarg1,	inarg2,	...,	inargN)

procName A	string	specifying	the	name	of	the	stored	procedure	to	run.
inarg1,	...,
inargN

The	input	parameters	to	be	passed	to	the	procedure,	separated
by	commas.

A	new	Stproc	object.

The	scope	of	the	stored-procedure	object	is	a	single	page	of	the	application.	In
other	words,	all	methods	to	be	executed	for	any	instance	of	storedProc	must	be
invoked	on	the	same	application	page	as	the	page	on	which	the	object	is	created.

When	you	create	a	stored	procedure,	you	can	specify	default	values	for	any	of
the	parameters.	Then,	if	a	parameter	is	not	included	when	the	stored	procedure
is	executed,	the	procedure	uses	the	default	value.	However,	when	you	call	a
stored	procedure	from	a	server-side	JavaScript	application,	you	must	indicate
that	you	want	to	use	the	default	value	by	typing	"/Default/"	in	place	of	the
parameter.	(Remember	that	JavaScript	is	case	sensitive.)	For	example:	spObj	=
connobj.storedProc	("newhire",	"/Default/",	3)

storedProcArgs

Creates	a	prototype	for	a	DB2,	ODBC,	or	Sybase	stored	procedure.

database
Netscape	Server	3.0

storedProcArgs	(procName,	type1,	...,	typeN)

procName The	name	of	the	procedure.

type1,	...,
typeN

Each	typeI	is	one	of:	"IN",	"OUT",	or	"INOUT"	Specifies	the	type
of	each	parameter:	input	("IN"),	output	("OUT"),	or	both	input	and
output	("INOUT").

Nothing.

This	method	is	only	needed	for	DB2,	ODBC,	or	Sybase	stored	procedures.	If
you	call	it	for	Oracle	or	Informix	stored	procedures,	it	does	nothing.

This	method	provides	the	procedure	name	and	the	parameters	for	that	stored
procedure.	Stored	procedures	can	accept	parameters	that	are	only	for	input
("IN"),	only	for	output	("OUT"),	or	for	both	input	and	output	("INOUT").

You	must	create	one	prototype	for	each	DB2,	ODBC,	or	Sybase	stored
procedure	you	use	in	your	application.	Additional	prototypes	for	the	same
stored	procedure	are	ignored.

You	can	specify	an	INOUT	parameter	either	as	an	INOUT	or	as	an	OUT
parameter.	If	you	use	an	INOUT	parameter	of	a	stored	procedure	as	an	OUT
parameter,	the	LiveWire	Database	Service	implicitly	passes	a	NULL	value	for
that	parameter.

Assume	the	inoutdemo	stored	procedure	takes	one	input	parameter	and	one
input/output	parameter,	as	follows:

create	procedure	inoutdemo	(@inparam	int,	@inoutparam	int	output)
as
if	(@inoutparam	==	null)
@inoutparam	=	@inparam	+	1
else
@inoutparam	=	@inoutparam	+	1	Assume	execute	the	following	code	and	then
call	outParameters(0),	the	result	will	be	101:

database.storedProcArgs("inoutdemo",	"IN",	"INOUT")
spobj=	database.storedProc("inoutdemo",	6,	100);
answer	=	spobj.outParameters(0);	The	value	of	answer	is	101.	On	the	other
hand,	assume	you	execute	this	code:

database.storedProcArgs("inoutdemo",	"IN",	"OUT")
spobj	=	database.storedProc("inoutdemo",	6,	100);
answer	=	spobj.outParameters(0);	In	this	case,	the	value	of	answer	is	7.

toString

Returns	a	string	representing	the	specified	object.

database
LiveWire	1.0

toString()

Every	object	has	a	toString	method	that	is	automatically	called	when	it	is	to	be
represented	as	a	text	value	or	when	an	object	is	referred	to	in	a	string
concatenation.

You	can	use	toString	within	your	own	code	to	convert	an	object	into	a	string,
and	you	can	create	your	own	function	to	be	called	in	place	of	the	default
toString	method.

This	method	returns	a	string	of	the	following	format:

db	"name"	"userName"	"dbtype"	"serverName"	where

name The	name	of	the	database.
userName The	name	of	the	user	connected	to	the	database.
dbType One	of	ORACLE,	SYBASE,	INFORMIX,	DB2,	or	ODBC.
serverName The	name	of	the	database	server.

The	method	displays	an	empty	string	for	any	of	attributes	whose	value	is
unknown.

For	information	on	defining	your	own	toString	method,	see	the	Object.toString
method.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

DbPool
Represents	a	pool	of	connections	to	a	particular	database	configuration.

Netscape	Server	3.0

To	connect	to	a	database,	you	first	create	a	pool	of	database	connections	and
then	access	individual	connections	as	needed.	For	more	information	on	the
general	methodology	for	using	DbPool	objects,	see	Writing	Server-Side
JavaScript	Applications.

The	DbPool	constructor.

The	lifetime	of	a	DbPool	object	(its	scope)	varies.	Assuming	it	has	been
assigned	to	a	variable,	a	DbPool	object	can	go	out	of	scope	at	different	times:

If	the	variable	is	a	property	of	the	project	object	(such	as	project.engconn),
then	it	remains	in	scope	until	the	application	terminates	or	until	you
reassign	the	property	to	another	value	or	to	null.

If	it	is	a	property	of	the	server	object	(such	as	server.engconn),	it	remains
in	scope	until	the	server	goes	down	or	until	you	reassign	the	property	to
another	value	or	to	null.

In	all	other	cases,	the	variable	is	a	property	of	the	request	object.	In	this
situation,	the	variable	goes	out	of	scope	when	control	leaves	the	HTML
page	or	you	reassign	the	property	to	another	value	or	to	null.

It	is	your	responsibility	to	release	all	connections	and	close	all	cursors,	stored
procedures,	and	result	sets	associated	with	a	DbPool	object	before	that	object
goes	out	of	scope.	Release	connections	and	close	the	other	objects	as	soon	as
you	are	done	with	them.

http://developer.netscape.com/library/documentation/enterprise/wrijsap/index.htm

If	you	do	not	release	a	connection,	it	remains	bound	and	is	unavailable	to	the
next	user	until	the	associated	DbPool	object	goes	out	of	scope.	When	you	do
call	release	to	give	up	a	connection,	the	runtime	engine	waits	until	all	associated
cursors,	stored	procedures,	and	result	sets	are	closed	before	actually	releasing
the	connection.	Therefore,	you	must	close	those	objects	when	you	are	done	with
them.

You	can	use	the	prototype	property	of	the	DbPool	object	to	add	a	property	to	all
DbPool	instances.	If	you	do	so,	that	addition	applies	to	all	DbPool	objects
running	in	all	applications	on	your	server,	not	just	in	the	single	application	that
made	the	change.	This	allows	you	to	expand	the	capabilities	of	this	object	for
your	entire	server.

						

prototype Allows	the	addition	of	properties	to	a	DbPool	object.

DbPool
Creates	a	pool	of	database	Connection	objects	and
optionally	connects	the	objects	to	a	particular
configuration	of	database	and	user.

connect Connects	the	pool	to	a	particular	configuration	of	database
and	user.

connected Tests	whether	the	database	pool	and	all	of	its	connections
are	connected	to	a	database.

connection Retrieves	an	available	connection	from	the	pool.
disconnect Disconnects	all	connections	in	the	pool	from	the	database.

majorErrorCode Major	error	code	returned	by	the	database	server	or
ODBC.

majorErrorMessage
Major	error	message	returned	by	database	server	or
ODBC.	For	server	errors,	this	typically	corresponds	to	the
server's	SQLCODE.

minorErrorCode Secondary	error	code	returned	by	database	vendor	library.
minorErrorMessage Secondary	message	returned	by	database	vendor	library.

storedProcArgs Creates	a	prototype	for	a	Sybase	stored	procedure.
toString Returns	a	string	representing	the	specified	object.

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

DbPool
LiveWire	1.0

DbPool

Creates	a	pool	of	database	Connection	objects	and	optionally	connects	the
objects	to	a	particular	configuration	of	database	and	user.

DbPool
Netscape	Server	3.0

new	DbPool();	new	DbPool	(dbtype,	serverName,	username,	password,
databaseName);	new	DbPool	(dbtype,	serverName,	username,	password,
databaseName,	maxConnections);	new	DbPool	(dbtype,	serverName,	username,
password,	databaseName,	maxConnections,	commitflag);

dbtype Database	type.	One	of	ORACLE,	SYBASE,	INFORMIX,
DB2,	or	ODBC.
Name	of	the	database	server	to	which	to	connect.	The	server
name	typically	is	established	when	the	database	is	installed
and	is	different	for	different	database	types:DB2:	Local
database	alias.	On	both	NT	and	UNIX,	this	is	set	up	by	the
client	or	the	DB2	Command	Line	Processor.Informix:

serverName

Informix	server.	On	NT,	this	is	specified	with	the	setnet32
utility;	on	UNIX,	in	the	sqlhosts	file.Oracle:	Service.	On	both
NT	and	UNIX,	this	specified	in	the	tnsnames.ora	file.	On	NT,
you	can	use	the	SQL*Net	easy	configuration	to	specify	it.
When	your	Oracle	database	server	is	local,	specify	the	empty
string	for	this	argument.ODBC:	Data	source	name.	On	NT,
this	is	specified	in	the	ODBC	Administrator;	on	UNIX,	in	the
.odbc.ini	file.	If	you	are	using	the	Web	Server	as	a	user	the
file	.odbc.ini	must	be	in	your	home	directory;	if	as	a	system,	it
must	be	in	the	root	directory.Sybase:	Server	name	(the
DSQUERY	parameter).	On	NT,	this	is	specified	with	the
sqledit	utility;	on	UNIX,	with	the	sybinit	utility.If	in	doubt,
see	your	database	or	system	administrator.	For	ODBC,	this	is
the	name	of	the	ODBC	service	as	specified	in	Control	Panel.

userName

Name	of	the	user	to	connect	to	the	database.	Some	relational
database	management	systems	(RDBMS)	require	that	this	be
the	same	as	your	operating	system	login	name;	others
maintain	their	own	collections	of	valid	user	names.	See	your
system	administrator	if	you	are	in	doubt.

password User's	password.	If	the	database	does	not	require	a	password,
use	an	empty	string	("").

databaseName

Name	of	the	database	to	connect	to	for	the	given	serverName.
If	your	database	server	supports	the	notion	of	multiple
databases	on	a	single	server,	supply	the	name	of	the	database
to	use.	If	it	does	not,	use	an	empty	string	("").	For	Oracle,
ODBC,	and	DB2,	you	must	always	use	an	empty	string.For
Oracle,	specify	this	information	in	the	tnsnames.ora	file.For
ODBC,	if	you	want	to	connect	to	a	particular	database,
specify	the	database	name	specified	in	the	datasource
definition.For	DB2,	there	is	no	concept	of	a	database	name;
the	database	name	is	always	the	server	name	(as	specified
with	serverName).
(Optional)	Number	of	connections	to	be	created	and	cached	in
the	pool.	The	runtime	engine	attempts	to	create	as	many
connections	as	specified	with	this	parameter.	If	successful,	it
stores	those	connections	for	later	use.	If	you	do	not	supply
this	parameter,	its	value	is	1.	Remember	that	your	database
client	license	probably	specifies	a	maximum	number	of

maxConnections connections.	Do	not	set	this	parameter	to	a	number	higherthan	your	license	allows.	For	Sybase,	you	can	have	at	most
100	connections.If	your	database	client	library	is	not
multithreaded,	it	can	only	support	one	connection	at	a	time.	In
this	case,	your	application	performs	as	though	you	specified	1
for	this	parameter.	For	a	current	list	of	which	database	client
libraries	are	multithreaded,	see	the	Enterprise	Server	3.0
Release	Notes.

commitFlag

(Optional)	A	Boolean	value	indicating	whether	to	commit	a
pending	transaction	when	the	connection	is	released	or	the
object	is	finalized.(If	the	transaction	is	on	a	single	page,	the
object	is	finalized	at	the	end	of	the	page.	If	the	transaction
spans	multiple	pages,	the	object	is	finalized	when	the
connection	returns	to	the	pool.)If	this	parameter	is	false,	a
pending	transaction	is	rolled	back.	If	this	parameter	is	true,	a
pending	transaction	if	committed.	For	DbPool,	the	default
value	is	false;	for	database,	the	default	value	is	true.	If	you
specify	this	parameter,	you	must	also	specify	the
maxConnections	parameter.

The	first	version	of	this	constructor	takes	no	parameters.	It	instantiates	and
allocates	memory	for	a	DbPool	object.	This	version	of	the	constructor	creates
and	caches	one	connection.	When	this	connection	goes	out	of	scope,	pending
transactions	are	rolled	back.

The	second	version	of	this	constructor	instantiates	a	DbPool	object	and	then
calls	the	connect	method	to	establish	a	database	connection.	This	version	of	the
constructor	also	creates	and	caches	one	connection.	When	this	connection	goes
out	of	scope,	pending	transactions	are	rolled	back.

The	third	version	of	this	constructor	instantiates	a	DbPool	object	and	then	calls
the	connect	method	to	establish	a	database	connection.	In	addition,	it	attempts
to	create	as	many	connections	as	specified	by	the	maxConnections	parameter.	If
successful,	it	stores	those	connections	for	later	use.	If	the	runtime	engine	does
not	obtain	the	requested	connections,	it	returns	an	error.	When	this	connection
goes	out	of	scope,	pending	transactions	are	rolled	back.

http://home.netscape.com/eng/server/webserver/3.0/

The	fourth	version	of	this	constructor	does	everything	the	third	version	does.	In
addition,	the	commitflag	parameter	indicates	what	to	do	with	pending
transactions	when	the	connection	goes	out	of	scope.	If	this	parameter	is	false
(the	default),	a	pending	transaction	is	rolled	back.	If	this	parameter	is	true,	a
pending	transaction	if	committed.

To	detect	errors,	you	can	use	the	majorErrorCode	method.

If	possible,	your	application	should	call	this	constructor	and	make	the	database
connection	on	its	initial	page.	Doing	so	prevents	conflicts	from	multiple	client
requests	trying	to	manipulate	the	status	of	the	connections	at	once.

connect

Connects	the	pool	to	a	particular	configuration	of	database	and	user.

DbPool
Netscape	Server	3.0

connect	(dbtype,	serverName,	username,	password,	databaseName)	connect
(dbtype,	serverName,	username,	password,	databaseName,	maxConnections)
connect	(dbtype,	serverName,	username,	password,	databaseName,
maxConnections,	commitflag)

dbtype Database	type;	one	of	ORACLE,	SYBASE,	INFORMIX,
DB2,	or	ODBC.

serverName

Name	of	the	database	server	to	which	to	connect.	The	server
name	typically	is	established	when	the	database	is	installed
and	is	different	for	different	database	types:DB2:	Local
database	alias.	On	both	NT	and	UNIX,	this	is	set	up	by	the
client	or	the	DB2	Command	Line	Processor.Informix:
Informix	server.	On	NT,	this	is	specified	with	the	setnet32
utility;	on	UNIX,	in	the	sqlhosts	file.Oracle:	Service.	On	both
NT	and	UNIX,	this	specified	in	the	tnsnames.ora	file.	On	NT,
you	can	use	the	SQL*Net	easy	configuration	to	specify	it.
When	your	Oracle	database	server	is	local,	specify	the	empty
string	for	this	argument.	ODBC:	Data	source	name.	On	NT,
this	is	specified	in	the	ODBC	Administrator;	on	UNIX,	in	the
.odbc.ini	file.	If	you	are	using	the	Web	Server	as	a	user	the
file	.odbc.ini	must	be	in	your	home	directory;	if	as	a	system,	it
must	be	in	the	root	directory.Sybase:	Server	name	(the
DSQUERY	parameter).	On	NT,	this	is	specified	with	the
sqledit	utility;	on	UNIX,	with	the	sybinit	utility.If	in	doubt,
see	your	database	or	system	administrator.	For	ODBC,	this	is

the	name	of	the	ODBC	service	as	specified	in	Control	Panel.

userName

Name	of	the	user	to	connect	to	the	database.	Some	relational
database	management	systems	(RDBMS)	require	that	this	be
the	same	as	your	operating	system	login	name;	others
maintain	their	own	collections	of	valid	user	names.	See	your
system	administrator	if	you	are	in	doubt.

password User's	password.	If	the	database	does	not	require	a	password,
use	an	empty	string	("").

databaseName

Name	of	the	database	to	connect	to	for	the	given	serverName.
If	your	database	server	supports	the	notion	of	multiple
databases	on	a	single	server,	supply	the	name	of	the	database
to	use.	If	it	does	not,	use	an	empty	string	("").	For	Oracle,
ODBC,	and	DB2,	you	must	always	use	an	empty	string.For
Oracle,	specify	this	information	in	the	tnsnames.ora	file.For
ODBC,	if	you	want	to	connect	to	a	particular	database,
specify	the	database	name	specified	in	the	datasource
definition.For	DB2,	there	is	no	concept	of	a	database	name;
the	database	name	is	always	the	server	name	(as	specified
with	serverName).

maxConnections

(Optional)	Number	of	connections	to	be	created	and	cached	in
the	pool.	The	runtime	engine	attempts	to	create	as	many
connections	as	specified	with	this	parameter.	If	successful,	it
stores	those	connections	for	later	use.	If	you	do	not	supply
this	parameter,	its	value	is	1.	Remember	that	your	database
client	license	probably	specifies	a	maximum	number	of
connections.	Do	not	set	this	parameter	to	a	number	higher
than	your	license	allows.	For	Sybase,	you	can	have	at	most
100	connections.If	your	database	client	library	is	not
multithreaded,	it	can	only	support	one	connection	at	a	time.	In
this	case,	your	application	performs	as	though	you	specified	1
for	this	parameter.	For	a	current	list	of	which	database	client
libraries	are	multithreaded,	see	the	Enterprise	Server	3.0
Release	Notes.

commitFlag

(Optional)	A	Boolean	value	indicating	whether	to	commit	a
pending	transaction	when	the	connection	goes	out	of	scope.	If
this	parameter	is	false,	a	pending	transaction	is	rolled	back.	If
this	parameter	is	true,	a	pending	transaction	if	committed.	For
DbPool,	the	default	value	is	false;	for	database,	the	default

http://home.netscape.com/eng/server/webserver/3.0/

value	is	true.	If	you	specify	this	parameter,	you	must	also
specify	the	maxConnections	parameter.

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

When	you	call	this	method,	the	runtime	engine	first	closes	and	releases	any
currently	open	connections.	It	then	reconnects	the	pool	with	the	new
configuration.	You	should	be	sure	that	all	connections	have	been	released	before
calling	this	method.

The	first	version	of	this	method	creates	and	caches	one	connection.	When	this
connection	goes	out	of	scope,	pending	transactions	are	rolled	back.

The	second	version	of	this	method	attempts	to	create	as	many	connections	as
specified	by	the	maxConnections	parameter.	If	successful,	it	stores	those
connections	for	later	use.	If	the	runtime	engine	does	not	obtain	the	requested
connections,	it	returns	an	error.	When	this	connection	goes	out	of	scope,
pending	transactions	are	rolled	back.

The	third	version	of	this	method	does	everything	the	second	version	does.	In
addition,	the	commitflag	parameter	indicates	what	to	do	with	pending
transactions	when	this	connection	goes	out	of	scope.	If	this	parameter	is	false
(the	default),	a	pending	transaction	is	rolled	back.	If	this	parameter	is	true,	a
pending	transaction	if	committed.

The	following	statement	creates	four	connections	to	an	Informix	database
named	mydb	on	a	server	named	myserver,	with	user	name	SYSTEM	and
password	MANAGER.	Pending	transactions	are	rolled	back	at	the	end	of	a
client	request:

pool.connect("INFORMIX",	"myserver",	"SYSTEM",	"MANAGER",	"mydb",
4)

connected

Tests	whether	the	database	pool	and	all	of	its	connections	are	connected	to	a
database.

DbPool
Netscape	Server	3.0

connected()

True	if	the	pool	(and	hence	a	particular	connection	in	the	pool)	is	currently
connected	to	a	database;	otherwise,	false.

The	connected	method	indicates	whether	this	object	is	currently	connected	to	a
database.

If	this	method	returns	false	for	a	Connection	object,	you	cannot	use	any	other
methods	of	that	object.	You	must	reconnect	to	the	database,	using	the	DbPool
object,	and	then	get	a	new	Connection	object.	Similarly,	if	this	method	returns
false	for	the	database	object,	you	must	reconnect	before	using	other	methods	of
that	object.

	1: 	The	following	code	fragment	checks	to	see	if	the	connection	is	currently

open.	If	it's	not,	it	reconnects	the	pool	and	reassigns	a	new	value	to	the	myconn
variable.

if	(!myconn.connected())	{
			mypool.connect	("INFORMIX",	"myserver",	"SYSTEM",	"MANAGER",
"mydb",	4);
			myconn	=	mypool.connection;
}		2:	 The	following	example	uses	an	if	condition	to	determine	if	an
application	is	connected	to	a	database	server.	If	the	application	is	connected,	the
isConnectedRoutine	function	runs;	if	the	application	is	not	connected,	the
isNotConnected	routine	runs.

if(database.connected())	{
			isConnectedRoutine()	}
else	{
			isNotConnectedRoutine()	}

connection

Retrieves	an	available	connection	from	the	pool.

DbPool
Netscape	Server	3.0

connection	(name,	timeout)

name An	arbitrary	name	for	the	connection.	Primarily	used	for	debugging.

timeout
The	number	of	seconds	to	wait	for	an	available	connection	before
returning.	The	default	is	to	wait	indefinitely.	If	you	specify	this
parameter,	you	must	also	specify	the	name	parameter.

A	new	Connection	object.

disconnect

Disconnects	all	connections	in	the	pool	from	the	database.

DbPool
Netscape	Server	3.0

disconnect()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

For	the	DbPool	object,	before	calling	the	disconnect	method,	you	must	first	call
the	release	method	for	all	connections	in	this	database	pool.	Otherwise,	the
connection	is	still	considered	in	use	by	the	system,	so	the	disconnect	waits	until
all	connections	are	released.

After	disconnecting	from	a	database,	the	only	methods	of	this	object	you	can
use	are	connect	and	connected.

The	following	example	uses	an	if	condition	to	determine	if	an	application	is

connected	to	a	database	server.	If	the	application	is	connected,	the	application
calls	the	disconnect	method;	if	the	application	is	not	connected,	the
isNotConnected	routine	runs.

if(database.connected())	{
			database.disconnect()	}
else	{
			isNotConnectedRoutine()	}

majorErrorCode

Major	error	code	returned	by	the	database	server	or	ODBC.

DbPool
Netscape	Server	3.0

majorErrorCode()

The	result	returned	by	this	method	depends	on	the	database	server	being	used:

Informix:	the	Informix	error	code.

Oracle:	the	code	as	reported	by	Oracle	Call-level	Interface	(OCI).

Sybase:	the	DB-Library	error	number	or	the	SQL	server	message	number.

SQL	statements	can	fail	for	a	variety	of	reasons,	including	referential	integrity
constraints,	lack	of	user	privileges,	record	or		locking	in	a	multiuser	database,
and	so	on.	When	an	action	fails,	the	database	server	returns	an	error	message
indicating	the	reason	for	failure.	The	LiveWire	Database	Service	provides	two
ways	of	getting	error	information:	from	the	status	code	returned	by	various
methods	or	from	special	properties	containing	error	messages	and	codes.

Status	codes	are	integers	between	0	and	27,	with	0	indicating	a	successful
execution	of	the	statement	and	other	numbers	indicating	an	error,	as	shown	in

	10.3	Database	status	codes.		
Status
Code Explanation Status

Code Explanation

0 No	error 14 Null	reference	parameter

1 Out	of	memory 15 Connection	object	not
found

2 Object	never	initialized 16 Required	information	is
missing

3 Type	conversion	error 17 Object	cannot	support
multiple	readers

4 Database	not	registered 18 Object	cannot	support
deletions

5 Error	reported	by	server 19 Object	cannot	support
insertions

6 Message	from	server 20 Object	cannot	support
updates

7 Error	from	vendor's	library 21 Object	cannot	support
updates

8 Lost	connection 22 Object	cannot	support
indices

9 End	of	fetch 23 Object	cannot	be	dropped

10 Invalid	use	of	object 24 Incorrect	connection
supplied

11 Column	does	not	exist 25 Object	cannot	support
privileges

12 Invalid	positioning	within	object
(bounds	error) 26 Object	cannot	support

cursors
13 Unsupported	feature 27 Unable	to	open
	10.3.

This	example	updates	the	rentals		within	a	transaction.	The	updateRow
method	assigns	a	database	status	code	to	the	statusCode	variable	to	indicate
whether	the	method	is	successful.

If	updateRow	succeeds,	the	value	of	statusCode	is	0,	and	the	transaction	is
committed.	If	updateRow	returns	a	statusCode	value	of	either	five	or	seven,	the
values	of	majorErrorCode,	majorErrorMessage,	minorErrorCode,	and
minorErrorMessage	are	displayed.	If	statusCode	is	set	to	any	other	value,	the
errorRoutine	function	is	called.

database.beginTransaction()
statusCode	=	cursor.updateRow("rentals")	if	(statusCode	==	0)	{
			database.commitTransaction()
			}	if	(statusCode	==	5	||	statusCode	==	7)	{
			write("The	operation	failed	to	complete.
"
			write("Contact	your	system	administrator	with	the	following:<P>"
			write("The	value	of	statusCode	is	"	+	statusCode	+	"
")
			write("The	value	of	majorErrorCode	is	"	+
						database.majorErrorCode()	+	"
")
			write("The	value	of	majorErrorMessage	is	"	+
						database.majorErrorMessage()	+	"
")
			write("The	value	of	minorErrorCode	is	"	+
						database.minorErrorCode()	+	"
")
			write("The	value	of	minorErrorMessage	is	"	+
						database.minorErrorMessage()	+	"
")
			database.rollbackTransaction()
			}	else	{
			errorRoutine()
			}

majorErrorMessage

Major	error	message	returned	by	database	server	or	ODBC.	For	server	errors,
this	typically	corresponds	to	the	server's	SQLCODE.

DbPool
Netscape	Server	3.0

majorErrorMessage()

A	string	describing	that	depends	on	the	database	server:

Informix:	"Vendor	Library	Error:	string,"	where	string	is	the	error	text	from
Informix.

Oracle:	"Server	Error:	string,"	where	string	is	the	translation	of	the	return
code	supplied	by	Oracle.

Sybase:	"Vendor	Library	Error:	string,"	where	string	is	the	error	text	from
DB-Library	or	"Server	Error	string,"	where	string	is	text	from	the	SQL
server,	unless	the	severity	and	message	number	are	both	0,	in	which	case	it
returns	just	the	message	text.

SQL	statements	can	fail	for	a	variety	of	reasons,	including	referential	integrity
constraints,	lack	of	user	privileges,	record	or		locking	in	a	multiuser	database,
and	so	on.	When	an	action	fails,	the	database	server	returns	an	error	message

indicating	the	reason	for	failure.	The	LiveWire	Database	Service	provides	two
ways	of	getting	error	information:	from	the	status	code	returned	by	connection
and	DbPool	methods	or	from	special	connection	or	DbPool	properties
containing	error	messages	and	codes.

See	DbPool.majorErrorCode.

minorErrorCode

Secondary	error	code	returned	by	database	vendor	library.

DbPool
Netscape	Server	3.0

minorErrorCode()

The	result	returned	by	this	method	depends	on	the	database	server:

Informix:	the	ISAM	error	code,	or	0	if	there	is	no	ISAM	error.

Oracle:	the	operating	system	error	code	as	reported	by	OCI.

Sybase:	the	severity	level,	as	reported	by	DB-Library	or	the	severity	level,
as	reported	by	the	SQL	server.

minorErrorMessage

Secondary	message	returned	by	database	vendor	library.

DbPool
Netscape	Server	3.0

minorErrorMessage()

The	string	returned	by	this	method	depends	on	the	database	server:

Informix:	"ISAM	Error:	string,"	where	string	is	the	text	of	the	ISAM	error
code	from	Informix,	or	an	empty	string	if	there	is	no	ISAM	error.

Oracle:	the	Oracle	server	name.

Sybase:	the	operating	system	error	text,	as	reported	by	DB-Library	or	the
SQL	server	name.

storedProcArgs

Creates	a	prototype	for	a	DB2,	ODBC,	or	Sybase	stored	procedure.

DbPool
Netscape	Server	3.0

storedProcArgs	(procName,	type1,	...,	typeN)

procName The	name	of	the	procedure.

type1,	...,
typeN

Each	typeI	is	one	of:	"IN",	"OUT",	or	"INOUT"	Specifies	the	type
of	each	parameter:	input	("IN"),	output	("OUT"),	or	both	input	and
output	("INOUT").

Nothing.

This	method	is	only	for	Sybase	stored	procedures.

This	method	provides	the	procedure	name	and	the	parameters	for	that	stored
procedure.	Sybase	stored	procedures	can	accept	parameters	that	are	only	for
input	("IN"),	only	for	output	("OUT"),	or	for	both	input	and	output	("INOUT").

You	must	create	one	prototype	for	each	Sybase	stored	procedure	you	use	in	your
application.	Additional	prototypes	for	the	same	stored	procedure	are	ignored.

You	can	specify	an	INOUT	parameter	either	as	an	INOUT	or	as	an	OUT
parameter.	If	you	use	an	INOUT	parameter	of	a	stored	procedure	as	an	OUT

parameter,	the	LiveWire	Database	Service	implicitly	passes	a	NULL	value	for
that	parameter.

Assume	the	inoutdemo	stored	procedure	takes	one	input	parameter	and	one
input/output	parameter,	as	follows:

create	procedure	inoutdemo	(@inparam	int,	@inoutparam	int	output)
as
if	(@inoutparam	==	null)
@inoutparam	=	@inparam	+	1
else
@inoutparam	=	@inoutparam	+	1	Assume	execute	the	following	code	and	then
call	outParameters(0),	the	result	will	be	101:

database.storedProcArgs("inoutdemo",	"IN",	"INOUT")
spobj=	database.storedProc("inoutdemo",	6,	100);
answer	=	spobj.outParameters(0);	The	value	of	answer	is	101.	On	the	other
hand,	assume	you	execute	this	code:

database.storedProcArgs("inoutdemo",	"IN",	"OUT")
spobj	=	database.storedProc("inoutdemo",	6,	100);
answer	=	spobj.outParameters(0);	In	this	case,	the	value	of	answer	is	7.

toString

Returns	a	string	representing	the	specified	object.

DbPool
Netscape	Server	3.0

toString()

Every	object	has	a	toString	method	that	is	automatically	called	when	it	is	to	be
represented	as	a	text	value	or	when	an	object	is	referred	to	in	a	string
concatenation.

You	can	use	toString	within	your	own	code	to	convert	an	object	into	a	string,
and	you	can	create	your	own	function	to	be	called	in	place	of	the	default
toString	method.

This	method	returns	a	string	of	the	following	format:

db	"name"	"userName"	"dbtype"	"serverName"	where

name The	name	of	the	database.
userName The	name	of	the	user	connected	to	the	database.
dbType One	of	ORACLE,	SYBASE,	INFORMIX,	DB2,	or	ODBC.
serverName The	name	of	the	database	server.

The	method	displays	an	empty	string	for	any	of	attributes	whose	value	is
unknown.

For	information	on	defining	your	own	toString	method,	see	the	Object.toString
method.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Connection
Represents	a	single	database	connection	from	a	pool	of	connections.

Netscape	Server	3.0

The	DbPool.connection	method.	You	do	not	call	a	connection	constructor
directly.	Once	you	have	a	Connection	object,	you	use	it	for	your	interactions
with	the	database.

You	can	use	the	prototype	property	of	the	Connection	class	to	add	a	property	to
all	Connection	instances.	If	you	do	so,	that	addition	applies	to	all	Connection
objects	running	in	all	applications	on	your	server,	not	just	in	the	single
application	that	made	the	change.	This	allows	you	to	expand	the	capabilities	of
this	object	for	your	entire	server.

						

prototype Allows	the	addition	of	properties	to	a	Connection	object.

beginTransaction Begins	a	new	SQL	transaction.
commitTransaction Commits	the	current	transaction.

connected Tests	whether	the	database	pool	(and	hence	this
connection)	is	connected	to	a	database.

cursor Creates	a	database	cursor	for	the	specified	SQL	SELECT
statement.
Performs	the	specified	SQL	statement.	Use	for	SQL

execute statements	other	than	queries.

majorErrorCode Major	error	code	returned	by	the	database	server	or
ODBC.

majorErrorMessage Major	error	message	returned	by	database	server	or
ODBC.

minorErrorCode Secondary	error	code	returned	by	database	vendor	library.
minorErrorMessage Secondary	message	returned	by	database	vendor	library.
release Releases	the	connection	back	to	the	database	pool.
rollbackTransaction Rolls	back	the	current	transaction.

SQL Displays	query	results.	Creates	an	HTML		for	results	of
an	SQL	SELECT	statement.

storedProc Creates	a	stored-procedure	object	and	runs	the	specified
stored	procedure.

toString Returns	a	string	representing	the	specified	object.

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

Connection
LiveWire	1.0

beginTransaction

Begins	a	new	SQL	transaction.

Connection
Netscape	Server	3.0

beginTransaction()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

All	subsequent	actions	that	modify	the	database	are	grouped	with	this
transaction,	known	as	the	current	transaction.

For	the	database	object,	the	scope	of	a	transaction	is	limited	to	the	current
request	(HTML	page)	in	the	application.	If	the	application	exits	the	page	before
calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	by	calling
database.connect.

For	Connection	objects,	the	scope	of	a	transaction	is	limited	to	the	lifetime	of

that	object.	If	the	connection	is	released	or	the	pool	of	connections	is	closed
before	calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	by	calling	the	connect
method	or	in	the	DbPool	constructor.

If	there	is	no	current	transaction	(that	is,	if	the	application	has	not	called
beginTransaction),	calls	to	commitTransaction	and	rollbackTransaction	are
ignored.

The	LiveWire	Database	Service	does	not	support	nested	transactions.	If	you	call
beginTransaction	when	a	transaction	is	already	open	(that	is,	you've	called
beginTransaction	and	have	yet	to	commit	or	roll	back	that	transaction),	you'll
get	an	error	message.

This	example	updates	the	rentals		within	a	transaction.	The	values	of
customerID	and	videoID	are	passed	into	the	cursor	method	as	properties	of	the
request	object.	When	the	videoReturn	Cursor	object	opens,	the	next	method
navigates	to	the	only	record	in	the	answer	set	and	updates	the	value	in	the
returnDate	field.

The	variable	x	is	assigned	a	database	status	code	to	indicate	if	the	updateRow
method	is	successful.	If	updateRow	succeeds,	the	value	of	x	is	0,	and	the
transaction	is	committed;	otherwise,	the	transaction	is	rolled	back.

//	Begin	a	transaction
database.beginTransaction();	//	Create	a	Date	object	with	the	value	of	today's
date
today	=	new	Date();	//	Create	a	Cursor	with	the	rented	video	in	the	answer	set
videoReturn	=	database.Cursor("SELECT	*	FROM	rentals	WHERE
			customerId	=	"	+	request.customerID	+	"	AND
			videoId	=	"	+	request.videoID,	true);	//	Position	the	pointer	on	the	first	row	of
the	Cursor
//	and	update	the	row
videoReturn.next()
videoReturn.returndate	=	today;

x	=	videoReturn.updateRow("rentals");	//	End	the	transaction	by	committing	or
rolling	back
if	(x	==	0)	{
			database.commitTransaction()	}
else	{
			database.rollbackTransaction()	}	//	Close	the	Cursor
videoReturn.close();

commitTransaction

Commits	the	current	transaction

Connection
Netscape	Server	3.0

commitTransaction()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

This	method	attempts	to	commit	all	actions	since	the	last	call	to
beginTransaction.

For	the	database	object,	the	scope	of	a	transaction	is	limited	to	the	current
request	(HTML	page)	in	the	application.	If	the	application	exits	the	page	before
calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	with	the	database	or
DbPool	object.

For	Connection	objects,	the	scope	of	a	transaction	is	limited	to	the	lifetime	of

that	object.	If	the	connection	is	released	or	the	pool	of	connections	is	closed
before	calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
commitFlag	value.

If	there	is	no	current	transaction	(that	is,	if	the	application	has	not	called
beginTransaction),	calls	to	commitTransaction	and	rollbackTransaction	are
ignored.

The	LiveWire	Database	Service	does	not	support	nested	transactions.	If	you	call
beginTransaction	when	a	transaction	is	already	open	(that	is,	you've	called
beginTransaction	and	have	yet	to	commit	or	roll	back	that	transaction),	you'll
get	an	error	message.

connected

Tests	whether	the	database	pool	and	all	of	its	connections	are	connected	to	a
database.

Connection
Netscape	Server	3.0

connected()

True	if	the	pool	(and	hence	a	particular	connection	in	the	pool)	is	currently
connected	to	a	database;	otherwise,	false.

The	connected	method	indicates	whether	this	object	is	currently	connected	to	a
database.

If	this	method	returns	false	for	a	Connection	object,	you	cannot	use	any	other
methods	of	that	object.	You	must	reconnect	to	the	database,	using	the	DbPool
object,	and	then	get	a	new	Connection	object.	Similarly,	if	this	method	returns
false	for	the	database	object,	you	must	reconnect	before	using	other	methods	of
that	object.

	1: 	The	following	code	fragment	checks	to	see	if	the	connection	is	currently

open.	If	it's	not,	it	reconnects	the	pool	and	reassigns	a	new	value	to	the	myconn
variable.

if	(!myconn.connected())	{
			mypool.connect	("INFORMIX",	"myserver",	"SYSTEM",	"MANAGER",
"mydb",	4);
			myconn	=	mypool.connection;
}		2:	 The	following	example	uses	an	if	condition	to	determine	if	an
application	is	connected	to	a	database	server.	If	the	application	is	connected,	the
isConnectedRoutine	function	runs;	if	the	application	is	not	connected,	the
isNotConnected	routine	runs.

if(database.connected())	{
			isConnectedRoutine()	}
else	{
			isNotConnectedRoutine()	}

cursor

Creates	a	Cursor	object.

Connection
Netscape	Server	3.0

cursor("sqlStatement",upda)

sqlStatement A	JavaScript	string	representing	a	SQL	SELECT	statementsupported	by	the	database	server.

upda (Optional)	A	Boolean	parameter	indicating	whether	or	not	the
cursor	is	upda.

A	new	Cursor	object.

The	cursor	method	creates	a	Cursor	object	that	contains	the	rows	returned	by	a
SQL	SELECT	statement.	The	SELECT	statement	is	passed	to	the	cursor	method
as	the	sqlStatement	argument.	If	the	SELECT	statement	does	not	return	any
rows,	the	resulting	Cursor	object	has	no	rows.	The	first	time	you	use	the	next
method	on	the	object,	it	returns	false.

You	can	perform	the	following	tasks	with	the	Cursor	object:

Modify	data	in	a	server	.
Navigate	in	a	server	.
Customize	the	display	of	the	virtual		returned	by	a	database	query.

Run	stored	procedures.

The	cursor	method	does	not	automatically	display	the	returned	data.	To	display
this	data,	you	must	create	custom	HTML	code.	This	HTML	code	may	display
the	rows	in	an	HTML	,	as	shown	in	Example	3.	The	SQL	method	is	an
easier	way	to	display	the	output	of	a	database	query,	but	you	cannot	navigate,
modify	data,	or	control	the	format	of	the	output.

The	optional	parameter	upda	specifies	whether	you	can	modify	the	Cursor
object	you	create	with	the	cursor	method.	To	create	a	Cursor	object	you	can
modify,	specify	upda	as	true.	If	you	do	not	specify	a	value	for	the	upda
parameter,	it	is	false	by	default.

If	you	create	an	upda	Cursor	object,	the	answer	set	returned	by	the
sqlStatement	parameter	must	be	upda.	For	example,	the	SELECT	statement	in
the	sqlStatement	parameter	cannot	contain	a	GROUP	BY	clause;	in	addition,	the
query	usually	must	retrieve	key	values	from	a	.	For	more	information	on
constructing	upda	queries,	consult	your	database	vendor's	documentation.

	1. 	The	following	example	creates	the	upda	cursor	custs	and	returns	the
columns	ID,	CUST_NAME,	and	CITY	from	the	customer	:

custs	=	database.Cursor("select	id,	cust_name,	city	from	customer",	true)		2.
You	can	construct	the	SELECT	statement	with	the	string	concatenation	operator
(+)	and	string	variables	such	as	client	or	request	property	values,	as	shown	in
the	following	example:

custs	=	database.Cursor("select	*	from	customer
			where	customerID	=	"	+	request.customerID);		3. 	The	following	example
demonstrates	how	to	format	the	answer	set	returned	by	the	cursor	method	as	an
HTML	.	This	example	first	creates	Cursor	object	named	videoSet	and	then
displays	two	columns	of	its	data	(videoSet.title	and	videoSet.synopsis).

//	Create	the	videoSet	Cursor
<SERVER>
videoSet	=	database.cursor("select	*	from	videos
			where	videos.numonhand	>	0	order	by	title");

</SERVER>	//	Begin	creating	an	HTML		to	contain	the	answer	set
//	Specify	titles	for	the	two	columns	in	the	answer	set
<	BORDER>
<CAPTION>	Videos	on	Hand	</CAPTION>
<TR>
			<TH>Title</TH>
			<TH>Synopsis</TH>
</TR>	//	Use	a	while	loop	to	iterate	over	each	row	in	the	cursor
<SERVER>
while(videoSet.next())	{
</SERVER>	//	Use	write	statements	to	display	the	data	in	both	columns
<TR>
			<TH>
							<SERVER>write(videoSet.title)</SERVER></TH>
			<TD><SERVER>write(videoSet.synopsis)</SERVER></TD>
</TR>	//	End	the	while	loop
<SERVER>
}
</SERVER>	//	End	the	HTML	
</>	The	values	in	the	videoSet.title	column	are	displayed	within	the	A	tag	so	a
user	can	click	them	as	links.	When	a	user	clicks	a	title,	the	rent.html	page	opens
and	the	column	value	videoSet.id	is	passed	to	it	as	the	value	of	request.videoID.

Connection.SQL,	Connection.cursor

execute

Performs	the	specified	SQL	statement.	Use	for	SQL	statements	other	than
queries.

Connection
Netscape	Server	3.0

execute	(stmt)

stmt A	string	representing	the	SQL	statement	to	execute.

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

This	method	enables	an	application	to	execute	any	data	definition	language
(DDL)	or	data	manipulation	language	(DML)	SQL	statement	supported	by	the
database	server	that	does	not	return	a	Cursor,	such	as	CREATE,	ALTER,	or
DROP.

Each	database	supports	a	standard	core	of	DDL	and	DML	statements.	In
addition,	they	may	each	also	support	DDL	and	DML	statements	specific	to	that
database	vendor.	You	can	use	execute	to	call	any	of	those	statements.	However,
each	database	vendor	may	also	provide	functions	you	can	use	with	the	database
that	are	not	DDL	or	DML	statements.	You	cannot	use	execute	to	call	those

functions.	For	example,	you	cannot	call	the	Oracle	describe	function	or	the
Informix	load	function	from	the	execute	method.

Although	technically	you	can	use	execute	to	perform	data	modification
(INSERT,	UPDATE,	and	DELETE	statements),	you	should	instead	use	Cursor
objects.	This	makes	your	application	more	database-independent.	Cursors	also
provide	support	for	binary	large	object	(BLOb)	data.

When	using	the	execute	method,	your	SQL	statement	must	strictly	conform	to
the	requirements	of	the	database	server.	For	example,	some	servers	require
each	SQL	statement	to	be	terminated	by	a	semicolon.	See	your	server
documentation	for	more	information.

If	you	have	not	explicitly	started	a	transaction,	the	single	statement	is
automatically	committed.

In	the	following	example,	the	execute	method	is	used	to	delete	a	customer	from
the	customer	.	customer.ID	represents	the	unique	ID	of	a	customer	that	is	in
the	ID	column	of	the	customer	.	The	value	for	customer.ID	is	passed	into	the
DELETE	statement	as	the	value	of	the	ID	property	of	the	request	object.

if(request.ID	!=	null)	{
			database.execute("delete	from	customer
						where	customer.ID	=	"	+	request.ID)
}

majorErrorCode

Major	error	code	returned	by	the	database	server	or	ODBC.

Connection
Netscape	Server	3.0

majorErrorCode()

The	result	returned	by	this	method	depends	on	the	database	server	being	used:

Informix:	the	Informix	error	code.

Oracle:	the	code	as	reported	by	Oracle	Call-level	Interface	(OCI).

Sybase:	the	DB-Library	error	number	or	the	SQL	server	message	number.

SQL	statements	can	fail	for	a	variety	of	reasons,	including	referential	integrity
constraints,	lack	of	user	privileges,	record	or		locking	in	a	multiuser	database,
and	so	on.	When	an	action	fails,	the	database	server	returns	an	error	message
indicating	the	reason	for	failure.	The	LiveWire	Database	Service	provides	two
ways	of	getting	error	information:	from	the	status	code	returned	by	various
methods	or	from	special	properties	containing	error	messages	and	codes.

Status	codes	are	integers	between	0	and	27,	with	0	indicating	a	successful
execution	of	the	statement	and	other	numbers	indicating	an	error,	as	shown	in

	10.4.

	10.4	Database	status	codes.
Status
Code Explanation Status

Code Explanation

0 No	error 14 Null	reference	parameter

1 Out	of	memory 15 Connection	object	not
found

2 Object	never	initialized 16 Required	information	is
missing

3 Type	conversion	error 17 Object	cannot	support
multiple	readers

4 Database	not	registered 18 Object	cannot	support
deletions

5 Error	reported	by	server 19 Object	cannot	support
insertions

6 Message	from	server 20 Object	cannot	support
updates

7 Error	from	vendor's	library 21 Object	cannot	support
updates

8 Lost	connection 22 Object	cannot	support
indices

9 End	of	fetch 23 Object	cannot	be	dropped

10 Invalid	use	of	object 24 Incorrect	connection
supplied

11 Column	does	not	exist 25 Object	cannot	support
privileges

12 Invalid	positioning	within	object
(bounds	error) 26 Object	cannot	support

cursors
13 Unsupported	feature 27 Unable	to	open

This	example	updates	the	rentals		within	a	transaction.	The	updateRow
method	assigns	a	database	status	code	to	the	statusCode	variable	to	indicate
whether	the	method	is	successful.

If	updateRow	succeeds,	the	value	of	statusCode	is	0,	and	the	transaction	is
committed.	If	updateRow	returns	a	statusCode	value	of	either	five	or	seven,	the
values	of	majorErrorCode,	majorErrorMessage,	minorErrorCode,	and
minorErrorMessage	are	displayed.	If	statusCode	is	set	to	any	other	value,	the
errorRoutine	function	is	called.

database.beginTransaction()
statusCode	=	cursor.updateRow("rentals")	if	(statusCode	==	0)	{
			database.commitTransaction()
			}	if	(statusCode	==	5	||	statusCode	==	7)	{
			write("The	operation	failed	to	complete.
"
			write("Contact	your	system	administrator	with	the	following:<P>"
			write("The	value	of	statusCode	is	"	+	statusCode	+	"
")
			write("The	value	of	majorErrorCode	is	"	+
						database.majorErrorCode()	+	"
")
			write("The	value	of	majorErrorMessage	is	"	+
						database.majorErrorMessage()	+	"
")
			write("The	value	of	minorErrorCode	is	"	+
						database.minorErrorCode()	+	"
")
			write("The	value	of	minorErrorMessage	is	"	+
						database.minorErrorMessage()	+	"
")
			database.rollbackTransaction()
			}	else	{
			errorRoutine()
			}

majorErrorMessage

Major	error	message	returned	by	database	server	or	ODBC.	For	server	errors,
this	typically	corresponds	to	the	server's	SQLCODE.

Connection
Netscape	Server	3.0

majorErrorMessage()

A	string	describing	that	depends	on	the	database	server:

Informix:	"Vendor	Library	Error:	string,"	where	string	is	the	error	text	from
Informix.

Oracle:	"Server	Error:	string,"	where	string	is	the	translation	of	the	return
code	supplied	by	Oracle.

Sybase:	"Vendor	Library	Error:	string,"	where	string	is	the	error	text	from
DB-Library	or	"Server	Error	string,"	where	string	is	text	from	the	SQL
server,	unless	the	severity	and	message	number	are	both	0,	in	which	case	it
returns	just	the	message	text.

SQL	statements	can	fail	for	a	variety	of	reasons,	including	referential	integrity
constraints,	lack	of	user	privileges,	record	or		locking	in	a	multiuser	database,
and	so	on.	When	an	action	fails,	the	database	server	returns	an	error	message

indicating	the	reason	for	failure.	The	LiveWire	Database	Service	provides	two
ways	of	getting	error	information:	from	the	status	code	returned	by	connection
and	DbPool	methods	or	from	special	connection	or	DbPool	properties
containing	error	messages	and	codes.

See	Connection.majorErrorCode.

minorErrorCode

Secondary	error	code	returned	by	database	vendor	library.

Connection
Netscape	Server	3.0

minorErrorCode()

The	result	returned	by	this	method	depends	on	the	database	server:

Informix:	the	ISAM	error	code,	or	0	if	there	is	no	ISAM	error.

Oracle:	the	operating	system	error	code	as	reported	by	OCI.

Sybase:	the	severity	level,	as	reported	by	DB-Library	or	the	severity	level,
as	reported	by	the	SQL	server.

minorErrorMessage

Secondary	message	returned	by	database	vendor	library.

Connection
Netscape	Server	3.0

minorErrorMessage()

The	string	returned	by	this	method	depends	on	the	database	server:

Informix:	"ISAM	Error:	string,"	where	string	is	the	text	of	the	ISAM	error
code	from	Informix,	or	an	empty	string	if	there	is	no	ISAM	error.

Oracle:	the	Oracle	server	name.

Sybase:	the	operating	system	error	text,	as	reported	by	DB-Library	or	the
SQL	server	name.

release

Releases	the	connection	back	to	the	database	pool.

Connection
Netscape	Server	3.0

release()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

Before	calling	the	release	method,	you	should	close	all	open	cursors.	When	you
call	the	release	method,	the	runtime	engine	waits	until	all	cursors	have	been
closed	and	then	returns	the	connection	to	the	database	pool.	The	connection	is
then	available	to	the	next	user.

If	you	don't	call	the	release	method,	the	connection	remains	unavailable	until
the	object	goes	out	of	scope.	Assuming	the	object	has	been	assigned	to	a
variable,	it	can	go	out	of	scope	at	different	times:

If	the	variable	is	a	property	of	the	project	object	(such	as	project.engconn),
then	it	remains	in	scope	until	the	application	terminates.

If	it	is	a	property	of	the	server	object	(such	as	server.engconn),	it	does	not
go	out	of	scope	until	the	server	goes	down.	You	rarely	want	to	have	a
connection	last	the	lifetime	of	the	server.

In	all	other	cases,	the	variable	is	a	property	of	the	client	request.	In	this
situation,	the	variable	goes	out	of	scope	when	the	JavaScript	finalize
method	is	called;	that	is,	when	control	leaves	the	HTML	page.

You	must	call	the	release	method	for	all	connections	in	a	database	pool	before
you	can	call	the	DbPool	object's	disconnect	method.	Otherwise,	the	connection
is	still	considered	in	use	by	the	runtime	engine,	so	the	disconnect	waits	until	all
connections	are	released.

rollbackTransaction

Rolls	back	the	current	transaction.

Connection
Netscape	Server	3.0

rollbackTransaction()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

This	method	will	undo	all	modifications	since	the	last	call	to	beginTransaction.

For	the	database	object,	the	scope	of	a	transaction	is	limited	to	the	current
request	(HTML	page)	in	the	application.	If	the	application	exits	the	page	before
calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	with	the	database	or
DbPool	object.

For	Connection	objects,	the	scope	of	a	transaction	is	limited	to	the	lifetime	of
that	object.	If	the	connection	is	released	or	the	pool	of	connections	is	closed

before	calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
commitFlag	value.

If	there	is	no	current	transaction	(that	is,	if	the	application	has	not	called
beginTransaction),	calls	to	commitTransaction	and	rollbackTransaction	are
ignored.

The	LiveWire	Database	Service	does	not	support	nested	transactions.	If	you	call
beginTransaction	when	a	transaction	is	already	open	(that	is,	you've	called
beginTransaction	and	have	yet	to	commit	or	roll	back	that	transaction),	you'll
get	an	error	message.

SQL

Displays	query	results.	Creates	an	HTML		for	results	of	an	SQL	SELECT
statement.

Connection
Netscape	Server	3.0

SQL	(stmt)

stmt A	string	representing	an	SQL	SELECT	statement.

A	string	representing	an	HTML	,	with	each	row	and	column	in	the	query	as	a
row	and	column	of	the	.

Although	SQL	does	not	give	explicit	control	over	how	the	output	is	formatted,
it	is	the	easiest	way	to	display	query	results.	If	you	want	to	customize	the
appearance	of	the	output,	use	a	Cursor	object	to	create	your	own	display
function.

Note

Every	Sybase		you	use	with	a	cursor	must	have	a	unique	index.

If	connobj	is	a	Connection	object	and	request.sql	contains	an	SQL	query,	then

the	following	JavaScript	statements	display	the	result	of	the	query	in	a	:

write(request.sql)
connobj.SQL(request.sql)	The	first	line	simply	displays	the	SELECT	statement,
and	the	second	line	displays	the	results	of	the	query.	This	is	the	first	part	of	the
HTML	generated	by	these	statements:

select	*	from	videos
<	BORDER>
<TR>
<TH>title</TH>
<TH>id</TH>
<TH>year</TH>
<TH>category</TH>
<TH>quantity</TH>
<TH>numonhand</TH>
<TH>synopsis</TH>
</TR>
<TR>
<TD>A	Clockwork	Orange</TD>
<TD>1</TD>
<TD>1975</TD>
<TD>Science	Fiction</TD>
<TD>5</TD>
<TD>3</TD>
<TD>	Little	Alex,	played	by	Malcolm	Macdowell,
and	his	droogies	stop	by	the	Miloko	bar	for	a	
refreshing	libation	before	a	wild	night	on	the	town.
</TD>
</TR>
<TR>
<TD>Sleepless	In	Seattle</TD>
...	As	this	example	illustrates,	SQL	generates	an	HTML	,	with	column
headings	for	each	column	in	the	database		and	a	row	in	the		for	each	row	in
the	database	.

storedProc

Creates	a	stored-procedure	object	and	runs	the	specified	stored	procedure.

Connection
Netscape	Server	3.0

storedwProc	(procName,	inarg1,	inarg2,	...,	inargN)

procName A	string	specifying	the	name	of	the	stored	procedure	to	run.
inarg1,	...,
inargN

The	input	parameters	to	be	passed	to	the	procedure,	separated
by	commas.

A	new	Stproc	object.

The	scope	of	the	stored-procedure	object	is	a	single	page	of	the	application.	In
other	words,	all	methods	to	be	executed	for	any	instance	of	storedProc	must	be
invoked	on	the	same	application	page	as	the	page	on	which	the	object	is	created.

When	you	create	a	stored	procedure,	you	can	specify	default	values	for	any	of
the	parameters.	Then,	if	a	parameter	is	not	included	when	the	stored	procedure
is	executed,	the	procedure	uses	the	default	value.	However,	when	you	call	a
stored	procedure	from	a	server-side	JavaScript	application,	you	must	indicate
that	you	want	to	use	the	default	value	by	typing	"/Default/"	in	place	of	the
parameter.	(Remember	that	JavaScript	is	case	sensitive.)	For	example:	spObj	=
connobj.storedProc	("newhire",	"/Default/",	3)

toString

Returns	a	string	representing	the	specified	object.

Connection
Netscape	Server	3.0

toString()

Every	object	has	a	toString	method	that	is	automatically	called	when	it	is	to	be
represented	as	a	text	value	or	when	an	object	is	referred	to	in	a	string
concatenation.

You	can	use	toString	within	your	own	code	to	convert	an	object	into	a	string,
and	you	can	create	your	own	function	to	be	called	in	place	of	the	default
toString	method.

This	method	returns	a	string	of	the	following	format:

db	"name"	"userName"	"dbtype"	"serverName"	where

name The	name	of	the	database.
userName The	name	of	the	user	connected	to	the	database.
dbType One	of	ORACLE,	SYBASE,	INFORMIX,	DB2,	or	ODBC.
serverName The	name	of	the	database	server.

The	method	displays	an	empty	string	for	any	of	attributes	whose	value	is
unknown.

For	information	on	defining	your	own	toString	method,	see	the	Object.toString
method.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Connection
Represents	a	single	database	connection	from	a	pool	of	connections.

Netscape	Server	3.0

The	DbPool.connection	method.	You	do	not	call	a	connection	constructor
directly.	Once	you	have	a	Connection	object,	you	use	it	for	your	interactions
with	the	database.

You	can	use	the	prototype	property	of	the	Connection	class	to	add	a	property	to
all	Connection	instances.	If	you	do	so,	that	addition	applies	to	all	Connection
objects	running	in	all	applications	on	your	server,	not	just	in	the	single
application	that	made	the	change.	This	allows	you	to	expand	the	capabilities	of
this	object	for	your	entire	server.

						

prototype Allows	the	addition	of	properties	to	a	Connection	object.

beginTransaction Begins	a	new	SQL	transaction.
commitTransaction Commits	the	current	transaction.

connected Tests	whether	the	database	pool	(and	hence	this
connection)	is	connected	to	a	database.

cursor Creates	a	database	cursor	for	the	specified	SQL	SELECT
statement.
Performs	the	specified	SQL	statement.	Use	for	SQL

execute statements	other	than	queries.

majorErrorCode Major	error	code	returned	by	the	database	server	or
ODBC.

majorErrorMessage Major	error	message	returned	by	database	server	or
ODBC.

minorErrorCode Secondary	error	code	returned	by	database	vendor	library.
minorErrorMessage Secondary	message	returned	by	database	vendor	library.
release Releases	the	connection	back	to	the	database	pool.
rollbackTransaction Rolls	back	the	current	transaction.

SQL Displays	query	results.	Creates	an	HTML		for	results	of
an	SQL	SELECT	statement.

storedProc Creates	a	stored-procedure	object	and	runs	the	specified
stored	procedure.

toString Returns	a	string	representing	the	specified	object.

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

Connection
LiveWire	1.0

beginTransaction

Begins	a	new	SQL	transaction.

Connection
Netscape	Server	3.0

beginTransaction()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

All	subsequent	actions	that	modify	the	database	are	grouped	with	this
transaction,	known	as	the	current	transaction.

For	the	database	object,	the	scope	of	a	transaction	is	limited	to	the	current
request	(HTML	page)	in	the	application.	If	the	application	exits	the	page	before
calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	by	calling
database.connect.

For	Connection	objects,	the	scope	of	a	transaction	is	limited	to	the	lifetime	of

that	object.	If	the	connection	is	released	or	the	pool	of	connections	is	closed
before	calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	by	calling	the	connect
method	or	in	the	DbPool	constructor.

If	there	is	no	current	transaction	(that	is,	if	the	application	has	not	called
beginTransaction),	calls	to	commitTransaction	and	rollbackTransaction	are
ignored.

The	LiveWire	Database	Service	does	not	support	nested	transactions.	If	you	call
beginTransaction	when	a	transaction	is	already	open	(that	is,	you've	called
beginTransaction	and	have	yet	to	commit	or	roll	back	that	transaction),	you'll
get	an	error	message.

This	example	updates	the	rentals		within	a	transaction.	The	values	of
customerID	and	videoID	are	passed	into	the	cursor	method	as	properties	of	the
request	object.	When	the	videoReturn	Cursor	object	opens,	the	next	method
navigates	to	the	only	record	in	the	answer	set	and	updates	the	value	in	the
returnDate	field.

The	variable	x	is	assigned	a	database	status	code	to	indicate	if	the	updateRow
method	is	successful.	If	updateRow	succeeds,	the	value	of	x	is	0,	and	the
transaction	is	committed;	otherwise,	the	transaction	is	rolled	back.

//	Begin	a	transaction
database.beginTransaction();	//	Create	a	Date	object	with	the	value	of	today's
date
today	=	new	Date();	//	Create	a	Cursor	with	the	rented	video	in	the	answer	set
videoReturn	=	database.Cursor("SELECT	*	FROM	rentals	WHERE
			customerId	=	"	+	request.customerID	+	"	AND
			videoId	=	"	+	request.videoID,	true);	//	Position	the	pointer	on	the	first	row	of
the	Cursor
//	and	update	the	row
videoReturn.next()
videoReturn.returndate	=	today;

x	=	videoReturn.updateRow("rentals");	//	End	the	transaction	by	committing	or
rolling	back
if	(x	==	0)	{
			database.commitTransaction()	}
else	{
			database.rollbackTransaction()	}	//	Close	the	Cursor
videoReturn.close();

commitTransaction

Commits	the	current	transaction

Connection
Netscape	Server	3.0

commitTransaction()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

This	method	attempts	to	commit	all	actions	since	the	last	call	to
beginTransaction.

For	the	database	object,	the	scope	of	a	transaction	is	limited	to	the	current
request	(HTML	page)	in	the	application.	If	the	application	exits	the	page	before
calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	with	the	database	or
DbPool	object.

For	Connection	objects,	the	scope	of	a	transaction	is	limited	to	the	lifetime	of

that	object.	If	the	connection	is	released	or	the	pool	of	connections	is	closed
before	calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
commitFlag	value.

If	there	is	no	current	transaction	(that	is,	if	the	application	has	not	called
beginTransaction),	calls	to	commitTransaction	and	rollbackTransaction	are
ignored.

The	LiveWire	Database	Service	does	not	support	nested	transactions.	If	you	call
beginTransaction	when	a	transaction	is	already	open	(that	is,	you've	called
beginTransaction	and	have	yet	to	commit	or	roll	back	that	transaction),	you'll
get	an	error	message.

connected

Tests	whether	the	database	pool	and	all	of	its	connections	are	connected	to	a
database.

Connection
Netscape	Server	3.0

connected()

True	if	the	pool	(and	hence	a	particular	connection	in	the	pool)	is	currently
connected	to	a	database;	otherwise,	false.

The	connected	method	indicates	whether	this	object	is	currently	connected	to	a
database.

If	this	method	returns	false	for	a	Connection	object,	you	cannot	use	any	other
methods	of	that	object.	You	must	reconnect	to	the	database,	using	the	DbPool
object,	and	then	get	a	new	Connection	object.	Similarly,	if	this	method	returns
false	for	the	database	object,	you	must	reconnect	before	using	other	methods	of
that	object.

	1: 	The	following	code	fragment	checks	to	see	if	the	connection	is	currently

open.	If	it's	not,	it	reconnects	the	pool	and	reassigns	a	new	value	to	the	myconn
variable.

if	(!myconn.connected())	{
			mypool.connect	("INFORMIX",	"myserver",	"SYSTEM",	"MANAGER",
"mydb",	4);
			myconn	=	mypool.connection;
}		2:	 The	following	example	uses	an	if	condition	to	determine	if	an
application	is	connected	to	a	database	server.	If	the	application	is	connected,	the
isConnectedRoutine	function	runs;	if	the	application	is	not	connected,	the
isNotConnected	routine	runs.

if(database.connected())	{
			isConnectedRoutine()	}
else	{
			isNotConnectedRoutine()	}

cursor

Creates	a	Cursor	object.

Connection
Netscape	Server	3.0

cursor("sqlStatement",upda)

sqlStatement A	JavaScript	string	representing	a	SQL	SELECT	statementsupported	by	the	database	server.

upda (Optional)	A	Boolean	parameter	indicating	whether	or	not	the
cursor	is	upda.

A	new	Cursor	object.

The	cursor	method	creates	a	Cursor	object	that	contains	the	rows	returned	by	a
SQL	SELECT	statement.	The	SELECT	statement	is	passed	to	the	cursor	method
as	the	sqlStatement	argument.	If	the	SELECT	statement	does	not	return	any
rows,	the	resulting	Cursor	object	has	no	rows.	The	first	time	you	use	the	next
method	on	the	object,	it	returns	false.

You	can	perform	the	following	tasks	with	the	Cursor	object:

Modify	data	in	a	server	.
Navigate	in	a	server	.
Customize	the	display	of	the	virtual		returned	by	a	database	query.

Run	stored	procedures.

The	cursor	method	does	not	automatically	display	the	returned	data.	To	display
this	data,	you	must	create	custom	HTML	code.	This	HTML	code	may	display
the	rows	in	an	HTML	,	as	shown	in	Example	3.	The	SQL	method	is	an
easier	way	to	display	the	output	of	a	database	query,	but	you	cannot	navigate,
modify	data,	or	control	the	format	of	the	output.

The	optional	parameter	upda	specifies	whether	you	can	modify	the	Cursor
object	you	create	with	the	cursor	method.	To	create	a	Cursor	object	you	can
modify,	specify	upda	as	true.	If	you	do	not	specify	a	value	for	the	upda
parameter,	it	is	false	by	default.

If	you	create	an	upda	Cursor	object,	the	answer	set	returned	by	the
sqlStatement	parameter	must	be	upda.	For	example,	the	SELECT	statement	in
the	sqlStatement	parameter	cannot	contain	a	GROUP	BY	clause;	in	addition,	the
query	usually	must	retrieve	key	values	from	a	.	For	more	information	on
constructing	upda	queries,	consult	your	database	vendor's	documentation.

	1. 	The	following	example	creates	the	upda	cursor	custs	and	returns	the
columns	ID,	CUST_NAME,	and	CITY	from	the	customer	:

custs	=	database.Cursor("select	id,	cust_name,	city	from	customer",	true)		2.
You	can	construct	the	SELECT	statement	with	the	string	concatenation	operator
(+)	and	string	variables	such	as	client	or	request	property	values,	as	shown	in
the	following	example:

custs	=	database.Cursor("select	*	from	customer
			where	customerID	=	"	+	request.customerID);		3. 	The	following	example
demonstrates	how	to	format	the	answer	set	returned	by	the	cursor	method	as	an
HTML	.	This	example	first	creates	Cursor	object	named	videoSet	and	then
displays	two	columns	of	its	data	(videoSet.title	and	videoSet.synopsis).

//	Create	the	videoSet	Cursor
<SERVER>
videoSet	=	database.cursor("select	*	from	videos
			where	videos.numonhand	>	0	order	by	title");

</SERVER>	//	Begin	creating	an	HTML		to	contain	the	answer	set
//	Specify	titles	for	the	two	columns	in	the	answer	set
<	BORDER>
<CAPTION>	Videos	on	Hand	</CAPTION>
<TR>
			<TH>Title</TH>
			<TH>Synopsis</TH>
</TR>	//	Use	a	while	loop	to	iterate	over	each	row	in	the	cursor
<SERVER>
while(videoSet.next())	{
</SERVER>	//	Use	write	statements	to	display	the	data	in	both	columns
<TR>
			<TH>
							<SERVER>write(videoSet.title)</SERVER></TH>
			<TD><SERVER>write(videoSet.synopsis)</SERVER></TD>
</TR>	//	End	the	while	loop
<SERVER>
}
</SERVER>	//	End	the	HTML	
</>	The	values	in	the	videoSet.title	column	are	displayed	within	the	A	tag	so	a
user	can	click	them	as	links.	When	a	user	clicks	a	title,	the	rent.html	page	opens
and	the	column	value	videoSet.id	is	passed	to	it	as	the	value	of	request.videoID.

Connection.SQL,	Connection.cursor

execute

Performs	the	specified	SQL	statement.	Use	for	SQL	statements	other	than
queries.

Connection
Netscape	Server	3.0

execute	(stmt)

stmt A	string	representing	the	SQL	statement	to	execute.

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

This	method	enables	an	application	to	execute	any	data	definition	language
(DDL)	or	data	manipulation	language	(DML)	SQL	statement	supported	by	the
database	server	that	does	not	return	a	Cursor,	such	as	CREATE,	ALTER,	or
DROP.

Each	database	supports	a	standard	core	of	DDL	and	DML	statements.	In
addition,	they	may	each	also	support	DDL	and	DML	statements	specific	to	that
database	vendor.	You	can	use	execute	to	call	any	of	those	statements.	However,
each	database	vendor	may	also	provide	functions	you	can	use	with	the	database
that	are	not	DDL	or	DML	statements.	You	cannot	use	execute	to	call	those

functions.	For	example,	you	cannot	call	the	Oracle	describe	function	or	the
Informix	load	function	from	the	execute	method.

Although	technically	you	can	use	execute	to	perform	data	modification
(INSERT,	UPDATE,	and	DELETE	statements),	you	should	instead	use	Cursor
objects.	This	makes	your	application	more	database-independent.	Cursors	also
provide	support	for	binary	large	object	(BLOb)	data.

When	using	the	execute	method,	your	SQL	statement	must	strictly	conform	to
the	requirements	of	the	database	server.	For	example,	some	servers	require
each	SQL	statement	to	be	terminated	by	a	semicolon.	See	your	server
documentation	for	more	information.

If	you	have	not	explicitly	started	a	transaction,	the	single	statement	is
automatically	committed.

In	the	following	example,	the	execute	method	is	used	to	delete	a	customer	from
the	customer	.	customer.ID	represents	the	unique	ID	of	a	customer	that	is	in
the	ID	column	of	the	customer	.	The	value	for	customer.ID	is	passed	into	the
DELETE	statement	as	the	value	of	the	ID	property	of	the	request	object.

if(request.ID	!=	null)	{
			database.execute("delete	from	customer
						where	customer.ID	=	"	+	request.ID)
}

majorErrorCode

Major	error	code	returned	by	the	database	server	or	ODBC.

Connection
Netscape	Server	3.0

majorErrorCode()

The	result	returned	by	this	method	depends	on	the	database	server	being	used:

Informix:	the	Informix	error	code.

Oracle:	the	code	as	reported	by	Oracle	Call-level	Interface	(OCI).

Sybase:	the	DB-Library	error	number	or	the	SQL	server	message	number.

SQL	statements	can	fail	for	a	variety	of	reasons,	including	referential	integrity
constraints,	lack	of	user	privileges,	record	or		locking	in	a	multiuser	database,
and	so	on.	When	an	action	fails,	the	database	server	returns	an	error	message
indicating	the	reason	for	failure.	The	LiveWire	Database	Service	provides	two
ways	of	getting	error	information:	from	the	status	code	returned	by	various
methods	or	from	special	properties	containing	error	messages	and	codes.

Status	codes	are	integers	between	0	and	27,	with	0	indicating	a	successful
execution	of	the	statement	and	other	numbers	indicating	an	error,	as	shown	in

	10.4.

	10.4	Database	status	codes.
Status
Code Explanation Status

Code Explanation

0 No	error 14 Null	reference	parameter

1 Out	of	memory 15 Connection	object	not
found

2 Object	never	initialized 16 Required	information	is
missing

3 Type	conversion	error 17 Object	cannot	support
multiple	readers

4 Database	not	registered 18 Object	cannot	support
deletions

5 Error	reported	by	server 19 Object	cannot	support
insertions

6 Message	from	server 20 Object	cannot	support
updates

7 Error	from	vendor's	library 21 Object	cannot	support
updates

8 Lost	connection 22 Object	cannot	support
indices

9 End	of	fetch 23 Object	cannot	be	dropped

10 Invalid	use	of	object 24 Incorrect	connection
supplied

11 Column	does	not	exist 25 Object	cannot	support
privileges

12 Invalid	positioning	within	object
(bounds	error) 26 Object	cannot	support

cursors
13 Unsupported	feature 27 Unable	to	open

This	example	updates	the	rentals		within	a	transaction.	The	updateRow
method	assigns	a	database	status	code	to	the	statusCode	variable	to	indicate
whether	the	method	is	successful.

If	updateRow	succeeds,	the	value	of	statusCode	is	0,	and	the	transaction	is
committed.	If	updateRow	returns	a	statusCode	value	of	either	five	or	seven,	the
values	of	majorErrorCode,	majorErrorMessage,	minorErrorCode,	and
minorErrorMessage	are	displayed.	If	statusCode	is	set	to	any	other	value,	the
errorRoutine	function	is	called.

database.beginTransaction()
statusCode	=	cursor.updateRow("rentals")	if	(statusCode	==	0)	{
			database.commitTransaction()
			}	if	(statusCode	==	5	||	statusCode	==	7)	{
			write("The	operation	failed	to	complete.
"
			write("Contact	your	system	administrator	with	the	following:<P>"
			write("The	value	of	statusCode	is	"	+	statusCode	+	"
")
			write("The	value	of	majorErrorCode	is	"	+
						database.majorErrorCode()	+	"
")
			write("The	value	of	majorErrorMessage	is	"	+
						database.majorErrorMessage()	+	"
")
			write("The	value	of	minorErrorCode	is	"	+
						database.minorErrorCode()	+	"
")
			write("The	value	of	minorErrorMessage	is	"	+
						database.minorErrorMessage()	+	"
")
			database.rollbackTransaction()
			}	else	{
			errorRoutine()
			}

majorErrorMessage

Major	error	message	returned	by	database	server	or	ODBC.	For	server	errors,
this	typically	corresponds	to	the	server's	SQLCODE.

Connection
Netscape	Server	3.0

majorErrorMessage()

A	string	describing	that	depends	on	the	database	server:

Informix:	"Vendor	Library	Error:	string,"	where	string	is	the	error	text	from
Informix.

Oracle:	"Server	Error:	string,"	where	string	is	the	translation	of	the	return
code	supplied	by	Oracle.

Sybase:	"Vendor	Library	Error:	string,"	where	string	is	the	error	text	from
DB-Library	or	"Server	Error	string,"	where	string	is	text	from	the	SQL
server,	unless	the	severity	and	message	number	are	both	0,	in	which	case	it
returns	just	the	message	text.

SQL	statements	can	fail	for	a	variety	of	reasons,	including	referential	integrity
constraints,	lack	of	user	privileges,	record	or		locking	in	a	multiuser	database,
and	so	on.	When	an	action	fails,	the	database	server	returns	an	error	message

indicating	the	reason	for	failure.	The	LiveWire	Database	Service	provides	two
ways	of	getting	error	information:	from	the	status	code	returned	by	connection
and	DbPool	methods	or	from	special	connection	or	DbPool	properties
containing	error	messages	and	codes.

See	Connection.majorErrorCode.

minorErrorCode

Secondary	error	code	returned	by	database	vendor	library.

Connection
Netscape	Server	3.0

minorErrorCode()

The	result	returned	by	this	method	depends	on	the	database	server:

Informix:	the	ISAM	error	code,	or	0	if	there	is	no	ISAM	error.

Oracle:	the	operating	system	error	code	as	reported	by	OCI.

Sybase:	the	severity	level,	as	reported	by	DB-Library	or	the	severity	level,
as	reported	by	the	SQL	server.

minorErrorMessage

Secondary	message	returned	by	database	vendor	library.

Connection
Netscape	Server	3.0

minorErrorMessage()

The	string	returned	by	this	method	depends	on	the	database	server:

Informix:	"ISAM	Error:	string,"	where	string	is	the	text	of	the	ISAM	error
code	from	Informix,	or	an	empty	string	if	there	is	no	ISAM	error.

Oracle:	the	Oracle	server	name.

Sybase:	the	operating	system	error	text,	as	reported	by	DB-Library	or	the
SQL	server	name.

release

Releases	the	connection	back	to	the	database	pool.

Connection
Netscape	Server	3.0

release()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

Before	calling	the	release	method,	you	should	close	all	open	cursors.	When	you
call	the	release	method,	the	runtime	engine	waits	until	all	cursors	have	been
closed	and	then	returns	the	connection	to	the	database	pool.	The	connection	is
then	available	to	the	next	user.

If	you	don't	call	the	release	method,	the	connection	remains	unavailable	until
the	object	goes	out	of	scope.	Assuming	the	object	has	been	assigned	to	a
variable,	it	can	go	out	of	scope	at	different	times:

If	the	variable	is	a	property	of	the	project	object	(such	as	project.engconn),
then	it	remains	in	scope	until	the	application	terminates.

If	it	is	a	property	of	the	server	object	(such	as	server.engconn),	it	does	not
go	out	of	scope	until	the	server	goes	down.	You	rarely	want	to	have	a
connection	last	the	lifetime	of	the	server.

In	all	other	cases,	the	variable	is	a	property	of	the	client	request.	In	this
situation,	the	variable	goes	out	of	scope	when	the	JavaScript	finalize
method	is	called;	that	is,	when	control	leaves	the	HTML	page.

You	must	call	the	release	method	for	all	connections	in	a	database	pool	before
you	can	call	the	DbPool	object's	disconnect	method.	Otherwise,	the	connection
is	still	considered	in	use	by	the	runtime	engine,	so	the	disconnect	waits	until	all
connections	are	released.

rollbackTransaction

Rolls	back	the	current	transaction.

Connection
Netscape	Server	3.0

rollbackTransaction()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

This	method	will	undo	all	modifications	since	the	last	call	to	beginTransaction.

For	the	database	object,	the	scope	of	a	transaction	is	limited	to	the	current
request	(HTML	page)	in	the	application.	If	the	application	exits	the	page	before
calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
setting	of	the	commitflag	parameter	when	the	connection	was	established.	This
parameter	is	provided	when	you	make	the	connection	with	the	database	or
DbPool	object.

For	Connection	objects,	the	scope	of	a	transaction	is	limited	to	the	lifetime	of
that	object.	If	the	connection	is	released	or	the	pool	of	connections	is	closed

before	calling	the	commitTransaction	or	rollbackTransaction	method,	then	the
transaction	is	automatically	either	committed	or	rolled	back,	based	on	the
commitFlag	value.

If	there	is	no	current	transaction	(that	is,	if	the	application	has	not	called
beginTransaction),	calls	to	commitTransaction	and	rollbackTransaction	are
ignored.

The	LiveWire	Database	Service	does	not	support	nested	transactions.	If	you	call
beginTransaction	when	a	transaction	is	already	open	(that	is,	you've	called
beginTransaction	and	have	yet	to	commit	or	roll	back	that	transaction),	you'll
get	an	error	message.

SQL

Displays	query	results.	Creates	an	HTML		for	results	of	an	SQL	SELECT
statement.

Connection
Netscape	Server	3.0

SQL	(stmt)

stmt A	string	representing	an	SQL	SELECT	statement.

A	string	representing	an	HTML	,	with	each	row	and	column	in	the	query	as	a
row	and	column	of	the	.

Although	SQL	does	not	give	explicit	control	over	how	the	output	is	formatted,
it	is	the	easiest	way	to	display	query	results.	If	you	want	to	customize	the
appearance	of	the	output,	use	a	Cursor	object	to	create	your	own	display
function.

Note

Every	Sybase		you	use	with	a	cursor	must	have	a	unique	index.

If	connobj	is	a	Connection	object	and	request.sql	contains	an	SQL	query,	then

the	following	JavaScript	statements	display	the	result	of	the	query	in	a	:

write(request.sql)
connobj.SQL(request.sql)	The	first	line	simply	displays	the	SELECT	statement,
and	the	second	line	displays	the	results	of	the	query.	This	is	the	first	part	of	the
HTML	generated	by	these	statements:

select	*	from	videos
<	BORDER>
<TR>
<TH>title</TH>
<TH>id</TH>
<TH>year</TH>
<TH>category</TH>
<TH>quantity</TH>
<TH>numonhand</TH>
<TH>synopsis</TH>
</TR>
<TR>
<TD>A	Clockwork	Orange</TD>
<TD>1</TD>
<TD>1975</TD>
<TD>Science	Fiction</TD>
<TD>5</TD>
<TD>3</TD>
<TD>	Little	Alex,	played	by	Malcolm	Macdowell,
and	his	droogies	stop	by	the	Miloko	bar	for	a	
refreshing	libation	before	a	wild	night	on	the	town.
</TD>
</TR>
<TR>
<TD>Sleepless	In	Seattle</TD>
...	As	this	example	illustrates,	SQL	generates	an	HTML	,	with	column
headings	for	each	column	in	the	database		and	a	row	in	the		for	each	row	in
the	database	.

storedProc

Creates	a	stored-procedure	object	and	runs	the	specified	stored	procedure.

Connection
Netscape	Server	3.0

storedwProc	(procName,	inarg1,	inarg2,	...,	inargN)

procName A	string	specifying	the	name	of	the	stored	procedure	to	run.
inarg1,	...,
inargN

The	input	parameters	to	be	passed	to	the	procedure,	separated
by	commas.

A	new	Stproc	object.

The	scope	of	the	stored-procedure	object	is	a	single	page	of	the	application.	In
other	words,	all	methods	to	be	executed	for	any	instance	of	storedProc	must	be
invoked	on	the	same	application	page	as	the	page	on	which	the	object	is	created.

When	you	create	a	stored	procedure,	you	can	specify	default	values	for	any	of
the	parameters.	Then,	if	a	parameter	is	not	included	when	the	stored	procedure
is	executed,	the	procedure	uses	the	default	value.	However,	when	you	call	a
stored	procedure	from	a	server-side	JavaScript	application,	you	must	indicate
that	you	want	to	use	the	default	value	by	typing	"/Default/"	in	place	of	the
parameter.	(Remember	that	JavaScript	is	case	sensitive.)	For	example:	spObj	=
connobj.storedProc	("newhire",	"/Default/",	3)

toString

Returns	a	string	representing	the	specified	object.

Connection
Netscape	Server	3.0

toString()

Every	object	has	a	toString	method	that	is	automatically	called	when	it	is	to	be
represented	as	a	text	value	or	when	an	object	is	referred	to	in	a	string
concatenation.

You	can	use	toString	within	your	own	code	to	convert	an	object	into	a	string,
and	you	can	create	your	own	function	to	be	called	in	place	of	the	default
toString	method.

This	method	returns	a	string	of	the	following	format:

db	"name"	"userName"	"dbtype"	"serverName"	where

name The	name	of	the	database.
userName The	name	of	the	user	connected	to	the	database.
dbType One	of	ORACLE,	SYBASE,	INFORMIX,	DB2,	or	ODBC.
serverName The	name	of	the	database	server.

The	method	displays	an	empty	string	for	any	of	attributes	whose	value	is
unknown.

For	information	on	defining	your	own	toString	method,	see	the	Object.toString
method.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Stproc
Represents	a	call	to	a	database	stored	procedure.

Netscape	Server	3.0

The	storedProc	method	of	the	database	object	or	of	a	Connection	object.	You	do
not	call	a	Stproc	constructor.

When	finished	with	a	Stproc	object,	use	the	close	method	to	close	it	and	release
the	memory	it	uses.	If	you	release	a	connection	that	has	an	open	stored
procedure,	the	runtime	engine	waits	until	the	stored	procedure	is	closed	before
actually	releasing	the	connection.

If	you	do	not	explicitly	close	a	stored	procedure	with	the	close	method,	the
JavaScript	runtime	engine	on	the	server	automatically	tries	to	close	all	open
stored	procedures	when	the	associated	database	or	Connection	object	goes	out
of	scope.	This	can	tie	up	system	resources	unnecessarily.	It	can	also	lead	to
unpredic	results.

You	can	use	the	prototype	property	of	the	Stproc	class	to	add	a	property	to	all
Stproc	instances.	If	you	do	so,	that	addition	applies	to	all	Stproc	objects	running
in	all	applications	on	your	server,	not	just	in	the	single	application	that	made	the
change.	This	allows	you	to	expand	the	capabilities	of	this	object	for	your	entire
server.

prototype Allows	the	addition	of	properties	to	a	Stproc	object.

close Closes	a	stored-procedure	object.

outParamCount Returns	the	number	of	output	parameters	returned	by	a	storedprocedure.
outParameters Returns	the	value	of	the	specified	output	parameter.
resultSet Returns	a	new	result	set	object.
returnValue Returns	the	return	value	for	the	stored	procedure.

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

Stproc
LiveWire	1.0

close

Closes	the	stored	procedure	and	frees	the	allocated	memory.

Stproc
Netscape	Server	3.0

close()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

The	close	method	closes	a	stored	procedure	and	releases	the	memory	it	uses.	If
you	do	not	explicitly	close	a	stored	procedure	with	the	close	method,	the
JavaScript	runtime	engine	on	the	server	automatically	closes	it	when	the
corresponding	client	object	goes	out	of	scope.

outParamCount

Returns	the	number	of	output	parameters	returned	by	a	stored	procedure.

Stproc
Netscape	Server	3.0

outParamCount()

The	number	of	output	parameters	for	the	stored	procedure.	Informix	stored
procedures	do	not	have	output	parameters.	Therefore	for	Informix,	this	method
always	returns	0.	You	should	always	call	this	method	before	calling
outParameters,	to	ensure	that	the	stored	procedure	has	output	parameters.

outParameters

Returns	the	value	of	the	specified	output	parameter.

Stproc
Netscape	Server	3.0

outParameters	(n)

n Zero-based	ordinal	for	the	output	parameter	to	return.

The	value	of	the	specified	output	parameter.	This	can	be	a	string,	number,
double,	or	object.

Do	not	use	this	method	for	Informix	stored	procedures,	because	they	do	not
have	output	parameters.

You	should	always	call	the	outParamCount	method	before	you	call	this	method.
If	outParamCount	returns	0,	the	stored	procedure	has	no	output	parameters.	In
this	situation,	do	not	call	this	method.

You	must	retrieve	result	set	objects	before	you	call	this	method.	Once	you	call
this	method,	you	can't	get	any	more	data	from	a	result	set,	and	you	can't	get	any
additional	result	sets.

resultSet

Returns	a	new	result	set	object.

Stproc
Netscape	Server	3.0

resultSet	()

Running	a	stored	procedure	can	create	0	or	more	result	sets.	You	access	the
result	sets	in	turn	by	repeated	calls	to	the	resultSet	method.	See	the	of	the
Resultset	for	restrictions	on	when	you	can	use	this	method	access	the	result	sets
for	a	stored	procedure.

spobj	=	connobj.storedProc("getcusts");	//	Creates	a	new	result	set	object
resobj	=	spobj.resultSet();

returnValue

Returns	the	return	value	for	the	stored	procedure.

Stproc
Netscape	Server	3.0

returnValue()

For	Sybase,	this	method	always	returns	the	return	value	of	the	stored	procedure.

For	Oracle,	this	method	returns	null	if	the	stored	procedure	did	not	return	a
value	or	the	return	value	of	the	stored	procedure.

For	Informix,	DB2,	and	ODBC,	this	method	always	returns	null.

You	must	retrieve	result	set	objects	before	you	call	this	method.	Once	you	call
this	method,	you	can't	get	any	more	data	from	a	result	set,	and	you	can't	get	any
additional	result	sets.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Resultset
Represents	a	virtual		created	by	executing	a	stored	procedure.

Netscape	Server	3.0

The	resultSet	method	of	a	Stproc	object.	The	Resultset	object	does	not	have	a
constructor.

For	Sybase,	Oracle,	ODBC,	and	DB2	stored	procedures,	the	stored-procedure
object	has	one	result	set	object	for	each	SELECT	statement	executed	by	the
stored	procedure.	For	Informix	stored	procedures,	the	stored-procedure	object
always	has	one	result	set	object.

A	result	set	has	a	property	for	each	column	in	the	SELECT	statement	used	to
generate	the	result	set.	For	Sybase,	Oracle,	and	ODBC	stored	procedures,	you
can	refer	to	these	properties	by	the	name	of	the	column	in	the	virtual	.	For
Informix	and	DB2	stored	procedures,	the	columns	are	not	named.	For	these
databases,	you	must	use	a	numeric	index	to	refer	to	the	column.

Result	set	objects	are	not	valid	indefinitely.	In	general,	once	a	stored	procedure
starts,	no	interactions	are	allowed	between	the	database	client	and	the	database
server	until	the	stored	procedure	has	completed.	In	particular,	there	are	three
circumstances	that	cause	a	result	set	to	be	invalid:

1.	 If	you	create	a	result	set	as	part	of	a	transaction,	you	must	finish	using	the
result	set	during	that	transaction.	Once	you	either	commit	or	rollback	the
transaction,	you	can't	get	any	more	data	from	a	result	set,	and	you	can't	get
any	additional	result	sets.	For	example,	the	following	code	is	illegal:
database.beginTransaction();
spobj	=	database.storedProc("getcusts");

resobj	=	spobj.resultSet();
database.commitTransaction();
/*	Illegal!	Result	set	no	longer	valid!	*/
col1	=	resobj[0];

2.	 You	must	retrieve	result	set	objects	before	you	call	a	stored-procedure
object's	returnValue	or	outParameters	methods.	Once	you	call	either	of
these	methods,	you	can't	get	any	more	data	from	a	result	set,	and	you	can't
get	any	additional	result	sets.	spobj	=	database.storedProc("getcusts");
resobj	=	spobj.resultSet();
retval	=	spobj.returnValue();
/*	Illegal!	Result	set	no	longer	valid!	*/
col1	=	resobj[0];

3.	 Similarly,	you	must	retrieve	result	set	objects	before	you	call	the	associated
Connection	object's	cursor	or	SQLTable	method.	For	example,	the
following	code	is	illegal:	spobj	=	database.storedProc("getcusts");
cursobj	=	database.cursor("SELECT	*	FROM	ORDERS;");
/*	Illegal!	The	result	set	is	no	longer	available!	*/
resobj	=	spobj.resultSet();
col1	=	resobj[0];

When	finished	with	a	Resultset	object,	use	the	close	method	to	close	it	and
release	the	memory	it	uses.	If	you	release	a	connection	that	has	an	open	result
set,	the	runtime	engine	waits	until	the	result	set	is	closed	before	actually
releasing	the	connection.

If	you	do	not	explicitly	close	a	result	set	with	the	close	method,	the	JavaScript
runtime	engine	on	the	server	automatically	tries	to	close	all	open	result	sets
when	the	associated	database	or	DbPool	object	goes	out	of	scope.	This	can	tie
up	system	resources	unnecessarily.	It	can	also	lead	to	unpredic	results.

You	can	use	the	prototype	property	of	the	Resultset	class	to	add	a	property	to	all
Resultset	instances.	If	you	do	so,	that	addition	applies	to	all	Resultset	objects
running	in	all	applications	on	your	server,	not	just	in	the	single	application	that
made	the	change.	This	allows	you	to	expand	the	capabilities	of	this	object	for
your	entire	server.

prototype Allows	the	addition	of	properties	to	a	Resultset	object.

close Closes	a	result	set	object.
columnName Returns	the	name	of	a	column	in	the	result	set.
columns Returns	the	number	of	columns	in	the	result	set.
next Moves	the	current	row	to	the	next	row	in	the	result	set.

Assume	you	have	the	following	Oracle	stored	procedure:

create	or	replace	package	timpack	
as	type	timcurtype	is	ref	cursor	return	customer%rowtype;	
type	timrentype	is	ref	cursor	return	rentals%rowtype;	
end	timpack;	create	or	replace	procedure	timset4(timrows1	in	out
timpack.timcurtype,	timrows	in	out	timpack.timrentype)	
as	begin	
open	timrows	for	select	*	from	rentals;	
open	timrows1	for	select	*	from	customer;	
end	timset4;	Running	this	stored	procedure	creates	two	result	sets	you	can
access.	In	the	following	code	fragment	the	resobj1	result	set	has	rows	returned
by	the	timrows	ref	cursor	and	the	resobj2	result	set	has	the	rows	returned	by	the
timrows1	ref	cursor.

spobj	=	database.storedProc("timset4");
resobj1	=	spobj.resultSet();
resobj2	=	spobj.resultSet();

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

Resultset
LiveWire	1.0

close

Closes	the	result	set	and	frees	the	allocated	memory.

Resultset
Netscape	Server	3.0

close()

0	if	the	call	was	successful;	otherwise,	a	nonzero	status	code	based	on	any	error
message	passed	by	the	database.	If	the	method	returns	a	nonzero	status	code,
use	the	associated	majorErrorCode	and	majorErrorMessage	methods	to	interpret
the	cause	of	the	error.

The	close	method	closes	a	cursor	or	result	set	and	releases	the	memory	it	uses.
If	you	do	not	explicitly	close	a	cursor	or	result	set	with	the	close	method,	the
JavaScript	runtime	engine	on	the	server	automatically	closes	all	open	cursors
and	result	sets	when	the	corresponding	client	object	goes	out	of	scope.

The	following	example	creates	the	rentalSet	cursor,	performs	certain	operations
on	it,	and	then	closes	it	with	the	close	method.

//	Create	a	Cursor	object

rentalSet	=	database.cursor("SELECT	*	FROM	rentals")	//	Perform	operations
on	the	cursor
cursorOperations()	//Close	the	cursor
err	=	rentalSet.close()

Cursor

columnName

Returns	the	name	of	the	column	in	the	result	set	corresponding	to	the	specified
number.

Resultset
Netscape	Server	3.0

columnName	(n)

n Zero-based	integer	corresponding	to	the	column	in	the	query.	The	firstcolumn	in	the	result	set	is	0,	the	second	is	1,	and	so	on.

The	name	of	the	column.	For	Informix	stored	procedures,	this	method	for	the
Resultset	object	always	returns	the	string	"Expression".

If	your	SELECT	statement	uses	a	wildcard	(*)	to	select	all	the	columns	in	a	,
the	columnName	method	does	not	guarantee	the	order	in	which	it	assigns
numbers	to	the	columns.	That	is,	suppose	you	have	this	statement:

resSet	=	stObj.resultSet("select	*	from	customer");	If	the	customer		has	3
columns,	ID,	NAME,	and	CITY,	you	cannot	tell	ahead	of	time	which	of	these
columns	corresponds	to	resSet.columnName(0).	(Of	course,	you	are	guaranteed
that	successive	calls	to	columnName	have	the	same	result.)	If	the	order	matters
to	you,	you	can	instead	hard-code	the	column	names	in	the	select	statement,	as
in	the	following	statement:

resSet	=	stObj.resultSet("select	ID,	NAME,	CITY	from	customer");	With	this
statement,	resSet.columnName(0)	is	ID,	resSet.columnName(1)	is	NAME,	and
resSet.columnName(2)	is	CITY.

The	following	example	assigns	the	name	of	the	first	column	in	the	customerSet
cursor	to	the	variable	header:

customerSet=database.cursor(SELECT	*	FROM	customer	ORDER	BY	name)
header	=	customerSet.columnName(0)

columns

Returns	the	number	of	columns	in	the	result	set.

Resultset
Netscape	Server	3.0

columns()

The	number	of	named	and	unnamed	columns.

See	Example	2	of	Cursor	for	an	example	of	using	the	columns	method	with	the
cursorColumn	array.

The	following	example	returns	the	number	of	columns	in	the	custs	cursor:

custs.columns()

next

Moves	the	current	row	to	the	next	row	in	the	result	set.

Resultset
Netscape	Server	3.0

next()

False	if	the	current	row	is	the	last	row;	otherwise,	true.

Initially,	the	pointer	(or	current	row)	for	a	cursor	or	result	set	is	positioned
before	the	first	row	returned.	Use	the	next	method	to	move	the	pointer	through
the	records	in	the	cursor	or	result	set.	This	method	moves	the	pointer	to	the	next
row	and	returns	true	as	long	as	there	is	another	row	available.	When	the	cursor
or	result	set	has	reached	the	last	row,	the	method	returns	false.	Note	that	if	the
cursor	is	empty,	this	method	always	returns	false.

	1. 	This	example	uses	the	next	method	to	navigate	to	the	last	row	in	a	cursor.
The	variable	x	is	initialized	to	true.	When	the	pointer	is	in	the	last	row	of	the
cursor,	the	next	method	returns	false	and	terminates	the	while	loop.

customerSet	=	database.cursor("select	*	from	customer",	true)	x	=	true

while	(x)	{
			x	=	customerSet.next()	}		2. 	In	the	following	example,	the	rentalSet	cursor
contains	columns	named	videoId,	rentalDate,	and	dueDate.	The	next	method	is
called	in	a	while	loop	that	iterates	over	every	row	in	the	cursor.	When	the
pointer	is	on	the	last	row	in	the	cursor,	the	next	method	returns	false	and
terminates	the	while	loop.

This	example	displays	the	three	columns	of	the	cursor	in	an	HTML	:

<SERVER>
//	Create	a	Cursor	object
rentalSet	=	database.cursor("SELECT	videoId,	rentalDate,	returnDate
			FROM	rentals")
</SERVER>	//	Create	an	HTML	
<	BORDER>
<TR>
<TH>Video	ID</TH>
<TD>Rental	Date</TD>
<TD>Due	Date</TD>
</TR>	<SERVER>
//	Iterate	through	each	row	in	the	cursor
while	(rentalSet.next())	{
</SERVER>	//	Display	the	cursor	values	in	the	HTML	
			<TR>
			<TH><SERVER>write(rentalSet.videoId)</SERVER></TH>
			<TD><SERVER>write(rentalSet.rentalDate)</SERVER></TD>
			<TD><SERVER>write(rentalSet.returnDate)</SERVER></TD>
			</TR>	//	Terminate	the	while	loop
<SERVER>
}
</SERVER>	//	End	the	
</>

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

blob
.	Provides	functionality	for	displaying	and	linking	to	BLOb	data.

LiveWire	1.0

You	do	not	create	a	separate	blob	object.	Instead,	if	you	know	that	the	value	of	a
cursor	property	contains	BLOb	data,	you	use	these	methods	to	access	that	data:

blobImage Displays	BLOb	data	stored	in	a	database.
blobLink Displays	a	link	that	references	BLOb	data	with	a	link.

Conversely,	to	store	BLOb	data	in	a	database,	use	the	blob	function.

blobImage

Displays	BLOb	data	stored	in	a	database.

blob
LiveWire	1.0

cursorName.colName.blobImage	(format,	altText,	align,	widthPixels,
heightPixels,	borderPixels,	ismap)

format

The	image	format.	This	can	be	GIF,	JPEG,	or	any	other	MIME
image	format.	The	accep	formats	are	specified	in	the
type=image	section	of	the	file	$nshome\httpd-
80\config\mime.types,	where	$nshome	is	the	directory	in	which
you	installed	your	server.	The	client	browser	must	also	be	able	to
display	the	image	format.

altText
(Optional)	The	value	of	the	ALT	attribute	of	the	image	tag.	This
indicates	text	to	display	if	the	client	browser	does	not	display
images.

align
(Optional)	The	value	of	the	ALIGN	attribute	of	the	image	tag.
This	can	be	"left",	"right",	or	any	other	value	supported	by	the
client	browser.

widthPixels (Optional)	The	width	of	the	image	in	pixels.
heightPixels (Optional)	The	height	of	the	image	in	pixels.

borderPixels (Optional)	The	size	of	the	outline	border	in	pixels	if	the	image	is	alink.

ismap
(Optional)	True	if	the	image	is	a	clickable	map.	If	this	parameter
is	true,	the	image	tag	has	an	ISMAP	attribute;	otherwise	it	does
not.

An	HTML	IMG	tag	for	the	specified	image	type.

Use	blobImage	to	create	an	HTML	image	tag	for	a	graphic	image	in	a	standard
format	such	as	GIF	or	JPEG.

The	blobImage	method	fetches	a	BLOb	from	the	database,	creates	a	temporary
file	(in	memory)	of	the	specified	format,	and	generates	an	HTML	image	tag	that
refers	to	the	temporary	file.	The	JavaScript	runtime	engine	removes	the
temporary	file	after	the	page	is	generated	and	sent	to	the	client.

While	creating	the	page,	the	runtime	engine	keeps	the	binary	data	that
blobImage	fetches	from	the	database	in	active	memory,	so	requests	that	fetch	a
large	amount	of	data	can	exceed	dynamic	memory	on	the	server.	Generally	it	is
good	practice	to	limit	the	number	of	rows	retrieved	at	one	time	using	blobImage
to	stay	within	the	server's	dynamic	memory	limits.

	1.	 The	following	example	extracts	a	row	containing	a	small	image	and	a
name.	It	writes	HTML	containing	the	name	and	a	link	to	the	image:

cursor	=	connobj.cursor("SELECT	NAME,	THUMB	FROM	FISHTBL
WHERE	ID=2")
write(cursor.name	+	"	")
write(cursor.thumb.blobImage("gif"))	
write("
")	
cursor.close()	These	statements	produce	this	HTML:

Anthia	
		2.	 The	following
example	creates	a	cursor	from	the	rockStarBios		and	uses	blobImage	to
display	an	image	retrieved	from	the	photos	column:

cursor	=	database.cursor("SELECT	*	FROM	rockStarBios
			WHERE	starID	=	23")
while(cursor.next())	{
			write(cursor.photos.blobImage("gif",	"Picture",	"left",
						30,	30,	0,false))

}
cursor.close()	This	example	displays	an	image	as	if	it	were	created	by	the
following	HTML:

<IMG	SRC="livewire_temp.gif"	ALT="Picture"	ALIGN=LEFT	
			WIDTH=30	HEIGHT=30	BORDER=0>	The	livewire_temp.gif	file	in	this
example	is	the	file	in	which	the	rockStarBios		stores	the	BLOb	data.

blobLink

Returns	a	link	tag	that	references	BLOb	data	with	a	link.	Creates	an	HTML	link
to	the	BLOb.

blob
LiveWire	1.0

cursorName.colName.blobLink	(mimeType,	linkText)

mimeType

The	MIME	type	of	the	binary	data.	This	can	be	image/gif	or	any
other	accep	MIME	type,	as	specified	in	the	Netscape	server
configuration	file	$nshome\httpd-80\config\mime.types,	where
$nshome	is	the	directory	in	which	you	installed	your	server.

linkText The	text	to	display	in	the	link.	This	can	be	any	JavaScript	string
expression.

An	HTML	link	tag.

Use	blobLink	if	you	do	not	want	to	display	graphics	(to	reduce	bandwidth
requirements)	or	if	you	want	to	provide	a	link	to	an	audio	clip	or	other
multimedia	content	not	viewable	inline.

The	blobLink	method	fetches	BLOb	data	from	the	database,	creates	a	temporary
file	in	memory,	and	generates	a	hypertext	link	to	the	temporary	file.	The
JavaScript	runtime	engine	on	the	server	removes	the	temporary	files	that
blobLink	creates	after	the	user	clicks	the	link	or	sixty	seconds	after	the	request

has	been	processed.

The	runtime	engine	keeps	the	binary	data	that	blobLink	fetches	from	the
database	in	active	memory,	so	requests	that	fetch	a	large	amount	of	data	can
exceed	dynamic	memory	on	the	server.	Generally	it	is	good	practice	to	limit	the
number	of	rows	retrieved	at	one	time	using	blobLink	to	stay	within	the	server's
dynamic	memory	limits.

	1. 	The	following	statements	extract	a	row	containing	a	large	image	and	a
name.	It	writes	HTML	containing	the	name	and	a	link	to	the	image:

cursor	=	connobj.cursor("SELECT	NAME,	PICTURE	FROM	FISHTBL
WHERE	ID=2")
write(cursor.name	+	"	")
write(cursor.picture.blobLink("image/gif",	"Link"	+	cursor.id))	
write("
")	
cursor.close()	These	statements	produce	this	HTML:

Anthia	Link2
		2. 	The
following	example	creates	a	cursor	from	the	rockStarBios		and	uses	blobLink
to	create	links	to	images	retrieved	from	the	photos	column:

write("Click	a	link	to	display	an	image:<P>")
cursor	=	database.cursor("select	*	from	rockStarBios")
while(cursor.next())	{
			write(cursor.photos.blobLink("image/gif",	"Image	"	+	cursor.id))
			write("
")
}
cursor.close()	This	example	generates	the	following	HTML:

Click	a	link	to	display	an	image:<P>
Image	1

Image	2

Image	3

Image	4
	The
LIVEWIRE_TEMP	files	in	this	example	are	temporary	files	created	in	memory
by	the	blobLink	method.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

request
Contains	data	specific	to	the	current	client	request.

LiveWire	1.0

The	JavaScript	runtime	engine	on	the	server	automatically	creates	a	request
object	for	each	client	request.

The	JavaScript	runtime	engine	on	the	server	creates	a	request	object	each	time
the	client	makes	a	request	of	the	server.	The	runtime	engine	destroys	the	request
object	after	the	server	responds	to	the	request,	typically	by	providing	the
requested	page.

The	properties	listed	below	are	read-only	properties	that	are	initialized
automatically	when	a	request	object	is	created.	In	addition	to	these	predefined
properties,	you	can	create	custom	properties	to	store	application-specific	data
about	the	current	request.

agent Provides	name	and	version	information	about	the	client	software.

imageX The	horizontal	position	of	the	mouse	pointer	when	the	user	clicked
the	mouse	over	an	image	map.

imageY The	vertical	position	of	the	mouse	pointer	when	the	user	clicked	the
mouse	over	an	image	map.

inputName
Represents	an	input	element	on	an	HTML	form.	(There	is	not	a	
whose	name	is	inputName.	Rather,	each	instance	of	request	has
properties	named	after	each	input	element.)

ip Provides	the	IP	address	of	the	client.

Provides	the	HTTP		associated	with	the	request.

protocol Provides	the	HTTP	protocol	level	supported	by	the	client's
software.

	1. 	This	example	displays	the	values	of	the	predefined	properties	of	the
request	object.	In	this	example,	an	HTML	form	is	defined	as	follows:

<FORM	METHOD="post"	NAME="idForm"	ACTION="hello.html">
<P>Last	name:
			<INPUT	TYPE="text"	NAME="lastName"	SIZE="20">

First	name:
			<INPUT	TYPE="text"	NAME="firstName"	SIZE="20">
</FORM>	The	following	code	displays	the	values	of	the	request	object
properties	that	are	created	when	the	form	is	submitted:

agent	=	<SERVER>write(request.agent)</SERVER>

ip	=	<SERVER>write(request.ip)</SERVER>

method	=	<SERVER>write(request.method)</SERVER>

protocol	=	<SERVER>write(request.protocol)</SERVER>

lastName	=	<SERVER>write(request.lastName)</SERVER>

firstName	=	<SERVER>write(request.firstName)</SERVER>	When	it
executes,	this	code	displays	information	similar	to	the	following:

agent	=	"Mozilla/2.0	(WinNT;I)"
ip	=	"165.327.114.147"
method	=	"GET"
protocol	=	"HTTP/1.0"
lastName	=	"Schaefer"
firstName	=	"Jesse"		2. 	The	following	example	creates	the	requestDate
property	and	initializes	it	with	the	current	date	and	time:

request.requestDate	=	new	Date()		3. 	When	a	user	clicks	the	following	link,

the	info.html	page	is	loaded,	request.accessedFrom	is	created	and	initialized	to
"hello.html",	and	request.formId	is	created	and	initialized	to	"047".

Click	here	for

additional	information.

client,	project,	server

Custom

You	can	create	a	property	for	the	request	object	by	assigning	it	a	name	and	a
value.	For	example,	you	can	create	a	request	property	to	store	the	date	and	time
that	a	request	is	received	so	you	can	enter	the	date	into	the	page	content.

You	can	also	create	request	object	properties	by	encoding	them	in	a	URL.	When
a	user	navigates	to	the	URL	by	clicking	its	link,	the	properties	are	created	and
instantiated	to	values	that	you	specify.	The	properties	are	valid	on	the
destination	page.

Use	the	following	to	encode	a	request	property	in	a	URL:

	where:

URL	is	the	URL	the	page	that	will	get	the	new	request	properties.

propertyName	is	the	name	of	the	property	you	are	creating.

value	is	the	initial	value	of	the	new	property.

Use	escape	to	encode	non-alphanumeric	values	in	the	URL	string.

You	can	also	create	custom	properties	for	the	request	object.

agent

Provides	name	and	version	information	about	the	client	software.

request

LiveWire	1.0

The	agent	property	identifies	the	client	software.	Use	this	information	to
conditionally	employ	certain	features	in	an	application.

The	value	of	the	agent	property	is	the	same	as	the	value	of	the	userAgent
property	of	the	client-side	navigator	object.	The	agent	property	specifies	client
information	in	the	following	format:

codeName/releaseNumber	(platform;	country;	platformIdentifier)

The	values	contained	in	this	format	are	the	following:

codeName	is	the	code	name	of	the	client.	For	example,	"Mozilla"	specifies
Navigator.

releaseNumber	is	the	version	number	of	the	client.	For	example,	"2.0b4"
specifies	Navigator	2.0,	beta	4.

platform	is	the	platform	upon	which	the	client	is	running.	For	example,
"Win16"	specifies	a	16-bit	version	of	Windows,	such	as	Windows	3.11.

country	is	either	"I"	for	the	international	release	or	"U"	for	the	domestic
U.S.	release.	The	domestic	release	has	a	stronger	encryption	feature	than
the	international	release.

platformIdentifier	is	an	optional	identifier	that	further	specifies	the
platform.	For	example,	in	Navigator	1.1,	platform	is	"windows"	and
platformIdentifier	is	"32bit".	In	Navigator	2.0,	both	pieces	of	information

are	contained	in	the	platform	designation.	For	example,	in	Navigator	2.0,
the	previous	platform	is	expressed	as	"WinNT".

The	following	example	displays	client	information	for	Navigator	2.0	on
Windows	NT:

write(request.agent)
\\Displays	"Mozilla/2.0	(WinNT;I)"	The	following	example	evaluates	the
request.agent	property	and	runs	the	oldBrowser	procedure	for	clients	other	than
Navigator	2.0.	If	the	browser	is	Navigator	2.0,	the	currentBrowser	function
executes.

<SERVER>
var	agentVar=request.agent
if	(agentVar.indexOf("2.0")==-1)
			oldBrowser()
else
			currentBrowser()
</SERVER>

request.ip,	request.method,	request.protocol

imageX

The	horizontal	position	of	the	mouse	pointer	when	the	user	clicked	the	mouse
over	an	image	map.

request

LiveWire	1.0

The	ISMAP	attribute	of	the	IMG	tag	indicates	a	server-based	image	map.	When
the	user	clicks	the	mouse	with	the	pointer	over	an	image	map,	the	horizontal
and	vertical	position	of	the	pointer	are	returned	to	the	server.

The	imageX	property	returns	the	horizontal	position	of	the	mouse	cursor	when
the	user	clicks	on	an	image	map.

Suppose	you	define	the	following	image	map:

<IMG	SRC="images\map.gif"	WIDTH=599	WIDTH=424	BORDER=0	ISMAP
ALT="SANTA	CRUZ	COUNTY">
	Note	the	ISMAP	attribute	that	makes	the	image	a	clickable	map.	When
the	user	clicks	the	mouse	on	the	image,	the	page	mapchoice.html	will	have
properties	request.imageX	and	request.imageY	based	on	the	mouse	cursor
position	where	the	user	clicked.

request.imageY

imageY

The	vertical	position	of	the	mouse	pointer	when	the	user	clicked	the	mouse	over
an	image	map.

request

LiveWire	1.0

The	ISMAP	attribute	of	the	IMG	tag	indicates	a	server-based	image	map.	When
the	user	clicks	the	mouse	with	the	pointer	over	an	image	map,	the	horizontal
and	vertical	position	of	the	pointer	are	returned	to	the	server.

The	imageY	property	returns	the	vertical	position	of	the	mouse	cursor	when	the
user	clicks	on	an	image	map.

See	example	for	imageX.

request.imageX

inputName

Represents	an	input	element	on	an	HTML	form.

request

LiveWire	1.0

Each	input	element	in	an	HTML	form	corresponds	to	a	property	of	the	request
object.	The	name	of	each	of	these	properties	is	the	name	of	the	field	on	the
associated	form.	inputName	is	a	variable	that	represents	the	value	of	the	name
property	of	an	input	field	on	a	submitted	form.	By	default,	the	value	of	the
JavaScript	name	property	is	the	same	as	the	HTML	NAME	attribute.

The	following	HTML	source	creates	the	request.lastName	and	the
request.firstName	properties	when	idForm	is	submitted:

<FORM	METHOD="post"	NAME="idForm"	ACTION="hello.html">
<P>Last	name:
			<INPUT	TYPE="text"	NAME="lastName"	SIZE="20">

First	name:
			<INPUT	TYPE="text"	NAME="firstName"	SIZE="20">
</FORM>

ip

Provides	the	IP	address	of	the	client.

request

LiveWire	1.0

The	IP	address	is	a	set	of	four	numbers	between	0	and	255,	for	example,
198.217.226.34.	You	can	use	the	IP	address	to	authorize	or	record	access	in
certain	situations.

In	the	following	example,	the	indexOf	method	evaluates	request.ip	to	determine
if	it	begins	with	the	string	"198.217.226".	The	if	statement	executes	a	different
function	depending	on	the	result	of	the	indexOf	method.

<SERVER>
var	ipAddress=request.ip
if	(ipAddress.indexOf("198.217.226.")==-1)
			limitedAccess()
else
			fullAccess()
</SERVER>

request.agent,	request.method,	request.protocol

method

Provides	the	HTTP	method	associated	with	the	request.

request

LiveWire	1.0

The	value	of	the	method	property	is	the	same	as	the	value	of	the	method
property	of	the	client-side	Form	object.	That	is,	method	reflects	the	METHOD
attribute	of	the	FORM	tag.	For	HTTP	1.0,	the	method	property	evaluates	to
either	"get"	or	"post".	Use	the	method	property	to	determine	the	proper	response
to	a	request.

The	following	example	executes	the	postResponse	function	if	the	method
property	evaluates	to	"post".	If	method	evaluates	to	anything	else,	it	executes
the	getResponse	function.

<SERVER>
if	(request.method=="post")
			postResponse()
else
			getResponse()
</SERVER>

request.agent,	request.ip,	request.protocol

protocol

Provides	the	HTTP	protocol	level	supported	by	the	client's	software.

request

LiveWire	1.0

For	HTTP	1.0,	the	protocol	value	is	"HTTP/1.0".	Use	the	protocol	property	to
determine	the	proper	response	to	a	request.

In	the	following	example,	the	currentProtocol	function	executes	if
request.protocol	evaluates	to	"HTTP/1.0".

<SERVER>
if	(request.protocol=="HTTP/1.0"
			currentProtocol()
else
			unknownProtocol()
</SERVER>

request.agent,	request.ip,	request.method

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

client
Contains	data	specific	to	an	individual	client.

LiveWire	1.0

The	JavaScript	runtime	engine	on	the	server	automatically	creates	a	client
object	for	each	client/application	pair.

The	JavaScript	runtime	engine	on	the	server	constructs	a	client	object	for	every
client/application	pair.	A	browser	client	connected	to	one	application	has	a
different	client	object	than	the	same	browser	client	connected	to	a	different
application.	The	runtime	engine	constructs	a	new	client	object	each	time	a	user
accesses	an	application;	there	can	be	hundreds	or	thousands	of	client	objects
active	at	the	same	time.

You	cannot	use	the	client	object	on	your	application's	initial	page.	This	page	is
run	when	the	application	is	started	on	the	server.	At	this	time,	there	is	not	a
client	request,	so	there	is	no	available	client	object.

The	runtime	engine	constructs	and	destroys	the	client	object	for	each	client
request.	However,	at	the	end	of	a	request,	the	runtime	engine	saves	the	names
and	values	of	the	client	object's	properties	so	that	when	the	same	user	returns	to
the	application	with	a	subsequent	request,	the	runtime	engine	can	construct	a
new	client	object	with	the	saved	data.	Thus,	conceptually	you	can	think	of	the
client	object	as	remaining	for	the	duration	of	a	client's	session	with	the
application.	There	are	several	different	ways	to	maintain	client	property	values;
for	more	information,	see	Writing	Server-Side	JavaScript	Applications.

All	requests	by	one	client	use	the	same	client	object,	as	long	as	those	requests
occur	within	the	lifetime	of	that	client	object.	By	default,	a	client	object	persists

http://developer.netscape.com/library/documentation/enterprise/wrijsap/index.htm

until	the	associated	client	has	been	inactive	for	10	minutes.	You	can	use	the
expiration	method	to	change	this	default	lifetime	or	the	destroy	method	to
explicitly	destroy	the	client	object.

Use	the	client	object	to	maintain	data	that	is	specific	to	an	individual	client.
Although	many	clients	can	access	an	application	simultaneously,	the	individual
client	objects	keep	their	data	separate.	Each	client	object	can	track	the	progress
of	an	individual	client	across	multiple	requests	to	the	same	application.

destroy Destroys	a	client	object.
expiration Specifies	the	duration	of	a	client	object.

	1. 	This	example	dynamically	assigns	a	customer	ID	number	that	is	used	for
the	lifetime	of	an	application	session.	The	assignId	function	creates	an	ID	based
on	the	user's	IP	address,	and	the	customerId	property	saves	the	ID.

<SERVER>client.customerId	=	assignId(request.ip)</SERVER>	See	also	the
for	the	project	object	for	a	way	to	sequentially	assign	a	customer	ID.

	2. 	This	example	creates	a	customerId	property	to	store	a	customer	ID	that	a
user	enters	into	a	form.	The	form	is	defined	as	follows:

<FORM	NAME="getCustomerInfo"	METHOD="post">
<P>Enter	your	customer	ID:	
			<INPUT	TYPE="text"	NAME="customerNumber">
</FORM>	The	following	code	assigns	the	value	entered	in	the
customerNumber	field	from	the	temporary	request.clientNumber	to	the	more
permanent	client.customerId:

<SERVER>client.customerId=request.customerNumber</SERVER>

project,	request,	server

The	client	object	has	no	predefined	properties.	You	create	custom	properties	to
contain	any	client-specific	data	that	is	required	by	an	application.	The	runtime
engine	does	not	save	client	objects	that	have	no	property	values.

You	can	create	a	property	for	the	client	object	by	assigning	it	a	name	and	a
value.	For	example,	you	can	create	a	client	property	to	store	a	customer	ID	at
the	beginning	of	an	application	so	a	user	does	not	have	to	enter	it	with	each
request.

Because	of	the	techniques	used	to	maintain	client	properties	across	multiple
client	requests,	there	is	one	major	restriction	on	client	property	values.	The
JavaScript	runtime	engine	on	the	server	converts	the	values	of	all	of	the	client
object's	properties	to	strings.

The	runtime	engine	cannot	convert	an	object	to	a	string.	For	this	reason,	you
cannot	assign	an	object	as	the	value	of	a	client	property.	If	a	client	property
value	represents	another	data	type,	such	as	a	number,	you	must	convert	the
value	from	a	string	before	using	it.	The	core	JavaScript	parseInt	and	parseFloat
functions	are	useful	for	converting	to	integer	and	floating	point	values.

destroy

Destroys	a	client	object.

client
LiveWire	1.0

destroy()

The	destroy	method	explicitly	destroys	the	client	object	that	issues	it	and
removes	all	properties	from	the	client	object.	If	you	do	not	explicitly	issue	a
destroy	method,	the	JavaScript	runtime	engine	on	the	server	automatically
destroys	the	client	object	when	its	lifetime	expires.	The	expiration	method	sets
the	lifetime	of	a	client	object;	by	default,	the	lifetime	is	10	minutes.

If	you	are	using	client-cookies	to	maintain	the	client	object,	destroy	eliminates
all	client	property	values,	but	it	does	not	affect	what	is	stored	in	Navigator
cookie	file.	Use	expiration	with	an	argument	of	0	seconds	to	remove	all	client
properties	stored	in	the	cookie	file.

When	using	client	URL	encoding	to	maintain	the	client	object,	destroy	removes
all	client	properties	after	the	method	call.	However,	any	links	in	a	page	before
the	call	to	destroy	retain	properties	in	their	URLs.	Therefore,	you	should
generally	call	destroy	either	at	the	top	or	bottom	of	the	page	when	using	client
URL	maintenance.

The	following	method	destroys	the	client	object	that	calls	it:

<server>client.destroy()</server>

client.expiration

expiration

Specifies	the	duration	of	a	client	object.

client
LiveWire	1.0

expiration(seconds)

seconds An	integer	representing	the	number	of	seconds	of	client	inactivitybefore	the	client	object	expires.

By	default,	the	JavaScript	runtime	engine	on	the	server	destroys	the	client
object	after	the	client	has	been	inactive	for	10	minutes.	This	default	lifetime	lets
the	runtime	engine	clean	up	client	objects	that	are	no	longer	necessary.

Use	the	expiration	method	to	explicitly	control	the	expiration	of	a	client	object,
making	it	longer	or	shorter	than	the	default.	You	must	use	expiration	in	each
page	of	an	application	for	which	you	want	a	client	expiration	other	than	the
default.	Any	page	that	does	not	specify	an	expiration	will	use	the	default	of	10
minutes.

Client	expiration	does	not	apply	if	using	client	URL	encoding	to	maintain	the
client	object.	In	this	case,	client	properties	are	stored	solely	in	URLs	on	HTML
pages.	The	runtime	engine	cannot	remove	those	properties.

The	following	example	extends	the	amount	of	client	inactivity	before	expiration

to	1	hour.	This	code	is	issued	when	an	application	is	first	launched.

<SERVER>client.expiration(3600)</SERVER>

client.destroy

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

project
Contains	data	for	an	entire	application.

LiveWire	1.0

The	JavaScript	runtime	engine	on	the	server	automatically	creates	a	project
object	for	each	application	running	on	the	server.

The	JavaScript	runtime	engine	on	the	server	creates	a	project	object	when	an
application	starts	and	destroys	the	project	object	when	the	application	or	server
stops.	The	typical	project	object	lifetime	is	days	or	weeks.

Each	client	accessing	the	same	application	shares	the	same	project	object.	Use
the	project	object	to	maintain	global	data	for	an	entire	application.	Many	clients
can	access	an	application	simultaneously,	and	the	project	object	lets	these
clients	share	information.

The	runtime	engine	creates	a	set	of	project	objects	for	each	distinct	Netscape
HTTPD	process	running	on	the	server.	Because	several	server	HTTPD
processes	may	be	running	on	different	port	numbers,	the	runtime	engine	creates
a	set	of	project	objects	for	each	process.

You	can	lock	the	project	object	to	ensure	that	different	clients	do	not	change	its
properties	simultaneously.	When	one	client	locks	the	project	object,	other
clients	must	wait	before	they	can	lock	it.	See	Lock	for	more	information	about
locking	the	project	object.

lock Obtains	the	lock.

unlock Releases	the	lock.

	1. 	This	example	creates	the	lastID	property	and	assigns	a	value	to	it	by
incrementing	an	existing	value.

project.lastID	=	1	+	parseInt(project.lastID,	10)		2. 	This	example	increments
the	value	of	the	lastID	property	and	uses	it	to	assign	a	value	to	the	customerID
property.

project.lock()
project.lastID	=	1	+	parseInt(project.lastID,	10);
client.customerID	=	project.lastID;
project.unlock();	In	the	previous	example,	notice	that	the	project	object	is
locked	while	the	customerID	property	is	assigned,	so	no	other	client	can	attempt
to	change	the	lastID	property	at	the	same	time.

client,	request,	server

The	project	object	has	no	predefined	properties.	You	create	custom	properties	to
contain	project-specific	data	that	is	required	by	an	application.

You	can	create	a	property	for	the	project	object	by	assigning	it	a	name	and	a
value.	For	example,	you	can	create	a	project	object	property	to	keep	track	of	the
next	available	Customer	ID.	Any	client	that	accesses	the	application	without	a
Customer	ID	is	sequentially	assigned	one,	and	the	value	of	the	ID	is
incremented	for	each	initial	access.

lock

Obtains	the	lock.	If	another	thread	has	the	lock,	this	method	waits	until	it	can
get	the	lock.

project
LiveWire	1.0

lock()

Nothing.

You	can	obtain	a	lock	for	an	object	to	ensure	that	different	clients	do	not	access
a	critical	section	of	code	simultaneously.	When	an	application	locks	an	object,
other	client	requests	must	wait	before	they	can	lock	the	object.

Note	that	this	mechanism	requires	voluntary	compliance	by	asking	for	the	lock
in	the	first	place.

Lock,	project.unlock

unlock

Releases	the	lock.

project
LiveWire	1.0

unlock()

False	if	it	fails;	otherwise,	true.	Failure	indicates	an	internal	JavaScript	error	or
that	you	attempted	to	unlock	a	lock	that	you	don't	own.

If	you	unlock	a	lock	that	is	unlocked,	the	resulting	behavior	is	undefined.

Lock,	project.lock

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

server
Contains	global	data	for	the	entire	server.

LiveWire	1.0

The	JavaScript	runtime	engine	on	the	server	automatically	creates	a	single
server	object	to	store	information	common	to	all	JavaScript	applications
running	on	the	web	server.

The	JavaScript	runtime	engine	on	the	server	creates	a	server	object	when	the
server	starts	and	destroys	it	when	the	server	stops.	Every	application	on	a	server
shares	the	same	server	object.	Use	the	server	object	to	maintain	global	data	for
the	entire	server.	Many	applications	can	run	on	a	server	simultaneously,	and	the
server	object	lets	them	share	information.

The	runtime	engine	creates	a	server	object	for	each	distinct	Netscape	HTTPD
process	running	on	the	server.

The	properties	listed	below	are	read-only	properties	that	are	initialized
automatically	when	a	server	object	is	created.	These	properties	provide
information	about	the	server	process.	In	addition	to	these	predefined	properties,
you	can	create	custom	properties.

You	can	lock	the	server	object	to	ensure	that	different	applications	do	not
change	its	properties	simultaneously.	When	one	application	locks	the	server
object,	other	applications	must	wait	before	they	can	lock	it.

host String	specifying	the	server	name,	subdomain,	and	domain	name.

hostname String	containing	the	full	hostname	of	the	server,	including	the	server
name,	subdomain,	domain,	and	port	number.

port String	indicating	the	port	number	used	for	the	server.
protocol String	indicating	the	communication	protocol	used	by	the	server.

lock Obtains	the	lock.
unlock Releases	the	lock.

The	following	example	displays	the	values	of	the	predefined	server	object
properties:

<P>server.host	=	<SERVER>write(server.host);</SERVER>

server.hostname	=	<SERVER>write(server.hostname);</SERVER>

server.protocol	=	<SERVER>write(server.protocol);</SERVER>

server.port	=	<SERVER>write(server.port);</SERVER>	The	preceding
code	displays	information	such	as	the	following:

server.host	=	www.myWorld.com
server.hostname	=	www.myWorld.com:85
server.protocol	=	http:
server.port	=	85

client,	project,	request

host

A	string	specifying	the	server	name,	subdomain,	and	domain	name.

server

LiveWire	1.0

The	host	property	specifies	a	portion	of	a	URL.	The	host	property	is	a	substring
of	the	hostname	property.	The	hostname	property	is	the	concatenation	of	the
host	and	port	properties,	separated	by	a	colon.	When	the	port	property	is	80	(the
default),	the	host	property	is	the	same	as	the	hostname	property.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	hostname
and	port.

server.hostname,	server.port,	server.protocol

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

hostname

A	string	containing	the	full	hostname	of	the	server,	including	the	server	name,
subdomain,	domain,	and	port	number.

server

LiveWire	1.0

The	hostname	property	specifies	a	portion	of	a	URL.	The	hostname	property	is
the	concatenation	of	the	host	and	port	properties,	separated	by	a	colon.	When
the	port	property	is	80	(the	default),	the	host	property	is	the	same	as	the
hostname	property.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	hostname
and	port.

server.host,	server.port,	server.protocol

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

port

A	string	indicating	the	port	number	used	for	the	server.

server

LiveWire	1.0

The	port	property	specifies	a	portion	of	the	URL.	The	port	property	is	a
substring	of	the	hostname	property.	The	hostname	property	is	the	concatenation
of	the	host	and	port	properties,	separated	by	a	colon.

The	default	value	of	the	port	property	is	80.	When	the	port	property	is	set	to	the
default,	the	values	of	the	host	and	hostname	properties	are	the	same.

See	Section	3.1	of	RFC	1738	(http://www.cis.ohio-
state.edu/htbin/rfc/rfc1738.html)	for	complete	information	about	the	port.

server.host,	server.hostname,	server.protocol

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

protocol

A	string	indicating	the	communication	protocol	used	by	the	server.

server

LiveWire	1.0

The	protocol	property	specifies	the	beginning	of	the	URL,	up	to	and	including
the	first	colon.	The	protocol	indicates	the	access	method	of	the	URL.	For
example,	a	protocol	of	"http:"	specifies	HyperText	Transfer	Protocol.

The	protocol	property	represents	the	scheme	name	of	the	URL.	See	Section	2.1
of	RFC	1738	(http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html)	for
complete	information	about	the	protocol.

server.host,	server.hostname,	server.port

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html

lock

Obtains	the	lock.	If	another	thread	has	the	lock,	this	method	waits	until	it	can
get	the	lock.

server
LiveWire	1.0

lock()

Nothing.

You	can	obtain	a	lock	for	an	object	to	ensure	that	different	clients	do	not	access
a	critical	section	of	code	simultaneously.	When	an	application	locks	an	object,
other	client	requests	must	wait	before	they	can	lock	the	object.

Note	that	this	mechanism	requires	voluntary	compliance	by	asking	for	the	lock
in	the	first	place.

Lock,	server.lock

unlock

Releases	the	lock.

server
LiveWire	1.0

unlock()

False	if	it	fails;	otherwise,	true.	Failure	indicates	an	internal	JavaScript	error	or
that	you	attempted	to	unlock	a	lock	that	you	don't	own.

If	you	unlock	a	lock	that	is	unlocked,	the	resulting	behavior	is	undefined.

Lock,	server.unlock

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Lock
Provides	a	way	to	lock	a	critical	section	of	code.

Netscape	Server	3.0

The	Lock	constructor:

Lock();

Failure	to	construct	a	new	Lock	object	indicates	an	internal	JavaScript	error,
such	as	out	of	memory.

lock Obtains	the	lock.
isValid Verifies	that	this	Lock	object	was	properly	constructed.
unlock Releases	the	lock.

project.lock,	project.unlock,	server.lock,	server.unlock

lock

Obtains	the	lock.	If	someone	else	has	the	lock,	this	method	blocks	until	it	can
get	the	lock,	the	specified	timeout	period	has	elapsed,	or	an	error	occurs.

Lock
Netscape	Server	3.0

lock(timeout)

timeout

An	integer	indicating	the	number	of	seconds	to	wait	for	the	lock.	If	0,
there	is	no	timeout;	that	is,	the		waits	indefinitely	to	obtain	the
lock.	The	default	value	is	0,	so	if	you	do	not	specify	a	value,	the	
waits	indefinitely.

True	if	it	succeeds	in	obtaining	the	lock	within	the	specified	timeout.	False	if	it
did	not	obtain	the	lock.

You	can	obtain	a	lock	for	an	object	to	ensure	that	different	clients	do	not	access
a	critical	section	of	code	simultaneously.	When	an	application	locks	an	object,
other	client	requests	must	wait	before	they	can	lock	the	object.

Note	that	this	mechanism	requires	voluntary	compliance	by	asking	for	the	lock
in	the	first	place.

Lock.unlock,	Lock.isValid,	project.lock,	server.lock

isValid

Verifies	that	this	Lock	object	was	properly	constructed.

Lock
Netscape	Server	3.0

isValid()

True,	if	this	object	was	properly	constructed;	otherwise,	false.

It	is	very	rare	that	your	Lock	object	would	not	be	properly	constructed.	This
happens	only	if	the	runtime	engine	runs	out	of	system	resources	while	creating
the	object.

This	code	creates	a	Lock	object	and	verifies	that	nothing	went	wrong	creating	it:

//	construct	a	new	Lock	and	save	in	project	
project.ordersLock	=	new	Lock();	
if	(!	project.ordersLock.isValid())	{
			//	Unable	to	create	a	Lock.	Redirect	to	error	page
			...
}

Lock.lock,	Lock.unlock

unlock

Releases	the	lock.

Lock
Netscape	Server	3.0

unlock()

False	if	it	fails;	otherwise,	true.	Failure	indicates	an	internal	JavaScript	error	or
that	you	attempted	to	unlock	a	lock	that	you	don't	own.

If	you	unlock	a	lock	that	is	unlocked,	the	resulting	behavior	is	undefined.

Lock.lock,	Lock.isValid,	project.unlock,	server.unlock

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

File
Lets	an	application	interact	with	a	physical	file	on	the	server.

LiveWire	1.0

The	File	constructor:

new	File("path")

path The	path	and	filename	in	the	format	of	the	server's	file	system	(not	a	URLpath).

You	can	use	the	File	object	to	write	to	or	read	from	a	file	on	the	server.	For
security	reasons,	you	cannot	programmatically	access	the	file	system	of	client
machines.

You	can	use	the	File	object	to	generate	persistent	HTML	or	data	files	without
using	a	database	server.	Information	stored	in	a	file	is	preserved	when	the	server
goes	down.

Exercise	caution	when	using	the	File	object.	An	application	can	read	and	write
files	anywhere	the	operating	system	allows.	If	you	create	an	application	that
writes	to	or	reads	from	your	file	system,	you	should	ensure	that	users	cannot
misuse	this	capability.

Specify	the	full	path,	including	the	filename,	for	the	path	parameter	of	the	File
object	you	want	to	create.	The	path	must	be	an	absolute	path;	do	not	use	a
relative	path.

If	the	physical	file	specified	in	the	path	already	exists,	the	JavaScript	runtime
engine	references	it	when	you	call	methods	for	the	object.	If	the	physical	file
does	not	exist,	you	can	create	it	by	calling	the	open	method.

You	can	display	the	name	and	path	of	a	physical	file	by	calling	the	write
function	and	passing	it	the	name	of	the	related	File	object.

A	pointer	indicates	the	current	position	in	a	file.	If	you	open	a	file	in	the	a	or	a+
mode,	the	pointer	is	initially	positioned	at	the	end	of	the	file;	otherwise,	it	is
initially	positioned	at	the	beginning	of	the	file.	In	an	empty	file,	the	beginning
and	end	of	the	file	are	the	same.	Use	the	eof,	getPosition,	and	setPosition
methods	to	specify	and	evaluate	the	position	of	the	pointer.	See	the	open
method	for	a	of	the	modes	in	which	you	can	open	a	file.

You	can	use	the	prototype	property	of	the	File	object	to	add	a	property	to	all
File	instances.	If	you	do	so,	that	addition	applies	to	all	File	objects	running	in	all
applications	on	your	server,	not	just	in	the	single	application	that	made	the
change.	This	allows	you	to	expand	the	capabilities	of	this	object	for	your	entire
server.

prototype Allows	the	addition	of	properties	to	a	File	object.

byteToString Converts	a	number	that	represents	a	byte	into	a	string.
clearError Clears	the	current	file	error	status.
close Closes	an	open	file	on	the	server.
eof Determines	whether	the	pointer	is	beyond	the	end	of	an	open	file.
error Returns	the	current	error	status.
exists Tests	whether	a	file	exists.
flush Writes	the	content	of	the	internal	buffer	to	a	file.
getLength Returns	the	length	of	a	file.
getPosition Returns	the	current	position	of	the	pointer	in	an	open	file.
open Opens	a	file	on	the	server.

read Reads	data	from	a	file	into	a	string.

readByte Reads	the	next	byte	from	an	open	file	and	returns	its	numeric
value.

readln Reads	the	current	line	from	an	open	file	and	returns	it	as	a	string.
setPosition Positions	a	pointer	in	an	open	file.

stringToByte Converts	the	first	character	of	a	string	into	a	number	thatrepresents	a	byte.
write Writes	data	from	a	string	to	a	file	on	the	server.
writeByte Writes	a	byte	of	data	to	a	binary	file	on	the	server.
writeln Writes	a	string	and	a	carriage	return	to	a	file	on	the	server.

	1. 	The	following	example	creates	the	File	object	userInfo	that	refers	to	a
physical	file	called	info.txt.	The	info.txt	file	resides	in	the	same	directory	as	the
application's	.web	file:

userInfo	=	new	File("info.txt")		2. 	In	the	following	example,	the	File	object
refers	to	a	physical	file	with	an	absolute	path:

userInfo	=	new	File("c:\\data\\info.txt")		3. 	The	following	example	displays
the	name	of	a	File	object	onscreen.

userInfo	=	new	File("c:\\data\\info.txt")
write(userInfo)

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

File
LiveWire	1.0

byteToString

Converts	a	number	that	represents	a	byte	into	a	string.

File

LiveWire	1.0

byteToString(number)

number A	number	that	represents	a	byte.

Use	the	stringToByte	and	byteToString	methods	to	convert	data	between	binary
and	ASCII	formats.	The	byteToString	method	converts	the	number	argument
into	a	string.

Because	byteToString	is	a	static	method	of	File,	you	always	use	it	as
File.byteToString(),	rather	than	as	a	method	of	a	File	object	you	created.

If	the	argument	you	pass	into	the	byteToString	method	is	not	a	number,	the
method	returns	an	empty	string.

The	following	example	creates	a	copy	of	a	text	file,	one	character	at	a	time.	In
this	example,	a	while	loop	executes	until	the	pointer	is	positioned	past	the	end
of	the	file.	Inside	the	loop,	the	readByte	method	reads	the	current	character	from
the	source	file,	and	the	byteToString	method	converts	it	into	a	string;	the	write
method	writes	it	to	the	target	file.	The	last	readByte	method	positions	the

pointer	past	the	end	of	the	file,	ending	the	while	loop.	See	the	File	object	for	a
of	the	pointer.

//	Create	the	source	File	object
source	=	new	File("c:\data\source.txt")	//	If	the	source	file	opens	successfully,
create	a	target	file
if	(source.open("r"))	{
			target	=	new	File("c:\data\target.txt")
			target.open("w")	//	Copy	the	source	file	to	the	target
			while	(!source.eof())	{
						data	=	File.byteToString(source.readByte())
						target.write(data);
			}
			source.close()
}
			target.close()	This	example	is	similar	to	the	example	used	for	the	write
method	of	File.	However,	this	example	reads	bytes	from	the	source	file	and
converts	them	to	strings,	instead	of	reading	strings	from	the	source	file.

File.stringToByte

clearError

Clears	the	current	file	error	status.

File
LiveWire	1.0

clearError()

The	clearError	method	clears	both	the	file	error	status	(the	value	returned	by	the
error	method)	and	the	value	returned	by	the	eof	method.

See	the	example	for	the	error	method.

File.error,	File.eof

close

Closes	an	open	file	on	the	server.

File
LiveWire	1.0

close()

When	your	application	is	finished	with	a	file,	you	should	close	the	file	by
calling	the	close	method.	If	the	file	is	not	open,	the	close	method	fails.	This
method	returns	true	if	it	is	successful;	otherwise,	it	returns	false.

See	the	for	the	open	method.

File.open,	blob

eof

Determines	whether	the	pointer	is	beyond	the	end	of	an	open	file.

File
LiveWire	1.0

eof()

Use	the	eof	method	to	determine	whether	the	position	of	the	pointer	is	beyond
the	end	of	a	file.	See	File	for	a	of	the	pointer.

A	call	to	setPosition	resulting	in	a	location	greater	than
fileObjectName.getLength	places	the	pointer	beyond	the	end	of	the	file.
Because	all	read	operations	also	move	the	pointer,	a	read	operation	that	reads
the	last	byte	of	data	(or	character)	in	a	file	positions	the	pointer	beyond	the	end
of	the	file.

The	eof	method	returns	true	if	the	pointer	is	beyond	the	end	of	the	file;
otherwise,	it	returns	false.

In	this	example,	a	while	loop	executes	until	the	pointer	is	positioned	past	the
end	of	the	file.	While	the	pointer	is	not	positioned	past	the	end	of	the	file,	the
readln	method	reads	the	current	line,	and	the	write	method	displays	it.	The	last
readln	method	positions	the	pointer	past	the	end	of	the	file,	ending	the	while
loop.

x	=	new	File("c:\data\userInfo.txt")
if	(x.open("r"))	{
			while	(!x.eof())	{
						line	=	x.readln()
						write(line+"
");
			}
			x.close();
}

File.getPosition,	File.setPosition

error

Returns	the	current	error	status.

File
LiveWire	1.0

error()

0	if	there	is	no	error.

-1	if	the	file	specified	in	fileObjectName	is	not	open

Otherwise,	the	method	returns	a	nonzero	integer	indicating	the	error	status.
Specific	error	status	codes	are	platform-dependent.	Refer	to	your	operating
system	documentation	for	more	information.

The	following	example	uses	the	error	method	in	an	if	statement	to	take	different
actions	depending	on	whether	a	call	to	the	open	method	succeeded.	After	the	if
statement	completes,	the	error	status	is	reset	with	the	clearError	method.

userInput	=	new	File("c:\data\input.txt")
userInput.open("w")
if	(userInput.error()	==	0)	{
			fileIsOpen()	}
else	{

			fileIsNotOpen()	}
userInput.clearError()

File.clearError

exists

Tests	whether	a	file	exists.

File
LiveWire	1.0

exists()

True	if	the	file	exists;	otherwise,	false.

The	following	example	uses	an	if	statement	to	take	different	actions	depending
on	whether	a	physical	file	exists.	If	the	file	exists,	the	JavaScript	runtime	engine
opens	it	and	calls	the	writeData	function.	If	the	file	does	not	exist,	the	runtime
engine	calls	the	noFile	function.

dataFile	=	new	File("c:\data\mytest.txt")	if	(dataFile.exists()	==true)	{
			dataFile.open("w")
			writeData()
			dataFile.close()
}
else	{
			noFile()
}

flush

Writes	the	content	of	the	internal	buffer	to	a	file.

File
LiveWire	1.0

flush()

When	you	write	to	a	file	with	any	of	the	File	object	methods	(write,	writeByte,
or	writeln),	the	data	is	buffered	internally.	The	flush	method	writes	the	buffer	to
the	physical	file.	The	flush	method	returns	true	if	it	is	successful;	otherwise,	it
returns	false.

Do	not	confuse	the	flush	method	of	the	File	object	with	the	top-level	flush
function.	The	flush	function	flushes	a	buffer	of	data	and	causes	it	to	display	in
the	client	browser;	the	flush	method	flushes	a	buffer	of	data	to	a	physical	file.

See	the	write	method	for	an	example	of	the	flush	method.

File.write,	File.writeByte,	File.writeln

getLength

Returns	the	length	of	a	file.

File
LiveWire	1.0

getLength()

If	this	method	is	successful,	it	returns	the	number	of	bytes	in	a	binary	file	or
characters	in	a	text	file;	otherwise,	it	returns	-1.

The	following	example	copies	a	file	one	character	at	a	time.	This	example	uses
getLength	as	a	counter	in	a	for	loop	to	iterate	over	every	character	in	the	file.

//	Create	the	source	File	object
source	=	new	File("c:\data\source.txt")	//	If	the	source	file	opens	successfully,
create	a	target	file
if	(source.open("r"))	{
			target	=	new	File("c:\data\target.txt")
			target.open("a")				//	Copy	the	source	file	to	the	target
			for	(var	x	=	0;	x	<	source.getLength();	x++)	{
						source.setPosition(x)
						data	=	source.read(1)
						target.write(data)
			}

			source.close()
}
			target.close()

getPosition

Returns	the	current	position	of	the	pointer	in	an	open	file.

File
LiveWire	1.0

getPosition()

-1	if	there	is	an	error.

Use	the	getPosition	method	to	determine	the	position	of	the	pointer	in	a	file.	See
the	File	object	for	a	of	the	pointer.	The	getPosition	method	returns	the	current
pointer	position;	the	first	byte	in	a	file	is	byte	0.

The	following	refer	to	the	file	info.txt,	which	contains	the	string	"Hello
World."	The	length	of	info.txt	is	11	bytes.

	1.	 In	the	following	example,	the	first	call	to	getPosition	shows	that	the	default
pointer	position	is	0	in	a	file	that	is	opened	for	reading.	This	example	also
shows	that	a	call	to	the	read	method	repositions	the	pointer.

dataFile	=	new	File("c:\data\info.txt")

dataFile.open("r")	write("The	position	is	"	+	dataFile.getPosition()	+	"
")
write("The	next	character	is	"	+	dataFile.read(1)	+	"
")
write("The	new	position	is	"	+	dataFile.getPosition()	+	"
")	dataFile.close()
This	example	displays	the	following	information:

The	position	is	0
The	next	character	is	H
The	new	position	is	1		2. 	This	example	uses	setPosition	to	position	the	pointer
one	byte	from	the	end	of	the	eleven-byte	file,	resulting	in	a	pointer	position	of
offset	10.

dataFile	=	new	File("c:\data\info.txt")
dataFile.open("r")	dataFile.setPosition(-1,2)
write("The	position	is	"	+	dataFile.getPosition()	+	"
")
write("The	next	character	is	"	+	dataFile.read(1)	+	"
")	dataFile.close()
This	example	displays	the	following	information:

The	position	is	10
The	next	character	is	d		3. 	You	can	position	the	pointer	beyond	the	end	of	the
file	and	still	evaluate	getPosition	successfully.	However,	a	call	to	eof	indicates
that	the	pointer	is	beyond	the	end	of	the	file.

dataFile.setPosition(1,2)
write("The	position	is	"	+	dataFile.getPosition()	+	"
")
write("The	value	of	eof	is	"	+	dataFile.eof()	+	"<P>")	This	example	displays	the
following	information:

The	position	is	12
The	value	of	eof	is	true

File.eof,	File.open,	File.setPosition

open

Opens	a	file	on	the	server.

File
LiveWire	1.0

open("mode")

mode A	string	specifying	whether	to	open	the	file	to	read,	write,	or	append,according	to	the	list	below.

Use	the	open	method	to	open	a	file	on	the	server	before	you	read	from	it	or
write	to	it.	If	the	file	is	already	open,	the	method	fails	and	has	no	effect.	The
open	method	returns	true	if	it	is	successful;	otherwise,	it	returns	false.

The	mode	parameter	is	a	string	that	specifies	whether	to	open	the	file	to	read,
write,	or	append	data.	You	can	optionally	use	the	b	parameter	anytime	you
specify	the	mode.	If	you	do	so,	the	JavaScript	runtime	engine	on	the	server
opens	the	file	as	a	binary	file.	If	you	do	not	use	the	b	parameter,	the	runtime
engine	opens	the	file	as	a	text	file.	The	b	parameter	is	available	only	on
Windows	platforms.

The	possible	values	for	mode	are	as	follows:

r[b]	opens	a	file	for	reading.	If	the	file	exists,	the	method	succeeds	and
returns	true;	otherwise,	the	method	fails	and	returns	false.

w[b]	opens	a	file	for	writing.	If	the	file	does	not	already	exist,	it	is	created;
otherwise,	it	is	overwritten.	This	method	always	succeeds	and	returns	true.

a[b]	opens	a	file	for	appending	(writing	at	the	end	of	the	file).	If	the	file
does	not	already	exist,	it	is	created.	This	method	always	succeeds	and
returns	true.

r+[b]	opens	a	file	for	reading	and	writing.	If	the	file	exists,	the	method
succeeds	and	returns	true;	otherwise,	the	method	fails	and	returns	false.
Reading	and	writing	commence	at	the	beginning	of	the	file.	When	writing,
characters	at	the	beginning	of	the	file	are	overwritten.

w+[b]	opens	a	file	for	reading	and	writing.	If	the	file	does	not	already
exist,	it	is	created;	otherwise,	it	is	overwritten.	This	method	always
succeeds	and	returns	true.

a+[b]	opens	a	file	for	reading	and	appending.	If	the	file	does	not	already
exist,	it	is	created.	This	method	always	succeeds	and	returns	true.	Reading
and	appending	commence	at	the	end	of	the	file.

When	your	application	is	finished	with	a	file,	you	should	close	the	file	by
calling	the	close	method.

	1. 	The	following	example	opens	the	file	info.txt	so	an	application	can	write
information	to	it.	If	info.txt	does	not	already	exist,	the	open	method	creates	it;
otherwise,	the	open	method	overwrites	it.	The	close	method	closes	the	file	after
the	writeData	function	is	completed.

userInfo	=	new	File("c:\data\info.txt")
userInfo.open("w")
writeData()
userInfo.close()		2. 	The	following	example	opens	a	binary	file	so	an
application	can	read	data	from	it.	The	application	uses	an	if	statement	to	take
different	actions	depending	on	whether	the	open	statement	finds	the	specified
file.

entryGraphic	=	new	File("c:\data\splash.gif")
if	(entryGraphic.open("rb")	==	true)	{
			displayProcedure()
			}

else	{
			errorProcedure()
			}
entryGraphic.close()

File.close

read

Reads	data	from	a	file	into	a	string.

File
LiveWire	1.0

read(count)

count An	integer	specifying	the	number	of	characters	to	read.

The	read	method	reads	the	specified	number	of	characters	from	a	file,	starting
from	the	current	position	of	the	pointer.	If	you	attempt	to	read	more	characters
than	the	file	contains,	the	method	reads	as	many	characters	as	possible.	This
method	moves	the	pointer	the	number	of	characters	specified	by	the	count
parameter.	See	the	File	object	for	a	of	the	pointer.

The	read	method	returns	the	characters	it	reads	as	a	string.

Use	the	read	method	to	read	information	from	a	text	file;	use	the	readByte
method	to	read	data	from	a	binary	file.

The	following	example	references	the	file	info.txt,	which	contains	the	string
"Hello	World."	The	first	read	method	starts	from	the	beginning	of	the	file	and
reads	the	character	"H."	The	second	read	method	starts	from	offset	six	and	reads
the	characters	"World."

dataFile	=	new	File("c:\data\info.txt")

dataFile.open("r")	write("The	next	character	is	"	+	dataFile.read(1)	+	"
")
dataFile.setPosition(6)
write("The	next	five	characters	are	"	+	dataFile.read(5)	+	"
")
dataFile.close()	This	example	displays	the	following	information:

The	next	character	is	H
The	next	five	characters	are	World

File.readByte,	File.readln,	File.write

readByte

Reads	the	next	byte	from	an	open	file	and	returns	its	numeric	value.

File
LiveWire	1.0

readByte()

The	readByte	method	reads	the	next	byte	from	a	file,	starting	from	the	current
position	of	the	pointer.	This	method	moves	the	pointer	one	byte.	See	the	File
object	for	a	of	the	pointer.

The	readByte	method	returns	the	byte	it	reads	as	a	number.	If	the	pointer	is	at
the	end	of	the	file	when	you	issue	readByte,	the	method	returns	-1.

Use	the	readByte	method	to	read	information	from	a	binary	file.	You	can	use	the
readByte	method	to	read	from	a	text	file,	but	you	must	use	the	byteToString
method	to	convert	the	value	to	a	string.	Generally	it	is	better	to	use	the	read
method	to	read	information	from	a	text	file.

You	can	use	the	writeByte	method	to	write	data	read	by	the	readByte	method	to
a	file.

This	example	creates	a	copy	of	a	binary	file.	In	this	example,	a	while	loop
executes	until	the	pointer	is	positioned	past	the	end	of	the	file.	While	the	pointer

is	not	positioned	past	the	end	of	the	file,	the	readByte	method	reads	the	current
byte	from	the	source	file,	and	the	writeByte	method	writes	it	to	the	target	file.
The	last	readByte	method	positions	the	pointer	past	the	end	of	the	file,	ending
the	while	loop.

//	Create	the	source	File	object
source	=	new	File("c:\data\source.gif")	//	If	the	source	file	opens	successfully,
create	a	target	file
if	(source.open("rb"))	{
			target	=	new	File("c:\data\target.gif")
			target.open("wb")	//	Copy	the	source	file	to	the	target
			while	(!source.eof())	{
						data	=	source.readByte()
						target.writeByte(data);
			}
			source.close();
}
target.close()

File.read,	File.readln,	File.writeByte

readln

Reads	the	current	line	from	an	open	file	and	returns	it	as	a	string.

File
LiveWire	1.0

readln()

The	readln	method	reads	the	current	line	of	characters	from	a	file,	starting	from
the	current	position	of	the	pointer.	If	you	attempt	to	read	more	characters	than
the	file	contains,	the	method	reads	as	many	characters	as	possible.	This	method
moves	the	pointer	to	the	beginning	of	the	next	line.	See	the	File	object	for	a	of
the	pointer.

The	readln	method	returns	the	characters	it	reads	as	a	string.

The	line	separator	characters	("\r"	and	"\n"	on	Windows	platforms	and	"\n"	on
UNIX	platforms)	are	not	included	in	the	string	that	the	readln	method	returns.
The	\r	character	is	skipped;	\n	determines	the	actual	end	of	the	line.

Use	the	readln	method	to	read	information	from	a	text	file;	use	the	readByte
method	to	read	data	from	a	binary	file.	You	can	use	the	writeln	method	to	write
data	read	by	the	readln	method	to	a	file.

See	File.eof

File.read,	File.readByte,	File.writeln

setPosition

Positions	a	pointer	in	an	open	file.

File
LiveWire	1.0

setPosition(position,	reference)

position An	integer	indicating	where	to	position	the	pointer.

reference (Optional)	An	integer	that	indicates	a	reference	point,	according	tothe	list	below.

Use	the	setPosition	method	to	reposition	the	pointer	in	a	file.	See	the	File	object
for	a	of	the	pointer.

The	position	argument	is	a	positive	or	negative	integer	that	moves	the	pointer
the	specified	number	of	bytes	relative	to	the	reference	argument.	Position	0
represents	the	beginning	of	a	file.	The	end	of	a	file	is	indicated	by
fileObjectName.getLength().

The	optional	reference	argument	is	one	of	the	following	values,	indicating	the
reference	point	for	position:

0:	relative	to	beginning	of	file.
1:	relative	to	current	position.
2:	relative	to	end	of	file.
Other	(or	unspecified):	relative	to	beginning	of	file.

The	setPosition	method	returns	true	if	it	is	successful;	otherwise,	it	returns	false.

The	following	refer	to	the	file	info.txt,	which	contains	the	string	"Hello
World."	The	length	of	info.txt	is	11	bytes.	The	first	example	moves	the	pointer
from	the	beginning	of	the	file,	and	the	second	example	moves	the	pointer	to	the
same	location	by	navigating	relative	to	the	end	of	the	file.	Both	display	the
following	information:

The	position	is	10
The	next	character	is	d		1. 	This	example	moves	the	pointer	from	the	beginning
of	the	file	to	offset	10.	Because	no	value	for	reference	is	supplied,	the
JavaScript	runtime	engine	assumes	it	is	0.

dataFile	=	new	File("c:\data\info.txt")
dataFile.open("r")	dataFile.setPosition(10)
write("The	position	is	"	+	dataFile.getPosition()	+	"
")
write("The	next	character	is	"	+	dataFile.read(1)	+	"<P>")	dataFile.close()		2.
This	example	moves	the	pointer	from	the	end	of	the	file	to	offset	10.

dataFile	=	new	File("c:\data\info.txt")
dataFile.open("r")	dataFile.setPosition(-1,2)
write("The	position	is	"	+	dataFile.getPosition()	+	"
")
write("The	next	character	is	"	+	dataFile.read(1)	+	"<P>")	dataFile.close()

File.eof,	File.getPosition,	File.open

stringToByte

Converts	the	first	character	of	a	string	into	a	number	that	represents	a	byte.

File

LiveWire	1.0

stringToByte(string)

string A	JavaScript	string.

Use	the	stringToByte	and	byteToString	methods	to	convert	data	between	binary
and	ASCII	formats.	The	stringToByte	method	converts	the	first	character	of	its
string	argument	into	a	number	that	represents	a	byte.

Because	stringToByte	is	a	static	method	of	File,	you	always	use	it	as
File.stringToByte(),	rather	than	as	a	method	of	a	File	object	you	created.

If	this	method	succeeds,	it	returns	the	numeric	value	of	the	first	character	of	the
input	string;	if	it	fails,	it	returns	0.

In	the	following	example,	the	stringToByte	method	is	passed	"Hello"	as	an	input
argument.	The	method	converts	the	first	character,	"H,"	into	a	numeric	value
representing	a	byte.

write("The	stringToByte	value	of	Hello	=	"	+

			File.stringToByte("Hello")	+	"
")
write("Returning	that	value	to	byteToString	=	"	+
			File.byteToString(File.stringToByte("Hello"))	+	"<P>")	The	previous	example
displays	the	following	information:

The	stringToByte	value	of	Hello	=	72
Returning	that	value	to	byteToString	=	H

File.byteToString

write

Writes	data	from	a	string	to	a	file	on	the	server.

File
LiveWire	1.0

write(string)

string A	JavaScript	string.

The	write	method	writes	the	string	specified	as	string	to	the	file	specified	as
fileObjectName.	This	method	returns	true	if	it	is	successful;	otherwise,	it	returns
false.

Use	the	write	method	to	write	data	to	a	text	file;	use	the	writeByte	method	to
write	data	to	a	binary	file.	You	can	use	the	read	method	to	read	data	from	a	file
to	a	string	for	use	with	the	write	method.

Do	not	confuse	the	write	method	of	the	File	object	with	the	write	function.	The
write	function	outputs	data	to	the	client	browser;	the	write	method	outputs	data
to	a	physical	file	on	the	server.

This	example	creates	a	copy	of	a	text	file,	one	character	at	a	time.	In	this
example,	a	while	loop	executes	until	the	pointer	is	positioned	past	the	end	of	the
file.	While	the	pointer	is	not	positioned	past	the	end	of	the	file,	the	read	method
reads	the	current	character	from	the	source	file,	and	the	write	method	writes	it	to

the	target	file.	The	last	read	method	positions	the	pointer	past	the	end	of	the	file,
ending	the	while	loop.	See	the	File	object	for	a	of	the	pointer.

//	Create	the	source	File	object
source	=	new	File("c:\data\source.txt")	//	If	the	source	file	opens	successfully,
create	a	target	file
if	(source.open("r"))	{
			target	=	new	File("c:\data\target.txt")
			target.open("w")	//	Copy	the	source	file	to	the	target
			while	(!source.eof())	{
						data	=	source.read(1)
						target.write(data);
			}
			source.close();
}
			target.flush()
			target.close()

File.flush,	File.read,	File.writeByte,	File.writeln

writeByte

Writes	a	byte	of	data	to	a	binary	file	on	the	server.

File
LiveWire	1.0

writeByte(number)

number A	number	that	specifies	a	byte	of	data.

The	writeByte	method	writes	a	byte	that	is	specified	as	number	to	a	file	that	is
specified	as	fileObjectName.	This	method	returns	true	if	it	is	successful;
otherwise,	it	returns	false.

Use	the	writeByte	method	to	write	data	to	a	binary	file;	use	the	write	method	to
write	data	to	a	text	file.	You	can	use	the	readByte	method	to	read	bytes	of	data
from	a	file	to	numeric	values	for	use	with	the	writeByte	method.

See	the	example	for	the	readByte	method.

File.flush,	File.readByte,	File.write,	File.writeln

writeln

Writes	a	string	and	a	carriage	return	to	a	file	on	the	server.

File
LiveWire	1.0

writeln(string)

string A	JavaScript	string.

The	writeln	method	writes	the	string	specified	as	string	to	the	file	specified	as
fileObjectName.	Each	string	is	followed	by	the	carriage	return/line	feed
character	"\n"	("\r\n"	on	Windows	platforms).	This	method	returns	true	if	the
write	is	successful;	otherwise,	it	returns	false.

Use	the	writeln	method	to	write	data	to	a	text	file;	use	the	writeByte	method	to
write	data	to	a	binary	file.	You	can	use	the	readln	method	to	read	data	from	a
file	to	a	string	for	use	with	the	writeln	method.

This	example	creates	a	copy	of	a	text	file,	one	line	at	a	time.	In	this	example,	a
while	loop	executes	until	the	pointer	is	positioned	past	the	end	of	the	file.	While
the	pointer	is	not	positioned	past	the	end	of	the	file,	the	readln	method	reads	the
current	line	from	the	source	file,	and	the	writeln	method	writes	it	to	the	target
file.	The	last	readln	method	positions	the	pointer	past	the	end	of	the	file,	ending
the	while	loop.	See	the	File	object	for	a	of	the	pointer.

//	Create	the	source	File	object
source	=	new	File("c:\data\source.txt")	//	If	the	source	file	opens	successfully,
create	a	target	file
if	(source.open("r"))	{
			target	=	new	File("c:\data\target.txt")
			target.open("w")	//	Copy	the	source	file	to	the	target
			while	(!source.eof())	{
						data	=	source.readln()
						target.writeln(data);
			}
			source.close();
}
			target.close()	Note	that	the	readln	method	ignores	the	carriage	return/line	feed
characters	when	it	reads	a	line	from	a	file.	The	writeln	method	appends	these
characters	to	the	string	that	it	writes.

File.flush,	File.readln,	File.write,	File.writeByte

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

SendMail
Sends	an	email	message.

Netscape	Server	3.0

The	To	and	From	attributes	are	required.	All	other	properties	are	optional.

The	SendMail	constructor:

new	SendMail();

Whatever	properties	you	specify	for	the	SendMail	object	are	sent	in	the	header
of	the	mail	message.

The	SendMail	object	allows	you	to	send	either	simple	text-only	mail	messages
or	complex	MIME-compliant	mail	or	add	attachments	to	your	message.	To	send
a	MIME	message,	set	the	Content-Type	property	to	the	MIME	type	of	the
message.

You	can	use	the	prototype	property	of	the	SendMail	object	to	add	a	property	to
all	SendMail	instances.	If	you	do	so,	that	addition	applies	to	all	SendMail
objects	running	in	all	applications	on	your	server,	not	just	in	the	single
application	that	made	the	change.	This	allows	you	to	expand	the	capabilities	of
this	object	for	your	entire	server.

Bcc Comma-delimited	list	of	recipients	of	the	message	whose	names
should	not	be	visible	in	the	message.

Body Text	of	the	message.
Cc Comma-delimited	list	of	additional	recipients	of	the	message.

Errorsto Address	to	which	to	send	errors	concerning	the	message.	Defaults
to	the	sender's	address.

From User	name	of	the	person	sending	the	message.
Organization Organization	information.
prototype Allows	the	addition	of	properties	to	a	SendMail	object.

Replyto User	name	to	which	replies	to	the	message	should	be	sent.
Defaults	to	the	sender's	address.

Smtpserver Mail	(SMTP)	server	name.	Defaults	to	the	value	specified
through	the	setting	in	the	Administration	server.

Subject Subject	of	the	message.
To Comma-delimited	list	of	primary	recipients	of	the	message.

errorCode Returns	an	integer	error	code	associated	with	sending	this
message.

errorMessage Returns	a	string	associated	with	sending	this	message.
send Sends	the	mail	message	represented	by	this	object.

	1:	 The	following	script	sends	mail	to	vpg	and	gwp,	copying	jaym,	with	the
specified	subject	and	body	for	the	message:

<server>
SMName	=	new	SendMail();
SMName.To	=	"vpg@co1.com,	gwp@co2.com"
SMName.From	=	"me@myco.com"
SMName.Cc	=	"jaym@hisco.com"
SMName.Subject	=	"The	State	of	the	Universe"
SMName.Body	=	"The	universe,	contrary	to	what	you	may	have	heard,	is	in
none	too	shabby	shape.	Not	to	worry!	--me"

SMName.send()
</server>		2:	 The	following	example	sends	an	image	in	a	GIF	file:

sm	=	new	SendMail();	
sm.To	=	"satish";	
sm.From	=	"satish@netscape.com";	
sm.Smtpserver	=	"fen.mcom.com";	
sm["Errors-to"]	=	"satish";	
sm["Content-type"]	=	"image/gif";	
sm["Content-Transfer-Encoding"]	=	"base64";	
file	=	new	File("/u/satish/LiveWire/mail/banner.gif");	
openFlag	=	file.open("r");	
if	(openFlag)	{
			len	=	file.getLength();	
			str	=	file.read(len);	
			sm.Body	=	str;	
}	
sm.send();		3:	 The	following	example	sends	a	multipart	message:

sm	=	new	SendMail();	
sm.To	=	"chandra@cs.uiowa.edu,	satish@netscape.com";	
sm.From	=	"satish@netscape.com";	
sm.Smtpserver	=	"fen.mcom.com";	
sm.Organization	=	"Netscape	Comm	Corp";	
sm["Content-type"]	=	"multipart/mixed;	boundary=\"-----------
-8B3F7BA67B67C1DDE6C25D04\"";	
file	=	new	File("/u/satish/LiveWire/mail/mime");	
openFlag	=	file.open("r");	
if	(openFlag)	{	
			len	=	file.getLength();	
			str	=	file.read(len);	
			sm.Body	=	str;	
}
sm.send();	The	file	mime	has	HTML	text	and	an	Microsoft	Word	document
separated	by	the	specified	boundary.	The	resulting	message	appears	as	HTML
text	followed	by	the	Microsoft	Word	attachment.

Bcc

Comma-delimited	list	of	recipients	of	the	message	whose	names	should	not	be
visible	in	the	message.

SendMail
Netscape	Server	3.0

Body

Text	of	the	message.

SendMail
Netscape	Server	3.0

Cc

Comma-delimited	list	of	additional	recipients	of	the	message.

SendMail
Netscape	Server	3.0

Errorsto

Address	to	which	to	send	errors	concerning	the	message.	Defaults	to	the
sender's	address.

SendMail
Netscape	Server	3.0

From

User	name	of	the	person	sending	the	message.

SendMail
Netscape	Server	3.0

Organization

Organization	information.

SendMail
Netscape	Server	3.0

prototype

Represents	the	prototype	for	this	class.	You	can	use	the	prototype	to	add
properties	or	methods	to	all	instances	of	a	class.	For	information	on	prototypes,
see	Function.prototype.

SendMail
LiveWire	1.0

Replyto

User	name	to	which	replies	to	the	message	should	be	sent.	Defaults	to	the
sender's	address.

SendMail
Netscape	Server	3.0

Smtpserver

Mail	(SMTP)	server	name.	Defaults	to	the	value	specified	through	the	setting	in
the	Administration	server.

SendMail
Netscape	Server	3.0

Subject

Subject	of	the	message.

SendMail
Netscape	Server	3.0

To

Comma-delimited	list	of	primary	recipients	of	the	message.

SendMail
Netscape	Server	3.0

errorCode

Returns	an	integer	error	code	associated	with	sending	this	message.

SendMail
Netscape	Server	3.0

public	errorCode();

The	possible	return	values	and	their	meanings	are	as	follows:

0 Successful	send.
1 SMTP	server	not	specified.
2 Specified	mail	server	is	down	or	doesn't	exist.
3 At	least	one	receiver's	address	must	be	specified	to	send	the	message.
4 Sender's	address	must	be	specified	to	send	the	message.
5 Mail	connection	problem;	data	not	sent.

errorMessage

Returns	a	string	associated	with	sending	this	message.

SendMail
Netscape	Server	3.0

public	errorMessage();

An	error	string.

send

Sends	the	mail	message	represented	by	this	object.

SendMail
Netscape	Server	3.0

public	send	();

This	method	returns	a	Boolean	value	to	indicate	whether	or	not	the	mail	was
successfully	sent.	If	the	mail	was	not	successfully	sent,	you	can	use	the
errorMessage	and	errorCode	methods	to	determine	the	nature	of	the	error.

This	method	returns	a	string	indicating	the	nature	of	the	error	that	occurred
sending	the	message.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

addClient
	URL		URL

LiveWire	1.0

addClient(URL)

URL 	URL	

addClient		JavaScript	

	addClient		URL		addClient		URL	

	URL	 	JavaScript	

	addClient		redirect	

redirect(addClient("mypage.html"))

addClient	

http://developer.netscape.com/library/documentation/enterprise/wrijsap/index.htm

redirect

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

addResponseHeader

Netscape	Server	3.0

addResponseHeader(field,	value)

field
value

	addResponseHeader	

JavaScript	(text/html)	royalairways-format	

deleteResponseHeader("content-type");
addResponseHeader("content-type","royalairways-format");

	addResponseHeader	

	HTML		64KB()

	 flush	

	 redirect	

deleteResponseHeader

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

blob
	BLOb	

LiveWire	1.0

blob	(path)

path 	BLOb	

	blob	

	BLOb		SQL		execute	

	DB2	blobs		32	

(“\”)	JavaScript		NT	

	GIF		BLOb		EMPLOYEE		PHOTO		OFFICE	

//	
cursor	=	database.cursor("SELECT	*	FROM	customer	WHERE	//()
			customer.ID	=	"	+	request.customerID	//	

cursor.next()	//		blob	
cursor.photo	=	blob("c:/customer/photos/myphoto.gif")
cursor.office	=	blob("c:/customer/photos/myoffice.gif")	//	
cursor.updateRow("employee")

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

callC

LiveWire	1.0

callC(JSFunctionName,	arg1,...,	argN)

JSFunctionName 	RegisterCFunction	
arg1...argN 	JavaScript	

callC		JavaScript	

callC	callC	

	echoCCallArguments		isRegistered		isRegistered		true	
callC	

var	isRegistered	=
			registerCFunction("echoCCallArguments",
						"c:/mypath/mystuff.dll",
						"mystuff_EchoCCallArguments")
if	(isRegistered	==	true)	{
			var	returnValue	=
			callC("echoCCallArguments",	"first	arg",	42,	true,	"last	arg")
			write(returnValue)

}

registerCFunction

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

debug
	JavaScript	

LiveWire	1.0

debug(expression)

expression 	JavaScript	

debug		JavaScript	

“Debug	message:”

debug("data		"	+	data)

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

deleteResponseHeader

Netscape	Server	3.0

deleteResponseHeader(field)

field

	deleteResponseHeader		

	 addResponseHeader

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

escape
	ISO-Latin-1	

Navigator	2.0,	LiveWire	1.0

escape("string")

string 	ISO-Latin-1	

escape		JavaScript		escape	 	 unescape

escape		ASCII	

*	@	-	_	+	.	/

	1. 		"%26"

escape("&")

	2. 	

escape("The_rain.	In	Spain,	Ma'am")	

"The_rain.%20In%20Spain%2C%20Ma%92am":

	3. 		theValue		request	

Click	Here

unescape

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

eval
Evaluates	a	string	of	JavaScript	code	without	reference	to	a	particular	object.

Navigator	2.0

eval(string)

string
A	string	representing	a	JavaScript	expression,	statement,	or	sequence	of
statements.	The	expression	can	include	variables	and	properties	of
existing	objects.

The	argument	of	the	eval	function	is	a	string.	If	the	string	represents	an
expression,	eval	evaluates	the	expression.	If	the	argument	represents	one	or
more	JavaScript	statements,	eval	performs	the	statements.	Do	not	call	eval	to
evaluate	an	arithmetic	expression;	JavaScript	evaluates	arithmetic	expressions
automatically.

If	you	construct	an	arithmetic	expression	as	a	string,	you	can	use	eval	to
evaluate	it	at	a	later	time.	For	example,	suppose	you	have	a	variable	x.	You	can
postpone	evaluation	of	an	expression	involving	x	by	assigning	the	string	value
of	the	expression,	say	"3	*	x	+	2",	to	a	variable,	and	then	calling	eval	at	a	later
point	in	your	script.

eval	is	also	a	method	of	all	objects.	This	method	is	described	for	the	Object
class.

The	following	display	output	using	document.write.	In	server-side	JavaScript,
you	can	display	the	same	output	by	calling	the	write	function	instead	of	using
document.write.

	1. 	Both	of	the	write	statements	below	display	42.	The	first	evaluates	the
string	"x	+	y	+	1";	the	second	evaluates	the	string	"42".

var	x	=	2
var	y	=	39
var	z	=	"42"
document.write(eval("x	+	y	+	1"),	"
")	
document.write(eval(z),	"
")		2. 	In	the	following	example,	the
getFieldName(n)	function	returns	the	name	of	the	specified	form	element	as	a
string.	The	first	statement	assigns	the	string	value	of	the	third	form	element	to
the	variable	field.	The	second	statement	uses	eval	to	display	the	value	of	the
form	element.

var	field	=	getFieldName(3)	
document.write("The	field	named	",	field,	"	has	value	of	",	
			eval(field	+	".value"))		3. 	The	following	example	uses	eval	to	evaluate	the
string	str.	This	string	consists	of	JavaScript	statements	that	open	an	Alert	dialog
box	and	assign	z	a	value	of	42	if	x	is	five,	and	assigns	0	to	z	otherwise.	When
the	second	statement	is	executed,	eval	will	cause	these	statements	to	be
performed,	and	it	will	also	evaluate	the	set	of	statements	and	return	the	value
that	is	assigned	to	z.

var	str	=	"if	(x	==	5)	{alert('z	is	42');	z	=	42;}	else	z	=	0;	"
document.write("<P>z	is	",	eval(str))		4. 	In	the	following	example,	the
setValue	function	uses	eval	to	assign	the	value	of	the	variable	newValue	to	the
text	field	textObject:

function	setValue	(textObject,	newValue)	{
			eval	("document.forms[0]."	+	textObject	+	".value")	=	newValue
}		5. 	The	following	example	creates	breed	as	a	property	of	the	object	myDog,
and	also	as	a	variable.	The	first	write	statement	uses	eval('breed')	without
specifying	an	object;	the	string	"breed"	is	evaluated	without	regard	to	any
object,	and	the	write	method	displays	"Shepherd",	which	is	the	value	of	the
breed	variable.	The	second	write	statement	uses	myDog.eval('breed')	which
specifies	the	object	myDog;	the	string	"breed"	is	evaluated	with	regard	to	the

myDog	object,	and	the	write	method	displays	"Lab",	which	is	the	value	of	the
breed	property	of	the	myDog	object.

function	Dog(name,breed,color)	{
			this.name=name
			this.breed=breed
			this.color=color
}
myDog	=	new	Dog("Gabby")
myDog.breed="Lab"
var	breed='Shepherd'
document.write("<P>"	+	eval('breed'))
document.write("
"	+	myDog.eval('breed'))

Object.eval	method

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

flush

LiveWire	1.0

flush()

JavaScript		HTML	flush		flush	JavaScript		64KB	
	HTML	

	flush	()	flush	

	flush		HTTP		cookie		cookie	
JavaScript		 File		flush	flush		JavaScript	

flush	

while	(!In.eof())	{
			AscLine	=	In.readln();
			if	(!In.eof())
						write(LPad(LineCount	+	":	",	5),	AscLine,	"\n");
			LineCount++;
			flush();

}

write

	 	 	

http://developer.netscape.com/library/documentation/enterprise/wrijsap/index.htm
javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

getOptionValue
Returns	the	text	of	a	selected	OPTION	in	a	SELECT	form	element.

LiveWire	1.0

getOptionValue(name,	index)

name A	name	specified	by	the	NAME	attribute	of	the	SELECT	tag
index Zero-based	ordinal	index	of	the	selected	option.

A	string	containing	the	text	for	the	selected	option,	as	specified	by	the
associated	OPTION	tag.

The	getOptionValue		JavaScript		It	corresponds	to	the	
property	available	to	client-side	JavaScript.

The	SELECT	tag	allows	multiple	values	to	be	associated	with	a	single	form
element,	with	the	MULTIPLE	attribute.	If	your	application	requires	select	lists
that	allow	multiple	selected	options,	you	use	the	getOptionValue	function	to	get
the	values	of	selected	options	in	server-side	JavaScript.

Suppose	you	have	the	following	form	element:

<SELECT	NAME="what-to-wear"	MULTIPLE	SIZE=8>
			<OPTION	SELECTED>Jeans
			<OPTION>Wool	Sweater
			<OPTION	SELECTED>Sweatshirt
			<OPTION	SELECTED>Socks
			<OPTION>Leather	Jacket
			<OPTION>Boots
			<OPTION>Running	Shoes
			<OPTION>Cape
</SELECT>	You	could	process	the	input	from	this	select	list	in	server-side
JavaScript	as	follows:

<SERVER>
var	loopIndex	=	0
var	loopCount	=	getOptionValueCount("what-to-wear")	//	3	by	default
while	(loopIndex	<	loopCount)	{
			var	optionValue	=	getOptionValue("what-to-wear",loopIndex)
			write("
Item	#"	+	loopIndex	+	":	"	+	optionValue	+	"\n")
			loopIndex++
}
</SERVER>	If	the	user	kept	the	default	selections,	this	script	would	return

Item	#1:	Jeans
Item	#3:	Sweatshirt
Item	#4:	Socks

getOptionValueCount

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

getOptionValueCount
	SELECT	

LiveWire	1.0

getOptionValueCount(name)

name 	SELECT		NAME	

getOptionValueCount		JavaScript	

	getOptionValue		SELECT	

	getOptionValue	

getOptionValue

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

isNaN

Navigator	2.0:		Unix
Navigator	3.0,	LiveWire	1.0:

isNaN(testValue)

testValue

isNaN		JavaScript	

	NaN	parseFloat		parseInt	“NaN”isNaN	“NaN”

	floatValue

floatValue=parseFloat(toFloat)
if	(isNaN(floatValue))	{
			notFloat()
}	else	{
			isFloat()
}

Number.NaN,	parseFloat,	parseInt

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

Number

Navigator	4.0,	Netscape	Server	3.0

Number(obj)

obj

	 Date	Number		1970		1		1	

	obj	Number		NaN

	 Date	

<SCRIPT>
d	=	new	Date	("December	17,	1995	03:24:00");	
document.write	(Number(d)	+	"
");
</SCRIPT>		"819199440000."

Number

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

parseFloat

Navigator	2.0:		parseFloat(string)		Solaris		Irix	“NaN”
	0
Navigator	3.0,	LiveWire	1.0:	“NaN”

parseFloat(string)

string

parseFloat		JavaScript	

parseFloat	(+-)(0-9)

parseFloat	“NaN”

“NaN”	isNaN		parseFloat	“NaN”“NaN”
“NaN”

	3.14

parseFloat("3.14")
parseFloat("314e-2")
parseFloat("0.0314E+2")
var	x	=	"3.14"

parseFloat(x)

“NaN”

parseFloat("FF2")

isNaN,	parseInt

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

parseInt
Parses	a	string	argument	and	returns	an	integer	of	the	specified	radix	or	base.

Navigator	2.0:	If	the	first	character	of	the	string	specified	in	parseInt(string)
cannot	be	converted	to	a	number,	returns	"NaN"	on	Solaris	and	Irix	and	0	on
all	other	platforms.Navigator	3.0,	LiveWire	2.0:	Returns	"NaN"	on	all
platforms	if	the	first	character	of	the	string	specified	in	parseInt(string)	cannot
be	converted	to	a	number.

parseInt(string,radix)

string A	string	that	represents	the	value	you	want	to	parse.
radix (Optional)	An	integer	that	represents	the	radix	of	the	return	value.

The	parseInt	function	is	a	built-in	JavaScript	function.

The	parseInt	function	parses	its	first	argument,	a	string,	and	attempts	to	return
an	integer	of	the	specified	radix	(base).	For	example,	a	radix	of	10	indicates	to
convert	to	a	decimal	number,	8	octal,	16	hexadecimal,	and	so	on.	For	radixes
above	10,	the	letters	of	the	alphabet	indicate	numerals	greater	than	9.	For
example,	for	hexadecimal	numbers	(base	16),	A	through	F	are	used.

If	parseInt	encounters	a	character	that	is	not	a	numeral	in	the	specified	radix,	it
ignores	it	and	all	succeeding	characters	and	returns	the	integer	value	parsed	up
to	that	point.	parseInt	truncates	numbers	to	integer	values.

If	the	radix	is	not	specified	or	is	specified	as	0,	JavaScript	assumes	the
following:

If	the	input	string	begins	with	"0x",	the	radix	is	16	(hexadecimal).

If	the	input	string	begins	with	"0",	the	radix	is	eight	(octal).

If	the	input	string	begins	with	any	other	value,	the	radix	is	10	(decimal).

If	the	first	character	cannot	be	converted	to	a	number,	parseInt	returns	"NaN".

For	arithmetic	purposes,	the	"NaN"	value	is	not	a	number	in	any	radix.	You	can
call	the	isNaN	function	to	determine	if	the	result	of	parseInt	is	"NaN".	If	"NaN"
is	passed	on	to	arithmetic	operations,	the	operation	results	will	also	be	"NaN".

The	following	all	return	15:

parseInt("F",	16)
parseInt("17",	8)
parseInt("15",	10)
parseInt(15.99,	10)
parseInt("FXX123",	16)
parseInt("1111",	2)
parseInt("15*3",	10)	The	following	all	return	"NaN":

parseInt("Hello",	8)
parseInt("0x7",	10)
parseInt("FFF",	10)	Even	though	the	radix	is	specified	differently,	the	following
	all	return	17	because	the	input	string	begins	with	"0x".

parseInt("0x11",	16)
parseInt("0x11",	0)
parseInt("0x11")

isNaN,	parseFloat,	Object.valueOf

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

redirect
	URL

LiveWire	1.0

redirect(location)

location 	URL

redirect		JavaScript	

redirect		location		URLlocation	

	redirect		redirect		HTML	

	addClient		 addClient	

	redirect	

redirect("http://www.royalairways.com/lw/apps/newhome.html")

	newhome.html	

<H1></H1>
	URL	

			http://www.royalairways.com/lw/apps/index.html
<P>	12/31/97	

addClient

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

registerCFunction
	JavaScript	

LiveWire	1.0

registerCFunction(JSFunctionName,	libraryPath,	externalFunctionName)

JSFunctionName 	JavaScript	

libraryPath
externalFunctionName

registerCFunction		JavaScript	

	registerCFunction		JavaScript		C	

	JavaScript		registerCFunction		callC	

registerCFunction		true	falseregisterCFunction		JavaScript	
false

	libraryPath	(\)(\\)

	callC	

callC

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

ssjs_generateClientID
	 client	

Netscape	Server	3.0

ssjs_generateClientID()

	 ssjs_getClientID	

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

ssjs_getCGIVariable
Returns	the	value	of	the	specified	environment	variable	set	in	the	server
process,	including	some	CGI	variables.

Netscape	Server	3.0

ssjs_getCGIVariable(varName)

varName A	string	containing	the	name	of	the	environment	variable	to	retrieve.

ssjs_getCGIVariable	lets	you	access	the	environment	variables	set	in	the	server
process,	including	the	CGI	variables	listed	in		13.2.

	13.2	CGI	variables	accessible	through	ssjs_getCGIVariable		
Variable

AUTH_TYPE

The	authorization	type,	if	the	request	is	protected
by	any	type	of	authorization.	Netscape	web
servers	support	HTTP	basic	access	authorization.
Example	value:	basic

HTTPS
If	security	is	active	on	the	server,	the	value	of	this
variable	is	ON;	otherwise,	it	is	OFF.	Example
value:	ON

HTTPS_KEYSIZE
The	number	of	bits	in	the	session	key	used	to
encrypt	the	session,	if	security	is	on.	Example
value:	128

HTTPS_SECRETKEYSIZE The	number	of	bits	used	to	generate	the	server'sprivate	key.	Example	value:	128

PATH_INFO Path	information,	as	sent	by	the	browser.	Example
value:	/cgivars/cgivars.html

PATH_TRANSLATED

The	actual	system-specific	pathname	of	the	path
contained	in	PATH_INFO.	Example	value:
/usr/ns-
home/myhttpd/js/samples/cgivars/cgivars.html

QUERY_STRING
Information	from	the	requesting	HTML	page;	if
"?"	is	present,	the	information	in	the	URL	that
comes	after	the	"?".	Example	value:	x=42

REMOTE_ADDR The	IP	address	of	the	host	that	submitted	the
request.	Example	value:	198.93.95.47

REMOTE_HOST
If	DNS	is	turned	on	for	the	server,	the	name	of	the
host	that	submitted	the	request;	otherwise,	its	IP
address.	Example	value:	www.netscape.com

REMOTE_USER

The	name	of	the	local	HTTP	user	of	the	web
browser,	if	HTTP	access	authorization	has	been
activated	for	this	URL.	Note	that	this	is	not	a	way
to	determine	the	user	name	of	any	person
accessing	your	program.	Example	value:	ksmith

REQUEST_METHOD
The	HTTP		associated	with	the	request.	An
application	can	use	this	to	determine	the	proper
response	to	a	request.	Example	value:	GET

SCRIPT_NAME The	pathname	to	this	page,	as	it	appears	in	the
URL.	Example	value:	cgivars.html

SERVER_NAME
The	hostname	or	IP	address	on	which	the
JavaScript	application	is	running,	as	it	appears	in
the	URL.	Example	value:	piccolo.mcom.com

SERVER_PORT The	TCP	port	on	which	the	server	is	running.
Example	value:	2020

SERVER_PROTOCOL The	HTTP	protocol	level	supported	by	the	client's
software.	Example	value:	HTTP/1.0

SERVER_URL The	URL	that	the	user	typed	to	access	this	server.
Example	value:	https://piccolo:2020

If	you	supply	an	argument	that	isn't	one	of	the	CGI	variables	listed	in	n,	the
runtime	engine	looks	for	an	environment	variable	by	that	name	in	the	server
environment.	If	found,	the	runtime	engine	returns	the	value;	otherwise,	it

returns	null.	For	example,	the	following	code	assigns	the	value	of	the	standard
CLASSPATH	environment	variable	to	the	JavaScript	variable	classpath:

classpath	=	ssjs_getCGIVariable("CLASSPATH");

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

ssjs_getClientID
Returns	the	identifier	for	the	client	object	used	by	some	of	JavaScript's	client-
maintenance	techniques.

Netscape	Server	3.0

ssjs_getClientID()

For	some	applications,	you	may	want	to	store	information	specific	to	a
client/application	pair	in	the	project	or	server	objects.	In	these	situations,	you
need	a	way	to	refer	uniquely	to	the	client/application	pair.	JavaScript	provides
two	functions	for	this	purpose,	ssjs_generateClientID	and	ssjs_getClientID.

Each	time	you	call	ssjs_generateClientID,	the	runtime	engine	returns	a	new
identifier.	For	this	reason,	if	you	use	this	function	and	want	the	identifier	to	last
longer	than	a	single	client	request,	you	need	to	store	the	identifier,	possibly	as	a
property	of	the	client	object.

If	you	use	this	function	and	store	the	ID	in	the	client	object,	you	may	need	to	be
careful	that	an	intruder	cannot	get	access	to	that	ID	and	hence	to	sensitive
information.

An	alternative	approach	is	to	use	the	ssjs_getClientID	function.	If	you	use	one
of	the	server-side	maintenance	techniques	for	the	client	object,	the	JavaScript
runtime	engine	generates	and	uses	a	identifier	to	access	the	information	for	a
particular	client/application	pair.

When	you	use	these	maintenance	techniques,	ssjs_getClientID	returns	the
identifier	used	by	the	runtime	engine.	Every	time	you	call	this	function	from	a
particular	client/application	pair,	you	get	the	same	identifier.	Therefore,	you	do
not	need	to	store	the	identifier	returned	by	ssjs_getClientID.	However,	if	you
use	any	of	the	other	maintenance	techniques,	this	function	returns	"undefined";
if	you	use	those	techniques	you	must	instead	use	the	ssjs_generateClientID
function.

If	you	need	an	identifier	and	you're	using	a	server-side	maintenance	technique,
you	probably	should	use	the	ssjs_getClientID	function.	If	you	use	this	function,
you	do	not	need	to	store	and	track	the	identifier	yourself;	the	runtime	engine
does	it	for	you.	However,	if	you	use	a	client-side	maintenance	technique,	you
cannot	use	the	ssjs_getClientID	function;	you	must	use	the
ssjs_generateClientID	function.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

String

Navigator	4.0,	Netscape	Server	3.0

String(obj)

obj

	 Date	String	Thu	Aug	18	04:37:43	Pacific	Daylight	Time
1983.

	 Date	

<SCRIPT>
D	=	new	Date	(430054663215);	
document.write	(String(D)	+"	
");
</SCRIPT>		"Thu	Aug	18	04:37:43	Pacific	Daylight	Time	1983."

String

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

taint

Navigator	3.0;		Navigator	4.0

taint(dataElementName)

dataElementName ()

JavaScript	

	taint	

	taint	

taint	

taintedStatus=taint(window.defaultStatus)
//	taintedStatus	
//		URL	

navigator.taintEnabled,	untaint

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

unescape
	 ASCII	

Navigator	2.0

unescape(string)

string “%xx”	xx	

unescape		ISO-Latin-1	unescape		JavaScript	
JavaScript		URL	/

“&”
unescape("%26")

“!#”	
unescape("%21%23")

val1		request		val1		myValue
myValue	=	unescape(request.val1)

escape

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

untaint

Navigator	3.0;		Navigator	4.0

untaint(dataElementName)

dataElementName ()	

JavaScript	

	untaint	

A	script	can	untaint	only	data	that	originated	in	that	script	(that	is,	only	data	that
has	the	script's	taint	code	or	has	the	identity	(null)	taint	code).		untaint	(
)untaint	

	untaint	

untaint	

untaintedStatus=untaint(window.defaultStatus)

//	untaintedStatus		URL	

navigator.taintEnabled,	taint

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

write
	HTML

LiveWire	1.0

write(expression)

expression 	JavaScript	

write		JavaScript			HTML	HTML		HTML	write	
document.write	

	JavaScript		64		

write		JavaScript		 File		
write	

write		BR	

write("	"	+	returnValue	+	"
")

	returnValue		57	

	57

flush

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

netscape.javascript.JSObject
The	public	final	class	JSObject	extends	Object.

java.lang.Object
			|
			+----netscape.javascript.JSObject	JSObject	allows	Java	to	manipulate	objects
that	are	defined	in	JavaScript.	Values	passed	from	Java	to	JavaScript	are
converted	as	follows:

JSObject	is	converted	to	the	original	JavaScript	object.

Any	other	Java	object	is	converted	to	a	JavaScript	wrapper,	which	can	be
used	to	access	methods	and	fields	of	the	Java	object.	Converting	this
wrapper	to	a	string	will	call	the	toString	method	on	the	original	object,
converting	to	a	number	will	call	the	floatValue	method	if	possible	and	fail
otherwise.	Converting	to	a	boolean	will	try	to	call	the	booleanValue
method	in	the	same	way.

Java	arrays	are	wrapped	with	a	JavaScript	object	that	understands
array.length	and	array.

A	Java	boolean	is	converted	to	a	JavaScript	boolean.

Java	byte,	char,	short,	int,	long,	float,	and	double	are	converted	to
JavaScript	numbers.

Values	passed	from	JavaScript	to	Java	are	converted	as	follows:

Objects	that	are	wrappers	around	Java	objects	are	unwrapped.

Other	objects	are	wrapped	with	a	JSObject.

Strings,	numbers,	and	booleans	are	converted	to	String,	Float,	and	Boolean
objects	respectively.

This	means	that	all	JavaScript	values	show	up	as	some	kind	of	java.lang.Object
in	Java.	In	order	to	make	much	use	of	them,	you	will	have	to	cast	them	to	the

appropriate	subclass	of	Object,	as	shown	in	the	following:

(String)	window.getMember("name")
(JSObject)	window.getMember("document")

Note	If	you	call	a	Java	method	from	JavaScript,	this	conversion	happens
automatically--you	can	pass	in	"int"	argument	and	it	works.

	and	static

The	netscape.javascript.JSObject	class	has	the	following	methods:

	14.1	Methods	for	the	JSObject	class
Method
call Calls	a	JavaScript	
eval Evaluates	a	JavaScript	expression
getMember Retrieves	a	named	member	of	a	JavaScript	object
getSlot Retrieves	an	indexed	member	of	a	JavaScript	object
removeMember Removes	a	named	member	of	a	JavaScript	object
setMember Sets	a	named	member	of	a	JavaScript	object
setSlot Sets	an	indexed	member	of	a	JavaScript	object
toString Converts	a	JSObject	to	a	string

The	netscape.javascript.JSObject	class	has	the	following	static	methods:

	14.2	Static	methods	for	the	JSObject	class
Method
getWindow Gets	a	JSObject	for	the	window	containing	the	given	applet

The	following	sections	show	the	declaration	and	usage	of	these	methods.

call

Method.	Calls	a	JavaScript	method.	Equivalent	to	"this.methodName(args[0],
args[1],	...)"	in	JavaScript.

Declaration

public	Object	call(String	methodName,
			Object	args[])

eval

Method.	Evaluates	a	JavaScript	expression.	The	expression	is	a	string	of
JavaScript	source	code	which	will	be	evaluated	in	the	context	given	by	"this".

Declaration

public	Object	eval(String	s)

getMember

Method.	Retrieves	a	named	member	of	a	JavaScript	object.	Equivalent	to
"this.name"	in	JavaScript.

Declaration

public	Object	getMember(String	name)

getSlot

Method.	Retrieves	an	indexed	member	of	a	JavaScript	object.	Equivalent	to
"this"	in	JavaScript.

Declaration

public	Object	getSlot(int	index)

getWindow

Static	method.	Returns	a	JSObject	for	the	window	containing	the	given	applet.
This	method	is	available	only	on	the	client.

Declaration

public	static	JSObject	getWindow(Applet	applet)

removeMember

Method.	Removes	a	named	member	of	a	JavaScript	object.

Declaration

public	void	removeMember(String	name)

setMember

Method.	Sets	a	named	member	of	a	JavaScript	object.	Equivalent	to
"this.name	=	value"	in	JavaScript.

Declaration

public	void	setMember(String	name,
			Object	value)

setSlot

Method.	Sets	an	indexed	member	of	a	JavaScript	object.	Equivalent	to	"this
	=	value"	in	JavaScript.

Declaration

public	void	setSlot(int	index,
			Object	value)

toString

Method.	Converts	a	JSObject	to	a	String.

Overrides:	toString	in	class	Object

Declaration

public	String	toString()

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

netscape.javascript.JSException
The	public	class	JSException	extends	Exception.

java.lang.Object
			|
			+----java.lang.Throwable
												|
												+----java.lang.Exception
																					|
																					+----netscape.javascript.JSException	JSException	is	an	exception
that	is	thrown	when	JavaScript	code	returns	an	error.

Constructors

The	netscape.javascript.JSException	class	has	the	following	constructors:

	14.3	Constructors	for	the	JSException	class
Constructor

JSException Constrqcts	a	JSException.	You	specify	whether	the	JSException
has	a	detail	message	and	other	information.

The	following	sections	show	the	declaration	and	usage	of	these	constructors.

JSException

Constructor.	Constructs	a	JSException.	You	specify	whether	the	JSException
has	a	detail	message	and	other	information.

Declaration

1.	public	JSException()	2.	public	JSException(String	s)	3.	public
JSException(String	s,
			String	filename,
			int	lineno,
			String	source,
			int	tokenIndex)

s The	detail	message.
filename The	URL	of	the	file	where	the	error	occurred,	if	possible.
lineno The	line	number	if	the	file,	if	possible.
source The	string	containing	the	JavaScript	code	being	evaluated.
tokenIndex The	index	into	the	source	string	where	the	error	occurred.

A	detail	message	is	a	string	that	describes	this	particular	exception.

Each	form	constructs	a	JSException	with	different	information:

Form	1	of	the	declaration	constructs	a	JSException	without	a	detail
message.

Form	2	of	the	declaration	constructs	a	JSException	with	a	detail	message.

Form	3	of	the	declaration	constructs	a	JSException	with	a	detail	message
and	all	the	other	information	that	usually	comes	with	a	JavaScript	error.

	 	 	

javascript:window.scroll(0,0)

	
JavaScript

LiveWire

LiveConnect
Java

	

	 	 	

netscape.plugin.Plugin
The	public	class	Plugin	extends	Object.

java.lang.Object
			|
			+----netscape.plugin.Plugin	This	class	represents	the	Java	reflection	of	a	plug-
in.	Plug-ins	that	need	to	have	Java	methods	associated	with	them	should
subclass	this	class	and	add	new	(possibly	native)	methods	to	it.	This	allows
other	Java	entities	(such	as	applets	and	JavaScript	code)	to	manipulate	the	plug-
in.

Constructors	and

The	netscape.plugin.Plugin	class	has	the	following	constructors:

	14.4	Constructors	for	the	Plugin	class
Constructor
Plugin Constructs	a	Plugin.

The	netscape.plugin.Plugin	class	has	the	following	methods:

	14.5	Methods	for	the	Plugin	class
Method
destroy Called	when	the	plug-in	is	destroyed

getPeer Returns	the	native	NPP	object--the	plug-in	instance	that	is	the
native	part	of	a	Java	Plugin	object

getWindow Returns	the	JavaScript	window	on	which	the	plug-in	is	embedded
init Called	when	the	plug-in	is	initialized

isActive Determines	whether	the	Java	reflection	of	a	plug-in	still	refers	to
an	active	plug-in

The	following	sections	show	the	declaration	and	usage	of	these	constructors	and
methods.

destroy

Method.	Called	when	the	plug-in	is	destroyed.	You	never	need	to	call	this
method	directly,	it	is	called	when	the	plug-in	is	destroyed.	At	the	point	this
method	is	called,	the	plug-in	will	still	be	active.

Declaration

public	void	destroy()

init

getPeer

Method.	Returns	the	native	NPP	object--the	plug-in	instance	that	is	the	native
part	of	a	Java	Plugin	object.	This	field	is	set	by	the	system,	but	can	be	read	from
plug-in	native	methods	by	calling:

NPP	npp	=	(NPP)netscape_plugin_Plugin_getPeer(env,	thisPlugin);

Declaration

public	int	getPeer()

getWindow

Method.	Returns	the	JavaScript	window	on	which	the	plug-in	is	embedded.

Declaration

public	JSObject	getWindow()

init

Method.	Called	when	the	plug-in	is	initialized.	You	never	need	to	call	this
method	directly,	it	is	called	when	the	plug-in	is	created.

Declaration

public	void	init()

destroy

isActive

Method.	Determines	whether	the	Java	reflection	of	a	plug-in	still	refers	to	an
active	plug-in.	Plug-in	instances	are	destroyed	whenever	the	page	containing	the
plug-in	is	left,	thereby	causing	the	plug-in	to	no	longer	be	active.

Declaration

public	boolean	isActive()

Plugin

Constructor.	Constructs	a	Plugin.

Declaration

public	Plugin()

	 	 	

javascript:window.scroll(0,0)

	目录
	此参考中包含的内容
	轻松上手
	简介
	操作符
	语句
	核心
	文档
	窗口
	表单
	浏览器
	事件和事件句柄
	LiveWire数据库服务
	进程管理服务
	实用工具
	全局函数
	LiveConnect的Java包
	索引
	版权
	【上一页】
	【下一页】
	Image
	Layer
	Window
	onAbort
	onError
	onUnload
	“事件的常规信息”
	事件
	你应该已经掌握的知识
	哪里能找到 JavaScript 的相关信息
	文档转换
	第一章 简介
	客户端的 JavaScript
	服务器端的 JavaScript
	JavaScript 对象
	JavaScript 安全性
	第二章 操作符
	赋值操作符
	比较操作符
	算术操作符
	% (求余数)
	++ (自加)
	-- (自减)
	- (一元否定)
	位操作符
	位逻辑运算符
	移位操作符
	逻辑操作符
	简化运算

