
Introduction	of	Ice	XP
What	is	Ice	?
-	A	Starcraft	Iscript.bin	editor,
This	program	hows	you	to	edit	how	Starcraft	treats	the	various	graphic	files	throughout	the	game.
Advanced	users	can	use	this	knowledge	to	change	the	speed	of	units,
allow	building	graphics	to	be	used	for	units	and	vice	versa.
Advised	for	usage	only	by	those	with	experience	with	the	other	more	common	SC	editors	(Arsenal,
StarDraft,	etc.).	
The	edited	.bin	files	must	be	moved	into	a	"script"	folder	either	in	a	MPQ	file.

What	is	Ice	XP	?
-	Basically..	Ice	XP	is	modified	layout	and	charaters's	color	from	origianl	Ice		for	Windows	XP	user	and
Ice	Beginners	
When	if	you	use	original	Ice,	the	character's	color	in	text	field		might	displayed	same	
to	background	field	color	so	you	might	hacked	on	that	clocked	characters	

	

To	work	out	that	trobles,	i've	modify	these	stuffs	

-		Ice	layout	codes	and	some	background	color	of	objects	are	modified	to	White
color

-	Program	layout	size	is	be	widen	to	seen	very	comfortable,	especially	GRP
preview	windows	size	
-	Added	some	hint	text	and	description

Actually	in	this	Ice	XP	is	no	any	big	different	funtions	except	changed	Layout
and	Colors	

Take	look	these	Screenshots

Modified	background	field	color	to	White	color	

GRP	preview	window	is	widened

Reference:	ICE	written	by	DI

Of	all	the	file	utilities	discussed	so	far	ICE	is	probably	the	most	powerful	(this	is	excluding	the
Stardraft	and	Stargraft	patch	loaders	of	course,	since	without	them	none	of	this	would	be	possible
:).	While	ICE	is	designed	to	be	user	friendly	(much,	much	more	user	friendly	than	if	you	had	to	edit
the	iscript.bin	manually,	which,	believe	it	or	not,	is	what	a	lot	of	people	did	until	now),	it	is	still
critical	to	understand	the	basic	structure	of	the	iscript.bin	before	learning	how	to	use	it.	It	will	make
it	a	lot	easier	to	understand,	and	help	you	diagnose	bugs	(with	your	scripts	and	with	ICE	itself).
With	that	said,	I	will	reluctantly	tell	you	that	you	probably	won't	have	to	worry	about	much	of	the
pointers	(goto	line	XXX,	etc.)	that	were	ranted	about	in	the	last	section.	Pointers	are	still	important
and	will	still	cause	many	crashes	if	they	aren't	handled	right,	but	ICE	tries	to	handle	them	for	you.
For	example,	you	normally	can't	just	insert	an	opcode	in	the	middle	of	some	animation	routine
because	it	will	throw	off	every	pointer	that	is	below	it.	However,	in	ICE	you	normally	can	just	insert
(add)	an	opcode	in	the	middle	of	a	script.	This	is	because	when	you	do	this,	ICE	will	automatically
move	the	script	you	are	editing	to	the	end	of	the	iscript,	and	adjust	the	appropriate	script	pointer	in
the	header	to	match.

File	Menu

Open	File	-	This	will	let	you	open	an	iscript.bin	file	for	editing.

Load	Default	-	This	will	load	the	default	iscript.bin	from	the	MPQ	for	editing	(it	will	not	edit	the
iscript.bin	that	is	in	the	MPQ	specifically,	it	will	just	extract	it	and	you	can	edit	it	as	a	new	file).

Load	from	CWAD	-	This	will	load	the	iscript.bin	from	inside	a	specific	CWAD	file.	Note	that	it	must
be	in	scripts\iscript.bin	in	your	CWAD.

Save	File	-	Self	explanatory.

Save	File	As	-	Self	explanatory.

Save	File	to	CWAD	-	This	will	import	the	current	iscript.bin	file	into	a	specific	CWAD	with	the	path
scripts\iscript.bin	(the	appropriate	one	for	use	by	SC).	This	will	save	you	the	trouble	of	opening	up
the	CWAD	Manager	all	the	time.

Create	CWAD	from	File	-	This	will	create	a	new	CWAD	with	your	iscript.bin	inside	(with	the	path
scripts\iscript.bin).

Main	Headers

This	tab	on	top	will	allow	you	to	select	which	animation	header	you	want	to	edit	(or	create	a	new
one	or	delete	one).	Recall	that	an	animation	header	is	the	set	of	line	offsets	which	determine
which	individual	animation	for	that	animation	set	is	located.	ICE	gives	"names"	for	the	headers
indicating	which	sprite	the	header	was	originally	associated	with.	Don't	let	the	names	confuse	you
though;	they	really	don't	mean	a	thing.	(You	can	associate	any	animation	header	with	any
images.dat	sprite)

The	drop-down	menu	will	allow	you	to	select	one	of	the	current	headers,	and	thus	load	the
header's	data	(pointers	and	animation	routines	into	the	editing	tabs	on	the	bottom).

Create	New	Header	-	This	will	allow	you	to	add	a	new	header	(set	of	animation	routines)	to	the
iscript.bin.

Script	Name:	This	will	make	ICE	associate	a	name	with	this	animation	header.	Its	just	for	helping
you	remember	what	this	header	is	for.	It	doesn't	effect	anything.

Offset:	This	will	tell	ICE	where	to	put	this	animation	header	in	the	iscript.bin	("line,"	or	offset).	By
default	ICE	will	add	the	header	to	the	end	so	it	won't	mess	up	any	pointers.	YOU	SHOULD	ONLY
PLACE	THE	HEADER	IN	ANOTHER	LOCATION	IF	YOU	KNOW	WHAT	YOU'RE	DOING.

ID	Tag:	This	is	the	Iscript	ID	number	that	is	associated	with	this	set	of	animations.	For	example,	if
you	want	a	certain	images.dat	entry	to	associate	with	this	animation	routine,	you	would	make	this
ID	Tag	and	the	Iscript	ID	variable	in	the	images.dat	the	same	number.	If	the	ID	number	you
choose	is	already	associated	with	an	images.dat	entry	(in	the	original	images.dat	in	the	MPQ),
then	ICE	will	allow	you	to	"Preview"	the	GRP	file	which	is	associated	with	that	images.dat	entry.

Type:	Each	set	of	animations	in	the	iscript	is	of	a	certain	"type."	The	type	of	header	determines
how	many	different	animations	there	are	in	the	set.	Most	"normal"	terran	and	protoss	man	sprite
(non-building)	have	type	12	or	13.	Most	zerg	man	sprites	have	type	26	(extra	animations	routine
needed	for	burrowing).	Most	buildings	have	20	(zerg)	or	26	or	27	(terran,	protoss;	need	more
animation	for	lift	off	and	"building	is	working"	animations).	Most	"overlay"	type	sprites	(sprites	that
aren't	used	for	units	but	just	played	in	conjunction	on	top	of	or	below	to	other	sprites	have	type	0
or	1	(they	only	need	an	initial	initial	and	death	animations).	If	you're	not	sure	what	type	to	use,	just
go	with	the	largest	number	of	animations.	Which	animation	is	which	doesn't	change	between
types	(e.g.,	the	initial	animation	will	always	be	the	first	animation	listed	in	type	0,	13,	or	27),	but
you	don't	always	need	all	of	them.

Delete	Header	-	Self	explanatory.

Rename	Header	-	Self	explanatory.

GRP	Preview	and	WAV	Preview

These	are	peripheral	tabs	that	are	designed	to	help	you	edit	the	iscript	by	allowing	you	to	preview
unit	graphics	and	sounds,	but	have	absolutely	nothing	to	do	with	the	actual	iscript	you	are	editing.
In	other	words,	you	could	ignore	them	if	you	wanted	and	there	wouldn't	be	any	difference,	and
messing	with	them	doesn't	effect	your	iscript.	The	GRP	Preview	tab	will	allow	you	to	preview	the
GRP	which	is	originally	associated	with	this	animation	set	(in	the	Main	GRP	window).	How	it	does
this	is	ICE	looks	up	what	original	images.dat	entry	is	currently	associated	with	this	animation
header's	ID	tag	and	then	looks	up	what	GRP	is	associated	with	that	images.dat	entry.	Keep	in
mind	that	no	GRP	is	actually	directly	associated	with	the	animation	set,	it	is	only	indirectly
connected	by	association	with	the	images.dat	entry	which	contains	a	pointer	to	this	iscript	routine.
The	Secondary	GRP	window	allows	you	to	preview	another	GRP	(associated	with	a	certain
images.dat	entry,	or	a	certain	sprites.dat	entry	--	which	is	really	just	a	sprites.dat	entry	pointing	to
an	images.dat	entry	which	then	points	to	a	GRP).	The	purpose	of	this	is	to	allow	you	to	preview
overlay	or	underlay	graphics	that	are	played	by	the	iscript	on	the	current	main	sprite.	This	is	done

by	double	clicking	on	certain	opcodes	which	will	be	explained	further	later.	The	buttons	between
the	two	windows	allow	you	to	choose	a	specific	GRP	to	preview	in	the	Secondary	GRP	window.
You	just	enter	the	number	of	the	images.dat	or	sprites.dat	entry,	check	the	appropriate	radio
button,	and	click	preview.	ICE	will	show	the	GRP	originally	associated	with	that	entry.

The	WAV	Preview	is	similar.	While	there	are	no	"default"	sounds	associated	with	sprites,	iscript
animation	routines	are	allowed	to	play	sounds	(i.e.,	the	clash	of	psi	blades	when	the	zealot	sprite
attacks).	When	you	double	click	on	certain	opcodes	which	play	sounds	(by	association	with	an
sound	entry	in	sfxdata.dat),	ICE	will	put	the	associated	sound	in	this	window.	You	can	double	click
on	it	or	press	"Play	WAV"	to	preview	the	actual	sound.	You	can	add	more	WAVs	to	the	preview	list
by	inputing	an	entry	number	from	sfxdata.dat	(the	sounds	data	file,	each	entry	points	to	a	certain
sound,	listed	in	sfxdata.tbl	--	we'll	get	to	this	later,	but	its	not	that	complicated).	ICE	will	add	the
associated	wav	file	to	the	list	for	previewing.	Similarly	you	can	remove	wavs	from	this	list	with	the
"Remove	WAV"	button.

Reference:	ICE	Part	II

Now	that	we've	learned	how	to	navigate	around	the	basics	of	ICE,	its	time	to	start	modifying	some
headers	and	actual	animation	routines.	First,	you	need	to	select	or	create	a	new	header	to	edit.

Header	Info

There's	not	much	to	edit	here.	This	is	just	basic	info	that	associates	the	header	with	an	ID	number
(so	images.dat	can	use	it).

ID	Tag:	This	is	the	Iscript	ID	tag	associated	with	this	header.	If	you	didn't	read	the	description	I
gave	with	the	"Create	New	Header"	section,	here	it	is	again:	This	is	the	Iscript	ID	number	that	is
associated	with	this	set	of	animations.	For	example,	if	you	want	a	certain	images.dat	entry	to
associate	with	this	animation	routine,	you	would	make	this	ID	Tag	and	the	Iscript	ID	variable	in	the
images.dat	the	same	number.

Offset:	This	determines	the	line	offset	where	the	header	is	actually	located	in	the	iscript	(the
header	is	the	list	of	pointers	to	the	actual	animation	routines).	You	should	not	mess	with	it	unless
you	know	what	you're	doing.

Entry	Header

This	is	the	actual	header	of	the	animation	set.	If	you	recall,	the	header	is	basically	a	list	of	pointers
to	the	location	of	each	individual	animation	routine	in	this	set.	In	general,	I	advise	against	editing
any	of	these	pointers	unless	you	are	very	sure	of	what	you	are	doing.	The	reason	you	don't	have
to	edit	locations	to	routines	manually	through	this	section	is	because	ICE	will	do	it	automatically
for	you	when	you	create/modify	the	actual	animation	routines	(next	section).	You	don't	want	to
accidentally	make	a	pointer	to	the	middle	of	nowhere	(that	will	crash	SC	:),	so	its	best	to	let	ICE
handle	it.

You	can	change	the	"Type"	of	header	this	is.	If	you	didn't	read	the	description	of	set	types	before,
here	it	is	again:	The	type	of	header	determines	how	many	different	animations	there	are	in	the	set.

Most	"normal"	terran	and	protoss	man	sprite	(non-building)	have	type	12	or	13.	Most	zerg	man
sprites	have	type	26	(extra	animations	routine	needed	for	burrowing).	Most	buildings	have	20
(zerg)	or	26	or	27	(terran,	protoss;	need	more	animation	for	lift	off	and	"building	is	working"
animations).	Most	"overlay"	type	sprites	(sprites	that	aren't	used	for	units	but	just	played	in
conjunction	on	top	of	or	below	to	other	sprites	have	type	0	or	1	(they	only	need	an	initial	initial	and
death	animations).	If	you're	not	sure	what	type	to	use,	just	go	with	the	largest	number	of
animations.	Which	animation	is	which	doesn't	change	between	types	(e.g.,	the	initial	animation
will	always	be	the	first	animation	listed	in	type	0,	13,	or	27),	but	you	don't	always	need	all	of	them.

Animation	Scripts

Here's	where	the	heart	of	the	iscript	lies.	Each	entry	in	the	drop-down	menu	will	bring	you	to	the
actual	opcodes	of	an	animation	routine,	and	allow	you	to	edit	that	animation	(for	the	current
header	set).

Animation	[drop-down	menu]:	Select	the	animation	routine	of	this	set	that	you	wish	to	edit.	The
opcodes	will	appear	in	the	black	box	below.	Here	is	a	brief	description	of	what	each	animation	is
for:

Initial	animation	-	This	is	the	animation	that	plays	when	the	sprite	is	spawned	or	created.	Normally,
this	animation	also	spawns	any	active	overlay/underlay	graphics	for	the	main	sprite	(e.g.,	a
shadow	sprite	or	a	turret).	Also,	in	many	cases,	the	code	for	this	animation	contains	the	code	for
the	normal	"idle	animation"	of	the	sprite	(if	it's	a	unit).	This	is	because	right	after	a	unit	is	spawned,
it	goes	into	its	idle	state.	However,	do	not	mistake	this	entire	animation	for	the	idle	stance,
because	it	is	not.	What	usually	happens	is	that	at	the	end	of	this	routine,	there	will	be	a	goto
opcode	that	points	to	a	line	in	the	middle	of	this	routine	(the	beginning	part	will	usually	spawn	a
shadow,	so	it	will	simply	loop	back	to	the	part	after	the	opcode	which	spawned	the	shadow,	since
it	doesn't	need	to	do	that	more	than	once).

Death	Animation	-	This	is	the	animation	that	is	played	when	the	sprite	is	destroyed	(e.g.,	when	the
unit	using	this	sprite	is	killed).	Usually	this	will	end	with	a	"End	animation,	remove	graphic"
opcode,	signaling	that	the	sprite	should	be	removed	(otherwise	it	will	linger	on	the	battle	field
forever,	though	just	as	a	graphic).

Initial	Ground	Attack	Animation	-	This	is	the	animation	to	play	for	this	sprite	when	the	unit	it	is
associated	with	begins	to	attack	a	ground	unit.

Initial	Air	Attack	Animation	-	This	is	the	animation	to	play	for	this	sprite	when	the	unit	it	is
associated	with	begins	to	attack	an	air	unit.

Special	Ability	Animation	1?	-	Unknown.

Repeated	Ground	Attack	Animation	-	This	is	the	animation	that	plays	for	a	sprite	when	it	continues
to	attack	a	ground	unit.	(I.E.,	when	it	begins	to	attack	it	will	play	the	initial	attack	animation,	but	if
the	target	is	not	dead	yet,	then	it	will	continue	attacking	with	this	animation)

Repeated	Air	Attack	Animation	-	This	is	the	animation	that	plays	for	a	sprite	when	it	continues	to
attack	an	air	unit.	(I.E.,	when	it	begins	to	attack	it	will	play	the	initial	attack	animation,	but	if	the

target	is	not	dead	yet,	then	it	will	continue	attacking	with	this	animation)

Special	Ability	Animation	2?	-	This	is	the	normal	"cast	spell"	animation.	E.G.,	the	one	to	play	when
a	High	Templar	casts	Psi	Storm	or	a	Ghost	casts	Lock	Down.	Some	spells	do	not	require	an
animation	and	some	"special"	spells	use	a	different	one	(but	most	use	this	one).

Return	to	Idle	from	Ground	Attack	-	This	is	the	animation	that	plays	when	a	sprite	is	finished
attacking	its	ground	target	(usually	just	a	pointer	back	to	the	middle	of	the	initial	animation,	where
the	idle	stance	starts).

Return	to	Idle	from	Air	Attack	-	This	is	the	animation	that	plays	when	a	sprite	is	finished	attacking
its	air	target	(usually	just	a	pointer	back	to	the	middle	of	the	initial	animation,	where	the	idle	stance
starts).

Special	Ability	Animation	3?	-	Unknown.

Walking	Animation	-	This	is	the	animation	to	play	when	the	unit	this	sprite	is	associated	with
moves	from	one	point	to	another.	Note	that	if	you	have	the	flingy.dat	Move	Control	setting	set	to
Flingy	Control	(as	opposed	to	iscript	control)	then	any	"move	graphic	XX	units	forward"	opcodes	in
this	animation	will	be	ignored,	though	the	rest	of	this	animation	will	still	play	as	the	unit	moves	(but
speed	will	be	controlled	by	flingy.dat).	If	you	have	the	Move	Control	set	to	iscript	control	then	it	will
ignore	speed	settings	in	flingy.dat	and	use	the	"move	graphic	XX	units	forward"	opcodes	in	this
animation.

Return	to	Idle	from	Walking	-	This	is	the	animation	that	plays	when	a	sprite	is	finished	walking
(flying,	gliding,	or	whatever)	to	its	destination	(usually	just	a	pointer	back	to	the	middle	of	the	initial
animation,	where	the	idle	stance	starts).

Other	Animation?	or	Generic	Animation?	-	Sort	of	Unknown.	This	is	usually	the	"special"
animation	that	is	associated	with	very	specific	unit	actions	(it	varies	depending	on	what	unit	this
sprite	is	associated	with).	For	example,	this	is	used	for	"suicide"	attacks	(like	for	the	infested
terran	and	scourge	sprites).

The	remaining	animation	routines	are	kind	of	unknown,	but	here's	what	I've	picked	up	about	some
of	them:

Unknown	1	-	Is	burrowed/in	"other"	state	animation.	(e.g.,	initialize	burrowed	units'	animations	if
placed	as	burrowed	in	staredit	since	they	never	got	to	start	burrowing	in	the	first	place)

Unknown	2	-	Construction	Animation	(buildings,	during	construction);	Mining	Animation	(Peons,
when	harvesting	minerals).

Unknown	3	-	"Building	is	working"	(training	unit,	researching	upgrade,	etc.)	Animation.

Unknown	4	-	Landing	Animation	(for	terran	intransit	buildings).

Unknown	5	-	Lift	off	Animation	(for	terran	intransit	buildings).

Unknown	12	-	Burrowing	Animation.

Unknown	13	-	Unburrowing	Animation.

(Note	that	this	tutorial	may	be	older	than	the	current	version	of	ICE	and	some	of	these	Unknowns
may	already	be	labeled,	or	shifted	around)

Animation	Opcodes	[the	black	box	=]:	When	you	select	an	animation	routine	to	edit,	its	opcodes
will	show	up	in	this	box.	Recall	that	an	animation	routine	is	just	a	list	of	commands	or	"opcodes"
that	tell	a	sprite	what	to	do	(what	frames	to	play,	when	to	play	a	sound,	when	to	wait,	etc.).

You	MUST	end	all	animation	routines	with	either	a	"Go	to	Offset	XXXX"	opcode	or	a	"End
animation,	remove	graphic"	opcode	(the	latter	usually	only	for	death	animations,	but	can	be	used
elsewhere).	ICE	will	warn	you	if	you	try	to	mess	up	otherwise.	Some	routines	will	say	"No
Animation	Data"	meaning	there	is	no	routine	there	yet.	You	can	create	a	routine	there	by	adding
new	opcodes	using	the	commands	at	the	bottom.

The	trickiest	part	about	writing	animation	routines	has	to	be	getting	the	"Go	to	Offset	XXXX"
pointing	to	the	correct	locations.	Since	the	XXXX	is	just	an	offset	number	with	no	other	indication
of	where	it	relates,	it	can	be	pretty	confusing.	Usually,	you	want	this	to	lead	to	some	other	location
in	the	current	header	set	(e.g.,	after	an	attack	animation,	you	probably	want	it	to	loop	back	to	the
begging	so	it	can	attack	again,	or	after	the	initial	animation	animation	finishes,	you	probably	want
it	to	loop	back	to	the	start	of	the	"idle"	stance	part).	The	easiest	way	to	do	this	is	to	go	to	the	actual
opcode	you	want	it	to	loop	to	first	(find	it	in	the	animation	routines	and	select	that	line).	ICE	will
display	the	offset	to	that	opcode	in	the	lower	right	hand	corner	as	"Op	Offset."	Remember	that
number	and	then	go	back	to	your	original	Go	to	Offset	opcode	you	were	editing	and	paste	that
number	there.	If	you're	unsure	of	where	to	go	to,	a	normally	safe	bet	(if	you	are	using	the	original
iscript)	is	to	go	to	offset	31162.	At	that	location	is	a	script	that	does	nothing	but	loops	itself,	so
you're	sprite	will	just	halt.

To	change	the	values	of	an	opcode	(the	numbers),	just	highlight	them	(they	should	turn	green).
Drag	your	cursor	over	them	and	input	your	new	value	and	press	enter.	Here's	a	brief	description
of	what	all	the	buttons	on	the	bottom	do:

New	-	Insert	a	new	opcode	on	top	of	the	currently	selected	one.	It	will	bring	up	a	list	of	opcodes	to
choose	from.	Remember	that	you	don't	have	to	worry	about	throwing	off	pointers	by	inserting
opcodes	in	ICE	because	when	you	add	an	opcode,	ICE	will	automatically	move	your	script	to	the
end	of	the	iscript	file.	(You	can	verify	this	by	looking	at	the	Script	Offset	number	in	the	bottom	right
hand	corner	and	see	that	it	changes	when	you	add	an	opcode)

Delete	-	Delete	the	currently	selected	opcode.

Copy	-	Copy	the	currently	selected	opcode.

Cut	-	"Cut	out"	the	currently	selected	opcode.	(Same	as	Copy	and	then	Delete)

Paste	-	Paste	the	opcode	last	copied	or	cut	on	top	of	the	currently	selected	one.

Hex	-	View	a	hex	dump	of	the	current	animation	routine.	Ignore	this	unless	you're	researching
opcodes	like	me.	:)

Up	-	Move	the	currently	selected	opcode	up.

Down	-	Move	the	currently	selected	opcode	down.

Jump	-	If	the	currently	selected	opcode	is	a	"Go	to	Offset	XXXX"	opcode,	then	jump	to	offset
XXXX	(and	display	those	opcodes	in	the	black	box	for	editing).

Back	-	Move	back	to	an	animation	routine	if	you	jumped	to	XXXX	(with	the	previous	option).	You
can	jump	and	go	back	multiple	steps.

Goto	Offset	-	Goto	an	arbitrary	offset	you	specify	and	display	the	opcodes	at	that	location	for
editing.	Usually	only	useful	if	you	know	where	a	certain	animation	routine	starts	so	you	can	enter
it.	(You	don't	want	to	go	to	the	middle	of	no	where)

And	that's	basically	it.	Now	you	know	how	to	edit	animation	routines.	Though	you're	probably	still
wondering	specifically	what	some	of	those	opcodes	do.	:)	Here's	some	brief	descriptions	and
examples:	Iscript	Opcodes.

Now	wasn't	that	fun?	We're	almost	done	with	all	the	animation	stuff.	One	more	section	to	go

Basic	ICE	Tutorial	written	by	ChauSara

ICE	is	what	makes	up	attack	animations.	If	you	downloaded	the	Doom	Dragoon
mod	at	the	top,	you	will	see	that	the	Dragoon	shoots	multiple	cannons.	This	is
done	with	ICE,	and	you	will	learn	how	to	do	this	in	this	tutorial.	(NOTE:	This
was	made	by	BSTRhino)

You	will	need:	Arsenal	III	or	Datedit,	ICE,	WinMPQ,	MPQDraft	(the	MPQ
Compactor	is	optional.)	You	can	download	all	these	programs	from
www.starcraft.org

So,	first	thing	to	do	is	open	up	ICE.	Now,	you	want	to	start	a	new	file,	so	go	to
'File	>	Load	Default.'	This	will	load	StarCraft's	real	iscript.bin	-	the	one	that
hasn't	been	modified	yet.

In	the	drop	down	menu	in	the	top	half,	select	Protoss	Dragoon	(you	can	type	it	in
to	make	the	searching	faster.)

ICE	is	split	into	two	halves.	The	top	half	is	where	you	select	things	and	preview
things.	The	bottom	half	is	where	you	edit	their	code.

Now,	just	for	fun,	go	to	the	top	half	and	click	on	the	second	tab	(I	can't
remember	what	it's	called.)	Now	you	can	see	your	Dragoon	in	action.	You	can
even	pull	on	the	scrollbar	under	it	to	see	all	the	frames	it	has.

Okay,	back	to	business.	Select	the	third	tab	down	the	bottom	(I	can't	remember
what	that	was	called	either.)	Now,	in	the	bottom	half	there	will	be	a	drop-down
list	thing.	Since	you've	just	opened	the	Dragoon,	it	will	say	'Initial	Animation.'
Go	down	that	list	and	select	'Initial	Ground	Attack.'

Just	below	that	drop-down	list	containing	animations	will	be	a	list	of	all	the
code.	It's	quite	self-explanatory	if	you	ask	me.	Somewhere	there,	will	be	a	'attack
with	1'	line.	Copy	that.	Then	paste	that	same	line	one	on	top	of	the	other	so	you
get	a	five	lines	saying	'attack	with	1.'	ICE	has	a	bug,	when	you	click	paste	for	the
first	time,	it	will	do	nothing,	so	keep	clicking	paste	until	you	get	five	of	those
lines.

Now,	that's	not	all.	You've	changed	the	ground	animation,	but	because	of	the

way	ICE	works,	the	air	animation	remains	the	same.	(That	doesn't	happen	in
IceCC.)	What	you	have	to	do	is	go	to	the	second	tab	in	the	bottom	half.
Somewhere	there	it	will	say	'Initial	Ground	Attack	Animation'	with	a	box	with
some	number	(Thirty	thousand	something)	next	to	it.	Copy	that.	Paste	that	in	the
'Initial	Air	Attack	Animation'	box.

Next,	do	the	same	thing	to	repeated	ground	and	air	attacks	so	it	does	it	always.

That's	the	first	part.	Now	the	dragoon	will	shoot	five	bullets	every	time	it	attacks,
no	matter	ground	or	air.

Save	your	iscript	file	to	scripts\iscript.bin

The	next	bit	you	should	already	know	how	to	do.	If	you	don't,	then	you	shouldn't
be	reading	this	tutorial	and	go	learn	some	basics	about	modding.

Go	into	the	weapons	editor	and	change	the	dragoon's	weapon	(phase	disruptor)
so	its	movement	type	says	'Halo	(spin.)'	Just	like	the	valkyrie	rockets,	the
dragoon's	weapon	will	scatter.

Not	quite	finished	yet.	Finally,	give	the	phase	disruptor	splash	damage.	In	the
'explosion	type'	box,	select	'line	splash'	and	then	in	the	inner,	middle	and	outer
boxes,	type	in	32,	32,	and	32.	If	you	want	to	know	what	those	numbers	mean,
that's	another	tutorial.

So	then	all	you	need	to	do	is	save	your	arr\weapons.dat	file,	make	the	patch,	and
you're	all	set.

I	will	be	updating	with	more	tutorials	soon.	Tell	me	how	you	thought	this	was!

*Friends	must	have	the	same	mod.

1.	basic	knowhow	for	before	the	beginning	first	,	running	Ice	and	start
load	custom	isript.bin	files	or	load	Default	file	on	File	menus	of	Ice
then	u	can	start	scripting	now~!

select	unit	in	Header	taps	or	typing	units	id	number	what	u	want	change	thing
and	click	to	search	by	header	btn	
then	u	can	see	unit	images	in	GRP	prieview	Tap

u	can	see	each	offset	numbers	of	headers	in	Entry	Header	tap	that	number	is
what	header	used	that	scripts	contents
so	if	u	change	offset	number	then	that	header	action's	scripts	will	change	to	that
numbers	script	

2.	way	to	change	and	goto	offset	
ok,	i	will	explain	to	an	example	is	"Terran	marines"	in	this	section	

goto	"Animation	Scripts"	tap	and	are	there	many	animaitons	headers
that	animations	exist	each	offset	numbers	
u	can	see	find	that	numbers	on	"script	offset"	line	that	position	of	layout	is	lower
of	right	side

ok	first	,	choose	"Initial	Animation"	in	Animations	drop	down	list
and	then	showed	operation	code	sripts	in	center	contents	box	
each	code	line	has	own	offset	number	too	like	animation	headers	can	find	that
number	on	"op	Offset:"	line

let's	see	the	"	Terran	marine's	Initial	Animation"	

CODE
place	active	underlay	[images.dat]	240	at	vertical	offset	0
play	frame	68
wait	either	63	or	75	ticks	[random]
using	randomizer	value[?]	25	,	jump	to	offset	28964
using	randomizer	value[?]	128	,	jump	to	offset	28942
Go	to	offset	28928

u	can	find	three	offset	codes	in	here	that	offset	codes	deferent	operation	to
eachother	but	both	action	will	be	goto	other	offset	

check	offset	codes	in	scripts	contents
"jump	to	offset	28964"	->	this	will	go	to	other	animations	at	randomly	,	ramdom
time	is	values	number	->	"value[?]	25	"

and	if	u	want	find	that	offset	number	where	are	going	?	

typing	that	number	"28964"	in	"Goto	offset"	input	box	and	click	"goto"	btn
then	u	can	see	changed	srcipt	contents	and	find	changed	number	"28964"	on
"scripts	offset"	line
that	mean	is	srcipt	offset	goto	one	after	the	other	codes	must	exist	where	are
going	next	offset	code	or	finishing	operation	codes

let's	see	other	offset	codes	at	last	line
"Go	to	offset	28928"	->	this	code	mean	is	where	are	going	next	animation	when
this	script	action	finished	

and	u	can	go	that	offset	directly,	select	that	code	line	and	just	double	click
then	u	can	jump	to	that	offset	
"Go	to	offset"	operation	always	can	jump	by	that	ways	

if	u	want	change	jump	offset	?	then	select	offset	number	area	and	click	one	time,
then	number	color	be	changes	other	color	and	u	can	edit	that	number

Remember,	offset	number	is	linked	animations	contents	so	u	may	write	number
without	error	in	animation	(this	mean	is	that	unit	must	be	can	running	all
operation	codes	with	changed	offset)

see	"Go	to	offset	28928"	again,
and	double	click	that	line	and	jump	to	that	offset
then	scripts	change	showed	that	deleted	upper	codes	some	lines	as	compared
with	Initial	Animation

that	is	"Other"	header	in	IceCC	(when	unit	has	not	doing	anything	action	for	a
while)

if	u	want	change	that	scripts	codes	then	u	edit	codes	ur	self	firsthand
or	otherway	is	goto	"Entry	Header"	tap	and	change	Initial	Animation	
section's	number	as	other	unit's	"Initial	Animation"	offset	number	such	as	zealots

etc...

the	way	is	click	[...]	like	this	button	and	popup	"Set	Animation	windows"	
select	units	header	as	u	want	things	and	select	that's	animations	too	,	click	to	[ok]
button	then	"Initial	Animation"	offset	number
be	changed	and	u	can	see	changed	operations	codes	in	srcipts	contents	box	of
Animation	Scripts	Taps	

Remember	again,	u	may	write	offset	number	without	error	,	this	is	very
important	about	crash	game
if	changed	operation	code	be	can	not	running	for	Terran	Marines	(such	as
"unable	play	frames	number"	or	written	wrong	id	numbers)

3.	randomizing	functions	in	scripts	
this	section	is	about	how	can	add	new	operation	codes

goto	Animation	Scripts	tap
and	u	can	see	a	lot	of	buttons,	input	box	and	contents	area	form

1	.	Animation	[...]	(dropdown	list)
this	is	showed	about	unit	what	has	animation	headers	

recorded	animations	is	linked	to	situation	of	"Entry	Header"	setting	
if	each	Entry	Header	item	be	registered	then	showed	that	animations	in
Animation	dropdown	list	

2.	scripts	contents	form	box
this	box	is	showed	what	header	written	a	operation	codes
and	u	can	edit	the	value	each	opcodes	,	copy	paste	and	delete	code	too

3.command	buttons	
there	are	many	command	buttons	,	this	buttton	will	creat	new	code	and
command	other	operation

buttons

[New]	-	>	this	is	write	new	operation	code	in	Scripts	lines

click	that	and	popup	"New	Opcode"	windows	and	select	opcodes	as	u	wanna
write	things	and	click	to	[ok]	then	created	line	and	new	code	in	Scripts	contents
form	

[copy]	->	copy	to	selected	line	codes	

[paste]	->	paste	codes	(there	are	some	bug	in	ice	u	may	click	twowise	at	first
time)

[up]	->	selected	codes	is	move	up	one	line

[jump]	->	scripts	header	jump	to	selected	offset	codes	

[Delete]	->	Delete	code	line

[Cut]	->	same	to	Del

[Hex]	->	Hex	edit	

[Down]	->	selected	codes	is	move	down	one	line

[Back]	->	go	to	offset	ago

4.Offset	search	area
in	lower	of	right	side	,	u	can	see	search	offset	area	

Goto	Offset	[]	[Goto]	->	this	is	search	offset	written	numbers
Script	Offset	:	->	this	is	showed	current	Animation	header's	offset	number
Op	Offset	:	this	is	showed	current	operation	code's	offset	number

Detail	of	[New]	button	jump	to	popup	"New	Opcode"	windows	

if	u	want	write	new	operation	code	like	"play	frame	17"	then	u	may	click	[New]
btn
and	choose	that	opcode	in	opcoed	drop-down	list	and	change	frame	number
value

All	operation	codes	are	be	writed	like	that	ways	

i	can't	explain	now	about	each	opcodes	because	u	can	find	and	search	out	that
opcodes	meaning	with	original	scripts	of	other	units	

ok,	this	tutorial	is	not	rub	a	person	the	right	way	and	my	english	not	good	i	know
that	plz	understand	me	~!	

anyway	i	hope	this	tut	help	to	beginner	Ice

Changing	Unit	Speeds	In	ICE	written	by	Stwong	from	Staredit
Network

What	this	example/tutorial	intends	to	do	is	make	the	Protoss	Dragoon	move	four	times	as	fast,	teaching	the
subject	how	frames	work,	what	is	possible	speed-wise	in	ICE,	and	how	to	do	most	of	the	animation	editing
with	a	little	bit	of	experimentation.

1.	Open	your	favorite	MPQ	viewer,	and	extract	ISCRIPT.BIN	from	a	copy	of	>patch_rt.mpq	(can	be	found
in	your	Starcraft	directory).	Do	not	load	the	default	one	from	ICE,	since	it	is	outdated	and	does	not	contain
all	of	the	updates	Blizzard	has	made	over	the	years.

Notes:
*	Never	use	originals	when	modding.	Originals	are	bad.	Make	copies,	then	mod	them.

2.	Pop	open	the	extracted	ISCRIPT.BIN	in	ICE.
3.	Since	we	are	using	the	Protoss	Dragoon	as	our	example,	click	on	the	Main	Headers	tab	on	the	top	tablist,
and	find	Protoss	Dragoon	in	the	combo	box	labeled	Header.
4.	The	Protoss	Dragoon	is	now	open	for	editing...	we	will	want	to	edit	his	animation	script	to	change	either
the	delay	between	taking	steps	or	the	scale	of	the	steps	he	takes.	On	the	bottom	tablist,	hit	Animation
Scripts	to	open	the	script	editor.
5.	Since	speed	is	located	in	the	walking	animation,	click	Walking	Animation	under	the	combo	box	labeled
Animation.
6.	In	the	black	box	below	the	combo	box,	you	should	see	something	to	the	effect	of:	<insert	picture	of
default	dragoon	walking	animation>	If	this	is	not	seen,	turn	back	now	and	recheck	your	steps.
7.	Since	the	dragoon	moves	every	time	his	frame	changes,	it	will	be	useless	to	remove	the	delays,	except	to
remove	the	animation	and	make	him	appear	to	hover.	(This	will	NOT,	however,	render	the	speed
uneditable.)	We	instead	will	change	the	scale	of	the	steps	he	takes,	by	changing	the	"Move	graphic	x	units
forward"	instruction	to	an	increased	or	decreased	speed.	To	make	the	changes	VERY	obvious,	we	will	make
the	dragoon	move	four	times	as	fast.	With	that	speed,	he	will	clear	the	map	in	a	few	bounds.
*	By	frames,	we	mean	graphic	changes.	Units	whose	graphics	do	not	change,	yet	still	move,	use	Animation
ID	31162	for	movement,	with	an	introduction	of	listing	a	bit	off	of	the	floor.	A	frame	change	instruction	is
symbolized	by	a	"Play	frame	x"	instruction,	and	this	instruction	is	directly	linked	to	the	frames	in	the	GRP.
You	can	use	the	GRP	viewer	to	see	what	a	frame	is	ahead	of	time.	Aside	from	death	frames,	all	frames	have
a	full	hemisphere	of	movement,	and	rotate	all	the	way	around	on	the	right	side,	meaning	that	you	only	have
to	select	the	beginning	of	the	set	of	frames,	instead	of	writing	instructions	for	each	direction	that	the	unit	is
facing.
8.	To	change	the	value	of	x	in	the	instruction,	simply	click	the	text,	delete	the	current	value,	enter	your	new
value,	and	hit	enter.	If	you	wish	to	cancel,	click	somewhere	else,	deselecting	it.	Note	that	pressing	enter	is
the	only	way	to	save	changes	to	instruction	values.	Multiply	each	"Move	graphic	x	units	forward"
instruction	by	4.
9.	Save	your	changes,	by	hitting	File>Save	File.
10.	Create	a	a	new	MPQ	called	MOD.MPQ	or	a	similar	name	and	save	the	modified	ISCRIPT.BIN	into	it,
under	the	SCRIPTS\	path.	Use	MPQDraft	to	use	this	modified	PATCH_RT.MPQ,	build	a	dragoon	in	a	lang
map,	and	watch	it	run	like...	well...	a	really	fast	dragoon.

Changing	Unit	Heights	In	ICE		written	by	Stwong	from	Staredit
Network

What	this	example/tutorial	intends	to	do	is	make	the	Protoss	Probe	move	four	times	as	fast,	teaching	the
subject	how	frames	work,	what	is	possible	height-wise	in	ICE,	and	how	to	do	most	of	the	animation	editing
with	a	little	bit	of	experimentation.

1.	Open	your	favorite	MPQ	viewer,	and	extract	iscript.bin	from	a	copy	of	patch_rt.mpq	(copied	from	your
Starcraft	directory).	Do	not	load	the	default	one	from	ICE,	since	it	is	outdated	and	will	remove	replay
functionality.

Notes:
*	Never	use	originals	when	modding.	Originals	are	bad.	Make	copies,	then	mod	them.
*	A	method	I've	used	to	overcome	the	fact	that	Arsenal	III	files	are	outdated	is	by	patching	the	files	in
Arsenal	III's	directory	manually.	Beware,	though,	that	if	you	fail	to	do	this	properly,	you	may	need	to
reinstall	Arsenal	III	to	get	it	working	again.

2.	Pop	open	the	extracted	iscript.bin	in	ICE.
3.	Since	we	are	using	the	Protoss	Probe	as	our	example,	click	on	the	Main	Headers	tab	on	the	top	tablist,
and	find	Protoss	Probe	in	the	combo	box	labeled	Header.
4.	The	Protoss	Probe	is	now	open	for	editing...	we	will	want	to	edit	his	animation	script	to	change	the	height
at	which	it	animates.	On	the	bottom	tablist,	hit	Animation	Scripts	to	open	the	script	editor.
5.	Since	we	can	place	height	anywhere,	click	Initial	Animation	under	the	combo	box	labeled	Animation.
6.	In	the	black	box	below	the	combo	box,	you	should	see	something	to	the	effect	of:	<insert	picture	of
default	probe	initial	animation>	If	this	is	not	seen,	turn	back	now	and	recheck	your	steps.
7.	Click	the	New	button	below	the	animation	editor.
8.	Select	Opcode	Shift	graphics	position	%1	vertical	units.
9.	Select	that	opcode,	and	shift	it	down.	Click	the	0	and	set	it	to	-20.	This	will	shift	it	*UP*	20	units.	(It
works	in	reverse,	negative	is	up,	positive	is	down.)
10.	Save	your	changes,	by	hitting	File>Save	File.
11.	Create	a	a	new	MPQ	called	MOD.MPQ	or	a	similar	name	and	save	the	modified	iscript.bin	into	it,
under	the	scripts\	path.	Use	MPQDraft	to	use	this	modified	patch_rt.mpq,	build	a	dragoon	in	a	lang	map,
and	watch	it	run	like...	well...	a	really	fast	dragoon.

If	you	have	questions,	visit	us	on	the	forums,	in	the	chat	rooms,	or	e-mail	me.	This	tutorial	has	been	tested
with	Starcraft:	Brood	War	1.09b.

Shot	missiles	sereval	times	like	Terran	Valkiry	written	by	NJ

first	off,	select	"Initial	Ground	Attack	Animation"	in	Animation	at	Animations	Scripts
"Initial	Ground	Attack	Animation"	is	first	Attack	order
To	copy	that	line,	select	line	and	press	[Copy]	btn	and	press	[Paste]	btn	2wise	at	first	time
then	now	you	will	see	pasted	another	line	same	as	first	one
and	set	weapon	behavior	target	(1	is	ground,	2	is	Air)

Paste	again	as	you	pleases	times	In	the	Same	way
but	you	may	need	to	use	"Wait	ticks"	and	"Play	frame"	to	Animated	naturally
	
And	write	Script	to	other	related	to	Attack	Animations	
the	writing	target	are	these
"Air	Attack	animation"
"Repeat	Ground	Attack	Animation"
"Repeat	Air"

And	save	iscript.bin	and	Enjoy~!

Cast	Spell	Sererval	times

For	Example	is	BattleCruser	
Select	"Special	Ability	Animation"	in	Aniamiton	Scripts
first	time	for	select	there	are	2	different	orders	from	other	lines
delete	their	2	weird	lines,	and	add	these	blowed	order	
"	wait	1	ticks	"
"	cast	spell	"
copy	and	paste	2	lines	as	you	pleases	times
that	mean	is	that	will	be	Cast	BattleCruse's	Speical
Ability(default:YamatoGun)	by	use	mana	at	once

Append	Graphics	and	Sprite	to	unit/weapns

Example	:	Add	Defensive	Matrix	Sprite	on	Zealot
1.Select	"Protoss	Zealot"	in	Header	of	Main	header
2.Go	to	GRP	Preview	Tab
3.Select	"Initial	Animation"	in	Animation	Scripts	(Tip:"Initial	Animation"	is	Unit's	Basic	pose)
4.Press	[New...]	and	appears	New	Opcode
5.Select	"Place	active	overlay	image"
6	and	type	"317"	in	images.dat	value	(No#	317	is	Defensive	Matrix	image.dat	number)
7.As	same	ways,	add	"Place	active	underlay	image.."	value	is	"374

Save	iscript.bin	file	and	Enjoy	it~!

	Introduction of Ice XP
	Screenshot

