
What	is	Inno	Setup?
Inno	Setup	version	5.5.6	Copyright	©	1997-2015	Jordan	Russell.
All	rights	reserved.
Portions	Copyright	©	2000-2015	Martijn	Laan.	All	rights	reserved.
Inno	Setup	home	page

Inno	Setup	is	a	free	installer	for	Windows	programs.	First	introduced	in
1997,	Inno	Setup	today	rivals	and	even	surpasses	many	commercial
installers	in	feature	set	and	stability.

Key	features:

Support	for	every	Windows	release	since	2000,	including:
Windows	10,	Windows	8,	Windows	Server	2012,	Windows	7,
Windows	Server	2008	R2,	Windows	Vista,	Windows	Server	2008,
Windows	XP,	Windows	Server	2003,	and	Windows	2000.	(No
service	packs	are	required.)

Extensive	support	for	installation	of	64-bit	applications	on	the	64-bit
editions	of	Windows.	Both	the	x64	and	Itanium	architectures	are
supported.	(On	the	Itanium	architecture,	Service	Pack	1	or	later	is
required	on	Windows	Server	2003	to	install	in	64-bit	mode.)

Supports	creation	of	a	single	EXE	to	install	your	program	for	easy
online	distribution.	Disk	spanning	is	also	supported.

Standard	Windows	wizard	interface.

Customizable	setup	types,	e.g.	Full,	Minimal,	Custom.

Complete	uninstall	capabilities.

Installation	of	files:
Includes	integrated	support	for	"deflate",	bzip2,	and	7-Zip
LZMA/LZMA2	file	compression.	The	installer	has	the	ability	to
compare	file	version	info,	replace	in-use	files,	use	shared	file
counting,	register	DLL/OCX's	and	type	libraries,	and	install	fonts.

Creation	of	shortcuts	anywhere,	including	in	the	Start	Menu	and	on

http://www.jrsoftware.org/

the	desktop.

Creation	of	registry	and	.INI	entries.

Running	other	programs	before,	during	or	after	install.

Support	for	multilingual	installs,	including	right-to-left	language
support.

Support	for	passworded	and	encrypted	installs.

Support	for	digitally	signed	installs	and	uninstalls.

Silent	install	and	silent	uninstall.

Unicode	installs.

Integrated	preprocessor	option	for	advanced	compile-time
customization.

Integrated	Pascal	scripting	engine	option	for	advanced	run-time
install	and	uninstall	customization.

Full	source	code	is	available	(Borland	Delphi	2.0-5.0	and	2009).

Is	it	really	free	of	charge,	even	for	commercial	use?

Yes,	it	may	be	used	completely	free	of	charge,	even	when	deploying
commercial	applications.

(Note:	"Completely	free	of	charge"	must	not	be	confused	with
"completely	free".	Inno	Setup	is	copyrighted	software,	not	public
domain	software.	There	are	some	restrictions	on	distribution	and	use;
see	the	LICENSE.TXT	file	for	details.)

Documentation	Conventions
monospaced	text When	you	see	monospaced	text	in	the

documentation,	it	refers	to	text	you	would	type
in	a	script	file.

Creating	Installations
Installations	are	created	by	means	of	scripts,	which	are	ASCII	text	files
with	a	format	somewhat	similar	to	.INI	files.	(No,	it's	not	as	complicated
as	you	might	be	thinking!).	Unicode	Inno	Setup	also	supports	UTF-8
encoded	text	files.

Scripts	have	an	".iss"	(meaning	Inno	Setup	Script)	extension.	The	script
controls	every	aspect	of	the	installation.	It	specifies	which	files	are	to	be
installed	and	where,	what	shortcuts	are	to	be	created	and	what	they	are
to	be	named,	and	so	on.

Script	files	are	usually	edited	from	inside	the	Setup	Compiler	program.
After	you	have	finishing	writing	the	script,	the	next	and	final	step	is
select	"Compile"	in	the	Setup	Compiler.	What	this	does	is	create	a
complete,	ready-to-run	Setup	program	based	on	your	script.	By	default,
this	is	created	in	a	directory	named	"Output"	under	the	directory
containing	the	script.

To	give	you	an	idea	of	how	this	all	works,	start	the	Setup	Compiler,	click
File	|	Open,	and	select	one	of	the	script	files	in	the	Examples
subdirectory	located	under	the	Inno	Setup	directory.	(It	may	be	helpful
to	use	the	sample	scripts	as	a	template	for	your	own	scripts.)

See	also:
Script	Format	Overview

Script	Format	Overview
Inno	Setup	Scripts	are	arranged	into	sections.	Each	section	controls	a
different	aspect	of	the	installation.	A	section	is	started	by	specifying	the
name	of	the	section	enclosed	in	square	brackets	[].	Inside	each
section	is	any	number	of	entries.

There	are	two	different	main	types	of	sections:	those	such	as	[Setup]
whose	entries	contain	directive	names	and	values	(in	the	form
Directive=Value),	and	those	such	as	[Files]	whose	entries	are
divided	into	parameters.

Here	is	an	example:

[Setup]

AppName=My	Program

[Files]

Source:	"MYPROG.EXE";	DestDir:	"{app}"

Note	that	it	is	legal	to	specify	multiple	sections	of	the	same	name.

You	can	put	"comments"	in	the	script	(which	are	ignored	by	the
compiler)	by	placing	a	semicolon	at	the	beginning	of	a	line.	For
example:

;	This	is	a	comment.	I	could	put	reminders	to	myself	here...

A	C-like	#include	directive	is	supported,	which	pulls	in	lines	from	a
separate	file	into	the	script	at	the	position	of	the	#include	directive.
The	syntax	is:

#include	"filename.txt"

If	the	filename	is	not	fully	qualified,	the	compiler	will	look	for	it	in	the
same	directory	as	the	file	containing	the	#include	directive.	The
filename	may	be	prefixed	by	"compiler:",	in	which	case	it	looks	for	the
file	in	the	Compiler	directory.

A	#preproc	directive	is	supported,	which	specifies	whether	to	use	the

built-in	preprocessor	which	only	supports	the	above	#include
directive	or	to	use	Inno	Setup	Preprocessor	(ISPP)	which	supports
many	more	directives.	The	syntax	is:

#preproc	builtin

#preproc	ispp

By	default,	scripts	use	ISPP	if	available,	and	.isl	files	use	the	built-in
preprocessor.

See	also:
Parameters	in	Sections
Constants
Common	Parameters
Components	and	Tasks	Parameters
[Setup]	section
[Types]	section
[Components]	section
[Tasks]	section
[Dirs]	section
[Files]	section
[Icons]	section
[INI]	section
[InstallDelete]	section
[Languages]	section
[Messages]	section
[CustomMessages]	section
[LangOptions]	section
[Registry]	section
[Run]	section
[UninstallDelete]	section
[UninstallRun]	section
Pascal	Scripting:	Introduction

Parameters	in	Sections
All	of	the	sections	in	a	script,	with	the	exception	of	[Setup],
[Messages],	[CustomMessages],	[LangOptions],	and	[Code],
contain	lines	separated	into	parameters.	The	following	is	an	example	of
a	[Files]	section:

[Files]

Source:	"MYPROG.EXE";	DestDir:	"{app}"

Source:	"MYPROG.CHM";	DestDir:	"{app}"

Source:	"README.TXT";	DestDir:	"{app}";	Flags:	isreadme

Each	parameter	consists	of	a	name,	followed	by	a	colon,	and	then	a
value.	Unless	otherwise	noted,	parameters	are	optional	in	that	they
assume	a	default	value	if	they	are	not	specified.	Multiple	parameters	on
a	line	are	separated	by	semicolons,	and	can	be	listed	in	any	order.

The	value	of	a	parameter	is	traditionally	surrounded	in	double	quotes
(")	when	it	contains	a	user-defined	string,	such	as	a	filename.	Using
quotes	is	not	required,	though,	but	by	doing	so	it	makes	it	possible	to
embed	leading	and	trailing	spaces	in	the	value,	as	well	as	semicolons
and	double-quote	characters.

To	embed	a	double-quote	character	inside	a	quoted	value,	use	two
consecutive	double-quote	characters.	For	example:

"This	""	contains	""	embedded	""	quotes"

The	Setup	Compiler	would	see	that	as:

This	"	contains	"	embedded	"	quotes

If	you	want	the	value	of	a	parameter	to	be	a	single	double-quote
character,	use	four	double-quote	characters:	"""".	The	outer	two	are
needed	to	surround	the	string	in	quotes;	the	inner	two	are	used	to
embed	a	single	double-quote	character.

Constants
The	majority	of	the	script	entries	can	have	constants	embedded	in
them.	These	are	predefined	strings	enclosed	in	brace	characters	{	}.
Setup	or	Uninstall	translates	the	constants	to	their	literal	values,
depending	on	the	user's	choices	and	system	configuration.	For
example,	{win},	as	described	below,	would	translate	to
"C:\WINDOWS"	on	most	systems.

A	"{"	character	is	treated	as	the	start	of	the	constant.	If	you	want	to	use
that	actual	character	in	a	place	where	constants	are	supported,	you
must	use	two	consecutive	"{"	characters.	(You	do	not	need	to	double	"}"
characters.)

When	a	backslash	immediately	follows	a	constant,	Setup	or	Uninstall
will	automatically	remove	the	backslash	if	the	value	of	the	constant
ends	in	a	backslash	already.	Thus,	if	the	value	of	a	particular	constant
is	"C:\",	{constantname}\file	will	translate	to	"C:\file",	not	"C:\\file".
If	you	want	to	prevent	this	from	happening,	enclose	the	backslash	in	{
}	characters,	e.g.	{app}{\}.

The	following	is	the	list	of	supported	constants.

Directory	Constants
{app}

The	application	directory,	which	the	user	selects	on	the	Select
Destination	Location	page	of	the	wizard.
For	example:	If	you	used	{app}\MYPROG.EXE	on	an	entry	and
the	user	selected	"C:\MYPROG"	as	the	application	directory,	Setup
will	translate	it	to	"C:\MYPROG\MYPROG.EXE".

{win}
The	system's	Windows	directory.
For	example:	If	you	used	{win}\MYPROG.INI	on	an	entry	and
the	system's	Windows	directory	is	"C:\WINDOWS",	Setup	or
Uninstall	will	translate	it	to	"C:\WINDOWS\MYPROG.INI".

{sys}
The	system's	System32	directory.
For	example:	If	you	used	{sys}\CTL3D32.DLL	on	an	entry	and
the	system's	Windows	System	directory	is
"C:\WINDOWS\SYSTEM",	Setup	or	Uninstall	will	translate	it	to
"C:\WINDOWS\SYSTEM\CTL3D32.DLL".

On	64-bit	Windows,	by	default,	the	System32	path	returned	by	this
constant	maps	to	the	directory	containing	32-bit	system	files,	just
like	on	32-bit	Windows.	(This	can	be	overridden	by	enabling	64-bit
mode.)

{syswow64}
On	64-bit	Windows,	the	system's	SysWOW64	directory,	typically
"C:\WINDOWS\SysWOW64".	This	is	the	actual	directory	in	which
32-bit	system	files	reside.	On	32-bit	Windows,	32-bit	system	files
reside	in	"System32"	or	"System",	not	in	a	separate	SysWOW64
directory,	so	this	constant	will	resolve	to	the	same	directory	as
{sys}	if	used	there.

Do	not	use	this	constant	unless	you	have	a	specific	need	to	obtain
the	name	of	the	actual	directory	in	which	32-bit	system	files	reside.
Gratuitously	using	{syswow64}	in	places	where	{sys}	will	suffice
may	cause	problems.	(See	the	documentation	for	the	[Files]

section's	sharedfile	flag	for	one	example.)

{src}
The	directory	in	which	the	Setup	files	are	located.
For	example:	If	you	used	{src}\MYPROG.EXE	on	an	entry	and
the	user	is	installing	from	"S:\",	Setup	will	translate	it	to
"S:\MYPROG.EXE".

{sd}
System	Drive.	The	drive	Windows	is	installed	on,	typically	"C:".
This	directory	constant	is	equivalent	to	the	SystemDrive
environment	variable.

{pf}
Program	Files.	The	path	of	the	system's	Program	Files	directory.
{pf}	is	equivalent	to	{pf32}	unless	the	install	is	running	in	64-bit
mode,	in	which	case	it	is	equivalent	to	{pf64}.

{pf32}
32-bit	Program	Files.	The	path	of	the	system's	32-bit	Program	Files
directory,	typically	"C:\Program	Files"	on	32-bit	Windows	and
"C:\Program	Files	(x86)"	on	64-bit	Windows.

{pf64}
64-bit	Windows	only:	64-bit	Program	Files.	The	path	of	the
system's	64-bit	Program	Files	directory,	typically	"C:\Program
Files".	An	exception	will	be	raised	if	an	attempt	is	made	to	expand
this	constant	on	32-bit	Windows.

{cf}
Common	Files.	The	path	of	the	system's	Common	Files	directory.
{cf}	is	equivalent	to	{cf32}	unless	the	install	is	running	in	64-bit
mode,	in	which	case	it	is	equivalent	to	{cf64}.

{cf32}
32-bit	Common	Files.	The	path	of	the	system's	32-bit	Common
Files	directory,	typically	"C:\Program	Files\Common	Files"	on	32-bit
Windows	and	"C:\Program	Files	(x86)\Common	Files"	on	64-bit
Windows.

{cf64}

64-bit	Windows	only:	64-bit	Common	Files.	The	path	of	the
system's	64-bit	Common	Files	directory,	typically	"C:\Program
Files\Common	Files".	An	exception	will	be	raised	if	an	attempt	is
made	to	expand	this	constant	on	32-bit	Windows.

{tmp}
Temporary	directory	used	by	Setup	or	Uninstall.	This	is	not	the
value	of	the	user's	TEMP	environment	variable.	It	is	a	subdirectory
of	the	user's	temporary	directory	which	is	created	by	Setup	or
Uninstall	at	startup	(with	a	name	like	"C:\WINDOWS\TEMP\IS-
xxxxx.tmp").	All	files	and	subdirectories	in	this	directory	are	deleted
when	Setup	or	Uninstall	exits.	During	Setup,	this	is	primarily	useful
for	extracting	files	that	are	to	be	executed	in	the	[Run]	section	but
aren't	needed	after	the	installation.

{fonts}
Fonts	directory.	Normally	named	"FONTS"	under	the	Windows
directory.

{dao}
DAO	directory.	This	is	equivalent	to	{cf}\Microsoft
Shared\DAO.

{dotnet11}
32-bit	.NET	Framework	version	1.1	root	directory.

An	exception	will	be	raised	if	an	attempt	is	made	to	expand	this
constant	on	a	system	with	no	.NET	Framework	version	1.1
present.

{dotnet20}
.NET	Framework	version	2.0	root	directory.	{dotnet20}	is
equivalent	to	{dotnet2032}	unless	the	install	is	running	in	64-bit
mode,	in	which	case	it	is	equivalent	to	{dotnet2064}.

An	exception	will	be	raised	if	an	attempt	is	made	to	expand	this
constant	on	a	system	with	no	.NET	Framework	version	2.0
present.

{dotnet2032}
32-bit	.NET	Framework	version	2.0	root	directory.

An	exception	will	be	raised	if	an	attempt	is	made	to	expand	this
constant	on	a	system	with	no	.NET	Framework	version	2.0
present.

{dotnet2064}
64-bit	Windows	only:	64-bit	.NET	Framework	version	2.0	root
directory.

An	exception	will	be	raised	if	an	attempt	is	made	to	expand	this
constant	on	a	system	with	no	.NET	Framework	version	2.0
present.

{dotnet40}
.NET	Framework	version	4.0	root	directory.	{dotnet40}	is
equivalent	to	{dotnet4032}	unless	the	install	is	running	in	64-bit
mode,	in	which	case	it	is	equivalent	to	{dotnet4064}.

An	exception	will	be	raised	if	an	attempt	is	made	to	expand	this
constant	on	a	system	with	no	.NET	Framework	version	4.0
present.

{dotnet4032}
32-bit	.NET	Framework	version	4.0	root	directory.

An	exception	will	be	raised	if	an	attempt	is	made	to	expand	this
constant	on	a	system	with	no	.NET	Framework	version	4.0
present.

{dotnet4064}
64-bit	Windows	only:	64-bit	.NET	Framework	version	2.0	root
directory.

An	exception	will	be	raised	if	an	attempt	is	made	to	expand	this
constant	on	a	system	with	no	.NET	Framework	version	4.0
present.

Shell	Folder	Constants
Inno	Setup	supports	another	set	of	directory	constants,	referred	to	as
shell	folder	constants.	They	can	be	used	in	the	same	way	as	the	other
directory	constants.

"common"	below	constants	refer	to	the	All	Users	profile.

The	"user"	constants	refer	to	the	profile	of	the	user	running	Setup.	This
user	is	often	not	the	same	as	the	currently	logged-in	user,	so	use	the
"user"	constants	with	caution.

Except	where	otherwise	noted,	shell	folder	constants	work	on	all
versions	of	Windows	that	Inno	Setup	supports.

*	=	The	"common"	form	of	this	constant	is	mapped	to	the	"user"	form	if
the	logged-in	user	lacks	administrative	privileges,	or	if
PrivilegesRequired	is	set	to	lowest.

{group}
The	path	to	the	Start	Menu	folder,	as	selected	by	the	user	on
Setup's	Select	Start	Menu	Folder	wizard	page.	This	folder	is
created	under	the	All	Users	profile	unless	the	user	installing	the
application	does	not	have	administrative	privileges,	in	which	case	it
is	created	in	the	user's	profile.

{localappdata}
The	path	to	the	local	(nonroaming)	Application	Data	folder.

{sendto}
The	path	to	the	current	user's	Send	To	folder.	(There	is	no	common
Send	To	folder.)

{userappdata}	&	{commonappdata}
The	path	to	the	Application	Data	folder.

{usercf}
The	path	to	the	current	user's	Common	Files	directory.	Only
Windows	7	and	later	supports	{usercf};	if	used	on	previous
Windows	versions,	it	will	translate	to	the	same	directory	as
{localappdata}\Programs\Common.

{userdesktop}	&	{commondesktop}	*
The	path	to	the	desktop	folder.

{userdocs}	&	{commondocs}
The	path	to	the	My	Documents	folder.

{userfavorites}	&	{commonfavorites}	*
The	path	to	the	Favorites	folder.

{userpf}
The	path	to	the	current	user's	Program	Files	directory.	Only
Windows	7	and	later	supports	{userpf};	if	used	on	previous
Windows	versions,	it	will	translate	to	the	same	directory	as
{localappdata}\Programs.

{userprograms}	&	{commonprograms}	*
The	path	to	the	Programs	folder	on	the	Start	Menu.

{userstartmenu}	&	{commonstartmenu}	*
The	path	to	the	top	level	of	the	Start	Menu.

{userstartup}	&	{commonstartup}	*
The	path	to	the	Startup	folder	on	the	Start	Menu.

{usertemplates}	&	{commontemplates}	*
The	path	to	the	Templates	folder.

Other	Constants
{\}

A	backslash	character.	See	the	note	at	the	top	of	this	page	for	an
explanation	of	what	the	difference	between	using	{\}	and	only	a	\
is.

{%NAME|DefaultValue}
Embeds	the	value	of	an	environment	variable.

NAME	specifies	the	name	of	the	environment	variable	to	use.

DefaultValue	determines	the	string	to	embed	if	the	specified
variable	does	not	exist	on	the	user's	system.

If	you	wish	to	include	a	comma,	vertical	bar	("|"),	or	closing
brace	("}")	inside	the	constant,	you	must	escape	it	via	"%-
encoding."	Replace	the	character	with	a	"%"	character,
followed	by	its	two-digit	hex	code.	A	comma	is	"%2c",	a
vertical	bar	is	"%7c",	and	a	closing	brace	is	"%7d".	If	you	want
to	include	an	actual	"%"	character,	use	"%25".

NAME	and	DefaultValue	may	include	constants.	Note	that	you
do	not	need	to	escape	the	closing	brace	of	a	constant	as
described	above;	that	is	only	necessary	when	the	closing
brace	is	used	elsewhere.

Examples:

{%COMSPEC}

{%PROMPT|PG}

{cmd}
The	full	pathname	of	the	system's	standard	command	interpreter,
Windows\System32\cmd.exe.	Note	that	the	COMSPEC
environment	variable	is	not	used	when	expanding	this	constant.

{computername}
The	name	of	the	computer	the	Setup	or	Uninstall	program	is
running	on	(as	returned	by	the	Windows	GetComputerName
function).

{drive:Path}
Extracts	and	returns	the	drive	letter	and	colon	(e.g.	"C:")	from	the
specified	path.	In	the	case	of	a	UNC	path,	it	returns	the	server	and
share	name	(e.g.	"\\SERVER\SHARE").

Path	specifies	the	path.

If	you	wish	to	include	a	comma,	vertical	bar	("|"),	or	closing
brace	("}")	inside	the	constant,	you	must	escape	it	via	"%-
encoding."	Replace	the	character	with	a	"%"	character,
followed	by	its	two-digit	hex	code.	A	comma	is	"%2c",	a
vertical	bar	is	"%7c",	and	a	closing	brace	is	"%7d".	If	you	want
to	include	an	actual	"%"	character,	use	"%25".

Path	may	include	constants.	Note	that	you	do	not	need	to
escape	the	closing	brace	of	a	constant	as	described	above;
that	is	only	necessary	when	the	closing	brace	is	used
elsewhere.

Examples:

{drive:{src}}

{drive:c:\path\file}

{drive:\\server\share\path\file}

{groupname}
The	name	of	the	folder	the	user	selected	on	Setup's	Select	Start
Menu	Folder	wizard	page.	This	differs	from	{group}	in	that	it	is
only	the	name;	it	does	not	include	a	path.

{hwnd}
(Special-purpose)	Translates	to	the	window	handle	of	the	Setup
program's	background	window.

{wizardhwnd}
(Special-purpose)	Translates	to	the	window	handle	of	the	Setup
wizard	window.	This	handle	is	set	to	'0'	if	the	window	handle	isn't
available	at	the	time	the	translation	is	done.

{ini:Filename,Section,Key|DefaultValue}
Embeds	a	value	from	an	.INI	file.

Filename	specifies	the	name	of	the	.INI	file	to	read	from.

Section	specifies	the	name	of	the	section	to	read	from.

Key	specifies	the	name	of	the	key	to	read.

DefaultValue	determines	the	string	to	embed	if	the	specified
key	does	not	exist.

If	you	wish	to	include	a	comma,	vertical	bar	("|"),	or	closing
brace	("}")	inside	the	constant,	you	must	escape	it	via	"%-
encoding."	Replace	the	character	with	a	"%"	character,
followed	by	its	two-digit	hex	code.	A	comma	is	"%2c",	a
vertical	bar	is	"%7c",	and	a	closing	brace	is	"%7d".	If	you	want
to	include	an	actual	"%"	character,	use	"%25".

Filename,	Section,	and	Key	may	include	constants.	Note	that
you	do	not	need	to	escape	the	closing	brace	of	a	constant	as
described	above;	that	is	only	necessary	when	the	closing
brace	is	used	elsewhere.

Example:

{ini:{win}\MyProg.ini,Settings,Path|{pf}\My	Program}

{language}
The	internal	name	of	the	selected	language.	See	the	[Languages]
section	documentation	for	more	information.

{cm:MessageName}
{cm:MessageName,Arguments}

Embeds	a	custom	message	value	based	on	the	active	language.

MessageName	specifies	the	name	of	custom	message	to	read
from.	See	the	[CustomMessages]	section	documentation	for
more	information.

Arguments	optionally	specifies	a	comma	separated	list	of
arguments	to	the	message	value.

If	you	wish	to	include	a	comma,	vertical	bar	("|"),	or	closing
brace	("}")	inside	the	constant,	you	must	escape	it	via	"%-

encoding."	Replace	the	character	with	a	"%"	character,
followed	by	its	two-digit	hex	code.	A	comma	is	"%2c",	a
vertical	bar	is	"%7c",	and	a	closing	brace	is	"%7d".	If	you	want
to	include	an	actual	"%"	character,	use	"%25".

Each	argument	in	Arguments	may	include	constants.	Note
that	you	do	not	need	to	escape	the	closing	brace	of	a	constant
as	described	above;	that	is	only	necessary	when	the	closing
brace	is	used	elsewhere.

Example:

{cm:LaunchProgram,Inno	Setup}

The	example	above	translates	to	"Launch	Inno	Setup"	if	English	is
the	active	language.

{reg:HKxx\SubkeyName,ValueName|DefaultValue}
Embeds	a	registry	value.

HKxx	specifies	the	root	key;	see	the	[Registry]	section
documentation	for	a	list	of	possible	root	keys.

SubkeyName	specifies	the	name	of	the	subkey	to	read	from.

ValueName	specifies	the	name	of	the	value	to	read;	leave
ValueName	blank	if	you	wish	to	read	the	"default"	value	of	a
key.

DefaultValue	determines	the	string	to	embed	if	the	specified
registry	value	does	not	exist,	or	is	not	a	string	type	(REG_SZ
or	REG_EXPAND_SZ).

If	you	wish	to	include	a	comma,	vertical	bar	("|"),	or	closing
brace	("}")	inside	the	constant,	you	must	escape	it	via	"%-
encoding."	Replace	the	character	with	a	"%"	character,
followed	by	its	two-digit	hex	code.	A	comma	is	"%2c",	a
vertical	bar	is	"%7c",	and	a	closing	brace	is	"%7d".	If	you	want
to	include	an	actual	"%"	character,	use	"%25".

SubkeyName,	ValueName,	and	DefaultValue	may	include
constants.	Note	that	you	do	not	need	to	escape	the	closing

brace	of	a	constant	as	described	above;	that	is	only	necessary
when	the	closing	brace	is	used	elsewhere.

Example:

{reg:HKLM\Software\My	Program,Path|{pf}\My	Program}

{param:ParamName|DefaultValue}
Embeds	a	command	line	parameter	value.

ParamName	specifies	the	name	of	the	command	line
parameter	to	read	from.

DefaultValue	determines	the	string	to	embed	if	the	specified
command	line	parameter	does	not	exist,	or	its	value	could	not
be	determined.

If	you	wish	to	include	a	comma,	vertical	bar	("|"),	or	closing
brace	("}")	inside	the	constant,	you	must	escape	it	via	"%-
encoding."	Replace	the	character	with	a	"%"	character,
followed	by	its	two-digit	hex	code.	A	comma	is	"%2c",	a
vertical	bar	is	"%7c",	and	a	closing	brace	is	"%7d".	If	you	want
to	include	an	actual	"%"	character,	use	"%25".

ParamName	and	DefaultValue	may	include	constants.	Note
that	you	do	not	need	to	escape	the	closing	brace	of	a	constant
as	described	above;	that	is	only	necessary	when	the	closing
brace	is	used	elsewhere.

Example:

{param:Path|{pf}\My	Program}

The	example	above	translates	to	c:\My	Program	if	the	command
line	/Path="c:\My	Program"	was	specified.

{srcexe}
The	full	pathname	of	the	Setup	program	file,	e.g.	"C:\SETUP.EXE".

{uninstallexe}
The	full	pathname	of	the	uninstall	program	extracted	by	Setup,	e.g.
"C:\Program	Files\My	Program\unins000.exe".	This	constant	is

typically	used	in	an	[Icons]	section	entry	for	creating	an	Uninstall
icon.	It	is	only	valid	if	Uninstallable	is	yes	(the	default	setting).

{sysuserinfoname}
{sysuserinfoorg}

The	name	and	organization,	respectively,	that	Windows	is
registered	to.	This	information	is	read	from	the	registry.

{userinfoname}
{userinfoorg}
{userinfoserial}

The	name,	organization	and	serial	number,	respectively,	that	the
user	entered	on	the	User	Information	wizard	page	(which	can	be
enabled	via	the	UserInfoPage	directive).	Typically,	these
constants	are	used	in	[Registry]	or	[INI]	entries	to	save	their	values
for	later	use.

{username}
The	name	of	the	user	who	is	running	Setup	or	Uninstall	program
(as	returned	by	the	GetUserName	function).

{log}
The	log	file	name,	or	an	empty	string	if	logging	is	not	enabled.

Common	Parameters
There	are	three	optional	parameters	that	are	supported	by	all	sections
whose	entries	are	separated	into	parameters.	They	are:

Languages

A	space	separated	list	of	language	names,	telling	Setup	to	which
languages	the	entry	belongs.	If	the	end	user	selects	a	language
from	this	list,	the	entry	is	processed	(for	example:	the	file	is
installed).

An	entry	without	a	Languages	parameter	is	always	processed,
unless	other	parameters	say	it	shouldn't	be.

Besides	space	separated	lists,	you	may	also	use	boolean
expressions.	See	Components	and	Tasks	parameters	for
examples	of	boolean	expressions.

Example:

Languages:	en	nl

MinVersion

A	minimum	Windows	version	for	the	entry	to	be	processed.	If	you
use	"0"	then	the	entry	will	never	be	processed.	Build	numbers
and/or	service	pack	levels	may	be	included.	This	overrides	any
MinVersion	directive	in	the	script's	[Setup]	section.

An	entry	without	a	MinVersion	parameter	is	always	processed,
unless	other	parameters	say	it	shouldn't	be.

For	compatibility	with	previous	versions	of	Inno	Setup,	separate
Windows	95/98/Me	and	Windows	NT	version	numbers	may	be
specified,	separated	by	a	comma.	Example:	4.1,5.0.	The
Windows	95/98/Me	version	number	(the	first	number)	isn't	used,
however,	as	Inno	Setup	no	longer	supports	Windows	95/98/Me.

Example:

MinVersion:	5.1

OnlyBelowVersion

Essentially	the	opposite	of	MinVersion.	Specifies	the	minimum
Windows	version	for	the	entry	not	to	be	processed.	For	example,	if
you	put	6.0	and	the	user	is	running	Windows	2000	or	XP,	the
entry	will	be	processed,	but	if	the	user	is	running	Windows	Vista
(which	reports	its	version	as	6.0)	or	later,	it	will	not	be	processed.
Putting	"0"	means	there	is	no	upper	version	limit.	Build	numbers
and/or	service	pack	levels	may	be	included.	This	overrides	any
OnlyBelowVersion	directive	in	the	script's	[Setup]	section.

An	entry	without	an	OnlyBelowVersion	parameter	is	always
processed,	unless	other	parameters	say	it	shouldn't	be.

For	compatibility	with	previous	versions	of	Inno	Setup,	separate
Windows	95/98/Me	and	Windows	NT	version	numbers	may	be
specified,	separated	by	a	comma.	Example:	4.1,5.0.	The
Windows	95/98/Me	version	number	(the	first	number)	isn't	used,
however,	as	Inno	Setup	no	longer	supports	Windows	95/98/Me.

Example:

OnlyBelowVersion:	6.0

Components	and	Tasks	Parameters
There	are	two	optional	parameters	that	are	supported	by	all	sections
whose	entries	are	separated	into	parameters,	except	[Types],
[Components]	and	[Tasks].	They	are:

Components

A	space	separated	list	of	component	names,	telling	Setup	to	which
components	the	entry	belongs.	If	the	end	user	selects	a
component	from	this	list,	the	entry	is	processed	(for	example:	the
file	is	installed).

An	entry	without	a	Components	parameter	is	always	processed,
unless	other	parameters	say	it	shouldn't	be.

Example:

[Files]

Source:	"MYPROG.EXE";	DestDir:	"{app}";	Components:	main

Source:	"MYPROG.CHM";	DestDir:	"{app}";	Components:	help

Source:	"README.TXT";	DestDir:	"{app}"

Tasks

A	space	separated	list	of	task	names,	telling	Setup	to	which	task
the	entry	belongs.	If	the	end	user	selects	a	task	from	this	list,	the
entry	is	processed	(for	example:	the	file	is	installed).

An	entry	without	a	Tasks	parameter	is	always	processed,	unless
other	parameters	say	it	shouldn't	be.

Note	that	the	Don't	create	a	Start	Menu	folder	checkbox	on	the
Select	Start	Menu	Folder	wizard	page	doesn't	affect	[Icons]	entries
that	have	Tasks	parameters	since	they	have	their	own
checkboxes.

Example:

[Icons]

Name:	"{group}\My	Program";	Filename:	"{app}\MyProg.exe";	Components:	main;	Tasks:	startmenu

Name:	"{group}\My	Program	Help";	Filename:	"{app}\MyProg.chm";	Components:	help;	Tasks:	startmenu

Name:	"{commondesktop}\My	Program";	Filename:	"{app}\MyProg.exe";	Components:	main;	Tasks:	desktopicon

Besides	space	separated	lists,	you	may	also	use	boolean	expressions
as	Components	and	Tasks	parameters.	Supported	operators	include
not,	and,	and	or.	For	example:

[Components]

Name:	a;	Description:	a

Name:	b;	Description:	b

[Tasks]

Name:	p;	Description:	a	or	b;	Components:	a	or	b

Name:	q;	Description:	a	and	b;	Components:	a	and	b

Name:	r;	Description:	not	a	or	b;	Components:	not	a	or	b

Name:	s;	Description:	not	(a	or	b);	Components:	not	(a	or	b)

Name:	t;	Description:	a	or	b	-	old	style;	Components:	a	b

[Setup]	section
This	section	contains	global	settings	used	by	the	installer	and
uninstaller.	Certain	directives	are	required	for	any	installation	you
create.	Here	is	an	example	of	a	[Setup]	section:

[Setup]

AppName=My	Program

AppVersion=1.5

DefaultDirName={pf}\My	Program

DefaultGroupName=My	Program

By	default,	any	leading	or	trailing	whitespace	in	a	directive's	value	will
be	stripped.	It	is	possible	to	avoid	this	by	surrounding	the	directive's
value	in	double	quotes	(").

The	following	directives	can	be	placed	in	the	[Setup]	section:

(bold	=	required)

Compiler-related
Compression
CompressionThreads
DiskClusterSize
DiskSliceSize
DiskSpanning
Encryption
InternalCompressLevel
LZMAAlgorithm
LZMABlockSize
LZMADictionarySize
LZMAMatchFinder
LZMANumBlockThreads
LZMANumFastBytes
LZMAUseSeparateProcess
MergeDuplicateFiles
Output
OutputBaseFilename
OutputDir
OutputManifestFile
ReserveBytes
SignedUninstaller
SignedUninstallerDir
SignTool
SignToolRetryCount
SlicesPerDisk
SolidCompression
SourceDir
TerminalServicesAware
UseSetupLdr
VersionInfoCompany
VersionInfoCopyright
VersionInfoDescription

VersionInfoProductName
VersionInfoProductTextVersion
VersionInfoProductVersion
VersionInfoTextVersion
VersionInfoVersion

Installer-related
Functional:	These	directives	affect	the	operation	of	the	Setup	program,
or	are	saved	and	used	later	by	the	uninstaller.

AllowCancelDuringInstall
AllowNetworkDrive
AllowNoIcons
AllowRootDirectory
AllowUNCPath
AlwaysRestart
AlwaysShowComponentsList
AlwaysShowDirOnReadyPage
AlwaysShowGroupOnReadyPage
AlwaysUsePersonalGroup
AppendDefaultDirName
AppendDefaultGroupName
AppComments
AppContact
AppId
AppModifyPath
AppMutex
AppName
AppPublisher
AppPublisherURL
AppReadmeFile
AppSupportPhone
AppSupportURL
AppUpdatesURL
AppVerName
AppVersion
ArchitecturesAllowed
ArchitecturesInstallIn64BitMode
ChangesAssociations
ChangesEnvironment

CloseApplications
CloseApplicationsFilter
CreateAppDir
CreateUninstallRegKey
DefaultDialogFontName
DefaultDirName
DefaultGroupName
DefaultUserInfoName
DefaultUserInfoOrg
DefaultUserInfoSerial
DirExistsWarning
DisableDirPage
DisableFinishedPage
DisableProgramGroupPage
DisableReadyMemo
DisableReadyPage
DisableStartupPrompt
DisableWelcomePage
EnableDirDoesntExistWarning
ExtraDiskSpaceRequired
InfoAfterFile
InfoBeforeFile
LanguageDetectionMethod
LicenseFile
MinVersion
OnlyBelowVersion
Password
PrivilegesRequired
RestartApplications
RestartIfNeededByRun
SetupLogging
SetupMutex
ShowLanguageDialog
ShowUndisplayableLanguages

TimeStampRounding
TimeStampsInUTC
TouchDate
TouchTime
Uninstallable
UninstallDisplayIcon
UninstallDisplayName
UninstallDisplaySize
UninstallFilesDir
UninstallLogMode
UninstallRestartComputer
UpdateUninstallLogAppName
UsePreviousAppDir
UsePreviousGroup
UsePreviousLanguage
UsePreviousSetupType
UsePreviousTasks
UsePreviousUserInfo
UserInfoPage

Cosmetic:	These	directives	only	affect	the	appearance	of	the	Setup
program.

AppCopyright
BackColor
BackColor2
BackColorDirection
BackSolid
FlatComponentsList
SetupIconFile
ShowComponentSizes
ShowTasksTreeLines
WindowShowCaption
WindowStartMaximized
WindowResizable
WindowVisible

WizardImageBackColor
WizardImageFile
WizardImageStretch
WizardSmallImageFile

Obsolete
These	directives	are	obsolete	and	should	not	be	used	in	any	new
scripts.

AlwaysCreateUninstallIcon
DisableAppendDir
DontMergeDuplicateFiles
MessagesFile
UninstallIconFile
UninstallIconName
UninstallStyle
WizardSmallImageBackColor
WizardStyle

[Setup]:	AllowCancelDuringInstall
Valid	values: yes	or	no

Default	value: yes

Description:
Setting	this	to	no	prevents	the	user	from	cancelling	during	the	actual
installation	process,	by	disabling	the	Cancel	button	and	ignoring	clicks
on	the	close	button.	This	has	the	same	effect	as	passing	/NOCANCEL
to	Setup	on	the	command	line.

[Setup]:	AllowNetworkDrive
Valid	values: yes	or	no

Default	value: yes

Description:
If	set	to	no,	the	user	will	not	be	allowed	to	enter	a	network	drive	on	the
Select	Destination	Location	page	of	the	wizard.

To	fully	disallow	installation	to	network	locations,	you	must	also	set
AllowUNCPath	to	no.

[Setup]:	AllowNoIcons
Valid	values: yes	or	no

Default	value: no

Description:
When	set	to	yes,	Setup	will	display	a	Don't	create	a	Start	Menu	folder
check	box	on	the	Select	Start	Menu	Folder	wizard	page,	which	allows
the	user	to	skip	creation	of	program	shortcuts	on	the	Start	Menu.

Only	[Icons]	entries	that	have	a	Name	parameter	starting	with
{group}\	and	no	Tasks	parameter	are	affected	by	default.	To	force
the	check	box	to	have	an	effect	on	a	particular	[Icons]	entry,	add	a
Check:	not	WizardNoIcons	parameter.

[Setup]:	AllowRootDirectory
Valid	values: yes	or	no

Default	value: no

Description:
When	set	to	no,	the	default,	the	user	will	not	be	allowed	to	enter	a	root
directory	(such	as	"C:\")	on	the	Select	Destination	Location	page	of	the
wizard.

[Setup]:	AllowUNCPath
Valid	values: yes	or	no

Default	value: yes

Description:
If	set	to	no,	the	user	will	not	be	allowed	to	enter	a	UNC	path	(such	as
"\\server\share")	on	the	Select	Destination	Location	page	of	the	wizard.
This	was	the	default	behavior	in	Inno	Setup	2.0.17	and	earlier.

To	fully	disallow	installation	to	network	locations,	you	must	also	set
AllowNetworkDrive	to	no.

[Setup]:	AlwaysCreateUninstallIcon
Description:
Obsolete	in	3.0.	This	directive	is	no	longer	supported.	If	you	wish	to
create	an	Uninstall	icon,	use	the	new	{uninstallexe}	constant	in
the	Filename	parameter	of	an	[Icons]	section	entry.

[Setup]:	AlwaysRestart
Valid	values: yes	or	no

Default	value: no

Description:
When	set	to	yes,	Setup	will	always	prompt	the	user	to	restart	the
system	at	the	end	of	a	successful	installation,	regardless	of	whether
this	is	necessary	(for	example,	because	of	[Files]	section	entries
with	the	restartreplace	flag).

[Setup]:	AlwaysShowComponentsList
Valid	values: yes	or	no

Default	value: yes

Description:
If	this	directive	is	set	to	yes,	Setup	will	always	show	the	components
list	for	customizable	setups.	If	this	is	set	to	no	Setup	will	only	show	the
components	list	if	the	user	selected	a	custom	type	from	the	type	list.

[Setup]:	AlwaysShowDirOnReadyPage
Valid	values: yes	or	no

Default	value: no

Description:
If	this	directive	is	set	to	yes,	Setup	will	always	show	the	selected
directory	in	the	list	of	settings	on	the	Ready	to	Install	wizard	page.	If
this	is	set	to	no,	Setup	will	not	show	the	selected	directory	if
DisableDirPage	is	yes.

[Setup]:	AlwaysShowGroupOnReadyPage
Valid	values: yes	or	no

Default	value: no

Description:
If	this	directive	is	set	to	yes,	Setup	will	always	show	the	selected	Start
Menu	folder	name	in	the	list	of	settings	on	the	Ready	to	Install	wizard
page.	If	this	is	set	to	no,	Setup	will	not	show	the	selected	Start	Menu
folder	name	if	DisableProgramGroupPage	is	yes.

If	no	Start	Menu	folder	is	going	to	be	created	by	Setup,	this	directive	is
effectively	ignored.

[Setup]:	AlwaysUsePersonalGroup
Valid	values: yes	or	no

Default	value: no

Description:
Normally,	Inno	Setup's	{group}	constant	points	to	the	All	Users	start
menu	if	the	user	has	administrative	privileges.	If	this	directive	is	set	to
yes,	it	always	uses	current	user's	profile.

[Setup]:	AppComments
Description:
This	string	is	displayed	on	the	"Support"	dialog	of	the	Add/Remove
Programs	Control	Panel	applet.	The	value	may	include	constants.

Example:

AppComments=Hello.

[Setup]:	AppContact
Description:
This	string	is	displayed	on	the	"Support"	dialog	of	the	Add/Remove
Programs	Control	Panel	applet.	The	value	may	include	constants.

Example:

AppContact=My	Company	Customer	Support

[Setup]:	AppCopyright
Description:
Specifies	a	copyright	message	that	Setup	will	display	in	the	bottom-
right	corner	of	Setup's	background	window	when	WindowVisible	is	yes.

The	value	of	this	directive	is	also	used	as	the	default	value	for	the
VersionInfoCopyright	directive	if	it	is	not	specified.

Example:

AppCopyright=Copyright	(C)	1997-2005	My	Company,	Inc.

[Setup]:	AppendDefaultDirName
Valid	values: yes	or	no

Default	value: yes

Description:
By	default,	when	a	folder	in	the	dialog	displayed	by	the	Browse...	button
on	the	Select	Destination	Location	wizard	page	is	clicked,	Setup
automatically	appends	the	last	component	of	DefaultDirName	onto
the	new	path.	For	example,	if	DefaultDirName	is	{pf}\My
Program	and	"Z:\"	is	clicked,	the	new	path	will	become	"Z:\My
Program".

Setting	this	directive	to	no	disables	the	aforementioned	behavior.	In
addition,	it	causes	a	Make	New	Folder	button	to	appear	on	the	dialog.

[Setup]:	AppendDefaultGroupName
Valid	values: yes	or	no

Default	value: yes

Description:
By	default,	when	a	folder	in	the	dialog	displayed	by	the	Browse...	button
on	the	Select	Start	Menu	Folder	wizard	page	is	clicked,	Setup
automatically	appends	the	last	component	of	DefaultGroupName
onto	the	new	path.	For	example,	if	DefaultGroupName	is	My
Program	and	"Accessories"	is	clicked,	the	new	path	will	become
"Accessories\My	Program".

Setting	this	directive	to	no	disables	the	aforementioned	behavior.	In
addition,	it	causes	a	Make	New	Folder	button	to	appear	on	the	dialog.

[Setup]:	AppId
Default	value: AppName

Description:
The	value	of	AppId	is	stored	inside	uninstall	log	files	(unins???.dat),
and	is	checked	by	subsequent	installations	to	determine	whether	it	may
append	to	a	particular	existing	uninstall	log.	Setup	will	only	append	to
an	uninstall	log	if	the	AppId	of	the	existing	uninstall	log	is	the	same	as
the	current	installation's	AppId.	For	a	practical	example,	say	you	have
two	installations	--	one	entitled	My	Program	and	the	other	entitled	My
Program	1.1	Update.	To	get	My	Program	1.1	Update	to	append	to	My
Program's	uninstall	log,	you	would	have	to	set	AppId	to	the	same
value	in	both	installations.

AppId	also	determines	the	actual	name	of	the	Uninstall	registry	key,	to
which	Inno	Setup	tacks	on	"_is1"	at	the	end.	(Therefore,	if	AppId	is
"MyProgram",	the	key	will	be	named	"MyProgram_is1".)	Pre-1.3
versions	of	Inno	Setup	based	the	key	name	on	the	value	of
AppVerName.

AppId	is	a	not	used	for	display	anywhere,	so	feel	free	to	make	it	as
cryptic	as	you	desire.	The	value	may	include	constants.

If	you	use	a	{code:..}	constant	to	allow	your	user	to	customize	AppId,
you	do	not	need	to	return	the	real	value	until	just	before	the	installation
starts:	if	necessary	you	may	return	an	empty	or	generic	value	at	earlier
times.	If	not	empty,	this	value	will	only	be	used	to	attempt	to	restore
previous	install	settings	(like	the	settings	stored	by	[Setup]	section
directive	UsePreviousAppDir).	If	empty,	it	isn't	used	for	anything.

The	length	of	AppId	with	all	constants	evaluated	should	never	exceed
127	characters.

Example:

AppId=MyProgram

[Setup]:	AppModifyPath
Description:
When	this	directive	is	set,	a	separate	"Modify"	button	in	the
Add/Remove	Programs	Control	Panel	applet	will	be	displayed.	Setting
it	is	optional.	The	value	may	include	constants.

Example:

AppModifyPath="{app}\Setup.exe"	/modify=1

[Setup]:	AppMutex
Description:
This	directive	is	used	to	prevent	the	user	from	installing	new	versions	of
an	application	while	the	application	is	still	running,	and	to	prevent	the
user	from	uninstalling	a	running	application.	It	specifies	the	names	of
one	or	more	named	mutexes	(multiple	mutexes	are	separated	by
commas),	which	Setup	and	Uninstall	will	check	for	at	startup.	If	any
exist,	Setup/Uninstall	will	display	the	message:	"[Setup	or	Uninstall]	has
detected	that	[AppName]	is	currently	running.	Please	close	all
instances	of	it	now,	then	click	OK	to	continue,	or	Cancel	to	exit."	The
value	may	include	constants.

Use	of	this	directive	requires	that	you	add	code	to	your	application
which	creates	a	mutex	with	the	name	you	specify	in	this	directive.
Examples	of	creating	a	mutex	in	Delphi,	C,	and	Visual	Basic	are	shown
below.	The	code	should	be	executed	during	your	application's	startup.

Delphi:

CreateMutex(nil,	False,	'MyProgramsMutexName');

C:

CreateMutex(NULL,	FALSE,	"MyProgramsMutexName");

Visual	Basic	(submitted	by	Peter	Young):

'Place	in	Declarations	section:

Private	Declare	Function	CreateMutex	Lib	"kernel32"	_

								Alias	"CreateMutexA"	_

							(ByVal	lpMutexAttributes	As	Long,	_

								ByVal	bInitialOwner	As	Long,	_

								ByVal	lpName	As	String)	As	Long

'Place	in	startup	code	(Form_Load	or	Sub	Main):

CreateMutex	0&,	0&,	"MyProgramsMutexName"

It	is	not	necessary	to	explicitly	destroy	the	mutex	object	upon	your

application's	termination;	the	system	will	do	this	automatically.	Nor	is	it
recommended	that	you	do	so,	because	ideally	the	mutex	object	should
exist	until	the	process	completely	terminates.

Note	that	mutex	name	comparison	in	Windows	is	case	sensitive.

To	specify	a	mutex	name	containing	a	comma,	escape	the	comma	with
a	backslash.

See	the	topic	for	CreateMutex	in	the	MS	SDK	help	for	more	information
on	mutexes.

Example:

AppMutex=MyProgramsMutexName

See	also:	SetupMutex

[Setup]:	AppName
Description:
This	required	directive	specifies	the	name	of	the	application	being
installed.	Do	not	include	the	version	number,	as	that	is	defined	by	the
AppVersion	and/or	AppVerName	directives.	AppName	is	displayed
throughout	the	Setup	program	and	uninstaller	in	window	titles,	wizard
pages,	and	dialog	boxes.	The	value	may	include	constants.

The	value	of	this	directive	is	also	used	as	the	default	value	for	the
AppId,	VersionInfoDescription,	and	VersionInfoProductName	directives
if	those	are	not	specified.

Example:

AppName=My	Program

[Setup]:	AppPublisher
Description:
This	string	is	displayed	on	the	"Support"	dialog	of	the	Add/Remove
Programs	Control	Panel	applet.	The	value	may	include	constants.

The	value	of	this	directive	is	also	used	as	the	default	value	for	the
VersionInfoCompany	directive	if	it	is	not	specified.

Example:

AppPublisher=My	Company,	Inc.

AppPublisherURL=http://www.example.com/

[Setup]:	AppPublisherURL
Description:
A	link	to	the	specified	URL	is	displayed	on	the	"Support"	dialog	of	the
Add/Remove	Programs	Control	Panel	applet.	The	value	may	include
constants.

Example:

AppPublisher=My	Company,	Inc.

AppPublisherURL=http://www.example.com/

[Setup]:	AppReadmeFile
Description:
This	string,	which	may	be	a	URL,	is	displayed	on	the	"Support"	dialog
of	the	Add/Remove	Programs	Control	Panel	applet.	The	value	may
include	constants.

Example:

AppReadmeFile=http://www.example.com/readme.html

[Setup]:	AppSupportPhone
Description:
This	string	is	displayed	on	the	"Support"	dialog	of	the	Add/Remove
Programs	Control	Panel	applet.	The	value	may	include	constants.

Example:

AppSupportPhone=1-800-555-1212

[Setup]:	AppSupportURL
Description:
A	link	to	the	specified	URL	is	displayed	on	the	"Support"	dialog	of	the
Add/Remove	Programs	Control	Panel	applet.	The	value	may	include
constants.

Example:

AppSupportURL=http://www.example.com/support.html

[Setup]:	AppUpdatesURL
Description:
A	link	to	the	specified	URL	is	displayed	on	the	"Support"	dialog	of	the
Add/Remove	Programs	Control	Panel	applet.	The	value	may	include
constants.

Example:

AppUpdatesURL=http://www.example.com/updates.html

[Setup]:	AppVerName
Default	value: AppName	version	AppVersion,	localized	according	to

the	active	language's	NameAndVersion	custom
message

Description:
This	directive	specifies	the	name	of	the	application	plus	its	version
number.	The	value	of	this	directive	is	displayed	on	the	Welcome	page
of	Setup's	wizard,	and	is	used	as	the	default	title	of	the	application's
Add/Remove	Programs	entry	(see	UninstallDisplayName).	The	value
may	include	constants.

This	directive	is	required	if	the	AppVersion	directive	is	not	set.

Examples:

AppVerName=My	Program	1.5

AppVerName=My	Program	version	1.5

AppVerName={cm:NameAndVersion,My	Program,1.5}

[Setup]:	AppVersion
Description:
This	directive	specifies	the	version	number	of	the	application	being
installed.	The	value	of	this	directive,	which	may	include	constants,	is
used	in	the	default	value	for	the	AppVerName	directive,	and	is
displayed	in	the	Version	field	of	the	application's	Add/Remove
Programs	entry.	It	is	also	used	to	set	the	MajorVersion	and
MinorVersion	values	in	the	Uninstall	registry	key	when	possible.

This	directive	is	required	and	cannot	be	empty	if	the	AppVerName
directive	is	not	set.

Example:

AppVersion=1.5

[Setup]:	ArchitecturesAllowed
Valid	values: One	or	more	of	the	following,	separated	by	spaces:	

x86	
x64	
ia64

Default	value: (blank)

Description:
Specifies	which	processor	architecture(s)	Setup	is	allowed	to	run	on.	If
this	directive	is	not	specified	or	is	blank,	Setup	will	be	allowed	to	run	on
all	processor	architectures	capable	of	executing	its	32-bit	code
(including	ones	it	doesn't	recognize).	Otherwise,	if	a	user's	processor
architecture	is	not	one	of	those	specified	in	this	directive,	Setup	will
display	an	error	message	and	exit.

If	your	application's	binaries	are	all	32-bit	and	run	in	user	mode,	you
should	not	change	this	directive	from	its	default	value	(specifically,	don't
set	it	to	x86),	because	normally	such	binaries	will	run	without	issue	on
the	x64	and	Itanium	editions	of	Windows	via	the	WOW64	emulator.

If	you	install	any	32-bit	device	drivers,	you	should	set	this	directive	to
x86,	as	32-bit	device	drivers	cannot	function	on	64-bit	Windows.

If	your	application's	binaries	are	built	for	the	x64	or	Itanium
architectures,	you	should	set	this	directive	to	either	x64	or	ia64
respectively.

See	also:
ArchitecturesInstallIn64BitMode

[Setup]:	ArchitecturesInstallIn64BitMode
Valid	values: One	or	more	of	the	following,	separated	by	spaces:	

x64	
ia64

Default	value: (blank)

Description:
Specifies	the	64-bit	processor	architecture(s)	on	which	Setup	should
install	in	64-bit	mode.	If	this	directive	is	not	specified	or	is	blank,	Setup
will	always	install	in	32-bit	mode.

Normally,	you	should	not	change	this	directive	from	its	default	value
unless	your	application	contains	native	64-bit	binaries.

Be	sure	you	have	read	the	64-bit	Installation	Limitations	topic	before
setting	this	directive.

If	your	application	runs	only	on	64-bit	processor	architectures,	you
should	set	ArchitecturesAllowed	to	the	same	value	as	this	directive	to
prevent	Setup	from	running	on	32-bit	Windows.

Setup	can	only	run	in	64-bit	mode	on	versions	of	Windows	that	provide
the	API	support	Inno	Setup	requires	(e.g.	RegDeleteKeyEx).	All	x64
editions	provide	the	necessary	APIs,	however	Itanium	editions	prior	to
Windows	Server	2003	SP1	do	not.	If	the	user	is	running	an	older
Itanium	version	of	Windows,	Setup	will	display	a	message
(MissingWOW64APIs)	recommending	that	the	user	install	a	service
pack,	and	exit.

See	also:
ArchitecturesAllowed

[Setup]:	BackColor,	BackColor2
Valid	values: A	value	in	the	form	of	$bbggrr,	where	rr,	gg,	and	bb

specify	the	two-digit	intensities	(in	hexadecimal)	for
red,	green,	and	blue	respectively.	Or	it	may	be	one	of
the	following	predefined	color	names:	clBlack,
clMaroon,	clGreen,	clOlive,	clNavy,	clPurple,	clTeal,
clGray,	clSilver,	clRed,	clLime,	clYellow,	clBlue,
clFuchsia,	clAqua,	clWhite.

Default	value: clBlue	for	BackColor,
clBlack	for	BackColor2

Description:
The	BackColor	directive	specifies	the	color	to	use	at	the	top	(or	left,	if
BackColorDirection=lefttoright)	of	the	setup	window's
gradient	background.	BackColor2	specifies	the	color	to	use	at	the
bottom	(or	right).

The	setting	of	BackColor2	is	ignored	if	BackSolid=yes.

Examples:

BackColor=clBlue

BackColor2=clBlack

BackColor=$FF0000

BackColor2=$000000

[Setup]:	BackColorDirection
Valid	values: toptobottom	or	lefttoright

Default	value: toptobottom

Description:
This	determines	the	direction	of	the	gradient	background	on	the	setup
window.	If	BackColorDirection	is	toptobottom,	it	is	drawn	from
top	to	bottom;	if	it	is	lefttoright,	it	is	drawn	from	left	to	right.

[Setup]:	BackSolid
Valid	values: yes	or	no

Default	value: no

Description:
This	specifies	whether	to	use	a	solid	or	gradient	background	on	the
setup	window.	If	this	is	yes,	the	background	is	a	solid	color	(the	color
specified	by	BackColor;	BackColor2	is	ignored).

[Setup]:	ChangesAssociations
Valid	values: yes	or	no

Default	value: no

Description:
When	set	to	yes,	Setup	will	tell	Explorer	to	refresh	its	file	associations
information	at	the	end	of	the	installation,	and	Uninstall	will	do	the	same
at	the	end	of	uninstallation.

If	your	installation	creates	a	file	association	but	doesn't	have
ChangesAssociations	set	to	yes,	the	correct	icon	for	the	file	type
likely	won't	be	displayed	until	the	user	logs	off	or	restarts	the	computer.

[Setup]:	ChangesEnvironment
Valid	values: yes	or	no

Default	value: no

Description:
When	set	to	yes,	at	the	end	of	the	installation	Setup	will	notify	other
running	applications	(notably	Windows	Explorer)	that	they	should
reload	their	environment	variables	from	the	registry.

If	your	installation	creates	or	changes	an	environment	variable	but
doesn't	have	ChangesEnvironment	set	to	yes,	the	new/changed
environment	variable	will	not	be	seen	by	applications	launched	from
Explorer	until	the	user	logs	off	or	restarts	the	computer.

[Setup]:	CloseApplications
Valid	values: yes	or	no

Default	value: yes

Description:
If	set	to	yes	and	Setup	is	not	running	silently,	Setup	will	pause	on	the
Preparing	to	Install	wizard	page	if	it	detects	applications	using	files	that
need	to	be	updated	by	the	[Files]	or	[InstallDelete]	section,	showing	the
applications	and	asking	the	user	if	Setup	should	automatically	close	the
applications	and	restart	them	after	the	installation	has	completed.

If	set	to	yes	and	Setup	is	running	silently,	Setup	will	always	close	and
restart	such	applications,	unless	told	not	to	via	the	command	line.

Note:	Setup	uses	the	Windows	Restart	Manager 	API	to	close	and
restart	applications,	which	is	available	only	on	Windows	Vista	and
newer.

See	also:	CloseApplicationsFilter
RegisterExtraCloseApplicationsResources
RestartApplications

http://msdn.microsoft.com/en-us/library/windows/desktop/aa373524.aspx

[Setup]:	CloseApplicationsFilter
Valid	values: A	list	of	file	name	wildcards,	separated	by	commas

Default	value: *.exe,*.dll,*.chm

Description:
Controls	which	files	Setup	will	check	for	being	in	use.

Setting	this	to	*.*	can	provide	better	checking	at	the	expense	of
speed.

See	also:	CloseApplications
RestartApplications

[Setup]:	Compression
Valid	values: zip	zip/1	through	zip/9

bzip

bzip/1	through	bzip/9
lzma

lzma/fast

lzma/normal

lzma/max

lzma/ultra			(review	memory	requirements	below
before	using)
lzma/ultra64			(review	memory	requirements	below
before	using)
lzma2

lzma2/fast

lzma2/normal

lzma2/max

lzma2/ultra			(review	memory	requirements	below
before	using)
lzma2/ultra64			(review	memory	requirements
below	before	using)
none

Default	value: lzma2/max

Description:
This	specifies	the	method	of	compression	to	use	on	the	files,	and
optionally	the	level	of	compression.	Higher	levels	compress	better	but
take	longer	doing	so,	and	may	also	require	more	memory	while
compressing/decompressing.

zip	is	the	method	of	compression	employed	by	.zip	files	("deflate").	It
is	fast	in	both	compression	and	decompression,	and	has	very	low
memory	requirements	(less	than	1	MB	for	both	compression	and
decompression	at	level	9),	but	generally	does	not	compress	nearly	as
well	as	the	other	supported	methods.	zip,	like	lzma2,	has	one	special
property,	though:	it	will	not	expand	uncompressible	data	(e.g.,	files	that
are	already	compressed).	If	a	compression	level	isn't	specified,	it

defaults	to	7.

bzip	is	the	method	of	compression	employed	by	the	bzip2
compressor.	It	almost	always	compresses	better	than	zip	but	is	usually
slower	in	both	compression	and	decompression.	Up	to	4	MB	of	memory
is	required	during	decompression,	and	up	to	8	MB	during	compression.
If	a	compression	level	isn't	specified,	it	defaults	to	9.

lzma	is	the	method	of	compression	employed	by	the	7-Zip	LZMA
compressor.	It	typically	compresses	significantly	better	than	the	zip
and	bzip	methods.	However,	depending	on	the	compression	level
used,	it	can	be	significantly	slower	at	compressing,	and	consume	a	lot
more	memory.	The	following	table	summarizes	the	approximate
memory	requirements	for	each	of	the	supported	lzma	compression
levels.	If	a	compression	level	isn't	specified,	it	defaults	to	max.

Decompression	(dictionary
size)

Compression

fast	(worst) 32	KB 3	MB
normal 2	MB 26	MB
max	(default) 8	MB 95	MB
ultra 32	MB 372	MB
ultra64	(best) 64	MB 676	MB

lzma2	is	the	method	of	compression	employed	by	the	7-Zip	LZMA2
compressor.	LZMA2	is	a	modified	version	of	LZMA	that	offers	a	better
compression	ratio	for	uncompressible	data	(random	data	expands
about	0.005%,	compared	to	1.35%	with	original	LZMA),	and	optionally
can	compress	multiple	parts	of	large	files	in	parallel,	greatly	increasing
compression	speed	but	with	a	possible	reduction	in	compression	ratio
(see	LZMANumBlockThreads).	Like	LZMA,	it	can	consume	a	lot	of
memory;	see	the	above	table.	If	a	compression	level	isn't	specified,	it
defaults	to	max.

none	specifies	that	no	compression	be	used.

See	also:
SolidCompression
LZMAAlgorithm

http://www.bzip.org/
http://www.7-zip.org/
http://www.7-zip.org/

LZMABlockSize
LZMADictionarySize
LZMAMatchFinder
LZMANumBlockThreads
LZMANumFastBytes
LZMAUseSeparateProcess

[Setup]:	CompressionThreads
Valid	values: auto	1

2	(or	higher)

Default	value: auto

Description:
Controls	whether	the	multi-threaded	match	finder	is	enabled	on	the
LZMA	and	LZMA2	compressors.	Enabling	the	multi-threaded	match
finder	can	speed	up	the	compression	process	by	50%	or	more	on
systems	with	multiple	processor	cores,	and	20%	or	more	on	systems
with	Intel	processors	featuring	Hyper-Threading	Technology.

A	value	of	auto	(the	default)	enables	the	multi-threaded	match	finder
for	all	compression	levels	except	fast,	which	doesn't	support	it.

A	value	of	1	always	disables	the	multi-threaded	match	finder.

Values	of	2	or	higher	are	currently	equivalent	to	auto.

Note	that	for	the	LZMA2	compressor,	this	directive	only	controls
whether	the	multi-threaded	match	finder	is	used.	To	enable	support	for
compressing	multiple	parts	of	large	files	in	parallel,	set
LZMANumBlockThreads.

See	also:
LZMANumBlockThreads

[Setup]:	CreateAppDir
Valid	values: yes	or	no

Default	value: yes

Description:
If	this	is	set	to	no,	no	directory	for	the	application	will	be	created,	the
Select	Destination	Location	wizard	page	will	not	be	displayed,	and	the
{app}	directory	constant	is	equivalent	to	the	{win}	directory	constant.	If
the	uninstall	feature	is	enabled	when	CreateAppDir	is	no,	the
uninstall	data	files	are	created	in	the	system's	Windows	directory.

[Setup]:	CreateUninstallRegKey
Valid	values: yes	or	no,	or	a	boolean	expression

Default	value: yes

Description:
If	this	is	set	to	no	or	to	a	boolean	expression	evaluating	to	False,
Setup	won't	create	an	entry	in	the	Add/Remove	Programs	Control
Panel	applet.

Setting	this	to	no	can	be	useful	if	your	installation	is	merely	an	update
to	an	existing	application	and	you	don't	want	another	entry	created,	but
don't	want	to	the	disable	the	uninstall	features	entirely	(via
Uninstallable=no).	In	this	case,	UpdateUninstallLogAppName	is
usually	set	to	no	as	well.

See	also:	Uninstallable

[Setup]:	DefaultDialogFontName
Default	value: Tahoma

Description:
Specifies	the	name	of	the	font	that	should	be	used	in	dialogs	on
languages	that	do	not	set	DialogFontName	in	their	[LangOptions]
section.

If	the	specified	font	name	does	not	exist	on	the	user's	system	or	is	an
empty	string,	8-point	Microsoft	Sans	Serif	or	MS	Sans	Serif	will	be
substituted.

Prior	to	the	introduction	of	the	DefaultDialogFontName	directive	in
Inno	Setup	5.3.9,	the	default	dialog	font	name	was	always	an	empty
string.

[Setup]:	DefaultDirName
Description:
The	value	of	this	required	directive	is	used	for	the	default	directory
name,	which	is	used	in	the	Select	Destination	Location	page	of	the
wizard.	Normally	it	is	prefixed	by	a	directory	constant.

If	UsePreviousAppDir	is	yes	(the	default)	and	Setup	finds	a	previous
version	of	the	same	application	is	already	installed,	it	will	substitute	the
default	directory	name	with	the	directory	selected	previously.

Examples:

If	you	used:
DefaultDirName={sd}\MYPROG

In	Setup,	this	would	typically	display:
C:\MYPROG

If	you	used:
DefaultDirName={pf}\My	Program

In	Setup,	this	would	typically	display:
C:\Program	Files\My	Program

[Setup]:	DefaultGroupName
Description:
The	value	of	this	directive	is	used	for	the	default	Start	Menu	folder
name	on	the	Select	Start	Menu	Folder	page	of	the	wizard.	If	this
directive	is	blank	or	isn't	specified,	it	will	use	"(Default)"	for	the	name.

Keep	in	mind	that	Start	Menu	folders	are	stored	as	literal	directories	so
any	characters	not	allowed	in	normal	directory	names	can't	be	used	in
Start	Menu	folder	names.

Example:

DefaultGroupName=My	Program

[Setup]:	DefaultUserInfoName
Default	value: {sysuserinfoname}

Description:
Specifies	the	default	name	shown	on	the	User	Information	wizard	page.
This	can	include	constants.

[Setup]:	DefaultUserInfoOrg
Default	value: {sysuserinfoorg}

Description:
Specifies	the	default	organization	shown	on	the	User	Information
wizard	page.	This	can	include	constants.

[Setup]:	DefaultUserInfoSerial
Description:
Specifies	the	default	serial	number	shown	on	the	User	Information
wizard	page.	This	can	include	constants.

[Setup]:	DirExistsWarning
Valid	values: auto,	yes,	or	no

Default	value: auto

Description:
When	set	to	auto,	the	default	setting,	Setup	will	show	a	"The	directory
...	already	exists.	Would	you	like	to	install	to	that	directory	anyway?"
message	if	the	user	selects	a	directory	that	already	exists	on	the	Select
Destination	Location	wizard	page,	except	when	another	version	of	the
same	application	is	already	installed	and	the	selected	directory	is	the
same	as	the	previous	one	(only	if	UsePreviousAppDir	is	yes,	the
default	setting).

When	set	to	yes,	Setup	will	always	display	the	"Directory	Exists"
message	when	the	user	selects	an	existing	directory.

When	set	to	no,	Setup	will	never	display	the	"Directory	Exists"
message.

[Setup]:	DisableAppendDir
Valid	values: yes	or	no

Default	value: no

Description:
Obsolete	in	4.1.2.	Pre-4.1.2	versions	of	Inno	Setup	had	a	different
directory	selection	interface,	and	the	DisableAppendDir	directive
was	used	to	control	its	behaviour.

[Setup]:	DisableDirPage
Valid	values: auto,	yes,	or	no

Default	value: no

Description:
If	this	is	set	to	yes,	Setup	will	not	show	the	Select	Destination	Location
wizard	page.

If	this	is	set	to	auto,	at	startup	Setup	will	look	in	the	registry	to	see	if
the	same	application	is	already	installed,	and	if	so,	it	will	not	show	the
Select	Destination	Location	wizard	page.

If	the	Select	Destination	Location	wizard	page	is	not	shown,	it	will
always	use	the	default	directory	name.

Also	see	AlwaysShowDirOnReadyPage.

[Setup]:	DisableFinishedPage
Valid	values: yes	or	no

Default	value: no

Description:
If	this	is	set	to	yes,	Setup	will	not	show	the	Setup	Completed	wizard
page,	and	instead	will	immediately	close	the	Setup	program	once	the
installation	process	finishes.	This	may	be	useful	if	you	execute	a
program	in	the	[Run]	section	using	the	nowait	flag,	and	don't	want	the
Setup	Completed	window	to	remain	in	the	background	after	the	other
program	has	started.

Note	that	the	DisableFinishedPage	directive	is	ignored	if	a	restart
of	the	computer	is	deemed	necessary,	or	if	a	file	is	assigned	to	the
InfoAfterFile	[Setup]	section	directive.	In	those	cases,	the	Setup
Completed	wizard	page	will	still	be	displayed.

[Setup]:	DisableProgramGroupPage
Valid	values: auto,	yes,	or	no

Default	value: no

Description:
If	this	is	set	to	yes,	Setup	will	not	show	the	Select	Start	Menu	Folder
wizard	page.

If	this	is	set	to	auto,	at	startup	Setup	will	look	in	the	registry	to	see	if
the	same	application	is	already	installed,	and	if	so,	it	will	not	show	the
Select	Start	Menu	Folder	wizard	page.

If	the	Select	Start	Menu	Folder	wizard	page	is	not	shown,	it	will	always
use	the	default	Start	Menu	folder	name.

Also	see	AlwaysShowGroupOnReadyPage.

[Setup]:	DisableReadyMemo
Valid	values: yes	or	no

Default	value: no

Description:
If	this	is	set	to	yes,	Setup	will	not	show	a	list	of	settings	on	the	Ready
to	Install	wizard	page.	Otherwise	the	list	is	shown	and	contains
information	like	the	chosen	setup	type	and	the	chosen	components.

[Setup]:	DisableReadyPage
Valid	values: yes	or	no

Default	value: no

Description:
If	this	is	set	to	yes,	Setup	will	not	show	the	Ready	to	Install	wizard
page.

When	Setup	is	not	running	silently,	this	directive	is	ignored	if	no	other
wizard	page	before	the	Ready	to	Install	wizard	page	has	been	shown
yet.

Setting	this	to	yes	does	not	automatically	change	the	caption	of	the
Next	button	on	the	new	last	pre-installation	wizard	page	to	Install.	You
must	do	so	manually	instead.	For	example,	if	the	new	last	pre-
installation	wizard	page	is	the	Select	Program	Group	page:

Example:

[Setup]

DisableReadyPage=yes

[Code]

procedure	CurPageChanged(CurPageID:	Integer);

begin

		if	CurPageID	=	wpSelectProgramGroup	then

				WizardForm.NextButton.Caption	:=	SetupMessage(msgButtonInstall)

		else

				WizardForm.NextButton.Caption	:=	SetupMessage(msgButtonNext);

end;

[Setup]:	DisableStartupPrompt
Valid	values: yes	or	no

Default	value: yes

Description:
When	this	is	set	to	yes,	Setup	will	not	show	the	This	will	install...	Do
you	wish	to	continue?	prompt.

This	setting	has	no	effect	if	UseSetupLdr	is	set	to	no.

[Setup]:	DisableWelcomePage
Valid	values: yes	or	no

Default	value: no

Description:
If	this	is	set	to	yes,	Setup	will	not	show	the	Welcome	wizard	page.

[Setup]:	DiskClusterSize
Default	value: 512	(the	standard	cluster	size	for	floppy	disks)

Description:
This	specifies	the	cluster	size	of	the	disk	media.	The	Setup	Compiler
needs	to	know	this	in	order	to	properly	fill	each	disk	to	capacity.

This	directive	is	ignored	if	disk	spanning	is	not	enabled	using	the
DiskSpanning	[Setup]	section	directive.

[Setup]:	DiskSliceSize
Valid	values: 262144	through	2100000000,	or	max

Default	value: max	(2100000000)

Description:
This	specifies	the	maximum	number	of	bytes	per	disk	slice	(SETUP-
*.BIN	file).	Normally,	this	should	be	set	to	the	total	number	of	bytes
available	on	the	disk	media	divided	by	the	value	of	the
SlicesPerDisk	[Setup]	section	directive,	which	defaults	to	1.

This	directive	is	ignored	if	disk	spanning	is	not	enabled	using	the
DiskSpanning	[Setup]	section	directive.

To	optimally	fill	4.7	GB	recordable	DVDs,	use:

SlicesPerDisk=3

DiskSliceSize=1566000000

To	optimally	fill	8.5	GB	(dual-layer)	recordable	DVDs,	use:

SlicesPerDisk=5

DiskSliceSize=1708200000

To	optimally	fill	700	MB	(80-minute)	recordable	CDs,	use:

SlicesPerDisk=1

DiskSliceSize=736000000

To	optimally	fill	1.44MB	floppy	disks,	use:

SlicesPerDisk=1

DiskSliceSize=1457664

[Setup]:	DiskSpanning
Valid	values: yes	or	no

Default	value: no

Description:
If	set	to	yes,	the	disk	spanning	feature	will	be	enabled.	Instead	of
storing	all	the	compressed	file	data	inside	SETUP.EXE,	the	compiler
will	split	it	into	multiple	SETUP-*.BIN	files	--	known	as	"slices"	--
suitable	for	copying	onto	separate	floppy	disks,	CD-ROMs,	or	DVD-
ROMs.	Each	generated	slice	contains	a	number	in	its	name	which
indicates	the	disk	onto	which	it	should	be	copied.	(For	example,
SETUP-2.BIN	should	be	placed	on	disk	2.)	The	generated	SETUP.EXE
always	goes	on	disk	1	along	with	the	SETUP-1*.BIN	file.

The	size	of	each	slice	and	the	number	of	slices	to	create	for	each	disk
are	determined	by	the	values	of	the	DiskSliceSize	and	SlicesPerDisk
[Setup]	section	directives,	respectively.	Other	disk	spanning-related
directives	that	you	may	want	to	tweak	include	DiskClusterSize	and
ReserveBytes.

Note	that	it	is	required	that	you	set	this	directive	to	yes	if	the
compressed	size	of	your	installation	exceeds	2,100,000,000	bytes,
even	if	you	don't	intend	to	place	the	installation	onto	multiple	disks.
(The	installation	will	still	function	correctly	if	all	the	SETUP-*.BIN	files
are	placed	on	the	same	disk.)

[Setup]:	DontMergeDuplicateFiles
Valid	values: yes	or	no

Description:
Obsolete	in	4.2.5.	Use	MergeDuplicateFiles	instead.

MergeDuplicateFiles=no	is	equivalent	to
DontMergeDuplicateFiles=yes.

[Setup]:	EnableDirDoesntExistWarning
Valid	values: yes	or	no

Default	value: no

Description:
When	set	to	yes,	Setup	will	display	a	message	box	if	the	directory	the
user	selects	doesn't	exist.	Usually	you	will	also	set
DirExistsWarning=no	when	this	is	yes.

[Setup]:	Encryption
Valid	values: yes	or	no

Default	value: no

Description:
If	set	to	yes,	files	that	are	compiled	into	the	installation	(via	[Files]
section	entries)	will	be	encrypted	using	ARCFOUR	encryption,	with	a
160-bit	key	derived	from	the	value	of	the	Password	[Setup]	section
directive.

Because	of	encryption	import/export	laws	in	some	countries,	encryption
support	is	not	included	in	the	main	Inno	Setup	installer	and	must	be
downloaded	and	installed	separately	if	you	wish	to	use	it.	See	the	Inno
Setup	Downloads 	page	for	more	information.

If	encryption	is	enabled	and	you	call	the	ExtractTemporaryFile	function
from	the	[Code]	section	prior	to	the	user	entering	the	correct	password,
the	function	will	fail	unless	the	noencryption	flag	is	used	on	the
[Files]	section	entry	for	the	file.

The	key	used	for	encryption	is	a	160-bit	SHA-1	hash	of	64-bit	random
salt	plus	the	value	of	Password.

http://www.jrsoftware.org/isdl.php

[Setup]:	ExtraDiskSpaceRequired
Default	value: 0

Description:
Normally,	the	disk	space	requirement	displayed	on	the	wizard	is
calculated	by	adding	up	the	size	of	all	the	files	in	the	[Files]	section.	If
you	want	to	increase	the	disk	space	display	for	whatever	reason,	set
ExtraDiskSpaceRequired	to	the	amount	of	bytes	you	wish	to	add	to
this	figure.	(1048576	bytes	=	1	megabyte)

[Setup]:	FlatComponentsList
Valid	values: yes	or	no

Default	value: yes

Description:
When	this	directive	is	set	to	yes,	Setup	will	use	'flat'	checkboxes	for	the
components	list.	Otherwise	Setup	will	use	'3D'	checkboxes.

[Setup]:	InfoAfterFile
Description:
Specifies	the	name	of	an	optional	"readme"	file,	in	.txt	or	.rtf	(rich	text)
format,	which	is	displayed	after	a	successful	install.	This	file	must	be
located	in	your	installation's	source	directory	when	running	the	Setup
Compiler,	unless	a	fully	qualified	pathname	is	specified	or	the
pathname	is	prefixed	by	"compiler:",	in	which	case	it	looks	for	the	file	in
the	Compiler	directory.

This	differs	from	isreadme	files	in	that	this	text	is	displayed	as	a	page
of	the	wizard,	instead	of	in	a	separate	Notepad	window.

If	the	user	selects	a	language	for	which	the	InfoAfterFile
parameter	is	set,	this	directive	is	effectively	ignored.	See	the
[Languages]	section	documentation	for	more	information.

Example:

InfoAfterFile=infoafter.txt

[Setup]:	InfoBeforeFile
Description:
Specifies	the	name	of	an	optional	"readme"	file,	in	.txt	or	.rtf	(rich	text)
format,	which	is	displayed	before	the	user	selects	the	destination
directory	for	the	program.	This	file	must	be	located	in	your	installation's
source	directory	when	running	the	Setup	Compiler,	unless	a	fully
qualified	pathname	is	specified	or	the	pathname	is	prefixed	by
"compiler:",	in	which	case	it	looks	for	the	file	in	the	Compiler	directory.

If	the	user	selects	a	language	for	which	the	InfoBeforeFile
parameter	is	set,	this	directive	is	effectively	ignored.	See	the
[Languages]	section	documentation	for	more	information.

Example:

InfoBeforeFile=infobefore.txt

[Setup]:	InternalCompressLevel
Valid	values: none,	or	one	of	the	LZMA	compression	levels

Default	value: normal

Description:
This	specifies	the	level	of	LZMA	compression	to	use	on	Setup's	internal
structures.	Generally,	there	is	little	reason	to	change	this	from	the
default	setting	of	normal.

[Setup]:	LanguageDetectionMethod
Valid	values: uilanguage,	locale,	none

Default	value: uilanguage

Description:
When	set	to	uilanguage,	Setup	will	determine	the	default	language	to
use	by	checking	the	user's	"UI	language"	(by	calling
GetUserDefaultUILanguage(),	or	on	Windows	versions	where	that
function	is	unsupported,	by	reading	the	registry).	This	is	the	method
that	Microsoft	recommends.	The	"UI	language"	is	the	language	used	in
Windows'	own	dialogs.	Thus,	on	an	English	edition	of	Windows,	English
will	be	the	default,	while	on	a	Dutch	edition	of	Windows,	Dutch	will	be
the	default.	On	the	MUI	edition	of	Windows,	the	default	will	be	the
currently	selected	UI	language.

When	set	to	locale,	Setup	will	determine	the	default	language	to	use
by	calling	GetUserDefaultLangID().	This	function	returns	the	setting	of
"Your	locale"	in	Control	Panel's	Regional	Options.	It	should	however	be
noted	that	the	"Your	locale"	option	is	not	intended	to	affect	languages;	it
is	only	documented	to	affect	"numbers,	currencies,	times,	and	dates".

When	set	to	none,	Setup	will	use	the	first	language	specified	in	the
[Languages]	section	as	the	default	language.

[Setup]:	LicenseFile
Description:
Specifies	the	name	of	an	optional	license	agreement	file,	in	.txt	or	.rtf
(rich	text)	format,	which	is	displayed	before	the	user	selects	the
destination	directory	for	the	program.	This	file	must	be	located	in	your
installation's	source	directory	when	running	the	Setup	Compiler,	unless
a	fully	qualified	pathname	is	specified	or	the	pathname	is	prefixed	by
"compiler:",	in	which	case	it	looks	for	the	file	in	the	Compiler	directory.

If	the	user	selects	a	language	for	which	the	LicenseFile	parameter	is
set,	this	directive	is	effectively	ignored.	See	the	[Languages]	section
documentation	for	more	information.

Example:

LicenseFile=license.txt

[Setup]:	LZMAAlgorithm
Valid	values: 0	or	1

Default	value: 0	if	the	LZMA	compression	level	is	set	to	fast
1	otherwise

Description:
Controls	the	algorithm	used	by	the	LZMA	and	LZMA2	compressors.

A	value	of	0	enables	the	fast	algorithm.

A	value	of	1	enables	the	normal	algorithm.

[Setup]:	LZMABlockSize
Valid	values: 1024	through	262144

Default	value: 4	*	LZMADictionarySize

Description:
Controls	the	block	size	used	by	the	LZMA2	compressor,	in	kilobytes,
when	LZMANumBlockThreads	is	set	to	2	or	higher.

Note	that	setting	this	too	high	can	negate	the	benefits	of	using	multiple
block	threads.	Typically,	the	block	size	should	be	no	more	than	the	total
size	of	your	data	divided	by	the	number	of	block	threads.

See	also:	LZMADictionarySize
LZMANumBlockThreads

[Setup]:	LZMADictionarySize
Valid	values: 4	through	131072	(by	default)

4	through	262144	if	LZMAUseSeparateProcess	is	set
to	yes	and	running	on	64-bit	Windows	(x64)

Default	value: 32	if	the	LZMA	compression	level	is	set	to	fast
2048	if	the	LZMA	compression	level	is	set	to	normal
8192	if	the	LZMA	compression	level	is	set	to	max
32768	if	the	LZMA	compression	level	is	set	to	ultra
65536	if	the	LZMA	compression	level	is	set	to
ultra64

Description:
Controls	the	dictionary	size	used	by	the	LZMA	and	LZMA2
compressors,	in	kilobytes.	A	larger	dictionary	size	can	provide	a	better
compression	ratio	at	the	expense	of	compression	speed	and	memory
requirements.

Review	the	memory	requirements	listed	in	the	Compression	topic
before	using.

If	an	"Out	of	memory"	error	is	seen	when	a	very	large	dictionary	size	is
used,	LZMAUseSeparateProcess	may	need	to	be	set.

See	also:
LZMABlockSize

[Setup]:	LZMAMatchFinder
Valid	values: HC	or	BT

Default	value: HC	if	the	LZMA	compression	level	is	set	to	fast
BT	otherwise

Description:
Controls	the	match	finder	method	used	by	the	LZMA	and	LZMA2
compressors.

A	value	of	HC	enables	the	Hash	Chain	method	with	4	hash	bytes.

A	value	of	BT	enables	the	Binary	Tree	method	with	4	hash	bytes.

The	Binary	Tree	method	can	provide	a	better	compression	ratio	at	the
expense	of	compression	speed.

[Setup]:	LZMANumBlockThreads
Valid	values: 1	through	32

Default	value: 1

Description:
When	compressing	a	large	amount	of	data,	the	LZMA2	compressor	has
the	ability	to	divide	the	data	into	"blocks"	and	compress	two	or	more	of
these	blocks	in	parallel	through	the	use	of	additional	threads	(provided
sufficient	processor	power	is	available).	This	directive	specifies	the
number	of	threads	to	use	--	that	is,	the	maximum	number	of	blocks	that
the	LZMA2	compressor	may	compress	in	parallel.

The	memory	required	during	compression	when	multiple	block	threads
are	used	is	roughly:

LZMANumBlockThreads	*	(Normal	memory	usage	+
(LZMABlockSize	*	2))

Since	LZMA2	(and	LZMA)	uses	two	threads	for	match-finding	by
default	(see	CompressionThreads),	there	ideally	should	be	two
processor	cores	available	for	each	block	thread.	Thus,	to	see	the
maximum	benefit	from	a	value	of	2,	four	cores	are	needed.

Dividing	the	data	into	multiple	blocks	can	reduce	the	compression	ratio,
as	the	compressor	cannot	find	matches	across	blocks.	Using	a	large
block	size	can	help	to	mitigate	this.

If	an	"Out	of	memory"	error	is	seen	when	multiple	block	threads	are
enabled	in	combination	with	a	compression	level	that	uses	a	large
dictionary	size	(such	as	ultra64),	LZMAUseSeparateProcess	may
need	to	be	set.

See	also:	LZMABlockSize

[Setup]:	LZMANumFastBytes
Valid	values: 5	through	273

Default	value: 64	if	the	LZMA	compression	level	is	set	to	max,
ultra,	or	ultra64
32	otherwise

Description:
Controls	number	of	fast	bytes	used	by	the	LZMA	and	LZMA2
compressors.	A	larger	number	of	fast	bytes	can	provide	a	better
compression	ratio	at	the	expense	of	compression	speed.

[Setup]:	LZMAUseSeparateProcess
Valid	values: yes,	no,	or	x86

Default	value: no

Description:
Controls	whether	LZMA	compression	is	performed	inside	the	main
compiler	process	or	in	a	separate	process.

Using	a	separate	process	for	LZMA	compression	allows	the
compressor	to	allocate	larger	amounts	of	memory,	which	makes	it
possible	for	higher	LZMADictionarySize	and	LZMANumBlockThreads
settings	to	be	used.	Additionally,	on	64-bit	Windows	(x64),	a	small
increase	in	compression	speed	may	be	observed.

On	64-bit	Windows	(x64),	there	are	no	limitations	on	the	amount	of
memory	the	compressor	may	use,	as	it	runs	inside	a	native	64-bit
process.	On	32-bit	Windows,	however,	due	to	address	space
constraints,	typically	only	about	1.5	GB	is	available	for	use	by	the
compressor.

A	value	of	yes	enables	the	use	of	a	64-bit	process	on	64-bit	Windows
(x64),	and	a	32-bit	process	on	32-bit	Windows.

A	value	of	x86	enables	the	use	of	a	32-bit	process	only	(normally	only
useful	for	debugging	purposes).

A	value	of	no	disables	the	use	of	a	separate	process	for	LZMA
compression.

Note	that	this	directive	only	affects	the	compression	of	files	specified	in
the	[Files]	section;	compression	of	Setup's	internal	structures	is	always
performed	inside	the	main	compiler	process.

[Setup]:	MergeDuplicateFiles
Valid	values: yes	or	no

Default	value: yes

Description:
Normally	two	file	entries	referring	to	the	same	source	file	will	be
compressed	and	stored	only	once.	If	you	have	a	bunch	of	identical	files
in	your	installation,	make	them	point	to	the	same	source	file	in	the
script,	and	the	size	of	your	installation	can	drop	significantly.	If	you	wish
to	disable	this	feature	for	some	reason,	set	this	directive	to	no.

[Setup]:	MessagesFile
Description:
Obsolete	in	4.0.	This	directive	is	no	longer	supported.	Use	the	new
[Languages]	section	to	specify	a	custom	messages	file.

[Setup]:	MinVersion
Format: major.minor

Default	value: 5.0

Description:
This	directive	lets	you	specify	a	minimum	version	of	Windows	that	your
software	runs	on.	Build	numbers	and/or	service	pack	levels	may	be
included.

If	the	user's	system	does	not	meet	the	minimum	version	requirement,
Setup	will	give	an	error	message	and	exit.

For	compatibility	with	previous	versions	of	Inno	Setup,	separate
Windows	95/98/Me	and	Windows	NT	version	numbers	may	be
specified,	separated	by	a	comma.	Example:	MinVersion=0,5.0.	The
Windows	95/98/Me	version	number	(the	first	number)	must	be	0,
however,	as	Inno	Setup	no	longer	supports	Windows	95/98/Me.

[Setup]:	OnlyBelowVersion
Format: major.minor

Default	value: 0

Description:
This	directive	lets	you	specify	a	minimum	version	of	Windows	that	your
software	will	not	run	on.	Specifying	"0"	means	there	is	no	upper	version
limit.	Build	numbers	and/or	service	pack	levels	may	be	included.

This	directive	is	essentially	the	opposite	of	MinVersion.

For	compatibility	with	previous	versions	of	Inno	Setup,	separate
Windows	95/98/Me	and	Windows	NT	version	numbers	may	be
specified,	separated	by	a	comma.	Example:
OnlyBelowVersion=0,6.0.	The	Windows	95/98/Me	version	number
(the	first	number)	isn't	used,	however,	as	Inno	Setup	no	longer	supports
Windows	95/98/Me.

[Setup]:	Output
Valid	values: yes	or	no

Default	value: yes

Description:
If	set	to	no	the	Setup	Compiler	will	only	check	the	script	for	errors	and
skip	creating	setup	files.

[Setup]:	OutputBaseFilename
Default	value: setup

Description:
This	directive	allows	you	to	assign	a	different	name	for	the	resulting
Setup	file(s),	so	you	don't	have	to	manually	rename	them	after	running
the	Setup	Compiler.

Example:

OutputBaseFilename=MyProg100

[Setup]:	OutputDir
Default	value: Output

Description:
Specifies	the	"output"	directory	for	the	script,	which	is	where	the	Setup
Compiler	will	place	the	resulting	SETUP.*	files.	By	default,	it	creates	a
directory	named	"Output"	under	the	directory	containing	the	script	for
this.

If	OutputDir	is	not	a	fully-qualified	pathname,	it	will	be	treated	as
being	relative	to	SourceDir,	unless	the	pathname	is	prefixed	by
"userdocs:",	in	which	case	it	will	be	treated	as	being	relative	to	the	the
My	Documents	folder	of	the	currenlty	logged-in	user.	Setting
OutputDir	to	.	will	result	in	the	files	being	placed	in	the	source
directory.

Example:

OutputDir=c:\output

[Setup]:	OutputManifestFile
Description:
When	this	directive	is	set,	the	compiler	will	create	a	manifest	file
detailing	information	about	the	files	compiled	into	Setup.	The	file	will	be
created	in	the	output	directory	unless	a	path	is	included.

Example:

OutputManifestFile=Setup-Manifest.txt

[Setup]:	Password
Description:
Specifies	a	password	you	want	to	prompt	the	user	for	at	the	beginning
of	the	installation.

When	using	a	password,	you	might	consider	setting	Encryption	to	yes
as	well,	otherwise	files	will	be	stored	as	plain	text	and	it	would	not	be
exceedingly	difficult	for	someone	to	gain	access	to	them	through
reverse	engineering.

The	password	itself	is	not	stored	as	clear	text;	it's	stored	as	a	160-bit
SHA-1	hash,	salted	with	a	64-bit	random	number.	(Note:	When
encryption	is	enabled,	this	stored	hash	is	not	used	for	the	encryption
key;	a	different	hash	with	a	different	salt	is	generated	for	that.)

[Setup]:	PrivilegesRequired
Valid	values: poweruser,	admin,	or	lowest

Default	value: admin

Description:
The	effect	of	this	directive	depends	on	which	version	of	Windows	the
user	is	running:

On	Windows	Vista	and	later:

This	directive	affects	whether	elevated	rights	are	requested	(via	a	User
Account	Control	dialog)	when	the	installation	is	started.

When	set	to	admin	(the	default)	or	poweruser,	Setup	will	always	run
with	administrative	privileges.	If	Setup	was	started	by	an	unprivileged
user,	Windows	will	ask	for	the	password	to	an	account	that	has
administrative	privileges,	and	Setup	will	then	run	under	that	account.

When	set	to	lowest,	Setup	will	not	request	to	be	run	with
administrative	privileges	even	if	it	was	started	by	a	member	of	the
Administrators	group.	Additionally,	the	uninstall	info	root	key	will	always
be	HKEY_CURRENT_USER,	and	the	"common"	forms	of	the	Shell
Folder	constants	are	mapped	to	the	"user"	forms,	even	if	administrative
privileges	are	available.	Do	not	use	this	setting	unless	you	are	sure
your	installation	will	run	successfully	on	unprivileged	accounts.

On	earlier	versions	of	Windows:

This	directive	specifies	the	minimum	user	privileges	required	to	run	the
installation.

When	set	to	admin	(the	default),	Setup	will	only	run	if	the	user	is	a
member	of	the	Administrators	group.	Otherwise,	it	will	display	the
following	message	and	exit:	"You	must	be	logged	in	as	an	administrator
when	installing	this	program."

When	set	to	poweruser,	Setup	will	only	run	if	the	user	is	a	member	of
the	Administrators	or	Power	Users	groups.	Otherwise,	it	will	display	the
following	message	and	exit:	"You	must	be	logged	in	as	an	administrator
or	as	a	member	of	the	Power	Users	group	when	installing	this

program."

When	set	to	lowest	Setup	will	not	check	the	user's	group
membership.	Additionally,	the	uninstall	info	root	key	will	always	be
HKEY_CURRENT_USER,	and	the	"common"	forms	of	the	Shell	Folder
constants	are	mapped	to	the	"user"	forms,	even	if	administrative
privileges	are	available.	Do	not	use	this	setting	unless	you	are	sure
your	installation	will	run	successfully	on	unprivileged	accounts.

Note:

Regardless	of	the	version	of	Windows,	only	if	the	installation	is	per-user
(PrivilegesRequired=lowest)	you	may	touch	Windows'	per-user
areas	from	your	script.

[Setup]:	ReserveBytes
Default	value: 0

Description:
This	specifies	the	minimum	number	of	free	bytes	to	reserve	on	the	first
disk.	This	is	useful	if	you	have	to	copy	other	files	onto	the	first	disk	that
aren't	part	of	the	setup	program,	such	as	a	Readme	file.

The	Setup	Compiler	rounds	this	number	up	to	the	nearest	cluster.

This	directive	is	ignored	if	disk	spanning	is	not	enabled	using	the
DiskSpanning	[Setup]	section	directive.

[Setup]:	RestartApplications
Valid	values: yes	or	no

Default	value: yes

Description:
When	set	to	yes	and	CloseApplications	is	also	set	to	yes,	Setup
restarts	the	closed	applications	after	the	installation	has	completed.

Note:	For	Setup	to	be	able	to	restart	an	application	after	the	installation
has	completed,	the	application	needs	to	be	using	the	Windows
RegisterApplicationRestart	API	function.

See	also:	CloseApplications
CloseApplicationsFilter

[Setup]:	RestartIfNeededByRun
Valid	values: yes	or	no

Default	value: yes

Description:
When	set	to	yes,	and	a	program	executed	in	the	[Run]	section	queues
files	to	be	replaced	on	the	next	reboot	(by	calling	MoveFileEx	or	by
modifying	wininit.ini),	Setup	will	detect	this	and	prompt	the	user	to
restart	the	computer	at	the	end	of	installation.

[Setup]:	SetupIconFile
Description:
Specifies	a	custom	program	icon	to	use	for	Setup/Uninstall.	The	file
must	be	located	in	your	installation's	source	directory	when	running	the
Setup	Compiler,	unless	a	fully	qualified	pathname	is	specified	or	the
pathname	is	prefixed	by	"compiler:",	in	which	case	it	looks	for	the	file	in
the	Compiler	directory.

Example:

SetupIconFile=MyProgSetup.ico

[Setup]:	SetupLogging
Valid	values: yes	or	no

Default	value: no

Description:
If	set	to	yes,	Setup	will	always	create	a	log	file.	Equivalent	to	passing
/LOG	on	the	command	line.

[Setup]:	SetupMutex
Description:
This	directive	is	used	to	prevent	Setup	from	running	while	Setup	is
already	running.	It	specifies	the	names	of	one	or	more	named	mutexes
(multiple	mutexes	are	separated	by	commas),	which	Setup	will	check
for	at	startup.	If	any	exist,	Setup	will	display	the	message:	"Setup	has
detected	that	Setup	is	currently	running.	Please	close	all	instances	of	it
now,	then	click	OK	to	continue,	or	Cancel	to	exit."	If	none	exist,	Setup
will	create	the	mutex(es)	and	continue	normally.	The	value	may	include
constants.

To	specify	a	mutex	name	containing	a	comma,	escape	the	comma	with
a	backslash.

See	the	topic	for	CreateMutex	in	the	MS	SDK	help	for	more	information
on	mutexes.

Example:

SetupMutex=MySetupsMutexName,Global\MySetupsMutexName

See	also:	AppMutex

[Setup]:	ShowComponentSizes
Valid	values: yes	or	no

Default	value: yes

Description:
When	this	directive	is	set	to	yes,	Setup	will	show	the	size	of	a
component	in	the	components	list.	Depending	on	the	largest
component,	Setup	will	display	sizes	in	kilobytes	or	in	megabytes.

[Setup]:	ShowLanguageDialog
Valid	values: yes,	no,	or	auto

Default	value: yes

Description:
When	set	to	yes	and	there	are	multiple	[Languages]	section	entries,	a
Select	Language	dialog	will	be	displayed	to	give	the	user	an
opportunity	to	override	the	language	Setup	chose	by	default.	See	the
[Languages]	section	documentation	for	more	information.

When	set	to	no,	the	dialog	will	never	be	displayed.

When	set	to	auto,	the	dialog	will	only	be	displayed	if	Setup	does	not
find	a	language	identifier	match.

See	also:	ShowUndisplayableLanguages
UsePreviousLanguage

[Setup]:	ShowTasksTreeLines
Valid	values: yes	or	no

Default	value: no

Description:
When	this	directive	is	set	to	yes,	Setup	will	show	'tree	lines'	between
parent	and	sub	tasks.

[Setup]:	ShowUndisplayableLanguages
Valid	values: yes	or	no

Default	value: no

Description:
By	default,	languages	that	cannot	be	displayed	on	a	user's	system	due
to	a	code	page	mismatch	are	not	listed	in	the	Select	Language	dialog.
For	example,	Russian	text	can	only	be	displayed	properly	if	the	active
code	page	is	1251;	if	the	user	isn't	running	code	page	1251	they	will	not
see	Russian	as	an	option.

If	this	directive	is	set	to	yes,	all	languages	will	be	listed	in	the	Select
Language	dialog.	To	avoid	user	confusion,	it	is	not	recommended	that
you	enable	this	in	production	installs.

This	directive	is	ignored	by	Unicode	Inno	Setup.

See	also:	ShowLanguageDialog

[Setup]:	SignedUninstaller
Valid	values: yes	or	no

Default	value: yes	if	SignTool	is	set,	no	otherwise

Description:
Specifies	whether	the	uninstaller	program	(unins???.exe)	should	be
deployed	with	a	digital	signature	attached.	When	the	uninstaller	has	a
valid	digital	signature,	Windows	Vista	users	will	not	see	an	"unidentified
program"	warning	when	launching	it	from	outside	of	Control	Panel.

The	first	time	you	compile	a	script	with	this	directive	set	to	yes,	a
uniquely-named	copy	of	the	uninstaller	EXE	file	will	be	created	in	the
directory	specified	by	the	SignedUninstallerDir	directive	(which	defaults
to	the	output	directory).	Depending	on	the	SignTool	setting,	you	will
either	then	be	prompted	to	attach	a	digital	signature	to	this	file	using	an
external	code-signing	tool	(such	as	Microsoft's	signtool.exe)	or	the	file
will	be	automatically	signed	on	the	fly.	On	subsequent	compiles,	the
signature	from	the	file	will	be	embedded	into	the	compiled	installations'
uninstallers.

Upgrading	to	a	newer	version	of	Inno	Setup,	or	changing	certain
[Setup]	section	directives	that	affect	the	contents	of	the	uninstaller	EXE
file	(such	as	SetupIconFile),	will	cause	a	new	file	to	be	created	under	a
different	name.

If	a	file	generated	by	this	directive	is	deleted,	it	will	be	recreated
automatically	if	necessary	on	the	next	compile.

When	the	uninstaller	has	a	digital	signature,	Setup	will	write	the
messages	from	the	active	language	into	a	separate	file	(unins???.msg).
It	cannot	embed	the	messages	into	the	EXE	file	because	doing	so
would	invalidate	the	digital	signature.

When	set	to	yes,	any	temporary	self-copies	used	by	Setup	are	digitally
signed	too.

Details	on	obtaining	signing	certificates	and	using	code-signing	tools
are	beyond	the	scope	of	this	documentation.

[Setup]:	SignedUninstallerDir
Default	value: OutputDir

Description:
Specifies	the	directory	in	which	signed	uninstaller	files	should	be
stored.	By	default,	such	files	are	stored	in	the	output	directory.

Separate	script	files	may	share	the	same	SignedUninstallerDir
setting.	By	setting	up	a	common	directory	to	hold	signed	uninstaller
files,	you	won't	have	to	re-sign	the	uninstaller	each	time	you	compile	a
new	script	file	with	a	distinct	OutputDir	setting.

If	SignedUninstallerDir	is	not	a	fully-qualified	pathname,	it	will	be
treated	as	being	relative	to	SourceDir.	Setting
SignedUninstallerDir	to	.	will	result	in	the	files	being	placed	in
the	source	directory.

Example:

SignedUninstallerDir=c:\signeduninstallers

[Setup]:	SignTool
Valid	values: A	name	followed	by	zero	or	more	parameters,	space

separated

Description:
Specifies	the	name	and	parameters	of	the	Sign	Tool	to	be	used	to
digitally	sign	Setup	(and	Uninstall	if	SignedUninstaller	is	set	to	yes).
When	Setup	has	a	valid	digital	signature,	users	will	not	see	an
"unidentified	program"	warning	when	launching	it.

The	specified	Sign	Tool	name	and	its	command	have	to	be	defined	in
the	compiler	IDE	(via	the	Tools	|	Configure	Sign	Tools...	menu)	or	on
the	compiler	command	line	(via	the	"/S"	parameter),	else	an	error	will
occur.

The	following	special	sequences	may	be	used	in	Sign	Tool	parameters
and	commands:

$f,	replaced	by	the	quoted	file	name	of	the	file	to	be	signed.

$p,	replaced	by	the	Sign	Tool	parameters.

$q,	replaced	by	a	quote,	useful	for	defining	a	Sign	Tool	which	contains
quotes	from	the	command	line.

$$,	replaced	by	a	single	$	character.

Example:

Assume	the	following	Sign	Tools	have	been	defined	in	the	IDE:

mystandard=signtool.exe	/x	/y	/d	$qMy	Program$q	$f

mycustom=signtool.exe	$p

byparam=$p

then	some	examples	would	be:

SignTool=mystandard

SignTool=mycustom	/x	/y	/d	$qMy	Program$q	$f

SignTool=byparam	signtool.exe	/x	/y	/d	$qMy	Program$q	$f

Note:	for	security	reasons	you	should	give	a	unique	name	to	any	Sign

Tool	set	to	$p,	and	not	use	a	byparam	name	copied	from	this
example.	Consider	what	happens	if	you	#include	a	third-party	file	that
says:

SignTool=byparam	format	c:	

Details	on	obtaining	signing	certificates	and	using	code-signing	tools
are	beyond	the	scope	of	this	documentation.

Note:	If	you	use	a	Sign	Tool	and	your	Setup	contains	a	large	amount	of
data,	it	is	recommended	that	you	enable	Disk	spanning	with
DiskSliceSize	set	to	max.	If	you	don't	do	this,	the	user	might	experience
a	long	delay	after	starting	Setup	caused	by	Windows	verifying	the
digital	signature	against	all	your	data.	There	should	be	no	security
reduction	from	using	disk	spanning	in	practice:	all	files	extracted	from
the	unsigned	.bin	files	undergo	SHA-1	verification	(provided
dontverifychecksum	isn't	used).	The	SHA-1	hashes	for	this	(along
with	all	other	metadata)	are	kept	inside	Setup's	EXE,	which	is	protected
by	the	digital	signature.

See	also:	SignToolRetryCount

[Setup]:	SignToolRetryCount
Default	value: 2

Description:
Specifies	the	number	of	times	the	Setup	Compiler	should	automatically
retry	digital	signing	on	any	errors.

See	also:	SignTool

[Setup]:	SlicesPerDisk
Valid	values: 1	through	26

Default	value: 1

Description:
The	number	of	SETUP-*.BIN	files	to	create	for	each	disk.	If	this	is	1
(the	default	setting),	the	files	will	be	named	SETUP-x.BIN,	where	x	is
the	disk	number.	If	this	is	greater	than	1,	the	files	will	be	named
SETUP-xy.BIN,	where	x	is	the	disk	number	and	y	is	a	unique	letter.

One	reason	why	you	may	need	to	increase	this	from	the	default	value
of	1	is	if	the	size	of	your	disk	media	exceeds	2,100,000,000	bytes	--	the
upper	limit	of	the	DiskSliceSize	[Setup]	section	directive.	If,	for
example,	your	disk	media	has	a	capacity	of	3,000,000,000	bytes,	you
can	avoid	the	2,100,000,000-byte	disk	slice	size	limit	by	setting
SlicesPerDisk	to	2	and	DiskSliceSize	to	1500000000	(or
perhaps	slightly	less,	due	to	file	system	overhead).

[Setup]:	SolidCompression
Valid	values: yes	or	no

Default	value: no

Description:
If	yes,	solid	compression	will	be	enabled.	This	causes	all	files	to	be
compressed	at	once	instead	of	separately.	This	can	result	a	much
greater	overall	compression	ratio	if	your	installation	contains	many	files
with	common	content,	such	as	text	files,	especially	if	such	common
content	files	are	grouped	together	within	the	[Files]	section.

The	disadvantage	to	using	solid	compression	is	that	because	all	files
are	compressed	into	a	single	compressed	stream,	Setup	can	no	longer
randomly	access	the	files.	This	can	decrease	performance.	If	a	certain
file	isn't	going	to	be	extracted	on	the	user's	system,	it	has	to
decompress	the	data	for	that	file	anyway	(into	memory)	before	it	can
decompress	the	next	file.	And	if,	for	example,	there	was	an	error	while
extracting	a	particular	file	and	the	user	clicks	Retry,	it	can't	just	seek	to
the	beginning	of	that	file's	compressed	data;	since	all	files	are	stored	in
one	stream,	it	has	seek	to	the	very	beginning.	If	disk	spanning	was
enabled,	the	user	would	have	to	re-insert	disk	1.

Thus,	it	is	not	recommended	that	solid	compression	be	enabled	on
huge	installs	(say,	over	100	MB)	or	on	disk-spanned	installs.	It	is
primarily	designed	to	save	download	time	on	smaller	installs	distributed
over	the	Internet.

[Setup]:	SourceDir
Description:
Specifies	a	new	source	directory	for	the	script.

Example:

SourceDir=c:\files

[Setup]:	TerminalServicesAware
Valid	values: yes	or	no

Default	value: yes

Description:
Specifies	whether	the	compiler	should	set	the	"Terminal	Services
aware"	flag	in	the	headers	of	the	Setup	and	Uninstall	programs.	This
feature	is	new	to	version	5.1.7	and	defaults	to	yes;	previous	versions
never	set	the	flag.

Most	importantly,	the	"Terminal	Services	aware"	flag	affects	the
behavior	of	the	{win}	constant	(and	GetWinDir	support	function)	on
servers	with	Terminal	Services	installed	in	application	mode.

When	the	flag	is	set,	{win}	will	consistently	return	the	system's	real
Windows	directory,	typically	"C:\WINDOWS",	just	as	on	systems	that	do
not	have	Terminal	Services	installed.

When	the	flag	is	not	set,	Windows	runs	the	program	in	compatibility
mode,	where	{win}	may	return	either	the	real	Windows	directory	or	a
user-specific	Windows	directory,	such	as	"C:\Documents	and	Settings\
<user	name>\WINDOWS".	Which	one	you	get	depends	on	the	name	of
the	program's	EXE	file	and	how	it	is	launched.	If	the	program	is	named
setup.exe	or	install.exe,	or	if	it	is	launched	from	the	Add/Remove
Programs	Control	Panel	applet,	then	Windows	will	put	the	system	in
"install	mode",	which	effectively	makes	the	program	(and	all	other
programs	running	in	the	session)	behave	as	if	the	"Terminal	Services
aware"	flag	were	set.	Otherwise,	the	program	is	treated	as	a	legacy
application	and	is	given	a	private	Windows	directory.	(This	is	true	even
if	the	user	running	the	program	has	full	administrative	privileges.)

Because	the	behavior	that	results	from	setting
TerminalServicesAware	to	no	is	inconsistent	and	hard	to	predict,	it
is	recommended	that	you	use	the	default	setting	of	yes.	Only	use	no
as	a	temporary	fix	if	you	encounter	troubles	on	systems	with	Terminal
Services	after	upgrading	from	a	previous	Inno	Setup	version.

[Setup]:	TimeStampRounding
Valid	values: 0	through	60

Default	value: 2

Description:
By	default,	time	stamps	on	files	referenced	by	[Files]	section	entries	are
rounded	down	to	the	nearest	2-second	boundary.	FAT	partitions	have
only	a	2-second	time	stamp	resolution,	so	this	ensures	that	time
stamps	are	set	the	same	way	on	both	FAT	and	NTFS	partitions.

The	rounding	can	be	altered	or	disabled	by	setting	the
TimeStampRounding	directive.	Setting	it	to	0	will	disable	the
rounding.	Setting	it	to	a	number	between	1	and	60	will	cause	time
stamps	to	be	rounded	down	to	the	nearest	TimeStampRounding-
second	boundary.

[Setup]:	TimeStampsInUTC
Valid	values: yes	or	no

Default	value: no

Description:
By	default,	time	stamps	on	files	referenced	by	[Files]	section	entries	are
saved	and	restored	as	local	times.	This	means	that	if	a	particular	file
has	a	time	stamp	of	01:00	local	time	at	compile	time,	Setup	will	extract
the	file	with	a	time	stamp	of	01:00	local	time,	regardless	of	the	user's
time	zone	setting	or	whether	DST	is	in	effect.

If	TimeStampsInUTC	is	set	to	yes,	time	stamps	will	be	saved	and
restored	in	UTC	--	the	native	time	format	of	Win32	and	NTFS.	In	this
mode,	a	file	with	a	time	stamp	of	01:00	local	time	in	New	York	will	have
a	time	stamp	of	06:00	local	time	when	installed	in	London.

[Setup]:	TouchDate
Valid	values: current,	none,	or	YYYY-MM-DD

Default	value: current

Description:
The	date	used	in	the	time/date	stamp	of	files	referenced	by	[Files]
section	entries	that	include	the	touch	flag.

A	value	of	current	causes	the	current	system	date	(at	compile	time)
to	be	used.	A	value	of	none	leaves	the	date	as-is.	Otherwise,
TouchDate	is	interpreted	as	an	explicit	date	in	YYYY-MM-DD	(ISO
8601)	format.	If	TimeStampsInUTC	is	set	to	yes,	the	date	is	assumed
to	be	a	UTC	date.

Example:

TouchDate=2004-01-31

[Setup]:	TouchTime
Valid	values: current,	none,	HH:MM,	or	HH:MM:SS

Default	value: current

Description:
The	time	used	in	the	time/date	stamp	of	files	referenced	by	[Files]
section	entries	that	include	the	touch	flag.

A	value	of	current	causes	the	current	system	time	(at	compile	time)
to	be	used.	A	value	of	none	leaves	the	time	as-is.	Otherwise,
TouchTime	is	interpreted	as	an	explicit	time	in	HH:MM	or	HH:MM:SS
format.	If	TimeStampsInUTC	is	set	to	yes,	the	time	is	assumed	to	be	a
UTC	time.

Example:

TouchTime=13:00

[Setup]:	Uninstallable
Valid	values: yes	or	no,	or	a	boolean	expression

Default	value: yes

Description:
This	determines	if	Inno	Setup's	automatic	uninstaller	is	to	be	included	in
the	installation.	If	this	is	yes	or	to	a	boolean	expression	evaluating	to
True	the	uninstaller	is	included.	Otherwise,	no	uninstallation	support	is
included,	requiring	the	end-user	to	manually	remove	the	files	pertaining
to	your	application.

Setting	this	to	a	boolean	expression	can	be	useful	if	you	want	to	offer
the	user	a	'portable	mode'	option.

Example:

[Setup]

Uninstallable=not	IsTaskSelected('portablemode')

[Tasks]

Name:	portablemode;	Description:	"Portable	Mode"

See	also:	CreateUninstallRegKey

[Setup]:	UninstallDisplayIcon
Description:
This	lets	you	specify	a	particular	icon	file	(either	an	executable	or	an
.ico	file)	to	display	for	the	Uninstall	entry	in	the	Add/Remove	Programs
Control	Panel	applet.	The	filename	will	normally	begin	with	a	directory
constant.

If	the	file	you	specify	contains	multiple	icons,	you	may	append	the	suffix
",n"	to	specify	an	icon	index,	where	n	is	the	zero-based	numeric	index.

If	this	directive	is	not	specified	or	is	blank,	Windows	will	select	an	icon
itself,	which	may	not	be	the	one	you	prefer.

Examples:

UninstallDisplayIcon={app}\MyProg.exe

UninstallDisplayIcon={app}\MyProg.exe,1

[Setup]:	UninstallDisplayName
Description:
This	lets	you	specify	a	custom	name	for	the	program's	entry	in	the
Add/Remove	Programs	Control	Panel	applet.	The	value	may	include
constants.	If	this	directive	is	not	specified	or	is	blank,	Setup	will	use	the
value	of	[Setup]	section	directive	AppVerName	for	the	name.

Due	to	limitations	of	Windows	95/98/Me's	Add/Remove	Programs
Control	Panel	applet,	the	value	of	UninstallDisplayName	will	be
trimmed	if	it	exceeds	63	characters.

Example:

UninstallDisplayName=My	Program

[Setup]:	UninstallDisplaySize
Description:
On	Windows	7	and	newer,	Setup	uses	this	directive	to	set	the
EstimatedSize	value	in	the	Uninstall	registry	key	when	possible
since	the	Windows	7	Add/Remove	Programs	Control	Panel	(called
Program	and	Features)	no	longer	automatically	calculates	it.	If	an
UninstallDisplaySize	is	not	set,	Setup	estimates	the	size	itself	by
taking	the	size	of	all	files	installed	and	adding	any
ExtraDiskSpaceRequired	values	set.	Note:	Windows	7	without	any
service	pack	only	supports	the	display	of	values	smaller	than	4	GB.

Set	in	bytes.	(1048576	bytes	=	1	megabyte)

Example:

UninstallDisplaySize=1073741824

[Setup]:	UninstallFilesDir
Default	value: {app}

Description:
Specifies	the	directory	where	the	"unins*.*"	files	for	the	uninstaller	are
stored.

Note:	You	should	not	assign	a	different	value	here	on	a	new	version	of
an	application,	or	else	Setup	won't	find	the	uninstall	logs	from	the
previous	versions	and	therefore	won't	be	able	to	append	to	them.

Example:

UninstallFilesDir={app}\uninst

[Setup]:	UninstallIconFile
Description:
Obsolete	in	5.0.0.	As	Setup	and	Uninstall	have	been	merged	into	a
single	executable,	setting	a	custom	icon	for	Uninstall	is	no	longer
possible.

[Setup]:	UninstallIconName
Description:
Obsolete	in	3.0.	This	directive	is	no	longer	supported.	If	you	wish	to
create	an	Uninstall	icon,	use	the	new	{uninstallexe}	constant	in
the	Filename	parameter	of	an	[Icons]	section	entry.

[Setup]:	UninstallLogMode
Valid	values: append,	new,	or	overwrite

Default	value: append

Description:
append,	the	default	setting,	instructs	Setup	to	append	to	an	existing
uninstall	log	when	possible.

new,	which	corresponds	to	the	behavior	in	pre-1.3	versions	of	Inno
Setup,	instructs	Setup	to	always	create	a	new	uninstall	log.

overwrite	instructs	Setup	to	overwrite	any	existing	uninstall	logs	from
the	same	application	instead	of	appending	to	them	(this	is	not
recommended).	The	same	rules	for	appending	to	existing	logs	apply	to
overwriting	existing	logs.

Example:

UninstallLogMode=append

[Setup]:	UninstallRestartComputer
Valid	values: yes	or	no

Default	value: no

Description:
When	set	to	yes,	the	uninstaller	will	always	prompt	the	user	to	restart
the	system	at	the	end	of	a	successful	uninstallation,	regardless	of
whether	it	is	necessary	(e.g.,	because	of	[Files]	section	entries	with
the	uninsrestartdelete	flag).

[Setup]:	UninstallStyle
Description:
Obsolete	in	5.0.0.	Only	the	"modern"	uninstaller	style	is	supported	now.

[Setup]:	UpdateUninstallLogAppName
Valid	values: yes	or	no

Default	value: yes

Description:
If	yes,	when	appending	to	an	existing	uninstall	log,	Setup	will	replace
the	AppName	field	in	the	log	with	the	current	installation's	AppName.
The	AppName	field	of	the	uninstall	log	determines	the	title	displayed	in
the	uninstaller.	You	may	want	to	set	this	to	no	if	your	installation	is
merely	an	upgrade	or	add-on	to	an	existing	program,	and	you	don't
want	the	title	of	the	uninstaller	changed.

[Setup]:	UsePreviousAppDir
Valid	values: yes	or	no

Default	value: yes

Description:
When	this	directive	is	yes,	the	default,	at	startup	Setup	will	look	in	the
registry	to	see	if	the	same	application	is	already	installed,	and	if	so,	it
will	use	the	directory	of	the	previous	installation	as	the	default	directory
presented	to	the	user	in	the	wizard.

Note	that	Setup	cannot	re-use	settings	from	a	previous	installation	that
had	Uninstallable	set	to	no,	since	the	registry	entries	it	looks	for
are	not	created	when	Uninstallable	is	no.

[Setup]:	UsePreviousGroup
Valid	values: yes	or	no

Default	value: yes

Description:
When	this	directive	is	yes,	the	default,	at	startup	Setup	will	look	in	the
registry	to	see	if	the	same	application	is	already	installed,	and	if	so,	it
will	use	the	Start	Menu	folder	name	of	the	previous	installation	as	the
default	Start	Menu	folder	name	presented	to	the	user	in	the	wizard.
Additionally,	if	AllowNoIcons	is	set	to	yes,	the	Don't	create	a	Start
Menu	folder	setting	from	the	previous	installation	will	be	restored.

Note	that	Setup	cannot	re-use	settings	from	a	previous	installation	that
had	Uninstallable	set	to	no,	since	the	registry	entries	it	looks	for
are	not	created	when	Uninstallable	is	no.

[Setup]:	UsePreviousLanguage
Valid	values: yes	or	no

Default	value: yes

Description:
When	this	directive	is	yes,	the	default,	at	startup	Setup	will	look	in	the
registry	to	see	if	the	same	application	is	already	installed,	and	if	so,	it
will	use	the	language	of	the	previous	installation	as	the	default
language	selected	in	the	list	of	available	languages	on	the	Select
Language	dialog.

Note	that	this	directive	does	not	change	the	language	used	by	the
Select	Language	dialog	itself	because	it	cannot	assume	that	the	current
user	understands	the	same	languages	as	the	previous	user.	See	the
[Languages]	section	help	topic	for	details	on	which	language	the	Select
Language	dialog	uses	by	default.

Also	note	that	Setup	cannot	re-use	settings	from	a	previous	installation
that	had	Uninstallable	set	to	no,	since	the	registry	entries	it	looks
for	are	not	created	when	Uninstallable	is	no.

UsePreviousLanguage	must	be	set	to	no	when	AppId	includes
constants.

[Setup]:	UsePreviousSetupType
Valid	values: yes	or	no

Default	value: yes

Description:
When	this	directive	is	yes,	the	default,	at	startup	Setup	will	look	in	the
registry	to	see	if	the	same	application	is	already	installed,	and	if	so,	it
will	use	the	setup	type	and	component	settings	of	the	previous
installation	as	the	default	settings	presented	to	the	user	in	the	wizard.

Note	that	Setup	cannot	re-use	settings	from	a	previous	installation	that
had	Uninstallable	set	to	no,	since	the	registry	entries	it	looks	for
are	not	created	when	Uninstallable	is	no.

[Setup]:	UsePreviousTasks
Valid	values: yes	or	no

Default	value: yes

Description:
When	this	directive	is	yes,	the	default,	at	startup	Setup	will	look	in	the
registry	to	see	if	the	same	application	is	already	installed,	and	if	so,	it
will	use	the	task	settings	of	the	previous	installation	as	the	default
settings	presented	to	the	user	in	the	wizard.

Note	that	Setup	cannot	re-use	settings	from	a	previous	installation	that
had	Uninstallable	set	to	no,	since	the	registry	entries	it	looks	for
are	not	created	when	Uninstallable	is	no.

[Setup]:	UsePreviousUserInfo
Valid	values: yes	or	no

Default	value: yes

Description:
When	this	directive	is	yes,	the	default,	at	startup	Setup	will	look	in	the
registry	to	see	if	the	same	application	is	already	installed,	and	if	so,	it
will	use	the	name,	organization	and	serial	number	entered	previously
as	the	default	settings	presented	to	the	user	on	the	User	Information
wizard	page.

Note	that	Setup	cannot	re-use	settings	from	a	previous	installation	that
had	Uninstallable	set	to	no,	since	the	registry	entries	it	looks	for
are	not	created	when	Uninstallable	is	no.

[Setup]:	UserInfoPage
Valid	values: yes	or	no

Default	value: no

Description:
If	this	is	set	to	yes,	Setup	will	show	a	User	Information	wizard	page
which	asks	for	the	user's	name,	organization	and	possibly	a	serial
number.	The	values	the	user	enters	are	stored	in	the
{userinfoname},	{userinfoorg}	and	{userinfoserial}
constants.	You	can	use	these	constants	in	[Registry]	or	[INI]	entries	to
save	their	values	for	later	use.

For	the	serial	number	field	to	appear,	a	CheckSerial	event	function
must	be	present.

The	DefaultUserInfoName,	DefaultUserInfoOrg	and
DefaultUserInfoSerial	directives	determine	the	default	name,
organization	and	serial	number	shown.	If	UsePreviousUserInfo	is	yes
(the	default)	and	Setup	finds	that	a	previous	version	of	the	same
application	is	already	installed,	it	will	use	the	name,	organization	and
serial	number	entered	previously	instead.

On	silent	installs,	the	default	user	name,	organization,	and	serial
number	values	will	be	assumed.	Setup	will	not	check	whether	the	user
name	is	blank	(since	the	user	has	no	way	of	correcting	it),	however	it
will	still	check	the	serial	number.

[Setup]:	UseSetupLdr
Valid	values: yes	or	no

Default	value: yes

Description:
This	tells	the	Setup	Compiler	which	type	of	Setup	to	create.	If	this	is
yes,	it	compiles	all	setup	data	into	a	single	EXE.	If	this	is	no,	it
compiles	the	setup	data	into	at	least	three	files:	setup.exe,	setup-0.bin,
and	setup-1.bin.	The	only	reason	you	would	probably	want	to	use	no	is
for	debugging	purposes.

Note:	Do	not	use	UseSetupLdr=no	on	an	installation	which	uses	disk
spanning	(DiskSpanning=yes).	When	UseSetupLdr	is	yes,	the
setup	program	is	copied	to	and	run	from	the	user's	TEMP	directory.
This	does	not	happen	when	UseSetupLdr	is	no,	and	could	result	in
errors	if	Windows	tries	to	locate	the	setup.exe	file	on	the	disk	and	can't
find	it	because	a	different	disk	is	in	the	drive.

Note:	Do	not	use	UseSetupLdr=no	to	avoid	digital	signature
verification	startup	delays	on	a	large	Setup,	use	disk	spanning	instead.
See	SignTool	for	more	information.	Also	note	that	digitally	signing	a
UseSetupLdr=no	based	Setup	will	lead	to	an	invalid	digital	signature
for	Uninstall.

[Setup]:	VersionInfoCompany
Default	value: AppPublisher	if	AppPublisher	doesn't	include

constants,	an	empty	string	otherwise

Description:
Specifies	the	company	name	value	for	the	Setup	version	info.

This	setting	has	no	effect	if	UseSetupLdr	is	set	to	no.

[Setup]:	VersionInfoCopyright
Default	value: AppCopyright	if	AppCopyright	doesn't	include

constants,	an	empty	string	otherwise

Description:
Specifies	the	copyright	value	for	the	Setup	version	info.

This	setting	has	no	effect	if	UseSetupLdr	is	set	to	no.

[Setup]:	VersionInfoDescription
Default	value: "AppName	Setup"	if	AppName	doesn't	include

constants,	an	empty	string	otherwise

Description:
Specifies	the	file	description	value	for	the	Setup	version	info.

This	setting	has	no	effect	if	UseSetupLdr	is	set	to	no.

[Setup]:	VersionInfoProductName
Default	value: AppName	if	AppName	doesn't	include	constants,	an

empty	string	otherwise

Description:
Specifies	the	product	name	value	for	the	Setup	version	info.

This	setting	has	no	effect	if	UseSetupLdr	is	set	to	no.

[Setup]:	VersionInfoProductTextVersion
Default	value: VersionInfoProductVersion	if	set,	else	AppVersion	if

set	and	does	not	include	constants,	else
VersionInfoTextVersion

Description:
Specifies	the	textual	product	version	value	for	the	Setup	version	info.

This	setting	has	no	effect	if	UseSetupLdr	is	set	to	no.

[Setup]:	VersionInfoProductVersion
Valid	values: A	value	in	the	form	of	up	to	4	numbers	separated	by

dots

Default	value: VersionInfoVersion

Description:
Specifies	the	binary	product	version	value	for	the	Setup	version	info.

Partial	version	numbers	are	allowed.	Missing	numbers	will	be
appended	as	zero's.

Note	that	this	value	is	only	known	to	be	displayed	by	Explorer	on
Windows	Vista	SP2.	Other	versions	display	the	textual	product	version
value	(VersionInfoProductTextVersion)	instead.

This	setting	has	no	effect	if	UseSetupLdr	is	set	to	no.

[Setup]:	VersionInfoTextVersion
Default	value: VersionInfoVersion

Description:
Specifies	the	textual	file	version	value	for	the	Setup	version	info.

Note	that	this	value	was	only	displayed	on	Explorer's	Version	tab	on
Windows	98	and	earlier.	Later	versions	display	the	binary	version	value
(VersionInfoVersion)	instead.

This	setting	has	no	effect	if	UseSetupLdr	is	set	to	no.

[Setup]:	VersionInfoVersion
Valid	values: A	value	in	the	form	of	up	to	4	numbers	separated	by

dots

Default	value: 0.0.0.0

Description:
Specifies	the	binary	file	version	value	for	the	Setup	version	info.

Partial	version	numbers	are	allowed.	Missing	numbers	will	be
appended	as	zero's.

This	setting	has	no	effect	if	UseSetupLdr	is	set	to	no.

[Setup]:	WindowResizable
Valid	values: yes	or	no

Default	value: yes

Description:
If	set	to	no,	the	user	won't	be	able	to	resize	the	Setup	program's
background	window	when	it's	not	maximized.

This	directive	has	no	effect	if	WindowVisible	is	not	set	to	yes.

[Setup]:	WindowShowCaption
Valid	values: yes	or	no

Default	value: yes

Description:
If	set	to	no,	Setup	will	be	truly	"full	screen"	--	it	won't	have	a	caption	bar
or	border,	and	it	will	be	on	top	of	the	taskbar.

This	directive	has	no	effect	if	WindowVisible	is	not	set	to	yes.

[Setup]:	WindowStartMaximized
Valid	values: yes	or	no

Default	value: yes

Description:
If	set	to	yes,	the	Setup	program's	background	window	will	initially	be
displayed	in	a	maximized	state,	where	it	won't	cover	over	the	taskbar.

This	directive	has	no	effect	if	WindowVisible	is	not	set	to	yes.

[Setup]:	WindowVisible
Valid	values: yes	or	no

Default	value: no

Description:
If	set	to	yes,	there	will	be	a	gradient	background	window	displayed
behind	the	wizard.

Note	that	this	is	considered	a	legacy	feature;	it	likely	will	be	removed	at
some	point	in	the	future.

[Setup]:	WizardImageBackColor
Valid	values: A	value	in	the	form	of	$bbggrr,	where	rr,	gg,	and	bb

specify	the	two-digit	intensities	(in	hexadecimal)	for
red,	green,	and	blue	respectively.	Or	it	may	be	one	of
the	following	predefined	color	names:	clBlack,
clMaroon,	clGreen,	clOlive,	clNavy,	clPurple,	clTeal,
clGray,	clSilver,	clRed,	clLime,	clYellow,	clBlue,
clFuchsia,	clAqua,	clWhite.

Default	value: $400000

Description:
This	directive	specifies	the	background	color	used	to	fill	any	unused
space	around	the	wizard	bitmap	(which	is	specified	by
WizardImageFile).	There	can	only	be	unused	space	if
WizardImageStretch	is	set	to	no.

[Setup]:	WizardImageFile
Default	value: compiler:WIZMODERNIMAGE.BMP

Description:
Specifies	the	name	of	the	bitmap	file	to	display	on	the	left	side	of	the
wizard	in	the	Setup	program.	This	file	must	be	located	in	your
installation's	source	directory	when	running	the	Setup	Compiler,	unless
a	fully	qualified	pathname	is	specified	or	the	pathname	is	prefixed	by
"compiler:",	in	which	case	it	looks	for	the	file	in	the	Compiler	directory.

256-color	bitmaps	may	not	display	correctly	in	256-color	mode,	since	it
does	not	handle	palettes.	The	maximum	size	of	the	bitmap	is	164x314
pixels.	Note	that	if	Windows	is	running	with	Large	Fonts,	the	area	on
the	wizard	for	the	bitmap	will	be	larger.

Example:

WizardImageFile=myimage.bmp

[Setup]:	WizardImageStretch
Valid	values: yes	or	no

Default	value: yes

Description:
If	set	to	yes,	the	default,	the	wizard	images	will	be	stretched	or	shrunk
if	the	wizard	is	larger	or	smaller	than	normal,	e.g.	if	the	user	is	running
in	Large	Fonts.

If	set	to	no,	the	wizard	images	will	be	centered	in	their	respective	areas
if	the	wizard	is	larger	than	normal,	and	clipped	if	the	wizard	is	smaller
than	normal.	(This	corresponds	to	the	default	behavior	of	Inno	Setup
4.1.2	and	earlier.)

[Setup]:	WizardSmallImageBackColor
Description:
Obsolete	in	5.0.4.	This	directive	formerly	specified	the	background
color	used	to	fill	any	unused	space	around	the	small	wizard	bitmap
when	WizardImageStretch	was	set	to	no.	Now	any	unused	space	is
filled	with	the	standard	window	color	(usually	white).	If	you	wish	to
create	a	colored	border	around	the	image,	do	so	by	modifying	the
bitmap	itself.

[Setup]:	WizardSmallImageFile
Default	value: compiler:WIZMODERNSMALLIMAGE.BMP

Description:
Specifies	the	name	of	the	bitmap	file	to	display	in	the	upper	right	corner
of	the	wizard	window.	This	file	must	be	located	in	your	installation's
source	directory	when	running	the	Setup	Compiler,	unless	a	fully
qualified	pathname	is	specified	or	the	pathname	is	prefixed	by
"compiler:",	in	which	case	it	looks	for	the	file	in	the	Compiler	directory.

256-color	bitmaps	may	not	display	correctly	in	256-color	mode,	since	it
does	not	handle	palettes.	The	maximum	size	of	the	bitmap	is	55x58
pixels.

Example:

WizardSmallImageFile=mysmallimage.bmp

[Setup]:	WizardStyle
Valid	values: modern

Default	value: modern

Description:
Obsolete	in	3.0.	Inno	Setup	2.x	supported	an	alternate	wizard	style
called	"classic".	Support	for	the	"classic"	style	has	been	dropped	in	Inno
Setup	3.0.

[Types]	section
This	section	is	optional.	It	defines	all	of	the	setup	types	Setup	will	show
on	the	Select	Components	page	of	the	wizard.	During	compilation	a	set
of	default	setup	types	is	created	if	you	define	components	in	a
[Components]	section	but	don't	define	types.	If	you	are	using	the
default	(English)	messages	file,	these	types	are	the	same	as	the	types
in	the	example	below.

Here	is	an	example	of	a	[Types]	section:

[Types]

Name:	"full";	Description:	"Full	installation"

Name:	"compact";	Description:	"Compact	installation"

Name:	"custom";	Description:	"Custom	installation";	Flags:	iscustom

The	following	is	a	list	of	the	supported	parameters:

Name		(Required)

The	internal	name	of	the	type.	Used	as	parameter	for	components
in	the	[Components]	section	to	instruct	Setup	to	which	types	a
component	belongs.

Example:

Name:	"full"

Description		(Required)

The	description	of	the	type,	which	can	include	constants.	This
description	is	shown	during	installation.

Example:

Description:	"Full	installation"

Flags

This	parameter	is	a	set	of	extra	options.	Multiple	options	may	be
used	by	separating	them	by	spaces.	The	following	options	are

supported:

iscustom
Instructs	Setup	that	the	type	is	a	custom	type.	Whenever	the
end	user	manually	changes	the	components	selection	during
installation,	Setup	will	set	the	setup	type	to	the	custom	type.
Note	that	if	you	don't	define	a	custom	type,	Setup	will	only
allow	the	user	to	choose	a	setup	type	and	he/she	can	no
longer	manually	select/unselect	components.

Only	one	type	may	include	this	flag.

Example:

Flags:	iscustom

Common	Parameters

[Components]	section
This	section	is	optional.	It	defines	all	of	the	components	Setup	will	show
on	the	Select	Components	page	of	the	wizard	for	setup	type
customization.

By	itself	a	component	does	nothing:	it	needs	to	be	'linked'	to	other
installation	entries.	See	Components	and	Tasks	Parameters.

Here	is	an	example	of	a	[Components]	section:

[Components]

Name:	"main";	Description:	"Main	Files";	Types:	full	compact	custom;	Flags:	fixed

Name:	"help";	Description:	"Help	Files";	Types:	full

Name:	"help\english";	Description:	"English";	Types:	full

Name:	"help\dutch";	Description:	"Dutch";	Types:	full

The	example	above	generates	four	components:	A	"main"	component
which	gets	installed	if	the	end	user	selects	a	type	with	name	"full"	or
"compact"	and	a	"help"	component	which	has	two	child	components
and	only	gets	installed	if	the	end	user	selects	the	"full"	type.

The	following	is	a	list	of	the	supported	parameters:

Name		(Required)

The	internal	name	of	the	component.

The	total	number	of	\	or	/	characters	in	the	name	of	the	component
is	called	the	level	of	the	component.	Any	component	with	a	level	of
1	or	more	is	a	child	component.	The	component	listed	before	the
child	component	with	a	level	of	1	less	than	the	child	component,	is
the	parent	component.	Other	components	with	the	same	parent
component	as	the	child	component	are	sibling	components.

A	child	component	can't	be	selected	if	its	parent	component	isn't
selected.	A	parent	component	can't	be	selected	if	none	of	its
children	are	selected,	unless	a	Components	parameter	directly
references	the	parent	component	or	the	parent	component
includes	the	checkablealone	flag.

If	sibling	components	have	the	exclusive	flag,	only	one	of	them
can	be	selected.

Example:

Name:	"help"

Description		(Required)

The	description	of	the	component,	which	can	include	constants.
This	description	is	shown	to	the	end	user	during	installation.

Example:

Description:	"Help	Files"

Types

A	space	separated	list	of	types	this	component	belongs	to.	If	the
end	user	selects	a	type	from	this	list,	this	component	will	be
installed.

If	the	fixed	flag	isn't	used	(see	below),	any	custom	types	(types
using	the	iscustom	flag)	in	this	list	are	ignored	by	Setup.

Example:

Types:	full	compact

ExtraDiskSpaceRequired

The	extra	disk	space	required	by	this	component,	similar	to	the
ExtraDiskSpaceRequired	directive	for	the	[Setup]	section.

Example:

ExtraDiskSpaceRequired:	0

Flags

This	parameter	is	a	set	of	extra	options.	Multiple	options	may	be
used	by	separating	them	by	spaces.	The	following	options	are
supported:

checkablealone
Specifies	that	the	component	can	be	checked	when	none	of
its	children	are.	By	default,	if	no	Components	parameter
directly	references	the	component,	unchecking	all	of	the
component's	children	will	cause	the	component	to	become
unchecked.

dontinheritcheck
Specifies	that	the	component	should	not	automatically
become	checked	when	its	parent	is	checked.	Has	no	effect	on
top-level	components,	and	cannot	be	combined	with	the
exclusive	flag.

exclusive
Instructs	Setup	that	this	component	is	mutually	exclusive	with
sibling	components	that	also	have	the	exclusive	flag.

fixed
Instructs	Setup	that	this	component	can	not	be	manually
selected	or	unselected	by	the	end	user	during	installation.

restart
Instructs	Setup	to	ask	the	user	to	restart	the	system	if	this
component	is	installed,	regardless	of	whether	this	is
necessary	(for	example	because	of	[Files]	section	entries	with
the	restartreplace	flag).	Like	AlwaysRestart	but	per
component.

disablenouninstallwarning
Instructs	Setup	not	to	warn	the	user	that	this	component	will
not	be	uninstalled	after	he/she	deselected	this	component
when	it's	already	installed	on	his/her	machine.

Depending	on	the	complexity	of	your	components,	you	can	try
to	use	the	[InstallDelete]	section	and	this	flag	to	automatically
'uninstall'	deselected	components.

Example:

Flags:	fixed

Common	Parameters

[Tasks]	section
This	section	is	optional.	It	defines	all	of	the	user-customizable	tasks
Setup	will	perform	during	installation.	These	tasks	appear	as	check
boxes	and	radio	buttons	on	the	Select	Additional	Tasks	wizard	page.

By	itself	a	task	does	nothing:	it	needs	to	be	'linked'	to	other	installation
entries.	See	Components	and	Tasks	Parameters.

Here	is	an	example	of	a	[Tasks]	section:

[Tasks]

Name:	desktopicon;	Description:	"Create	a	&desktop	icon";	GroupDescription:	"Additional	icons:";	Components:	main

Name:	desktopicon\common;	Description:	"For	all	users";	GroupDescription:	"Additional	icons:";	Components:	main;	Flags:	exclusive

Name:	desktopicon\user;	Description:	"For	the	current	user	only";	GroupDescription:	"Additional	icons:";	Components:	main;	Flags:	exclusive	unchecked

Name:	quicklaunchicon;	Description:	"Create	a	&Quick	Launch	icon";	GroupDescription:	"Additional	icons:";	Components:	main;	Flags:	unchecked

Name:	associate;	Description:	"&Associate	files";	GroupDescription:	"Other	tasks:";	Flags:	unchecked

The	following	is	a	list	of	the	supported	parameters:

Name		(Required)

The	internal	name	of	the	task.

The	total	number	of	\	or	/	characters	in	the	name	of	the	task	is
called	the	level	of	the	task.	Any	task	with	a	level	of	1	or	more	is	a
child	task.	The	task	listed	before	the	child	task	with	a	level	of	1	less
than	the	child	task,	is	the	parent	task.	Other	tasks	with	the	same
parent	task	as	the	child	task	are	sibling	tasks.

A	child	task	can't	be	selected	if	its	parent	task	isn't	selected.	A
parent	task	can't	be	selected	if	none	of	its	children	are	selected,
unless	a	Tasks	parameter	directly	references	the	parent	task	or
the	parent	task	includes	the	checkablealone	flag.

If	sibling	tasks	have	the	exclusive	flag,	only	one	of	them	can	be
selected.

Example:

Name:	"desktopicon"

Description		(Required)

The	description	of	the	task,	which	can	include	constants.	This
description	is	shown	to	the	end	user	during	installation.

Example:

Description:	"Create	a	&desktop	icon"

GroupDescription

The	group	description	of	a	group	of	tasks,	which	can	include
constants.	Consecutive	tasks	with	the	same	group	description	will
be	grouped	below	a	text	label.	The	text	label	shows	the	group
description.

Example:

GroupDescription:	"Additional	icons"

Components

A	space	separated	list	of	components	this	task	belongs	to.	If	the
end	user	selects	a	component	from	this	list,	this	task	will	be	shown.
A	task	entry	without	a	Components	parameter	is	always	shown.

Example:

Components:	main

Flags

This	parameter	is	a	set	of	extra	options.	Multiple	options	may	be
used	by	separating	them	by	spaces.	The	following	options	are
supported:

checkablealone
Specifies	that	the	task	can	be	checked	when	none	of	its
children	are.	By	default,	if	no	Tasks	parameter	directly
references	the	task,	unchecking	all	of	the	task's	children	will
cause	the	task	to	become	unchecked.

checkedonce

Instructs	Setup	that	this	task	should	be	unchecked	initially
when	Setup	finds	a	previous	version	of	the	same	application	is
already	installed.

If	the	UsePreviousTasks	[Setup]	section	directive	is	no,
this	flag	is	effectively	disabled.

dontinheritcheck
Specifies	that	the	task	should	not	automatically	become
checked	when	its	parent	is	checked.	Has	no	effect	on	top-level
tasks,	and	cannot	be	combined	with	the	exclusive	flag.

exclusive
Instructs	Setup	that	this	task	is	mutually	exclusive	with	sibling
tasks	that	also	have	the	exclusive	flag.

restart
Instructs	Setup	to	ask	the	user	to	restart	the	system	at	the	end
of	installation	if	this	task	is	selected,	regardless	of	whether	it	is
necessary	(for	example	because	of	[Files]	section	entries	with
the	restartreplace	flag).	Like	AlwaysRestart	but	per	task.

unchecked
Instructs	Setup	that	this	task	should	be	unchecked	initially.

Example:

Flags:	unchecked

Common	Parameters

[Dirs]	section
This	optional	section	defines	any	additional	directories	Setup	is	to
create	besides	the	application	directory	the	user	chooses,	which	is
created	automatically.	Creating	subdirectories	underneath	the	main
application	directory	is	a	common	use	for	this	section.

Note	that	you	aren't	required	to	explicitly	create	directories	before
installing	files	to	them	using	the	[Files]	section,	so	this	section	is
primarily	useful	for	creating	empty	directories.

Here	is	an	example	of	a	[Dirs]	section:

[Dirs]

Name:	"{app}\data"

Name:	"{app}\bin"

The	example	above	will,	after	Setup	creates	the	application	directory,
create	two	subdirectories	underneath	the	application	directory.

The	following	is	a	list	of	the	supported	parameters:

Name		(Required)

The	name	of	the	directory	to	create,	which	normally	will	start	with
one	of	the	directory	constants.

Example:

Name:	"{app}\MyDir"

Attribs

Specifies	additional	attributes	for	the	directory.	This	can	include
one	or	more	of	the	following:	readonly,	hidden,	system.	If	this
parameter	is	not	specified,	Setup	does	not	assign	any	special
attributes	to	the	directory.

If	the	directory	already	exists,	the	specified	attributes	will	be
combined	with	the	directory's	existing	attributes.

Example:

Attribs:	hidden	system

Permissions

Specifies	additional	permissions	to	grant	in	the	directory's	ACL
(access	control	list).	It	is	not	recommended	that	you	use	this
parameter	if	you	aren't	familiar	with	ACLs	or	why	you	would	need
to	change	them,	because	misusing	it	could	negatively	impact
system	security.

For	this	parameter	to	have	an	effect	the	directory	must	be	located
on	a	partition	that	supports	ACLs	(such	as	NTFS),	and	the	current
user	must	be	able	to	change	the	permissions	on	the	directory.	In
the	event	these	conditions	are	not	met,	no	error	message	will	be
displayed,	and	the	permissions	will	not	be	set.

This	parameter	should	only	be	used	on	directories	private	to	your
application.	Never	change	the	ACLs	on	top-level	directories	like
{sys}	or	{pf},	otherwise	you	can	open	up	security	holes	on	your
users'	systems.

In	addition,	it	is	recommended	that	you	avoid	using	this	parameter
to	grant	write	access	on	directories	containing	program	files.
Granting,	for	example,	everyone-modify	permission	on	the
{app}	directory	will	allow	unprivileged	users	to	tamper	with	your
application's	program	files;	this	creates	the	potential	for	a	privilege
escalation	vulnerability.	(However,	it	is	safe	to	change	the
permissions	on	a	subdirectory	of	your	application's	directory	which
does	not	contain	program	files,	e.g.	{app}\data.)

The	specified	permissions	are	set	regardless	of	whether	the
directory	existed	prior	to	installation.

This	parameter	can	include	one	or	more	space	separated	values	in
the	format:

<user	or	group	identifier>-<access	type>

The	following	access	types	are	supported	for	the	[Dirs]	section:

full

Grants	"Full	Control"	permission,	which	is	the	same	as
modify	(see	below),	but	additionally	allows	the	specified
user/group	to	take	ownership	of	the	directory	and	change	its
permissions.	Use	sparingly;	generally,	modify	is	sufficient.

modify
Grants	"Modify"	permission,	which	allows	the	specified
user/group	to	read,	execute,	create,	modify,	and	delete	files	in
the	directory	and	its	subdirectories.

readexec
Grants	"Read	&	Execute"	permission,	which	allows	the
specified	user/group	to	read	and	execute	files	in	the	directory
and	its	subdirectories.

Example:

Permissions:	users-modify

Flags

This	parameter	is	a	set	of	extra	options.	Multiple	options	may	be
used	by	separating	them	by	spaces.	The	following	options	are
supported:

deleteafterinstall
Instructs	Setup	to	create	the	directory	as	usual,	but	then
delete	it	once	the	installation	is	completed	(or	aborted)	if	it's
empty.	This	can	be	useful	when	extracting	temporary	data
needed	by	a	program	executed	in	the	script's	[Run]	section.

This	flag	will	not	cause	directories	that	already	existed	before
installation	to	be	deleted.

setntfscompression
Instructs	Setup	to	enable	NTFS	compression	on	the	directory.
If	it	fails	to	set	the	compression	state	for	any	reason	(for
example,	if	compression	is	not	supported	by	the	file	system),
no	error	message	will	be	displayed.

If	the	directory	already	exists,	the	compression	state	of	any

files	present	in	the	directory	will	not	be	changed.

uninsalwaysuninstall
Instructs	the	uninstaller	to	always	attempt	to	delete	the
directory	if	it's	empty.	Normally	the	uninstaller	will	only	try	to
delete	the	directory	if	it	didn't	already	exist	prior	to	installation.

uninsneveruninstall
Instructs	the	uninstaller	to	not	attempt	to	delete	the	directory.
By	default,	the	uninstaller	deletes	any	directory	specified	in	the
[Dirs]	section	if	it	is	empty.

unsetntfscompression
Instructs	Setup	to	disable	NTFS	compression	on	the	directory.
If	it	fails	to	set	the	compression	state	for	any	reason	(for
example,	if	compression	is	not	supported	by	the	file	system),
no	error	message	will	be	displayed.

If	the	directory	already	exists,	the	compression	state	of	any
files	present	in	the	directory	will	not	be	changed.

Example:

Flags:	uninsneveruninstall

Components	and	Tasks	Parameters

Common	Parameters

[Files]	section
This	optional	section	defines	any	files	Setup	is	to	install	on	the	user's
system.

Here	is	an	example	of	a	[Files]	section:

[Files]

Source:	"CTL3DV2.DLL";	DestDir:	"{sys}";	Flags:	onlyifdoesntexist	uninsneveruninstall

Source:	"MYPROG.EXE";	DestDir:	"{app}"

Source:	"MYPROG.CHM";	DestDir:	"{app}"

Source:	"README.TXT";	DestDir:	"{app}";	Flags:	isreadme

See	the	Remarks	section	at	the	bottom	of	this	topic	for	some	important
notes.

The	following	is	a	list	of	the	supported	parameters:

Source		(Required)

The	name	of	the	source	file.	The	compiler	will	prepend	the	path	of
your	installation's	source	directory	if	you	do	not	specify	a	fully
qualified	pathname.

This	can	be	a	wildcard	to	specify	a	group	of	files	in	a	single	entry.
When	a	wildcard	is	used,	all	files	matching	it	use	the	same	options.

When	the	flag	external	is	specified,	Source	must	be	the	full
pathname	of	an	existing	file	(or	wildcard)	on	the	distribution	media
or	the	user's	system	(e.g.	"{src}\license.ini").

Constants	may	only	be	used	when	the	external	flag	is	specified,
because	the	compiler	does	not	do	any	constant	translating	itself.

Examples:

Source:	"MYPROG.EXE"

Source:	"Files*"

DestDir		(Required)

The	directory	where	the	file	is	to	be	installed	on	the	user's	system.

Will	almost	always	begin	with	one	of	the	directory	constants.	If	the
specified	path	does	not	already	exist	on	the	user's	system,	it	will	be
created	automatically,	and	removed	automatically	during
uninstallation	if	empty.

Examples:

DestDir:	"{app}"

DestDir:	"{app}\subdir"

DestName

This	parameter	specifies	a	new	name	for	the	file	when	it	is	installed
on	the	user's	system.	By	default,	Setup	uses	the	name	from	the
Source	parameter,	so	in	most	cases	it's	not	necessary	to	specify
this	parameter.

Example:

DestName:	"MYPROG2.EXE"

Excludes

Specifies	a	list	of	patterns	to	exclude,	separated	by	commas.	This
parameter	cannot	be	combined	with	the	external	flag.

Patterns	may	include	wildcard	characters	("*"	and	"?").	Note	that
unlike	the	Source	parameter,	a	simple	Unix-style	pattern	matching
routine	is	used	for	Excludes.	Dots	in	the	pattern	are	always
significant,	thus	"*.*"	will	not	exclude	a	file	with	no	extension
(instead,	use	just	"*").	Also,	question	marks	always	match	exactly
one	character,	thus	"?????"	will	not	exclude	files	with	names	less
than	five	characters	long.

If	a	pattern	starts	with	a	backslash	("\")	it	is	matched	against	the
start	of	a	path	name,	otherwise	it	is	matched	against	the	end	of	a
path	name.	Thus	"\foo"	will	only	exclude	a	file	named	"foo"	at	the
base	of	the	tree.	On	the	other	hand,	"foo"	will	exclude	any	file
named	"foo"	anywhere	in	the	tree.

The	patterns	may	include	backslashes.	"foo\bar"	will	exclude	both

"foo\bar"	and	"subdir\foo\bar".	"\foo\bar"	will	only	exclude	"foo\bar".

Examples:

Source:	"*";	Excludes:	"*.~*"

Source:	"*";	Excludes:	"*.~*,\Temp*";	Flags:	recursesubdirs

ExternalSize

This	parameter	must	be	combined	with	the	external	flag	and
specifies	the	size	of	the	external	file	in	bytes.	If	this	parameter	is
not	specified,	Setup	retrieves	the	file	size	at	startup.	Primarily
useful	for	files	that	aren't	available	at	startup,	for	example	files
located	on	a	second	disk	when	disk	spanning	is	being	used.

Example:

ExternalSize:	1048576;	Flags:	external

CopyMode

You	should	not	use	this	parameter	in	any	new	scripts.	This
parameter	was	deprecated	and	replaced	by	flags	in	Inno	Setup
3.0.5:

CopyMode:	normal	->	Flags:	promptifolder	CopyMode:
alwaysskipifsameorolder	->	no	flags
CopyMode:	onlyifdoesntexist	->	Flags:

onlyifdoesntexist

CopyMode:	alwaysoverwrite	->	Flags:	ignoreversion

CopyMode:	dontcopy	->	Flags:	dontcopy

What	was	CopyMode:	alwaysskipifsameorolder	is	now	the
default	behavior.	(The	previous	default	was	CopyMode:	normal.)

Attribs

Specifies	additional	attributes	for	the	file.	This	can	include	one	or
more	of	the	following:	readonly,	hidden,	system.	If	this
parameter	is	not	specified,	Setup	does	not	assign	any	special

attributes	to	the	file.

Example:

Attribs:	hidden	system

Permissions

Specifies	additional	permissions	to	grant	in	the	file's	ACL	(access
control	list).	It	is	not	recommended	that	you	use	this	parameter	if
you	aren't	familiar	with	ACLs	or	why	you	would	need	to	change
them,	because	misusing	it	could	negatively	impact	system	security.

For	this	parameter	to	have	an	effect	the	file	must	be	located	on	a
partition	that	supports	ACLs	(such	as	NTFS),	and	the	current	user
must	be	able	to	change	the	permissions	on	the	file.	In	the	event
these	conditions	are	not	met,	no	error	message	will	be	displayed,
and	the	permissions	will	not	be	set.

This	parameter	should	only	be	used	on	files	private	to	your
application.	Never	change	the	ACLs	on	shared	system	files,
otherwise	you	can	open	up	security	holes	on	your	users'	systems.

The	specified	permissions	are	set	regardless	of	whether	the	file
existed	prior	to	installation.

This	parameter	can	include	one	or	more	space	separated	values	in
the	format:

<user	or	group	identifier>-<access	type>

The	following	access	types	are	supported	for	the	[Files]	section:

full
Grants	"Full	Control"	permission,	which	is	the	same	as
modify	(see	below),	but	additionally	allows	the	specified
user/group	to	take	ownership	of	the	file	and	change	its
permissions.	Use	sparingly;	generally,	modify	is	sufficient.

modify
Grants	"Modify"	permission,	which	allows	the	specified
user/group	to	read,	execute,	modify,	and	delete	the	file.

readexec
Grants	"Read	&	Execute"	permission,	which	allows	the
specified	user/group	to	read	and	execute	the	file.

Example:

Permissions:	users-modify

FontInstall

Tells	Setup	the	file	is	a	font	that	needs	to	be	installed.	The	value	of
this	parameter	is	the	name	of	the	font	as	stored	in	the	registry	or
WIN.INI.	This	must	be	exactly	the	same	name	as	you	see	when
you	double-click	the	font	file	in	Explorer.	Note	that	Setup	will
automatically	append	"	(TrueType)"	to	the	end	of	the	name.

If	the	file	is	not	a	TrueType	font,	you	must	specify	the	flag
fontisnttruetype	in	the	Flags	parameter.

It's	recommended	that	you	use	the	flags	onlyifdoesntexist
and	uninsneveruninstall	when	installing	fonts	to	the	{fonts}
directory.

To	successfully	install	a	font,	the	user	must	be	a	member	of	the
Power	Users	or	Administrators	groups.

For	compatibility	with	64-bit	Windows,	fonts	should	not	be	installed
to	the	{sys}	directory.	Use	{fonts}	as	the	destination	directory
instead.

Example:

Source:	"OZHANDIN.TTF";	DestDir:	"{fonts}";	FontInstall:	"Oz	Handicraft	BT";	Flags:	onlyifdoesntexist	uninsneveruninstall

StrongAssemblyName

Specifies	the	strong	assembly	name	of	the	file.	Used	by	Uninstall
only.

This	parameter	is	ignored	if	the	gacinstall	flag	isn't	also
specified.

Example:

StrongAssemblyName:	"MyAssemblyName,	Version=1.0.0.0,	Culture=neutral,	PublicKeyToken=abcdef123456,	ProcessorArchitecture=MSIL"

Flags

This	parameter	is	a	set	of	extra	options.	Multiple	options	may	be
used	by	separating	them	by	spaces.	The	following	options	are
supported:

32bit
Causes	the	{sys}	constant	to	map	to	the	32-bit	System
directory	when	used	in	the	Source	and	DestDir	parameters,
the	regserver	and	regtypelib	flags	to	treat	the	file	as	32-
bit,	and	the	sharedfile	flag	to	update	the	32-bit
SharedDLLs	registry	key.	This	is	the	default	behavior	in	a	32-
bit	mode	install.

64bit
Causes	the	{sys}	constant	to	map	to	the	64-bit	System
directory	when	used	in	the	Source	and	DestDir	parameters,
the	regserver	and	regtypelib	flags	to	treat	the	file	as	64-
bit,	and	the	sharedfile	flag	to	update	the	64-bit
SharedDLLs	registry	key.	This	is	the	default	behavior	in	a	64-
bit	mode	install.

allowunsafefiles
Disables	the	compiler's	automatic	checking	for	unsafe	files.	It
is	strongly	recommended	that	you	DO	NOT	use	this	flag,
unless	you	are	absolutely	sure	you	know	what	you're	doing.

comparetimestamp
(Not	recommended;	see	below)
Instructs	Setup	to	proceed	to	comparing	time	stamps	if	the	file
being	installed	already	exists	on	the	user's	system,	and	at
least	one	of	the	following	conditions	is	true:

Neither	the	existing	file	nor	the	file	being	installed	has
version	info.

The	ignoreversion	flag	is	also	used	on	the	entry.

The	replacesameversion	flag	isn't	used,	and	the
existing	file	and	the	file	being	installed	have	the	same
version	number	(as	determined	by	the	files'	version	info).

If	the	existing	file	has	an	older	time	stamp	than	the	file	being
installed,	the	existing	file	will	replaced.	Otherwise,	it	will	not	be
replaced.

Use	of	this	flag	is	not	recommended	except	as	a	last	resort,
because	there	is	an	inherent	issue	with	it:	NTFS	partitions
store	time	stamps	in	UTC	(unlike	FAT	partitions),	which
causes	local	time	stamps	--	what	Inno	Setup	works	with	by
default	--	to	shift	whenever	a	user	changes	their	system's	time
zone	or	when	daylight	saving	time	goes	into	or	out	of	effect.
This	can	create	a	situation	where	files	are	replaced	when	the
user	doesn't	expect	them	to	be,	or	not	replaced	when	the	user
expects	them	to	be.

confirmoverwrite
Always	ask	the	user	to	confirm	before	replacing	an	existing
file.

createallsubdirs
By	default	the	compiler	skips	empty	directories	when	it
recurses	subdirectories	searching	for	the	Source
filename/wildcard.	This	flag	causes	these	directories	to	be
created	at	install	time	(just	like	if	you	created	[Dirs]	entries	for
them).

Must	be	combined	with	recursesubdirs.

deleteafterinstall
Instructs	Setup	to	install	the	file	as	usual,	but	then	delete	it
once	the	installation	is	completed	(or	aborted).	This	can	be
useful	for	extracting	temporary	data	needed	by	a	program
executed	in	the	script's	[Run]	section.

This	flag	will	not	cause	existing	files	that	weren't	replaced
during	installation	to	be	deleted.

This	flag	cannot	be	combined	with	the	isreadme,
regserver,	regtypelib,	restartreplace,
sharedfile,	or	uninsneveruninstall	flags.

dontcopy
Don't	copy	the	file	to	the	user's	system	during	the	normal	file
copying	stage	but	do	statically	compile	the	file	into	the
installation.	This	flag	is	useful	if	the	file	is	handled	by	the
[Code]	section	exclusively	and	extracted	using
ExtractTemporaryFile.

dontverifychecksum
Prevents	Setup	from	verifying	the	file	checksum	after
extraction.	Use	this	flag	on	files	you	wish	to	modify	while
already	compiled	into	Setup.

Must	be	combined	with	nocompression.

external
This	flag	instructs	Inno	Setup	not	to	statically	compile	the	file
specified	by	the	Source	parameter	into	the	installation	files,
but	instead	copy	from	an	existing	file	on	the	distribution	media
or	the	user's	system.	See	the	Source	parameter	description
for	more	information.

fontisnttruetype
Specify	this	flag	if	the	entry	is	installing	a	non-TrueType	font
with	the	FontInstall	parameter.

gacinstall
Install	the	file	into	the	.NET	Global	Assembly	Cache.	When
used	in	combination	with	sharedfile,	the	file	will	only	be
uninstalled	when	the	reference	count	reaches	zero.

To	uninstall	the	file	Uninstaller	uses	the	strong	assembly	name
specified	by	parameter	StrongAssemblyName.

An	exception	will	be	raised	if	an	attempt	is	made	to	use	this
flag	on	a	system	with	no	.NET	Framework	present.

ignoreversion

Don't	compare	version	info	at	all;	replace	existing	files
regardless	of	their	version	number.

This	flag	should	only	be	used	on	files	private	to	your
application,	never	on	shared	system	files.

isreadme
File	is	the	"README"	file.	Only	one	file	in	an	installation	can
have	this	flag.	When	a	file	has	this	flag,	the	user	will	asked	if
he/she	would	like	to	view	the	README	file	after	the
installation	has	completed.	If	Yes	is	chosen,	Setup	will	open
the	file,	using	the	default	program	for	the	file	type.	For	this
reason,	the	README	file	should	always	end	with	an	extension
like	.txt,	.wri,	or	.doc.

Note	that	if	Setup	has	to	restart	the	user's	computer	(as	a
result	of	installing	a	file	with	the	flag	restartreplace	or	if
the	AlwaysRestart	[Setup]	section	directive	is	yes),	the
user	will	not	be	given	an	option	to	view	the	README	file.

nocompression
Prevents	the	compiler	from	attempting	to	compress	the	file.
Use	this	flag	on	file	types	that	you	know	can't	benefit	from
compression	(for	example,	JPEG	images)	to	speed	up	the
compilation	process	and	save	a	few	bytes	in	the	resulting
installation.

noencryption
Prevents	the	file	from	being	stored	encrypted.	Use	this	flag	if
you	have	enabled	encryption	(using	the	[Setup]	section
directive	Encryption)	but	want	to	be	able	to	extract	the	file
using	the	[Code]	section	support	function
ExtractTemporaryFile	before	the	user	has	entered	the	correct
password.

noregerror
When	combined	with	either	the	regserver	or	regtypelib
flags,	Setup	will	not	display	any	error	message	if	the
registration	fails.

onlyifdestfileexists
Only	install	the	file	if	a	file	of	the	same	name	already	exists	on
the	user's	system.	This	flag	may	be	useful	if	your	installation	is
a	patch	to	an	existing	installation,	and	you	don't	want	files	to
be	installed	that	the	user	didn't	already	have.

onlyifdoesntexist
Only	install	the	file	if	it	doesn't	already	exist	on	the	user's
system.

overwritereadonly
Always	overwrite	a	read-only	file.	Without	this	flag,	Setup	will
ask	the	user	if	an	existing	read-only	file	should	be	overwritten.

promptifolder
By	default,	when	a	file	being	installed	has	an	older	version
number	(or	older	time	stamp,	when	the	comparetimestamp
flag	is	used)	than	an	existing	file,	Setup	will	not	replace	the
existing	file.	(See	the	Remarks	section	at	the	bottom	of	this
topic	for	more	details.)	When	this	flag	is	used,	Setup	will	ask
the	user	whether	the	file	should	be	replaced,	with	the	default
answer	being	to	keep	the	existing	file.

recursesubdirs
Instructs	the	compiler	or	Setup	to	also	search	for	the	Source
filename/wildcard	in	subdirectories	under	the	Source
directory.

regserver
Register	the	DLL/OCX	file.	With	this	flag	set,	Setup	will	call	the
DllRegisterServer	function	exported	by	the	DLL/OCX	file,	and
the	uninstaller	will	call	DllUnregisterServer	prior	to	removing
the	file.	When	used	in	combination	with	sharedfile,	the
DLL/OCX	file	will	only	be	unregistered	when	the	reference
count	reaches	zero.

On	a	64-bit	mode	install,	the	file	is	assumed	to	be	a	64-bit
image	and	will	be	registered	inside	a	64-bit	process.	You	can
override	this	by	specifying	the	32bit	flag.

See	the	Remarks	at	the	bottom	of	this	topic	for	more
information.

regtypelib
Register	the	type	library	(.tlb).	The	uninstaller	will	unregister
the	type	library	(unless	the	flag	uninsneveruninstall	is
specified).	As	with	the	regserver	flag,	when	used	in
combination	with	sharedfile,	the	file	will	only	be
unregistered	by	the	uninstaller	when	the	reference	count
reaches	zero.

On	a	64-bit	mode	install	running	on	an	x64	edition	of
Windows,	the	type	library	will	be	registered	inside	a	64-bit
process.	You	can	override	this	by	specifying	the	32bit	flag.

Registering	type	libraries	in	64-bit	mode	on	Itanium	editions	of
Windows	is	not	supported.

See	the	Remarks	at	the	bottom	of	this	topic	for	more
information.

replacesameversion
When	this	flag	is	used	and	the	file	already	exists	on	the	user's
system	and	it	has	the	same	version	number	as	the	file	being
installed,	Setup	will	compare	the	files	and	replace	the	existing
file	if	their	contents	differ.

The	default	behavior	(i.e.	when	this	flag	isn't	used)	is	to	not
replace	an	existing	file	with	the	same	version	number.

restartreplace
When	an	existing	file	needs	to	be	replaced,	and	it	is	in	use
(locked)	by	another	running	process,	Setup	will	by	default
display	an	error	message.	This	flag	tells	Setup	to	instead
register	the	file	to	be	replaced	the	next	time	the	system	is
restarted	(by	calling	MoveFileEx	or	by	creating	an	entry	in
WININIT.INI).	When	this	happens,	the	user	will	be	prompted	to
restart	their	computer	at	the	end	of	the	installation	process.

NOTE:	This	flag	has	no	effect	if	the	user	does	not	have
administrative	privileges.	Therefore,	when	using	this	flag,	it	is

recommended	that	you	leave	the	PrivilegesRequired	[Setup]
section	directive	at	the	default	setting	of	admin.

setntfscompression
Instructs	Setup	to	enable	NTFS	compression	on	the	file	(even
if	it	didn't	replace	the	file).	If	it	fails	to	set	the	compression
state	for	any	reason	(for	example,	if	compression	is	not
supported	by	the	file	system),	no	error	message	will	be
displayed.

sharedfile
Specifies	that	the	file	is	shared	among	multiple	applications,
and	should	only	be	removed	at	uninstall	time	if	no	other
applications	are	using	it.	Most	files	installed	to	the	Windows
System	directory	should	use	this	flag,	including	.OCX,	.BPL,
and	.DPL	files.

Windows'	standard	shared	file	reference-counting	mechanism
(located	in	the	registry	under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs)
is	used	to	keep	track	of	how	many	applications	depend	on	the
file.	Each	time	the	file	is	installed,	the	reference	count	for	the
file	is	incremented.	(This	happens	regardless	of	whether	the
installer	actually	replaces	the	file	on	disk.)	When	an
application	using	the	file	is	uninstalled,	the	reference	count	is
decremented.	If	the	count	reaches	zero,	the	file	is	deleted
(with	the	user's	confirmation,	unless	the
uninsnosharedfileprompt	flag	is	also	specified).

If	Setup	is	run	more	than	once,	the	reference	count	for	the	file
will	be	incremented	more	than	once.	The	uninstaller	will
decrement	the	reference	count	the	same	number	of	times,
however,	so	no	references	are	leaked	(provided	the
UninstallLogMode	[Setup]	section	directive	isn't	changed	from
its	default	setting	of	append).

When	this	flag	is	used,	do	not	specify	{syswow64}	in	the
DestDir	parameter;	use	{sys}	instead.	Even	though	{sys}
and	{syswow64}	map	to	the	same	underlying	directory	in	a

32-bit	mode	install,	the	path	name	must	exactly	match	what
every	other	existing	installer	is	using;	otherwise,	a	second
reference	count	for	the	file	would	be	created,	which	could
result	in	the	file	being	removed	prematurely.	If	you	need	to
install	a	shared	file	to	the	32-bit	System	directory	in	a	64-bit
mode	install,	specify	{sys}	in	the	DestDir	parameter	and
additionally	include	the	32bit	flag.

skipifsourcedoesntexist
This	flag	instructs	the	compiler	--	or	Setup,	if	the	external
flag	is	also	used	--	to	silently	skip	over	the	entry	if	the	source
file	does	not	exist,	instead	of	displaying	an	error	message.

solidbreak
When	solid	compression	is	enabled,	this	flag	instructs	the
compiler	to	finalize	the	current	compression	stream	and	begin
a	new	one	before	compressing	the	file(s)	matched	by	Source.
This	allows	Setup	to	seek	to	the	file	instantly	without	having	to
decompress	any	preceding	files	first.	May	be	useful	in	a	large,
multi-component	installation	if	you	find	too	much	time	is	being
spent	decompressing	files	belonging	to	components	that
weren't	selected.

sortfilesbyextension
This	flag	instructs	the	compiler	to	compress	the	found	files
sorted	by	extension	before	it	sorts	by	path	name.	This
potentially	decreases	the	size	of	Setup	if	solid	compression	is
also	used.

sortfilesbyname
This	flag	instructs	the	compiler	to	compress	the	found	files
sorted	by	name	before	it	sorts	by	path	name.	This	potentially
decreases	the	size	of	Setup	if	solid	compression	is	also	used.
If	sortfilesbyextension	is	also	used,	files	are	first	sorted
by	extension.

touch
This	flag	causes	Setup	to	set	the	time/date	stamp	of	the
installed	file(s)	to	that	which	is	specified	by	the	TouchDate	and

TouchTime	[Setup]	section	directives.

This	flag	has	no	effect	if	combined	with	the	external	flag.

uninsnosharedfileprompt
When	uninstalling	the	shared	file,	automatically	remove	the	file
if	its	reference	count	reaches	zero	instead	of	asking	the	user.
Must	be	combined	with	the	sharedfile	flag	to	have	an
effect.

uninsremovereadonly
When	uninstalling	the	file,	remove	any	read-only	attribute	from
the	file	before	attempting	to	delete	it.

uninsrestartdelete
When	this	flag	is	used	and	the	file	is	in	use	at	uninstall	time,
the	uninstaller	will	queue	the	file	to	be	deleted	when	the
system	is	restarted,	and	at	the	end	of	the	uninstallation
process	ask	the	user	if	he/she	wants	to	restart.	This	flag	can
be	useful	when	uninstalling	things	like	shell	extensions	which
cannot	be	programmatically	stopped.	Note	that	administrative
privileges	are	required	for	this	flag	to	have	an	effect.

uninsneveruninstall
Never	remove	the	file.	This	flag	can	be	useful	when	installing
very	common	shared	files	that	shouldn't	be	deleted	under	any
circumstances,	such	as	MFC	DLLs.

Note	that	if	this	flag	is	combined	with	the	sharedfile	flag,
the	file	will	never	be	deleted	at	uninstall	time	but	the	reference
count	will	still	be	properly	decremented.

unsetntfscompression
Instructs	Setup	to	disable	NTFS	compression	on	the	file	(even
if	it	didn't	replace	the	file).	If	it	fails	to	set	the	compression
state	for	any	reason	(for	example,	if	compression	is	not
supported	by	the	file	system),	no	error	message	will	be
displayed.

Example:

Flags:	isreadme

Components	and	Tasks	Parameters

Common	Parameters

Remarks
If	a	file	already	exists	on	the	user's	system,	it	by	default	will	be	replaced
according	to	the	following	rules:

1.	 If	the	existing	file	is	an	older	version	than	the	file	being	installed	(as
determined	by	the	files'	version	info),	the	existing	file	will	be
replaced.

2.	 If	the	existing	file	is	the	same	version	as	the	file	being	installed,	the
existing	file	will	not	be	replaced,	except	if	the
replacesameversion	flag	is	used	and	the	content	of	the	two
files	differs.

3.	 If	the	existing	file	is	a	newer	version	than	the	file	being	installed,	or
if	the	existing	file	has	version	info	but	the	file	being	installed	does
not,	the	existing	file	will	not	be	replaced.

4.	 If	the	existing	file	does	not	have	version	info,	it	will	be	replaced.

Certain	flags	such	as	onlyifdoesntexist,	ignoreversion,	and
promptifolder	alter	the	aforementioned	rules.

If	Setup	is	unable	to	replace	an	existing	file	because	it	is	in	use	by
another	process,	it	will	make	up	to	4	additional	attempts	to	replace	the
file,	delaying	one	second	before	each	attempt.	If	all	attempts	fail,	an
error	message	will	be	displayed.

Setup	registers	all	files	with	the	regserver	or	regtypelib	flags	as
the	last	step	of	installation.	However,	if	the	[Setup]	section	directive
AlwaysRestart	is	yes,	or	if	there	are	files	with	the
restartreplace	flag,	all	files	get	registered	on	the	next	reboot	(by
creating	an	entry	in	Windows'	RunOnce	registry	key).

When	files	with	a	.HLP	extension	(Windows	help	files)	are	uninstalled,
the	corresponding	.GID	and	.FTS	files	are	automatically	deleted	as
well.	Similarly,	when	a	.CHM	(HTML	Help)	file	is	deleted,	any	.CHW
(generated	index)	file	is	automatically	deleted.

[Icons]	section
This	optional	section	defines	any	shortcuts	Setup	is	to	create	in	the
Start	Menu	and/or	other	locations,	such	as	the	desktop.

Here	is	an	example	of	an	[Icons]	section:

[Icons]

Name:	"{group}\My	Program";	Filename:	"{app}\MYPROG.EXE";	WorkingDir:	"{app}"

Name:	"{group}\Uninstall	My	Program";	Filename:	"{uninstallexe}"

The	following	is	a	list	of	the	supported	parameters:

Name		(Required)

The	name	and	location	of	the	shortcut	to	create.	Any	of	the	shell
folder	constants	or	directory	constants	may	be	used	in	this
parameter.

Keep	in	mind	that	shortcuts	are	stored	as	literal	files	so	any
characters	not	allowed	in	normal	filenames	can't	be	used	here.
Also,	because	it's	not	possible	to	have	two	files	with	the	same
name,	it's	therefore	not	possible	to	have	two	shortcuts	with	the
same	name.

Examples:

Name:	"{group}\My	Program"

Name:	"{group}\Subfolder\My	Program"

Name:	"{commondesktop}\My	Program"

Name:	"{commonprograms}\My	Program"

Name:	"{commonstartup}\My	Program"

Filename		(Required)

The	command	line	filename	for	the	shortcut,	which	normally	begins
with	a	directory	constant.

In	addition	to	file	and	folder	names,	URLs	(web	site	addresses)
may	also	be	specified.	When	a	URL	is	specified,	Setup	will	create
an	"Internet	Shortcut"	(.url)	file,	and	ignore	the	Parameters,

WorkingDir,	HotKey,	and	Comment	parameters.

On	64-bit	Windows,	note	that	the	{sys}	constant	will	map	to	the
native	64-bit	System	directory	when	the	shortcut	is	launched	by	a
64-bit	process,	such	as	Windows	Explorer.	This	is	true	regardless
of	whether	the	install	is	running	in	64-bit	mode.	To	create	a
shortcut	that	always	points	to	the	32-bit	System	directory,	use
{syswow64}	instead.	(The	same	applies	to	the	WorkingDir	and
IconFilename	parameters.)

Examples:

Filename:	"{app}\MYPROG.EXE"

Filename:	"{uninstallexe}"

Filename:	"{app}\FolderName"

Filename:	"http://www.example.com/"

Parameters

Optional	command	line	parameters	for	the	shortcut,	which	can
include	constants.

Example:

Parameters:	"/play	filename.mid"

WorkingDir

The	working	(or	Start	In)	directory	for	the	shortcut,	which	specifies
the	initial	current	directory	for	the	program.	This	parameter	can
include	constants.

If	this	parameter	is	not	specified	or	is	blank,	Setup	will	try	to	extract
a	directory	name	from	the	Filename	parameter.	If	that	fails
(unlikely),	the	working	directory	will	be	set	to	{sys}.

Example:

WorkingDir:	"{app}"

HotKey

The	hot	key	(or	"shortcut	key")	setting	for	the	shortcut,	which	is	a
combination	of	keys	with	which	the	program	can	be	started.

Note:	If	you	change	the	shortcut	key	and	reinstall	the	application,
Windows	may	continue	to	recognize	old	shortcut	key(s)	until	you
log	off	and	back	on	or	restart	the	system.

Example:

HotKey:	"ctrl+alt+k"

Comment

Specifies	the	Comment	(or	"description")	field	of	the	shortcut,
which	determines	the	popup	hint	for	it.	This	parameter	can	include
constants.

Example:

Comment:	"This	is	my	program"

IconFilename

The	filename	of	a	custom	icon	(located	on	the	user's	system)	to	be
displayed.	This	can	be	an	executable	image	(.exe,	.dll)	containing
icons	or	a	.ico	file.	If	this	parameter	is	not	specified	or	is	blank,
Windows	will	use	the	file's	default	icon.	This	parameter	can	include
constants.

Example:

IconFilename:	"{app}\myicon.ico"

Note:	when	Setup	is	running	on	64-bit	Windows,	it	will
automatically	replace	{pf32}\	in	the	filename	with
'%ProgramFiles(x86)%\'	to	work	around	a	bug	in	64-bit	Windows:
64-bit	Windows	replaces	{pf32}\	with	'%ProgramFiles%\'	which
is	incorrect.

IconIndex

Zero-based	index	of	the	icon	to	use	in	the	file	specified	by

IconFilename.	Defaults	to	0.

If	IconIndex	is	non-zero	and	IconFilename	is	not	specified	or
is	blank,	it	will	act	as	if	IconFilename	is	the	same	as	Filename.

Example:

IconIndex:	0

AppUserModelID

Specifies	the	Windows	7	Application	User	Model	ID	for	the
shortcut.	Ignored	on	earlier	Windows	versions.	This	parameter	can
include	constants.

Example:

AppUserModelID:	"MyCompany.MyProg"

Flags

This	parameter	is	a	set	of	extra	options.	Multiple	options	may	be
used	by	separating	them	by	spaces.	The	following	options	are
supported:

closeonexit
When	this	flag	is	set,	Setup	will	set	the	"Close	on	Exit"
property	of	the	shortcut.	This	flag	only	has	an	effect	if	the
shortcut	points	to	an	MS-DOS	application	(if	it	has	a	.pif
extension,	to	be	specific).	If	neither	this	flag	nor	the
dontcloseonexit	flags	are	specified,	Setup	will	not	attempt
to	change	the	"Close	on	Exit"	property.

createonlyiffileexists
When	this	flag	is	set,	the	installer	will	only	try	to	create	the
icon	if	the	file	specified	by	the	Filename	parameter	exists.

dontcloseonexit
Same	as	closeonexit,	except	it	causes	Setup	to	uncheck
the	"Close	on	Exit"	property.

excludefromshowinnewinstall

Prevents	the	Start	menu	entry	for	the	new	shortcut	from
receiving	a	highlight	on	Windows	7	and	additionally	prevents
the	new	shortcut	from	being	automatically	pinned	the	Start
screen	on	Windows	8	(or	later).	Ignored	on	earlier	Windows
versions.

foldershortcut
Creates	a	special	type	of	shortcut	known	as	a	"Folder
Shortcut".	Normally,	when	a	shortcut	to	a	folder	is	present	on
the	Start	Menu,	clicking	the	item	causes	a	separate	Explorer
window	to	open	showing	the	target	folder's	contents.	In
contrast,	a	"folder	shortcut"	will	show	the	contents	of	the	target
folder	as	a	submenu	instead	of	opening	a	separate	window.

This	flag	is	currently	ignored	when	running	on	Windows	7	(or
later),	as	folder	shortcuts	do	not	expand	properly	on	the	Start
Menu	anymore.	It	is	not	known	whether	this	is	a	bug	in
Windows	7	or	a	removed	feature.

When	this	flag	is	used,	a	folder	name	must	be	specified	in	the
Filename	parameter.	Specifying	the	name	of	a	file	will	result
in	a	non-working	shortcut.

preventpinning
Prevents	a	Start	menu	entry	from	being	pinnable	to	Taskbar	or
the	Start	Menu	on	Windows	7	(or	later).	This	also	makes	the
entry	ineligible	for	inclusion	in	the	Start	menu's	Most
Frequently	Used	(MFU)	list.	Ignored	on	earlier	Windows
versions.

runmaximized
When	this	flag	is	set,	Setup	sets	the	"Run"	setting	of	the	icon
to	"Maximized"	so	that	the	program	will	be	initially	maximized
when	it	is	started.

runminimized
When	this	flag	is	set,	Setup	sets	the	"Run"	setting	of	the	icon
to	"Minimized"	so	that	the	program	will	be	initially	minimized
when	it	is	started.

uninsneveruninstall
Instructs	the	uninstaller	not	to	delete	the	icon.

useapppaths
When	this	flag	is	set,	specify	just	a	filename	(no	path)	in	the
Filename	parameter,	and	Setup	will	retrieve	the	pathname
from	the
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths"	registry	key	and	prepend	it	to	the	filename
automatically.

Example:

Flags:	runminimized

Components	and	Tasks	Parameters

Common	Parameters

[INI]	section
This	optional	section	defines	any	.INI	file	entries	you	would	like	Setup
to	set	on	the	user's	system.

Here	is	an	example	of	an	[INI]	section:

[INI]

Filename:	"MyProg.ini";	Section:	"InstallSettings";	Flags:	uninsdeletesection

Filename:	"MyProg.ini";	Section:	"InstallSettings";	Key:	"InstallPath";	String:	"{app}"

The	following	is	a	list	of	the	supported	parameters:

Filename		(Required)

The	name	of	the	.INI	file	you	want	Setup	to	modify,	which	can
include	constants.	If	this	parameter	does	not	include	a	path,	it	will
write	to	the	Windows	directory.	If	this	parameter	is	blank,	it	will
write	to	WIN.INI	in	the	Windows	directory.

Example:

Filename:	"{app}\MyProg.ini"

Section		(Required)

The	name	of	the	section	in	which	to	create	the	entry,	which	can
include	constants.

Example:

Section:	"Settings"

Key

The	name	of	the	key	to	set,	which	can	include	constants.	If	this
parameter	is	not	specified	or	is	blank,	no	key	is	created.

Example:

Key:	"Version"

String

The	value	to	assign	to	the	key,	which	can	use	constants.	If	this
parameter	is	not	specified,	no	key	is	created.

Example:

String:	"1.0"

Flags

This	parameter	is	a	set	of	extra	options.	Multiple	options	may	be
used	by	separating	them	by	spaces.	The	following	options	are
supported:

createkeyifdoesntexist
Assign	to	the	key	only	if	the	key	doesn't	already	exist	in	the
file.	If	this	flag	is	not	specified,	the	key	will	be	set	regardless	of
whether	it	already	existed.

uninsdeleteentry
Delete	the	entry	when	the	program	is	uninstalled.	This	can	be
combined	with	the	uninsdeletesectionifempty	flag.

uninsdeletesection
When	the	program	is	uninstalled,	delete	the	entire	section	in
which	the	entry	is	located.	It	obviously	wouldn't	be	a	good	idea
to	use	this	on	a	section	that	is	used	by	Windows	itself	(like
some	of	the	sections	in	WIN.INI).	You	should	only	use	this	on
sections	private	to	your	application.

uninsdeletesectionifempty
Same	as	uninsdeletesection,	but	deletes	the	section	only
if	there	are	no	keys	left	in	it.	This	can	be	combined	with	the
uninsdeleteentry	flag.

Example:

Flags:	uninsdeleteentry

Components	and	Tasks	Parameters

Common	Parameters

[InstallDelete]	section
This	optional	section	is	identical	in	format	to	the	[UninstallDelete]
section,	except	its	entries	are	processed	as	the	first	step	of	installation.

[Languages]	section
Inno	Setup	supports	multilingual	installations.	The	[Languages]	section
defines	the	languages	to	make	available	to	the	Setup	program.

Setup	determines	the	default	language	to	use	for	its	messages	in	the
following	order:

Non-Unicode	Inno	Setup:

1.	 It	searches	for	a	language	whose	LanguageID	setting	(normally
specified	in	the	[LangOptions]	section	of	the	language's	.isl	file)
matches	both	the	primary	language	identifier	and	sublanguage
identifier	of	the	current	user's	UI	language	or	locale	(depending	on
the	setting	of	LanguageDetectionMethod),	and	whose
LanguageCodePage	setting	matches	the	system	code	page.

2.	 If	no	match	is	found,	it	searches	for	just	a	primary	language
identifier	and	code	page	match.	If	two	or	more	available	languages
have	the	same	primary	language	identifier	and	code	page,	it
selects	the	first	one	listed	in	the	[Languages]	section.

3.	 If	no	match	is	found,	it	defaults	to	the	first	language	specified	in	the
[Languages]	section.

Unicode	Inno	Setup:

1.	 It	searches	for	a	language	whose	LanguageID	setting	(normally
specified	in	the	[LangOptions]	section	of	the	language's	.isl	file)
matches	both	the	primary	language	identifier	and	sublanguage
identifier	of	the	current	user's	UI	language	or	locale	(depending	on
the	setting	of	LanguageDetectionMethod).

2.	 If	no	match	is	found,	it	searches	for	just	a	primary	language
identifier	match.	If	two	or	more	available	languages	have	the	same
primary	language	identifier,	it	selects	the	first	one	listed	in	the
[Languages]	section.
Exception:	Simplified	Chinese	is	excluded	from	consideration	in
this	step	if	the	user's	UI	language	or	locale	(depending	on	the
setting	of	LanguageDetectionMethod)	is	Traditional	Chinese,	and
vice	versa.

3.	 If	no	match	is	found,	it	defaults	to	the	first	language	specified	in	the
[Languages]	section.

If	the	ShowLanguageDialog	[Setup]	section	directive	is	set	to	yes	(the
default),	a	Select	Language	dialog	will	be	displayed	which	gives	the
user	an	opportunity	to	override	the	language	Setup	chose.	On	non
Unicode	Inno	Setup	languages	that	can't	be	displayed	properly	on	the
user's	system	will	be	hidden.	See	the	[LangOptions]	section	help	topic
for	details.

The	following	is	an	example	of	a	[Languages]	section.	It	defines	two
languages:	English,	based	on	the	standard	Default.isl	file,	and	Dutch,
based	on	a	third-party	translation.

[Languages]

Name:	"en";	MessagesFile:	"compiler:Default.isl"

Name:	"nl";	MessagesFile:	"compiler:Languages\Dutch.isl"

Name		(Required)

The	internal	name	of	the	language,	which	you	can	set	to	anything
you	like.	This	can	used	as	a	prefix	on	[LangOptions]	or	[Messages]
section	entries	to	have	the	entries	apply	to	only	one	language.	The
{language}	constant	returns	the	internal	name	of	the	selected
language.

Example:

Name:	"en"

MessagesFile		(Required)

Specifies	the	name(s)	of	file(s)	to	read	the	default	messages	from.
The	file(s)	must	be	located	in	your	installation's	source	directory
when	running	the	Setup	Compiler,	unless	a	fully	qualified
pathname	is	specified	or	the	pathname	is	prefixed	by	"compiler:",
in	which	case	it	looks	for	the	file	in	the	Compiler	directory.

When	multiple	files	are	specified,	they	are	read	in	the	order	they
are	specified,	thus	the	last	message	file	overrides	any	messages	in

previous	files.

See	the	[Messages]	section	help	topic	for	details	on	the	format	of
.isl	files.

Examples:

MessagesFile:	"compiler:Dutch.isl"

MessagesFile:	"compiler:Default.isl,compiler:MyMessages.isl"

LicenseFile

Specifies	the	name	of	an	optional	license	agreement	file,	in	.txt	or
.rtf	(rich	text)	format,	which	is	displayed	before	the	user	selects	the
destination	directory	for	the	program.	This	file	must	be	located	in
your	installation's	source	directory	when	running	the	Setup
Compiler,	unless	a	fully	qualified	pathname	is	specified	or	the
pathname	is	prefixed	by	"compiler:",	in	which	case	it	looks	for	the
file	in	the	Compiler	directory.

Example:

LicenseFile:	"license-Dutch.txt"

InfoBeforeFile

Specifies	the	name	of	an	optional	"readme"	file,	in	.txt	or	.rtf	(rich
text)	format,	which	is	displayed	before	the	user	selects	the
destination	directory	for	the	program.	This	file	must	be	located	in
your	installation's	source	directory	when	running	the	Setup
Compiler,	unless	a	fully	qualified	pathname	is	specified	or	the
pathname	is	prefixed	by	"compiler:",	in	which	case	it	looks	for	the
file	in	the	Compiler	directory.

Example:

InfoBeforeFile:	"infobefore-Dutch.txt"

InfoAfterFile

Specifies	the	name	of	an	optional	"readme"	file,	in	.txt	or	.rtf	(rich

text)	format,	which	is	displayed	after	a	successful	install.	This	file
must	be	located	in	your	installation's	source	directory	when	running
the	Setup	Compiler,	unless	a	fully	qualified	pathname	is	specified
or	the	pathname	is	prefixed	by	"compiler:",	in	which	case	it	looks
for	the	file	in	the	Compiler	directory.

This	differs	from	isreadme	files	in	that	this	text	is	displayed	as	a
page	of	the	wizard,	instead	of	in	a	separate	Notepad	window.

Example:

InfoAfterFile:	"infoafter-Dutch.txt"

[Messages]	section
A	[Messages]	section	is	used	to	define	the	messages	displayed	by	the
Setup	program	and	uninstaller.	Normally,	you	need	not	create	a
[Messages]	section	in	your	script	file,	since	all	messages	are,	by
default,	pulled	in	from	the	file	Default.isl	included	with	Inno	Setup	(or
whichever	file	is	specified	by	a	[Languages]	section	entry).

However,	particular	messages	can	be	overridden	by	creating	a
[Messages]	section	in	your	script	file.	To	do	this,	first	you	will	need	to
know	the	ID	of	the	message	you	want	to	change.	This	can	be	easily
found	by	searching	Default.isl.	For	example,	say	you	wanted	to	change
the	"&Next	>"	button	on	the	wizard	to	read	"&Forward	>".	The	ID	of	this
message	is	"ButtonNext",	so	you	would	create	a	[Messages]	section
like	this:

[Messages]

ButtonNext=&Forward	>

Some	messages	take	arguments	such	as	%1	and	%2.	You	can
rearrange	the	order	of	the	arguments	(i.e.	move	the	%2	before	a	%1)
and	also	duplicate	arguments	if	needed	(i.e.	"%1	...	%1	%2").	On
messages	with	arguments,	use	two	consecutive	"%"	characters	to
embed	a	single	"%".	"%n"	creates	a	line	break.

If	you	wish	to	translate	all	of	Inno	Setup's	text	to	another	language,
instead	of	modifying	Default.isl	or	overriding	each	message	in	every
script	you	create,	make	a	copy	of	Default.isl	with	another	name	like
MyTranslation.isl.	On	any	installation	you	wish	to	use	MyTranslation.isl,
create	a	[Languages]	section	entry	pointing	to	the	file.

In	cases	where	there	are	multiple	[Languages]	section	entries,
specifying	a	[Messages]	section	entry	in	your	script	(as	opposed	to	an
.isl	file)	will	by	default	override	that	message	for	all	languages.	To	apply
a	[Messages]	section	entry	to	only	one	language,	prefix	it	with	the
language's	internal	name	followed	by	a	period.	For	example:

en.ButtonNext=&Forward	>

Special-purpose	IDs
The	special-purpose	BeveledLabel	message	can	be	used	to	specify
a	line	of	text	that	is	shown	in	the	lower	left	corner	of	the	wizard	window
and	uninstaller	window.	The	following	is	an	example:

[Messages]

BeveledLabel=Inno	Setup

[CustomMessages]	section
A	[CustomMessages]	section	is	used	to	define	the	custom	message
values	for	{cm:...}	constants.	See	the	Constants	documentation	for
more	information.

An	example	of	a	task	with	a	description	taken	from	the
[CustomMessages]	section	using	a	{cm:...}	constant:

[CustomMessages]

CreateDesktopIcon=Create	a	&desktop	icon

[Tasks]

Name:	desktopicon;	Description:	"{cm:CreateDesktopIcon}"

Messages	may	take	arguments,	from	%1	up	to	%9.	You	can	rearrange
the	order	of	the	arguments	(i.e.	move	the	%2	before	a	%1)	and	also
duplicate	arguments	if	needed	(i.e.	"%1	...	%1	%2").	On	messages	with
arguments,	use	two	consecutive	"%"	characters	to	embed	a	single	"%".
"%n"	creates	a	line	break.

In	cases	where	there	are	multiple	[Languages]	section	entries,
specifying	a	[CustomMessages]	section	entry	in	your	script	(as
opposed	to	an	.isl	file)	will	by	default	override	that	message	for	all
languages.	To	apply	a	[CustomMessages]	section	entry	to	only	one
language,	prefix	it	with	the	language's	internal	name	followed	by	a
period.	For	example:

nl.CreateDesktopIcon=Maak	een	snelkoppeling	op	het	&bureaublad

Currently,	the	.isl	files	for	all	languages	that	come	with	Inno	Setup	have
the	following	custom	messages	defined	and	translated	for	each
language	(shown	here	with	their	English	values):

NameAndVersion=%1	version	%2

AdditionalIcons=Additional	icons:

CreateDesktopIcon=Create	a	&desktop	icon

CreateQuickLaunchIcon=Create	a	&Quick	Launch	icon

ProgramOnTheWeb=%1	on	the	Web

UninstallProgram=Uninstall	%1

LaunchProgram=Launch	%1

AssocFileExtension=&Associate	%1	with	the	%2	file	extension

AssocingFileExtension=Associating	%1	with	the	%2	file	extension...

AutoStartProgramGroupDescription=Startup:

AutoStartProgram=Automatically	start	%1

AddonHostProgramNotFound=%1	could	not	be	located	in	the	folder	you	selected.%n%nDo	you	want	to	continue	anyway?

You	may	use	these	predefined	custom	messages	in	your	own	script.	An
example	which	uses	UninstallProgram:

[Icons]

Name:	"{group}\{cm:UninstallProgram,My	Program}";	Filename:	"{uninstallexe}"

[LangOptions]	section
A	[LangOptions]	section	is	used	to	define	the	language-specific
settings,	such	as	fonts,	used	by	the	Setup	program	and	uninstaller.
Normally,	you	need	not	create	a	[LangOptions]	section	in	your	script
file,	since	the	language-specific	settings	are,	by	default,	pulled	in	from
the	file	Default.isl	included	with	Inno	Setup	(or	whichever	file	is
specified	by	a	[Languages]	section	entry).

The	following	is	an	example	of	a	[LangOptions]	section.	(The
settings	listed	below	are	the	defaults.)

[LangOptions]

LanguageName=English

LanguageID=$0409

LanguageCodePage=0

DialogFontName=

DialogFontSize=8

WelcomeFontName=Verdana

WelcomeFontSize=12

TitleFontName=Arial

TitleFontSize=29

CopyrightFontName=Arial

CopyrightFontSize=8

RightToLeft=no

LanguageName	is	the	native	name	of	the	language	(so	not	the	English
name).	It	is	displayed	in	the	list	of	available	languages	on	the	Select
Language	dialog	in	a	multilingual	installation.	It	is	internally	stored	as	a
Unicode	string	and	displayed	as	such.	To	embed	Unicode	characters,
use	"<nnnn>",	where	"nnnn"	is	the	4-digit	hexadecimal	Unicode
character	code.	You	can	find	Unicode	character	codes	of	characters
using	the	Character	Map	accessory	included	with	Windows	2000	and
later.

LanguageID	is	the	numeric	"language	identifier"	of	the	language.	Refer
to	the	list	of	valid	language	identifiers	on	MSDN .	This,	along	with
LanguageCodePage,	is	used	for	the	purpose	of	auto-detecting	the
most	appropriate	language	to	use	by	default,	so	be	sure	it	is	set

http://msdn.microsoft.com/en-us/library/dd318693.aspx

correctly.	It	should	always	begin	with	a	"$"	sign,	since	language
identifiers	are	in	hexadecimal.	If	no	language	identifier	currently	exists
for	the	language,	set	this	to	zero.

Non	Unicode	Inno	Setup	LanguageCodePage:
LanguageCodePage	specifies	the	"code	page"	(character	set)	needed
for	Setup	to	display	the	language.	When	auto-detecting	the	most
appropriate	language	to	use	by	default,	it	only	considers	languages
whose	LanguageCodePage	values	match	the	system	code	page.
In	addition,	when	populating	the	list	of	available	languages	on	the
Select	Language	dialog	in	a	multilingual	installation,	it	likewise	only
considers	languages	whose	LanguageCodePage	values	match	the
system	code	page	(except	if	ShowUndisplayableLanguages	is	set).	The
goal	of	this	is	to	hide	languages	that	can't	be	displayed	properly	on	the
user's	system.	For	example,	Russian	text	can't	be	displayed	properly
unless	the	code	page	is	1251,	so	there	is	little	reason	to	list	Russian	as
an	option	if	the	system	is	running	in	a	different	code	page.
If	LanguageCodePage	is	set	to	0,	the	language	will	always	be
considered,	regardless	of	the	system	code	page.	It	makes	sense	to	use
0	on	languages	that	contain	pure	ASCII,	such	as	English,	since	ASCII
is	identical	across	all	code	pages.

Unicode	Inno	Setup	LanguageCodePage:
LanguageCodePage	specifies	the	"code	page"	(character	set)	needed
for	the	compiler	to	convert	the	text	in	the	language's	.isl	file	to	Unicode.
Note	that	text	in	the	.iss	file	such	as	a	[CustomMessages]	entry	for	the
language	is	not	converted	and	should	be	in	Unicode	already.
If	LanguageCodePage	is	set	to	0,	the	system	code	page	will	be	used.

DialogFontName	and	DialogFontSize	specify	the	font	name	and	point
size	to	use	in	dialogs.	If	no	DialogFontName	setting	is	present,	then
the	value	of	the	DefaultDialogFontName	[Setup]	section	directive	is
used	for	the	font	name.	If	the	specified	font	name	does	not	exist	on	the
user's	system	or	is	an	empty	string,	8-point	Microsoft	Sans	Serif	or	MS
Sans	Serif	will	be	substituted.

WelcomeFontName	and	WelcomeFontSize	specify	the	font	name
and	point	size	to	use	at	the	top	of	the	Welcome	and	Setup	Completed

wizard	pages.	If	the	specified	font	name	does	not	exist	on	the	user's
system	or	is	an	empty	string,	12-point	Microsoft	Sans	Serif	or	MS	Sans
Serif	will	be	substituted.

TitleFontName	and	TitleFontSize	specify	the	font	name	and	point	size
to	use	when	displaying	the	application	name	on	the	background
window	(only	visible	when	WindowVisible=yes).	If	the	specified	font
name	does	not	exist	on	the	user's	system,	29-point	Arial	will	be
substituted.	If	the	specified	font	name	is	an	empty	string,	29-point
Microsoft	Sans	Serif	or	MS	Sans	Serif	will	be	substituted.

CopyrightFontName	and	CopyrightFontSize	specify	the	font	name
and	point	size	to	use	when	displaying	the	AppCopyright	message	on
the	background	window	(only	visible	when	WindowVisible=yes).	If
the	specified	font	name	does	not	exist	on	the	user's	system,	8-point
Arial	will	be	substituted.	If	the	specified	font	name	is	an	empty	string,	8-
point	Microsoft	Sans	Serif	or	MS	Sans	Serif	will	be	substituted.

RightToLeft	specifies	whether	the	language	is	written	from	right	to	left.
If	set	to	yes,	text	alignment	and	reading	order	will	be	reversed	(with
some	intentional	exceptions),	and	controls	will	be	arranged	from	right	to
left	("flipped").

In	cases	where	there	are	multiple	[Languages]	section	entries,
specifying	a	[LangOptions]	section	directive	in	your	script	(as	opposed
to	an	.isl	file)	will	by	default	override	that	directive	for	all	languages.	To
apply	a	[LangOptions]	section	directive	to	only	one	language,	prefix	it
with	the	language's	internal	name	followed	by	a	period.	For	example:

en.LanguageName=English

[Registry]	section
This	optional	section	defines	any	registry	keys/values	you	would	like
Setup	to	create,	modify,	or	delete	on	the	user's	system.

By	default,	registry	keys	and	values	created	by	Setup	are	not	deleted	at
uninstall	time.	If	you	want	the	uninstaller	to	delete	keys	or	values,	you
must	include	one	of	the	uninsdelete*	flags	described	below.

The	following	is	an	example	of	a	[Registry]	section.

[Registry]

Root:	HKCU;	Subkey:	"Software\My	Company";	Flags:	uninsdeletekeyifempty

Root:	HKCU;	Subkey:	"Software\My	Company\My	Program";	Flags:	uninsdeletekey

Root:	HKLM;	Subkey:	"Software\My	Company";	Flags:	uninsdeletekeyifempty

Root:	HKLM;	Subkey:	"Software\My	Company\My	Program";	Flags:	uninsdeletekey

Root:	HKLM;	Subkey:	"Software\My	Company\My	Program\Settings";	ValueType:	string;	ValueName:	"InstallPath";	ValueData:	"{app}"

The	following	is	a	list	of	the	supported	parameters:

Root		(Required)

The	root	key.	This	must	be	one	of	the	following	values:

HKCR (HKEY_CLASSES_ROOT)
HKCU (HKEY_CURRENT_USER)
HKLM (HKEY_LOCAL_MACHINE)
HKU (HKEY_USERS)
HKCC (HKEY_CURRENT_CONFIG)

The	values	may	have	a	suffix	of	32	or	64.	Root	key	values	with	a
suffix	of	32	(for	example,	HKLM32)	map	to	the	32-bit	view	of	the
registry;	root	key	values	with	a	suffix	of	64	(for	example,	HKLM64)
map	to	the	64-bit	view	of	the	registry.

Root	key	values	with	a	suffix	of	64	can	only	be	used	when	Setup	is
running	on	64-bit	Windows,	otherwise	an	error	will	occur.	On	an
installation	supporting	both	32-	and	64-bit	architectures,	it	is
possible	to	avoid	the	error	by	adding	a	Check:	IsWin64
parameter,	which	will	cause	the	entry	to	be	silently	skipped	when

running	on	32-bit	Windows.

A	root	key	value	without	a	suffix	(for	example,	HKLM)	is	equivalent
to	the	value	with	a	suffix	of	32	(for	example,	HKLM32)	unless	the
install	is	running	in	64-bit	mode,	in	which	case	it	is	equivalent	to
the	value	with	a	suffix	of	64	(for	example,	HKLM64).

Example:

Root:	HKCU

Subkey		(Required)

The	subkey	name,	which	can	include	constants.

Example:

Subkey:	"Software\My	Company\My	Program"

ValueType

The	data	type	of	the	value.	This	must	be	one	of	the	following:

none

string

expandsz

multisz

dword

qword

binary

If	none	(the	default	setting)	is	specified,	Setup	will	create	the	key
but	not	a	value.	In	this	case	the	ValueName	and	ValueData
parameters	are	ignored.
If	string	is	specified,	Setup	will	create	a	string	(REG_SZ)	value.
If	expandsz	is	specified,	Setup	will	create	an	expand-string
(REG_EXPAND_SZ)	value.
If	multisz	is	specified,	Setup	will	create	an	multi-string
(REG_MULTI_SZ)	value.
If	dword	is	specified,	Setup	will	create	a	32-bit	integer
(REG_DWORD)	value.

If	qword	is	specified,	Setup	will	create	a	64-bit	integer
(REG_QWORD)	value.
If	binary	is	specified,	Setup	will	create	a	binary	(REG_BINARY)
value.

Example:

ValueType:	string

ValueName

The	name	of	the	value	to	create,	which	can	include	constants.	If
this	is	blank,	it	will	write	to	the	"Default"	value.	If	the	ValueType
parameter	is	set	to	none,	this	parameter	is	ignored.

Example:

ValueName:	"Version"

ValueData

The	data	for	the	value.	If	the	ValueType	parameter	is	string,
expandsz,	or	multisz,	this	is	a	string	that	can	include	constants.
If	the	data	type	is	dword	or	qword,	this	can	be	a	decimal	integer
(e.g.	"123"),	a	hexadecimal	integer	(e.g.	"$7B"),	or	a	constant
which	resolves	to	an	integer.	If	the	data	type	is	binary,	this	is	a
sequence	of	hexadecimal	bytes	in	the	form:	"00	ff	12	34".	If	the
data	type	is	none,	this	is	ignored.

On	a	string,	expandsz,	or	multisz	type	value,	you	may	use	a
special	constant	called	{olddata}	in	this	parameter.	{olddata}
is	replaced	with	the	previous	data	of	the	registry	value.	The
{olddata}	constant	can	be	useful	if	you	need	to	append	a	string
to	an	existing	value,	for	example,	{olddata};{app}.	If	the	value
does	not	exist	or	the	existing	value	isn't	a	string	type,	the	{olddata}
constant	is	silently	removed.	{olddata}	will	also	be	silently	removed
if	the	value	being	created	is	a	multisz	type	but	the	existing	value
is	not	a	multi-string	type	(i.e.	it's	REG_SZ	or	REG_EXPAND_SZ),
and	vice	versa.

On	a	multisz	type	value,	you	may	use	a	special	constant	called
{break}	in	this	parameter	to	embed	line	breaks	(nulls).

Example:

ValueData:	"1.0"

Permissions

Specifies	additional	permissions	to	grant	in	the	registry	key's	ACL
(access	control	list).	It	is	not	recommended	that	you	use	this
parameter	if	you	aren't	familiar	with	ACLs	or	why	you	would	need
to	change	them,	because	misusing	it	could	negatively	impact
system	security.

For	this	parameter	to	have	an	effect	the	current	user	must	be	able
to	change	the	permissions	on	the	registry	key.	In	the	event	these
conditions	are	not	met,	no	error	message	will	be	displayed,	and	the
permissions	will	not	be	set.

This	parameter	should	only	be	used	on	registry	keys	private	to
your	application.	Never	change	the	ACLs	on	a	top-level	key	like
HKEY_LOCAL_MACHINE\SOFTWARE,	otherwise	you	can	open
up	security	holes	on	your	users'	systems.

The	specified	permissions	are	set	regardless	of	whether	the
registry	key	existed	prior	to	installation.	The	permissions	are	not
set	if	ValueType	is	none	and	the	deletekey	flag	or
deletevalue	flag	is	used.

On	Itanium	editions	of	Windows,	this	parameter	is	only	effectual	on
32-bit	registry	keys.	(There	is	no	such	limitation	on	x64	editions	of
Windows.)

This	parameter	can	include	one	or	more	space	separated	values	in
the	format:

<user	or	group	identifier>-<access	type>

The	following	access	types	are	supported	for	the	[Registry]
section:

full
Grants	"Full	Control"	permission,	which	is	the	same	as
modify	(see	below),	but	additionally	allows	the	specified
user/group	to	take	ownership	of	the	registry	key	and	change
its	permissions.	Use	sparingly;	generally,	modify	is	sufficient.

modify
Grants	"Modify"	permission,	which	allows	the	specified
user/group	to	read,	create,	modify,	and	delete	values	and
subkeys.

read
Grants	"Read"	permission,	which	allows	the	specified
user/group	to	read	values	and	subkeys.

Example:

Permissions:	users-modify

Flags

This	parameter	is	a	set	of	extra	options.	Multiple	options	may	be
used	by	separating	them	by	spaces.	The	following	options	are
supported:

createvalueifdoesntexist
When	this	flag	is	specified,	Setup	will	create	the	value	only	if	a
value	of	the	same	name	doesn't	already	exist.	This	flag	has	no
effect	if	the	data	type	is	none,	or	if	you	specify	the
deletevalue	flag.

deletekey
When	this	flag	is	specified,	Setup	will	first	try	deleting	the
entire	key	if	it	exists,	including	all	values	and	subkeys	in	it.	If
ValueType	is	not	none,	it	will	then	create	a	new	key	and
value.

To	prevent	disasters,	this	flag	is	ignored	during	installation	if
Subkey	is	blank	or	contains	only	backslashes.

deletevalue

When	this	flag	is	specified,	Setup	will	first	try	deleting	the
value	if	it	exists.	If	ValueType	is	not	none,	it	will	then	create
the	key	if	it	didn't	already	exist,	and	the	new	value.

dontcreatekey
When	this	flag	is	specified,	Setup	will	not	attempt	to	create	the
key	or	any	value	if	the	key	did	not	already	exist	on	the	user's
system.	No	error	message	is	displayed	if	the	key	does	not
exist.

Typically	this	flag	is	used	in	combination	with	the
uninsdeletekey	flag,	for	deleting	keys	during	uninstallation
but	not	creating	them	during	installation.

noerror
Don't	display	an	error	message	if	Setup	fails	to	create	the	key
or	value	for	any	reason.

preservestringtype
This	is	only	applicable	when	the	ValueType	parameter	is
string	or	expandsz.	When	this	flag	is	specified	and	the
value	did	not	already	exist	or	the	existing	value	isn't	a	string
type	(REG_SZ	or	REG_EXPAND_SZ),	it	will	be	created	with
the	type	specified	by	ValueType.	If	the	value	did	exist	and	is
a	string	type,	it	will	be	replaced	with	the	same	value	type	as
the	pre-existing	value.

uninsclearvalue
When	the	program	is	uninstalled,	set	the	value's	data	to	a	null
string	(type	REG_SZ).	This	flag	cannot	be	combined	with	the
uninsdeletekey	flag.

uninsdeletekey
When	the	program	is	uninstalled,	delete	the	entire	key,
including	all	values	and	subkeys	in	it.	It	obviously	wouldn't	be
a	good	idea	to	use	this	on	a	key	that	is	used	by	Windows
itself.	You	should	only	use	this	on	keys	private	to	your
application.

To	prevent	disasters,	this	flag	is	ignored	during	installation	if

Subkey	is	blank	or	contains	only	backslashes.

uninsdeletekeyifempty
When	the	program	is	uninstalled,	delete	the	key	if	it	has	no
values	or	subkeys	left	in	it.	This	flag	can	be	combined	with
uninsdeletevalue.

To	prevent	disasters,	this	flag	is	ignored	during	installation	if
Subkey	is	blank	or	contains	only	backslashes.

uninsdeletevalue
Delete	the	value	when	the	program	is	uninstalled.	This	flag
can	be	combined	with	uninsdeletekeyifempty.

NOTE:	In	Inno	Setup	versions	prior	to	1.1,	you	could	use	this
flag	along	with	the	data	type	none	and	it	would	function	as	a
"delete	key	if	empty"	flag.	This	technique	is	no	longer
supported.	You	must	now	use	the	uninsdeletekeyifempty
flag	to	accomplish	this.

Example:

Flags:	uninsdeletevalue

Components	and	Tasks	Parameters

Common	Parameters

[Run]	&	[UninstallRun]	sections
The	[Run]	section	is	optional,	and	specifies	any	number	of	programs	to
execute	after	the	program	has	been	successfully	installed,	but	before
the	Setup	program	displays	the	final	dialog.	The	[UninstallRun]	section
is	optional	as	well,	and	specifies	any	number	of	programs	to	execute	as
the	first	step	of	uninstallation.	Both	sections	share	an	identical	syntax,
except	where	otherwise	noted	below.

Programs	are	executed	in	the	order	they	appear	in	the	script.	By
default,	when	processing	a	[Run]/[UninstallRun]	entry,	Setup/Uninstall
will	wait	until	the	program	has	terminated	before	proceeding	to	the	next
one,	unless	the	nowait,	shellexec,	or	waituntilidle	flags	are
used.

Note	that	by	default,	if	a	program	executed	in	the	[Run]	section	queues
files	to	be	replaced	on	the	next	reboot	(by	calling	MoveFileEx	or	by
modifying	wininit.ini),	Setup	will	detect	this	and	prompt	the	user	to
restart	the	computer	at	the	end	of	installation.	If	you	don't	want	this,	set
the	RestartIfNeededByRun	directive	to	no.

The	following	is	an	example	of	a	[Run]	section.

[Run]

Filename:	"{app}\INIT.EXE";	Parameters:	"/x"

Filename:	"{app}\README.TXT";	Description:	"View	the	README	file";	Flags:	postinstall	shellexec	skipifsilent

Filename:	"{app}\MYPROG.EXE";	Description:	"Launch	application";	Flags:	postinstall	nowait	skipifsilent	unchecked

The	following	is	a	list	of	the	supported	parameters:

Filename		(Required)

The	program	to	execute,	or	file/folder	to	open.	If	Filename	is	not
an	executable	(.exe	or	.com)	or	batch	file	(.bat	or	.cmd),	you	must
use	the	shellexec	flag	on	the	entry.	This	parameter	can	include
constants.

Example:

Filename:	"{app}\INIT.EXE"

Description

Valid	only	in	a	[Run]	section.	The	description	of	the	entry,	which
can	include	constants.	This	description	is	used	for	entries	with	the
postinstall	flag.	If	the	description	is	not	specified	for	an	entry,
Setup	will	use	a	default	description.	This	description	depends	on
the	type	of	the	entry	(normal	or	shellexec).

Example:

Description:	"View	the	README	file"

Parameters

Optional	command	line	parameters	for	the	program,	which	can
include	constants.

Example:

Parameters:	"/x"

WorkingDir

The	initial	current	directory	for	the	program.	If	this	parameter	is	not
specified	or	is	blank,	it	uses	the	directory	from	the	Filename
parameter;	if	Filename	does	not	include	a	path,	it	will	use	a
default	directory.	This	parameter	can	include	constants.

Example:

WorkingDir:	"{app}"

StatusMsg

Valid	only	in	a	[Run]	section.	Determines	the	message	displayed
on	the	wizard	while	the	program	is	executed.	If	this	parameter	is
not	specified	or	is	blank,	a	default	message	of	"Finishing
installation..."	will	be	used.	This	parameter	can	include	constants.

Example:

StatusMsg:	"Installing	BDE..."

RunOnceId

Valid	only	in	an	[UninstallRun]	section.	If	the	same	application
is	installed	more	than	once,	"run"	entries	will	be	duplicated	in	the
uninstall	log	file.	By	assigning	a	string	to	RunOnceId,	you	can
ensure	that	a	particular	[UninstallRun]	entry	will	only	be
executed	once	during	uninstallation.	For	example,	if	two	or	more
"run"	entries	in	the	uninstall	log	have	a	RunOnceId	setting	of
"DelService",	only	the	latest	entry	with	a	RunOnceId	setting	of
"DelService"	will	be	executed;	the	rest	will	be	ignored.	Note	that
RunOnceId	comparisons	are	case-sensitive.

Example:

RunOnceId:	"DelService"

Verb

Specifies	the	action	to	be	performed	on	the	file.	Must	be	combined
with	the	shellexec	flag.	Commonly	available	verbs	include
"open"	and	"print".	If	this	parameter	is	not	specified	or	is	blank,	the
default	verb	for	the	file	type	will	be	used	(typically	"open").

Example:

Verb:	"print"

Flags

This	parameter	is	a	set	of	extra	options.	Multiple	options	may	be
used	by	separating	them	by	spaces.	The	following	options	are
supported:

32bit
Causes	the	{sys}	constant	to	map	to	the	32-bit	System
directory	when	used	in	the	Filename	and	WorkingDir
parameters.	This	is	the	default	behavior	in	a	32-bit	mode
install.

This	flag	cannot	be	combined	with	the	shellexec	flag.

64bit
Causes	the	{sys}	constant	to	map	to	the	64-bit	System
directory	when	used	in	the	Filename	and	WorkingDir
parameters.	This	is	the	default	behavior	in	a	64-bit	mode
install.

This	flag	can	only	be	used	when	Setup	is	running	on	64-bit
Windows,	otherwise	an	error	will	occur.	On	an	installation
supporting	both	32-	and	64-bit	architectures,	it	is	possible	to
avoid	the	error	by	adding	a	Check:	IsWin64	parameter,
which	will	cause	the	entry	to	be	silently	skipped	when	running
on	32-bit	Windows.

This	flag	cannot	be	combined	with	the	shellexec	flag.

hidewizard
If	this	flag	is	specified,	the	wizard	will	be	hidden	while	the
program	is	running.

nowait
If	this	flag	is	specified,	it	will	not	wait	for	the	process	to	finish
executing	before	proceeding	to	the	next	[Run]	entry,	or
completing	Setup.	Cannot	be	combined	with	waituntilidle
or	waituntilterminated.

postinstall
Valid	only	in	a	[Run]	section.	Instructs	Setup	to	create	a
checkbox	on	the	Setup	Completed	wizard	page.	The	user	can
uncheck	or	check	this	checkbox	and	thereby	choose	whether
this	entry	should	be	processed	or	not.	Previously	this	flag	was
called	showcheckbox.

If	Setup	has	to	restart	the	user's	computer	(as	a	result	of
installing	a	file	with	the	flag	restartreplace	or	if	the
AlwaysRestart	[Setup]	section	directive	is	yes),	there	will
not	be	an	opportunity	for	the	checkbox	to	be	displayed	and
therefore	the	entry	will	never	be	processed.

The	isreadme	flag	for	entries	in	the	[Files]	section	is	now
obsolete.	If	the	compiler	detects	a	entry	with	an	isreadme

flag,	it	strips	the	isreadme	flag	from	the	[Files]	entry	and
inserts	a	generated	[Run]	entry	at	the	head	of	the	list	of	[Run]
entries.	This	generated	[Run]	entry	runs	the	README	file	and
has	flags	shellexec,	skipifdoesntexist,	postinstall
and	skipifsilent.

runascurrentuser
If	this	flag	is	specified,	the	spawned	process	will	inherit
Setup/Uninstall's	user	credentials	(typically,	full	administrative
privileges).

This	is	the	default	behavior	when	the	postinstall	flag	is	not
used.

This	flag	cannot	be	combined	with	the	runasoriginaluser
flag.

runasoriginaluser
Valid	only	in	a	[Run]	section.	If	this	flag	is	specified	and	the
system	is	running	Windows	Vista	or	later,	the	spawned
process	will	execute	with	the	(normally	non-elevated)
credentials	of	the	user	that	started	Setup	initially	(i.e.,	the	"pre-
UAC	dialog"	credentials).

This	is	the	default	behavior	when	the	postinstall	flag	is
used.

If	a	user	launches	Setup	by	right-clicking	its	EXE	file	and
selecting	"Run	as	administrator",	then	this	flag,	unfortunately,
will	have	no	effect,	because	Setup	has	no	opportunity	to	run
any	code	with	the	original	user	credentials.	The	same	is	true	if
Setup	is	launched	from	an	already-elevated	process.	Note,
however,	that	this	is	not	an	Inno	Setup-specific	limitation;
Windows	Installer-based	installers	cannot	return	to	the	original
user	credentials	either	in	such	cases.

This	flag	cannot	be	combined	with	the	runascurrentuser
flag.

runhidden

If	this	flag	is	specified,	it	will	launch	the	program	in	a	hidden
window.	Never	use	this	flag	when	executing	a	program	that
may	prompt	for	user	input.

runmaximized
If	this	flag	is	specified,	it	will	launch	the	program	or	document
in	a	maximized	window.

runminimized
If	this	flag	is	specified,	it	will	launch	the	program	or	document
in	a	minimized	window.

shellexec
This	flag	is	required	if	Filename	is	not	a	directly	executable
file	(an	.exe	or	.com	file).	When	this	flag	is	set,	Filename	can
be	a	folder	or	any	registered	file	type	--	including	.chm,	.doc,
and	so	on.	The	file	will	be	opened	with	the	application
associated	with	the	file	type	on	the	user's	system,	the	same
way	it	would	be	if	the	user	double-clicked	the	file	in	Explorer.

By	default,	when	the	shellexec	flag	is	used	it	will	not	wait
until	the	spawned	process	terminates.	If	you	need	that,	you
must	add	the	flag	waituntilterminated.	Note	that	it
cannot	and	will	not	wait	if	a	new	process	isn't	spawned	--	for
example,	if	Filename	specifies	a	folder.

skipifdoesntexist
If	this	flag	is	specified	in	the	[Run]	section,	Setup	won't	display
an	error	message	if	Filename	doesn't	exist.

If	this	flag	is	specified	in	the	[UninstallRun]	section,	the
uninstaller	won't	display	the	"some	elements	could	not	be
removed"	warning	if	Filename	doesn't	exist.

When	this	flag	is	used,	Filename	must	be	an	absolute	path.

skipifnotsilent
Valid	only	in	a	[Run]	section.	Instructs	Setup	to	skip	this	entry
if	Setup	is	not	running	(very)	silent.

skipifsilent

Valid	only	in	a	[Run]	section.	Instructs	Setup	to	skip	this	entry
if	Setup	is	running	(very)	silent.

unchecked
Valid	only	in	a	[Run]	section.	Instructs	Setup	to	initially
uncheck	the	checkbox.	The	user	can	still	check	the	checkbox
if	he/she	wishes	to	process	the	entry.	This	flag	is	ignored	if	the
postinstall	flag	isn't	also	specified.

waituntilidle
If	this	flag	is	specified,	it	will	wait	until	the	process	is	waiting	for
user	input	with	no	input	pending,	instead	of	waiting	for	the
process	to	terminate.	(This	calls	the	WaitForInputIdle	Win32
function.)	Cannot	be	combined	with	nowait	or
waituntilterminated.

waituntilterminated
If	this	flag	is	specified,	it	will	wait	until	the	process	has
completely	terminated.	Note	that	this	is	the	default	behavior
(i.e.	you	don't	need	to	specify	this	flag)	unless	you're	using
shellexec	flag,	in	which	case	you	do	need	to	specify	this
flag	if	you	want	it	to	wait.	Cannot	be	combined	with	nowait	or
waituntilidle.

Example:

Flags:	postinstall	nowait	skipifsilent

Components	and	Tasks	Parameters

Common	Parameters

[UninstallDelete]	section
This	optional	section	defines	any	additional	files	or	directories	you	want
the	uninstaller	to	delete,	besides	those	that	were	installed/created	using
[Files]	or	[Dirs]	section	entries.	Deleting	.INI	files	created	by	your
application	is	one	common	use	for	this	section.	The	uninstaller
processes	these	entries	as	the	last	step	of	uninstallation.

Here	is	a	example	of	a	[UninstallDelete]	section:

[UninstallDelete]

Type:	files;	Name:	"{win}\MYPROG.INI"

The	following	is	a	list	of	the	supported	parameters:

Type		(Required)

Specifies	what	is	to	be	deleted	by	the	uninstaller.	This	must	be	one
of	the	following:

files
The	Name	parameter	specifies	a	name	of	a	particular	file,	or	a
filename	with	wildcards.

filesandordirs
Functions	the	same	as	files	except	it	matches	directory
names	also,	and	any	directories	matching	the	name	are
deleted	including	all	files	and	subdirectories	in	them.

dirifempty
When	this	is	used,	the	Name	parameter	must	be	the	name	of	a
directory,	but	it	cannot	include	wildcards.	The	directory	will
only	be	deleted	if	it	contains	no	files	or	subdirectories.

Example:

Type:	files

Name		(Required)

Name	of	the	file	or	directory	to	delete.

NOTE:	Don't	be	tempted	to	use	a	wildcard	here	to	delete	all	files	in
the	{app}	directory.	Doing	this	is	strongly	recommend	against	for
two	reasons.	First,	users	usually	don't	appreciate	having	their	data
files	they	put	in	the	application	directory	deleted	without	warning
(they	might	only	be	uninstalling	it	because	they	want	to	move	it	to	a
different	drive,	for	example).	It's	better	to	leave	it	up	to	the	end
users	to	manually	remove	them	if	they	want.	Also,	if	the	user
happened	to	install	the	program	in	the	wrong	directory	by	mistake
(for	example,	C:\WINDOWS)	and	then	went	to	uninstall	it	there
could	be	disastrous	consequences.	So	again,	DON'T	DO	THIS!

Example:

Name:	"{win}\MYPROG.INI"

Components	and	Tasks	Parameters

Common	Parameters

Pascal	Scripting:	Introduction
The	Pascal	scripting	feature	(modern	Delphi-like	Pascal)	adds	lots	of
new	possibilities	to	customize	your	Setup	or	Uninstall	at	run-time.
Some	examples:

Support	for	aborting	Setup	or	Uninstall	startup	under	custom
conditions.

Support	for	adding	custom	wizard	pages	to	Setup	at	run-time.

Support	for	extracting	and	calling	DLL	or	other	files	from	the	Pascal
script	before,	during	or	after	the	installation.

Support	for	scripted	constants	that	can	do	anything	the	normal
constants,	the	read-from-registry,	read-from-ini	and	read-from-
commandline	constants	can	do	+	more.

Support	for	run-time	removal	of	types,	components	and/or	tasks
under	custom	conditions.

Support	for	conditional	installation	of	[Files],	[Registry],
[Run]	etc.	entries	based	on	custom	conditions.

Lots	of	support	functions	to	do	from	the	Pascal	script	just	about
everything	Inno	Setup	itself	does/can	do	+	more.

An	integrated	run-time	debugger	to	debug	your	custom	Pascal	script	is
also	available.

The	scripting	engine	used	by	Inno	Setup	is	RemObjects	Pascal	Script
by	Carlo	Kok.	Like	Inno	Setup,	RemObjects	Pascal	Script	is	freely
available	and	comes	with	source.	See	http://www.remobjects.com/ps
for	more	information.

Note:	the	Pascal	scripting	feature	works	exclusively	at	run-time,	and
has	no	compile-time	functionality.

See	also:
Creating	the	[Code]	section
Event	Functions
Scripted	Constants

http://www.remobjects.com/ps

Check	Parameters
BeforeInstall	and	AfterInstall	Parameters
Uninstall	Code
Examples
Support	Functions	Reference
Support	Classes	Reference
Using	Custom	Wizard	Pages
Using	DLLs
Using	COM	Automation	objects

Pascal	Scripting:	Creating	the	[Code]	Section
The	[Code]	section	is	an	optional	section	that	specifies	a	Pascal
script.	A	Pascal	script	can	be	used	to	customize	Setup	or	Uninstall	in
many	ways.	Note	that	creating	a	Pascal	script	is	not	easy	and	requires
experience	with	Inno	Setup	and	knowledge	about	programming	in
Pascal	or	at	least	a	similar	programming	language.

The	"Code*.iss"	and	"UninstallCode*.iss"	files	in	the	"Examples"
subdirectory	in	your	Inno	Setup	directory	contain	various	example
[Code]	sections.	Please	study	them	carefully	before	trying	to	create
your	own	Pascal	script.

Note:	to	learn	more	the	Pascal	programming	language	you	may	find
useful	to	refer	to	Marco	Cantu's	free	Essential	Pascal	book.	See
http://www.marcocantu.com/epascal/ .

http://www.marcocantu.com/epascal/

Pascal	Scripting:	Event	Functions
The	Pascal	script	can	contain	several	event	functions	which	are	called
at	appropriate	times.

Setup	event	functions
Setup	supports	following	event	functions:

function	InitializeSetup():	Boolean;

Called	during	Setup's	initialization.	Return	False	to	abort	Setup,
True	otherwise.

procedure	InitializeWizard();

Use	this	event	function	to	make	changes	to	the	wizard	or	wizard
pages	at	startup.	You	can't	use	the	InitializeSetup	event
function	for	this	since	at	the	time	it	is	triggered,	the	wizard	form
does	not	yet	exist.

procedure	DeinitializeSetup();

Called	just	before	Setup	terminates.	Note	that	this	function	is
called	even	if	the	user	exits	Setup	before	anything	is	installed.

procedure	CurStepChanged(CurStep:	TSetupStep);

You	can	use	this	event	function	to	perform	your	own	pre-install	and
post-install	tasks.

Called	with	CurStep=ssInstall	just	before	the	actual	installation
starts,	with	CurStep=ssPostInstall	just	after	the	actual	installation
finishes,	and	with	CurStep=ssDone	just	before	Setup	terminates
after	a	successful	install.

procedure	CurInstallProgressChanged(CurProgress,

MaxProgress:	Integer);

You	can	use	this	event	function	to	monitor	progress	while	Setup	is
extracting	files,	creating	shortcuts,	creating	INI	entries,	and
creating	registry	entries.

function	NextButtonClick(CurPageID:	Integer):

Boolean;

Called	when	the	user	clicks	the	Next	button.	If	you	return	True,	the
wizard	will	move	to	the	next	page;	if	you	return	False,	it	will	remain
on	the	current	page	(specified	by	CurPageID).

Note	that	this	function	is	called	on	silent	installs	as	well,	even

though	there	is	no	Next	button	that	the	user	can	click.	Setup
instead	simulates	"clicks"	on	the	Next	button.	On	a	silent	install,	if
your	NextButtonClick	function	returns	False	prior	to	installation
starting,	Setup	will	exit	automatically.

function	BackButtonClick(CurPageID:	Integer):

Boolean;

Called	when	the	user	clicks	the	Back	button.	If	you	return	True,	the
wizard	will	move	to	the	previous	page;	if	you	return	False,	it	will
remain	on	the	current	page	(specified	by	CurPageID).

procedure	CancelButtonClick(CurPageID:	Integer;	var

Cancel,	Confirm:	Boolean);

Called	when	the	user	clicks	the	Cancel	button	or	clicks	the
window's	Close	button.	The	Cancel	parameter	specifies	whether
normal	cancel	processing	should	occur;	it	defaults	to	True.	The
Confirm	parameter	specifies	whether	an	"Exit	Setup?"	message
box	should	be	displayed;	it	usually	defaults	to	True.	If	Cancel	is
set	to	False,	then	the	value	of	Confirm	is	ignored.

function	ShouldSkipPage(PageID:	Integer):	Boolean;

The	wizard	calls	this	event	function	to	determine	whether	or	not	a
particular	page	(specified	by	PageID)	should	be	shown	at	all.	If	you
return	True,	the	page	will	be	skipped;	if	you	return	False,	the	page
may	be	shown.

Note:	This	event	function	isn't	called	for	the	wpPreparing,	and
wpInstalling	pages,	nor	for	pages	that	Setup	has	already
determined	should	be	skipped	(for	example,	wpSelectComponents
in	an	install	containing	no	components).

procedure	CurPageChanged(CurPageID:	Integer);

Called	after	a	new	wizard	page	(specified	by	CurPageID)	is	shown.

function	CheckPassword(Password:	String):	Boolean;

If	Setup	finds	the	CheckPassword	event	function	in	the	Pascal
script,	it	automatically	displays	the	Password	page	and	calls
CheckPassword	to	check	passwords.	Return	True	to	accept	the
password	and	False	to	reject	it.

To	avoid	storing	the	actual	password	inside	the	compiled	[Code]
section	which	is	stored	inside	Setup,	you	should	use	comparisons
by	hash	only:	calculate	the	SHA-1	hash	of	your	salted	password
yourself	and	then	compare	that	to
GetSHA1OfString(Password).	This	way	the	actual	value	of	the
password	remains	protected.

Note:	If	Setup	is	run	with	a	/PASSWORD=	command	line
parameter,	your	CheckPassword	function	will	be	called	before
any	other	event	function	is	called,	including	InitializeSetup.

function	NeedRestart():	Boolean;

Return	True	to	instruct	Setup	to	prompt	the	user	to	restart	the
system	at	the	end	of	a	successful	installation,	False	otherwise.

function	UpdateReadyMemo(Space,	NewLine,

MemoUserInfoInfo,	MemoDirInfo,	MemoTypeInfo,

MemoComponentsInfo,	MemoGroupInfo,	MemoTasksInfo:

String):	String;

If	Setup	finds	the	UpdateReadyMemo	event	function	in	the	Pascal
script,	it	is	called	automatically	when	the	Ready	to	Install	wizard
page	becomes	the	active	page.	It	should	return	the	text	to	be
displayed	in	the	settings	memo	on	the	Ready	to	Install	wizard	page
as	a	single	string	with	lines	separated	by	the	NewLine	parameter.
Parameter	Space	contains	a	string	with	spaces.	Setup	uses	this
string	to	indent	settings.	The	other	parameters	contain	the
(possibly	empty)	strings	that	Setup	would	have	used	as	the	setting
sections.	The	MemoDirInfo	parameter	for	example	contains	the
string	for	the	Selected	Directory	section.

procedure	RegisterPreviousData(PreviousDataKey:

Integer);

To	store	user	settings	entered	on	custom	wizard	pages,	place	a
RegisterPreviousData	event	function	in	the	Pascal	script	and
call	SetPreviousData(PreviousDataKey,	...)	inside	it,	once	per
setting.

function	CheckSerial(Serial:	String):	Boolean;

If	Setup	finds	the	CheckSerial	event	function	in	the	Pascal

script,	a	serial	number	field	will	automatically	appear	on	the	User
Info	wizard	page	(which	must	be	enabled	using
UserInfoPage=yes	in	your	[Setup]	section!).	Return	True	to
accept	the	serial	number	and	False	to	reject	it.	When	using	serial
numbers,	it's	important	to	keep	in	mind	that	since	no	encryption	is
used	and	the	source	code	to	Inno	Setup	is	freely	available,	it	would
not	be	too	difficult	for	an	experienced	individual	to	remove	the
serial	number	protection	from	an	installation.	Use	this	only	as	a
convenience	to	the	end	user	and	double	check	the	entered	serial
number	(stored	in	the	{userinfoserial}	constant)	in	your
application.

function	GetCustomSetupExitCode:	Integer;

Return	a	non	zero	number	to	instruct	Setup	to	return	a	custom	exit
code.	This	function	is	only	called	if	Setup	was	successfully	run	to
completion	and	the	exit	code	would	have	been	0.	Also	see	Setup
Exit	Codes.

function	PrepareToInstall(var	NeedsRestart:

Boolean):	String;

You	can	use	this	event	function	to	detect	and	install	missing
prerequisites	and/or	to	shutdown	any	application	which	is	about	to
be	updated.

Return	a	non	empty	string	to	instruct	Setup	to	stop	at	the	Preparing
to	Install	wizard	page,	showing	the	returned	string	as	the	error
message.	Set	NeedsRestart	to	True	if	a	restart	is	needed.	This
function	is	only	called	if	Setup	didn't	already	determine	it	can't
continue	because	one	or	more	files	specified	in	the	[Files]	and
[InstallDelete]	sections	were	queued	(by	some	other	installation)	to
be	replaced	or	deleted	on	the	next	restart.

This	event	function	is	called	before	Setup	checks	for	files	being	in-
use	if	CloseApplications	is	set	to	yes.

procedure	RegisterExtraCloseApplicationsResources;

To	register	extra	files	which	Setup	should	check	for	being	in-use	if
CloseApplications	is	set	to	yes,	place	a
RegisterExtraCloseApplicationsResources	event

function	in	the	Pascal	script	and	call
RegisterExtraCloseApplicationsResource	inside	it,	once	per	file.

Uninstall	event	functions
Uninstall	supports	following	event	functions:

function	InitializeUninstall():	Boolean;

Return	False	to	abort	Uninstall,	True	otherwise.

procedure	InitializeUninstallProgressForm();

Use	this	event	function	to	make	changes	to	the	progress	form	at
startup.	You	can't	use	the	InitializeUninstall	event	function
for	this	since	at	the	time	it	is	triggered,	the	progress	form	does	not
yet	exist.

procedure	DeinitializeUninstall();

procedure	CurUninstallStepChanged(CurUninstallStep:

TUninstallStep);

function	UninstallNeedRestart():	Boolean;

Return	True	to	instruct	Uninstall	to	prompt	the	user	to	restart	the
system	at	the	end	of	a	successful	uninstallation,	False	otherwise.

Constants
Here's	the	list	of	constants	used	by	these	functions:

TSetupStep	values	ssInstall,	ssPostInstall,	ssDone

TUninstallStep	values
usAppMutexCheck,	usUninstall,	usPostUninstall,	usDone

PageID	values	for	predefined	wizard	pages
wpWelcome,	wpLicense,	wpPassword,	wpInfoBefore,	wpUserInfo,
wpSelectDir,	wpSelectComponents,	wpSelectProgramGroup,
wpSelectTasks,	wpReady,	wpPreparing,	wpInstalling,	wpInfoAfter,
wpFinished

None	of	these	functions	are	required	to	be	present	in	a	Pascal	script.

Pascal	Scripting:	Scripted	Constants
The	Pascal	script	can	contain	several	functions	which	are	called	when
Setup	wants	to	know	the	value	of	a	scripted	{code:...}	constant.
The	called	function	must	have	1	String	parameter	named	Param,	and
must	return	a	String	or	a	Boolean	value	depending	on	where	the
constant	is	used.

The	syntax	of	a	{code:...}	constant	is:
{code:FunctionName|Param}

FunctionName	specifies	the	name	of	the	Pascal	script	function.

Param	specifies	the	string	parameter	to	pass	to	the	function.	If	you
omit	Param,	an	empty	string	will	be	passed.

If	you	wish	to	include	a	comma,	vertical	bar	("|"),	or	closing	brace
("}")	inside	the	constant,	you	must	escape	it	via	"%-encoding."
Replace	the	character	with	a	"%"	character,	followed	by	its	two-
digit	hex	code.	A	comma	is	"%2c",	a	vertical	bar	is	"%7c",	and	a
closing	brace	is	"%7d".	If	you	want	to	include	an	actual	"%"
character,	use	"%25".

Param	may	include	constants.	Note	that	you	do	not	need	to
escape	the	closing	brace	of	a	constant	as	described	above;	that	is
only	necessary	when	the	closing	brace	is	used	elsewhere.

Example:

DefaultDirName={code:MyConst}\My	Program

Here	is	an	example	of	a	[Code]	section	containing	the	MyConst
function	used	above.

[Code]

function	MyConst(Param:	String):	String;

begin

		Result	:=	ExpandConstant('{pf}');

end;

If	the	function	specified	by	the	{code:...}	constant	is	not	included	in

the	[Code]	section,	it	must	be	a	support	function.	Here	is	an	example.

[INI]

FileName:	"{app}\MyIni.ini";	Section:	"MySettings";	Key:	"ShortApp";	String:	"{code:GetShortName|{app}}"

See	also:
Constants

Pascal	Scripting:	Check	Parameters
There	is	one	optional	parameter	that	is	supported	by	all	sections	whose
entries	are	separated	into	parameters.	This	is:

Check

The	name	of	a	check	function	that	determines	whether	an	entry
has	to	be	processed	or	not.	The	function	must	either	be	a	custom
function	in	the	[Code]	section	or	a	support	function.

Besides	a	single	name,	you	may	also	use	boolean	expressions.
See	Components	and	Tasks	parameters	for	examples	of	boolean
expressions.

For	each	check	function,	may	include	a	comma	separated	list	of
parameters	that	Setup	should	pass	to	the	check	function.	Allowed
parameter	types	are	String,	Integer	and	Boolean.	String
parameters	may	include	constants.	These	constants	will	not	be
automatically	expanded.	If	you	want	to	pass	an	expanded
constant,	there's	one	special	support	function	that	may	be	called
from	within	a	parameter	list	for	this:	ExpandConstant.

Example:

[Files]

Source:	"MYPROG.EXE";	DestDir:	"{app}";	Check:	MyProgCheck

Source:	"A\MYFILE.TXT";	DestDir:	"{app}";	Check:	MyDirCheck(ExpandConstant('{app}\A'))

Source:	"B\MYFILE.TXT";	DestDir:	"{app}";	Check:	DirExists(ExpandConstant('{app}\B'))

All	check	functions	must	have	a	Boolean	return	value.	If	a	check
function	(or	the	boolean	expression)	returns	True,	the	entry	is
processed	otherwise	it's	skipped.

Setup	might	call	each	check	function	several	times,	even	if	there's	only
one	entry	that	uses	the	check	function.	If	your	function	performs	a
lengthy	piece	of	code,	you	can	optimize	it	by	performing	the	code	only
once	and	'caching'	the	result	in	a	global	variable.

A	check	function	isn't	called	if	Setup	already	determined	the	entry	it

shouldn't	be	processed.

A	check	function	for	a	[Files]	section	entry	using	a	wildcard	is	called
once	per	file	matching	the	wildcard.	Use	CurrentFileName	to	check
for	which	file	the	function	is	called.

Here	is	an	example	of	a	[Code]	section	containing	the	check	functions
used	above.	Function	DirExists	is	a	support	function	and	therefore
not	included	in	this	[Code]	section.

[Code]

var

		MyProgChecked:	Boolean;

		MyProgCheckResult:	Boolean;

function	MyProgCheck():	Boolean;

begin

		if	not	MyProgChecked	then	begin

				MyProgCheckResult	:=	MsgBox('Do	you	want	to	install	MyProg.exe	to	'	+	ExtractFilePath(CurrentFileName)	+	'?',	mbConfirmation,	MB_YESNO)	=	idYes;

				MyProgChecked	:=	True;

		end;

		Result	:=	MyProgCheckResult;

end;

function	MyDirCheck(DirName:	String):	Boolean;

begin

		Result	:=	DirExists(DirName);

end;

Pascal	Scripting:	BeforeInstall	and	AfterInstall
Parameters
There	are	two	optional	parameters	that	are	supported	by	all	sections
whose	entries	are	separated	into	parameters	except	for	[Languages],
[Types],	[Components]	and	[Tasks].	These	are:

BeforeInstall

The	name	of	a	function	that	is	to	be	called	once	just	before	an
entry	is	installed.	The	function	must	either	be	a	custom	function	in
the	[Code]	section	or	a	support	function.

May	include	a	comma	separated	list	of	parameters	that	Setup
should	pass	to	the	function.	Allowed	parameter	types	are	String,
Integer	and	Boolean.	String	parameters	may	include	constants.
These	constants	will	not	be	automatically	expanded.	If	you	want	to
pass	an	expanded	constant,	there's	one	special	support	function
that	may	be	called	from	within	a	parameter	list	for	this:
ExpandConstant.

Example:

[Files]

Source:	"MYPROG.EXE";	DestDir:	"{app}";	BeforeInstall:	MyBeforeInstall

Source:	"A\MYFILE.TXT";	DestDir:	"{app}";	BeforeInstall:	MyBeforeInstall2('{app}\A\MYFILE.TXT')

Source:	"B\MYFILE.TXT";	DestDir:	"{app}";	BeforeInstall:	MyBeforeInstall2('{app}\B\MYFILE.TXT')

Source:	"MYPROG.CHM";	DestDir:	"{app}";	BeforeInstall:	Log('Before	MYPROG.CHM	Install')

AfterInstall

The	name	of	a	function	that	is	to	be	called	once	just	after	an	entry
is	installed.	The	function	must	either	be	a	custom	function	in	the
[Code]	section	or	a	support	function.

May	include	a	comma	separated	list	of	parameters	that	Setup
should	pass	to	the	function.	Allowed	parameter	types	are	String,
Integer	and	Boolean.	String	parameters	may	include	constants.
These	constants	will	not	be	automatically	expanded.	If	you	want	to
pass	an	expanded	constant,	there's	one	special	support	function

that	may	be	called	from	within	a	parameter	list	for	this:
ExpandConstant.

Example:

[Files]

Source:	"MYPROG.EXE";	DestDir:	"{app}";	AfterInstall:	MyAfterInstall

Source:	"A\MYFILE.TXT";	DestDir:	"{app}";	AfterInstall:	MyAfterInstall2('{app}\A\MYFILE.TXT')

Source:	"B\MYFILE.TXT";	DestDir:	"{app}";	AfterInstall:	MyAfterInstall2('{app}\B\MYFILE.TXT')

Source:	"MYPROG.CHM";	DestDir:	"{app}";	AfterInstall:	Log('After	MYPROG.CHM	Install')

All	BeforeInstall	and	AfterInstall	functions	must	not	have	a
return	value.

A	BeforeInstall	or	AfterInstall	function	isn't	called	if	Setup
already	determined	the	entry	it	shouldn't	be	processed.

A	BeforeInstall	or	AfterInstall	function	for	a	[Files]	section
entry	using	a	wildcard	is	called	once	per	file	matching	the	wildcard.	Use
CurrentFileName	to	check	for	which	file	the	function	is	called.

Here	is	an	example	of	a	[Code]	section	containing	the	functions	used
above.	Functions	CurrentFileName	and	Log	are	support	functions
and	therefore	not	included	in	this	[Code]	section.

[Code]

procedure	MyBeforeInstall();

begin

		MsgBox('About	to	install	MyProg.exe	as	'	+	CurrentFileName	+	'.',	mbInformation,	MB_OK);

end;

procedure	MyBeforeInstall2(FileName:	String);

begin

		MsgBox('About	to	install	'	+	FileName	+	'	as	'	+	CurrentFileName	+	'.',	mbInformation,	MB_OK);

end;

procedure	MyAfterInstall();

begin

		MsgBox('Just	installed	MyProg.exe	as	'	+	CurrentFileName	+	'.',	mbInformation,	MB_OK);

end;

procedure	MyAfterInstall2(FileName:	String);

begin

		MsgBox('Just	installed	'	+	FileName	+	'	as	'	+	CurrentFileName	+	'.',	mbInformation,	MB_OK);

end;

Pascal	Scripting:	Uninstall	Code
The	Pascal	script	can	also	contain	code	invoked	at	uninstall	time.	See
the	Event	Functions	topic	for	more	information.

There	is	one	thing	that's	important	to	be	aware	of	when	designing	code
to	be	executed	at	uninstall	time:	In	cases	where	multiple	versions	of	an
application	are	installed	over	each	other,	only	one	Pascal	script	is	run
at	uninstall	time.	Ordinarily,	the	script	from	the	most	recent	install	will	be
chosen.	If,	however,	you	were	to	downgrade	your	version	of	Inno	Setup
in	a	new	version	of	your	application,	the	script	from	the	install	built	with
the	most	recent	Inno	Setup	version	may	be	chosen	instead.	A	similar
situation	can	occur	if	a	user	installs	an	older	version	of	your	application
over	a	newer	one.

When	producing	an	installation	that	is	a	"patch"	for	another	install,	and
the	patch	install	shares	the	same	uninstall	log	as	the	original	install	(i.e.
Uninstallable	is	set	to	yes	and	AppId	is	the	set	the	same	as	the
original	install),	make	sure	the	patch	includes	a	copy	of	the	full	[Code]
section	from	the	original	install.	Otherwise,	no	code	would	be	run	at
uninstall	time.

If,	however,	the	patch	install	has	Uninstallable	set	to	no	then	Setup
will	not	touch	the	existing	uninstaller	EXE	or	uninstall	log;	in	this	case,
the	patch	install	need	not	contain	a	copy	of	the	[Code]	section	from	the
original	install.

Pascal	Scripting:	Examples
The	Pascal	Scripting	example	scripts	are	located	in	separate	files.
Open	one	of	the	"Code*.iss"	or	"UninstallCode*.iss"	files	in	the
"Examples"	subdirectory	in	your	Inno	Setup	directory.

Pascal	Scripting:	Support	Functions	Reference
The	Pascal	script	can	call	several	built-in	support	functions.

Support	functions
Here's	the	list	of	support	functions	that	can	be	called	from	within	the
Pascal	script.

Setup	or	Uninstall	Info	functions	
function	GetCmdTail:	String;

function	ParamCount:	Integer;

function	ParamStr(Index:	Integer):	String;

function	ActiveLanguage:	String;

function	CustomMessage(const	MsgName:	String):

String;

function	FmtMessage(const	S:	String;	const	Args:

array	of	String):	String;

function	SetupMessage(const	ID:	TSetupMessageID):

String;

function	WizardDirValue:	String;

function	WizardGroupValue:	String;

function	WizardNoIcons:	Boolean;

function	WizardSetupType(const	Description:

Boolean):	String;

function	WizardSelectedComponents(const

Descriptions:	Boolean):	String;

function	WizardSelectedTasks(const	Descriptions:

Boolean):	String;

function	WizardSilent:	Boolean;

function	IsUninstaller:	Boolean;

function	UninstallSilent:	Boolean;

function	CurrentFilename:	String;

function	CurrentSourceFilename:	String;

function	ExpandConstant(const	S:	String):	String;

function	ExpandConstantEx(const	S:	String;	const

CustomConst,	CustomValue:	String):	String;

function	IsComponentSelected(const	Components:

String):	Boolean;

function	IsTaskSelected(const	Tasks:	String):

Boolean;

procedure	ExtractTemporaryFile(const	FileName:

String);

function	ExtractTemporaryFiles(const	Pattern:

String):	Integer;

function	GetPreviousData(const	ValueName,

DefaultValueData:	String):	String;

function	SetPreviousData(const	PreviousDataKey:

Integer;	const	ValueName,	ValueData:	String):

Boolean;

function	Terminated:	Boolean;

function

RegisterExtraCloseApplicationsResource(const

DisableFsRedir:	Boolean;	const	AFilename:	String):

Boolean;

function	RmSessionStarted:	Boolean;

Exception	functions

procedure	Abort;

procedure	RaiseException(const	Msg:	String);

function	GetExceptionMessage:	String;

procedure	ShowExceptionMessage;

System	functions

function	IsAdminLoggedOn:	Boolean;

function	IsPowerUserLoggedOn:	Boolean;

function	GetWindowsVersion:	Cardinal;

procedure	GetWindowsVersionEx(var	Version:

TWindowsVersion);

function	GetWindowsVersionString:	String;

function	IsWin64:	Boolean;

function	Is64BitInstallMode:	Boolean;

function	ProcessorArchitecture:

TSetupProcessorArchitecture;

function	InstallOnThisVersion(const	MinVersion,

OnlyBelowVersion:	String):	Boolean;

function	GetEnv(const	EnvVar:	String):	String;

function	GetUserNameString:	String;

function	GetComputerNameString:	String;

function	GetUILanguage:	Integer;

function	FontExists(const	FaceName:	String):

Boolean;

function	FindWindowByClassName(const	ClassName:

String):	HWND;

function	FindWindowByWindowName(const	WindowName:

String):	HWND;

function	SendMessage(const	Wnd:	HWND;	const	Msg,

WParam,	LParam:	Longint):	Longint;

function	PostMessage(const	Wnd:	HWND;	const	Msg,

WParam,	LParam:	Longint):	Boolean;

function	SendNotifyMessage(const	Wnd:	HWND;	const

Msg,	WParam,	LParam:	Longint):	Boolean;

function	RegisterWindowMessage(const	Name:	String):

Longint;

function	SendBroadcastMessage(const	Msg,	WParam,

LParam:	Longint):	Longint;

function	PostBroadcastMessage(const	Msg,	WParam,

LParam:	Longint):	Boolean;

function	SendBroadcastNotifyMessage(const	Msg,

WParam,	LParam:	Longint):	Boolean;

procedure	CreateMutex(const	Name:	String);

function	CheckForMutexes(Mutexes:	String):	Boolean;

procedure	MakePendingFileRenameOperationsChecksum:

String;

procedure	UnloadDLL(Filename:	String);

function	DLLGetLastError():	Longint;

String	functions

function	Chr(B:	Byte):	Char;

function	Ord(C:	Char):	Byte;

function	Copy(S:	String;	Index,	Count:	Integer):

String;

function	Length(s:	String):	Longint;

function	Lowercase(S:	String):	String;

function	Uppercase(S:	String):	String;

function	AnsiLowercase(S:	String):	String;

function	AnsiUppercase(S:	String):	String;

function	StringOfChar(c:	Char;	I	:	Longint):	String;

procedure	Delete(var	S:	String;	Index,	Count:

Integer);

procedure	Insert(Source:	String;	var	Dest:	String;

Index:	Integer);

function	StringChange(var	S:	String;	const	FromStr,

ToStr:	String):	Integer;

function	StringChangeEx(var	S:	String;	const

FromStr,	ToStr:	String;	const	SupportDBCS:	Boolean):

Integer;

function	Pos(SubStr,	S:	String):	Integer;

function	AddQuotes(const	S:	String):	String;

function	RemoveQuotes(const	S:	String):	String;

function	ConvertPercentStr(var	S:	String):	Boolean;

function	CompareText(const	S1,	S2:	string):	Integer;

function	CompareStr(const	S1,	S2:	string):	Integer;

function	Format(const	Format:	string;	const	Args:

array	of	const):	string;

function	Trim(const	S:	string):	String;

function	TrimLeft(const	S:	string):	String;

function	TrimRight(const	S:	string):	String;

function	StrToIntDef(s:	string;	def:	Longint):

Longint;

function	StrToInt(s:	string):	Longint;

function	StrToInt64Def(s:	string;	def:	Int64):

Int64;

function	StrToInt64(s:	string):	Int64;

function	StrToFloat(s:	string):	Extended;

function	IntToStr(i:	Int64):	String;

function	FloatToStr(e:	extended):	String;

function	CharLength(const	S:	String;	const	Index:

Integer):	Integer;

function	AddBackslash(const	S:	String):	String;

function	RemoveBackslashUnlessRoot(const	S:	String):

String;

function	RemoveBackslash(const	S:	String):	String;

function	AddPeriod(const	S:	String):	String;

function	ChangeFileExt(const	FileName,	Extension:

string):	String;

function	ExtractFileExt(const	FileName:	string):

String;

function	ExtractFileDir(const	FileName:	string):

String;

function	ExtractFilePath(const	FileName:	string):

String;

function	ExtractFileName(const	FileName:	string):

String;

function	ExtractFileDrive(const	FileName:	string):

String;

function	ExtractRelativePath(const	BaseName,

DestName:	String):	String;

function	ExpandFileName(const	FileName:	string):

String;

function	ExpandUNCFileName(const	FileName:	string):

String;

function	GetDateTimeString(const	DateTimeFormat:

String;	const	DateSeparator,	TimeSeparator:	Char):

String;

procedure	SetLength(var	S:	String;	L:	Longint);

procedure	CharToOemBuff(var	S:	AnsiString);

procedure	OemToCharBuff(var	S:	AnsiString);

function	GetMD5OfString(const	S:	AnsiString):

String;

function	GetMD5OfUnicodeString(const	S:	String):

String;

function	GetSHA1OfString(const	S:	AnsiString):

String;

function	GetSHA1OfUnicodeString(const	S:	String):

String;

function	SysErrorMessage(ErrorCode:	Integer):

String;

function	MinimizePathName(const	Filename:	String;

const	Font:	TFont;	MaxLen:	Integer):	String;

Array	functions

function	GetArrayLength(var	Arr:	Array):	Longint;

procedure	SetArrayLength(var	Arr:	Array;	I:

Longint);

Variant	functions

function	Null:	Variant;

function	Unassigned:	Variant;

function	VarIsEmpty(const	V:	Variant):	Boolean;

function	VarIsClear(const	V:	Variant):	Boolean;

function	VarIsNull(const	V:	Variant):	Boolean;

function	VarType(const	V:	Variant):	TVarType;

File	System	functions

function	DirExists(const	Name:	String):	Boolean;

function	FileExists(const	Name:	String):	Boolean;

function	FileOrDirExists(const	Name:	String):

Boolean;

function	FileSize(const	Name:	String;	var	Size:

Integer):	Boolean;

function	GetSpaceOnDisk(const	Path:	String;	const

InMegabytes:	Boolean;	var	Free,	Total:	Cardinal):

Boolean;

function	GetSpaceOnDisk64(const	Path:	String;	var

Free,	Total:	Int64):	Boolean;

function	FileSearch(const	Name,	DirList:	string):

String;

function	FindFirst(const	FileName:	String;	var

FindRec:	TFindRec):	Boolean;

function	FindNext(var	FindRec:	TFindRec):	Boolean;

procedure	FindClose(var	FindRec:	TFindRec);

function	GetCurrentDir:	String;

function	SetCurrentDir(const	Dir:	string):	Boolean;

function	GetWinDir:	String;

function	GetSystemDir:	String;

function	GetSysWow64Dir:	String;

function	GetTempDir:	String;

function	GetShellFolder(Common:	Boolean;	const	ID:

TShellFolderID):	String;

function	GetShellFolderByCSIDL(const	Folder:

Integer;	const	Create:	Boolean):	String;

function	GetShortName(const	LongName:	String):

String;

function	GenerateUniqueName(Path:	String;	const

Extension:	String):	String;

function	GetVersionNumbers(const	Filename:	String;

var	VersionMS,	VersionLS:	Cardinal):	Boolean;

function	GetVersionNumbersString(const	Filename:

String;	var	Version:	String):	Boolean;

function	IsProtectedSystemFile(const	Filename:

String):	Boolean;

function	GetMD5OfFile(const	Filename:	String):

String;

function	GetSHA1OfFile(const	Filename:	String):

String;

function	EnableFsRedirection(const	Enable:	Boolean):

Boolean;

File	functions

function	Exec(const	Filename,	Params,	WorkingDir:

String;	const	ShowCmd:	Integer;	const	Wait:

TExecWait;	var	ResultCode:	Integer):	Boolean;

function	ExecAsOriginalUser(const	Filename,	Params,

WorkingDir:	String;	const	ShowCmd:	Integer;	const

Wait:	TExecWait;	var	ResultCode:	Integer):	Boolean;

function	ShellExec(const	Verb,	Filename,	Params,

WorkingDir:	String;	const	ShowCmd:	Integer;	const

Wait:	TExecWait;	var	ErrorCode:	Integer):	Boolean;

function	ShellExecAsOriginalUser(const	Verb,

Filename,	Params,	WorkingDir:	String;	const	ShowCmd:

Integer;	const	Wait:	TExecWait;	var	ErrorCode:

Integer):	Boolean;

function	RenameFile(const	OldName,	NewName:	string):

Boolean;

function	FileCopy(const	ExistingFile,	NewFile:

String;	const	FailIfExists:	Boolean):	Boolean;

function	DeleteFile(const	FileName:	string):

Boolean;

procedure	DelayDeleteFile(const	Filename:	String;

const	Tries:	Integer);

function	SetNTFSCompression(const	FileOrDir:	String;

Compress:	Boolean):	Boolean;

function	LoadStringFromFile(const	FileName:	String;

var	S:	AnsiString):	Boolean;

function	LoadStringsFromFile(const	FileName:	String;

var	S:	TArrayOfString):	Boolean;

function	SaveStringToFile(const	FileName:	String;

const	S:	AnsiString;	const	Append:	Boolean):

Boolean;

function	SaveStringsToFile(const	FileName:	String;

const	S:	TArrayOfString;	const	Append:	Boolean):

Boolean;

function	SaveStringsToUTF8File(const	FileName:

String;	const	S:	TArrayOfString;	const	Append:

Boolean):	Boolean;

function	CreateDir(const	Dir:	string):	Boolean;

function	ForceDirectories(Dir:	string):	Boolean;

function	RemoveDir(const	Dir:	string):	Boolean;

function	DelTree(const	Path:	String;	const	IsDir,

DeleteFiles,	DeleteSubdirsAlso:	Boolean):	Boolean;

function	CreateShellLink(const	Filename,

Description,	ShortcutTo,	Parameters,	WorkingDir,

IconFilename:	String;	const	IconIndex,	ShowCmd:

Integer):	String;

function	UnpinShellLink(const	Filename:	String):

Boolean;

procedure	RegisterServer(const	Is64Bit:	Boolean;

const	Filename:	String;	const	FailCriticalErrors:

Boolean);

function	UnregisterServer(const	Is64Bit:	Boolean;

const	Filename:	String;	const	FailCriticalErrors:

Boolean):	Boolean;

procedure	RegisterTypeLibrary(const	Is64Bit:

Boolean;	const	Filename:	String);

function	UnregisterTypeLibrary(const	Is64Bit:

Boolean;	const	Filename:	String):	Boolean

procedure	IncrementSharedCount(const	Is64Bit:

Boolean;	const	Filename:	String;	const

AlreadyExisted:	Boolean);

function	DecrementSharedCount(const	Is64Bit:

Boolean;	const	Filename:	String):	Boolean;

procedure	RestartReplace(const	TempFile,	DestFile:

String);

procedure	UnregisterFont(const	FontName,

FontFilename:	String);

function	ModifyPifFile(const	Filename:	String;	const

CloseOnExit:	Boolean):	Boolean;

Registry	functions

function	RegKeyExists(const	RootKey:	Integer;	const

SubKeyName:	String):	Boolean;

function	RegValueExists(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String):	Boolean;

function	RegGetSubkeyNames(const	RootKey:	Integer;

const	SubKeyName:	String;	var	Names:

TArrayOfString):	Boolean;

function	RegGetValueNames(const	RootKey:	Integer;

const	SubKeyName:	String;	var	Names:

TArrayOfString):	Boolean;

function	RegQueryStringValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String;	var	ResultStr:

String):	Boolean;

function	RegQueryMultiStringValue(const	RootKey:

Integer;	const	SubKeyName,	ValueName:	String;	var

ResultStr:	String):	Boolean;

function	RegQueryDWordValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String;	var

ResultDWord:	Cardinal):	Boolean;

function	RegQueryBinaryValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String;	var	ResultStr:

AnsiString):	Boolean;

function	RegWriteStringValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName,	Data:	String):	Boolean;

function	RegWriteExpandStringValue(const	RootKey:

Integer;	const	SubKeyName,	ValueName,	Data:	String):

Boolean;

function	RegWriteMultiStringValue(const	RootKey:

Integer;	const	SubKeyName,	ValueName,	Data:	String):

Boolean;

function	RegWriteDWordValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String;	const	Data:

Cardinal):	Boolean;

function	RegWriteBinaryValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String;	const	Data:

AnsiString):	Boolean;

function	RegDeleteKeyIncludingSubkeys(const	RootKey:

Integer;	const	SubkeyName:	String):	Boolean;

function	RegDeleteKeyIfEmpty(const	RootKey:	Integer;

const	SubkeyName:	String):	Boolean;

function	RegDeleteValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String):	Boolean;

INI	File	functions

function	IniKeyExists(const	Section,	Key,	Filename:

String):	Boolean;

function	IsIniSectionEmpty(const	Section,	Filename:

String):	Boolean;

function	GetIniBool(const	Section,	Key:	String;

const	Default:	Boolean;	const	Filename:	String):

Boolean

function	GetIniInt(const	Section,	Key:	String;	const

Default,	Min,	Max:	Longint;	const	Filename:	String):

Longint;

function	GetIniString(const	Section,	Key,	Default,

Filename:	String):	String;

function	SetIniBool(const	Section,	Key:	String;

const	Value:	Boolean;	const	Filename:	String):

Boolean;

function	SetIniInt(const	Section,	Key:	String;	const

Value:	Longint;	const	Filename:	String):	Boolean;

function	SetIniString(const	Section,	Key,	Value,

Filename:	String):	Boolean;

procedure	DeleteIniSection(const	Section,	Filename:

String);

procedure	DeleteIniEntry(const	Section,	Key,

Filename:	String);

Custom	Setup	Wizard	Page	functions

function	CreateInputQueryPage(const	AfterID:

Integer;	const	ACaption,	ADescription,	ASubCaption:

String):	TInputQueryWizardPage;

function	CreateInputOptionPage(const	AfterID:

Integer;	const	ACaption,	ADescription,	ASubCaption:

String;	Exclusive,	ListBox:	Boolean):

TInputOptionWizardPage;

function	CreateInputDirPage(const	AfterID:	Integer;

const	ACaption,	ADescription,	ASubCaption:	String;

AAppendDir:	Boolean;	ANewFolderName:	String):

TInputDirWizardPage;

function	CreateInputFilePage(const	AfterID:	Integer;

const	ACaption,	ADescription,	ASubCaption:	String):

TInputFileWizardPage;

function	CreateOutputMsgPage(const	AfterID:	Integer;

const	ACaption,	ADescription,	AMsg:	String):

TOutputMsgWizardPage;

function	CreateOutputMsgMemoPage(const	AfterID:

Integer;	const	ACaption,	ADescription,	ASubCaption:

String;	const	AMsg:	AnsiString):

TOutputMsgMemoWizardPage;

function	CreateOutputProgressPage(const	ACaption,

ADescription:	String):	TOutputProgressWizardPage;

function	CreateCustomPage(const	AfterID:	Integer;

const	ACaption,	ADescription:	String):	TWizardPage;

function	CreateCustomForm:	TSetupForm;

function	PageFromID(const	ID:	Integer):	TWizardPage;

function	PageIndexFromID(const	ID:	Integer):

Integer;

function	ScaleX(X:	Integer):	Integer;

function	ScaleY(Y:	Integer):	Integer;

Dialog	functions

function	MsgBox(const	Text:	String;	const	Typ:

TMsgBoxType;	const	Buttons:	Integer):	Integer;

function	SuppressibleMsgBox(const	Text:	String;

const	Typ:	TMsgBoxType;	const	Buttons,	Default:

Integer):	Integer;

function	GetOpenFileName(const	Prompt:	String;	var

FileName:	String;	const	InitialDirectory,	Filter,

DefaultExtension:	String):	Boolean;

function	GetSaveFileName(const	Prompt:	String;	var

FileName:	String;	const	InitialDirectory,	Filter,

DefaultExtension:	String):	Boolean;

function	BrowseForFolder(const	Prompt:	String;	var

Directory:	String;	const	NewFolderButton:	Boolean):

Boolean;

function	ExitSetupMsgBox:	Boolean;

COM	Automation	objects	support	functions

function	CreateOleObject(const	ClassName:	string):

Variant;

function	GetActiveOleObject(const	ClassName:

string):	Variant;

function	IDispatchInvoke(Self:	IDispatch;

PropertySet:	Boolean;	const	Name:	String;	Par:	array

of	Variant):	Variant;

function	CreateComObject(const	ClassID:	TGUID):

IUnknown;

function	StringToGUID(const	S:	String):	TGUID;

procedure	OleCheck(Result:	HResult);

procedure	CoFreeUnusedLibraries;

Setup	Logging	functions

procedure	Log(const	S:	String);

Other	functions

procedure	Sleep(const	Milliseconds:	LongInt);

function	Random(const	Range:	Integer):	Integer;

procedure	Beep;

procedure	BringToFrontAndRestore;

Deprecated	functions

function	LoadDLL(const	DLLName:	String;	var

ErrorCode:	Integer):	Longint;

function	CallDLLProc(const	DLLHandle:	Longint;	const

ProcName:	String;	const	Param1,	Param2:	Longint;	var

Result:	Longint):	Boolean;

function	FreeDLL(const	DLLHandle:	Longint):	Boolean;

function	CastStringToInteger(var	S:	String):

Longint;

function	CastIntegerToString(const	L:	Longint):

String;

Constants
Here's	the	list	of	constants	used	by	these	functions:

CurStep	values
ssInstall,	ssPostInstall,	ssDone

CurPage	values
wpWelcome,	wpLicense,	wpPassword,	wpInfoBefore,	wpUserInfo,
wpSelectDir,	wpSelectComponents,	wpSelectProgramGroup,
wpSelectTasks,	wpReady,	wpPreparing,	wpInstalling,	wpInfoAfter,
wpFinished

TMsgBoxType
mbInformation,	mbConfirmation,	mbError,	mbCriticalError

MsgBox	-	Buttons	flags
MB_OK,	MB_OKCANCEL,	MB_ABORTRETRYIGNORE,
MB_YESNOCANCEL,	MB_YESNO,	MB_RETRYCANCEL,
MB_DEFBUTTON1,	MB_DEFBUTTON2,	MB_DEFBUTTON3,
MB_SETFOREGROUND

MsgBox	-	return	values
IDOK,	IDCANCEL,	IDABORT,	IDRETRY,	IDIGNORE,	IDYES,	IDNO

TShellFolderID
sfDesktop,	sfStartMenu,	sfPrograms,	sfStartup,	sfSendTo,	sfFonts,
sfAppData,	sfDocs,	sfTemplates,	sfFavorites,	sfLocalAppData

Reg*	-	RootKey	values	(also	see	the	[Registry]	section	documentation)
HKEY_CLASSES_ROOT,	HKEY_CLASSES_ROOT_32,
HKEY_CLASSES_ROOT_64,
HKEY_CURRENT_USER,	HKEY_CURRENT_USER_32,
HKEY_CURRENT_USER_64,
HKEY_LOCAL_MACHINE,	HKEY_LOCAL_MACHINE_32,
HKEY_LOCAL_MACHINE_64,
HKEY_USERS,	HKEY_USERS_32,	HKEY_USERS_64,
HKEY_PERFORMANCE_DATA,
HKEY_CURRENT_CONFIG,	HKEY_CURRENT_CONFIG_32,
HKEY_CURRENT_CONFIG_64,

HKEY_DYN_DATA,
HKCR,	HKCR32,	HKCR64,	HKCU,	HKCU32,	HKCU64,	HKLM,
HKLM32,	HKLM64,	HKU,	HKU32,	HKU64,	HKCC,	HKCC32,	HKCC64

TShouldProcessEntryResult
srNo,	srYes,	srUnknown

TSetupMessageID
Use	'msg'	+	the	message	name.	Example:
SetupMessage(msgSetupAppTitle)

Exec	and	ShellExec	-	ShowCmd	values
SW_SHOW,	SW_SHOWNORMAL,	SW_SHOWMAXIMIZED,
SW_SHOWMINIMIZED,	SW_SHOWMINNOACTIVE,	SW_HIDE

Pascal	Scripting:	Support	Classes	Reference
Below	is	the	list	of	support	classes	that	can	be	used	from	within	the
Pascal	script.	There	are	also	three	support	objects	available:
MainForm	of	type	TMainForm,	WizardForm	of	type	TWizardForm
and	UninstallProgressForm	of	type	TUninstallProgressForm
and	one	special	constant:	crHand	of	type	TControl.Cursor.	Note:
MainForm	is	only	visible	if	WindowVisible	is	set	to	yes.

Note:	you	may	find	it	useful	to	also	refer	to	the	Delphi	Visual
Component	Library	(VCL)	Help	files	by	Embarcadero	Technologies,
since	the	classes	below	are	mostly	simple	wrappers	around	the	VCL
classes	Inno	Setup	uses	internally.	See
http://docs.embarcadero.com/products/rad_studio/ .

TObject	=	class

		constructor	Create;

		procedure	Free;

end;

TPersistent	=	class(TObject)

		procedure	Assign(Source:	TPersistent);

end;

TComponent	=	class(TPersistent)

		function	FindComponent(AName:	String):	TComponent;

		constructor	Create(AOwner:	TComponent);

		property	Owner:	TComponent;	read	write;

		procedure	DestroyComponents;

		procedure	Destroying;

		procedure	FreeNotification(AComponent:

TComponent);

		procedure	InsertComponent(AComponent:	TComponent);

		procedure	RemoveComponent(AComponent:	TComponent);

		property	Components[Index:	Integer]:	TComponent;

read;

		property	ComponentCount:	Integer;	read;

		property	ComponentIndex:	Integer;	read	write;

http://docs.embarcadero.com/products/rad_studio/

		property	ComponentState:	Byte;	read;

		property	DesignInfo:	Longint;	read	write;

		property	Name:	String;	read	write;

		property	Tag:	Longint;	read	write;

end;

TStrings	=	class(TPersistent)

		function	Add(S:	String):	Integer;

		procedure	Append(S:	String);

		procedure	AddStrings(Strings:	TStrings);

		procedure	Clear;

		procedure	Delete(Index:	Integer);

		function	IndexOf(const	S:	String):	Integer;

		procedure	Insert(Index:	Integer;	S:	String);

		property	Count:	Integer;	read;

		property	Text:	String;	read	write;

		property	CommaText:	String;	read	write;

		procedure	LoadFromFile(FileName:	String);

		procedure	SaveToFile(FileName:	String);

		property	Strings[Index:	Integer]:	String;	read

write;

		property	Objects[Index:	Integer]:	TObject;	read

write;

end;

TNotifyEvent	=	procedure(Sender:	TObject);

TStringList	=	class(TStrings)

		function	Find(S:	String;	var	Index:	Integer):

Boolean;

		procedure	Sort;

		property	Duplicates:	TDuplicates;	read	write;

		property	Sorted:	Boolean;	read	write;

		property	OnChange:	TNotifyEvent;	read	write;

		property	OnChanging:	TNotifyEvent;	read	write;

end;

TStream	=	class(TObject)

		function	Read(Buffer:	String;	Count:	Longint):

Longint;

		function	Write(Buffer:	String;	Count:	Longint):

Longint;

		function	Seek(Offset:	Longint;	Origin:	Word):

Longint;

		procedure	ReadBuffer(Buffer:	String;	Count:

Longint);

		procedure	WriteBuffer(Buffer:	String;	Count:

Longint);

		function	CopyFrom(Source:	TStream;	Count:

Longint):	Longint;

		property	Position:	Longint;	read	write;

		property	Size:	Longint;	read	write;

end;

THandleStream	=	class(TStream)

		constructor	Create(AHandle:	Integer);

		property	Handle:	Integer;	read;

end;

TFileStream	=	class(THandleStream)

		constructor	Create(Filename:	String;	Mode:	Word);

end;

TStringStream	=	class(TStream)

		constructor	Create(AString:	String);

end;

TGraphicsObject	=	class(TPersistent)

		property	OnChange:	TNotifyEvent;	read	write;

end;

TFontStyle	=	(fsBold,	fsItalic,	fsUnderline,

fsStrikeOut);

TFontStyles	=	set	of	TFontStyle;

TFont	=	class(TGraphicsObject)

		constructor	Create;

		property	Handle:	Integer;	read;

		property	Color:	Integer;	read	write;

		property	Height:	Integer;	read	write;

		property	Name:	String;	read	write;

		property	Pitch:	Byte;	read	write;

		property	Size:	Integer;	read	write;

		property	PixelsPerInch:	Integer;	read	write;

		property	Style:	TFontStyles;	read	write;

end;

TCanvas	=	class(TPersistent)

		procedure	Arc(X1,	Y1,	X2,	Y2,	X3,	Y3,	X4,	Y4:

Integer);

		procedure	Chord(X1,	Y1,	X2,	Y2,	X3,	Y3,	X4,	Y4:

Integer);

		procedure	Draw(X,	Y:	Integer;	Graphic:	TGraphic);

		procedure	Ellipse(X1,	Y1,	X2,	Y2:	Integer);

		procedure	FloodFill(X,	Y:	Integer;	Color:	TColor;

FillStyle:	Byte);

		procedure	LineTo(X,	Y:	Integer);

		procedure	MoveTo(X,	Y:	Integer);

		procedure	Pie(X1,	Y1,	X2,	Y2,	X3,	Y3,	X4,	Y4:

Integer);

		procedure	Rectangle(X1,	Y1,	X2,	Y2:	Integer);

		procedure	Refresh;

		procedure	RoundRect(X1,	Y1,	X2,	Y2,	X3,	Y3:

Integer);

		function	TextHeight(Text:	String):	Integer;

		procedure	TextOut(X,	Y:	Integer;	Text:	String);

		function	TextWidth(Text:	String):	Integer;

		property	Handle:	Integer;	read	write;

		property	Pixels:	Integer	Integer	Integer;	read

write;

		property	Brush:	TBrush;	read;

		property	CopyMode:	Byte;	read	write;

		property	Font:	TFont;	read;

		property	Pen:	TPen;	read;

end;

TPenMode	=	(pmBlack,	pmWhite,	pmNop,	pmNot,	pmCopy,

pmNotCopy,	pmMergePenNot,	pmMaskPenNot,

pmMergeNotPen,	pmMaskNotPen,	pmMerge,	pmNotMerge,

pmMask,	pmNotMask,	pmXor,	pmNotXor);

TPenStyle	=	(psSolid,	psDash,	psDot,	psDashDot,

psDashDotDot,	psClear,	psInsideFrame);

TPen	=	class(TGraphicsObject)

		constructor	Create;

		property	Color:	TColor;	read	write;

		property	Mode:	TPenMode;	read	write;

		property	Style:	TPenStyle;	read	write;

		property	Width:	Integer;	read	write;

end;

TBrushStyle	=	(bsSolid,	bsClear,	bsHorizontal,

bsVertical,	bsFDiagonal,	bsBDiagonal,	bsCross,

bsDiagCross);

TBrush	=	class(TGraphicsObject)

		constructor	Create;

		property	Color:	TColor;	read	write;

		property	Style:	TBrushStyle;	read	write;

end;

TGraphic	=	class(TPersistent)

		procedure	LoadFromFile(const	Filename:	String);

		procedure	SaveToFile(const	Filename:	String);

		property	Empty:	Boolean;	read	write;

		property	Height:	Integer;	read	write;

		property	Modified:	Boolean;	read	write;

		property	Width:	Integer;	read	write;

		property	OnChange:	TNotifyEvent;	read	write;

end;

TBitmap	=	class(TGraphic)

		procedure	LoadFromStream(Stream:	TStream);

		procedure	SaveToStream(Stream:	TStream);

		property	Canvas:	TCanvas;	read	write;

		property	Handle:	HBITMAP;	read	write;

end;

TAlign	=	(alNone,	alTop,	alBottom,	alLeft,	alRight,

alClient);

TControl	=	class(TComponent)

		constructor	Create(AOwner:	TComponent);

		procedure	BringToFront;

		procedure	Hide;

		procedure	Invalidate;

		procedure	Refresh;

		procedure	Repaint;

		procedure	SendToBack;

		procedure	Show;

		procedure	Update;

		procedure	SetBounds(ALeft,	ATop,	AWidth,	AHeight:

Integer);

		property	Left:	Integer;	read	write;

		property	Top:	Integer;	read	write;

		property	Width:	Integer;	read	write;

		property	Height:	Integer;	read	write;

		property	Hint:	String;	read	write;

		property	Align:	TAlign;	read	write;

		property	ClientHeight:	Longint;	read	write;

		property	ClientWidth:	Longint;	read	write;

		property	ShowHint:	Boolean;	read	write;

		property	Visible:	Boolean;	read	write;

		property	Enabled:	Boolean;	read	write;

		property	Hint:	String;	read	write;

		property	Cursor:	Integer;	read	write;

end;

TWinControl	=	class(TControl)

		property	Parent:	TWinControl;	read	write;

		property	ParentBackground:	Boolean;	read	write;

		property	Handle:	Longint;	read	write;

		property	Showing:	Boolean;	read;

		property	TabOrder:	Integer;	read	write;

		property	TabStop:	Boolean;	read	write;

		function	CanFocus:	Boolean;

		function	Focused:	Boolean;

		property	Controls[Index:	Integer]:	TControl;	read;

		property	ControlCount:	Integer;	read;

end;

TGraphicControl	=	class(TControl)

end;

TCustomControl	=	class(TWinControl)

end;

TScrollBarKind	=	(sbHorizontal,	sbVertical);

TScrollBarInc	=	SmallInt;

TScrollingWinControl	=	class(TWinControl)

		procedure	ScrollInView(AControl:	TControl);

end;

TFormBorderStyle	=	(bsNone,	bsSingle,	bsSizeable,

bsDialog,	bsToolWindow,	bsSizeToolWin);

TBorderIcon	=	(biSystemMenu,	biMinimize,	biMaximize,

biHelp);

TBorderIcons	=	set	of	TBorderIcon;

TPosition	=	(poDesigned,	poDefault,

poDefaultPosOnly,	poDefaultSizeOnly,	poScreenCenter,

poDesktopCenter,	poMainFormCenter,

poOwnerFormCenter);

TCloseAction	=	(caNone,	caHide,	caFree,	caMinimize);

TCloseEvent	=	procedure(Sender:	TObject;	var	Action:

TCloseAction);

TCloseQueryEvent	=	procedure(Sender:	TObject;	var

CanClose:	Boolean);

TEShiftState	=	(ssShift,	ssAlt,	ssCtrl,	ssLeft,

ssRight,	ssMiddle,	ssDouble);

TShiftState	=	set	of	TEShiftState;

TKeyEvent	=	procedure(Sender:	TObject;	var	Key:

Word;	Shift:	TShiftState);

TKeyPressEvent	=	procedure(Sender:	TObject;	var	Key:

Char);

TForm	=	class(TScrollingWinControl)

		constructor	CreateNew(AOwner:	TComponent);

		procedure	Close;

		procedure	Hide;

		procedure	Show;

		function	ShowModal:	Integer;

		procedure	Release;

		property	Active:	Boolean;	read;

		property	ActiveControl:	TWinControl;	read	write;

		property	BorderIcons:	TBorderIcons;	read	write;

		property	BorderStyle:	TFormBorderStyle;	read

write;

		property	Caption:	String;	read	write;

		property	AutoScroll:	Boolean;	read	write;

		property	Color:	TColor;	read	write;

		property	Font:	TFont;	read	write;

		property	FormStyle:	TFormStyle;	read	write;

		property	KeyPreview:	Boolean;	read	write;

		property	Position:	TPosition;	read	write;

		property	OnActivate:	TNotifyEvent;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

		property	OnClose:	TCloseEvent;	read	write;

		property	OnCloseQuery:	TCloseQueryEvent;	read

write;

		property	OnCreate:	TNotifyEvent;	read	write;

		property	OnDestroy:	TNotifyEvent;	read	write;

		property	OnDeactivate:	TNotifyEvent;	read	write;

		property	OnHide:	TNotifyEvent;	read	write;

		property	OnKeyDown:	TKeyEvent;	read	write;

		property	OnKeyPress:	TKeyPressEvent;	read	write;

		property	OnKeyUp:	TKeyEvent;	read	write;

		property	OnResize:	TNotifyEvent;	read	write;

		property	OnShow:	TNotifyEvent;	read	write;

end;

TCustomLabel	=	class(TGraphicControl)

end;

TAlignment	=	(taLeftJustify,	taRightJustify,

taCenter);

TLabel	=	class(TCustomLabel)

		property	Alignment:	TAlignment;	read	write;

		property	AutoSize:	Boolean;	read	write;

		property	Caption:	String;	read	write;

		property	Color:	TColor;	read	write;

		property	FocusControl:	TWinControl;	read	write;

		property	Font:	TFont;	read	write;

		property	WordWrap:	Boolean;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

end;

TCustomEdit	=	class(TWinControl)

		procedure	Clear;

		procedure	ClearSelection;

		procedure	SelectAll;

		property	Modified:	Boolean;	read	write;

		property	SelLength:	Integer;	read	write;

		property	SelStart:	Integer;	read	write;

		property	SelText:	String;	read	write;

		property	Text:	String;	read	write;

end;

TBorderStyle	=	TFormBorderStyle;

TEditCharCase	=	(ecNormal,	ecUpperCase,

ecLowerCase);

TEdit	=	class(TCustomEdit)

		property	AutoSelect:	Boolean;	read	write;

		property	AutoSize:	Boolean;	read	write;

		property	BorderStyle:	TBorderStyle;	read	write;

		property	CharCase:	TEditCharCase;	read	write;

		property	Color:	TColor;	read	write;

		property	Font:	TFont;	read	write;

		property	HideSelection:	Boolean;	read	write;

		property	MaxLength:	Integer;	read	write;

		property	PasswordChar:	Char;	read	write;

		property	ReadOnly:	Boolean;	read	write;

		property	Text:	String;	read	write;

		property	OnChange:	TNotifyEvent;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

		property	OnKeyDown:	TKeyEvent;	read	write;

		property	OnKeyPress:	TKeyPressEvent;	read	write;

		property	OnKeyUp:	TKeyEvent;	read	write;

end;

TNewEdit	=	class(TEdit)

end;

TCustomMemo	=	class(TCustomEdit)

		property	Lines:	TStrings;	read	write;

end;

TScrollStyle	=	(ssNone,	ssHorizontal,	ssVertical,

ssBoth);

TMemo	=	class(TCustomMemo)

		property	Lines:	TStrings;	read	write;

		property	Alignment:	TAlignment;	read	write;

		property	BorderStyle:	TBorderStyle;	read	write;

		property	Color:	TColor;	read	write;

		property	Font:	TFont;	read	write;

		property	HideSelection:	Boolean;	read	write;

		property	MaxLength:	Integer;	read	write;

		property	ReadOnly:	Boolean;	read	write;

		property	ScrollBars:	TScrollStyle;	read	write;

		property	WantReturns:	Boolean;	read	write;

		property	WantTabs:	Boolean;	read	write;

		property	WordWrap:	Boolean;	read	write;

		property	OnChange:	TNotifyEvent;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

		property	OnKeyDown:	TKeyEvent;	read	write;

		property	OnKeyPress:	TKeyPressEvent;	read	write;

		property	OnKeyUp:	TKeyEvent;	read	write;

end;

TNewMemo	=	class(TMemo)

end;

TCustomComboBox	=	class(TWinControl)

		property	DroppedDown:	Boolean;	read	write;

		property	Items:	TStrings;	read	write;

		property	ItemIndex:	Integer;	read	write;

end;

TComboBoxStyle	=	(csDropDown,	csSimple,

csDropDownList,	csOwnerDrawFixed,

csOwnerDrawVariable);

TComboBox	=	class(TCustomComboBox)

		property	Style:	TComboBoxStyle;	read	write;

		property	Color:	TColor;	read	write;

		property	DropDownCount:	Integer;	read	write;

		property	Font:	TFont;	read	write;

		property	MaxLength:	Integer;	read	write;

		property	Sorted:	Boolean;	read	write;

		property	Text:	String;	read	write;

		property	OnChange:	TNotifyEvent;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

		property	OnDropDown:	TNotifyEvent;	read	write;

		property	OnKeyDown:	TKeyEvent;	read	write;

		property	OnKeyPress:	TKeyPressEvent;	read	write;

		property	OnKeyUp:	TKeyEvent;	read	write;

end;

TNewComboBox	=	class(TComboBox)

end;

TButtonControl	=	class(TWinControl)

end;

TButton	=	class(TButtonControl)

		property	Cancel:	Boolean;	read	write;

		property	Caption:	String;	read	write;

		property	Default:	Boolean;	read	write;

		property	Font:	TFont;	read	write;

		property	ModalResult:	Longint;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

end;

TNewButton	=	class(TButton)

end;

TCustomCheckBox	=	class(TButtonControl)

end;

TCheckBoxState	=	(cbUnchecked,	cbChecked,	cbGrayed);

TCheckBox	=	class(TCustomCheckBox)

		property	Alignment:	TAlignment;	read	write;

		property	AllowGrayed:	Boolean;	read	write;

		property	Caption:	String;	read	write;

		property	Checked:	Boolean;	read	write;

		property	Color:	TColor;	read	write;

		property	Font:	TFont;	read	write;

		property	State:	TCheckBoxState;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

end;

TNewCheckBox	=	class(TCheckBox)

end;

TRadioButton	=	class(TButtonControl)

		property	Alignment:	TAlignment;	read	write;

		property	Caption:	String;	read	write;

		property	Checked:	Boolean;	read	write;

		property	Color:	TColor;	read	write;

		property	Font:	TFont;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

end;

TNewRadioButton	=	class(TRadioButton)

end;

TCustomListBox	=	class(TWinControl)

		property	Items:	TStrings;	read	write;

		property	ItemIndex:	Integer;	read	write;

		property	SelCount:	Integer;	read;

		property	Selected[Index:	Integer]:	Boolean;	read

write;

end;

TListBoxStyle	=	(lbStandard,	lbOwnerDrawFixed,

lbOwnerDrawVariable);

TListBox	=	class(TCustomListBox)

		property	BorderStyle:	TBorderStyle;	read	write;

		property	Color:	TColor;	read	write;

		property	Font:	TFont;	read	write;

		property	MultiSelect:	Boolean;	read	write;

		property	Sorted:	Boolean;	read	write;

		property	Style:	TListBoxStyle;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

		property	OnKeyDown:	TKeyEvent;	read	write;

		property	OnKeyPress:	TKeyPressEvent;	read	write;

		property	OnKeyUp:	TKeyEvent;	read	write;

end;

TNewListBox	=	class(TListBox)

end;

TBevelShape	=	(bsBox,	bsFrame,	bsTopLine,

bsBottomLine,	bsLeftLine,	bsRightLine,	bsSpacer);

TBevelStyle	=	(bsLowered,	bsRaised);

TBevel	=	class(TGraphicControl)

		property	Shape:	TBevelShape;	read	write;

		property	Style:	TBevelStyle;	read	write;

end;

TCustomPanel	=	class(TCustomControl)

end;

TPanelBevel	=	(bvNone,	bvLowered,	bvRaised,

bvSpace);

TBevelWidth	=	Longint;

TBorderWidth	=	Longint;

TPanel	=	class(TCustomPanel)

		property	Alignment:	TAlignment;	read	write;

		property	BevelInner:	TPanelBevel;	read	write;

		property	BevelOuter:	TPanelBevel;	read	write;

		property	BevelWidth:	TBevelWidth;	read	write;

		property	BorderWidth:	TBorderWidth;	read	write;

		property	BorderStyle:	TBorderStyle;	read	write;

		property	Caption:	String;	read	write;

		property	Color:	TColor;	read	write;

		property	Font:	TFont;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

end;

TNewStaticText	=	class(TWinControl)

		function	AdjustHeight:	Integer;

		property	AutoSize:	Boolean;	read	write;

		property	Caption:	String;	read	write;

		property	Color:	TColor;	read	write;

		property	FocusControl:	TWinControl;	read	write;

		property	Font:	TFont;	read	write;

		property	ForceLTRReading:	Boolean;	read	write;

		property	ShowAccelChar:	Boolean;	read	write;

		property	WordWrap:	Boolean;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

end;

TCheckItemOperation	=	(coUncheck,	coCheck,

coCheckWithChildren);

TNewCheckListBox	=	class(TCustomListBox)

		function	AddCheckBox(const	ACaption,	ASubItem:

String;	ALevel:	Byte;	AChecked,	AEnabled,

AHasInternalChildren,	ACheckWhenParentChecked:

Boolean;	AObject:	TObject):	Integer;

		function	AddGroup(ACaption,	ASubItem:	String;

ALevel:	Byte;	AObject:	TObject):	Integer;

		function	AddRadioButton(const	ACaption,	ASubItem:

String;	ALevel:	Byte;	AChecked,	AEnabled:	Boolean;

AObject:	TObject):	Integer;

		function	CheckItem(const	Index:	Integer;	const

AOperation:	TCheckItemOperation):	Boolean;

		property	Checked[Index:	Integer]:	Boolean;	read

write;

		property	State[Index:	Integer]:	TCheckBoxState;

read	write;

		property	ItemCaption[Index:	Integer]:	String;	read

write;

		property	ItemEnabled[Index:	Integer]:	Boolean;

read	write;

		property	ItemLevel[Index:	Integer]:	Byte;	read;

		property	ItemObject[Index:	Integer]:	TObject;	read

write;

		property	ItemSubItem[Index:	Integer]:	String;	read

write;

		property	Flat:	Boolean;	read	write;

		property	MinItemHeight:	Integer;	read	write;

		property	Offset:	Integer;	read	write;

		property	OnClickCheck:	TNotifyEvent;	read	write;

		property	BorderStyle:	TBorderStyle;	read	write;

		property	Color:	TColor;	read	write;

		property	Font:	TFont;	read	write;

		property	Sorted:	Boolean;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

		property	OnKeyDown:	TKeyEvent;	read	write;

		property	OnKeyPress:	TKeyPressEvent;	read	write;

		property	OnKeyUp:	TKeyEvent;	read	write;

		property	ShowLines:	Boolean;	read	write;

		property	WantTabs:	Boolean;	read	write;

		property	RequireRadioSelection:	Boolean;	read

write;

end;

TNewProgressBarState	=	(npbsNormal,	npbsError,

npbsPaused);

TNewProgressBarStyle	=	(npbstNormal,	npbstMarquee);

TNewProgressBar	=	class(TWinControl)

		property	Min:	Longint;	read	write;

		property	Max:	Longint;	read	write;

		property	Position:	Longint;	read	write;

		property	State:	TNewProgressBarState;	read	write;

		property	Style:	TNewProgressBarStyle;	read	write;

		property	Visible:	Boolean;	read	write;

end;

TRichEditViewer	=	class(TMemo)

		property	RTFText:	AnsiString;	write;

		property	UseRichEdit:	Boolean;	read	write;

end;

TPasswordEdit	=	class(TCustomEdit)

		property	AutoSelect:	Boolean;	read	write;

		property	AutoSize:	Boolean;	read	write;

		property	BorderStyle:	TBorderStyle;	read	write;

		property	Color:	TColor;	read	write;

		property	Font:	TFont;	read	write;

		property	HideSelection:	Boolean;	read	write;

		property	MaxLength:	Integer;	read	write;

		property	Password:	Boolean;	read	write;

		property	ReadOnly:	Boolean;	read	write;

		property	Text:	String;	read	write;

		property	OnChange:	TNotifyEvent;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

		property	OnKeyDown:	TKeyEvent;	read	write;

		property	OnKeyPress:	TKeyPressEvent;	read	write;

		property	OnKeyUp:	TKeyEvent;	read	write;

end;

TCustomFolderTreeView	=	class(TWinControl)

		procedure	ChangeDirectory(const	Value:	String;

const	CreateNewItems:	Boolean);

		procedure	CreateNewDirectory(const	ADefaultName:

String);

		property:	Directory:	String;	read	write;

end;

TFolderRenameEvent	=	procedure(Sender:

TCustomFolderTreeView;	var	NewName:	String;	var

Accept:	Boolean);

TFolderTreeView	=	class(TCustomFolderTreeView)

		property	OnChange:	TNotifyEvent;	read	write;

		property	OnRename:	TFolderRenameEvent;	read	write;

end;

TStartMenuFolderTreeView	=

class(TCustomFolderTreeView)

		procedure	SetPaths(const	AUserPrograms,

ACommonPrograms,	AUserStartup,	ACommonStartup:

String);

		property	OnChange:	TNotifyEvent;	read	write;

		property	OnRename:	TFolderRenameEvent;	read	write;

end;

TBitmapImage	=	class(TGraphicControl)

		property	AutoSize:	Boolean;	read	write;

		property	BackColor:	TColor;	read	write;

		property	Center:	Boolean;	read	write;

		property	Bitmap:	TBitmap;	read	write;

		property	ReplaceColor:	TColor;	read	write;

		property	ReplaceWithColor:	TColor;	read	write;

		property	Stretch:	Boolean;	read	write;

		property	OnClick:	TNotifyEvent;	read	write;

		property	OnDblClick:	TNotifyEvent;	read	write;

end;

TNewNotebook	=	class(TWinControl)

		function	FindNextPage(CurPage:	TNewNotebookPage;

GoForward:	Boolean):	TNewNotebookPage;

		property	PageCount:	Integer;	read	write;

		property	Pages[Index:	Integer]:	TNewNotebookPage;

read;

		property	ActivePage:	TNewNotebookPage;	read	write;

end;

TNewNotebookPage	=	class(TCustomControl)

		property	Color:	TColor;	read	write;

		property	Notebook:	TNewNotebook;	read	write;

		property	PageIndex:	Integer;	read	write;

end;

TWizardPageNotifyEvent	=	procedure(Sender:

TWizardPage);

TWizardPageButtonEvent	=	function(Sender:

TWizardPage):	Boolean;

TWizardPageCancelEvent	=	procedure(Sender:

TWizardPage;	var	ACancel,	AConfirm:	Boolean);

TWizardPageShouldSkipEvent	=	function(Sender:

TWizardPage):	Boolean;

TWizardPage	=	class(TComponent)

		property	ID:	Integer;	read;

		property	Caption:	String;	read	write;

		property	Description:	String;	read	write;

		property	Surface:	TNewNotebookPage;	read	write;

		property	SurfaceHeight:	Integer;	read	write;

		property	SurfaceWidth:	Integer;	read	write;

		property	OnActivate:	TWizardPageNotifyEvent;	read

write;

		property	OnBackButtonClick:

TWizardPageButtonEvent;	read	write;

		property	OnCancelButtonClick:

TWizardPageCancelEvent;	read	write;

		property	OnNextButtonClick:

TWizardPageButtonEvent;	read	write;

		property	OnShouldSkipPage:

TWizardPageShouldSkipEvent;	read	write;

end;

TInputQueryWizardPage	=	class(TWizardPage)

		function	Add(const	APrompt:	String;	const

APassword:	Boolean):	Integer;

		property	Edits[Index:	Integer]:	TPasswordEdit;

read;

		property	PromptLabels[Index:	Integer]:

TNewStaticText;	read;

		property	SubCaptionLabel:	TNewStaticText;	read;

		property	Values[Index:	Integer]:	String;	read

write;

end;

TInputOptionWizardPage	=	class(TWizardPage)

		function	Add(const	ACaption:	String):	Integer;

		function	AddEx(const	ACaption:	String;	const

ALevel:	Byte;	const	AExclusive:	Boolean):	Integer;

		property	CheckListBox:	TNewCheckListBox;	read;

		property	SelectedValueIndex:	Integer;	read	write;

		property	SubCaptionLabel:	TNewStaticText;	read;

		property	Values[Index:	Integer]:	Boolean;	read

write;

end;

TInputDirWizardPage	=	class(TWizardPage)

		function	Add(const	APrompt:	String):	Integer;

		property	Buttons[Index:	Integer]:	TNewButton;

read;

		property	Edits[Index:	Integer]:	TEdit;	read;

		property	PromptLabels[Index:	Integer]:

TNewStaticText;	read;

		property	SubCaptionLabel:	TNewStaticText;	read;

		property	Values[Index:	Integer]:	String;	read

write;

end;

TInputFileWizardPage	=	class(TWizardPage)

		function	Add(const	APrompt,	AFilter,

ADefaultExtension:	String):	Integer;

		property	Buttons[Index:	Integer]:	TNewButton;

read;

		property	Edits[Index:	Integer]:	TEdit;	read;

		property	PromptLabels[Index:	Integer]:

TNewStaticText;	read;

		property	SubCaptionLabel:	TNewStaticText;	read;

		property	Values[Index:	Integer]:	String;	read

write;

		property	IsSaveButton[Index:	Integer]:	Boolean;

read	write;

end;

TOutputMsgWizardPage	=	class(TWizardPage)

		property	MsgLabel:	TNewStaticText;	read;

end;

TOutputMsgMemoWizardPage	=	class(TWizardPage)

		property	RichEditViewer:	TRichEditViewer;	read;

		property	SubCaptionLabel:	TNewStaticText;	read;

end;

TOutputProgressWizardPage	=	class(TWizardPage)

		procedure	Hide;

		property	Msg1Label:	TNewStaticText;	read;

		property	Msg2Label:	TNewStaticText;	read;

		property	ProgressBar:	TNewProgressBar;	read;

		procedure	SetProgress(const	Position,	Max:

Longint);

		procedure	SetText(const	Msg1,	Msg2:	String);

		procedure	Show;

end;

TUIStateForm	=	class(TForm)

end;

TSetupForm	=	class(TUIStateForm)

		procedure	Center;

		procedure	CenterInsideControl(const	Ctl:

TWinControl;	const	InsideClientArea:	Boolean);

		procedure	FlipControlsIfNeeded;

		property	ControlsFlipped:	Boolean;	read;

		property	FlipControlsOnShow:	Boolean;	read	write;

		property	RightToLeft:	Boolean;	read;

end;

TMainForm	=	class(TSetupForm)

		procedure	ShowAboutBox;

end;

TWizardForm	=	class(TSetupForm)

		property	CancelButton:	TNewButton;	read;

		property	NextButton:	TNewButton;	read;

		property	BackButton:	TNewButton;	read;

		property	Notebook1:	TNotebook;	read;

		property	Notebook2:	TNotebook;	read;

		property	WelcomePage:	TNewNotebookPage;	read;

		property	InnerPage:	TNewNotebookPage;	read;

		property	FinishedPage:	TNewNotebookPage;	read;

		property	LicensePage:	TNewNotebookPage;	read;

		property	PasswordPage:	TNewNotebookPage;	read;

		property	InfoBeforePage:	TNewNotebookPage;	read;

		property	UserInfoPage:	TNewNotebookPage;	read;

		property	SelectDirPage:	TNewNotebookPage;	read;

		property	SelectComponentsPage:	TNewNotebookPage;

read;

		property	SelectProgramGroupPage:	TNewNotebookPage;

read;

		property	SelectTasksPage:	TNewNotebookPage;	read;

		property	ReadyPage:	TNewNotebookPage;	read;

		property	PreparingPage:	TNewNotebookPage;	read;

		property	InstallingPage:	TNewNotebookPage;	read;

		property	InfoAfterPage:	TNewNotebookPage;	read;

		property	DiskSpaceLabel:	TNewStaticText;	read;

		property	DirEdit:	TEdit;	read;

		property	GroupEdit:	TNewEdit;	read;

		property	NoIconsCheck:	TNewCheckBox;	read;

		property	PasswordLabel:	TNewStaticText;	read;

		property	PasswordEdit:	TPasswordEdit;	read;

		property	PasswordEditLabel:	TNewStaticText;	read;

		property	ReadyMemo:	TNewMemo;	read;

		property	TypesCombo:	TNewComboBox;	read;

		property	Bevel:	TBevel;	read;

		property	WizardBitmapImage:	TBitmapImage;	read;

		property	WelcomeLabel1:	TNewStaticText;	read;

		property	InfoBeforeMemo:	TRichEditViewer;	read;

		property	InfoBeforeClickLabel:	TNewStaticText;

read;

		property	MainPanel:	TPanel;	read;

		property	Bevel1:	TBevel;	read;

		property	PageNameLabel:	TNewStaticText;	read;

		property	PageDescriptionLabel:	TNewStaticText;

read;

		property	WizardSmallBitmapImage:	TBitmapImage;

read;

		property	ReadyLabel:	TNewStaticText;	read;

		property	FinishedLabel:	TNewStaticText;	read;

		property	YesRadio:	TNewRadioButton;	read;

		property	NoRadio:	TNewRadioButton;	read;

		property	WizardBitmapImage2:	TBitmapImage;	read;

		property	WelcomeLabel2:	TNewStaticText;	read;

		property	LicenseLabel1:	TNewStaticText;	read;

		property	LicenseMemo:	TRichEditViewer;	read;

		property	InfoAfterMemo:	TRichEditViewer;	read;

		property	InfoAfterClickLabel:	TNewStaticText;

read;

		property	ComponentsList:	TNewCheckListBox;	read;

		property	ComponentsDiskSpaceLabel:	TNewStaticText;

read;

		property	BeveledLabel:	TNewStaticText;	read;

		property	StatusLabel:	TNewStaticText;	read;

		property	FilenameLabel:	TNewStaticText;	read;

		property	ProgressGauge:	TNewProgressBar;	read;

		property	SelectDirLabel:	TNewStaticText;	read;

		property	SelectStartMenuFolderLabel:

TNewStaticText;	read;

		property	SelectComponentsLabel:	TNewStaticText;

read;

		property	SelectTasksLabel:	TNewStaticText;	read;

		property	LicenseAcceptedRadio:	TNewRadioButton;

read;

		property	LicenseNotAcceptedRadio:	TNewRadioButton;

read;

		property	UserInfoNameLabel:	TNewStaticText;	read;

		property	UserInfoNameEdit:	TNewEdit;	read;

		property	UserInfoOrgLabel:	TNewStaticText;	read;

		property	UserInfoOrgEdit:	TNewEdit;	read;

		property	PreparingErrorBitmapImage:	TBitmapImage;

read;

		property	PreparingLabel:	TNewStaticText;	read;

		property	FinishedHeadingLabel:	TNewStaticText;

read;

		property	UserInfoSerialLabel:	TNewStaticText;

read;

		property	UserInfoSerialEdit:	TNewEdit;	read;

		property	TasksList:	TNewCheckListBox;	read;

		property	RunList:	TNewCheckListBox;	read;

		property	DirBrowseButton:	TNewButton;	read;

		property	GroupBrowseButton:	TNewButton;	read;

		property	SelectDirBitmapImage:	TBitmapImage;	read;

		property	SelectGroupBitmapImage:	TBitmapImage;

read;

		property	SelectDirBrowseLabel:	TNewStaticText;

read;

		property	SelectStartMenuFolderBrowseLabel:

TNewStaticText;	read;

		property	PreparingYesRadio:	TNewRadioButton;	read;

		property	PreparingNoRadio:	TNewRadioButton;	read;

		property	PreparingMemo:	TNewMemo;	read;

		property	CurPageID:	Integer;	read;

		function	AdjustLabelHeight(ALabel:

TNewStaticText):	Integer;

		procedure	IncTopDecHeight(AControl:	TControl;

Amount:	Integer);

		property	PrevAppDir:	String;	read;

end;

TUninstallProgressForm	=	class(TSetupForm)

		property	OuterNotebook:	TNewNotebook;	read;

		property	InnerPage:	TNewNotebookPage;	read;

		property	InnerNotebook:	TNewNotebook;	read;

		property	InstallingPage:	TNewNotebookPage;	read;

		property	MainPanel:	TPanel;	read;

		property	PageNameLabel:	TNewStaticText;	read;

		property	PageDescriptionLabel:	TNewStaticText;

read;

		property	WizardSmallBitmapImage:	TBitmapImage;

read;

		property	Bevel1:	TBevel;	read;

		property	StatusLabel:	TNewStaticText;	read;

		property	ProgressBar:	TNewProgressBar;	read;

		property	BeveledLabel:	TNewStaticText;	read;

		property	Bevel:	TBevel;	read;

		property	CancelButton:	TNewButton;	read;

end;

See	also:
function	CreateInputQueryPage(const	AfterID:

Integer;	const	ACaption,	ADescription,	ASubCaption:

String):	TInputQueryWizardPage;

function	CreateInputOptionPage(const	AfterID:

Integer;	const	ACaption,	ADescription,	ASubCaption:

String;	Exclusive,	ListBox:	Boolean):

TInputOptionWizardPage;

function	CreateInputDirPage(const	AfterID:	Integer;

const	ACaption,	ADescription,	ASubCaption:	String;

AAppendDir:	Boolean;	ANewFolderName:	String):

TInputDirWizardPage;

function	CreateInputFilePage(const	AfterID:	Integer;

const	ACaption,	ADescription,	ASubCaption:	String):

TInputFileWizardPage;

function	CreateOutputMsgPage(const	AfterID:	Integer;

const	ACaption,	ADescription,	AMsg:	String):

TOutputMsgWizardPage;

function	CreateOutputMsgMemoPage(const	AfterID:

Integer;	const	ACaption,	ADescription,	ASubCaption:

String;	const	AMsg:	AnsiString):

TOutputMsgMemoWizardPage;

function	CreateOutputProgressPage(const	ACaption,

ADescription:	String):	TOutputProgressWizardPage;

function	CreateCustomPage(const	AfterID:	Integer;

const	ACaption,	ADescription:	String):	TWizardPage;

function	CreateCustomForm:	TSetupForm;

function	PageFromID(const	ID:	Integer):	TWizardPage;

function	MinimizePathName(const	Filename:	String;

const	Font:	TFont;	MaxLen:	Integer):	String;

Pascal	Scripting:	Using	Custom	Wizard	Pages
The	Pascal	script	allows	you	to	add	custom	pages	to	Setup's	wizard.
This	includes	"pre-built"	wizard	pages	for	common	queries	and
completely	custom	wizard	pages	with	the	controls	of	your	choice.

To	use	custom	wizard	pages,	first	create	them	inside	your
InitializeWizard	event	function.	You	can	either	use	pre-built
pages	created	by	the	CreateInput...Page	and
CreateOutput...Page	functions	or	"empty"	pages	created	by	the
CreateCustomPage	function.	See	Support	Functions	topic	for	a	listing
and	explanation	of	all	Create...Page	functions.

After	creating	each	page,	you	add	controls	to	it,	either	by	calling	the
special	methods	of	the	pre-built	pages,	or	by	manually	creating	controls
on	the	page	yourself.

Most	of	the	Create...Page	functions	take	a	"page	ID"	as	their	first
parameter;	this	identifies	the	existing	page	after	which	the	newly
created	page	should	be	placed.	There	are	several	ways	to	find	the
"page	ID"	of	an	existing	page.	The	pages	you	create	yourself	have	ID
properties	which	hold	their	page	IDs.	Built-in	wizard	pages	have
predefined	IDs.	For	example,	for	the	Welcome	wizard	page	this	is
wpWelcome.	See	the	Support	Functions	topic	for	a	listing	of	all
predefined	IDs.

After	the	custom	wizard	pages	are	created,	Setup	will	show	and	handle
them	just	as	if	they	were	built-in	wizard	pages.	This	includes	the	calling
of	all	page	related	event	functions	such	as	NextButtonClick	and
ShouldSkipPage.

At	any	time	during	Setup	you	can	retrieve	the	values	entered	by	the
user	either	by	using	the	special	properties	of	the	pre-built	pages,	or	by
using	the	properties	of	the	controls	you	created	yourself.

Open	the	"CodeDlg.iss"	script	in	the	"Examples"	subdirectory	of	your
Inno	Setup	directory	for	an	example	of	how	to	use	pre-built	custom
wizard	pages	and	event	functions.	Open	the	"CodeClasses.iss"	script
for	an	example	of	how	to	use	completely	custom	wizard	pages	and

controls.

Pascal	Scripting:	Using	DLLs
The	Pascal	script	can	call	functions	inside	external	DLLs.	This	includes
both	standard	Win32	API	functions	inside	standard	Windows	DLLs	and
custom	functions	in	custom	made	DLLs	(how	to	make	such	a	custom
DLL	is	beyond	the	scope	of	this	help	file).

To	be	able	to	call	a	DLL	function	you	should	first	write	the	function
prototype	as	normal	but	instead	of	then	writing	the	function	body,	you
use	the	'external'	keyword	to	specify	a	DLL.	If	your	function	has	for
example	prototype	function	A(B:	Integer):	Integer;,	the
following	three	forms	are	supported:

function	A(B:	Integer):	Integer;

external	'<dllfunctionname>@<dllfilename>';

function	A(B:	Integer):	Integer;

external	'<dllfunctionname>@<dllfilename>	<callingconvention>';

function	A(B:	Integer):	Integer;

external	'<dllfunctionname>@<dllfilename>	<callingconvention>	<options>';

The	first	form	specifies	that	the	DLL	function	should	be	called	using
default	calling	convention,	which	is	'stdcall'.	All	standard	Win32	API
functions	use	'stdcall'	just	like	most	custom	DLL	functions.

The	second	form	specifies	that	the	DLL	function	should	be	called	using
a	special	calling	convention.	Valid	calling	conventions	are:	'stdcall'	(the
default),	'cdecl',	'pascal'	and	'register'.

The	third	form	specifies	additional	one	or	more	options	for	loading	the
DLL,	separated	by	spaces:

delayload
Specifies	that	the	DLL	should	be	delay	loaded.	Normally	the
Pascal	script	checks	at	startup	whether	the	DLL	function	can
be	called	and	if	not,	refuses	to	run.	This	does	not	happen	if
you	specify	delay	loading	using	'delayload'.	Use	delay	loading
if	you	want	to	call	a	DLL	function	for	which	you	don't	know

whether	it	will	actually	be	available	at	runtime:	if	the	DLL
function	can't	be	called,	the	Pascal	script	will	still	run	but	throw
an	expection	when	you	try	to	call	the	DLL	function	which	you
can	catch	to	handle	the	absence	of	the	DLL	function.

loadwithalteredsearchpath
Specifies	that	the	DLL	should	be	loaded	using	the	Windows
flag	LOAD_WITH_ALTERED_SEARCH_PATH,	which,	in
essence,	causes	the	loader	to	search	for	any	dependent	DLLs
in	the	directory	containing	the	DLL.

setuponly
Specifies	that	the	DLL	should	only	be	loaded	when	the	script
is	running	from	Setup.

uninstallonly
Specifies	that	the	DLL	should	only	be	loaded	when	the	script
is	running	from	Uninstall.

An	example	(of	the	second	form)	if	the	DLL	function	has	name	'A2'
inside	the	DLL,	the	DLL	has	name	'MyDll.dll'	and	the	DLL	function	uses
the	'stdcall'	calling	convention:

[Code]

function	A(B:	Integer):	Integer;

external	'A2@MyDll.dll	stdcall';

Constants	may	be	used	in	the	DLL	filename.

During	Setup,	a	special	'files:'	prefix	may	also	be	used	to	instruct	Setup
to	automatically	extract	one	or	more	DLLs	from	the	[Files]	section
before	loading	the	first	DLL.	For	example:

[Files]

Source:	"MyDll.dll";	Flags:	dontcopy

Source:	"A.dll";	Flags:	dontcopy

Source:	"B.dll";	Flags:	dontcopy

[Code]

procedure	MyDllFunc(hWnd:	Integer;	lpText,	lpCaption:	String;	uType:	Cardinal);

external	'MyDllFunc@files:MyDll.dll	stdcall';

procedure	ADllFunc(hWnd:	Integer;	lpText,	lpCaption:	String;	uType:	Cardinal);

external	'ADllFunc@files:A.dll,B.dll	stdcall	loadwithalteredsearchpath';	//A.dll	depends	on	B.dll

If	you	use	a	'files:'	prefix	and	solid	compression	is	enabled,	be	sure	to
list	your	DLLs	at	(or	near)	the	top	of	the	[Files]	section.	In	order	to
extract	an	arbitrary	file	in	a	solid-compressed	installation,	Setup	must
first	decompress	all	prior	files	(to	a	temporary	buffer	in	memory).	This
can	result	in	a	substantial	delay	if	a	number	of	other	files	are	listed
above	the	specified	file	in	the	[Files]	section.

Open	the	"CodeDll.iss"	file	in	the	"Examples"	subdirectory	in	your	Inno
Setup	directory	for	an	example	script	using	DLLs.

The	"Examples"	subdirectory	also	contains	two	custom	DLL	example
projects,	one	for	Microsoft	Visual	C++	and	one	for	Borland	Delphi.

Pascal	Scripting:	Using	COM	Automation	objects
The	Pascal	script	can	access	COM	(also	known	as	OLE	or	ActiveX)
methods	and	properties	via	the	COM	Automation	objects	support.	This
allows	you	to	access	for	example	standard	Windows	COM	servers,
custom	COM	servers,	Visual	Basic	ActiveX	DLLs	and	.NET	assemblies
via	COM	Interop.

IDispatch	based	COM
There	are	two	support	functions	to	initialize	IDispatch	based	COM
Automation	objects:	CreateOleObject	and	GetActiveOleObject.

Use	CreateOleObject	to	create	a	new	COM	object	with	the
specified	class	name.	This	function	returns	a	variable	of	type
Variant	if	successful	and	throws	an	exception	otherwise.

Use	GetActiveOleObject	to	connect	to	an	existing	COM	object	with
the	specified	class	name.	This	function	returns	a	variable	of	type
Variant	if	successful	and	throws	an	exception	otherwise.	In	case
of	some	programs,	this	can	be	used	to	detect	whether	the	program
is	running	or	not.

The	value	returned	by	CreateOleObject	or	GetActiveOleObject	can
then	be	used	to	access	the	properties	and	methods	of	the	COM
object.	The	access	is	done	via	'late	binding'	which	means	it	is	not
checked	whether	the	methods	or	properties	you're	trying	to	access
actually	exist	until	Setup	actually	needs	to	at	run	time.

To	access	a	property	or	method	whose	name	is	a	reserved	word,
use	IDispatchInvoke.

Open	the	"CodeAutomation.iss"	file	in	the	"Examples"	subdirectory
in	your	Inno	Setup	directory	for	an	example	script	using	IDispatch
based	COM	Automation	objects.

IUnknown	based	COM
If	the	IDispatch	interface	isn't	implemented	by	the	object,	you	can
use	the	IUnknown	based	COM	support.

To	initialize	IUnknown	based	COM	Automation	objects	use
CreateComObject.

The	value	returned	by	CreateComObject	can	then	be	used	to
access	the	methods	of	the	COM	object	after	casting	it	to	the
desired	interface.	The	access	is	done	via	'early	binding'	which
means	the	desired	interface	needs	to	be	defined	in	the	script,
unlike	for	IDispatch	based	COM	support.

StringToGUID	can	be	used	to	convert	the	string	representation	of	a
GUID	into	a	'real'	GUID.	Use	OleCheck	to	check	the	return	values
of	any	method	you	call.

If	you	copy	the	interface	definition	from	any	existing	Delphi	source
code,	remove	the	brackets	around	the	interface	GUID	string.	Also
remove	any	calling	conventions,	Inno	Setup	assumes	'stdcall'.	If
the	interface	contains	any	functions	you	won't	call,	you	can	replace
these	by	dummies	to	avoid	having	to	define	any	special	types	used
by	them.

Open	the	"CodeAutomation2.iss"	file	in	the	"Examples"
subdirectory	in	your	Inno	Setup	directory	for	an	example	script
using	IUnknown	based	COM	Automation	objects.

Note:	IUnknown	based	COM	support	requires	Unicode	Inno	Setup.

General
COM	objects	are	released	automatically	when	they	go	out	of
scope.	There	are	no	functions	to	'destroy'	or	'free'	them.

If	you	are	extracting	a	COM	Automation	library	to	a	temporary
location	and	want	to	be	able	to	delete	it	after	using	it,	make	sure
you	no	longer	have	any	references	to	the	library	and	then	call
CoFreeUnusedLibraries.	This	Windows	function	will	then	attempt
to	unload	the	library	so	you	can	delete	it.

Unicode	Inno	Setup
Beginning	with	Inno	Setup	5.3.0,	there	are	two	versions	of	Inno	Setup
available:	Non	Unicode	Inno	Setup	and	Unicode	Inno	Setup.

Key	features	of	Unicode	Inno	Setup	are	its	ability	to	display	any
language	on	any	system	regardless	of	the	system	code	page,	and	its
ability	to	work	with	Unicode	filenames.	One	could	consider	Unicode
Inno	Setup	as	the	new	standard	Inno	Setup	and	Non	Unicode	Inno
Setup	as	an	old	special	Inno	Setup	for	those	who	want	the	very
smallest	size	possible.

If	you	don't	remember	which	version	you	installed,	click	the	"Inno	Setup
Compiler"	shortcut	created	in	the	Start	Menu.	If	the	version	number
displayed	in	its	title	bar	says	"(a)"	you	are	running	Non	Unicode	Inno
Setup.	If	it	says	"(u)"	you	are	running	Unicode	Inno	Setup.

For	the	most	part	the	two	versions	are	used	identically,	and	any
differences	between	them	are	noted	throughout	the	help	file.	However,
the	following	overview	lists	the	primary	differences:

Unicode	Inno	Setup	uses	the	existing	ANSI	.isl	language	files	and
you	should	not	and	may	not	convert	these	to	Unicode	or	anything
similar	since	it	does	so	automatically	during	compilation	using	the
LanguageCodePage	setting	of	the	language.	However,	you	do
need	to	convert	existing	[Messages]	and	[CustomMessages]
entries	in	your	.iss	files	to	Unicode	if	the	language	used	a	special
LanguageCodePage.

The	automatic	conversion	is	also	done	for	any	language	specific
plain	text	ANSI	LicenseFile,	InfoBeforeFile,	or
InfoAfterFile	used	so	you	should	not	convert	these	either	(but
you	may	do	so	if	you	wish	anyway,	unlike	ANSI	.isl	language	files).

The	[Setup]	directive	ShowUndisplayableLanguages	is	ignored
by	Unicode	Inno	Setup.

Unicode	Inno	Setup	is	compiled	with	Delphi	2009	instead	of	Delphi
2	and	3,	leading	to	slightly	larger	files.	The	source	code	however	is
still	compatible	with	Delphi	2	and	3,	and	a	non	Unicode	version	will

remain	available.

Existing	installations	of	your	programs	done	by	non	Unicode
installers	can	be	freely	updated	by	Unicode	installers,	and	vice
versa.

Unicode	Pascal	Scripting	notes:
The	Unicode	compiler	sees	type	'String'	as	a	Unicode	string,
and	'Char'	as	a	Unicode	character.	Its	'AnsiString'	type	hasn't
changed	and	still	is	an	ANSI	string.	Its	'PChar'	type	has	been
renamed	to	'PAnsiChar'.

The	Unicode	compiler	is	more	strict	about	correct	';'	usage:	it
no	longer	accepts	certain	missing	';'	characters.

The	new	RemObjects	PascalScript	version	used	by	the
Unicode	compiler	supports	Unicode,	but	not	for	its	input
source.	This	means	it	does	use	Unicode	string	types	as	said,
but	any	literal	Unicode	characters	in	the	script	will	be
converted	to	ANSI.	This	doesn't	mean	you	can't	display
Unicode	strings:	you	can	for	example	instead	use	encoded
Unicode	characters	to	build	Unicode	strings	(like	S	:=
#$0100	+	#$0101	+	'Aa';),	or	load	the	string	from	a	file
using	LoadStringsFromFile,	or	use	a	{cm:...}	constant.

Some	support	functions	had	their	prototype	changed:	some
parameters	of	CreateOutputMsgMemoPage,
RegQueryBinaryValue,	RegWriteBinaryValue,
OemToCharBuff,	CharToOemBuff,
LoadStringFromfile,	SaveStringToFile,	and
GetMD5OfString	are	of	type	AnsiString	now	instead	of
String.

Added	new	SaveStringsToUTF8File,	and
GetMD5OfUnicodeString	support	functions.

Added	new	'Int64'	type,	supported	by	IntToStr.	Also	added
new	StrToInt64,	StrToInt64Def,	and
GetSpaceOnDisk64	support	functions.

Added	new	TStringStream	class.

If	you	want	to	compile	an	existing	script	that	imports	ANSI
Windows	API	calls	with	the	Unicode	compiler,	either	upgrade
to	the	'W'	Unicode	API	call	or	change	the	parameters	from
'String'	or	'PChar'	to	'AnsiString'.	The	'AnsiString'	approach	will
make	your	[Code]	compatible	with	both	the	Unicode	and	the
non	Unicode	version.

Unicode	Inno	Setup	supports	UTF-8	encoded	.iss	files	(but	not
UTF-16).

Unicode	Inno	Setup	supports	UTF-8	and	UTF-16LE	encoded	.txt
files	for	LicenseFile,	InfoBeforeFile,	and	InfoAfterFile.

Note:	Unicode	Inno	Setup	can	only	create	Unicode	installers	and	like
wise	the	non	Unicode	version	can	only	create	non	Unicode	installers.	If
you	want	to	be	able	to	create	both	Unicode	and	non	Unicode	installers
on	one	computer,	you	have	to	install	both	versions	of	Inno	Setup	into
different	folders.

Example	Scripts
The	Inno	Setup	Example	Scripts	are	located	in	a	separate	folder.
Please	click	the	"Inno	Setup	Example	Scripts"	shortcut	created	in	the
Start	Menu	when	you	installed	Inno	Setup,	or	open	the	"Examples"
folder	in	your	Inno	Setup	directory.

Frequently	Asked	Questions
The	Frequently	Asked	Questions	is	now	located	in	a	separate
document.	Please	click	the	"Inno	Setup	FAQ"	shortcut	created	in	the
Start	Menu	when	you	installed	Inno	Setup,	or	open	the	"isfaq.htm"	file
in	your	Inno	Setup	directory.

For	the	most	recent	Frequently	Asked	Questions,	go	to
http://www.jrsoftware.org/isfaq.php

http://www.jrsoftware.org/isfaq.php

Wizard	Pages
Below	is	a	list	of	all	the	wizard	pages	Setup	may	potentially	display,	and
the	conditions	under	which	they	are	displayed.

Welcome	Shown	by	default,	but	can	be	disabled	via
DisableWelcomePage.

License	Agreement
Shown	if	LicenseFile	is	set.	Users	may	proceed	to	the	next	page
only	if	the	option	"I	accept	the	agreement"	is	selected.

Password
Shown	if	Password	is	set.	Users	may	proceed	to	the	next	page
only	after	entering	the	correct	password.

Information
Shown	if	InfoBeforeFile	is	set.

User	Information
Shown	if	UserInfoPage	is	set	to	yes.

Select	Destination	Location
Shown	by	default,	but	can	be	disabled	via	DisableDirPage.

Select	Components
Shown	if	there	are	any	[Components]	entries.

Select	Start	Menu	Folder
Shown	if	there	are	any	[Icons]	entries,	but	can	be	disabled	via
DisableProgramGroupPage.

Select	Tasks
Shown	if	there	are	any	[Tasks]	entries,	unless	the	[Tasks]	entries
are	all	tied	to	components	that	were	not	selected	on	the	Select
Components	page.

Ready	to	Install
Shown	by	default,	but	can	be	disabled	via	DisableReadyPage.

Preparing	to	Install
Normally,	Setup	will	never	stop	or	pause	on	this	page.	The	only
time	it	will	is	if	Setup	determines	it	can't	continue	or	if	it	detects

applications	using	files	that	need	to	be	updated.

The	former	can	happen	if	the	PrepareToInstall	event	function
returned	an	error	or	if	one	or	more	files	specified	in	the	[Files]	and
[InstallDelete]	sections	were	queued	(by	some	other	installation)	to
be	replaced	or	deleted	on	the	next	restart.	In	this	case,	it	tells	the
user	they	need	to	restart	their	computer	and	then	run	Setup	again.
Note	that	this	check	is	performed	on	silent	installations	too,	but	any
messages	are	displayed	in	a	message	box	instead	of	inside	a
wizard	page.

The	latter	can	happen	if	CloseApplications	is	set	to	yes.

Installing
Shown	during	the	actual	installation	process.

Information
Shown	if	InfoAfterFile	is	set.

Setup	Completed
Shown	by	default,	but	can	be	disabled	in	some	cases	via
DisableFinishedPage.

Installation	Order
Once	the	actual	installation	process	begins,	this	is	the	order	in	which
the	various	installation	tasks	are	performed:

[InstallDelete]	is	processed.

The	entries	in	[UninstallDelete]	are	stored	in	the	uninstall	log
(which,	at	this	stage,	is	stored	in	memory).

The	application	directory	is	created,	if	necessary.

[Dirs]	is	processed.

A	filename	for	the	uninstall	log	is	reserved,	if	necessary.

[Files]	is	processed.	(File	registration	does	not	happen	yet.)

[Icons]	is	processed.

[INI]	is	processed.

[Registry]	is	processed.

Files	that	needed	to	be	registered	are	now	registered,	unless	the
system	needs	to	be	restarted,	in	which	case	no	files	are	registered
until	the	system	is	restarted.

The	Add/Remove	Programs	entry	for	the	program	is	created,	if
necessary.

The	entries	in	[UninstallRun]	are	stored	in	the	uninstall	log.

The	uninstaller	EXE	and	log	are	finalized	and	saved	to	disk.	After
this	is	done,	the	user	is	forbidden	from	cancelling	the	install,	and
any	subsequent	errors	will	not	cause	what	was	installed	before	to
be	rolled	back.

[Run]	is	processed,	except	for	entries	with	the	postinstall	flag,
which	get	processed	after	the	Setup	Completed	wizard	page	is
shown.

If	ChangesAssociations	was	set	to	yes,	file	associations	are
refreshed	now.

If	ChangesEnvironment	was	set	to	yes,	other	applications	are
notified	at	this	point.

All	entries	are	processed	by	the	installer	in	the	order	they	appear	in	a
section.

Changes	are	undone	by	the	uninstaller	in	the	opposite	order	in	which
the	installer	made	them.	This	is	because	the	uninstall	log	is	parsed
from	end	to	beginning.

In	this	example:

[INI]

Filename:	"{win}\MYPROG.INI";	Section:	"InstallSettings";	Flags:	uninsdeletesectionifempty

Filename:	"{win}\MYPROG.INI";	Section:	"InstallSettings";	Key:	"InstallPath";	String:	"{app}";	Flags:	uninsdeleteentry

the	installer	will	first	record	the	data	for	first	entry's
uninsdeletesectionifempty	flag	in	the	uninstall	log,	create	the
key	of	the	second	entry,	and	then	record	the	data	for	the
uninsdeleteentry	flag	in	the	uninstall	log.	When	the	program	is
uninstalled,	the	uninstaller	will	first	process	the	uninsdeleteentry
flag,	deleting	the	entry,	and	then	the	uninsdeletesectionifempty
flag,	deleting	the	section.

Note	that	the	uninstaller	processes	[UninstallRun]	and
[UninstallDelete]	entries	in	the	same	order	they	appear	in	the
script	(not	in	reverse	order).

Install	Mode:	32-bit	vs.	64-bit
An	installation	can	run	in	one	of	two	modes:	32-bit	or	64-bit.

64-bit	mode	is	selected	if	the	user	is	running	a	64-bit	version	of
Windows	and	the	system's	processor	architecture	is	included	in	the
value	of	the	ArchitecturesInstallIn64BitMode	[Setup]	section	directive.
Otherwise,	32-bit	mode	is	used.

How	do	the	two	modes	of	installation	differ?	Primarily,	the	differences
lie	in	where	things	are	installed	by	default.

In	32-bit	mode:

The	System32	path	returned	by	the	{sys}	constant	maps	to	the
32-bit	System	directory	by	default.

The	{pf}	constant	is	equivalent	to	{pf32}.

The	{cf}	constant	is	equivalent	to	{cf32}.

[Registry]	writes	to	the	32-bit	view	by	default.

The	{reg:...}	constant	reads	the	32-bit	view	by	default.

The	Reg*	[Code]	support	functions	access	the	32-bit	view	by
default.

The	useapppaths	flag	of	the	[Icons]	section	reads	the	"App
Paths"	key	in	the	32-bit	view	of	the	registry.

The	regserver	and	regtypelib	flags	of	the	[Files]	section	load
and	register	files	inside	a	32-bit	process	by	default.

The	sharedfile	flag	of	the	[Files]	section	updates	the
"SharedDLLs"	key	in	the	32-bit	view	of	the	registry	by	default.

The	Uninstall	key	is	created	in	the	32-bit	view	of	the	registry.

In	64-bit	mode:

The	System32	path	returned	by	the	{sys}	constant	maps	to	the
64-bit	System	directory	by	default	when	used	in	the	[Dirs],	[Files],
[InstallDelete],	[Run],	[UninstallDelete],	and	[UninstallRun]

sections.	This	is	because	Setup/Uninstall	temporarily	disables
WOW64	file	system	redirection 	when	files/directories	are
accessed	by	those	sections.	Elsewhere,	System32	and	{sys}
map	to	the	32-bit	System	directory,	as	is	normal	in	a	32-bit
process.

The	{pf}	constant	is	equivalent	to	{pf64}.

The	{cf}	constant	is	equivalent	to	{cf64}.

[Registry]	writes	to	the	64-bit	view	by	default.

The	{reg:...}	constant	reads	the	64-bit	view	by	default.

The	Reg*	[Code]	support	functions	access	the	64-bit	view	by
default.

The	useapppaths	flag	of	the	[Icons]	section	reads	the	"App
Paths"	key	in	the	64-bit	view	of	the	registry.

The	regserver	and	regtypelib	flags	of	the	[Files]	section	load
and	register	files	inside	a	64-bit	process	by	default.

The	sharedfile	flag	of	the	[Files]	section	updates	the
"SharedDLLs"	key	in	the	64-bit	view	of	the	registry	by	default.

The	Uninstall	key	is	created	in	the	64-bit	view	of	the	registry.

http://msdn.microsoft.com/en-us/library/aa384187.aspx

64-bit	Installation	Limitations
Because	Inno	Setup	is	a	32-bit	application,	there	are	some	limitations
to	be	aware	of	when	utilizing	its	64-bit	installation	features:

The	System32	path	returned	by	the	{sys}	constant	does	not
always	map	to	the	64-bit	System	directory.	When	Setup/Uninstall	is
running	in	64-bit	mode,	it	maps	to	the	64-bit	System	directory	when
used	in	the	[Dirs],	[Files],	[InstallDelete],	[Run],	[UninstallDelete],
and	[UninstallRun]	sections	because	Setup	temporarily	disables
WOW64	file	system	redirection 	when	files/directories	are
accessed	by	those	sections.	Elsewhere,	System32	and	{sys}
map	to	the	32-bit	System	directory,	as	is	normal	in	a	32-bit
process.

In	the	[Code]	section,	when	Setup/Uninstall	is	running	in	64-bit
mode,	functions	that	access	files	disable	WOW64	file	system
redirection	(unless	overridden	by	a	call	to	EnableFsRedirection).
However,	there	are	exceptions,	listed	below.	These	functions	never
disable	file	system	redirection,	meaning	you	cannot	pass	them	(or
get	back)	the	name	of	a	file	located	in	the	64-bit	System	directory:

Ini (all	of	the	functions	that	manipulate	.INI
files)

BrowseForFolder

CreateShellLink

GetOpenFileName

LoadDLL (see	following	point)
ModifyPifFile

SetCurrentDir

ShellExec (use	Exec	instead)
UnregisterFont

Additionally,	no	VCL	classes	are	capable	of	disabling	file	system
redirection.	For	example,	you	cannot	call	the	LoadFromFile
method	of	TBitmap	to	load	a	bitmap	file	from	the	64-bit	System
directory.

You	cannot	load/use	64-bit	DLLs	in	the	[Code]	section,	because

http://msdn.microsoft.com/en-us/library/aa384187.aspx

Windows	does	not	allow	32-bit	processes	to	load	64-bit	DLLs	(and
vice	versa).	A	32-bit	process	can,	however,	launch	64-bit	EXEs.
Use	the	Exec	function	or	the	[Run]	section	to	do	that.

Miscellaneous	Notes
To	easily	auto	update	your	application,	first	make	your	application
somehow	detect	a	new	version	of	your	Setup.exe	and	make	it
locate	or	download	this	new	version.	Then,	to	auto	update,	start
your	Setup.exe	from	your	application	with	for	example	the	following
command	line:

/SP-	/silent	/noicons	"/dir=expand:{pf}\My	Program"

After	starting	setup.exe,	exit	your	application	as	soon	as	possible.
Note	that	to	avoid	problems	with	updating	your	.exe,	Setup	has	an
auto	retry	feature.

Optionally	you	could	also	use	the	skipifsilent	and
skipifnotsilent	flags	and	make	your	application	aware	of	a
'/updated'	parameter	to	for	example	show	a	nice	message	box	to
inform	the	user	that	the	update	has	completed.

Command	Line	Compiler	Execution
Scripts	can	also	be	compiled	by	the	Setup	Compiler	from	the
command	line.	Command	line	usage	is	as	follows:

compil32	/cc	<script	name>

Example:

compil32	/cc	"c:\isetup\samples\my	script.iss"

As	shown	in	the	example	above,	filenames	that	include	spaces
must	be	enclosed	in	quotes.

Running	the	Setup	Compiler	from	the	command	line	does	not
suppress	the	normal	progress	display	or	any	error	messages.	The
Setup	Compiler	will	return	an	exit	code	of	0	if	the	compile	was
successful,	1	if	the	command	line	parameters	were	invalid,	or	2	if
the	compile	failed.

Alternatively,	you	can	compile	scripts	using	the	console-mode
compiler,	ISCC.exe.	Command	line	usage	is	as	follows:

iscc	[options]	<script	name>

Or	to	read	from	standard	input:

iscc	[options]	-

Example:

iscc	"c:\isetup\samples\my	script.iss"

As	shown	in	the	example	above,	filenames	that	include	spaces
must	be	enclosed	in	quotes.

Valid	options	are:	"/O-"	to	disable	output	(overriding	any	Output
setting	in	the	script),	"/O+"	to	enable	output	(overriding	any
Output	setting	in	the	script),	"/O"	to	specify	an	output	path
(overriding	any	OutputDir	setting	in	the	script),	"/F"	to	specify	an
output	filename	(overriding	any	OutputBaseFilename	setting	in
the	script),	"/S"	to	specify	a	Sign	Tool	(any	Sign	Tools	configured
using	the	IDE	will	be	specified	automatically),	"/Q[p]"	for	quiet

compile	(print	only	error	messages,	"p"	will	show	progress	info),
and	"/?"	to	show	a	help	screen.

Example:

iscc	/Qp	/O"My	Output"	/F"MyProgram-1.0"	/Sbyparam=$p
"c:\isetup\samples\my	script.iss"

ISCC	will	return	an	exit	code	of	0	if	the	compile	was	successful,	1	if
the	command	line	parameters	were	invalid	or	an	internal	error
occurred,	or	2	if	the	compile	failed.

The	Setup	Script	Wizard	can	be	started	from	the	command	line.
Command	line	usage	is	as	follows:

compil32	/wizard	<wizard	name>	<script	name>

Example:

compil32	/wizard	"MyProg	Script	Wizard"	"c:\temp.iss"

As	shown	in	the	example	above,	wizard	names	and	filenames	that
include	spaces	must	be	enclosed	in	quotes.

Running	the	wizard	from	the	command	line	does	not	suppress	any
error	messages.	The	Setup	Script	Wizard	will	return	an	exit	code	of
0	if	there	was	no	error	and	additionally	it	will	save	the	generated
script	file	to	the	specified	filename,	1	if	the	command	line
parameters	were	invalid,	or	2	if	the	generated	script	file	could	not
be	saved.	If	the	user	cancelled	the	Setup	Script	Wizard,	an	exit
code	of	0	is	returned	and	no	script	file	is	saved.

Setup	Command	Line	Parameters
The	Setup	program	accepts	optional	command	line	parameters.	These
can	be	useful	to	system	administrators,	and	to	other	programs	calling
the	Setup	program.

/HELP,	/?
Shows	a	summary	of	this	information.	Ignored	if	the	UseSetupLdr
[Setup]	section	directive	was	set	to	no.

/SP-
Disables	the	This	will	install...	Do	you	wish	to	continue?	prompt	at
the	beginning	of	Setup.	Of	course,	this	will	have	no	effect	if	the
DisableStartupPrompt	[Setup]	section	directive	was	set	to
yes.

/SILENT,	/VERYSILENT
Instructs	Setup	to	be	silent	or	very	silent.	When	Setup	is	silent	the
wizard	and	the	background	window	are	not	displayed	but	the
installation	progress	window	is.	When	a	setup	is	very	silent	this
installation	progress	window	is	not	displayed.	Everything	else	is
normal	so	for	example	error	messages	during	installation	are
displayed	and	the	startup	prompt	is	(if	you	haven't	disabled	it	with
DisableStartupPrompt	or	the	'/SP-'	command	line	option	explained
above).

If	a	restart	is	necessary	and	the	'/NORESTART'	command	isn't
used	(see	below)	and	Setup	is	silent,	it	will	display	a	Reboot	now?
message	box.	If	it's	very	silent	it	will	reboot	without	asking.

/SUPPRESSMSGBOXES
Instructs	Setup	to	suppress	message	boxes.	Only	has	an	effect
when	combined	with	'/SILENT'	or	'/VERYSILENT'.

The	default	response	in	situations	where	there's	a	choice	is:

Yes	in	a	'Keep	newer	file?'	situation.
No	in	a	'File	exists,	confirm	overwrite.'	situation.
Abort	in	Abort/Retry	situations.
Cancel	in	Retry/Cancel	situations.

Yes	(=continue)	in	a
DiskSpaceWarning/DirExists/DirDoesntExist/NoUninstallWarning/ExitSetupMessage/ConfirmUninstall
situation.
Yes	(=restart)	in	a
FinishedRestartMessage/UninstalledAndNeedsRestart
situation.

5	message	boxes	are	not	suppressible:

The	About	Setup	message	box.
The	Exit	Setup?	message	box.
The	FileNotInDir2	message	box	displayed	when	Setup
requires	a	new	disk	to	be	inserted	and	the	disk	was	not	found.
Any	(error)	message	box	displayed	before	Setup	(or	Uninstall)
could	read	the	command	line	parameters.
Any	message	box	displayed	by	[Code]	support	function
MsgBox.

/LOG
Causes	Setup	to	create	a	log	file	in	the	user's	TEMP	directory
detailing	file	installation	and	[Run]	actions	taken	during	the
installation	process.	This	can	be	a	helpful	debugging	aid.	For
example,	if	you	suspect	a	file	isn't	being	replaced	when	you	believe
it	should	be	(or	vice	versa),	the	log	file	will	tell	you	if	the	file	was
really	skipped,	and	why.

The	log	file	is	created	with	a	unique	name	based	on	the	current
date.	(It	will	not	overwrite	or	append	to	existing	files.)

The	information	contained	in	the	log	file	is	technical	in	nature	and
therefore	not	intended	to	be	understandable	by	end	users.	Nor	is	it
designed	to	be	machine-parseable;	the	format	of	the	file	is	subject
to	change	without	notice.

/LOG="filename"
Same	as	/LOG,	except	it	allows	you	to	specify	a	fixed
path/filename	to	use	for	the	log	file.	If	a	file	with	the	specified	name
already	exists	it	will	be	overwritten.	If	the	file	cannot	be	created,
Setup	will	abort	with	an	error	message.

/NOCANCEL
Prevents	the	user	from	cancelling	during	the	installation	process,
by	disabling	the	Cancel	button	and	ignoring	clicks	on	the	close
button.	Useful	along	with	'/SILENT'	or	'/VERYSILENT'.

/NORESTART
Prevents	Setup	from	restarting	the	system	following	a	successful
installation,	or	after	a	Preparing	to	Install	failure	that	requests	a
restart.	Typically	used	along	with	/SILENT	or	/VERYSILENT.

/RESTARTEXITCODE=exit	code
Specifies	a	custom	exit	code	that	Setup	is	to	return	when	the
system	needs	to	be	restarted	following	a	successful	installation.
(By	default,	0	is	returned	in	this	case.)	Typically	used	along	with
/NORESTART.	See	also:	Setup	Exit	Codes

/CLOSEAPPLICATIONS
Instructs	Setup	to	close	applications	using	files	that	need	to	be
updated	by	Setup	if	possible.

/NOCLOSEAPPLICATIONS
Prevents	Setup	from	closing	applications	using	files	that	need	to
be	updated	by	Setup.	If	/CLOSEAPPLICATIONS	was	also	used,
this	command	line	parameter	is	ignored.

/RESTARTAPPLICATIONS
Instructs	Setup	to	restart	applications	if	possible.	If	Setup	didn't
close	these	applications	(for	example	because
/NOCLOSEAPPLICATIONS	was	used),	this	command	line
parameter	is	ignored.

/NORESTARTAPPLICATIONS
Prevents	Setup	from	restarting	applications.	If
/RESTARTAPPLICATIONS	was	also	used,	this	command	line
parameter	is	ignored.

/LOADINF="filename"
Instructs	Setup	to	load	the	settings	from	the	specified	file	after
having	checked	the	command	line.	This	file	can	be	prepared	using
the	'/SAVEINF='	command	as	explained	below.

Don't	forget	to	use	quotes	if	the	filename	contains	spaces.

/SAVEINF="filename"
Instructs	Setup	to	save	installation	settings	to	the	specified	file.

Don't	forget	to	use	quotes	if	the	filename	contains	spaces.

/LANG=language
Specifies	the	language	to	use.	language	specifies	the	internal
name	of	the	language	as	specified	in	a	[Languages]	section	entry.

When	a	valid	/LANG	parameter	is	used,	the	Select	Language
dialog	will	be	suppressed.

/DIR="x:\dirname"
Overrides	the	default	directory	name	displayed	on	the	Select
Destination	Location	wizard	page.	A	fully	qualified	pathname	must
be	specified.	May	include	an	"expand:"	prefix	which	instructs	Setup
to	expand	any	constants	in	the	name.	For	example:	'/DIR=expand:
{pf}\My	Program'.

/GROUP="folder	name"
Overrides	the	default	folder	name	displayed	on	the	Select	Start
Menu	Folder	wizard	page.	May	include	an	"expand:"	prefix,	see
'/DIR='.	If	the	[Setup]	section	directive
DisableProgramGroupPage	was	set	to	yes,	this	command	line
parameter	is	ignored.

/NOICONS
Instructs	Setup	to	initially	check	the	Don't	create	a	Start	Menu
folder	check	box	on	the	Select	Start	Menu	Folder	wizard	page.

/TYPE=type	name
Overrides	the	default	setup	type.

If	the	specified	type	exists	and	isn't	a	custom	type,	then	any
/COMPONENTS	parameter	will	be	ignored.

/COMPONENTS="comma	separated	list	of	component	names"
Overrides	the	default	component	settings.	Using	this	command	line
parameter	causes	Setup	to	automatically	select	a	custom	type.	If
no	custom	type	is	defined,	this	parameter	is	ignored.

Only	the	specified	components	will	be	selected;	the	rest	will	be
deselected.

If	a	component	name	is	prefixed	with	a	"*"	character,	any	child
components	will	be	selected	as	well	(except	for	those	that	include
the	dontinheritcheck	flag).	If	a	component	name	is	prefixed
with	a	"!"	character,	the	component	will	be	deselected.

This	parameter	does	not	change	the	state	of	components	that
include	the	fixed	flag.

Example:

Deselect	all	components,	then	select	the	"help"	and	"plugins"
components:
/COMPONENTS="help,plugins"

Example:

Deselect	all	components,	then	select	a	parent	component	and	all
of	its	children	with	the	exception	of	one:
/COMPONENTS="*parent,!parent\child"

/TASKS="comma	separated	list	of	task	names"
Specifies	a	list	of	tasks	that	should	be	initially	selected.

Only	the	specified	tasks	will	be	selected;	the	rest	will	be
deselected.	Use	the	/MERGETASKS	parameter	instead	if	you	want
to	keep	the	default	set	of	tasks	and	only	select/deselect	some	of
them.

If	a	task	name	is	prefixed	with	a	"*"	character,	any	child	tasks	will
be	selected	as	well	(except	for	those	that	include	the
dontinheritcheck	flag).	If	a	task	name	is	prefixed	with	a	"!"
character,	the	task	will	be	deselected.

Example:

Deselect	all	tasks,	then	select	the	"desktopicon"	and	"fileassoc"
tasks:
/TASKS="desktopicon,fileassoc"

Example:

Deselect	all	tasks,	then	select	a	parent	task	and	all	of	its	children
with	the	exception	of	one:
/TASKS="*parent,!parent\child"

/MERGETASKS="comma	separated	list	of	task	names"
Like	the	/TASKS	parameter,	except	the	specified	tasks	will	be
merged	with	the	set	of	tasks	that	would	have	otherwise	been
selected	by	default.

If	UsePreviousTasks	is	set	to	yes,	the	specified	tasks	will	be
selected/deselected	after	any	previous	tasks	are	restored.

Example:

Keep	the	default	set	of	selected	tasks,	but	additionally	select	the
"desktopicon"	and	"fileassoc"	tasks:
/MERGETASKS="desktopicon,fileassoc"

Example:

Keep	the	default	set	of	selected	tasks,	but	deselect	the
"desktopicon"	task:
/MERGETASKS="!desktopicon"

/PASSWORD=password
Specifies	the	password	to	use.	If	the	[Setup]	section	directive
Password	was	not	set,	this	command	line	parameter	is	ignored.

When	an	invalid	password	is	specified,	this	command	line
parameter	is	also	ignored.

Setup	Exit	Codes
Beginning	with	Inno	Setup	3.0.3,	the	Setup	program	may	return	one	of
the	following	exit	codes:

0 Setup	was	successfully	run	to	completion	or	the	/HELP	or	/?
command	line	parameter	was	used.

1 Setup	failed	to	initialize.

2 The	user	clicked	Cancel	in	the	wizard	before	the	actual
installation	started,	or	chose	"No"	on	the	opening	"This	will
install..."	message	box.

3 A	fatal	error	occurred	while	preparing	to	move	to	the	next
installation	phase	(for	example,	from	displaying	the	pre-
installation	wizard	pages	to	the	actual	installation	process).	This
should	never	happen	except	under	the	most	unusual	of
circumstances,	such	as	running	out	of	memory	or	Windows
resources.

4 A	fatal	error	occurred	during	the	actual	installation	process.

Note:	Errors	that	cause	an	Abort-Retry-Ignore	box	to	be	displayed
are	not	fatal	errors.	If	the	user	chooses	Abort	at	such	a	message
box,	exit	code	5	will	be	returned.

5 The	user	clicked	Cancel	during	the	actual	installation	process,	or
chose	Abort	at	an	Abort-Retry-Ignore	box.

6 The	Setup	process	was	forcefully	terminated	by	the	debugger
(Run	|	Terminate	was	used	in	the	IDE).

7 The	Preparing	to	Install	stage	determined	that	Setup	cannot
proceed	with	installation.	(First	introduced	in	Inno	Setup	5.4.1.)

8 The	Preparing	to	Install	stage	determined	that	Setup	cannot
proceed	with	installation,	and	that	the	system	needs	to	be
restarted	in	order	to	correct	the	problem.	(First	introduced	in	Inno
Setup	5.4.1.)

Before	returning	an	exit	code	of	1,	3,	4,	7,	or	8,	an	error	message
explaining	the	problem	will	normally	be	displayed.

Future	versions	of	Inno	Setup	may	return	additional	exit	codes,	so
applications	checking	the	exit	code	should	be	programmed	to	handle
unexpected	exit	codes	gracefully.	Any	non-zero	exit	code	indicates	that
Setup	was	not	run	to	completion.

Uninstaller	Command	Line	Parameters
The	uninstaller	program	(unins???.exe)	accepts	optional	command	line
parameters.	These	can	be	useful	to	system	administrators,	and	to	other
programs	calling	the	uninstaller	program.

/SILENT,	/VERYSILENT
When	specified,	the	uninstaller	will	not	ask	the	user	for	startup
confirmation	or	display	a	message	stating	that	uninstall	is
complete.	Shared	files	that	are	no	longer	in	use	are	deleted
automatically	without	prompting.	Any	critical	error	messages	will
still	be	shown	on	the	screen.	When	'/VERYSILENT'	is	specified,
the	uninstallation	progress	window	is	not	displayed.

If	a	restart	is	necessary	and	the	'/NORESTART'	command	isn't
used	(see	below)	and	'/VERYSILENT'	is	specified,	the	uninstaller
will	reboot	without	asking.

/SUPPRESSMSGBOXES
Instructs	the	uninstaller	to	suppress	message	boxes.	Only	has	an
effect	when	combined	with	'/SILENT'	and	'/VERYSILENT'.	See
'/SUPPRESSMSGBOXES'	under	Setup	Command	Line
Parameters	for	more	details.

/LOG
Causes	Uninstall	to	create	a	log	file	in	the	user's	TEMP	directory
detailing	file	uninstallation	and	[UninstallRun]	actions	taken	during
the	uninstallation	process.	This	can	be	a	helpful	debugging	aid.

The	log	file	is	created	with	a	unique	name	based	on	the	current
date.	(It	will	not	overwrite	or	append	to	existing	files.)

The	information	contained	in	the	log	file	is	technical	in	nature	and
therefore	not	intended	to	be	understandable	by	end	users.	Nor	is	it
designed	to	be	machine-parseable;	the	format	of	the	file	is	subject
to	change	without	notice.

/LOG="filename"
Same	as	/LOG,	except	it	allows	you	to	specify	a	fixed
path/filename	to	use	for	the	log	file.	If	a	file	with	the	specified	name
already	exists	it	will	be	overwritten.	If	the	file	cannot	be	created,

Uninstall	will	abort	with	an	error	message.

/NORESTART
Instructs	the	uninstaller	not	to	reboot	even	if	it's	necessary.

Uninstaller	Exit	Codes
Beginning	with	Inno	Setup	4.0.8,	the	uninstaller	will	return	a	non-zero
exit	code	if	the	user	cancels	or	a	fatal	error	is	encountered.	Programs
checking	the	exit	code	to	detect	failure	should	not	check	for	a	specific
non-zero	value;	any	non-zero	exit	code	indicates	that	the	uninstaller
was	not	run	to	completion.

Note	that	at	the	moment	you	get	an	exit	code	back	from	the	uninstaller,
some	code	related	to	uninstallation	might	still	be	running.	Because
Windows	doesn't	allow	programs	to	delete	their	own	EXEs,	the
uninstaller	creates	and	spawns	a	copy	of	itself	in	the	TEMP	directory.
This	"clone"	performs	the	actual	uninstallation,	and	at	the	end,
terminates	the	original	uninstaller	EXE	(at	which	point	you	get	an	exit
code	back),	deletes	it,	then	displays	the	"uninstall	complete"	message
box	(if	it	hasn't	been	suppressed	with	/SILENT	or	/VERYSILENT).

Unsafe	Files
As	a	convenience	to	new	users	who	are	unfamiliar	with	which	files	they
should	and	should	not	distribute,	the	Inno	Setup	compiler	will	display	an
error	message	if	one	attempts	to	install	certain	"unsafe"	files	using	the
[Files]	section.	These	files	are	listed	below.

(Note:	It	is	possible	to	disable	the	error	message	by	using	a	certain	flag
on	the	[Files]	section	entry,	but	this	is	NOT	recommended.)

Any	DLL	file	from	own	Windows	System	directory
You	should	not	deploy	any	DLLs	out	of	your	own	Windows	System
directory	to	{sys}	because	most	of	them	are	tailored	for	your	own
specific	version	of	Windows,	and	will	not	work	when	installed	on
other	versions.	Often	times	a	user's	system	will	be	rendered
unbootable	if	you	install	a	DLL	from	a	different	version	of
Windows.	Another	reason	why	it's	a	bad	idea	is	that	when	you
install	programs	on	your	computer,	the	DLLs	may	be	replaced	with
different/incompatible	versions	without	your	knowledge.	This	could
lead	to	unexpected	and	difficult-to-trace	problems	on	users'
systems	when	you	build	new	installations.

Instead	of	deploying	the	DLLs	from	your	Windows	System
directory,	you	should	find	versions	that	are	specifically	deemed
"redistributable".	Redistributable	DLLs	typically	work	on	more	than
one	version	of	Windows.	To	find	redistributable	versions	of	the
Visual	Basic	and	Visual	C++	run-time	DLLs,	see	the	Inno	Setup
FAQ.

If	you	have	a	DLL	residing	in	the	Windows	System	directory	that
you	are	absolutely	sure	is	redistributable,	copy	it	to	your	script's
source	directory	and	deploy	it	from	there	instead.

ADVAPI32.DLL,	COMDLG32.DLL,	GDI32.DLL,	KERNEL32.DLL,
RICHED32.DLL,	SHELL32.DLL,	USER32.DLL,	UXTHEME.DLL

These	are	all	core	components	of	Windows	and	must	never	be
deployed	with	an	installation.	Users	may	only	get	new	versions	of
these	DLLs	by	installing	a	new	version	of	Windows	or	a	service
pack	or	hotfix	for	Windows.

(Special	case)	COMCAT.DLL,	MSVBVM50.DLL,	MSVBVM60.DLL,
OLEAUT32.DLL,	OLEPRO32.DLL,	STDOLE2.TLB

If	DestDir	is	set	to	a	location	other	than	{sys}	and	the
regserver	or	regtypelib	flag	is	used,	then	the	above	files	will
be	considered	"unsafe".	These	files	must	never	be	deployed	to	and
registered	in	a	directory	other	than	{sys}	because	doing	so	can
potentially	cause	all	programs	on	the	system	to	use	them	in	favor
of	the	files	in	{sys}.	Problems	would	result	if	your	copies	of	the
files	are	older	than	the	ones	in	{sys}.	Also,	if	your	copies	of	the
files	were	removed,	other	applications	would	break.

COMCTL32.DLL
Microsoft	does	not	allow	separate	redistribution	of	COMCTL32.DLL
(and	for	good	reason	-	the	file	differs	between	platforms),	so	you
should	never	place	COMCTL32.DLL	in	a	script's	[Files]	section.
You	can	however	direct	your	users	to	download	the	COMCTL32
update	from	Microsoft ,	or	distribute	the	COMCTL32	update	along
with	your	program.

SHDOCVW.DLL,	SHLWAPI.DLL,	URLMON.DLL,	WININET.DLL
These	are	core	components	of	Internet	Explorer	and	are	also	used
by	Windows	Explorer.	Replacing	them	may	prevent	Explorer	from
starting.	If	your	application	depends	on	these	DLLs,	or	a	recent
version	of	them,	then	your	users	will	need	to	install	a	recent
version	of	Internet	Explorer	to	get	them.

MSCOREE.DLL
This	file	is	part	of	the	Microsoft	.NET	Framework.	You	cannot
safely	install	or	update	the	.NET	Framework	by	including	this	file
with	your	installation.	Call	or	direct	your	users	to	dotnetfx.exe
instead.

http://www.microsoft.com/downloads/details.aspx?FamilyID=cb2cf3a2-8025-4e8f-8511-9b476a8d35d2&DisplayLang=en

Credits
The	following	is	a	list	of	those	who	have	contributed	significant	code	to
the	Inno	Setup	project,	or	otherwise	deserve	special	recognition:

Jean-loup	Gailly	&	Mark	Adler:	Creators	of	the	zlib 	compression
library	that	Inno	Setup	uses.

Julian	Seward:	Creator	of	the	bzlib 	compression	library	that	Inno
Setup	uses.

Igor	Pavlov:	Creator	of	the	LZMA 	compression	library	that	Inno
Setup	uses.

?:	Most	of	the	disk	spanning	code	(1.09).	(Sorry,	somehow	your
name	was	lost!)

Vince	Valenti:	Most	of	the	code	for	the	"Window"	[Setup]	section
directives	(1.12.4).

Joe	White:	Code	for	ChangesAssociations	[Setup]	section
directive	(1.2.?).

Jason	Olsen:	Most	of	the	code	for	appending	to	existing	uninstall
logs	(1.3.0).

Martijn	Laan:	Code	for	Rich	Edit	2.0	&	URL	detection	support
(1.3.13);	silent	uninstallation	(1.3.25);	system	image	list	support	in
drive	and	directory	lists	(1.3.25);	silent	installation	(2.0.0);
[Types],	[Components]	and	[Tasks]	sections	(2.0.0);
postinstall	flag	(2.0.0);	[Code]	section	(4.0.0);
Subcomponents	and	subtasks	support	(4.0.0);	Many	other	features
after	4.0.0.

Alex	Yackimoff:	Portions	of	TNewCheckListBox	(4.0.0).

Carlo	Kok:	RemObjects	Pascal	Script 	(4.0.0).

Creators	of	SynEdit :	The	syntax-highlighting	editor	used	in	the
Compiler	(2.0.0).

Creators	of	UniSynEdit :	The	syntax-highlighting	editor	used	in	the
Compiler	(5.3.0).

http://www.zlib.net/
http://www.bzip.org/
http://www.7-zip.org/sdk.html
http://www.remobjects.com/ps
http://synedit.sourceforge.net/
http://mh-nexus.de/en/unisynedit.php

Creators	of	Scintilla :	The	syntax-highlighting	editor	used	in	the
Compiler	(5.4.0).

glyFX :	The	Inno	Setup	logo,	the	compiler	icon,	the	document
icon,	the	Inno	Setup	installer	wizard	images	and	the	images	for	the
IDE's	toolbar.	128x128	and	256x256	icon	sizes	by	Motaz	Alnuweiri.

Zaher	Dirkey:	Initial	work	on	improved	right-to-left	languages
support.

Evgeny	Karpov	of	RemObjects	Software:	Initial	work	on	Unicode
support.

http://www.scintilla.org/
http://www.glyfx.com/

Support	Inno	Setup
To	support	Inno	Setup,	go	to	this	page:
http://www.jrsoftware.org/isdonate.php

http://www.jrsoftware.org/isdonate.php

Windows	Versions
5.0.2195 Windows	2000
5.1.2600 Windows	XP

or	Windows	XP	64-Bit	Edition	Version	2002	(Itanium)
5.2.3790 Windows	Server	2003

or	Windows	XP	x64	Edition	(AMD64/EM64T)
or	Windows	XP	64-Bit	Edition	Version	2003	(Itanium)

6.0.6000 Windows	Vista
6.0.6001 Windows	Vista	with	Service	Pack	1

or	Windows	Server	2008
6.1.7600 Windows	7

or	Windows	Server	2008	R2
6.1.7601 Windows	7	with	Service	Pack	1

or	Windows	Server	2008	R2	with	Service	Pack	1
6.2.9200 Windows	8

or	Windows	Server	2012
6.3.9200 Windows	8.1

or	Windows	Server	2012	R2
6.3.9600 Windows	8.1	with	Update	1
10.0.10240 Windows	10

Note	that	there	is	normally	no	need	to	specify	the	build	numbers	(i.e.,
you	may	simply	use	"6.2"	for	Windows	8).

Using	Build	Number	and/or	Service	Pack	Levels
The	versions	specified	in	MinVersion	and	OnlyBelowVersion	can
optionally	include	build	numbers	and/or	service	pack	levels.

Examples:

5.0.2195

5.0sp4

5.0.2195sp4

If	a	build	number	is	not	specified	or	is	zero,	Setup	will	not	check	the
system's	build	number.

If	a	service	pack	level	is	not	specified	or	is	zero,	Setup	will	not	check
the	system's	service	pack	level.

When	a	service	pack	level	is	specified,	Setup	will	only	compare	it
against	the	system's	service	pack	level	if	the	specified	major	and	minor
versions	match	the	system's	version.	For	example,	if	MinVersion
specifies	5.0sp4,	Setup	will	only	check	for	SP4	on	Windows	2000
(5.0)	systems.

In	an	OnlyBelowVersion	parameter,	if	the	specified	version	matches
the	system's	version,	then	Setup	will	normally	consider	the	system's
version	to	be	too	high.	However,	when	a	service	pack	level	is	specified,
the	specified	version	is	allowed	to	match	the	system's	version.	For
example,	on	Windows	2000	SP4,	values	of	5.0	and	5.0.2195	will	fail
the	OnlyBelowVersion	test,	but	5.0sp5	and	5.0.2195sp5	will
pass	(as	SP4	<	sp5).

Notes	on	"yes"	and	"no"
For	compatibility	with	previous	Inno	Setup	versions,	1	and	0	may	be
used	in	place	of	yes	and	no,	respectively.

Additionally,	it	allows	true	and	false	to	be	used	in	place	of	yes	and
no.

Pascal	Scripting:	WizardNoIcons
Prototype:
function	WizardNoIcons:	Boolean;

Description:
Returns	the	current	setting	of	the	Don't	create	a	Start	Menu	folder
check	box	on	the	Select	Start	Menu	Folder	page	of	the	wizard.

Appending	to	Existing	Uninstall	Logs
When	a	new	version	of	an	application	is	installed	over	an	existing
version,	instead	of	creating	a	new	uninstall	log	file	(unins???.dat),
Setup	will	by	default	look	for	and	append	to	an	existing	uninstall	log	file
that	belongs	to	the	same	application	and	is	in	the	same	directory.	This
way,	when	the	application	is	uninstalled,	changes	made	by	all	the
different	installations	will	be	undone	(starting	with	the	most	recent
installation).

The	uninstaller	will	use	the	messages	from	the	most	recent	installation
of	the	application.	However,	there	is	an	exception:	if	an	installation	was
built	with	an	older	version	of	Inno	Setup	that	included	an	older	version
of	the	uninstaller	than	the	existing	one	on	the	user's	system,	neither	the
existing	uninstaller	nor	its	messages	will	be	replaced.	In	this	case	the
uninstall	log	will	still	be	appended	to,	though,	since	the	file	format	is
backward	compatible.

The	application	name	displayed	in	the	uninstaller	will	be	the	same	as
the	value	of	the	[Setup]	section	directive	AppName	from	the	most
recent	installation,	unless	UpdateUninstallLogAppName	is	set	to	no.

The	uninstall	log-appending	feature	is	new	to	Inno	Setup	1.3.	If	you
wish	to	disable	it,	set	the	[Setup]	section	directive	UninstallLogMode.

Note:	Setup	can	only	append	to	uninstall	log	files	that	were	created	by
an	Inno	Setup	1.3.1	(or	later)	installation.

Pascal	Scripting:	Boolean	Expressions
See	Pascal	Scripting:	Check	Parameters	for	more	information	on
boolean	expressions.

Same	Application
"Same	application"	refers	to	two	separate	installations	that	share	the
same	AppId	setting	(or	if	AppId	is	not	set,	the	same	AppName	setting),
and	the	same	install	mode	(32-bit	or	64-bit).

Pascal	Scripting:	ExtractTemporaryFile
Prototype:
procedure	ExtractTemporaryFile(const	FileName:

String);

Description:
Extracts	the	specified	file	from	the	[Files]	section	to	a	temporary
directory.	To	find	the	location	of	the	temporary	directory,	use
ExpandConstant('{tmp}').

The	extracted	files	are	automatically	deleted	when	Setup	exits.

An	exception	will	be	raised	if	the	file	wasn't	extracted	successfully,	if	the
file	wasn't	found,	or	if	the	file	was	found	but	couldn't	be	processed
because	of	its	MinVersion	and/or	OnlyBelowVersion	parameters.

Remarks:
Use	Flags:	dontcopy	in	the	[Files]	section	to	tell	Setup	to	skip	the
file	during	the	normal	file	copying	stage.

Use	Flags:	noencryption	in	the	[Files]	section	if	encryption	is
enabled	and	you	call	the	ExtractTemporaryFile	function	prior	to	the	user
entering	the	correct	password.

When	solid	compression	is	enabled,	be	sure	to	list	your	temporary	files
at	(or	near)	the	top	of	the	[Files]	section.	In	order	to	extract	an	arbitrary
file	in	a	solid-compressed	installation,	Setup	must	first	decompress	all
prior	files	(to	a	temporary	buffer	in	memory).	This	can	result	in	a
substantial	delay	if	a	number	of	other	files	are	listed	above	the	specified
file	in	the	[Files]	section.

Example:
[Files]

Source:	"Readme.txt";	Flags:	dontcopy	noencryption

[Code]

function	InitializeSetup:	Boolean;

var

		S:	AnsiString;

begin

		//	Show	the	contents	of	Readme.txt	(non	Unicode)	in	a	message	box

		ExtractTemporaryFile('Readme.txt');

		if	LoadStringFromFile(ExpandConstant('{tmp}\Readme.txt'),	S)	then

		begin

				MsgBox(S,	mbInformation,	MB_OK);

		end;

		Result	:=	True;

end;

See	also:
ExtractTemporaryFiles

Source	Directory
By	default,	the	Setup	Compiler	expects	to	find	files	referenced	in	the
script's	[Files]	section	Source	parameters,	and	files	referenced	in
the	[Setup]	section,	under	the	same	directory	the	script	file	is	located
if	they	do	not	contain	fully	qualified	pathnames.	To	specify	a	different
source	directory,	create	a	SourceDir	directive	in	the	script's	[Setup]
section.

Pascal	Scripting:	GetWinDir
Prototype:
function	GetWinDir:	String;

Description:
Returns	fully	qualified	path	of	the	Windows	directory.	Only	includes	a
trailing	backslash	if	the	Windows	directory	is	the	root	directory.

User	&	Group	Identifiers
admins Built-in	Administrators	group
authusers Authenticated	Users	group
everyone Everyone	group
powerusers Built-in	Power	Users	group
system Local	SYSTEM	user
users Built-in	Users	group

Pascal	Scripting:	GetSHA1OfString
Prototype:
function	GetSHA1OfString(const	S:	AnsiString):

String;

Description:
Gets	the	SHA-1	hash	of	the	specified	string,	as	a	string.

Example:
var

		SHA1:	String;

begin

		SHA1	:=	GetSHA1OfString('Test');

		//	SHA1	=	'640ab2bae07bedc4c163f679a746f7ab7fb5d1fa'

end;

Pascal	Scripting:	SetPreviousData
Prototype:
function	SetPreviousData(const	PreviousDataKey:

Integer;	const	ValueName,	ValueData:	String):

Boolean;

Description:
Sets	a	value	that	can	be	restored	later	using	GetPreviousData.	Call
SetPreviousData	inside	a	RegisterPreviousData	event	function,	once
per	setting.

Pascal	Scripting:
RegisterExtraCloseApplicationsResource
Prototype:
function

RegisterExtraCloseApplicationsResource(const

DisableFsRedir:	Boolean;	const	AFilename:	String):

Boolean;

Description:
Register	an	extra	file	which	Setup	should	check	for	being	in-use.	Call
RegisterExtraCloseApplicationsResource	inside	a
RegisterExtraCloseApplicationsResources	event	function,	once	per	file.
Returns	True	if	successful.

Pascal	Scripting:	GetCmdTail
Prototype:
function	GetCmdTail:	String;

Description:
Returns	all	command	line	parameters	passed	to	Setup	or	Uninstall	as	a
single	string.

Pascal	Scripting:	ParamCount
Prototype:
function	ParamCount:	Integer;

Description:
Returns	the	number	of	command	line	parameters	passed	to	Setup	or
Uninstall.

Pascal	Scripting:	ParamStr
Prototype:
function	ParamStr(Index:	Integer):	String;

Description:
Returns	the	Index-th	command	line	parameter	passed	to	Setup	or
Uninstall.

Pascal	Scripting:	ActiveLanguage
Prototype:
function	ActiveLanguage:	String;

Description:
Returns	the	name	of	the	active	language.

Pascal	Scripting:	CustomMessage
Prototype:
function	CustomMessage(const	MsgName:	String):

String;

Description:
Returns	the	value	of	the	[CustomMessages]	entry	with	the	specified
name.	If	an	entry	with	the	specified	name	does	not	exist,	an	exception
will	be	raised.

Example:
var

		S:	String;

begin

		S	:=	CustomMessage('CreateDesktopIcon');

		//	S	=	'Create	a	&desktop	icon'

		S	:=	FmtMessage(CustomMessage('NameAndVersion'),	['My	Program',	'1.0']);

		//	S	=	'My	Program	version	1.0'

end;

Pascal	Scripting:	FmtMessage
Prototype:
function	FmtMessage(const	S:	String;	const	Args:

array	of	String):	String;

Description:
Formats	the	string	S	using	the	specified	string	arguments.	A	%1	in	the
format	string	will	be	replaced	with	the	first	value	in	the	Args	array;	a	%2
will	be	replaced	with	the	second	value;	and	so	on.	%%	will	be	replaced
with	%.

Remarks:
If	a	%-specifier	references	a	non-existing	argument,	it	will	be	returned
untouched.	No	exception	will	be	raised.

Example:
var

		S:	String;

begin

		S	:=	FmtMessage('%1	version	%2	will	be	installed.',	['My	Program',	'1.0']);

		//	S	=	'My	Program	version	1.0	will	be	installed.'

		S	:=	FmtMessage(SetupMessage(msgNotOnThisPlatform),	['Windows	2000']);

		//	S	=	'This	program	will	not	run	on	Windows	2000.'

end;

Pascal	Scripting:	SetupMessage
Prototype:
function	SetupMessage(const	ID:	TSetupMessageID):

String;

Description:
Returns	the	value	of	the	specified	message.

Example:
var

		S:	String;

begin

		S	:=	SetupMessage(msgButtonNext);

		//	S	now	equals	'&Next	>'

end;

Pascal	Scripting:	WizardDirValue
Prototype:
function	WizardDirValue:	String;

Description:
Returns	the	current	contents	of	the	edit	control	on	the	Select
Destination	Location	page	of	the	wizard.

Unlike	ExpandConstant('{app}'),	this	function	will	not	fail	if	called
after	the	wizard	is	shown	but	prior	to	the	user	selecting	a	directory.
Rather,	it	will	return	the	default	directory	name.

Pascal	Scripting:	WizardGroupValue
Prototype:
function	WizardGroupValue:	String;

Description:
Returns	the	current	contents	of	the	edit	control	on	the	Select	Start
Menu	Folder	page	of	the	wizard.

Unlike	ExpandConstant('{group}'),	this	function	will	not	fail	if
called	after	the	wizard	is	shown	but	prior	to	the	user	selecting	a	folder.
Rather,	it	will	return	the	default	folder	name.

Pascal	Scripting:	WizardSetupType
Prototype:
function	WizardSetupType(const	Description:

Boolean):	String;

Description:
Returns	the	name	or	description	of	the	setup	type	selected	by	the	user.

Pascal	Scripting:	WizardSelectedComponents
Prototype:
function	WizardSelectedComponents(const

Descriptions:	Boolean):	String;

Description:
Returns	a	comma-separated	list	of	names	or	descriptions	of	the
components	selected	by	the	user.

Pascal	Scripting:	WizardSelectedTasks
Prototype:
function	WizardSelectedTasks(const	Descriptions:

Boolean):	String;

Description:
Returns	a	comma-separated	list	of	names	or	descriptions	of	the	tasks
selected	by	the	user.

Pascal	Scripting:	WizardSilent
Prototype:
function	WizardSilent:	Boolean;

Description:
Returns	True	if	Setup	is	running	silently,	False	otherwise.

Pascal	Scripting:	IsUninstaller
Prototype:
function	IsUninstaller:	Boolean;

Description:
Returns	True	if	Uninstall	is	running	as	opposed	to	Setup,	False
otherwise.

Pascal	Scripting:	UninstallSilent
Prototype:
function	UninstallSilent:	Boolean;

Description:
Returns	True	if	Uninstall	is	running	silently,	False	otherwise.

Pascal	Scripting:	CurrentFilename
Prototype:
function	CurrentFilename:	String;

Description:
Returns	the	destination	file	name	of	the	[Files]	entry	that	is	currently
being	processed.	The	returned	name	may	include	constants.

Do	not	attempt	to	call	this	function	from	outside	a	Check,	BeforeInstall
or	AfterInstall	event	function	belonging	to	a	[Files]	entry.

Pascal	Scripting:	CurrentSourceFilename
Prototype:
function	CurrentSourceFilename:	String;

Description:
Returns	the	source	file	name	of	the	[Files]	entry	that	is	currently	being
processed.	The	returned	name	may	include	constants.

Do	not	attempt	to	call	this	function	from	outside	a	Check,	BeforeInstall
or	AfterInstall	event	function	belonging	to	a	[Files]	entry	with	the
"external"	flag.

Pascal	Scripting:	ExpandConstant
Prototype:
function	ExpandConstant(const	S:	String):	String;

Description:
Changes	all	constants	in	S	to	their	values.	For	example,
ExpandConstant('{srcexe}')	is	changed	to	the	filename	of	Setup.

An	exception	will	be	raised	if	there	was	an	error	expanding	the
constants.

Pascal	Scripting:	ExpandConstantEx
Prototype:
function	ExpandConstantEx(const	S:	String;	const

CustomConst,	CustomValue:	String):	String;

Description:
Changes	all	constants	in	S	to	their	values.	Additionally,	any	constant
equal	to	CustomConst	will	be	changed	to	CustomValue.

An	exception	will	be	raised	if	there	was	an	error	expanding	the
constants.

Pascal	Scripting:	IsComponentSelected
Prototype:
function	IsComponentSelected(const	Components:

String):	Boolean;

Description:
Returns	True	if	the	specified	component	is	selected.	Multiple
components	may	be	specified	in	the	same	manner	as	in	a	Components
parameter.

Example:
begin

		if	IsComponentSelected('helpfiles')	then

				//	the	'helpfiles'	component	is	selected

end;

Pascal	Scripting:	IsTaskSelected
Prototype:
function	IsTaskSelected(const	Tasks:	String):

Boolean;

Description:
Returns	True	if	the	specified	task	is	selected.	Multiple	tasks	may	be
specified	in	the	same	manner	as	in	a	Tasks	parameter.

Example:
begin

		if	IsTaskSelected('desktopicon')	then

				//	the	'desktopicon'	task	is	selected

end;

Pascal	Scripting:	ExtractTemporaryFiles
Prototype:
function	ExtractTemporaryFiles(const	Pattern:

String):	Integer;

Description:
Extracts	the	files	matching	the	wildcard	specified	by	Pattern	from	the
[Files]	section	to	a	temporary	directory.	Returns	the	number	of
extracted	files.	To	find	the	location	of	the	temporary	directory,	use
ExpandConstant('{tmp}').

The	extracted	files	are	automatically	deleted	when	Setup	exits.

An	exception	will	be	raised	if	no	files	were	extracted	successfully,	no
files	were	found,	or	if	files	were	found	but	none	could	be	processed
because	of	their	MinVersion	and/or	OnlyBelowVersion	parameters.

Remarks:
Use	Flags:	dontcopy	in	the	[Files]	section	to	tell	Setup	to	skip	the
file	during	the	normal	file	copying	stage.

When	solid	compression	is	enabled,	be	sure	to	list	your	temporary	files
at	(or	near)	the	top	of	the	[Files]	section.	In	order	to	extract	an	arbitrary
file	in	a	solid-compressed	installation,	Setup	must	first	decompress	all
prior	files	(to	a	temporary	buffer	in	memory).	This	can	result	in	a
substantial	delay	if	a	number	of	other	files	are	listed	above	the	specified
file	in	the	[Files]	section.

Example:
[Files]

Source:	"Readme.txt";	Flags:	dontcopy

Source:	"MyProg.exe";	DestDir:	"{app}"

Source:	"MyProg.chm";	DestDir:	"{app}"

[Code]

function	InitializeSetup:	Boolean;

var

		S:	AnsiString;

		ResultCode:	Integer;

begin

		//	Show	the	contents	of	Readme.txt	(non	Unicode)	in	a	message	box

		ExtractTemporaryFiles('{tmp}\Readme.txt');

		if	LoadStringFromFile(ExpandConstant('{tmp}\Readme.txt'),	S)	then

		begin

				MsgBox(S,	mbInformation,	MB_OK);

		end;

		//	Extract	all	MyProg	files	and	launch	it.	Note	how	{app}	is	left	unexpanded.

		ExtractTemporaryFiles('{app}\MyProg.*');

		ExecAsOriginalUser(ExpandConstant('{tmp}\')+'{app}\MyProg.exe',	'',	'',

				SW_SHOWNORMAL,	ewWaitUntilTerminated,	ResultCode);

		Result	:=	True;

end;

See	also:
ExtractTemporaryFile

Pascal	Scripting:	GetPreviousData
Prototype:
function	GetPreviousData(const	ValueName,

DefaultValueData:	String):	String;

Description:
Gets	a	value	that	was	previously	stored	using	SetPreviousData.

Pascal	Scripting:	Terminated
Prototype:
function	Terminated:	Boolean;

Description:
Returns	True	if	Setup	or	Uninstall	is	terminating,	False	otherwise.

Pascal	Scripting:	RmSessionStarted
Prototype:
function	RmSessionStarted:	Boolean;

Description:
Returns	True	if	a	Restart	Manager	session	was	started,	False
otherwise.

See	also:
CloseApplications

Pascal	Scripting:	Abort
Prototype:
procedure	Abort;

Description:
Escapes	from	the	current	execution	path	without	reporting	an	error.

Abort	raises	a	special	"silent	exception"	which	operates	like	any	other
exception,	but	does	not	display	an	error	message	to	the	end	user.

Remarks:
Abort	does	not	cause	Setup	or	Uninstall	to	exit	unless	it's	called	from
one	of	these	event	functions	(or	another	function	invoked	by	them):

InitializeSetup

InitializeWizard

CurStepChanged(ssInstall)

InitializeUninstall

CurUninstallStepChanged(usAppMutexCheck)

CurUninstallStepChanged(usUninstall)

See	also:
PrepareToInstall

Pascal	Scripting:	RaiseException
Prototype:
procedure	RaiseException(const	Msg:	String);

Description:
Raises	an	exception	with	the	specified	message.

Example:
begin

		RaiseException('Your	message	goes	here');

		//	The	following	line	will	not	be	executed	because	of	the	exception

		MsgBox('You	will	not	see	this.',	mbInformation,	MB_OK);

end;

Pascal	Scripting:	GetExceptionMessage
Prototype:
function	GetExceptionMessage:	String;

Description:
Returns	the	message	associated	with	the	current	exception.	This
function	should	only	be	called	from	within	an	except	section,	or	a
function	called	from	an	except	section.

Remarks:
Exception	messages	generally	do	not	end	in	a	period.	Pass	the	result
of	this	function	to	AddPeriod	to	add	one.

Example:
var

		I:	Integer;

begin

		I	:=	1;

		try

				//	The	following	line	will	raise	a	"Division	by	zero"	exception

				I	:=	I	div	0;

		except

				//	Catch	the	exception,	deal	with	it,	and	continue

				MsgBox('We	caught	this	exception:	'	+	AddPeriod(GetExceptionMessage),

						mbError,	MB_OK);

		end;

end;

Pascal	Scripting:	ShowExceptionMessage
Prototype:
procedure	ShowExceptionMessage;

Description:
Shows	the	message	associated	with	the	current	exception	in	a
message	box.	This	function	should	only	be	called	from	within	an
except	section,	or	a	function	called	from	an	except	section.

Remarks:
If	logging	is	enabled	(via	the	/LOG	command	line	parameter	or	the
SetupLogging	[Setup]	section	directive)	the	message	will	recorded	in
the	log	in	addition	to	being	shown.

Example:
var

		I:	Integer;

begin

		I	:=	1;

		try

				//	The	following	line	will	raise	a	"Division	by	zero"	exception

				I	:=	I	div	0;

		except

				//	Catch	the	exception,	show	it,	and	continue

				ShowExceptionMessage;

		end;

end;

Pascal	Scripting:	IsAdminLoggedOn
Prototype:
function	IsAdminLoggedOn:	Boolean;

Description:
Returns	True	if	the	user	account	that	Setup/Uninstall	is	running	under	is
a	member	of	the	local	Administrators	group.

Pascal	Scripting:	IsPowerUserLoggedOn
Prototype:
function	IsPowerUserLoggedOn:	Boolean;

Description:
Returns	True	if	the	user	account	that	Setup/Uninstall	is	running	under	is
a	member	of	the	Power	Users	group.

Pascal	Scripting:	GetWindowsVersion
Prototype:
function	GetWindowsVersion:	Cardinal;

Description:
Returns	the	version	number	of	Windows	packed	into	a	single	integer.
The	upper	8	bits	specify	the	major	version;	the	following	8	bits	specify
the	minor	version;	the	lower	16	bits	specify	the	build	number.	For
example,	this	function	will	return	$05000893	on	Windows	2000,	which
is	version	5.0.2195.

To	retrieve	just	the	major	version	number,	use:	"GetWindowsVersion
shr	24".	To	retrieve	just	the	minor	version	number,	use:	"
(GetWindowsVersion	shr	16)	and	$FF".	To	retrieve	just	the	build
number,	use:	"GetWindowsVersion	and	$FFFF".

Example:
function	IsWindowsXPOrLater:	Boolean;

begin

		Result	:=	(GetWindowsVersion	>=	$05010000);

end;

See	also:
GetWindowsVersionEx

Pascal	Scripting:	GetWindowsVersionEx
Prototype:
procedure	GetWindowsVersionEx(var	Version:

TWindowsVersion);

Description:
Returns	extended	information	about	the	version	of	Windows	in	a
record.

TWindowsVersion	is	defined	as:

		TWindowsVersion	=	record

				Major:	Cardinal;													//	Major	version	number

				Minor:	Cardinal;													//	Minor	version	number

				Build:	Cardinal;													//	Build	number

				ServicePackMajor:	Cardinal;		//	Major	version	number	of	service	pack

				ServicePackMinor:	Cardinal;		//	Minor	version	number	of	service	pack

				NTPlatform:	Boolean;									//	True	if	an	NT-based	platform

				ProductType:	Byte;											//	Product	type	(see	below)

				SuiteMask:	Word;													//	Product	suites	installed	(see	below)

		end;

The	ProductType	field	can	be	one	of	the	following	values:

		VER_NT_WORKSTATION

		VER_NT_DOMAIN_CONTROLLER

		VER_NT_SERVER

It	can	also	be	zero	if	the	product	type	could	not	be	determined
(unlikely).	VER_NT_WORKSTATION	indicates	a	non-server	edition	of
Windows	(e.g.	Workstation,	Professional,	or	Home).

The	SuiteMask	field	can	be	a	combination	of	the	following	values:

		VER_SUITE_BACKOFFICE

		VER_SUITE_BLADE

		VER_SUITE_DATACENTER

		VER_SUITE_ENTERPRISE

		VER_SUITE_EMBEDDEDNT

		VER_SUITE_PERSONAL

		VER_SUITE_SINGLEUSERTS

		VER_SUITE_SMALLBUSINESS

		VER_SUITE_SMALLBUSINESS_RESTRICTED

		VER_SUITE_TERMINAL

VER_SUITE_PERSONAL,	for	example,	is	set	on	Home	edition	of
Windows	XP,	and	VER_SUITE_BLADE	is	set	on	the	Web	edition	of
Windows	Server	2003.

Example:
The	following	example	demonstrates	how	you	can	disallow	installation
on	certain	editions	of	Windows,	and	check	service	pack	levels	on
multiple	operating	system	versions.	(Neither	of	these	things	are
possible	with	the	MinVersion	[Setup]	section	directive.)

function	InitializeSetup:	Boolean;

var

		Version:	TWindowsVersion;

		S:	String;

begin

		GetWindowsVersionEx(Version);

		//	Disallow	installation	on	Home	edition	of	Windows

		if	Version.SuiteMask	and	VER_SUITE_PERSONAL	<>	0	then

		begin

				SuppressibleMsgBox('This	program	cannot	be	installed	on	a	Home	edition	of	Windows.',

						mbCriticalError,	MB_OK,	IDOK);

				Result	:=	False;

				Exit;

		end;

		//	Disallow	installation	on	domain	controllers

		if	Version.ProductType	=	VER_NT_DOMAIN_CONTROLLER	then

		begin

				SuppressibleMsgBox('This	program	cannot	be	installed	on	domain	controllers.',

						mbCriticalError,	MB_OK,	IDOK);

				Result	:=	False;

				Exit;

		end;

		//	On	Windows	2000,	check	for	SP4

		if	Version.NTPlatform	and

					(Version.Major	=	5)	and

					(Version.Minor	=	0)	and

					(Version.ServicePackMajor	<	4)	then

		begin

				SuppressibleMsgBox('When	running	on	Windows	2000,	Service	Pack	4	is	required.',

						mbCriticalError,	MB_OK,	IDOK);

				Result	:=	False;

				Exit;

		end;

		//	On	Windows	XP,	check	for	SP2

		if	Version.NTPlatform	and

					(Version.Major	=	5)	and

					(Version.Minor	=	1)	and

					(Version.ServicePackMajor	<	2)	then

		begin

				SuppressibleMsgBox('When	running	on	Windows	XP,	Service	Pack	2	is	required.',

						mbCriticalError,	MB_OK,	IDOK);

				Result	:=	False;

				Exit;

		end;

		Result	:=	True;

end;

Pascal	Scripting:	GetWindowsVersionString
Prototype:
function	GetWindowsVersionString:	String;

Description:
Returns	the	version	number	of	Windows	in	string	form.	On	Windows
2000,	for	example,	this	function	will	return	"5.00.2195".

Pascal	Scripting:	IsWin64
Prototype:
function	IsWin64:	Boolean;

Description:
Returns	True	if	the	system	is	running	a	64-bit	version	of	Windows	that
provides	the	API	support	Inno	Setup	requires	to	perform	64-bit
installation	tasks.	If	False	is	returned,	you	cannot	utilize	any	of	Inno
Setup's	64-bit-only	features.

Remarks:
This	function	will	always	return	True	on	an	x64	edition	of	Windows.

For	this	function	to	return	True	on	an	Itanium	edition	of	Windows,	the
system	must	be	running	Windows	Server	2003	SP1	or	later.	Older
versions	lack	APIs	that	Inno	Setup	requires	(e.g.	RegDeleteKeyEx).

Example:
begin

		//	Check	IsWin64	before	using	a	64-bit-only	feature	to

		//	avoid	an	exception	when	running	on	32-bit	Windows.

		if	IsWin64	then

		begin

				MsgBox('64-bit	program	files	reside	in:	'	+

						ExpandConstant('{pf64}'),	mbInformation,	MB_OK);

		end;

end;

See	also:
Is64BitInstallMode	ProcessorArchitecture

Pascal	Scripting:	Is64BitInstallMode
Prototype:
function	Is64BitInstallMode:	Boolean;

Description:
Returns	True	if	Setup	or	Uninstall	is	running	in	64-bit	mode,	or	False	if	it
is	running	in	32-bit	mode.

Remarks:
When	True	is	returned,	it	is	safe	to	assume	that	IsWin64	will	also	return
True.

Example:
begin

		if	Is64BitInstallMode	then

				MsgBox('Installing	in	64-bit	mode',	mbInformation,	MB_OK)

		else

				MsgBox('Installing	in	32-bit	mode',	mbInformation,	MB_OK);

end;

See	also:
IsWin64	ProcessorArchitecture

Pascal	Scripting:	ProcessorArchitecture
Prototype:
function	ProcessorArchitecture:

TSetupProcessorArchitecture;

Description:
Returns	the	native	processor	architecture	of	the	current	system.

TSetupProcessorArchitecture	is	defined	as:

TSetupProcessorArchitecture	=	(paUnknown,	paX86,

paX64,	paIA64);

Remarks:
A	64-bit	processor	architecture	will	never	be	returned	on	32-bit	versions
of	Windows.	Hence,	you	cannot	use	this	function	to	detect	a	64-bit
AMD	CPU	on	a	32-bit	version	of	Windows;	you'll	just	get	back	paX86	if
you	try.

paUnknown	is	returned	if	Setup/Uninstall	does	not	recognize	the
processor	architecture.	It	can	be	assumed	that	an	"unknown"
architecture	is	at	least	capable	of	executing	32-bit	code,	or
Setup/Uninstall	wouldn't	be	running	at	all.

If	paIA64	is	returned,	and	ia64	is	not	included	in	the	value	of	the
ArchitecturesInstallIn64BitMode	[Setup]	section	directive,	you	should
not	assume	that	Inno	Setup's	64-bit-only	features	are	available	--	for
example,	the	{pf64}	constant.	Those	features	only	work	when
IsWin64	returns	True,	and	as	documented,	it	may	not	return	True	on
older	Itanium	versions	of	Windows	that	lack	certain	APIs	Inno	Setup
requires.

Therefore,	instead	of:

		if	ProcessorArchitecture	=	paIA64	then

				//	perform	some	Itanium-specific	install	task	that

				//	involves	expanding	{pf64}

you	should	additionally	check	that	IsWin64	returns	True:

		if	ProcessorArchitecture	=	paIA64	then

		begin

				if	IsWin64	then

						//	perform	some	Itanium-specific	install	task	that

						//	involves	expanding	{pf64}

				else

						//	cannot	use	64-bit	features;	display	an	error	message,

						//	fail	silently,	try	something	else,	etc.

		end;

If	ia64	is	included	in	the	value	of	the	ArchitecturesInstallIn64BitMode
[Setup]	section	directive,	then	it	is	not	necessary	to	check	IsWin64
because	Setup	will	do	so	itself	at	startup,	and	fail	with	an	error
message	(MissingWOW64APIs)	if	it	is	False.

Example:
var

		S:	String;

begin

		case	ProcessorArchitecture	of

				paX86:	S	:=	'x86';

				paX64:	S	:=	'x64';

				paIA64:	S	:=	'Itanium';

		else

				S	:=	'Unrecognized';

		end;

		MsgBox('Your	processor	architecture:	'	+	S,	mbInformation,	MB_OK);

end;

See	also:
IsWin64	Is64BitInstallMode

Pascal	Scripting:	InstallOnThisVersion
Prototype:
function	InstallOnThisVersion(const	MinVersion,

OnlyBelowVersion:	String):	Boolean;

Description:
This	function	is	deprecated.	Returns	True	if	an	entry	with	the	specified
MinVersion	and	OnlyBelowVersion	parameters	should	be	installed.	If	an
invalid	version	string	is	passed,	an	exception	will	be	raised.

This	function	is	provided	for	backward	compatibility	only,	and	may	be
removed	in	a	future	release.	New	scripts	should	use
GetWindowsVersion	or	GetWindowsVersionEx	instead.

Remarks:
Prior	to	Inno	Setup	5.5.0,	this	function	returned	irInstall	rather	than
a	Boolean	True	value.	irInstall	is	now	defined	as	an	alias	for	True.

Example:
//	Old	method,	deprecated

function	IsWindowsXPOrLater:	Boolean;

begin

		Result	:=	InstallOnThisVersion('0,5.1',	'0,0');

end;

//	New	method

function	IsWindowsXPOrLater:	Boolean;

begin

		Result	:=	(GetWindowsVersion	>=	$05010000);

end;

See	also:
GetWindowsVersion	GetWindowsVersionEx

Pascal	Scripting:	GetEnv
Prototype:
function	GetEnv(const	EnvVar:	String):	String;

Description:
Gets	the	value	of	the	specified	environment	variable.

Pascal	Scripting:	GetUserNameString
Prototype:
function	GetUserNameString:	String;

Description:
Retrieves	the	name	of	the	user	currently	logged	onto	the	system.

Pascal	Scripting:	GetComputerNameString
Prototype:
function	GetComputerNameString:	String;

Description:
Retrieves	the	name	of	the	computer	the	Setup	or	Uninstall	program	is
running	on	(as	returned	by	the	Windows	GetComputerName	function).

Pascal	Scripting:	GetUILanguage
Prototype:
function	GetUILanguage:	Integer;

Description:
Returns	the	language	identifier	(LANGID)	of	the	current	user's	UI
language,	which	is	either	the	language	of	Windows	itself,	or	in	the	case
of	a	MUI	edition	of	Windows,	the	user	interface	language	chosen	in
Control	Panel's	Regional	Options.	Returns	0	if	the	function	fails
(unlikely).

Remarks:
Refer	to	the	list	of	valid	language	identifiers	on	MSDN .

Example:
begin

		if	GetUILanguage	=	$0409	then

		begin

				//	UI	language	is	English	(United	States)

		end;

		//	You	can	use	"and	$3FF"	to	extract	the	primary	language	identifier

		if	GetUILanguage	and	$3FF	=	$09	then

		begin

				//	Matches	any	variant	of	English

		end;

end;

http://msdn.microsoft.com/en-us/library/dd318693.aspx

Pascal	Scripting:	FontExists
Prototype:
function	FontExists(const	FaceName:	String):

Boolean;

Description:
Returns	True	if	a	font	with	the	specified	face	name	is	installed	on	the
system.

Pascal	Scripting:	FindWindowByClassName
Prototype:
function	FindWindowByClassName(const	ClassName:

String):	HWND;

Description:
Retrieves	a	handle	to	the	top-level	window	whose	class	name	matches
the	specified	string.	This	function	does	not	search	child	windows,	and
does	not	perform	a	case-sensitive	search.	Returns	0	if	no	window	is
found.

Pascal	Scripting:	FindWindowByWindowName
Prototype:
function	FindWindowByWindowName(const	WindowName:

String):	HWND;

Description:
Retrieves	a	handle	to	the	top-level	window	whose	window	name
matches	the	specified	string.	This	function	does	not	search	child
windows,	and	does	not	perform	a	case-sensitive	search.	Returns	0	if	no
window	is	found.

Pascal	Scripting:	SendMessage
Prototype:
function	SendMessage(const	Wnd:	HWND;	const	Msg,

WParam,	LParam:	Longint):	Longint;

Description:
Sends	the	specified	message	to	the	specified	window.	Does	not	return
until	the	window	procedure	has	processed	the	message.

Pascal	Scripting:	PostMessage
Prototype:
function	PostMessage(const	Wnd:	HWND;	const	Msg,

WParam,	LParam:	Longint):	Boolean;

Description:
Posts	the	specified	message	to	the	specified	window,	returning
immediately.	Returns	True	if	successful.

Pascal	Scripting:	SendNotifyMessage
Prototype:
function	SendNotifyMessage(const	Wnd:	HWND;	const

Msg,	WParam,	LParam:	Longint):	Boolean;

Description:
Sends	the	specified	message	to	the	specified	window	without	waiting
for	the	message	to	be	processed	by	the	destination	window	procedure.
Returns	True	if	successful.

Pascal	Scripting:	RegisterWindowMessage
Prototype:
function	RegisterWindowMessage(const	Name:	String):

Longint;

Description:
The	RegisterWindowMessage	function	defines	a	new	window	message
that	is	guaranteed	to	be	unique	throughout	the	system.	The	returned
message	value	can	be	used	when	calling	the	SendBroadcastMessage
or	PostBroadcastMessage	function.

Pascal	Scripting:	SendBroadcastMessage
Prototype:
function	SendBroadcastMessage(const	Msg,	WParam,

LParam:	Longint):	Longint;

Description:
Sends	the	specified	message	to	top-level	windows	in	the	system.	Does
not	return	until	all	window	procedure	have	processed	the	message.
The	specified	message	must	be	unique.	Use	RegisterWindowMessage
to	get	such	a	message.

Pascal	Scripting:	PostBroadcastMessage
Prototype:
function	PostBroadcastMessage(const	Msg,	WParam,

LParam:	Longint):	Boolean;

Description:
Posts	the	specified	message	to	top-level	windows	in	the	system,
returning	immediately.
The	specified	message	must	be	unique.	Use	RegisterWindowMessage
to	get	such	a	message.

Pascal	Scripting:	SendBroadcastNotifyMessage
Prototype:
function	SendBroadcastNotifyMessage(const	Msg,

WParam,	LParam:	Longint):	Boolean;

Description:
not	yet	available

Pascal	Scripting:	CreateMutex
Prototype:
procedure	CreateMutex(const	Name:	String);

Description:
Creates	a	mutex	with	the	specified	name.

Pascal	Scripting:	CheckForMutexes
Prototype:
function	CheckForMutexes(Mutexes:	String):	Boolean;

Description:
Returns	True	if	any	of	the	mutexes	in	the	comma-separated	Mutexes
string	exist.

Pascal	Scripting:
MakePendingFileRenameOperationsChecksum
Prototype:
procedure	MakePendingFileRenameOperationsChecksum:

String;

Description:
Calculates	a	checksum	of	the	current	PendingFileRenameOperations
registry	value.	The	caller	can	use	this	checksum	to	determine	if
PendingFileRenameOperations	or	WININIT.INI	was	changed	(perhaps
by	another	program).

Example:
var

		ChecksumBefore,	ChecksumAfter:	String;

begin

		ChecksumBefore	:=	MakePendingFileRenameOperationsChecksum;

		//	...run	a	program...

		ChecksumAfter	:=	MakePendingFileRenameOperationsChecksum;

		if	ChecksumAfter	<>	ChecksumBefore	then

				//	PendingFileRenameOperations	or	WININIT.INI	changed

end;

Pascal	Scripting:	UnloadDLL
Prototype:
procedure	UnloadDLL(Filename:	String);

Description:
Unloads	the	specified	DLL	that	was	loaded	by	the	[Code]	section	using
an	"external"	keyword.	This	can	be	useful	if	you	need	to	delete	the	DLL.

The	case	of	the	filename	and	any	path	name	must	exactly	match	that	of
the	function	import.	You	will	need	to	expand	any	constants	in	the
filename	yourself	before	passing	it	to	UnloadDLL.

If	the	function	import	used	a	"files:"	prefix,	prepend	the	value	of	the
{tmp}	constant	to	the	filename	(e.g.
ExpandConstant('{tmp}\filename.dll')).

Remarks:
It's	not	recommended	that	you	try	this,	but	if	you	attempt	to	call	a
function	in	a	DLL	that	has	been	unloaded,	the	DLL	will	be	re-loaded.

Example:
procedure	DllFunc;	external	'DllFunc@{app}\MyDll.dll	stdcall	uninstallonly';

...

begin

		//	Call	DllFunc

		DllFunc;

		//	Unload	the	DLL

		UnloadDLL(ExpandConstant('{app}\MyDll.dll'));

		//	Now	we	can	delete	the	DLL

		DeleteFile(ExpandConstant('{app}\MyDll.dll'));

end;

Pascal	Scripting:	DLLGetLastError
Prototype:
function	DLLGetLastError():	Longint;

Description:
Returns	value	the	last	error	code	had	right	after	the	most	recent	DLL
function	call	you	made.	Useful	after	calling	Windows	API	functions	(if
the	function	sets	the	last	error	code).

Remarks:
It's	recommended	to	use	this	function	instead	of	directly	calling	the
GetLastError	Windows	API	function	since	Setup	or	Uninstall	makes	API
calls	of	its	own,	so	the	last	error	code	could	be	overwritten	at	any	time.

Refer	to	the	system	error	codes	on	MSDN .

Example:
function	MessageBox(hWnd:	Integer;	lpText,	lpCaption:	AnsiString;	uType:	Cardinal):	Integer;	external	'MessageBoxA@user32.dll	stdcall';

...

begin

		if	MessageBox(-1,	'',	'',	-1)	=	0	then

				MsgBox(SysErrorMessage(DLLGetLastError),	mbError,	mb_Ok);

http://msdn.microsoft.com/en-us/library/windows/desktop/ms681381.aspx

Pascal	Scripting:	Chr
Prototype:
function	Chr(B:	Byte):	Char;

Description:
Returns	the	character	with	the	specified	ordinal	value.

Pascal	Scripting:	Ord
Prototype:
function	Ord(C:	Char):	Byte;

Description:
Returns	the	ordinal	value	of	the	specified	character.

Pascal	Scripting:	Copy
Prototype:
function	Copy(S:	String;	Index,	Count:	Integer):

String;

Description:
Returns	a	string	containing	Count	characters	starting	at	S[Index].
If	Index	is	larger	than	the	length	of	S,	Copy	returns	an	empty	string.
If	Count	specifies	more	characters	than	are	available,	only	the
characters	from	S[Index]	to	the	end	of	S	are	returned.

Pascal	Scripting:	Length
Prototype:
function	Length(s:	String):	Longint;

Description:
Returns	the	length	of	the	specified	string.

Pascal	Scripting:	Lowercase
Prototype:
function	Lowercase(S:	String):	String;

Description:
Returns	a	copy	of	the	string	S,	but	with	all	7-bit	ASCII	characters
between	'A'	and	'Z'	converted	to	lowercase.	To	convert	8-bit
international	characters,	use	AnsiLowercase	instead.

Pascal	Scripting:	Uppercase
Prototype:
function	Uppercase(S:	String):	String;

Description:
Returns	a	copy	of	the	string	S,	but	with	all	7-bit	ASCII	characters
between	'a'	and	'z'	converted	to	uppercase.	To	convert	8-bit
international	characters,	use	AnsiUppercase	instead.

Pascal	Scripting:	AnsiLowercase
Prototype:
function	AnsiLowercase(S:	String):	String;

Description:
Returns	a	string	that	is	a	copy	of	the	given	string	converted	to
lowercase.	The	conversion	uses	the	current	Windows	locale.	This
function	supports	multi-byte	character	sets	(MBCS).

Pascal	Scripting:	AnsiUppercase
Prototype:
function	AnsiUppercase(S:	String):	String;

Description:
Returns	a	string	that	is	a	copy	of	the	given	string	converted	to
uppercase.	The	conversion	uses	the	current	Windows	locale.	This
function	supports	multi-byte	character	sets	(MBCS).

Pascal	Scripting:	StringOfChar
Prototype:
function	StringOfChar(c:	Char;	I	:	Longint):	String;

Description:
Returns	a	string	of	length	I	with	all	characters	set	to	character	C.

Pascal	Scripting:	Delete
Prototype:
procedure	Delete(var	S:	String;	Index,	Count:

Integer);

Description:
Removes	a	substring	of	Count	characters	from	string	S	starting	at
S[Index].
If	Index	is	larger	than	the	length	of	S,	no	characters	are	deleted.	If
Count	specifies	more	characters	than	remain	starting	at	the	S[Index],
Delete	removes	the	rest	of	the	string.

Pascal	Scripting:	Insert
Prototype:
procedure	Insert(Source:	String;	var	Dest:	String;

Index:	Integer);

Description:
Merges	Source	into	Dest	at	the	position	Dest[Index].

Pascal	Scripting:	StringChange
Prototype:
function	StringChange(var	S:	String;	const	FromStr,

ToStr:	String):	Integer;

Description:
This	function	is	deprecated.	It	is	equivalent	to	calling	StringChangeEx
with	the	SupportMBCS	parameter	set	to	False.

Pascal	Scripting:	StringChangeEx
Prototype:
function	StringChangeEx(var	S:	String;	const

FromStr,	ToStr:	String;	const	SupportDBCS:	Boolean):

Integer;

Description:
Changes	all	occurrences	in	S	of	FromStr	to	ToStr.	If	SupportDBCS	is
True	(recommended	unless	you	require	binary	safety),	double-byte
character	sequences	in	S	are	recognized	and	handled	properly.
Otherwise,	the	function	behaves	in	a	binary-safe	manner.	Returns	the
number	of	times	FromStr	was	matched	and	changed.

Remarks:
When	working	with	strings	containing	paths	or	filenames,	be	sure	to
pass	True	in	the	SupportDBCS	parameter.	Otherwise,	paths	with
Chinese,	Japanese,	or	Korean	characters	may	be	corrupted.

Example:
var

		S:	String;

begin

		S	:=	ExpandConstant('{commonappdata}');

		//	S	=	'C:\Documents	and	Settings\All	Users\Application	Data'

		StringChangeEx(S,	'\',	'/',	True);

		//	S	=	'C:/Documents	and	Settings/All	Users/Application	Data'

end;

Pascal	Scripting:	Pos
Prototype:
function	Pos(SubStr,	S:	String):	Integer;

Description:
Searches	for	Substr	within	S	and	returns	an	integer	value	that	is	the
index	of	the	first	character	of	Substr	within	S.
If	Substr	is	not	found,	Pos	returns	zero.

Pascal	Scripting:	AddQuotes
Prototype:
function	AddQuotes(const	S:	String):	String;

Description:
Adds	a	quote	(")	character	to	the	left	and	right	sides	of	the	string	if	the
string	contains	a	space	and	it	didn't	have	quotes	already.	This	is
primarily	used	when	spawning	another	process	with	a	long	filename	as
one	of	the	parameters.

Pascal	Scripting:	RemoveQuotes
Prototype:
function	RemoveQuotes(const	S:	String):	String;

Description:
Opposite	of	AddQuotes;	removes	any	quotes	around	the	string.

Pascal	Scripting:	ConvertPercentStr
Prototype:
function	ConvertPercentStr(var	S:	String):	Boolean;

Description:
Expands	all	%-encoded	characters	in	the	string	(see	RFC	2396).
Returns	True	if	all	were	successfully	expanded.

http://www.ietf.org/rfc/rfc2396.txt

Pascal	Scripting:	CompareText
Prototype:
function	CompareText(const	S1,	S2:	string):	Integer;

Description:
Compares	the	strings	S1	and	S2	and	returns	0	if	they	are	equal.	If	S1	is
greater	than	S2,	CompareText	returns	an	integer	greater	than	0.	If	S1	is
less	than	S2,	CompareText	returns	an	integer	less	than	0.	The
CompareText	function	is	not	case	sensitive.

Pascal	Scripting:	CompareStr
Prototype:
function	CompareStr(const	S1,	S2:	string):	Integer;

Description:
Compares	S1	to	S2,	with	case-sensitivity.	The	return	value	is	less	than
0	if	S1	is	less	than	S2,	0	if	S1	equals	S2,	or	greater	than	0	if	S1	is
greater	than	S2.

Pascal	Scripting:	Format
Prototype:
function	Format(const	Format:	string;	const	Args:

array	of	const):	string;

Description:
Formats	the	series	of	arguments	in	the	open	array	Args.	Formatting	is
controlled	by	the	format	string	Format;	the	results	are	returned	as	a
string.

An	exception	will	be	raised	if	an	invalid	format	string	is	specified,	too
few	arguments	are	passed,	or	if	any	arguments	are	of	the	wrong	type.

Example:
var

		S:	String;

		I:	Integer;

begin

		S	:=	Format('%d	files	found',	[10]);

		//	S	=	'10	files	found'

		S	:=	Format('Filename:	%s',	['file.txt']);

		//	S	=	'Filename:	file.txt'

		I	:=	64;

		S	:=	Format('%d	in	hex,	padded	to	8	digits:	%.8x',	[I,	I]);

		//	S	=	'64	in	hex,	padded	to	8	digits:	00000040'

end;

Pascal	Scripting:	Trim
Prototype:
function	Trim(const	S:	string):	String;

Description:
Trims	leading	and	trailing	spaces	and	control	characters	from	the	given
string	S.

Pascal	Scripting:	TrimLeft
Prototype:
function	TrimLeft(const	S:	string):	String;

Description:
Trims	leading	spaces	and	control	characters	from	the	given	string	S.

Pascal	Scripting:	TrimRight
Prototype:
function	TrimRight(const	S:	string):	String;

Description:
Trims	trailing	spaces	and	control	characters	from	the	given	string	S.

Pascal	Scripting:	StrToIntDef
Prototype:
function	StrToIntDef(s:	string;	def:	Longint):

Longint;

Description:
The	StrToInt	function	converts	the	string	passed	in	S	into	a	number.	If	S
does	not	represent	a	valid	number,	StrToInt	returns	the	number	passed
in	Def.

Pascal	Scripting:	StrToInt
Prototype:
function	StrToInt(s:	string):	Longint;

Description:
The	StrToInt	function	converts	the	string	passed	in	S	into	a	number.

Remarks:
Use	of	StrToIntDef	instead	of	StrToInt	is	recommended.

Pascal	Scripting:	StrToInt64Def
Prototype:
function	StrToInt64Def(s:	string;	def:	Int64):

Int64;

Description:
The	StrToInt64Def	function	converts	the	string	passed	in	S	into	a	64-bit
number.	If	S	does	not	represent	a	valid	64-bit	number,	StrToInt	returns
the	64-bit	number	passed	in	Def.

Requires	Unicode	Inno	Setup.

Pascal	Scripting:	StrToInt64
Prototype:
function	StrToInt64(s:	string):	Int64;

Description:
The	StrToInt64	function	converts	the	string	passed	in	S	into	a	64-bit
number.

Requires	Unicode	Inno	Setup.

Remarks:
Use	of	StrToInt64Def	instead	of	StrToInt64	is	recommended.

Pascal	Scripting:	StrToFloat
Prototype:
function	StrToFloat(s:	string):	Extended;

Description:
The	StrToFloat	function	converts	the	string	passed	in	S	into	a	floating
point	number.	The	character	used	for	the	decimal	point	should	always
be	a	dot.

Pascal	Scripting:	IntToStr
Prototype:
function	IntToStr(i:	Int64):	String;

Description:
The	IntToStr	function	converts	an	32-bit	or	64-bit	number	into	a	string.

64-bit	numbers	require	Unicode	Inno	Setup.

Pascal	Scripting:	FloatToStr
Prototype:
function	FloatToStr(e:	extended):	String;

Description:
The	FloatToStr	function	converts	a	floating	point	number	into	a	string.

Unicode	Inno	Setup:	the	character	used	for	the	decimal	point	will
always	be	a	dot.	Non-Unicode	Inno	Setup:	the	character	used	for	the
decimal	point	is	locale-dependant.

Pascal	Scripting:	CharLength
Prototype:
function	CharLength(const	S:	String;	const	Index:

Integer):	Integer;

Description:
Returns	the	length	in	bytes	(1	or	2)	of	the	character	in	the	specified
string	at	the	specified	index.

Remarks:
In	double-byte	character	sets	(Chinese,	Japanese,	Korean),	most	non-
ASCII	characters	occupy	two	bytes.	Note	that	the	second	byte	of	a
double-byte	character	--	known	as	the	"trail	byte"	--	can	be	in	the	same
range	used	by	ASCII	characters	(below	128).	Thus,	when	stepping
through	a	string	that	may	contain	double-byte	characters,	such	as	a
path	or	filename,	care	must	be	taken	to	not	mistake	trail	bytes	for
single-byte	ASCII	characters.

Example:
function	BackslashToSlash(const	S:	String):	String;

var

		I:	Integer;

begin

		Result	:=	S;

		I	:=	1;

		while	I	<=	Length(Result)	do

		begin

				if	Result[I]	=	'\'	then

						Result[I]	:=	'/';

				//	Go	to	the	next	character.	But	do	not	simply	increment	I	by	1.

				//	Increment	by	CharLength()	in	case	Result[I]	is	a	double-byte	character.

				I	:=	I	+	CharLength(Result,	I);

		end;

end;

...

begin

		//	Show	path	of	Common	Files	with	backslashes	changed	to	forward	slashes

		MsgBox(BackslashToSlash(ExpandConstant('{cf}')),	mbInformation,	MB_OK);

end;

Pascal	Scripting:	AddBackslash
Prototype:
function	AddBackslash(const	S:	String):	String;

Description:
Returns	the	specified	string	with	a	trailing	backslash	added,	unless	the
string	is	empty	or	already	ends	in	a	slash	or	backslash.

Pascal	Scripting:	RemoveBackslashUnlessRoot
Prototype:
function	RemoveBackslashUnlessRoot(const	S:	String):

String;

Description:
Returns	the	specified	string	with	any	trailing	slashes/backslashes
removed,	unless	the	string	specifies	the	root	directory	of	a	drive	(e.g.
"C:\"	or	"\"),	in	which	case	it	leaves	1	slash.

Pascal	Scripting:	RemoveBackslash
Prototype:
function	RemoveBackslash(const	S:	String):	String;

Description:
Returns	the	specified	string	with	any	trailing	slashes/backslashes
removed.

Remarks:
Use	of	this	function	is	discouraged;	use	RemoveBackslashUnlessRoot
instead	when	working	with	file	system	paths.

Pascal	Scripting:	AddPeriod
Prototype:
function	AddPeriod(const	S:	String):	String;

Description:
Returns	the	specified	string	with	a	trailing	period	added,	unless	the
string	is	empty	or	already	ends	in	a	period	or	other	punctuation	mark.

Pascal	Scripting:	ChangeFileExt
Prototype:
function	ChangeFileExt(const	FileName,	Extension:

string):	String;

Description:
Takes	the	file	name	passed	in	FileName	and	changes	the	extension	of
the	file	name	to	the	extension	passed	in	Extension.

Pascal	Scripting:	ExtractFileExt
Prototype:
function	ExtractFileExt(const	FileName:	string):

String;

Description:
Extracts	the	extension	part	of	the	given	file	name.	The	resulting	string
includes	the	period	character	that	separates	the	name	and	extension
parts.	The	resulting	string	is	empty	if	the	given	filename	has	no
extension.

Pascal	Scripting:	ExtractFileDir
Prototype:
function	ExtractFileDir(const	FileName:	string):

String;

Description:
Extracts	the	drive	and	directory	parts	of	the	given	file	name.	The
resulting	string	is	empty	if	FileName	contains	no	drive	and	directory
parts.

Pascal	Scripting:	ExtractFilePath
Prototype:
function	ExtractFilePath(const	FileName:	string):

String;

Description:
Extracts	the	drive	and	directory	parts	of	the	given	file	name.	The
resulting	string	is	the	leftmost	characters	of	FileName,	up	to	and
including	the	colon	or	backslash	that	separates	the	path	information
from	the	name	and	extension.	The	resulting	string	is	empty	if	FileName
contains	no	drive	and	directory	parts.

Pascal	Scripting:	ExtractFileName
Prototype:
function	ExtractFileName(const	FileName:	string):

String;

Description:
Extracts	the	name	and	extension	parts	of	the	given	file	name.	The
resulting	string	is	the	rightmost	characters	of	FileName,	starting	with
the	first	character	after	the	colon	or	backslash	that	separates	the	path
information	from	the	name	and	extension.	The	resulting	string	is	equal
to	FileName	if	FileName	contains	no	drive	and	directory	parts.

Pascal	Scripting:	ExtractFileDrive
Prototype:
function	ExtractFileDrive(const	FileName:	string):

String;

Description:
Returns	a	string	containing	the	'drive'	portion	of	a	fully	qualified	path
name	for	the	file	passed	in	the	FileName.	For	file	names	with	drive
letters,	the	resulting	string	is	in	the	form	'<drive>:'.	For	file	names	with	a
UNC	path	the	resulting	string	is	in	the	form	'\\<servername>\
<sharename>'.	If	the	given	path	contains	neither	style	of	path	prefix,	the
result	is	an	empty	string.

Pascal	Scripting:	ExtractRelativePath
Prototype:
function	ExtractRelativePath(const	BaseName,

DestName:	String):	String;

Description:
Converts	a	fully	qualified	path	name	into	a	relative	path	name.	The
DestName	parameter	specifies	the	file	name	(including	path)	to	be
converted.	BaseName	is	the	fully	qualified	name	of	the	base	directory
to	which	the	returned	path	name	should	be	relative.	BaseName	may	or
may	not	include	a	file	name,	but	it	must	include	the	final	path	delimiter.

ExtractRelativePath	strips	out	common	path	directories	and	inserts	'..\'
for	each	level	up	from	the	BaseName.

Example:
var

		S:	String;

begin

		S	:=	ExtractRelativePath('c:\windows\system32\',	'c:\autoexec.bat');

		//	S	=	..\..\autoexec.bat

end;

Pascal	Scripting:	ExpandFileName
Prototype:
function	ExpandFileName(const	FileName:	string):

String;

Description:
Returns	a	string	containing	a	fully	qualified	path	name	for	the	file
passed	in	the	FileName.	A	fully	qualified	path	name	includes	the	drive
letter	and	any	directory	and	subdirectories	in	addition	to	the	file	name
and	extension.

Pascal	Scripting:	ExpandUNCFileName
Prototype:
function	ExpandUNCFileName(const	FileName:	string):

String;

Description:
Returns	a	string	containing	a	fully	qualified	path	name	for	the	file
passed	in	the	FileName.	A	fully	qualified	path	name	includes	the	drive
portion	of	the	filename	in	the	UNC	format	'\\<servername>\
<sharename>'	if	the	drive	letter	is	mapped	to	a	network	resource
instead	of	a	local	drive	and	any	directory	and	subdirectories	in	addition
to	the	file	name	and	extension.

Pascal	Scripting:	GetDateTimeString
Prototype:
function	GetDateTimeString(const	DateTimeFormat:

String;	const	DateSeparator,	TimeSeparator:	Char):

String;

Description:
Returns	the	current	date	and	time	as	a	string	using	the	specified
formatting.	The	following	format	specifiers	are	supported:

d	Displays	the	day	as	a	number	without	a	leading	zero	(1-31).
dd	Displays	the	day	as	a	number	with	a	leading	zero	(01-31).
ddd	Displays	the	day	as	an	abbreviation	(Sun-Sat).
dddd	Displays	the	day	as	a	full	name	(Sunday-Saturday).
ddddd	Displays	the	date	using	the	system's	short	date	format.
dddddd	Displays	the	date	using	the	system's	long	date	format.
m	Displays	the	month	as	a	number	without	a	leading	zero	(1-12).
If	the	m	specifier	immediately	follows	an	h	or	hh	specifier,	the	minute
rather	than	the	month	is	displayed.
mm	Displays	the	month	as	a	number	with	a	leading	zero	(01-12).
If	the	mm	specifier	immediately	follows	an	h	or	hh	specifier,	the	minute
rather	than	the	month	is	displayed.
mmm	Displays	the	month	as	an	abbreviation	(Jan-Dec).
mmmm	Displays	the	month	as	a	full	name	(January-December).
yy	Displays	the	year	as	a	two-digit	number	(00-99).
yyyy	Displays	the	year	as	a	four-digit	number	(0000-9999).
h	Displays	the	hour	without	a	leading	zero	(0-23).
hh	Displays	the	hour	with	a	leading	zero	(00-23).
n	Displays	the	minute	without	a	leading	zero	(0-59).
nn	Displays	the	minute	with	a	leading	zero	(00-59).
s	Displays	the	second	without	a	leading	zero	(0-59).
ss	Displays	the	second	with	a	leading	zero	(00-59).
t	Displays	the	time	using	the	system's	short	time	format.
tt	Displays	the	time	using	the	system's	long	time	format.
am/pm	Uses	the	12-hour	clock	for	the	preceding	h	or	hh	specifier.
Displays	'am'	for	any	hour	before	noon,	and	'pm'	for	any	hour	after
noon.

The	am/pm	specifier	can	use	lower,	upper,	or	mixed	case,	and	the
result	is	displayed	accordingly.
a/p	Uses	the	12-hour	clock	for	the	preceding	h	or	hh	specifier.
Displays	'a'	for	any	hour	before	noon,	and	'p'	for	any	hour	after	noon.
The	a/p	specifier	can	use	lower,	upper,	or	mixed	case,	and	the	result	is
displayed	accordingly.
/	Displays	the	date	separator	character	given	by	the	DateSeparator
parameter.
If	DateSeparator	is	set	to	#0,	the	system's	date	separator	character	will
be	used	instead.
:	Displays	the	time	separator	character	given	by	the	TimeSeparator
parameter.
If	TimeSeparator	is	set	to	#0,	the	system's	time	separator	character	will
be	used	instead.
'xx'/"xx"	Characters	enclosed	in	single	or	double	quotes	are	displayed
as-is,	and	do	not	affect	formatting.

Format	specifiers	may	be	written	in	upper	case	as	well	as	in	lower	case
letters--both	produce	the	same	result.

Example:
GetDateTimeString('ddddd',	#0,	#0);

GetDateTimeString('ddddd	tt',	#0,	#0);

GetDateTimeString('dd/mm/yyyy	hh:nn:ss',	'-',	':');

Pascal	Scripting:	SetLength
Prototype:
procedure	SetLength(var	S:	String;	L:	Longint);

Description:
Sets	the	length	of	a	string.

Pascal	Scripting:	CharToOemBuff
Prototype:
procedure	CharToOemBuff(var	S:	AnsiString);

Description:
Translates	an	ANSI	string	to	a	string	with	characters	from	the	OEM-
defined	character	set.

Pascal	Scripting:	OemToCharBuff
Prototype:
procedure	OemToCharBuff(var	S:	AnsiString);

Description:
Translates	a	string	with	characters	from	the	OEM-defined	character	set
into	an	ANSI	string.

Pascal	Scripting:	GetMD5OfString
Prototype:
function	GetMD5OfString(const	S:	AnsiString):

String;

Description:
Gets	the	MD5	sum	of	the	specified	string,	as	a	string.

Example:
var

		MD5:	String;

begin

		MD5	:=	GetMD5OfString('Test');

		//	MD5	=	'0cbc6611f5540bd0809a388dc95a615b'

end;

Pascal	Scripting:	GetMD5OfUnicodeString
Prototype:
function	GetMD5OfUnicodeString(const	S:	String):

String;

Description:
Gets	the	MD5	sum	of	the	specified	string,	as	a	string.

Causes	an	internal	error	if	called	by	non	Unicode	Setup	or	Uninstall.

Example:
var

		MD5:	String;

begin

		MD5	:=	GetMD5OfUnicodeString('Test');

		//	MD5	=	'8e06915d5f5d4f8754f51892d884c477'

end;

Pascal	Scripting:	GetSHA1OfUnicodeString
Prototype:
function	GetSHA1OfUnicodeString(const	S:	String):

String;

Description:
Gets	the	SHA-1	hash	of	the	specified	string,	as	a	string.

Causes	an	internal	error	if	called	by	non	Unicode	Setup	or	Uninstall.

Example:
var

		SHA1:	String;

begin

		SHA1	:=	GetSHA1OfUnicodeString('Test');

		//	SHA1	=	'9ab696a37604d665dc97134dbee44cfe70451b1a'

end;

Pascal	Scripting:	SysErrorMessage
Prototype:
function	SysErrorMessage(ErrorCode:	Integer):

String;

Description:
Returns	a	localized	error	message	string	that	corresponds	to	the	given
operating	system	error	code.

Remarks:
Refer	to	the	system	error	codes	on	MSDN .

http://msdn.microsoft.com/en-us/library/windows/desktop/ms681381.aspx

Pascal	Scripting:	MinimizePathName
Prototype:
function	MinimizePathName(const	Filename:	String;

const	Font:	TFont;	MaxLen:	Integer):	String;

Description:
Returns	a	minimized	filename	that	will	not	take	more	than	MaxLen
pixels	to	display	with	the	given	font.	The	minimizing	is	done	by
replacing	the	middle	part	with	'...'	as	needed.

Example:
MyLabel.Caption	:=	MinimizePathName(MyPathName,	MyLabel.Font,	MyLabel.Width);

See	also:
TFont

Pascal	Scripting:	GetArrayLength
Prototype:
function	GetArrayLength(var	Arr:	Array):	Longint;

Description:
Gets	the	length	of	an	array.

Pascal	Scripting:	SetArrayLength
Prototype:
procedure	SetArrayLength(var	Arr:	Array;	I:

Longint);

Description:
Sets	the	length	of	an	array.	Always	call	SetArrayLength	before
accessing	the	elements	in	an	array.

Pascal	Scripting:	Null
Prototype:
function	Null:	Variant;

Description:
Returns	a	variant	with	a	value	of	Null.

Pascal	Scripting:	Unassigned
Prototype:
function	Unassigned:	Variant;

Description:
Returns	a	variant	with	no	value	assigned.

Pascal	Scripting:	VarIsEmpty
Prototype:
function	VarIsEmpty(const	V:	Variant):	Boolean;

Description:
Non	Unicode	Inno	Setup:	Returns	True	if	the	specified	variant's	value	is
undefined.	Unicode	Inno	Setup:	Returns	True	if	the	specified	variant	is
unassigned.

See	also:
VarIsClear

Pascal	Scripting:	VarIsClear
Prototype:
function	VarIsClear(const	V:	Variant):	Boolean;

Description:
Returns	True	if	the	specified	variant's	value	is	undefined.

Remarks:
Requires	Unicode	Inno	Setup.

See	also:
VarIsEmpty

Pascal	Scripting:	VarIsNull
Prototype:
function	VarIsNull(const	V:	Variant):	Boolean;

Description:
Returns	True	if	the	specified	variant	has	a	value	of	Null	assigned.

Pascal	Scripting:	VarType
Prototype:
function	VarType(const	V:	Variant):	TVarType;

Description:
Returns	the	type	code	of	the	specified	variant.

The	lower	twelve	bits	of	a	variant	type	code	(the	bits	defined	by	the
varTypeMask	bit	mask)	define	the	type	of	the	variant.	The	varArray	bit
is	set	if	the	variant	is	an	array	of	the	given	type.	The	varByRef	bit	is	set
if	the	variant	is	a	reference	to	a	value	of	the	given	type	as	opposed	to
an	actual	value.

The	following	variant	type	code	constants	are	defined:

const

		varEmpty				=	$0000;

		varNull					=	$0001;

		varSmallint	=	$0002;

		varInteger		=	$0003;

		varSingle			=	$0004;

		varDouble			=	$0005;

		varCurrency	=	$0006;

		varDate					=	$0007;

		varOleStr			=	$0008;

		varDispatch	=	$0009;

		varError				=	$000A;

		varBoolean		=	$000B;

		varVariant		=	$000C;

		varUnknown		=	$000D;

		varByte					=	$0011;

		varString			=	$0100;

		varTypeMask	=	$0FFF;

		varArray				=	$2000;

		varByRef				=	$4000;

Pascal	Scripting:	DirExists
Prototype:
function	DirExists(const	Name:	String):	Boolean;

Description:
Returns	True	if	the	specified	directory	name	exists.	The	specified	name
may	include	a	trailing	backslash.

Pascal	Scripting:	FileExists
Prototype:
function	FileExists(const	Name:	String):	Boolean;

Description:
Returns	True	if	the	specified	file	exists.

Pascal	Scripting:	FileOrDirExists
Prototype:
function	FileOrDirExists(const	Name:	String):

Boolean;

Description:
Returns	True	if	the	specified	directory	or	file	name	exists.	The	specified
name	may	include	a	trailing	backslash.

Pascal	Scripting:	FileSize
Prototype:
function	FileSize(const	Name:	String;	var	Size:

Integer):	Boolean;

Description:
Sets	Size	to	the	size	of	the	specified	file	in	bytes.	Returns	True	if	the	file
size	was	set	successfully	and	False	otherwise.	Only	supports	file	sizes
smaller	than	2	GB.	To	get	all	64	bits	of	the	file	size,	use
FindFirst/FindClose	instead.

Pascal	Scripting:	GetSpaceOnDisk
Prototype:
function	GetSpaceOnDisk(const	Path:	String;	const

InMegabytes:	Boolean;	var	Free,	Total:	Cardinal):

Boolean;

Description:
Returns	the	number	of	free	and	total	bytes	or	megabytes	on	a	drive.
Path	specifies	a	directory	on	the	drive	or	UNC	share	to	check;	it	can	be
either	the	root	(e.g.	C:\)	or	an	existing	subdirectory.	The	setting	of	the
InMegabytes	parameter	determines	whether	it	returns	figures	in	bytes
or	in	megabytes	(2^20),	rounded	down.	Returns	True	if	successful,
False	otherwise.

Remarks:
The	figures	returned	by	this	function	are	capped	at	2147483647	(2^31-
1).	Therefore,	if	InMegaBytes	is	False,	it	will	return	no	more	than
2147483647	bytes.	If	InMegaBytes	is	True,	it	will	return	no	more	than
2147483647	megabytes.

Example:
var

		Path:	String;

		FreeMB,	TotalMB:	Cardinal;

begin

		//	Get	and	display	free	megabytes	on	the	Program	Files	drive

		Path	:=	ExpandConstant('{pf}');

		if	GetSpaceOnDisk(Path,	True,	FreeMB,	TotalMB)	then

		begin

				MsgBox('There	are	'	+	IntToStr(FreeMB)	+	'	megabytes	free	on	'	+

						Path,	mbInformation,	MB_OK);

		end

		else	begin

				//	the	function	failed

		end;

end;

See	also:

GetSpaceOnDisk64

Pascal	Scripting:	GetSpaceOnDisk64
Prototype:
function	GetSpaceOnDisk64(const	Path:	String;	var

Free,	Total:	Int64):	Boolean;

Description:
Returns	the	number	of	free	and	total	bytes	on	a	drive.	Path	specifies	a
directory	on	the	drive	or	UNC	share	to	check;	it	can	be	either	the	root
(e.g.	C:\)	or	an	existing	subdirectory.	Returns	True	if	successful,	False
otherwise.

Remarks:
Requires	Unicode	Inno	Setup.

Example:
var

		Path:	String;

		FreeBytes,	TotalBytes:	Int64;

begin

		//	Get	and	display	free	bytes	on	the	Program	Files	drive

		Path	:=	ExpandConstant('{pf}');

		if	GetSpaceOnDisk64(Path,	FreeBytes,	TotalBytes)	then

		begin

				MsgBox('There	are	'	+	IntToStr(FreeBytes)	+	'	bytes	free	on	'	+

						Path,	mbInformation,	MB_OK);

		end

		else	begin

				//	the	function	failed

		end;

end;

See	also:
GetSpaceOnDisk

Pascal	Scripting:	FileSearch
Prototype:
function	FileSearch(const	Name,	DirList:	string):

String;

Description:
Searches	through	the	directories	passed	in	DirList	for	a	file	named
Name.	DirList	should	be	directory	names	separated	by	semicolons.	If
FileSearch	locates	a	file	matching	Name,	it	returns	a	string	containing	a
fully-qualified	path	name	for	that	file.	If	no	matching	file	exists,
FileSearch	returns	an	empty	string.

Pascal	Scripting:	FindFirst
Prototype:
function	FindFirst(const	FileName:	String;	var

FindRec:	TFindRec):	Boolean;

Description:
Retrieves	information	about	the	first	file	matching	the	wildcard	specified
by	FileName.	Returns	True	if	successful.

TFindRec	is	defined	as:

		TFindRec	=	record

				Name:	String;															//	name	of	the	found	file	(no	path)

				Attributes:	LongWord;							//	file	attributes

				SizeHigh:	LongWord;									//	size	of	the	file,	upper	32	bits

				SizeLow:	LongWord;										//	size	of	the	file,	lower	32	bits

				CreationTime:	TFileTime;				//	time	file	was	created

				LastAccessTime:	TFileTime;		//	time	file	was	last	accessed

				LastWriteTime:	TFileTime;			//	time	file	was	last	modified

				AlternateName:	String;						//	file's	short	name	(empty	if	none)

				FindHandle:	THandle;								//	used	internally

		end;

TFileTime	is	defined	as:

		TFileTime	=	record

				dwLowDateTime:	DWORD;

				dwHighDateTime:	DWORD;

		end;

Valid	file	attributes	are:

		FILE_ATTRIBUTE_READONLY

		FILE_ATTRIBUTE_HIDDEN

		FILE_ATTRIBUTE_SYSTEM

		FILE_ATTRIBUTE_DIRECTORY

		FILE_ATTRIBUTE_ARCHIVE

		FILE_ATTRIBUTE_DEVICE

		FILE_ATTRIBUTE_NORMAL

		FILE_ATTRIBUTE_TEMPORARY

		FILE_ATTRIBUTE_SPARSE_FILE

		FILE_ATTRIBUTE_REPARSE_POINT

		FILE_ATTRIBUTE_COMPRESSED

		FILE_ATTRIBUTE_OFFLINE

		FILE_ATTRIBUTE_NOT_CONTENT_INDEXED

		FILE_ATTRIBUTE_ENCRYPTED

Remarks:
If	FindFirst	returns	True,	call	FindNext	to	enumerate	the	rest	of	the	files,
and	then	FindClose.

Example:
The	following	example	counts	the	number	of	files	in	the	Windows
System	directory.

var

		FilesFound:	Integer;

		FindRec:	TFindRec;

begin

		FilesFound	:=	0;

		if	FindFirst(ExpandConstant('{sys}*'),	FindRec)	then	begin

				try

						repeat

								//	Don't	count	directories

								if	FindRec.Attributes	and	FILE_ATTRIBUTE_DIRECTORY	=	0	then

										FilesFound	:=	FilesFound	+	1;

						until	not	FindNext(FindRec);

				finally

						FindClose(FindRec);

				end;

		end;

		MsgBox(IntToStr(FilesFound)	+	'	files	found	in	the	System	directory.',

				mbInformation,	MB_OK);

end;

See	also:
FindNext	FindClose

Pascal	Scripting:	FindNext
Prototype:
function	FindNext(var	FindRec:	TFindRec):	Boolean;

Description:
Retrieves	information	about	the	next	matching	file	after	a	call	to
FindFirst.	Returns	True	if	successful.

Example:
For	an	example,	see	the	documentation	for	FindFirst.

See	also:
FindFirst	FindClose

Pascal	Scripting:	FindClose
Prototype:
procedure	FindClose(var	FindRec:	TFindRec);

Description:
Ends	a	find	sequence,	and	frees	the	resources	associated	with	it.	You
should	always	call	this	when	FindFirst	returns	True.

Example:
For	an	example,	see	the	documentation	for	FindFirst.

See	also:
FindFirst	FindNext

Pascal	Scripting:	GetCurrentDir
Prototype:
function	GetCurrentDir:	String;

Description:
Returns	a	string	containing	the	name	of	the	current	directory.

Pascal	Scripting:	SetCurrentDir
Prototype:
function	SetCurrentDir(const	Dir:	string):	Boolean;

Description:
Sets	the	current	directory.	The	return	value	is	True	if	the	current
directory	was	successfully	changed,	or	False	if	an	error	occurred.

Pascal	Scripting:	GetSystemDir
Prototype:
function	GetSystemDir:	String;

Description:
Returns	fully	qualified	path	of	the	Windows	System	directory.	Only
includes	a	trailing	backslash	if	the	Windows	System	directory	is	the	root
directory.

Pascal	Scripting:	GetSysWow64Dir
Prototype:
function	GetSysWow64Dir:	String;

Description:
64-bit	Windows	only:	returns	fully	qualified	path	of	the	SysWOW64
directory.	This	is	the	actual	directory	in	which	32-bit	system	files	reside.
An	empty	string	is	returned	if	this	function	is	called	on	32-bit	Windows,
or	if	for	some	reason	it	fails	to	retrieve	the	path	on	64-bit	Windows
(unlikely).

Example:
var

		S:	String;

begin

		S	:=	GetSysWow64Dir;

		//	Must	check	the	result	--	an	empty	string	is	returned

		//	if	there	is	no	SysWOW64	directory.

		if	S	<>	''	then

				MsgBox('SysWOW64	directory:	'	+	S,	mbInformation,	MB_OK)

		else

				MsgBox('There	is	no	SysWOW64	directory.',	mbInformation,	MB_OK);

end;

Pascal	Scripting:	GetTempDir
Prototype:
function	GetTempDir:	String;

Description:
Returns	fully	qualified	path	of	the	temporary	directory,	with	trailing
backslash.	This	does	not	use	the	Win32	function	GetTempPath,	due	to
platform	differences.
Gets	the	temporary	file	path	as	follows:
1.	The	path	specified	by	the	TMP	environment	variable.
2.	The	path	specified	by	the	TEMP	environment	variable,	if	TMP	is	not
defined	or	if	TMP	specifies	a	directory	that	does	not	exist.
3.	The	Windows	directory,	if	both	TMP	and	TEMP	are	not	defined	or
specify	nonexistent	directories.

Pascal	Scripting:	GetShellFolder
Prototype:
function	GetShellFolder(Common:	Boolean;	const	ID:

TShellFolderID):	String;

Description:
Gets	the	location	of	the	specified	shell	folder.	Returns	the	'common'
version	of	the	shell	folder	location	if	Common	is	True	and	the	user	has
administrative	privileges.	On	failure	(unlikely	but	possible),	an	empty
string	is	returned.

Remarks:
There	is	little	reason	to	use	this	function.	It	is	recommended	that	you
use	the	ExpandConstant	function	instead	to	get	the	paths	of	shell
folders.

Example:
var

		Path:	String;

begin

		Path	:=	GetShellFolder(False,	sfAppData);

		if	Path	<>	''	then

		begin

				MsgBox('Application	Data	path	=	'	+	Path,	mbInformation,	MB_OK);

		end

		else

		begin

				//	handle	failure

		end;

end;

Pascal	Scripting:	GetShellFolderByCSIDL
Prototype:
function	GetShellFolderByCSIDL(const	Folder:

Integer;	const	Create:	Boolean):	String;

Description:
Gets	the	path	of	the	specified	shell	folder.	Folder	specifies	the	value	of
a	CSIDL	constant	(a	complete	list	of	which	can	be	found	in	ShlObj.h).	If
Create	is	True,	the	folder	will	be	created	if	it	does	not	exist.	On	failure,
an	empty	string	is	returned.

Remarks:
It	is	recommended	that	you	always	specify	True	in	the	Create
parameter.	Otherwise,	the	function	may	fail	if	the	CSIDL	value	is	valid
but	the	directory	does	not	currently	exist.	(This	is	a	Windows	issue.)

Example:
const

		CSIDL_MYPICTURES	=	$0027;

...

var

		Path:	String;

begin

		Path	:=	GetShellFolderByCSIDL(CSIDL_MYPICTURES,	True);

		if	Path	<>	''	then

		begin

				MsgBox('My	Pictures	path	=	'	+	Path,	mbInformation,	MB_OK);

		end

		else

		begin

				//	handle	failure

		end;

end;

Pascal	Scripting:	GetShortName
Prototype:
function	GetShortName(const	LongName:	String):

String;

Description:
Returns	the	short	version	of	the	specified	long	filename.	If	the	short
version	of	the	long	filename	is	not	found,	the	long	filename	is	returned.

Pascal	Scripting:	GenerateUniqueName
Prototype:
function	GenerateUniqueName(Path:	String;	const

Extension:	String):	String;

Description:
Generates	a	unique	filename	for	a	file	in	the	specified	path	with	the
specified	extension.

Pascal	Scripting:	GetVersionNumbers
Prototype:
function	GetVersionNumbers(const	Filename:	String;

var	VersionMS,	VersionLS:	Cardinal):	Boolean;

Description:
Gets	the	file	version	numbers	of	the	specified	file.

Pascal	Scripting:	GetVersionNumbersString
Prototype:
function	GetVersionNumbersString(const	Filename:

String;	var	Version:	String):	Boolean;

Description:
Gets	the	file	version	numbers	of	the	specified	file,	as	a	string.

Pascal	Scripting:	IsProtectedSystemFile
Prototype:
function	IsProtectedSystemFile(const	Filename:

String):	Boolean;

Description:
Returns	True	if	the	specified	file	is	protected	by	Windows	File
Protection	(and	therefore	can't	be	replaced).

Pascal	Scripting:	GetMD5OfFile
Prototype:
function	GetMD5OfFile(const	Filename:	String):

String;

Description:
Gets	the	MD5	sum	of	the	specified	file,	as	a	string.	An	exception	will	be
raised	upon	failure.

Pascal	Scripting:	GetSHA1OfFile
Prototype:
function	GetSHA1OfFile(const	Filename:	String):

String;

Description:
Gets	the	SHA-1	hash	of	the	specified	file,	as	a	string.	An	exception	will
be	raised	upon	failure.

Pascal	Scripting:	EnableFsRedirection
Prototype:
function	EnableFsRedirection(const	Enable:	Boolean):

Boolean;

Description:
Controls	whether	built-in	support	functions	that	access	files	disable
WOW64	file	system	redirection	(with	some	exceptions).	Specify	True	in
the	Enable	parameter	to	leave	redirection	enabled	when	those
functions	are	called;	specify	False	to	disable	it.	Returns	the	previous
redirection	state	(True	if	redirection	was	enabled).

If	False	is	passed	in	the	Enable	parameter	and	the	user	isn't	running	a
supported	64-bit	version	of	Windows,	an	exception	will	be	raised.	To
avoid	the	exception,	call	IsWin64	first.

Remarks:
After	you've	performed	the	operation	that	required	changing	the
redirection	state,	be	sure	to	restore	the	previous	state.	Always	use	a
try..finally	language	construct	to	ensure	that	the	previous	state	is
restored	even	if	an	exception	occurs.	See	below	for	an	example.

By	default,	file	system	redirection	is	enabled	in	32-bit	mode	installs,	and
disabled	in	64-bit	mode	installs.

This	function	has	no	effect	on	calls	to	functions	in	external	DLLs.	When
invoking	external	functions,	file	system	redirection	is	always	left
enabled.

It	is	legal	to	call	this	function	with	True	in	the	Enable	parameter	if	the
user	isn't	running	a	64-bit	version	of	Windows.	In	such	a	case,	the	call
has	no	effect.

Example:
The	following	example	demonstrates	how	to	launch	an	executable
located	in	the	64-bit	System	directory.	(Note:	In	a	64-bit	mode	install,	it
isn't	necessary	to	call	EnableFsRedirection	because	file	system
redirection	is	already	disabled	by	default.)

var

		OldState:	Boolean;

		ResultCode:	Integer;

begin

		//	First	verify	that	the	user	is	running	a	supported	64-bit	version

		//	of	Windows,	because	calling	EnableFsRedirection(False)	will

		//	raise	an	exception	otherwise.

		if	IsWin64	then

		begin

				//	Turn	off	redirection,	so	that	cmd.exe	from	the	64-bit	System

				//	directory	is	launched.

				OldState	:=	EnableFsRedirection(False);

				try

						Exec(ExpandConstant('{cmd}'),	'',	'',	SW_SHOW,

								ewWaitUntilTerminated,	ResultCode);

				finally

						//	Restore	the	previous	redirection	state.

						EnableFsRedirection(OldState);

				end;

		end;

end;

Pascal	Scripting:	Exec
Prototype:
function	Exec(const	Filename,	Params,	WorkingDir:

String;	const	ShowCmd:	Integer;	const	Wait:

TExecWait;	var	ResultCode:	Integer):	Boolean;

Description:
Executes	the	specified	executable	or	batch	file,	using	the	same
credentials	as	Setup/Uninstall.	The	Wait	parameter	specifies	whether
the	function	should	return	immediately	or	wait	until	the	launched
process	has	terminated	or	is	idle.	Returns	True	if	the	specified	file	was
executed	successfully,	False	otherwise.	If	True	is	returned	and	Wait	is
ewWaitUntilTerminated	then	ResultCode	returns	the	exit	code	of	the
process.	If	False	is	returned	then	ResultCode	specifies	the	error	that
occurred.	Use	SysErrorMessage(ResultCode)	to	get	a	description	of
the	error.

Remarks:
TExecWait	is	defined	as:

TExecWait	=	(ewNoWait,	ewWaitUntilTerminated,

ewWaitUntilIdle);

Use	the	ShellExec	function	instead	if	you	need	to	launch	a	file	that	is
not	an	executable	or	batch	file.

Do	not	include	quotes	in	the	Filename	parameter;	the	function	will	add
them	automatically.

The	WorkingDir	parameter	can	be	an	empty	string,	in	which	case	it	will
try	to	extract	a	pathname	from	the	Filename	parameter	and	use	that	as
the	initial	current	directory	for	the	process.	If	no	pathname	was
specified	in	Filename,	a	default	directory	will	be	used.

If	you	have	a	single	string	containing	both	a	filename	and	parameters
(e.g.	a	command	line	obtained	from	an	UninstallString	registry	value),
you	need	not	separate	them	yourself;	just	pass	'>'	in	the	Filename
parameter,	and	the	full	command	line	in	the	Params	parameter.	(Note
that	when	this	is	done,	the	function's	special	platform-independent
support	for	.bat	and	.cmd	files	is	disabled;	it	simply	passes	the	specified

command	line	to	CreateProcess	without	any	processing.)

By	default,	when	Setup/Uninstall	is	running	in	64-bit	mode,	this	function
disables	WOW64	file	system	redirection	when	calling	CreateProcess.	It
is	possible	to	override	this	by	calling	EnableFsRedirection.

Example:
var

		ResultCode:	Integer;

begin

		//	Launch	Notepad	and	wait	for	it	to	terminate

		if	Exec(ExpandConstant('{win}\notepad.exe'),	'',	'',	SW_SHOW,

					ewWaitUntilTerminated,	ResultCode)	then

		begin

				//	handle	success	if	necessary;	ResultCode	contains	the	exit	code

		end

		else	begin

				//	handle	failure	if	necessary;	ResultCode	contains	the	error	code

		end;

end;

See	also:
ExecAsOriginalUser

Pascal	Scripting:	ExecAsOriginalUser
Prototype:
function	ExecAsOriginalUser(const	Filename,	Params,

WorkingDir:	String;	const	ShowCmd:	Integer;	const

Wait:	TExecWait;	var	ResultCode:	Integer):	Boolean;

Description:
Executes	the	specified	executable	or	batch	file,	using	the	(normally
non-elevated)	credentials	of	the	user	that	started	Setup	initially.	See
Exec	and	the	[Run]	section	flag	runasoriginaluser	for	more
information.

Remarks:
This	function	is	not	supported	at	uninstall	time.

In	very	unusual	failure	cases	(e.g.	if	the	initial	Setup	process	died
unexpectedly),	it	is	possible	for	this	function	to	raise	an	exception
instead	of	just	returning	False.

Pascal	Scripting:	ShellExec
Prototype:
function	ShellExec(const	Verb,	Filename,	Params,

WorkingDir:	String;	const	ShowCmd:	Integer;	const

Wait:	TExecWait;	var	ErrorCode:	Integer):	Boolean;

Description:
Opens	the	specified	file	or	performs	another	action	specified	by	Verb,
using	the	same	credentials	as	Setup/Uninstall.	The	filename	can	be	an
executable	file,	a	document	file,	a	folder,	or	a	URL.	Verb	may	be	an
empty	string,	in	which	case	the	default	verb	for	the	file	type	is	used
(usually	"open").	The	Wait	parameter	specifies	whether	the	function
should	return	immediately	or	wait	until	the	launched	process	has
terminated	or	is	idle.	Returns	True	if	the	specified	file	was	opened
successfully,	False	otherwise.	If	False	is	returned	then	ErrorCode
specifies	the	error	that	occurred.	Use	SysErrorMessage(ErrorCode)	to
get	a	description	of	the	error.

Remarks:
TExecWait	is	defined	as:

TExecWait	=	(ewNoWait,	ewWaitUntilTerminated,

ewWaitUntilIdle);

Note	that	passing	a	Wait	value	other	than	ewNoWait	will	have	no	effect
if	a	new	process	isn't	spawned	(for	example,	if	the	file	is	opened	inside
an	already-running	instance	of	the	program	that	handles	the	file	type).

Refer	to	the	system	error	codes	on	MSDN .

Example:
var

		ErrorCode:	Integer;

begin

		if	not	ShellExec('',	ExpandConstant('{app}\filename.rtf'),

					'',	'',	SW_SHOW,	ewNoWait,	ErrorCode)	then

		begin

				//	handle	failure	if	necessary

		end;

http://msdn.microsoft.com/en-us/library/windows/desktop/ms681381.aspx

end;

See	also:
ShellExecAsOriginalUser

Pascal	Scripting:	ShellExecAsOriginalUser
Prototype:
function	ShellExecAsOriginalUser(const	Verb,

Filename,	Params,	WorkingDir:	String;	const	ShowCmd:

Integer;	const	Wait:	TExecWait;	var	ErrorCode:

Integer):	Boolean;

Description:
Opens	the	specified	file	or	performs	another	action	specified	by	Verb,
using	the	(normally	non-elevated)	credentials	of	the	user	that	started
Setup	initially.	See	ShellExec	and	the	[Run]	section	flag
runasoriginaluser	for	more	information.

Remarks:
This	function	is	not	supported	at	uninstall	time.

In	very	unusual	failure	cases	(e.g.	if	the	initial	Setup	process	died
unexpectedly),	it	is	possible	for	this	function	to	raise	an	exception
instead	of	just	returning	False.

Refer	to	the	system	error	codes	on	MSDN .

http://msdn.microsoft.com/en-us/library/windows/desktop/ms681381.aspx

Pascal	Scripting:	RenameFile
Prototype:
function	RenameFile(const	OldName,	NewName:	string):

Boolean;

Description:
Attempts	to	change	the	name	of	the	file	or	directory	specified	by	OldFile
to	NewFile.	If	the	operation	succeeds,	RenameFile	returns	True.	If	it
cannot	rename	the	file	(for	example,	if	a	file	called	NewName	already
exists),	it	returns	False.

Pascal	Scripting:	FileCopy
Prototype:
function	FileCopy(const	ExistingFile,	NewFile:

String;	const	FailIfExists:	Boolean):	Boolean;

Description:
Copies	ExistingFile	to	NewFile,	preserving	time	stamp	and	file
attributes.
If	FailIfExists	is	True	it	will	fail	if	NewFile	already	exists,	otherwise	it	will
overwrite	it.
Returns	True	if	successful,	False	otherwise.

Pascal	Scripting:	DeleteFile
Prototype:
function	DeleteFile(const	FileName:	string):

Boolean;

Description:
Erases	the	file	named	by	FileName	from	the	disk.
If	the	file	cannot	be	deleted	or	does	not	exist,	the	function	returns
False.

Pascal	Scripting:	DelayDeleteFile
Prototype:
procedure	DelayDeleteFile(const	Filename:	String;

const	Tries:	Integer);

Description:
Attempts	to	delete	Filename,	retrying	up	to	Tries	times	if	the	file	is	in
use.	It	delays	250	msec	between	tries.

Pascal	Scripting:	SetNTFSCompression
Prototype:
function	SetNTFSCompression(const	FileOrDir:	String;

Compress:	Boolean):	Boolean;

Description:
Changes	the	NTFS	compression	state	of	a	file	or	directory.	Returns
True	if	successful.

Remarks:
If	a	directory	is	specified,	the	compression	state	of	any	files	present	in
the	directory	will	not	be	changed.

Pascal	Scripting:	LoadStringFromFile
Prototype:
function	LoadStringFromFile(const	FileName:	String;

var	S:	AnsiString):	Boolean;

Description:
Loads	the	specified	binary	or	non	Unicode	text	file	into	the	specified
string.	Returns	True	if	successful,	False	otherwise.

Pascal	Scripting:	LoadStringsFromFile
Prototype:
function	LoadStringsFromFile(const	FileName:	String;

var	S:	TArrayOfString):	Boolean;

Description:
Loads	the	specified	text	file	into	the	specified	string	array.	Returns	True
if	successful,	False	otherwise.

Pascal	Scripting:	SaveStringToFile
Prototype:
function	SaveStringToFile(const	FileName:	String;

const	S:	AnsiString;	const	Append:	Boolean):

Boolean;

Description:
Saves	the	specified	string	to	the	specified	file.	If	Append	is	True	and	the
specified	file	already	exists,	it	will	be	appended	to	instead	of
overwritten.	Returns	True	if	successful,	False	otherwise.

Remarks:
This	function	does	not	automatically	write	a	line	break	before	or	after
the	string.	If	Append	is	True	and	the	existing	file	did	not	end	in	a	line
break,	the	function	will	effectively	append	to	the	existing	last	line.	To
avoid	this	you	can	put	line	break	characters	before	and	after	your
string:

SaveStringToFile('c:\filename.txt',	#13#10	+	'the

string'	+	#13#10,	True);

Pascal	Scripting:	SaveStringsToFile
Prototype:
function	SaveStringsToFile(const	FileName:	String;

const	S:	TArrayOfString;	const	Append:	Boolean):

Boolean;

Description:
Saves	the	specified	string	array	to	the	specified	file	with	ASCII
encoding.	If	Append	is	True	and	the	specified	file	already	exists,	it	will
be	appended	to	instead	of	overwritten.	Returns	True	if	successful,
False	otherwise.

See	also:
SaveStringsToUTF8File

Pascal	Scripting:	SaveStringsToUTF8File
Prototype:
function	SaveStringsToUTF8File(const	FileName:

String;	const	S:	TArrayOfString;	const	Append:

Boolean):	Boolean;

Description:
Saves	the	specified	string	array	to	the	specified	file	with	UTF8
encoding.	If	Append	is	True	and	the	specified	file	already	exists,	it	will
be	appended	to	instead	of	overwritten.	Returns	True	if	successful,
False	otherwise.

Causes	an	internal	error	if	called	by	non	Unicode	Setup	or	Uninstall.

See	also:
SaveStringsToFile

Pascal	Scripting:	CreateDir
Prototype:
function	CreateDir(const	Dir:	string):	Boolean;

Description:
Creates	a	new	directory.	The	return	value	is	True	if	a	new	directory	was
successfully	created,	or	False	if	an	error	occurred.

Pascal	Scripting:	ForceDirectories
Prototype:
function	ForceDirectories(Dir:	string):	Boolean;

Description:
Creates	all	the	directories	along	the	specified	directory	path	all	at	once.
If	the	first	directories	in	the	path	do	exist,	but	the	latter	ones	don't,
ForceDirectories	creates	just	the	ones	that	don't	exist.	Returns	True	if
successful,	False	otherwise.

Pascal	Scripting:	RemoveDir
Prototype:
function	RemoveDir(const	Dir:	string):	Boolean;

Description:
Deletes	an	existing	empty	directory.	The	return	value	is	True	if	a	new
directory	was	successfully	deleted,	or	False	if	an	error	occurred.

Pascal	Scripting:	DelTree
Prototype:
function	DelTree(const	Path:	String;	const	IsDir,

DeleteFiles,	DeleteSubdirsAlso:	Boolean):	Boolean;

Description:
Deletes	the	specified	directory	if	IsDir	is	set	to	True,	or	files/directories
matching	a	wildcard	if	IsDir	is	set	to	False.	Returns	True	if	it	was	able	to
successfully	remove	everything.

If	DeleteFiles	is	set	to	True,	files	inside	the	specified	directory	will	be
deleted	if	IsDir	is	True,	or	files	matching	the	specified	wildcard
(including	those	with	hidden,	system,	and	read-only	attributes)	will	be
deleted	if	IsDir	is	False.

If	DeleteFiles	and	DeleteSubdirsAlso	are	both	set	to	True,
subdirectories	(and	their	contents)	will	be	deleted	in	addition	to	files.

Remarks:
This	function	will	remove	directories	that	are	reparse	points,	but	it	will
not	recursively	delete	files/directories	inside	them.

Example:
begin

		//	Delete	the	directory	C:\Test	and	everything	inside	it

		DelTree('C:\Test',	True,	True,	True);

		//	Delete	files	matching	C:\Test*.tmp

		DelTree('C:\Test*.tmp',	False,	True,	False);

		//	Delete	all	files	and	directories	inside	C:\Test

		//	but	leave	the	directory	itself

		DelTree('C:\Test*',	False,	True,	True);

end;

Pascal	Scripting:	CreateShellLink
Prototype:
function	CreateShellLink(const	Filename,

Description,	ShortcutTo,	Parameters,	WorkingDir,

IconFilename:	String;	const	IconIndex,	ShowCmd:

Integer):	String;

Description:
Creates	a	shortcut	to	a	file	or	folder.	Returns	the	resulting	filename	of
the	link,	which	may	differ	from	Filename	if	it	ended	up	creating	a	.pif
file	instead	of	a	.lnk	file.	On	failure,	an	exception	will	be	raised.

Parameters:	Filename
Filename	of	the	shortcut	file	to	be	created.	This	should	be	the	full	path
and	must	end	with	".lnk".
Description
Description	of	the	link.	This	will	be	displayed	on	Windows	2000/XP	and
other	supporting	OS	when	the	user	hovers	the	mouse	over	the	file	or
shows	the	properties.
ShortcutTo
Target	file	for	the	shortcut.	This	must	be	the	full	path	to	the	file.	Double
quotation	marks	to	surround	the	path	will	be	added	automatically.
Parameters
Parameters	to	pass	to	the	target	file	of	the	shortcut.	Parameters	which
may	include	spaces	should	have	double	quote	marks	surrounding
them.	e.g.	ExpandConstant('"{app}\foo"')
WorkingDir
Working	directory	for	the	target	file.	This	should	be	set	to	an	absolute
directory.
IconFilename
Path	to	file	to	supply	the	icon.	If	this	is	left	as	the	empty	string	then	the
system	default	icon	for	the	target	file	will	be	used.
IconIndex
Zero-based	index	of	the	icon.
ShowCmd
One	of	the	SW_*	constants

Remarks:
You	will	most	likely	want	to	remove	this	shortcut	on	uninstall.	Do	this	by
adding	an	entry	to	the	UninstallDelete	section.

Example:
CreateShellLink(

		ExpandConstant('{app}\config\Open	licence	database.lnk'),

		'Opens	the	licence	database	in	SQLite',

		ExpandConstant('{app}\config\sqlite.exe'),

		ExpandConstant('"{app}\config\licences.db"'),

		ExpandConstant('{app}\config'),

		'',

		0,

		SW_SHOWNORMAL);

Pascal	Scripting:	UnpinShellLink
Prototype:
function	UnpinShellLink(const	Filename:	String):

Boolean;

Description:
Attempt	to	unpin	the	shortcut	with	the	specified	filename.	Returns	True
if	the	shortcut	was	successfully	removed	from	the	list	of	pinned	items
and/or	the	taskbar,	or	if	the	shortcut	was	not	pinned	at	all.

Pascal	Scripting:	RegisterServer
Prototype:
procedure	RegisterServer(const	Is64Bit:	Boolean;

const	Filename:	String;	const	FailCriticalErrors:

Boolean);

Description:
Registers	the	DLL/OCX	with	the	specified	filename.	If	Is64Bit	is	True,
the	DLL/OCX	will	be	loaded	as	a	64-bit	image	and	registered	in	a	64-bit
process.	If	FailCriticalErrors	is	True,	the	system	will	not	display	any
critical-error-handler	message	boxes.	Raises	an	exception	if	not
successful.

Example:
begin

		//	Register	hhctrl.ocx	located	in	the	System	directory.

		RegisterServer(Is64BitInstallMode,	ExpandConstant('{sys}\hhctrl.ocx'),	False);

end;

Because	we	specify	Is64BitInstallMode	in	the	first	parameter,	it	will
register	the	64-bit	OCX	in	the	64-bit	System	directory	when	Setup	is
running	in	64-bit	mode.	Otherwise,	it	will	register	the	32-bit	OCX	in	the
32-bit	System	directory.

Pascal	Scripting:	UnregisterServer
Prototype:
function	UnregisterServer(const	Is64Bit:	Boolean;

const	Filename:	String;	const	FailCriticalErrors:

Boolean):	Boolean;

Description:
Unregisters	the	DLL/OCX	with	the	specified	filename.	If	Is64Bit	is	True,
the	DLL/OCX	will	be	loaded	as	a	64-bit	image	and	unregistered	in	a	64-
bit	process.	If	FailCriticalErrors	is	True,	the	system	will	not	display	any
critical-error-handler	message	boxes.	Returns	True	if	successful,	False
otherwise.

Pascal	Scripting:	RegisterTypeLibrary
Prototype:
procedure	RegisterTypeLibrary(const	Is64Bit:

Boolean;	const	Filename:	String);

Description:
Registers	the	type	library	with	the	specified	filename.	If	Is64Bit	is	True,
the	type	library	will	be	registered	in	a	64-bit	process.	Raises	an
exception	if	not	successful.

Example:
begin

		//	Register	stdole2.tlb	located	in	the	System	directory.

		RegisterTypeLibrary(Is64BitInstallMode,	ExpandConstant('{sys}\stdole2.tlb'));

end;

Because	we	specify	Is64BitInstallMode	in	the	first	parameter,	it	will
register	the	64-bit	type	library	in	the	64-bit	System	directory	when
Setup	is	running	in	64-bit	mode.	Otherwise,	it	will	register	the	32-bit
type	library	in	the	32-bit	System	directory.

Pascal	Scripting:	UnregisterTypeLibrary
Prototype:
function	UnregisterTypeLibrary(const	Is64Bit:

Boolean;	const	Filename:	String):	Boolean

Description:
Unregisters	the	type	library	with	the	specified	filename.	If	Is64Bit	is
True,	the	type	library	will	be	unregistered	in	a	64-bit	process.	Returns
True	if	successful,	False	otherwise.

Pascal	Scripting:	IncrementSharedCount
Prototype:
procedure	IncrementSharedCount(const	Is64Bit:

Boolean;	const	Filename:	String;	const

AlreadyExisted:	Boolean);

Description:
Increments	or	initializes	the	reference	count	for	the	specified	file	in	the
following	registry	key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs

64-bit	versions	of	Windows	have	two	separate	SharedDLLs	keys,	one
for	64-bit	files	and	one	for	32-bit	files.	If	Is64Bit	is	True,	the	64-bit
SharedDLLs	key	will	be	updated,	otherwise	the	32-bit	SharedDLLs	key
will	be	updated.	The	setting	of	this	parameter	should	correspond	to	the
bitness	of	the	file;	for	example,	if	it	is	a	32-bit	DLL	located	in	the	32-bit
System	directory,	you	should	specify	False.	You	may	also	specify
Is64BitInstallMode	in	which	case	it	will	use	the	current	install
mode	to	determine	which	key	to	open.

Pass	True	in	the	AlreadyExisted	parameter	if	the	file	already	exists;	in
this	case	the	initial	reference	count	for	the	file	will	be	2	if	the	value	for
the	file	doesn't	already	exist	in	the	registry.	(This	behavior	is	in	line	with
Microsoft's	requirements.)

An	exception	will	be	raised	if	the	registry	key	cannot	be	opened	for
write	access.

Pascal	Scripting:	DecrementSharedCount
Prototype:
function	DecrementSharedCount(const	Is64Bit:

Boolean;	const	Filename:	String):	Boolean;

Description:
Decrements	the	reference	count	for	the	specified	file	in	the	following
registry	key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs

64-bit	versions	of	Windows	have	two	separate	SharedDLLs	keys,	one
for	64-bit	files	and	one	for	32-bit	files.	If	Is64Bit	is	True,	the	64-bit
SharedDLLs	key	will	be	updated,	otherwise	the	32-bit	SharedDLLs	key
will	be	updated.	The	setting	of	this	parameter	should	correspond	to	the
bitness	of	the	file;	for	example,	if	it	is	a	32-bit	DLL	located	in	the	32-bit
System	directory,	you	should	specify	False.	You	may	also	specify
Is64BitInstallMode	in	which	case	it	will	use	the	current	install
mode	to	determine	which	key	to	open.

Returns	True	if	the	count	reached	zero	(meaning	it's	OK	to	delete	the
file).	Returns	False	if	the	new	count	is	greater	than	zero,	or	if	the	value
for	the	file	doesn't	exist	or	is	in	an	unrecognizable	format.

An	exception	will	be	raised	if	the	registry	key	cannot	be	opened	for
write	access.

Pascal	Scripting:	RestartReplace
Prototype:
procedure	RestartReplace(const	TempFile,	DestFile:

String);

Description:
Renames	TempFile	to	DestFile	the	next	time	Windows	is	started.	If
DestFile	already	existed,	it	will	be	overwritten.	If	DestFile	is	''	then
TempFile	will	be	deleted.	An	exception	will	be	raised	upon	failure.

Pascal	Scripting:	UnregisterFont
Prototype:
procedure	UnregisterFont(const	FontName,

FontFilename:	String);

Description:
Unregisters	the	font	with	the	specified	face	and	filename.

Pascal	Scripting:	ModifyPifFile
Prototype:
function	ModifyPifFile(const	Filename:	String;	const

CloseOnExit:	Boolean):	Boolean;

Description:
Changes	the	"Close	on	exit"	setting	of	a	.pif	file.	Returns	True	if	it	was
able	to	make	the	change.

Pascal	Scripting:	RegKeyExists
Prototype:
function	RegKeyExists(const	RootKey:	Integer;	const

SubKeyName:	String):	Boolean;

Description:
Returns	True	if	the	specified	registry	key	exists.

Example:
begin

		if	RegKeyExists(HKEY_CURRENT_USER,	'Software\Jordan	Russell\Inno	Setup')	then

		begin

				//	The	key	exists

		end;

end;

Pascal	Scripting:	RegValueExists
Prototype:
function	RegValueExists(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String):	Boolean;

Description:
Returns	True	if	the	specified	registry	key	and	value	exist.

Example:
begin

		if	RegValueExists(HKEY_CURRENT_USER,	'Console',	'WindowSize')	then

		begin

				//	The	value	exists

		end;

end;

Pascal	Scripting:	RegGetSubkeyNames
Prototype:
function	RegGetSubkeyNames(const	RootKey:	Integer;

const	SubKeyName:	String;	var	Names:

TArrayOfString):	Boolean;

Description:
Opens	the	specified	registry	key	and	reads	the	names	of	its	subkeys
into	the	specified	string	array	Names.	Returns	True	if	successful,	False
otherwise.

Example:
var

		Names:	TArrayOfString;

		I:	Integer;

		S:	String;

begin

		if	RegGetSubkeyNames(HKEY_CURRENT_USER,	'Control	Panel',	Names)	then

		begin

				S	:=	'';

				for	I	:=	0	to	GetArrayLength(Names)-1	do

						S	:=	S	+	Names[I]	+	#13#10;

				MsgBox('List	of	subkeys:'#13#10#13#10	+	S,	mbInformation,	MB_OK);

		end	else

		begin

				//	add	any	code	to	handle	failure	here

		end;

end;

Pascal	Scripting:	RegGetValueNames
Prototype:
function	RegGetValueNames(const	RootKey:	Integer;

const	SubKeyName:	String;	var	Names:

TArrayOfString):	Boolean;

Description:
Opens	the	specified	registry	key	and	reads	the	names	of	its	values	into
the	specified	string	array	Names.	Returns	True	if	successful,	False
otherwise.

Example:
var

		Names:	TArrayOfString;

		I:	Integer;

		S:	String;

begin

		if	RegGetValueNames(HKEY_CURRENT_USER,	'Control	Panel\Mouse',	Names)	then

		begin

				S	:=	'';

				for	I	:=	0	to	GetArrayLength(Names)-1	do

						S	:=	S	+	Names[I]	+	#13#10;

				MsgBox('List	of	values:'#13#10#13#10	+	S,	mbInformation,	MB_OK);

		end	else

		begin

				//	add	any	code	to	handle	failure	here

		end;

end;

Pascal	Scripting:	RegQueryStringValue
Prototype:
function	RegQueryStringValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String;	var	ResultStr:

String):	Boolean;

Description:
Queries	the	specified	REG_SZ-	or	REG_EXPAND_SZ-type	value,	and
returns	the	data	in	ResultStr.	Returns	True	if	successful.	When	False	is
returned,	ResultStr	is	unmodified.

Example:
var

		Country:	String;

begin

		if	RegQueryStringValue(HKEY_CURRENT_USER,	'Control	Panel\International',

					'sCountry',	Country)	then

		begin

				//	Successfully	read	the	value

				MsgBox('Your	country:	'	+	Country,	mbInformation,	MB_OK);

		end;

end;

Pascal	Scripting:	RegQueryMultiStringValue
Prototype:
function	RegQueryMultiStringValue(const	RootKey:

Integer;	const	SubKeyName,	ValueName:	String;	var

ResultStr:	String):	Boolean;

Description:
Queries	the	specified	REG_MULTI_SZ-type	registry	value,	and	returns
the	data	in	ResultStr.	Returns	True	if	successful.	When	False	is
returned,	ResultStr	is	unmodified.

Remarks:
In	a	REG_MULTI_SZ-type	value,	each	string	is	separated	by	a	null
character	(#0).

Pascal	Scripting:	RegQueryDWordValue
Prototype:
function	RegQueryDWordValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String;	var

ResultDWord:	Cardinal):	Boolean;

Description:
Queries	the	specified	REG_DWORD-type	registry	value,	and	returns
the	data	in	ResultDWord.	Returns	True	if	successful.	When	False	is
returned,	ResultDWord	is	unmodified.

Example:
var

		HistoryBufferSize:	Cardinal;

begin

		if	RegQueryDWordValue(HKEY_CURRENT_USER,	'Console',

					'HistoryBufferSize',	HistoryBufferSize)	then

		begin

				//	Successfully	read	the	value

				MsgBox('Console	history	buffer	size:	'	+	IntToStr(HistoryBufferSize),

						mbInformation,	MB_OK);

		end;

end;

Pascal	Scripting:	RegQueryBinaryValue
Prototype:
function	RegQueryBinaryValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String;	var	ResultStr:

AnsiString):	Boolean;

Description:
Queries	the	specified	REG_BINARY-type	registry	value,	and	returns
the	data	in	ResultStr.	Returns	True	if	successful.	When	False	is
returned,	ResultStr	is	unmodified.

Pascal	Scripting:	RegWriteStringValue
Prototype:
function	RegWriteStringValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName,	Data:	String):	Boolean;

Description:
Writes	the	specified	REG_SZ-type	registry	value.	Returns	True	if
successful,	False	otherwise.

Remarks:
If	the	value	already	exists	and	is	of	type	REG_EXPAND_SZ,	the	new
value	will	also	be	of	type	REG_EXPAND_SZ.	Otherwise,	a	REG_SZ-
type	value	will	be	created.

Example:
begin

		RegWriteStringValue(HKEY_CURRENT_USER,	'Software\My	Company\My	Program',

				'UserName',	ExpandConstant('{sysuserinfoname}'));

end;

Pascal	Scripting:	RegWriteExpandStringValue
Prototype:
function	RegWriteExpandStringValue(const	RootKey:

Integer;	const	SubKeyName,	ValueName,	Data:	String):

Boolean;

Description:
Writes	the	specified	REG_EXPAND_SZ-type	registry	value.	Returns
True	if	successful,	False	otherwise.

Example:
begin

		RegWriteStringValue(HKEY_CURRENT_USER,	'Software\My	Company\My	Program',

				'UserName',	'%UserName%);

end;

Pascal	Scripting:	RegWriteMultiStringValue
Prototype:
function	RegWriteMultiStringValue(const	RootKey:

Integer;	const	SubKeyName,	ValueName,	Data:	String):

Boolean;

Description:
Writes	the	specified	REG_MULTI_SZ-type	registry	value.	Returns	True
if	successful,	False	otherwise.

Remarks:
In	a	REG_MULTI_SZ-type	value,	each	string	is	separated	by	a	null
character	(#0).

Example:
begin

		RegWriteMultiStringValue(HKEY_CURRENT_USER,	'Software\My	Company\My	Program',

				'MultiStringTest',	'String1'	+	#0	+	'String2'	+	#0	+	'String3');

end;

Pascal	Scripting:	RegWriteDWordValue
Prototype:
function	RegWriteDWordValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String;	const	Data:

Cardinal):	Boolean;

Description:
Writes	the	specified	REG_DWORD-type	registry	value.	Returns	True	if
successful,	False	otherwise.

Example:
begin

		RegWriteDWordValue(HKEY_CURRENT_USER,	'Software\My	Company\My	Program',

				'ShowToolbar',	1);

end;

Pascal	Scripting:	RegWriteBinaryValue
Prototype:
function	RegWriteBinaryValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String;	const	Data:

AnsiString):	Boolean;

Description:
Writes	the	specified	REG_BINARY-type	registry	value.	Returns	True	if
successful,	False	otherwise.

Example:
begin

		RegWriteBinaryValue(HKEY_CURRENT_USER,	'Software\My	Company\My	Program',

				'BinaryTest',	'Whatever'	+	#1#2#3#4);

end;

Pascal	Scripting:	RegDeleteKeyIncludingSubkeys
Prototype:
function	RegDeleteKeyIncludingSubkeys(const	RootKey:

Integer;	const	SubkeyName:	String):	Boolean;

Description:
Deletes	the	specified	key	and	all	subkeys.	Returns	True	if	successful,
False	otherwise.

Pascal	Scripting:	RegDeleteKeyIfEmpty
Prototype:
function	RegDeleteKeyIfEmpty(const	RootKey:	Integer;

const	SubkeyName:	String):	Boolean;

Description:
Deletes	the	specified	subkey	if	it	has	no	subkeys	or	values.	Returns
True	if	successful,	False	otherwise.

Pascal	Scripting:	RegDeleteValue
Prototype:
function	RegDeleteValue(const	RootKey:	Integer;

const	SubKeyName,	ValueName:	String):	Boolean;

Description:
Deletes	the	specified	value.	Returns	True	if	successful,	False
otherwise.

Pascal	Scripting:	IniKeyExists
Prototype:
function	IniKeyExists(const	Section,	Key,	Filename:

String):	Boolean;

Description:
Returns	True	if	the	specified	INI	key	exists.

Pascal	Scripting:	IsIniSectionEmpty
Prototype:
function	IsIniSectionEmpty(const	Section,	Filename:

String):	Boolean;

Description:
Returns	True	if	the	specified	INI	section	is	empty.

Pascal	Scripting:	GetIniBool
Prototype:
function	GetIniBool(const	Section,	Key:	String;

const	Default:	Boolean;	const	Filename:	String):

Boolean

Description:
Reads	a	Boolean	from	an	INI	file.

Pascal	Scripting:	GetIniInt
Prototype:
function	GetIniInt(const	Section,	Key:	String;	const

Default,	Min,	Max:	Longint;	const	Filename:	String):

Longint;

Description:
Reads	a	Longint	from	an	INI	file.	If	the	Longint	read	is	not	between
Min/Max	then	it	returns	Default.	If	Min=Max	then	Min/Max	are	ignored.

Pascal	Scripting:	GetIniString
Prototype:
function	GetIniString(const	Section,	Key,	Default,

Filename:	String):	String;

Description:
Reads	a	String	from	an	INI	file.

Pascal	Scripting:	SetIniBool
Prototype:
function	SetIniBool(const	Section,	Key:	String;

const	Value:	Boolean;	const	Filename:	String):

Boolean;

Description:
Writes	a	Boolean	to	an	INI	file.

Pascal	Scripting:	SetIniInt
Prototype:
function	SetIniInt(const	Section,	Key:	String;	const

Value:	Longint;	const	Filename:	String):	Boolean;

Description:
Writes	a	Longint	to	an	INI	file.

Pascal	Scripting:	SetIniString
Prototype:
function	SetIniString(const	Section,	Key,	Value,

Filename:	String):	Boolean;

Description:
Writes	a	string	to	an	INI	file.

Pascal	Scripting:	DeleteIniSection
Prototype:
procedure	DeleteIniSection(const	Section,	Filename:

String);

Description:
Deletes	the	specified	section	from	an	INI	file.

Pascal	Scripting:	DeleteIniEntry
Prototype:
procedure	DeleteIniEntry(const	Section,	Key,

Filename:	String);

Description:
Deletes	the	specified	key	from	an	INI	file.

Pascal	Scripting:	CreateInputQueryPage
Prototype:
function	CreateInputQueryPage(const	AfterID:

Integer;	const	ACaption,	ADescription,	ASubCaption:

String):	TInputQueryWizardPage;

Description:
Creates	a	wizard	page	containing	edit	boxes.

Remarks:
To	create	edit	boxes	on	the	page,	call	the	Add	method.	Use	the	Values
property	to	get/set	the	text	of	the	edit	boxes.

Example:
var

		Page:	TInputQueryWizardPage;

		UserName,	UserCompany:	String;

...

//	Create	the	page

Page	:=	CreateInputQueryPage(wpWelcome,

		'Personal	Information',	'Who	are	you?',

		'Please	specify	your	name	and	the	company	for	whom	you	work,	then	click	Next.');

//	Add	items	(False	means	it's	not	a	password	edit)

Page.Add('Name:',	False);

Page.Add('Company:',	False);

//	Set	initial	values	(optional)

Page.Values[0]	:=	ExpandConstant('{sysuserinfoname}');

Page.Values[1]	:=	ExpandConstant('{sysuserinfoorg}');

...

//	Read	values	into	variables

UserName	:=	Page.Values[0];

UserCompany	:=	Page.Values[1];

See	also:
TInputQueryWizardPage

Pascal	Scripting:	CreateInputOptionPage
Prototype:
function	CreateInputOptionPage(const	AfterID:

Integer;	const	ACaption,	ADescription,	ASubCaption:

String;	Exclusive,	ListBox:	Boolean):

TInputOptionWizardPage;

Description:
Creates	a	wizard	page	containing	check	boxes	or	radio	buttons.

If	Exclusive	is	True,	radio	buttons	are	displayed	instead	of	check	boxes,
and	only	one	item	in	the	list	may	be	selected	at	a	time.	If	ListBox	is
True,	the	check	boxes	or	radio	buttons	are	placed	inside	a	scrollable	list
box.

Remarks:
To	create	check	boxes	/	radio	buttons	on	the	page,	call	the	Add
method.	Use	the	Values	property	to	get/set	the	checked	state	of	items.
On	pages	created	with	Exclusive=True,	you	can	get/set	the	index	of	the
one	selected	item	via	the	SelectedValueIndex	property.

Example:
var

		Page:	TInputOptionWizardPage;

		IsRegisteredUser:	Boolean;

...

//	Create	the	page

Page	:=	CreateInputOptionPage(wpWelcome,

		'License	Information',	'Are	you	a	registered	user?',

		'If	you	are	a	registered	user,	please	check	the	box	below,	then	click	Next.',

		False,	False);

//	Add	items

Page.Add('I	am	a	registered	user');

//	Set	initial	values	(optional)

Page.Values[0]	:=	False;

...

//	Read	values	into	variables

IsRegisteredUser	:=	Page.Values[0];

See	also:
TInputOptionWizardPage

Pascal	Scripting:	CreateInputDirPage
Prototype:
function	CreateInputDirPage(const	AfterID:	Integer;

const	ACaption,	ADescription,	ASubCaption:	String;

AAppendDir:	Boolean;	ANewFolderName:	String):

TInputDirWizardPage;

Description:
Creates	a	wizard	page	that	contains	edit	boxes	and	Browse	buttons	for
selecting	directories.	If	AAppendDir	is	True,	the	value	of
ANewFolderName	will	be	appended	onto	any	folder	name	the	user
clicks.	If	AAppendDir	is	False	and	ANewFolderName	is	not	empty,	a
Make	New	Folder	button	will	be	shown	that	creates	a	new	folder	with
the	specified	default	name.

Remarks:
To	create	directory	selection	boxes	on	the	page,	call	the	Add	method.
Use	the	Values	property	to	get/set	the	items'	values.

Example:
var

		Page:	TInputDirWizardPage;

		DataDir:	String;

...

//	Create	the	page

Page	:=	CreateInputDirPage(wpWelcome,

		'Select	Personal	Data	Location',	'Where	should	personal	data	files	be	stored?',

		'Personal	data	files	will	be	stored	in	the	following	folder.'#13#10#13#10	+

		'To	continue,	click	Next.	If	you	would	like	to	select	a	different	folder,	click	Browse.',

		False,	'New	Folder');

//	Add	item	(with	an	empty	caption)

Page.Add('');

//	Set	initial	value	(optional)

Page.Values[0]	:=	ExpandConstant('{userappdata}\My	Company\My	Program');

...

//	Read	value	into	variable

DataDir	:=	Page.Values[0];

See	also:
TInputDirWizardPage

Pascal	Scripting:	CreateInputFilePage
Prototype:
function	CreateInputFilePage(const	AfterID:	Integer;

const	ACaption,	ADescription,	ASubCaption:	String):

TInputFileWizardPage;

Description:
Creates	a	wizard	page	that	contains	edit	boxes	and	Browse	buttons	for
selecting	files.

Remarks:
To	create	file	selection	boxes	on	the	page,	call	the	Add	method.	Use
the	Values	property	to	get/set	the	items'	values.

An	example	Filter:	'Text	files	(*.txt)|*.txt|All	files	(*.*)|*.*'

Example:
var

		Page:	TInputFileWizardPage;

		NotepadLocation:	String;

...

//	Create	the	page

Page	:=	CreateInputFilePage(wpWelcome,

		'Select	Notepad	Location',	'Where	is	Notepad	located?',

		'Select	where	Notepad	is	located,	then	click	Next.');

//	Add	item

Page.Add('Location	of	notepad.exe:',									//	caption

		'Executable	files|*.exe|All	files|*.*',				//	filters

		'.exe');																																			//	default	extension

//	Set	initial	value	(optional)

Page.Values[0]	:=	ExpandConstant('{win}\notepad.exe');

...

//	Read	value	into	variable

NotepadLocation	:=	Page.Values[0];

See	also:
TInputFileWizardPage

Pascal	Scripting:	CreateOutputMsgPage
Prototype:
function	CreateOutputMsgPage(const	AfterID:	Integer;

const	ACaption,	ADescription,	AMsg:	String):

TOutputMsgWizardPage;

Description:
Creates	a	wizard	page	containing	only	static	text.	The	AMsg	parameter
specifies	the	text	to	display.

Example:
var

		Page:	TOutputMsgWizardPage;

...

//	Create	the	page

Page	:=	CreateOutputMsgPage(wpWelcome,

		'Information',	'Please	read	the	following	important	information	before	continuing.',

		'Blah	blah	blah.');

See	also:
TOutputMsgWizardPage

Pascal	Scripting:	CreateOutputMsgMemoPage
Prototype:
function	CreateOutputMsgMemoPage(const	AfterID:

Integer;	const	ACaption,	ADescription,	ASubCaption:

String;	const	AMsg:	AnsiString):

TOutputMsgMemoWizardPage;

Description:
Creates	a	wizard	page	containing	static	text	as	well	as	a	read-only,
multi-line	edit	control,	capable	of	displaying	RTF	text.	The	ASubCaption
parameter	specifies	the	static	text	to	display.	AMsg	specifies	the	text	to
assign	to	the	edit	control.

Example:
var

		Page:	TOutputMsgMemoWizardPage;

...

//	Create	the	page

Page	:=	CreateOutputMsgMemoPage(wpWelcome,

		'Information',	'Please	read	the	following	important	information	before	continuing.',

		'When	you	are	ready	to	continue	with	Setup,	click	Next.',

		'Blah	blah	blah.');

See	also:
TOutputMsgMemoWizardPage

Pascal	Scripting:	CreateOutputProgressPage
Prototype:
function	CreateOutputProgressPage(const	ACaption,

ADescription:	String):	TOutputProgressWizardPage;

Description:
Creates	a	wizard	page	containing	static	text	as	well	as	a	progress	bar
(which	is	hidden	by	default).

Unlike	the	other	types	of	wizard	pages,	progress	pages	are	not
displayed	as	part	of	the	normal	page	sequence	(note	that	there	is	no
AfterID	parameter).	A	progress	page	can	only	be	displayed
programmatically	by	calling	its	Show	method.

Remarks:
Call	the	Show	method	to	activate	and	show	the	page.	When	you're
finished	with	it,	call	the	Hide	method	to	revert	to	the	previous	page.

Always	put	the	Hide	call	inside	the	finally	part	of	a	try..finally
language	construct,	as	demonstrated	in	CodeDlg.iss.	Not	calling	Hide
will	result	in	the	wizard	being	permanently	stuck	on	the	progress	page.

To	set	the	text	on	the	page,	call	the	SetText	method.	SetText	takes
two	string	parameters:	use	the	first	to	tell	the	user	what	you're	doing,
and	the	second	to	display	a	file	or	directory	name.	Either	parameter
may	be	blank.

To	display	or	update	the	progress	bar,	call	the	SetProgress	method.
SetProgress	takes	two	integer	parameters:	the	first	specifies	the
position	of	the	progress	bar	(zero-based),	and	the	second	specifies	the
highest	possible	position.	If	the	second	parameter	is	0,	the	progress	bar
will	be	hidden.

Example:
See	CodeDlg.iss	for	an	example.

See	also:
TOutputProgressWizardPage

Pascal	Scripting:	CreateCustomPage
Prototype:
function	CreateCustomPage(const	AfterID:	Integer;

const	ACaption,	ADescription:	String):	TWizardPage;

Description:
Creates	a	custom	wizard	page.	The	page	is	empty	by	default;	you	have
to	create	your	own	controls	afterward	and	place	them	on	the	page	(by
setting	their	Parent	properties	to	the	Surface	property	of	the
TWizardPage	instance	returned	by	this	function).

Example:
See	CodeClasses.iss	for	an	example.

See	also:
TWizardPage

Pascal	Scripting:	CreateCustomForm
Prototype:
function	CreateCustomForm:	TSetupForm;

Description:
Creates	a	form.	The	form	is	empty	by	default;	you	have	to	create	your
own	controls	afterward	and	place	them	on	the	form	(by	setting	their
Parent	properties	to	the	TSetupForm	instance	returned	by	this
function).

Remarks:
You	should	call	this	function	instead	of	creating	TForm	or	TSetupForm
instances	directly.	This	function	automatically	initializes	the	font	and
other	properties	of	the	created	form	to	be	like	Setup's	other	dialogs.

The	[LangOptions]	section's	DialogFontName	and
DialogFontSize	directives	determine	the	font	used	by	the	form	and,
by	default,	any	child	controls	created	on	the	form.

Example:
See	CodeClasses.iss	for	an	example.

See	also:
TForm	TSetupForm

Pascal	Scripting:	PageFromID
Prototype:
function	PageFromID(const	ID:	Integer):	TWizardPage;

Description:
Given	a	page	ID,	returns	a	TWizardPage	instance.	Call	this	if,	for
example,	you	need	to	get	at	the	surface	of	a	page	and	only	know	its	ID.

An	exception	will	be	raised	if	an	invalid	page	ID	is	specified.

Example:
var

		Page:	TWizardPage;

begin

		Page	:=	PageFromID(wpWelcome);

		Page.Surface.Color	:=	clBlue;

end;

See	also:
TWizardPage

Pascal	Scripting:	PageIndexFromID
Prototype:
function	PageIndexFromID(const	ID:	Integer):

Integer;

Description:
Given	a	page	ID,	returns	an	position	index.	Call	this	if,	for	example,	you
want	to	check	whether	a	page	is	positioned	before	a	certain	other	page.

Example:
function	ShouldSkipPage(PageID:	Integer):	Boolean;

begin

		Result	:=	PageIndexFromID(PageID)	<	PageIndexFromID(wpReady);

end;

Pascal	Scripting:	ScaleX
Prototype:
function	ScaleX(X:	Integer):	Integer;

Description:
Takes	an	X	coordinate	or	width	and	returns	it	scaled	to	fit	the	size	of	the
current	dialog	font.	If	the	dialog	font	is	8-point	MS	Sans	Serif	and	the
user	is	running	Windows	in	Small	Fonts	(96	dpi),	then	X	is	returned
unchanged.

Pascal	Scripting:	ScaleY
Prototype:
function	ScaleY(Y:	Integer):	Integer;

Description:
Takes	a	Y	coordinate	or	height	and	returns	it	scaled	to	fit	the	size	of	the
current	dialog	font.	If	the	dialog	font	is	8-point	MS	Sans	Serif	and	the
user	is	running	Windows	in	Small	Fonts	(96	dpi),	then	Y	is	returned
unchanged.

Pascal	Scripting:	MsgBox
Prototype:
function	MsgBox(const	Text:	String;	const	Typ:

TMsgBoxType;	const	Buttons:	Integer):	Integer;

Description:
Displays	a	message	box.	Text	specifies	the	message	to	display.	Typ
specifies	which	icon	to	use	in	the	message	box.	Buttons	specifies
which	buttons	to	include	in	the	message	box.	Returns	an	ID*	constant
indicating	the	button	the	user	clicked,	or	0	if	the	function	fails	(which
shouldn't	happen	unless	an	invalid	parameter	is	specified	or	system
resources	are	exhausted).

Remarks:
TMsgBoxType	is	defined	as:

TMsgBoxType	=	(mbInformation,	mbConfirmation,

mbError,	mbCriticalError);

Example:
begin

		//	Display	a	simple	message	box	with	an	OK	button

		MsgBox('Hello.',	mbInformation,	MB_OK);

		//	Ask	the	user	a	Yes/No	question

		if	MsgBox('Are	you	sure?',	mbConfirmation,	MB_YESNO)	=	IDYES	then

		begin

				//	user	clicked	Yes

		end;

		//	Ask	the	user	a	Yes/No	question,	defaulting	to	No

		if	MsgBox('Are	you	sure?',	mbConfirmation,	MB_YESNO	or	MB_DEFBUTTON2)	=	IDYES	then

		begin

				//	user	clicked	Yes

		end;

end;

Pascal	Scripting:	SuppressibleMsgBox
Prototype:
function	SuppressibleMsgBox(const	Text:	String;

const	Typ:	TMsgBoxType;	const	Buttons,	Default:

Integer):	Integer;

Description:
Displays	a	suppressible	message	box.	If	message	boxes	are	being
suppressed	(see	Setup	Command	Line	Parameters),	Default	is
returned.	Otherwise,	SuppressibleMsgBox	acts	the	same	as	the	regular
MsgBox.

Pascal	Scripting:	GetOpenFileName
Prototype:
function	GetOpenFileName(const	Prompt:	String;	var

FileName:	String;	const	InitialDirectory,	Filter,

DefaultExtension:	String):	Boolean;

Description:
Displays	a	dialog	box	that	enables	the	user	to	select	an	existing	file.
Returns	True	if	the	user	selected	a	file,	False	otherwise.	The	name	of
the	selected	file	is	returned	in	the	FileName	string.

Remarks:
An	example	Filter:	'Text	files	(*.txt)|*.txt|All	files	(*.*)|*.*'

Example:
var

		Filename:	String;

begin

		//	Set	the	initial	filename

		Filename	:=	'';

		if	GetOpenFileName('',	Filename,	'',

					'Text	Documents	(*.txt)|*.txt|All	Files|*.*',	'txt')	then

		begin

				//	Successful;	user	clicked	OK

				//	Filename	contains	the	selected	filename

		end;

end;

Pascal	Scripting:	GetSaveFileName
Prototype:
function	GetSaveFileName(const	Prompt:	String;	var

FileName:	String;	const	InitialDirectory,	Filter,

DefaultExtension:	String):	Boolean;

Description:
Displays	a	dialog	box	that	enables	the	user	to	select	a	new	file.	Returns
True	if	the	user	selected	a	file,	False	otherwise.	The	name	of	the
selected	file	is	returned	in	the	FileName	string.

Remarks:
An	example	Filter:	'Text	files	(*.txt)|*.txt|All	files	(*.*)|*.*'

Example:
var

		Filename:	String;

begin

		//	Set	the	initial	filename

		Filename	:=	'';

		if	GetSaveFileName('',	Filename,	'',

					'Text	Documents	(*.txt)|*.txt|All	Files|*.*',	'txt')	then

		begin

				//	Successful;	user	clicked	OK

				//	Filename	contains	the	selected	filename

		end;

end;

Pascal	Scripting:	BrowseForFolder
Prototype:
function	BrowseForFolder(const	Prompt:	String;	var

Directory:	String;	const	NewFolderButton:	Boolean):

Boolean;

Description:
Displays	a	dialog	box	that	enables	the	user	to	select	a	directory.	The
current	value	of	Directory	is	used	as	the	initially	selected	directory.	If
NewFolderButton	is	True,	a	New	Folder	button	will	be	shown,	allowing
the	user	to	create	new	folders.	Returns	True	if	the	user	selected	a
directory	and	clicked	OK,	False	otherwise.	The	selected	directory	is
returned	in	the	Directory	string.

Remarks:
On	Windows	versions	prior	to	XP,	passing	False	in	the
NewFolderButton	parameter	has	no	effect;	the	New	Folder	button	will
always	be	shown.	This	is	a	Windows	limitation.

Pascal	Scripting:	ExitSetupMsgBox
Prototype:
function	ExitSetupMsgBox:	Boolean;

Description:
Displays	the	"Exit	Setup?"	message	box,	and	returns	True	if	the	user
selects	Yes.	Does	not	terminate	Setup	or	Uninstall.

Pascal	Scripting:	CreateOleObject
Prototype:
function	CreateOleObject(const	ClassName:	string):

Variant;

Description:
See	the	Using	COM	Automation	objects	topic.

Pascal	Scripting:	GetActiveOleObject
Prototype:
function	GetActiveOleObject(const	ClassName:

string):	Variant;

Description:
See	the	Using	COM	Automation	objects	topic.

Pascal	Scripting:	IDispatchInvoke
Prototype:
function	IDispatchInvoke(Self:	IDispatch;

PropertySet:	Boolean;	const	Name:	String;	Par:	array

of	Variant):	Variant;

Description:
Use	IDispatchInvoke	to	access	a	COM	Automation	property	or
method	whose	name	is	a	reserved	word.

Example:
var

		AObject:	Variant;

		AType:	String;

begin

		AObject	:=	CreateOleObject('MyObject');

		//	Set	a	property	named	'Type'

		//	Cannot	use	"AObject.Type	:=	'MyType';"	because	Type	is	a	reserved	word

		IDispatchInvoke(AObject,	True,	'Type',	['MyType']);

		//	Get	a	property	or	call	a	method	named	'Type'

		AType	:=	IDispatchInvoke(AObject,	False,	'Type',	['']);

end;

See	also:
Using	COM	Automation	objects

Pascal	Scripting:	CreateComObject
Prototype:
function	CreateComObject(const	ClassID:	TGUID):

IUnknown;

Description:
See	the	Using	COM	Automation	objects	topic.

Pascal	Scripting:	StringToGUID
Prototype:
function	StringToGUID(const	S:	String):	TGUID;

Description:
StringToGUID	converts	the	string	representation	of	a	GUID	into	a	'real'
GUID.	An	exception	will	be	raised	upon	failure.

See	also:
Using	COM	Automation	objects

Pascal	Scripting:	OleCheck
Prototype:
procedure	OleCheck(Result:	HResult);

Description:
Use	OleCheck	to	wrap	any	IUnknown	based	COM	methods	you	call,	so
that	if	that	method	fails,	an	exception	will	be	raised.

See	also:
Using	COM	Automation	objects

Pascal	Scripting:	CoFreeUnusedLibraries
Prototype:
procedure	CoFreeUnusedLibraries;

Description:
See	the	Using	COM	Automation	objects	topic.

Pascal	Scripting:	Log
Prototype:
procedure	Log(const	S:	String);

Description:
Logs	the	specified	string	in	Setup's	log	file.

Remarks:
Calls	to	this	function	are	ignored	if	logging	is	not	enabled	via	the	/LOG
command	line	parameter	or	the	SetupLogging	[Setup]	section	directive.

Pascal	Scripting:	Sleep
Prototype:
procedure	Sleep(const	Milliseconds:	LongInt);

Description:
Suspends	the	execution	of	Setup	or	Uninstall	for	a	specified	interval.

Pascal	Scripting:	Random
Prototype:
function	Random(const	Range:	Integer):	Integer;

Description:
Returns	a	random	number	within	the	range	0	<=	X	<	Range.

Pascal	Scripting:	Beep
Prototype:
procedure	Beep;

Description:
Beeps.

Example:
Beep;	//Beeps

Pascal	Scripting:	BringToFrontAndRestore
Prototype:
procedure	BringToFrontAndRestore;

Description:
Makes	sure	that	Setup	or	Uninstall	is	visible	and	the	foreground
window.

Pascal	Scripting:	LoadDLL
Prototype:
function	LoadDLL(const	DLLName:	String;	var

ErrorCode:	Integer):	Longint;

Description:
Loads	the	specified	DLL.	Returns	the	DLL	handle	if	the	DLL	was	loaded
successfully,	zero	otherwise.	If	zero	is	returned	then	ErrorCode
specifies	the	error	that	occurred.	Use	SysErrorMessage(ErrorCode)	to
get	a	description	of	the	error.

Remarks:
This	function	is	deprecated.	See	the	Using	DLLs	topic.

Refer	to	the	system	error	codes	on	MSDN .

http://msdn.microsoft.com/en-us/library/windows/desktop/ms681381.aspx

Pascal	Scripting:	CallDLLProc
Prototype:
function	CallDLLProc(const	DLLHandle:	Longint;	const

ProcName:	String;	const	Param1,	Param2:	Longint;	var

Result:	Longint):	Boolean;

Description:
Calls	the	specified	function	in	a	DLL	specified	using	the	DLL	handle
returned	by	LoadDLL.	Returns	True	is	the	procedure	was	called
successfully,	False	otherwise.
The	function	must	use	the	standard	calling	convention,	accept	two	4
byte	integer	parameters	and	return	a	4	byte	integer	result.

Remarks:
This	function	is	deprecated.	See	the	Using	DLLs	topic.

Pascal	Scripting:	FreeDLL
Prototype:
function	FreeDLL(const	DLLHandle:	Longint):	Boolean;

Description:
Unloads	a	DLL	specified	using	the	DLL	handle	returned	by	LoadDLL.

Remarks:
This	function	is	deprecated.	See	the	Using	DLLs	topic.

Pascal	Scripting:	CastStringToInteger
Prototype:
function	CastStringToInteger(var	S:	String):

Longint;

Description:
Casts	a	string	to	an	integer	so	that	a	string	can	be	passed	to	a	DLL
using	CallDllProc.

Remarks:
This	function	is	deprecated.	See	the	Using	DLLs	topic.

Pascal	Scripting:	CastIntegerToString
Prototype:
function	CastIntegerToString(const	L:	Longint):

String;

Description:
Casts	an	integer	to	a	string	so	that	a	string	can	be	received	from	a	DLL
using	CallDllProc.

Remarks:
This	function	is	deprecated.	See	the	Using	DLLs	topic.

	What is Inno Setup?
	Documentation Conventions
	Creating Installations
	Script Format Overview
	Parameters in Sections
	Constants
	Common Parameters
	Components and Tasks Parameters

