
Error	Macros	for	IVI
The	ivi.h	header	file	contains	macros	that	you	can	use	in	your	source
code	to	facilitate	error	handling.	These	macros	require	that	you	have	the
following	declaration	at	the	top	of	the	function	in	which	the	macro
appears:
ViStatus	error	=	VI_SUCCESS;
The	macros	also	require	that	you	have	the	following	label	near	the	end	of
the	function:
Error:
Some	of	these	macros	require	access	to	a	ViSession	variable	named	vi,
which	they	pass	to	Ivi_SetErrorInfo	in	certain	cases.	The	names	of	these
macros	all	begin	with	viCheck.
Normally,	you	use	the	macros	around	function	calls,	but	you	can	also	use
them	around	variables	or	expressions.
The	following	describes	the	behavior	of	each	macro.

checkAlloc(pointer)
If	pointer	is	VI_NULL,	assign	VI_ERROR_ALLOC	to	the	error	variable
and	jump	to	the	Error	label.

checkErr(status)
Assign	status	to	the	error	variable.	If	status	is	positive,	coerce	the	error
variable	to	zero.	If	status	is	negative,	jump	to	the	Error	label.

checkWarn(status)

Assign	status	to	the	error	variable.	If	negative,	jump	to	the	Error	label.

viCheckAlloc(pointer)

If	pointer	is	VI_NULL,	assign	VI_ERROR_ALLOC	to	the	error	variable,
call	Ivi_SetErrorInfo	with	VI_ERROR_ALLOC	as	the	primary	error	code,
and	jump	to	the	Error	label.

viCheckErr(status)

Assign	status	to	the	error	variable.	If	status	is	positive,	coerce	the	error
variable	to	zero.	If	status	is	negative,	pass	it	to	Ivi_SetErrorInfo	and	jump
to	the	Error	label.

viCheckErrElab(status,	elabString)

Assign	status	to	the	error	variable.	If	status	is	positive,	coerce	the	error
variable	to	zero.	If	status	is	negative,	pass	it	and	elabString	to
Ivi_SetErrorInfo	and	jump	to	the	Error	label.

viCheckParm(status,	parameterPosition,	parameterName)

Assign	status	to	the	error	variable.	If	status	is	positive,	coerce	the	error
variable	to	zero.	If	status	is	negative,	do	the	following:

Convert	parameterPosition	into	one	of	the	VXIplug&play	error
codes	for	invalid	parameters,	and	pass	it	as	the	secondary	error
code	to	Ivi_SetErrorInfo.	Pass	status	as	the	primary	error	code,
and	pass	parameterName	as	the	error	elaboration.
Jump	to	the	Error	label.

viCheckWarn(status)
Assign	status	to	error.	If	status	is	nonzero,	pass	it	to	Ivi_SetErrorInfo.	If
status	is	negative,	jump	to	the	Error	label.
Notice	that	the	checkWarn	and	viCheckWarn	macros	preserve	warnings
whereas	the	other	viCheck	macros	discard	them.	Also,	viCheckWarn	calls
Ivi_SetErrorInfo	on	both	warnings	and	errors,	whereas	the	other	macros
call	Ivi_SetErrorInfo	only	on	errors.

When	to	Use	the	viCheck	Macros

When	returning	an	error	or	a	warning,	each	user-callable	instrument
driver	function	must	set	the	error	information	for	the	session	and	thread.
You	can	do	this	by	explicitly	calling	Ivi_SetErrorInfo	at	the	end	of	the
function,	or	you	can	use	the	viCheck	macros	in	the	function	or	in	the
lower-level	routines	that	the	function	calls.
You	can	call	the	viCheck	macros	only	when	the	following	two	conditions
are	true:

The	function	in	which	it	appears	has	a	ViSession	parameter	named
vi	that	is	an	IVI	session	handle	or	VI_NULL.
The	first	argument	you	pass	to	the	macro	is	either	a	pointer	value,
in	the	case	of	viCheckAlloc,	or	a	status	code	that	is	negative	if	and
only	if	an	error	occurs.	IVI	and	VISA	functions	return	such	status
codes.

It	is	best	to	use	the	viCheck	macros	at	the	lowest	level	in	your	code	where
these	two	conditions	are	true.	You	can	then	use	the	check	versions	of	the
macros	at	higher	levels.	All	IVI	engine	functions	that	take	the	IVI	session
handle	as	a	parameter	call	Ivi_SetErrorInfo	when	they	return	errors.	Thus,
you	do	not	have	to	use	the	viCheck	macros	around	calls	to	IVI	functions.
Nevertheless,	it	is	harmless	to	make	redundant	use	of	the	viCheck
macros.	The	viCheck	macros	call	Ivi_SetErrorInfo	in	such	a	way	that	it
does	not	overwrite	existing	significant	error	information.
Examples

The	following	example	shows	how	to	handle	errors	returned	by	calls	to
IVI	functions.
checkErr(Ivi_SetAttributeViSession	(vi,	VI_NULL,	IVI_ATTR_IO_SESSION,
0,	io));
The	following	example	shows	how	to	handle	errors	that	VISA	functions
return.	This	method	also	works	for	other	libraries	that	return	errors	as
negative	values.
viCheckErr(viSetAttribute	(io,	VI_ATTR_TMO_VALUE,	5000));
The	following	example	shows	how	to	report	an	error	with	an	elaboration
string.

if	(triggerCount	>	1	||	sampleCount	>	1)
viCheckErrElab(IVI_ERROR_INVALID_CONFIGURATION,
"Cannot	use	single	point	measurement	"
"	functions	when	DMM	is	configured	for"
"	multi-point.");

The	following	example	shows	how	to	report	a	parameter	error	in	a	user-
callable	instrument	driver	function.
viCheckParm(Ivi_SetAttributeViReal64(vi,	VI_NULL,
HP34401_ATTR_RESOLUTION,	0,	resolution),	4,	"Resolution");

Error	Reporting	for	IVI
The	IVI	engine	has	an	extensive	mechanism	for	reporting	errors.	Almost
all	functions	in	the	IVI	engine	return	a	negative	status	code	if	an	error
occurs	and	return	VI_SUCCESS	(0)	if	the	function	succeeds.	A	few
functions	return	positive	values	to	indicate	warnings.	The
Ivi_GetAttributeViString	function	returns	a	positive	value	if	the	buffer	you
pass	is	not	large	enough	to	hold	the	current	attribute	value.	The	positive
value	indicates	the	size	of	the	buffer	you	must	pass	to	obtain	the
complete	value.
The	IVI	engine	functions	return	error	and	warning	values	from	several
sets	of	status	codes.	Some	status	codes	are	unique	to	the	IVI	Library.
Other	status	codes	are	the	same	codes	that	VISA	Library	functions
return.	Still	others	are	error	or	warning	values	that	functions	in	specific
instrument	drivers	return.	Each	set	of	status	codes	has	its	own	numeric
range.	The	status	codes	topic	lists	the	numeric	ranges	of	the	different
sets	of	status	codes.	It	also	contains	a	listing	of	all	the	IVI	error	codes
and	the	most	commonly	used	VISA	status	codes.
Each	IVI	session	has	the	following	three	attributes	for	reporting	error
information:
IVI_ATTR_PRIMARY_ERROR
IVI_ATTR_SECONDARY_ERROR
IVI_ATTR_ERROR_ELABORATION
Each	instrument	driver	defines	its	own	constant	name	for	these
attributes,	with	the	instrument	prefix	replacing	IVI	in	the	name.
You	can	call	Ivi_SetErrorInfo	to	set	all	three	attributes	at	once.	You	can
call	Ivi_ClearErrorInfo	to	clear	all	three	attributes	at	once.	You	can	call
Ivi_GetErrorInfo	to	obtain	and	then	clear	the	values	of	all	three	attributes
at	once.	Each	instrument	driver	exports	a	Prefix_	version	of	each	of	the
Get	and	Clear	functions.
You	also	can	access	the	attribute	values	using	the	following	functions:

Ivi_SetAttributeViInt32	to	set	primary	or	secondary	error	code
Ivi_SetAttributeViString	to	set	error	elaboration	string
Ivi_GetAttributeViInt32	to	obtain	primary	or	secondary	error	code
Ivi_GetAttributeViString	to	obtain	error	elaboration	string

The	three	attributes	describe	the	first	error	or	warning	that	occurred	since
the	last	call	to	Ivi_GetErrorInfo	or	Ivi_ClearErrorInfo	on	the	session.	The
primary	error	code	specifies	the	primary	reason	for	the	error	or	warning.	If
no	error	or	warning	occurred,	the	primary	error	code	is	VI_SUCCESS	(0).
The	secondary	error	code	is	optional	and	provides	additional	information
about	the	error	or	warning	condition.	A	value	of	0	indicates	no	additional
information.	The	error	elaboration	parameter	is	a	string	that	can	contain
further	descriptive	information	about	the	error	or	warning	condition.
The	IVI	engine	also	maintains	a	primary	error	code,	secondary	error
code,	and	error	elaboration	string	for	each	execution	thread.	When	you
call	Ivi_SetErrorInfo	or	Ivi_ClearErrorInfo	on	a	session,	the	function	sets	or
clears	the	error	information	for	both	the	session	and	the	thread.	When
you	pass	VI_NULL	for	the	vi	parameter	to	Ivi_SetErrorInfo	or
Ivi_ClearErrorInfo,	the	function	sets	or	clears	only	the	error	information	for
the	thread.	This	is	useful	when	you	do	not	have	a	session	handle	to	pass,
which	occurs	when	a	call	to	Ivi_SpecificDriverNew	fails.	To	obtain	the
error	information	for	the	thread,	you	must	call	Ivi_GetErrorInfo	with	the	vi
parameter	set	to	VI_NULL.
Normally,	it	is	the	responsibility	of	the	user	to	decide	when	to	clear	the
error	information	by	calling	Prefix_GetErrorInfo	or	Prefix_ClearErrorInfo.	If
an	instrument	driver	calls	Ivi_GetErrorInfo,	it	must	restore	the	error
information	by	calling	Ivi_SetErrorInfo,	possibly	adding	a	secondary	error
code	or	an	elaboration	string.
Ivi_SetErrorInfo	does	not	overwrite	existing	significant	error	information
unless	you	request	it	to	do	so.	This	allows	you	to	make	multiple	calls	to
Ivi_SetErrorInfo	at	different	levels	in	your	instrument	driver	source	code
without	the	risk	of	losing	important	error	information.	It	also	preserves	the
information	about	the	first	error	for	the	user.	Refer	to	the	Ivi_SetErrorInfo
function	description	for	more	information	on	this	mechanism.

IVI	Functions
Expand	this	book	to	view	an	alphabetized	list	of	IVI	functions.

Ivi_AddAttributeInvalidation
Usage
ViStatus	Ivi_AddAttributeInvalidation(ViSession	vi,	ViAttr	attributeID,	ViAttr
dependentAttributeID,	ViBoolean	allInstances);

Purpose

This	function	creates	an	invalidation	dependency	relationship	between
two	attributes.	When	you	set	the	first	attribute	to	a	new	value,	the	IVI
engine	marks	the	cache	value	for	the	second	attribute	value	as	invalid.
When	an	attribute	cache	value	is	invalid,	any	attempt	to	obtain	or	change
the	current	value	of	the	attribute	causes	the	IVI	engine	to	invoke	the	read
or	write	callback	function	for	the	attribute	regardless	of	the	cache	value.
Create	a	dependency	relationship	if	setting	the	value	of	one	attribute	can
cause	the	value	of	another	attribute	to	change	or	become	out-of-range	in
the	instrument.	When	this	occurs,	the	cache	value	of	the	second	attribute
no	longer	reflects	the	true	state	of	the	instrument.

Two-Way	Invalidations
Although	you	can	create	a	two-way	invalidation	dependency	relationship
between	attributes,	it	is	rarely	the	correct	thing	to	do.	Cases	can	occur
where	changing	one	instrument	setting	affects	another	instrument	setting,
and	changing	the	second	instrument	setting	affects	the	first.	The	proper
way	to	handle	this	situation	is	to	impose	a	one-way	invalidation	model	in
the	instrument	driver.	Identify	one	attribute	as	dominant	and	the	other	as
dependent.	Call	Ivi_AddAttributeInvalidation	to	notify	the	IVI	engine	that
changing	the	value	of	the	dominant	attribute	invalidates	the	dependent
attribute.	Range	check	values	for	the	dependent	attribute	based	on	the
current	setting	of	the	dominant	attribute.	Do	not	allow	the	end-user	to	set
the	dependent	attribute	to	a	value	that	would	cause	the	instrument	to
modify	the	setting	of	the	dominant	attribute.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

dependentAttributeID ViAttr Pass	the	ID	of	the	attribute	to	invalidate
when	the	value	of	the	first	attribute
changes.

allInstances ViBoolean Specify	whether	the	invalidation	occurs
on	all	possible	repeated	capability
instances	or	only	on	the	instance	on
which	the	value	of	the	first	attribute

changes.	This	option	is	relevant	only	if
both	attributes	are	based	on	the	same
repeated	capability.
Pass	VI_TRUE	(1)	if	you	want	the
invalidation	to	occur	on	all	repeated
capability	instances.	Otherwise,	pass
VI_FALSE	(0).

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddAttributeViAddr
Usage
ViStatus	Ivi_AddAttributeViAddr(ViSession	vi,	ViAttr	newAttributeID,	ViChar
attributeName[],	ViAddr	defaultValue,	IviAttrFlags	flags,
ReadAttrViAddr_CallbackPtr	readCallback,	WriteAttrViAddr_CallbackPtr
writeCallback);

Purpose

This	function	creates	and	configures	a	new	ViAddr	attribute	for	the
instrument	session	you	specify.
You	can	use	ViAddr	attributes	only	for	attributes	that	are	private	to	an
instrument	driver.	You	must	not	make	ViAddr	attributes	accessible	to	the
end-user.

Note		Use	ViAddr	attributes	only	internally	in	your	driver.	End-
users	cannot	access	ViAddr	attributes.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h	defines	IVI_ATTR_CACHE
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	IVIDMM_ATTR_RANGE
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant

name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE,	then	pass	"

defaultValue ViAddr Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	IVI_VAL_NOT_USER_WRITABLE
IVI_VAL_NEVER_CACHE.
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags.
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE
3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE

6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN	is	0x0018,	the	combination	of
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE—Directs	the	IVI	engine	never	to	use	the	cache
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.
IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL

value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute	or	
driver	and	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after
calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViAddr_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you

request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus_	VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViAddr	value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.	Upon	exit	from
the	callback,	*value	must	contain	the	actual	current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViAddr

writeCallback WriteAttrViAddr_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus_	VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViAddr	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViAddr

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddAttributeViBoolean
Usage
ViStatus	Ivi_AddAttributeViBoolean(ViSession	vi,	ViAttr	newAttributeID,
ViChar	attributeName[],	ViBoolean	defaultValue,	IviAttrFlags	flags,
ReadAttrViBoolean_CallbackPtr	readCallback,
WriteAttrViBoolean_CallbackPtr	writeCallback);

Purpose

This	function	creates	and	configures	a	new	ViBoolean	attribute	for	the
instrument	session	you	specify.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h	defines	IVI_ATTR_CACHE
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	IVIDMM_ATTR_RANGE
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant

name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE

defaultValue ViBoolean Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

Defined	Values:
VI_TRUE	(1)VI_FALSE	(0)

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE
3 0x0008 IVI_VAL_NOT_USER_READABLE

4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE
6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN	is	0x0018,	the	combination	of
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.
IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	

attribute.
IVI_VAL_MULTI_CHANNEL
value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute
driver	and	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after
calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViBoolean_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViBoolean	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.	Upon	exit	from
the	callback,	*value	must	contain	the	actual	current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViBoolean

writeCallback WriteAttrViBoolean_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViBoolean	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViBoolean

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddAttributeViInt32
Usage
ViStatus	Ivi_AddAttributeViInt32(ViSession	vi,	ViAttr	newAttributeID,	ViChar
attributeName[],	ViInt32	defaultValue,	IviAttrFlags	flags,
ReadAttrViInt32_CallbackPtr	readCallback,	WriteAttrViInt32_CallbackPtr
writeCallback,	IviRangeTablePtr	rangeTable);

Purpose

This	function	creates	and	configures	a	new	ViInt32	attribute	for	the
instrument	session	you	specify.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a	particular	IVI
session.

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every
attribute	must	have	a	distinct	ID.	You	must	define	a	constant
name	for	the	attribute	in	the	include	file	for	the	instrument
driver	or	in	your	source	code.	The	constant	name	must	begin
with	PREFIX_ATTR_,	where	
prefix.
The	include	file	for	your	specific	instrument	driver	must	define
constant	names	for	all	of	the	user-accessible	attributes	that
apply	to	the	driver.	This	includes	attributes	that	the	IVI	engine
defines,	attributes	that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the	particular	instrument.	Each
defined	constant	name	begins	with	
PREFIX	is	the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	contant	name	that
appears	in	ivi.h,	except	replace	the	IVI	prefix	with	the	specific
instrument	prefix.	For	example,	
IVI_ATTR_CACHE,	and	the	Fluke	45	include	file,	
defines	the	following	contant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant
name	that	appears	in	the	instrument	class	include	file,	except
replace	the	class	prefix	with	the	specific	instrument	prefix.	For
example,	the	DMM	class	include	file,	
IVIDMM_ATTR_RANGE,	and	
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can
access,	define	a	constant	name	in	the	instrument	driver
include	file,	and	assign	a	value	that	is	an	offset	from

IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:
#define	FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+	3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define
a	constant	name	in	the	driver	source	file,	and	assign	a	value
that	is	an	offset	from	IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the	following	constant	name:
#define	HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE	+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same
as	the	defined	constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE,	then	pass	"

defaultValue ViInt32 Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
attribute	value	before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
attribute	is	not	set.
The	attribute	does	not	have	a	read	callback,	and	you
query	the	attribute	before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set
multiple	flags,	bitwise	OR	them	together.	For	example,	if	you
want	the	attribute	to	be	hidden	and	never	cached,	then	pass
IVI_VAL_NOT_USER_WRITABLE
You	can	query	and	modify	the	flags	for	an	attribute	using
Ivi_GetAttributeFlags	and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE

2 0x0004 IVI_VAL_NOT_WRITABLE
3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE
6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN	is	0x0018,	the	combination	of
IVI_VAL_NOT_USER_READABLE
IVI_VAL_NOT_USER_WRITABLE
macro	for	attributes	you	do	not	want	the	end-user	to	access.
IVI_VAL_NOT_SUPPORTED
creates	the	attribute	but	the	specific	driver	does	not	implement
it.
IVI_VAL_NOT_READABLE
nor	instrument	drivers	can	query	the	value	of	the	attribute.
Only	the	IVI	engine	can	query	the	value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
nor	instrument	drivers	can	modify	the	value	of	the	attribute.
Only	the	IVI	engine	can	modify	the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
cannot	query	the	value	of	the	attribute.	Only	the	IVI	engine
and	instrument	drivers	can	query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
cannot	modify	the	value	of	the	attribute.	Only	the	IVI	engine
and	instrument	drivers	can	modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE—Directs	the	IVI	engine	never	to
use	the	cache	value	of	the	attribute,	regardless	of	the	state	of

the	IVI_ATTR_CACHE	attribute.	The	IVI	engine	always	calls
the	read	and	write	callbacks	for	the	attribute,	if	present.
IVI_VAL_ALWAYS_CACHE
cache	value	of	the	attribute,	if	it	is	valid,	regardless	of	the	state
of	the	IVI_ATTR_CACHE	attribute.
IVI_VAL_MULTI_CHANNEL
a	separate	value	for	each	channel.	You	cannot	modify	this	flag
using	Ivi_SetAttributeFlags.
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
the	instrument	coerces	values	in	a	way	that	the	instrument
driver	cannot	anticipate	in	software.	Do	not	use	this	flag
unless	the	instrument's	coercion	algorithm	is	undocumented
or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which
this	flag	is	set,	the	IVI	engine	ignores	the	cache	value	unless	it
obtained	the	cache	value	from	the	instrument.	Thus,	after	you
call	an	Ivi_SetAttribute	function,	the	IVI	engine	invokes	the
read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two
assumptions	that	allow	it	to	retain	most	of	the	benefits	of	state-
caching:

1.	 The	instrument	always	coerces	the	same	value	in	the
same	way.

2.	 If	you	send	the	instrument	a	value	that	you	obtained
from	the	instrument,	the	instrument	does	not	coerce
the	value.	Based	on	these	two	assumptions,	the	IVI
engine	does	not	invoke	the	write	callback	for	the
attribute	when	you	call	an	
the	same	value	that	you	previously	sent	to,	or	received
from,	the	instrument.	If	one	or	both	of	these
assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
engine	to	call	the	operation	complete	callback	for	the	session
before	calling	the	read	callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES

engine	to	call	the	operation	complete	callback	for	the	session
after	calling	the	write	callback	for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
IVI	engine	to	invoke	the	read	and	write	callbacks	for	the
attribute	even	when	in	simulation	mode.
IVI_VAL_DONT_CHECK_STATUS
user	calls	one	of	the	PREFIX_GetAttribute
PREFIX_SetAttribute	functions	in	an	instrument	driver	and	the
IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the
session	after	calling	the	read	or	write	callback	for	the	attribute.
This	flag	directs	the	IVI	engine	never	to	call	the	check	status
callback	for	the	attribute.

readCallback ReadAttrViInt32_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to
invoke	when	you	request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code
for	the	specific	instrument	driver.	The	function	must	have	the
following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,
ViConstString	repCapName,	ViAttr	attributeId,	ViInt32	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.
Upon	exit	from	the	callback,	*value	must	contain	the	actual
current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver
Attributes	dialog	box	to	develop	your	instrument	driver
source	code,	retain	the	parameter	names	as	shown	in
the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass
VI_NULL.
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViInt32

writeCallback WriteAttrViInt32_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to
invoke	when	you	set	the	attribute	to	a	new	value.

You	must	define	the	write	callback	function	in	the	source	code
for	the	specific	instrument	driver.	The	function	must	have	the
following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,
ViConstString	repCapName,	ViAttr	attributeId,	ViInt32	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver
Attributes	dialog	box	to	develop	your	instrument	driver
source	code,	retain	the	parameter	names	as	shown	in
the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass
VI_NULL.
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViInt32

rangeTable IviRangeTablePtr Specify	the	range	table	that	the	IVI	engine	can	use	to	validate
and	coerce	values	for	this	attribute.	Refer	to	the	typedefs	for
IviRangeTable	and	IviRangeTableEntry	in	
want	to	use	a	range	table,	pass	
If	the	valid	range	for	this	attribute	varies	depending	on	the
settings	of	other	attributes,	you	might	want	to	use	several
range	tables.	If	so,	pass	VI_NULL
specify	a	range	table	callback	function	using	the
Ivi_SetAttrRangeTableCallback

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddAttributeViInt64
Usage
ViStatus	Ivi_AddAttributeViInt64(ViSession	Vi,	ViAttr	newAttributeID,	ViChar
attributeName[],	ViInt64	defaultValue,	IviAttrFlags	flags,
ReadAttrViInt64_CallbackPtr	readCallback,	WriteAttrViInt64_CallbackPtr
writeCallback,	IviRangeTablePtr	rangeTable);

Purpose
This	function	creates	and	configures	a	new	ViInt64	attribute	for	the
instrument	session	you	specify.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a	particular	IVI
session.

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every
attribute	must	have	a	distinct	ID.	You	must	define	a	constant
name	for	the	attribute	in	the	include	file	for	the	instrument
driver	or	in	your	source	code.	The	constant	name	must	begin
with	PREFIX_ATTR_,	where	
prefix.
The	include	file	for	your	specific	instrument	driver	must	define
constant	names	for	all	of	the	user-accessible	attributes	that
apply	to	the	driver.	This	includes	attributes	that	the	IVI	engine
defines,	attributes	that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the	particular	instrument.	Each
defined	constant	name	begins	with	
PREFIX	is	the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	contant	name	that
appears	in	ivi.h,	except	replace	the	IVI	prefix	with	the	specific
instrument	prefix.	For	example,	
IVI_ATTR_CACHE,	and	the	Fluke	45	include	file,	
defines	the	following	contant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant
name	that	appears	in	the	instrument	class	include	file,	except
replace	the	class	prefix	with	the	specific	instrument	prefix.	For
example,	the	DMM	class	include	file,	
IVIDMM_ATTR_RANGE,	and	
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can
access,	define	a	constant	name	in	the	instrument	driver
include	file,	and	assign	a	value	that	is	an	offset	from

IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:
#define	FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+	3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define
a	constant	name	in	the	driver	source	file,	and	assign	a	value
that	is	an	offset	from	IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the	following	constant	name:
#define	HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE	+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same
as	the	defined	constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE,	then	pass	"

defaultValue ViInt64 Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
attribute	value	before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
attribute	is	not	set.
The	attribute	does	not	have	a	read	callback,	and	you
query	the	attribute	before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set
multiple	flags,	bitwise	OR	them	together.	For	example,	if	you
want	the	attribute	to	be	hidden	and	never	cached,	then	pass
IVI_VAL_NOT_USER_WRITABLE
You	can	query	and	modify	the	flags	for	an	attribute	using
Ivi_GetAttributeFlags	and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE

2 0x0004 IVI_VAL_NOT_WRITABLE
3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE
6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN	is	0x0018,	the	combination	of
IVI_VAL_NOT_USER_READABLE
IVI_VAL_NOT_USER_WRITABLE
macro	for	attributes	you	do	not	want	the	end-user	to	access.
IVI_VAL_NOT_SUPPORTED
creates	the	attribute	but	the	specific	driver	does	not	implement
it.
IVI_VAL_NOT_READABLE
nor	instrument	drivers	can	query	the	value	of	the	attribute.
Only	the	IVI	engine	can	query	the	value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
nor	instrument	drivers	can	modify	the	value	of	the	attribute.
Only	the	IVI	engine	can	modify	the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
cannot	query	the	value	of	the	attribute.	Only	the	IVI	engine
and	instrument	drivers	can	query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
cannot	modify	the	value	of	the	attribute.	Only	the	IVI	engine
and	instrument	drivers	can	modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE—Directs	the	IVI	engine	never	to
use	the	cache	value	of	the	attribute,	regardless	of	the	state	of

the	IVI_ATTR_CACHE	attribute.	The	IVI	engine	always	calls
the	read	and	write	callbacks	for	the	attribute,	if	present.
IVI_VAL_ALWAYS_CACHE
cache	value	of	the	attribute,	if	it	is	valid,	regardless	of	the	state
of	the	IVI_ATTR_CACHE	attribute.
IVI_VAL_MULTI_CHANNEL
a	separate	value	for	each	channel.	You	cannot	modify	this	flag
using	Ivi_SetAttributeFlags.
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
the	instrument	coerces	values	in	a	way	that	the	instrument
driver	cannot	anticipate	in	software.	Do	not	use	this	flag
unless	the	instrument's	coercion	algorithm	is	undocumented
or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which
this	flag	is	set,	the	IVI	engine	ignores	the	cache	value	unless	it
obtained	the	cache	value	from	the	instrument.	Thus,	after	you
call	an	Ivi_SetAttribute	function,	the	IVI	engine	invokes	the
read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two
assumptions	that	allow	it	to	retain	most	of	the	benefits	of	state-
caching:

1.	 The	instrument	always	coerces	the	same	value	in	the
same	way.

2.	 If	you	send	the	instrument	a	value	that	you	obtained
from	the	instrument,	the	instrument	does	not	coerce
the	value.	Based	on	these	two	assumptions,	the	IVI
engine	does	not	invoke	the	write	callback	for	the
attribute	when	you	call	an	
the	same	value	that	you	previously	sent	to,	or	received
from,	the	instrument.	If	one	or	both	of	these
assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
engine	to	call	the	operation	complete	callback	for	the	session
before	calling	the	read	callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES

engine	to	call	the	operation	complete	callback	for	the	session
after	calling	the	write	callback	for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
IVI	engine	to	invoke	the	read	and	write	callbacks	for	the
attribute	even	when	in	simulation	mode.
IVI_VAL_DONT_CHECK_STATUS
user	calls	one	of	the	PREFIX_GetAttribute
PREFIX_SetAttribute	functions	in	an	instrument	driver	and	the
IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the
session	after	calling	the	read	or	write	callback	for	the	attribute.
This	flag	directs	the	IVI	engine	never	to	call	the	check	status
callback	for	the	attribute.

readCallback ReadAttrViInt64_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to
invoke	when	you	request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code
for	the	specific	instrument	driver.	The	function	must	have	the
following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,
ViConstString	repCapName,	ViAttr	attributeId,	ViInt64	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.
Upon	exit	from	the	callback,	*value	must	contain	the	actual
current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver
Attributes	dialog	box	to	develop	your	instrument	driver
source	code,	retain	the	parameter	names	as	shown	in
the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass
VI_NULL.
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViInt64

writeCallback WriteAttrViInt64_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to
invoke	when	you	set	the	attribute	to	a	new	value.

You	must	define	the	write	callback	function	in	the	source	code
for	the	specific	instrument	driver.	The	function	must	have	the
following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,
ViConstString	repCapName,	ViAttr	attributeId,	ViInt64	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver
Attributes	dialog	box	to	develop	your	instrument	driver
source	code,	retain	the	parameter	names	as	shown	in
the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass
VI_NULL.
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViInt64

rangeTable IviRangeTablePtr Specify	the	range	table	that	the	IVI	engine	can	use	to	validate
and	coerce	values	for	this	attribute.	Refer	to	the	typedefs	for
IviRangeTable	and	IviRangeTableEntry	in	
want	to	use	a	range	table,	pass	
If	the	valid	range	for	this	attribute	varies	depending	on	the
settings	of	other	attributes,	you	might	want	to	use	several
range	tables.	If	so,	pass	VI_NULL
specify	a	range	table	callback	function	using	the
Ivi_SetAttrRangeTableCallback

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddAttributeViReal64
Usage
ViStatus	Ivi_AddAttributeViReal64(ViSession	vi,	ViAttr	newAttributeID,
ViChar	attributeName[],	ViReal64	defaultValue,	IviAttrFlags	flags,
ReadAttrViReal64_CallbackPtr	readCallback,	WriteAttrViReal64_CallbackPtr
writeCallback,	IviRangeTablePtr	rangeTable,	ViInt32	comparePrecision);

Purpose

This	function	creates	and	configures	a	new	ViReal64	attribute	for	the
instrument	session	you	specify.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h	defines	
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	IVIDMM_ATTR_RANGE
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant

name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE

defaultValue ViReal64 Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION	is	enabled,	you	query	the	attribute	value
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION	attribute	is	not	set.
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE
3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE

6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN	is	0x0018,	the	combination	of
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.
IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL

value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute
driver	and	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after
calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViReal64_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you

request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViReal64	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.	Upon	exit	from
the	callback,	*value	must	contain	the	actual	current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViReal64

writeCallback WriteAttrViReal64_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViReal64	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViReal64

rangeTable IviRangeTablePtr Specify	the	range	table	that	the	IVI	engine	can	use	to	validate	and	coerce
values	for	this	attribute.	Refer	to	the	typedefs	for	IviRangeTable	and
IviRangeTableEntry	in	
VI_NULL.
If	the	valid	range	for	this	attribute	varies	depending	on	the	settings	of	other
attributes,	you	might	want	to	use	several	range	tables.	If	so,	pass	
for	this	parameter,	and	specify	a	range	table	callback	function	using	the

Ivi_SetAttrRangeTableCallback

comparePrecision ViInt32 Specify	the	degree	of	decimal	precision	the	default	IVI	compare	callback
function	uses	for	this	ViReal64	attribute.	Unless	you	call
Ivi_SetAttrCompareCallbackViReal64
function,	the	IVI	engine	invokes	the	default	compare	callback	when
comparing	cache	values	it	obtains	from	the	instrument	against	new	values
you	set	the	attribute	to.	If	the	values	are	equal	within	the	degree	of	precision
you	specify,	the	IVI	engine	does	not	call	the	write	callback	for	the	attribute.
The	IVI	engine	uses	this	method	instead	of	strict	equality	because	of
differences	between	computer	and	instrument	floating	point	representations.
The	value	for	this	parameter	is	in	terms	of	decimal	digits	of	precision.	The
higher	the	value,	the	closer	the	two	values	must	be	for	the	default	compare
callback	to	consider	them	equal.
Valid	Range:	0,	or	1	to	14
If	you	pass	0,	the	function	sets	the	precision	to	the	IVI	default	for	this	value,
which	is	14.
You	can	modify	this	value	at	a	later	type	by	calling	the
Ivi_SetAttrComparePrecision

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddAttributeViSession
Usage
ViStatus	Ivi_AddAttributeViSession(ViSession	vi,	ViAttr	newAttributeID,
ViChar	attributeName[],	ViSession	defaultValue,	IviAttrFlags	flags,
ReadAttrViSession_CallbackPtr	readCallback,	WriteAttrViSession_CallbackPtr
writeCallback);

Purpose

This	function	creates	and	configures	a	new	ViSession	attribute	for	the
instrument	session	you	specify.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h	defines	IVI_ATTR_CACHE
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	IVIDMM_ATTR_RANGE
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant

name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE

defaultValue ViSession Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE
3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE

6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN	is	0x0018,	the	combination	of
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.
IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL

value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute
driver	and	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after
calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViSession_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you

request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViSession	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.	Upon	exit	from
the	callback,	*value	must	contain	the	actual	current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViSession

writeCallback WriteAttrViSession_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViSession	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViSession

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddAttributeViString
Usage
ViStatus	Ivi_AddAttributeViString(ViSession	vi,	ViAttr	newAttributeID,	ViChar
attributeName[],	ViChar	defaultValue[],	IviAttrFlags	flags,
ReadAttrViString_CallbackPtr	readCallback,	WriteAttrViString_CallbackPtr
writeCallback);

Purpose

This	function	creates	and	configures	a	new	ViString	attribute	for	the
instrument	session	you	specify.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h	defines	IVI_ATTR_CACHE
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	IVIDMM_ATTR_RANGE
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant

name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE,	then	pass	"

defaultValue ViChar[] Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	IVI_VAL_NOT_USER_WRITABLE
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags.
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE
3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE

6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN	is	0x0018,	the	combination	of
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.
IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL

value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute	or	
driver	and	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after
calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViString_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you

request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	const	ViConstString	cacheValue);
Unlike	the	read	callback	functions	for	the	other	data	types,	you	do	not	return
the	current	value	to	the	caller	through	the	last	parameter.	Instead,	you	return
the	current	value	by	passing	it	to	
function.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViString

writeCallback WriteAttrViString_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViConstString	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViString

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddRepeatedAttributeViAddr
Usage
ViStatus	Ivi_AddRepeatedAttributeViAddr(ViSession	vi,	ViChar
repeatedCapabilityName[],	ViAttr	newAttributeID,	ViChar	attributeName[],
ViAddr	defaultValue,	IviAttrFlags	flags,	ReadAttrViAddr_CallbackPtr
readCallback,	WriteAttrViAddr_CallbackPtr	writeCallback);

Purpose

This	function	creates	and	configures	a	new	ViAddr	attribute	for	the
instrument	session	you	specify.	The	value	of	the	Repeated	Capability
parameter	determines	the	repeated	capability	to	which	the	attribute
applies.
You	can	use	ViAddr	attributes	only	for	attributes	that	are	private	to	an
instrument	driver.	You	must	not	make	ViAddr	attribute	accessible	to	the
end-user.

Note		Use	ViAddr	attributes	only	internally	in	your	driver.	End-
users	cannot	access	ViAddr	attributes.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing	the	name	of	the	repeated	capability	on	which	to
operate.	For	instance,	if	you	are	working	with	the	table	of	channel	names,
pass	in	the	string	"Channel".

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h	defines	
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:

#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant
name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE

defaultValue ViAddr Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE

3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE
6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.

IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL
value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute
driver	and	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after

calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViAddr_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViAddr	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.	Upon	exit	from
the	callback,	*value	must	contain	the	actual	current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViAddr

writeCallback WriteAttrViAddr_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViAddr	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViAddr

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddRepeatedAttributeViBoolean
Usage
ViStatus	Ivi_AddRepeatedAttributeViBoolean(ViSession	vi,	ViChar
repeatedCapabilityName[],	ViAttr	newAttributeID,	ViChar	attributeName[],
ViBoolean	defaultValue,	IviAttrFlags	flags,	ReadAttrViBoolean_CallbackPtr
readcallback,	WriteAttrViBoolean_CallbackPtr	writeCallback);

Purpose

This	function	creates	and	configures	a	new	ViBoolean	attribute	for	the
instrument	session	you	specify.	The	value	of	the	Repeated	Capability
parameter	determines	the	repeated	capability	to	which	the	attribute
applies.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing	the	name	of	the	repeated	capability	on	which	to
operate.	For	instance,	if	you	are	working	with	the	table	of	channel	names,
pass	in	the	string	"Channel".

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	
defines	the	following	constant	name:

#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant
name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE

defaultValue ViBoolean Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

Defined	Values:
VI_TRUE	(1)VI_FALSE	(0)

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value

0 0x0001
1 0x0002
2 0x0004
3 0x0008
4 0x0010
5 0x0020
6 0x0040
10 0x0400
11 0x0800
12 0x1000
13 0x2000
14 0x4000
15 0x8000

IVI_VAL_HIDDEN
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE

value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.
IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL
value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS

the	PREFIX_GetAttribute
driver	and	the	
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after
calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readcallback ReadAttrViBoolean_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,ViBoolean	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.	Upon	exit	from
the	callback,	*value	must	contain	the	actual	current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViBoolean

writeCallback WriteAttrViBoolean_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViBoolean	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViBoolean

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddRepeatedAttributeViInt32
Usage
ViStatus	Ivi_AddRepeatedAttributeViInt32(ViSession	vi,	ViChar
repeatedCapabilityName[],	ViAttr	newAttributeID,	ViChar	attributeName[],
ViInt32	defaultValue,	IviAttrFlags	flags,	ReadAttrViInt32_CallbackPtr
readCallback,	WriteAttrViInt32_CallbackPtr	writeCallback,	IviRangeTablePtr
rangeTable);

Purpose

This	function	creates	and	configures	a	new	ViInt32	attribute	for	the
instrument	session	you	specify.	The	value	of	the	Repeated	Capability
parameter	determines	the	repeated	capability	to	which	the	attribute
applies.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing	the	name	of	the	repeated	capability	on	which	to
operate.	For	instance,	if	you	are	working	with	the	table	of	channel	names,
pass	in	the	string	"Channel".

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h	defines	
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:

#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant
name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE

defaultValue ViInt32 Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE

3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE
6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.

IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL
value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute
driver	and	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after

calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViInt32_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViInt32	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.	Upon	exit	from
the	callback,	*value	must	contain	the	actual	current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViInt32

writeCallback WriteAttrViInt32_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViInt32	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViInt32

rangeTable IviRangeTablePtr Specify	the	range	table	that	the	IVI	engine	can	use	to	validate	and	coerce
values	for	this	attribute.	Refer	to	the	typedefs	for	IviRangeTable	and
IviRangeTableEntry	in	

IVI	engine	automatically	installs	its	default	check	callback.	If	the	type	of	the
range	table	is	IVI_VAL_COERCED
default	coerce	callback.
If	you	do	not	want	to	use	a	range	table,	pass	
If	the	valid	range	for	this	attribute	varies	depending	on	the	settings	of	other
attributes,	you	might	want	to	use	several	range	tables.	If	so,	pass	
for	this	parameter,	and	specify	a	range	table	callback	function	using	the
Ivi_SetAttrRangeTableCallback

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddRepeatedAttributeViInt64
Usage
ViStatus	Ivi_AddRepeatedAttributeViInt64(ViSession	vi,	ViChar
repeatedCapabilityName[],	ViAttr	newAttributeID,	ViChar	attributeName[],
ViInt64	defaultValue,	IviAttrFlags	flags,	ReadAttrViInt64_CallbackPtr
readCallback,	WriteAttrViInt64_CallbackPtr	writeCallback,	IviRangeTablePtr
rangeTable);

Purpose

This	function	creates	and	configures	a	new	ViInt64	attribute	for	the
instrument	session	you	specify.	The	value	of	the	Repeated	Capability
parameter	determines	the	repeated	capability	to	which	the	attribute
applies.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing	the	name	of	the	repeated	capability	on	which	to
operate.	For	instance,	if	you	are	working	with	the	table	of	channel	names,
pass	in	the	string	"Channel".

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h	defines	
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:

#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant
name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE

defaultValue ViInt64 Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE

3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE
6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.

IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL
value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute
driver	and	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after

calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViInt64_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViInt64	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.	Upon	exit	from
the	callback,	*value	must	contain	the	actual	current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViInt64

writeCallback WriteAttrViInt64_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViInt64	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViInt64

rangeTable IviRangeTablePtr Specify	the	range	table	that	the	IVI	engine	can	use	to	validate	and	coerce
values	for	this	attribute.	Refer	to	the	typedefs	for	IviRangeTable	and
IviRangeTableEntry	in	

IVI	engine	automatically	installs	its	default	check	callback.	If	the	type	of	the
range	table	is	IVI_VAL_COERCED
default	coerce	callback.
If	you	do	not	want	to	use	a	range	table,	pass	
If	the	valid	range	for	this	attribute	varies	depending	on	the	settings	of	other
attributes,	you	might	want	to	use	several	range	tables.	If	so,	pass	
for	this	parameter,	and	specify	a	range	table	callback	function	using	the
Ivi_SetAttrRangeTableCallback

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddRepeatedAttributeViReal64
Usage
ViStatus	Ivi_AddRepeatedAttributeViReal64(ViSession	vi,	ViChar
repeatedCapabilityName[],	ViAttr	newAttributeID,	ViChar	attributeName[],
ViReal64	defaultValue,	IviAttrFlags	flags,	ReadAttrViReal64_CallbackPtr
readCallback,	WriteAttrViReal64_CallbackPtr	writeCallback,	IviRangeTablePtr
rangeTable,	ViInt32	comparePrecision);

Purpose

This	function	creates	and	configures	a	new	ViReal64	attribute	for	the
instrument	session	you	specify.	The	value	of	the	Repeated	Capability
parameter	determines	the	repeated	capability	to	which	the	attribute
applies.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing	the	name	of	the	repeated	capability	on	which	to
operate.	For	instance,	if	you	are	working	with	the	table	of	channel	names,
pass	in	the	string	"Channel".

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	
defines	the	following	constant	name:

#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant
name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE

defaultValue ViReal64 Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE

3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE
6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.

IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL
value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute
driver	and	the	
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after

calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViReal64_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViReal64	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.	Upon	exit	from
the	callback,	*value	must	contain	the	actual	current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViReal64

writeCallback WriteAttrViReal64_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViReal64	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViReal64

rangeTable IviRangeTablePtr Specify	the	range	table	that	the	IVI	engine	can	use	to	validate	and	coerce
values	for	this	attribute.	Refer	to	the	typedefs	for	IviRangeTable	and
IviRangeTableEntry	in	

IVI	engine	automatically	installs	its	default	check	callback.	If	the	type	of	the
range	table	is	
default	coerce	callback.
If	you	do	not	want	to	use	a	range	table,	pass	
If	the	valid	range	for	this	attribute	varies	depending	on	the	settings	of	other
attributes,	you	might	want	to	use	several	range	tables.	If	so,	pass	
for	this	parameter,	and	specify	a	range	table	callback	function	using	the
Ivi_SetAttrRangeTableCallback

comparePrecision ViInt32 Specify	the	degree	of	decimal	precision	the	default	IVI	compare	callback
function	uses	for	this	ViReal64	attribute.	Unless	you	call
Ivi_SetAttrCompareCallbackViReal64
function,	the	IVI	engine	invokes	the	default	compare	callback	when
comparing	cache	values	it	obtains	from	the	instrument	against	new	values
you	set	the	attribute	to.	If	the	values	are	equal	within	the	degree	of	precision
you	specify,	the	IVI	engine	does	not	call	the	write	callback	for	the	attribute.
The	IVI	engine	uses	this	method	instead	of	strict	equality	because	of
differences	between	computer	and	instrument	floating	point	representations.
The	value	for	this	parameter	is	in	terms	of	decimal	digits	of	precision.	The
higher	the	value,	the	closer	the	two	values	must	be	for	the	default	compare
callback	to	consider	them	equal.
Valid	Range:	0,	or	1	to	14
If	you	pass	0,	the	function	sets	the	precision	to	the	IVI	default	for	this	value,
which	is	14.
You	can	modify	this	value	at	a	later	type	by	calling	the
Ivi_SetAttrComparePrecision

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddRepeatedAttributeViSession
Usage
ViStatus	Ivi_AddRepeatedAttributeViSession(ViSession	vi,	ViChar
repeatedCapabilityName[],	ViAttr	newAttributeID,	ViChar	attributeName[],
ViSession	defaultValue,	IviAttrFlags	flags,	ReadAttrViSession_CallbackPtr
readCallback,	WriteAttrViSession_CallbackPtr	writeCallback);

Purpose

This	function	creates	and	configures	a	new	ViSession	attribute	for	the
instrument	session	you	specify.	The	value	of	the	Repeated	Capability
parameter	determines	the	repeated	capability	to	which	the	attribute
applies.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing	the	name	of	the	repeated	capability	on	which	to
operate.	For	instance,	if	you	are	working	with	the	table	of	channel	names,
pass	in	the	string	"Channel".

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	
defines	the	following	constant	name:

#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant
name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE

defaultValue ViSession Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value
0 0x0001
1 0x0002
2 0x0004

3 0x0008
4 0x0010
5 0x0020
6 0x0040
10 0x0400
11 0x0800
12 0x1000
13 0x2000
14 0x4000
15 0x8000

IVI_VAL_HIDDEN
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.

IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL
value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute
driver	and	the	
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after

calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViSession_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,
repCapName,
ViAttr	attributeId,
ViSession	*value);
Upon	entry	to	the	callback,	*value	contains	the	cache	value.	Upon	exit	from
the	callback,	*value	must	contain	the	actual	current	value.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrReadCallbackViSession

writeCallback WriteAttrViSession_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViSession	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViSession

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddRepeatedAttributeViString
Usage
ViStatus	Ivi_AddRepeatedAttributeViString(ViSession	vi,	ViChar
repeatedCapabilityName[],	ViAttr	newAttributeID,	ViChar	attributeName[],
ViChar	defaultValue[],	IviAttrFlags	flags,	ReadAttrViString_CallbackPtr
readCallback,	WriteAttrViString_CallbackPtr	writeCallback);

Purpose

This	function	creates	and	configures	a	new	ViString	attribute	for	the
instrument	session	you	specify.	The	value	of	the	Repeated	Capability
parameter	determines	the	repeated	capability	to	which	the	attribute
applies.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from	

identifies	a	particular	IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing	the	name	of	the	repeated	capability	on	which	to
operate.	For	instance,	if	you	are	working	with	the	table	of	channel	names,
pass	in	the	string	"Channel".

newAttributeID ViAttr Pass	the	ID	you	want	the	new	attribute	to	have.	Every	attribute	must	have	a
distinct	ID.	You	must	define	a	constant	name	for	the	attribute	in	the	include	file
for	the	instrument	driver	or	in	your	source	code.	The	constant	name	must
begin	with	PREFIX_ATTR_
The	include	file	for	your	specific	instrument	driver	must	define	constant
names	for	all	of	the	user-accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific	to	the	particular	instrument.
Each	defined	constant	name	begins	with	
the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	use	the	same	constant	name	that	appears	in
ivi.h,	except	replace	the	IVI	prefix	with	the	specific	instrument	prefix.	For
example,	ivi.h	defines	
defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	use	the	same	constant	name	that
appears	in	the	instrument	class	include	file,	except	replace	the	class	prefix
with	the	specific	instrument	prefix.	For	example,	the	DMM	class	include	file,
ividmm.h,	defines	
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute	that	the	end-user	can	access,	define	a
constant	name	in	the	instrument	driver	include	file,	and	assign	a	value	that	is
an	offset	from	IVI_SPECIFIC_PUBLIC_ATTR_BASE
defines	the	following	constant	name:

#define
FL45_ATTR_HOLD_THRESHOLD		\		(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	define	a	constant
name	in	the	driver	source	file,	and	assign	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE		\		(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeName ViChar[] The	name	of	the	attribute.	Specify	the	name	to	be	the	same	as	the	defined
constant	name	for	the	attribute	ID.
For	example,	if	the	defined	constant	for	this	attribute	is
PREFIX_ATTR_RANGE

defaultValue ViChar[] Specify	the	default	initial	value	for	the	attribute.
The	IVI	engine	uses	the	default	value	in	the	following	cases:

IVI_ATTR_SIMULATION	is	enabled,	you	query	the	attribute	value
before	you	set	it,	and	the
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION	attribute	is	not	set.
The	attribute	does	not	have	a	read	callback,	and	you	query	the	attribute
before	you	set	it.

flags IviAttrFlags Specify	the	flags	you	want	to	set	for	this	attribute.	To	set	multiple	flags,	bitwise
OR	them	together.	For	example,	if	you	want	the	attribute	to	be	hidden	and
never	cached,	then	pass	
IVI_VAL_NEVER_CACHE
You	can	query	and	modify	the	flags	for	an	attribute	using	
and	Ivi_SetAttributeFlags
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE

3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE
6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN
IVI_VAL_NOT_USER_READABLE
Use	the	IVI_VAL_HIDDEN
to	access.
IVI_VAL_NOT_SUPPORTED
attribute	but	the	specific	driver	does	not	implement	it.
IVI_VAL_NOT_READABLE
drivers	can	query	the	value	of	the	attribute.	Only	the	IVI	engine	can	query	the
value	of	the	attribute.
IVI_VAL_NOT_WRITABLE
drivers	can	modify	the	value	of	the	attribute.	Only	the	IVI	engine	can	modify
the	value	of	the	attribute.
IVI_VAL_NOT_USER_READABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
query	the	value	of	the	attribute.
IVI_VAL_NOT_USER_WRITABLE
the	value	of	the	attribute.	Only	the	IVI	engine	and	instrument	drivers	can
modify	the	value	of	the	attribute.
IVI_VAL_NEVER_CACHE
value	of	the	attribute,	regardless	of	the	state	of	the	
attribute.	The	IVI	engine	always	calls	the	read	and	write	callbacks	for	the
attribute,	if	present.

IVI_VAL_ALWAYS_CACHE
the	attribute,	if	it	is	valid,	regardless	of	the	state	of	the	
attribute.
IVI_VAL_MULTI_CHANNEL
value	for	each	channel.	You	cannot	modify	this	flag	using	
IVI_VAL_COERCEABLE_ONLY_BY_INSTR
coerces	values	in	a	way	that	the	instrument	driver	cannot	anticipate	in
software.	Do	not	use	this	flag	unless	the	instrument's	coercion	algorithm	is
undocumented	or	too	complicated	to	encapsulate	in	a	range	table	or	a	coerce
callback.	When	you	query	the	value	of	an	attribute	for	which	this	flag	is	set,
the	IVI	engine	ignores	the	cache	value	unless	it	obtained	the	cache	value
from	the	instrument.	Thus,	after	you	call	an	
engine	invokes	the	read	callback	the	next	time	you	call	an	
function.	When	you	set	this	flag,	the	IVI	engine	makes	two	assumptions	that
allow	it	to	retain	most	of	the	benefits	of	state-caching:

1.	 The	instrument	always	coerces	the	same	value	in	the	same	way.
2.	 If	you	send	the	instrument	a	value	that	you	obtained	from	the

instrument,	the	instrument	does	not	coerce	the	value.	Based	on	these
two	assumptions,	the	IVI	engine	does	not	invoke	the	write	callback	for
the	attribute	when	you	call	an	
value	that	you	previously	sent	to,	or	received	from,	the	instrument.	If
one	or	both	of	these	assumption	are	not	valid,	use	the
IVI_VAL_NEVER_CACHE

IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
the	operation	complete	callback	for	the	session	before	calling	the	read
callback	for	the	attribute.
IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
the	operation	complete	callback	for	the	session	after	calling	the	write	callback
for	the	attribute.
IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
invoke	the	read	and	write	callbacks	for	the	attribute	even	when	in	simulation
mode.
IVI_VAL_DONT_CHECK_STATUS
the	PREFIX_GetAttribute
driver	and	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
enabled,	the	IVI	engine	calls	the	check	status	callback	for	the	session	after

calling	the	read	or	write	callback	for	the	attribute.	This	flag	directs	the	IVI
engine	never	to	call	the	check	status	callback	for	the	attribute.

readCallback ReadAttrViString_CallbackPtr Specify	the	read	callback	function	you	want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the	attribute.
You	must	define	the	read	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	const	ViConstString	cacheValue);
Unlike	the	read	callback	functions	for	the	other	data	types,	you	do	not	return
the	current	value	to	the	caller	through	the	last	parameter.	Instead,	you	return
the	current	value	by	passing	it	to	
function.

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	read	callback	function,	pass	

writeCallback WriteAttrViString_CallbackPtr Specify	the	write	callback	function	you	want	the	IVI	engine	to	invoke	when
you	set	the	attribute	to	a	new	value.
You	must	define	the	write	callback	function	in	the	source	code	for	the	specific
instrument	driver.	The	function	must	have	the	following	prototype:
ViStatus	_VI_FUNC	Callback	(ViSession	vi,	ViSession	io,	ViConstString
repCapName,	ViAttr	attributeId,	ViConstString	value);

Note		If	you	want	to	use	the	Edit	IVI	Specific	Driver	Attributes	dialog
box	to	develop	your	instrument	driver	source	code,	retain	the
parameter	names	as	shown	in	the	prototype	for	the	callback.

If	you	do	not	want	to	use	a	write	callback	function,	pass	
You	can	change	the	callback	at	a	later	time	by	calling
Ivi_SetAttrWriteCallbackViString

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddToChannelTable
Usage
ViStatus	Ivi_AddToChannelTable(ViSession	vi,	ViChar
ChannelStringsToBeAdded[]);

Purpose

This	function	adds	additional	channel	strings	to	the	channel	table	you
establish	with	Ivi_BuildChannelTable.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you

obtain	from
Ivi_SpecificDriverNew.	The
handle	identifies	a	particular
IVI	session.

ChannelStringsToBeAdded ViChar[] Pass	a	string	containing	a	the
list	of	additional	channel
strings	you	want	to	add	to	the
channel	table.	You	must
separate	channel	strings	with
commas.	You	can	include
spaces	after	the	commas.
For	example,	to	add	"3"	and
"4"	as	valid	channel	strings	for
the	instrument	session,	pass
"3,	4".

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AddToRepCapTable
Usage
ViStatus	Ivi_AddToRepCapTable(ViSession	vi,	ViChar
repeatedCapabilityName[],	ViChar	Identifiers[]);

Purpose

This	function	adds	additional	repeated	capability	identifiers	to	the
repeated	capability	table	you	establish	with	Ivi_BuildRepCapTable.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you

obtain	from	Ivi_SpecificDriverNew.
The	handle	identifies	a	particular
IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing	the	name
of	the	repeated	capability	on
which	to	operate.	For	instance,	if
you	are	working	with	the	table	of
channel	names,	pass	in	the	string
"Channel".

Identifiers ViChar[] Pass	a	string	containing	a	list	of
additional	repeated	capability
identifiers	you	want	to	add	to	the
repeated	capability	table.	You
must	separate	repeated	capability
identifiers	with	commas.	You	can
include	spaces	after	the	commas.
For	example,	to	add	"3"	and	"4"
as	valid	identifiers	for	the
repeated	capability,	pass	"3,	4".

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_Alloc
Usage
ViStatus	Ivi_Alloc(ViSession	vi,	ViInt32	Memory_Block_Size,	ViAddr*
Memory_Block_Pointer);

Purpose

This	function	allocates	memory	for	an	object	of	the	size	you	specify	and
initializes	all	bytes	to	zero.	If	you	specify	a	non-NULL	IVI	session	handle,
the	function	associates	the	memory	block	with	the	session	by	inserting	it
into	the	list	of	memory	blocks	the	IVI	engine	maintains	for	the	session.
You	can	call	Ivi_Free	to	free	the	memory	block.	You	can	call	Ivi_FreeAll	to
free	all	of	the	memory	blocks	that	you	allocate	for	the	session	with
Ivi_Alloc	or	Ivi_RangeTableNew.	When	you	call	Ivi_Dispose	on	the	session,
it	calls	Ivi_FreeAll	for	you.
If	the	function	cannot	allocate	the	space	or	you	pass	0	for	the	Memory
Block	Size	parameter,	the	function	sets	the	Memory	Block	Pointer
parameter	to	VI_NULL	and	returns	an	error.

Parameters
Name Type Description
vi ViSession If	you	want	to	associate	the

memory	block	with	a	particular	IVI
session,	pass	the	IVI	session
handle	that	you	obtain	from
Ivi_SpecificDriverNew.	Otherwise,
pass	VI_NULL.

Memory_Block_Size ViInt32 Specify	the	number	of	bytes	you
want	to	allocate.	You	must	pass	a
non-zero	value.

Memory_Block_Pointer ViAddr* Returns	a	pointer	to	the	memory
block	the	function	allocates.
If	the	function	cannot	allocate	the
space	or	you	pass	0	for	the
Memory	Block	Size	parameter,	this
parameter	returns	VI_NULL	and
the	function	returns	an	error.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_ApplyDefaultSetup
Usage
ViStatus	Ivi_ApplyDefaultSetup(ViSession	vi);

Purpose

This	function	applies	the	default	attribute	setup	you	specify	in	the	Ivi
Configuration	file.The	specific	driver	should	call	this	function	after
completely	initializing	a	new	session.
This	function	has	no	effect	on	the	instrument	session	unless	the
application	initializes	the	driver	using	an	IVI	class	driver,	or	unless	the
application	initializes	the	specific	driver	using	an	IVI	logical	name.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AttachToConfigStoreHandle
Usage
ViStatus	Ivi_AttachToConfigStoreHandle	(IviConfigStoreHandle	handle,
ViBoolean	discardExistingHandle);

Purpose
Normally,	the	IVI	engine	creates	and	owns	an	internal	instance	of	the	IVI
Configuration	Server.	Use	this	function	to	specify	that	the	IVI	engine
should	use	an	IVI	Configuration	Server	instance	that	you	create	and	own.
To	use	this	function,	you	must	first	acquire	a	handle	from	the	IVI
Configuration	Server	C	API.
During	the	period	of	time	in	which	the	IVI	engine	uses	the	handle	that	you
specify	in	this	function,	changes	to	the	IVI	Configuration	Store	file	on	disk
are	not	recognized	by	the	IVI	engine.
Use	this	function	in	the	following	situations:

You	want	to	dynamically	create	and/or	destroy	IVI	configuration
items	in	memory	and	have	them	used	by	the	IVI	engine,	without
first	reading	the	contents	of	the	IVI	Configuration	Store	file.
You	want	ensure	that	the	IVI	engine	does	not	automatically	refresh
the	configuration	items	in	memory	when	the	Master	Configuration
Store	file	is	modified	on	disk.

Parameters
Name Type Description
handle IviConfigStorehandle The	handle	to	the	IVI

Configuration	Server
instance	that	you	want
the	IVI	engine	to	use.

Create	this	handle	using
the	IVI	Configuration
Server	C	API.

discardExistingHandle ViBoolean Specifies	whether	to
discard	the	IVI
Configuration	Server
instance	that	the	IVI
engine	uses	internally.

Pass	VI_TRUE	to
discard	the	handle.

Pass	VI_FALSE	to
prevent	the	IVI	engine
from	discarding	the
handle.	This	is	useful	if
you	are	using	an	IVI
Configuration	Server
instance	that	you
obtained	from	a	previous
call	to
Ivi_GetConfigStoreHandle.
If	you	pass	VI_FALSE	for
this	parameter,	you	must
discard	the	handle
yourself.	

Default	Value:	VI_TRUE

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_AttributeIsCached
Usage
ViStatus	Ivi_AttributeIsCached(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViBoolean*	cached)

Purpose;

This	function	indicates	whether	the	IVI	engine	believes	that	the	cache
value	of	the	attribute	accurately	reflects	the	state	of	the	instrument.
The	function	returns	VI_FALSE	if	the	IVI_VAL_NEVER_CACHE	flag	for
the	attribute	is	set,	there	is	no	value	in	the	cache,	or	the	cache	value	has
been	invalidated.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

cached ViBoolean* Indicates	whether	the	IVI	engine
believes	that	the	cache	value	of	the
attribute	accurately	reflects	the	state	of

the	instrument.
Values:

(1)
VI_TRUE:

Current	cache	value
reflects	the	instrument
state.

(0)
VI_FALSE:

Current	cache	value	might
not	reflect	the	instrument
state.

This	value	is	VI_FALSE	if	the
IVI_VAL_NEVER_CACHE	flag	for	the
attribute	is	set,	there	is	no	value	in	the
cache,	or	the	cache	value	had	been
invalidated.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_BuildChannelTable
Usage
ViStatus	Ivi_BuildChannelTable	(ViSession	vi,	ViChar
defaultChannelsStringsList[],	ViBoolean	allowUnknownChannelStrings,
Ivi_ValidateChannelStringFunc	chanStringValidationFunction);

Purpose

This	function	creates	the	initial	channel	table	for	an	IVI	session.	A
channel	table	consists	of	the	channel	strings	that	are	valid	for	the
instrument	session.	When	you	create	attributes	with	the	Ivi_AddAttribute
functions,	you	set	the	IVI_VAL_MULTI_CHANNEL	flag	for	attributes	that
have	different	values	for	each	channel.	You	use	this	function	to	specify
the	set	of	channels.
You	must	call	Ivi_BuildChannelTable	in	your	PREFIX_IviInit	function.	If	you
call	it	again	at	a	later	point,	it	discards	the	old	channel	table	and	builds	a
new	one.	To	add	channel	strings	to	an	existing	channel	table,	call
Ivi_AddToChannelTable.	To	restrict	an	attribute	to	a	subset	of	channels,
call	Ivi_RestrictAttrToChannels.
The	IVI	engine	maintains	the	channel	table	for	the	session.	If	the	user
defines	any	virtual	channel	names	in	the	configuration	store,	the	IVI
engine	associates	the	virtual	names	with	the	entries	in	the	table.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you

obtain	from
Ivi_SpecificDriverNew
handle	identifies	a	particular
IVI	session.

DefaultChannelsStringsList ViChar[] Pass	a	single	string	containing
a	list	of	the	strings	that
represent	the	channels	of	the
instrument.	Separate	the
channel	strings	with	commas.
You	can	include	spaces	after
the	commas.
For	example,	pass	"1,2"	if	the
instrument	has	two	channels
and	your	driver	accepts	"1"	or
"2"	as	the	channel	string.

allowUnknownChannelStrings ViBoolean Set	this	control	to	VI_TRUE	if
you	want	to	allow	users	to
pass	channel	
not	in	the	channel	table	to
your	instrument	driver
functions.	
VI_TRUE	for	this	parameter,
you	must	pass	a	
value	for	the	Chan	String
Validation	Function	parameter.
In	drivers	for	typical
instruments,	pass	VI_FALSE
for	this	parameter.

chanStringValidationFunction Ivi_ValidateChannelStringFunc The	ivi.h	include	file	defines
the

Ivi_ValidateChannelStringFunc
typedef	for	this	prototype.	
the	channel	string	is	not	a
valid	channel	name,	your
callback	
VI_FALSE	in	the	*isValid
parameter.	
string	represents	a	valid
channel,	the	callback	
must	return	VI_TRUE	in	the
*isValid	parameter.	The	IVI
engine	then	adds	this	channel
string	to	the	channel	table
after	the	callback	
returns.	
initializes	the	session	through
an	IVI	class	driver,	the	IVI
engine	automatically	applies
the	default	
channel.	
channel	string	to	the	channel
table	inside	the	
function	explicitly.	
this	if	you	want	to	exclude	
channel	from	one	or	more
attributes.	
Ivi_AddToChannelTable,	
then	call
Ivi_RestrictAttrToChannels	for
every	attribute	you	want	
exclude	from	using	the	new
channel.	
Ivi_ApplyDefaultSetup
function.	
Ivi_ApplyDefaultSetup,	the	IVI
engine	does	it	for	you.	
pass	VI_FALSE	for	the	Allow
Unknown	Channel	Strings
parameter,	

this	parameter.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_BuildRepCapTable
Usage
ViStatus	Ivi_BuildRepCapTable(ViSession	vi,	ViChar	repeatedCapabilityName[
],	ViChar	Identifiers[]);

Purpose
This	function	creates	a	repeated	capability	table	for	an	IVI	session.	A
repeated	capability	table	consists	of	a	name	that	identifies	the	repeated
capability	and	the	identifier	strings	that	are	valid	for	the	instrument
session.	When	you	create	attributes	with	the	Ivi_AddRepeatedAttribute
functions,	you	set	the	Repeated	Capability	parameter	to	the	name	of	the
repeated	capability	to	which	the	attribute	applies.
The	repeated	capability	table	must	be	created	before	attributes	can	be
added	for	the	repeated	capability.	To	add	identifier	strings	to	an	existing
repeated	capability	table,	call	Ivi_AddToRepCapTable.	To	restrict	an
attribute	to	a	subset	of	repeated	capability	identifiers,	call
Ivi_RestrictAttrToInstances.	If	you	call	this	function	more	than	once	for	the
same	repeated	capability,	the	function	will	return	the
IVI_ERROR_REPEATED_CAPABILITY_ALREADY_EXISTS	error.
The	IVI	engine	maintains	the	repeated	capability	table	for	the	session.	If
the	user	defines	any	virtual	repeated	capability	names	in	the
configuration	store,	the	IVI	engine	associates	the	virtual	names	with	the
entries	in	the	table.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you

obtain	from	Ivi_SpecificDriverNew.
The	handle	identifies	a	particular
IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing	the	name
of	the	repeated	capability	on
which	to	operate.	For	instance,	if
you	are	working	with	the	table	of
channel	names,	pass	in	the	string
"Channel".

Identifiers ViChar[] Pass	a	string	containing	a	list	of
additional	repeated	capability
identifiers	you	want	to	add	to	the
repeated	capability	table.	You
must	separate	repeated	capability
identifiers	with	commas.	You	can
include	spaces	after	the	commas.
For	example,	to	add	"3"	and	"4"
as	valid	identifiers	for	the
repeated	capability,	pass	"3,	4".

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CheckAttributeViAddr
Usage
ViStatus	Ivi_CheckAttributeViAddr(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViAddr	attributeValue);

Purpose

This	function	checks	the	validity	of	a	value	you	specify	for	a	ViInt32
attribute.	The	function	performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	you	provide	a	check	callback,
the	function	invokes	the	callback	to	validate	the	value.	If	you	do
not	provide	a	check	callback	but	you	provide	a	range	table	or	a
range	table	callback,	the	function	invokes	the	default	IVI	check
callback	to	validate	the	value.	If	the	value	is	invalid,	the	function
returns	an	error.	If	the	attribute	has	no	range	table	or	check
callback,	the	function	assumes	the	value	is	valid.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViAddr Pass	the
value
which	you
want	to
verify	as	a
valid	value
for	the
attribute
given	the
current
settings	of
the
instrument
session.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control

has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CheckAttributeViBoolean
Usage
ViStatus	Ivi_CheckAttributeViBoolean(ViSession	vi,	ViChar
repeatedCapability[],	ViAttr	attributeID,	ViInt32	optionFlags,	ViBoolean
attributeValue);

Purpose

This	function	checks	the	validity	of	a	value	you	specify	for	a	ViBoolean
attribute.	The	function	performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	you	provide	a	check	callback	for
the	attribute,	the	function	invokes	the	check	callback	to	validate
the	value.	If	the	value	is	invalid,	the	function	returns	an	error.	If	the
attribute	has	no	check	callback,	the	function	assumes	the	value	is
valid.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViBoolean Pass	the
value
which	you
want	to
verify	as	a
valid	value
for	the
attribute
given	the
current
settings	of
the
instrument
session.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control

has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CheckAttributeViInt32
Usage
ViStatus	Ivi_CheckAttributeViInt32(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViInt32	attributeValue);

Purpose

This	function	checks	the	validity	of	a	value	you	specify	for	a	ViInt32
attribute.	The	function	performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	you	provide	a	check	callback,
the	function	invokes	the	callback	to	validate	the	value.	If	you	do
not	provide	a	check	callback	but	you	provide	a	range	table	or	a
range	table	callback,	the	function	invokes	the	default	IVI	check
callback	to	validate	the	value.	If	the	value	is	invalid,	the	function
returns	an	error.	If	the	attribute	has	no	range	table	or	check
callback,	the	function	assumes	the	value	is	valid.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViInt32 Pass	the
value
which	you
want	to
verify	as	a
valid	value
for	the
attribute
given	the
current
settings	of
the
instrument
session.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control

has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CheckAttributeViInt64
Usage
ViStatus	Ivi_CheckAttributeViInt64(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViInt64	attributeValue);

Purpose

This	function	checks	the	validity	of	a	value	you	specify	for	a	ViInt64
attribute.	The	function	performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	you	provide	a	check	callback,
the	function	invokes	the	callback	to	validate	the	value.	If	you	do
not	provide	a	check	callback	but	you	provide	a	range	table	or	a
range	table	callback,	the	function	invokes	the	default	IVI	check
callback	to	validate	the	value.	If	the	value	is	invalid,	the	function
returns	an	error.	If	the	attribute	has	no	range	table	or	check
callback,	the	function	assumes	the	value	is	valid.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	you	specify	is	based	on	a
repeated	capability,	pass	a	repeated
capability	identifier.	You	can	pass	one	of
the	identifiers	strings	that	the	specific
instrument	driver	defines,	or	a	virtual
name	the	end-user	defines	in	the
configuration	file.
If	the	attribute	you	specify	is	not	based
on	a	repeated	capability,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines

IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\

(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViInt64 Pass	the
value
which	you
want	to
verify	as	a
valid	value
for	the
attribute
given	the
current
settings	of
the
instrument
session.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control

has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CheckAttributeViReal64
Usage
ViStatus	Ivi_CheckAttributeViReal64(ViSession	vi,	ViChar	repeatedCapability[
],	ViAttr	attributeID,	ViInt32	optionFlags,	ViReal64	attributeValue);

Purpose

This	function	checks	the	validity	of	a	value	you	specify	for	a	ViReal64
attribute.	The	function	performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	you	provide	a	check	callback,
the	function	invokes	the	callback	to	validate	the	value.	If	you	do
not	provide	a	check	callback	but	you	provide	a	range	table	or	a
range	table	callback,	the	function	invokes	the	default	IVI	check
callback	to	validate	the	value.	If	the	value	is	invalid,	the	function
returns	an	error.	If	the	attribute	has	no	range	table	or	check
callback,	the	function	assumes	the	value	is	valid.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViReal64 Pass	the
value
which	you
want	to
verify	as	a
valid	value
for	the
attribute
given	the
current
settings	of
the
instrument
session.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control

has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CheckAttributeViSession
Usage
ViStatus	Ivi_CheckAttributeViSession(ViSession	vi,	ViChar	repeatedCapability[
],	ViAttr	attributeID,	ViInt32	optionFlags,	ViSession	attributeValue);

Purpose

This	function	checks	the	validity	of	a	value	you	specify	for	a	ViSession
attribute.	The	function	performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	you	provide	a	check	callback	for
the	attribute,	the	function	invokes	the	check	callback	to	validate
the	value.	If	the	value	is	invalid,	the	function	returns	an	error.	If	the
attribute	has	no	check	callback,	the	function	assumes	the	value	is
valid.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViSession Pass	the
value
which	you
want	to
verify	as	a
valid	value
for	the
attribute
given	the
current
settings	of
the
instrument
session.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control

has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CheckAttributeViString
Usage
ViStatus	Ivi_CheckAttributeViString(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViChar	attributeValue[]);

Purpose

This	function	checks	the	validity	of	a	value	you	specify	for	a	ViString
attribute.	The	function	performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	you	provide	a	check	callback	for
the	attribute,	the	function	invokes	the	check	callback	to	validate
the	value.	If	the	value	is	invalid,	the	function	returns	an	error.	If	the
attribute	has	no	check	callback,	the	function	assumes	the	value	is
valid.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViChar[
]

Pass	the
value
which	you
want	to
verify	as	a
valid	value
for	the
attribute
given	the
current
settings	of
the
instrument
session.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control

has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CheckBooleanRange
Usage
ViStatus	Ivi_CheckBooleanRange(ViBoolean	value,	ViStatus	errorCode);

Purpose

This	function	verifies	that	the	ViBoolean	value	you	specify	is	either
VI_TRUE	(1)	or	VI_FALSE	(0).
If	the	value	is	not	VI_TRUE	or	VI_FALSE,	the	function	returns	the	error
code	you	specify.

Parameters
Name Type Description
value ViBoolean Specify	the	value	you	want	to	check.

errorCode ViStatus Specify	the	error	code	the	function	returns	if	the
value	you	specify	is	not	VI_TRUE	or	VI_FALSE.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CheckNumericRange
Usage
ViStatus	Ivi_CheckNumericRange(ViReal64	value,	ViReal64	minimum,
ViReal64	maximum,	ViStatus	errorCode);

Purpose

This	function	verifies	that	a	ViInt32	or	ViReal64	value	falls	within	the	a
range	you	specify.
If	it	the	value	does	not	fall	with	the	range,	the	function	returns	the	error
code	you	specify.	The	range	is	inclusive.	In	other	words,	the	function
returns	the	error	code	if	the	value	is	less	than	the	minimum	value	or
greater	than	the	maximum	value.	When	you	use	this	function	on	a
parameter	to	a	user-callable	function	in	your	instrument	driver,	use	the
viCheckParm	macro	around	this	function.
The	following	example	shows	how	to	use	the	viCheckParm	macro	around
this	function:	
viCheckParm(Ivi_CheckNumericRange(parmVal,min,max,errorCode)	,
parmPosition,	parmName);
In	this	example,	parmPosition	is	the	1-based	position	of	the	parameter
in	the	parameter	list	of	the	user-callable	function,	and	parmName	is	a
string	that	contains	the	name	of	the	parameter.	Ivi_CheckNumericRange
stores	the	errorCode	you	pass	to	it	as	the	primary	error	code.
viCheckParm	converts	the	parmPosition	to	one	of	the	VXIplug&play	error
codes	for	invalid	parameters	and	stores	it	as	the	secondary	error	code.
It	stores	the	parmName	as	the	error	elaboration	string.

Parameters
Name Type Description
value ViReal64 Specify	the	value	you	want	to	check.

minimum ViReal64 Specify	the	minimum	value	of	the	range.

maximum ViReal64 Specify	the	maximum	value	of	the	range.

errorCode ViStatus Specify	the	error	code	the	function	returns	if	the
value	you	specify	does	not	fall	within	the	range
you	specify.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_ClearErrorInfo
Usage
ViStatus	Ivi_ClearErrorInfo(ViSession	vi);

Purpose

This	function	clears	the	error	information	for	the	current	execution	thread
and	the	IVI	session	you	specify.	If	you	pass	VI_NULL	for	the	vi
parameter,	this	function	clears	the	error	information	only	for	the	current
execution	thread.
Instrument	drivers	export	this	function	to	the	end-user	through	the
PREFIX_ClearError	function.	Normally,	the	error	information	describes	the
first	error	that	occurred	since	the	end-user	last	called
PREFIX_GetErrorInfo	or	PREFIX_ClearError.
The	error	information	includes	a	primary	error	code,	secondary	code
error,	and	an	error	elaboration	string.	For	a	particular	session,	this
information	is	the	same	as	the	values	held	in	the	following	attributes:
IVI_ATTR_PRIMARY_ERROR	or	PREFIX_ATTR_PRIMARY_ERROR
IVI_ATTR_SECONDARY_ERROR	or
PREFIX_ATTR_SECONDARY_ERROR
IVI_ATTR_ERROR_ELABORATION	or
PREFIX_ATTR_ERROR_ELABORATION
The	IVI	engine	also	maintains	this	error	information	separately	for	each
thread.	This	is	useful	if	you	do	not	have	a	session	handle	to	pass	to
Ivi_SetErrorInfo	or	Ivi_GetErrorInfo,	which	occurs	when	a	call	to
Ivi_SpecificDriverNew	fails.
This	function	sets	the	primary	and	secondary	error	codes	to	VI_SUCCESS
(0),	and	sets	the	error	elaboration	string	to	".
Avoid	calling	this	function	except	to	implement	the	PREFIX_ClearError
function.	Normally,	it	is	the	responsibility	of	the	end-user	to	decide	when
to	clear	the	error	information.	Ivi_GetErrorInfo,	which	the	end-user	calls
through	PREFIX_GetErrorInfo,	always	clears	the	error	information.

Parameters
Name Type Description
vi ViSession To	clear	the	error	information	for	a	particular	IVI

session,	pass	the	ViSession	handle	that	you	obtain
from	Ivi_SpecificDriverNew.	When	you	pass	a
ViSession	handle,	the	function	also	clears	the	error
information	for	the	current	thread.
To	clear	only	the	error	information	for	the	current
thread,	pass	VI_NULL.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_ClearInstrSpecificErrorQueue
Usage
ViStatus	Ivi_ClearInstrSpecificErrorQueue(ViSession	vi);

Purpose

This	function	removes	all	entries	from	the	instrument-specific	error
queue.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_ClearInterchangeWarnings
Usage
ViStatus	Ivi_ClearInterchangeWarnings(ViSession	vi);

Purpose

The	specific	driver	performs	interchangeability	checking	if	the
IVI_ATTR_INTERCHANGE_CHECK	attribute	is	set	to	VI_TRUE.	This
function	clears	the	list	of	current	interchange	warnings.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CoerceBoolean
Usage
ViStatus	Ivi_CoerceBoolean(ViBoolean*	value);

Purpose

This	function	coerces	a	value	you	specify	to	a	valid	ViBoolean	value.	If
the	value	is	non-zero,	the	function	changes	it	to	VI_TRUE	(1).

Parameters
Name Type Description
value ViBoolean* Pass	the	address	of	the	value	you	want	to	coerce.	If

the	value	is	non-zero,	the	function	changes	it	to
VI_TRUE	(1).

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CoerceChannelName
Usage
ViStatus	Ivi_CoerceChannelName(ViSession	vi,	ViChar	ChannelName[],
ViConstString*	ChannelString);

Purpose

If	your	driver	supports	multiple	channels,	you	must	call
Ivi_CoerceChannelName	in	driver	functions	that	use	the	channel	string
directly.	When	you	call	an	Ivi_SetAttribute,	Ivi_GetAttribute,	or
Ivi_CheckAttribute	function.	the	IVI	engine	calls	Ivi_CoerceChannelName
internally	before	invoking	the	read,	write,	check,	coerce,	compare,	and
range	table	callback	functions.
To	be	valid,	Channel	Name	must	be	one	of	the	following:

VI_NULL,	in	which	case	the	function	sets	the	Channel	String
parameter	to	VI_NULL.
An	empty	string,	in	which	case	the	function	returns	the	address	of
that	empty	string	in	the	Channel	String	parameter.
A	specific	driver	channel	string.	The	specific	instrument	driver
specifies	the	valid	channel	strings	using	Ivi_BuildChannelTable	or
Ivi_AddToChannelTable.	If	you	pass	one	of	these	strings,	the
function	returns	the	address	of	the	channel	string	in	the	channel
table	that	the	IVI	engine	maintains	for	the	session.
A	virtual	channel	name	that	the	end-user	specifies	in	the
configuration	store.	Virtual	channel	names	are	valid	only	if	the	end-
user	opens	the	session	from	a	class	driver	and	assigns	a	valid
specific	driver	channel	string	to	the	virtual	name	in	the
configuration	store.	If	you	pass	a	valid	virtual	name	to	this	function,
the	function	returns	the	address	of	the	corresponding	specific
driver	channel	string	in	the	channel	table	that	the	IVI	engine
maintains	for	the	session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

ChannelName ViChar[] Pass	the	channel	name	that	you	want	to
verify	and	convert	to	a	specific	driver
channel	name	string.	Usually,	this	is	the
string	that	the	end-user	passes	into	a
specific	driver	function.
The	parameter	accepts	VI_NULL,	an
empty	string,	a	specific	driver-defined
channel	name	identifier,	or	a	virtual
channel	name	identifier.

ChannelString ViConstString* Returns	a	pointer	to	a	channel	string	in
the	channel	table	that	the	IVI	engine
maintains	for	the	session.
Do	not	modify	the	contents	of	the
channel	string.
If	you	pass	VI_NULL	in	the	Channel
Name	Identifier	parameter,	the	function
returns	VI_NULL	in	this	parameter.	If
you	pass	an	empty	string,	the	function
returns	the	address	of	the	empty	string.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CoerceRepCapName
Usage
ViStatus	Ivi_CoerceRepCapName(ViSession	vi,	ViChar
repeatedCapabilityName[],	ViChar	repeatedCapabilityIdentifier[],
ViConstString*	repeatedCapabilityString);

Purpose

This	function	verifies	that	the	Repeated	Capability	Name	parameter	you
pass	is	valid	and	returns	a	pointer	to	the	corresponding	specific	driver
repeated	capability	string	in	the	Repeated	Capability	String	output
parameter.
If	your	driver	supports	multiple	repeated	capability	instances,	you	must
call	Ivi_CoerceRepCapName	in	driver	functions	that	use	the	string	directly.
When	you	call	an	Ivi_SetAttribute,	Ivi_GetAttribute,	or	Ivi_CheckAttribute
function,	the	IVI	engine	coerces	the	name	internally	before	invoking	the
read,	write,	check,	coerce,	compare,	and	range	table	callback	functions.
To	be	valid,	Repeated	Capability	Name	must	be	one	of	the	following:

VI_NULL,	in	which	case	the	function	sets	the	Repeated	Capability
String	parameter	to	VI_NULL.
An	empty	string,	in	which	case	the	function	returns	the	address	of
that	empty	string	in	the	Repeated	Capability	String	parameter.
A	specific	driver	repeated	capability	string.	The	specific	instrument
driver	specifies	the	valid	repeated	capability	strings	using
Ivi_BuildRepCapTable	or	Ivi_AddToRepCapTable.	If	you	pass	one	of
these	strings,	the	function	returns	the	address	of	the	repeated
capability	string	in	the	repeated	capability	table	that	the	IVI	engine
maintains	for	the	session.
A	virtual	repeated	capability	name	that	the	end-user	specifies	in
the	configuration	file.	Virtual	repeated	capability	names	are	valid
only	if	the	the	end-user	opens	the	session	from	a	class	driver	and
assigns	a	valid	specific	driver	repeated	capability	string	to	the
virtual	name	in	the	configuration	file.	If	you	pass	a	valid	virtual
name	to	this	function,	the	function	returns	the	address	of	the
corresponding	specific	driver	repeated	capability	string	in	the
repeated	capability	table	that	the	IVI	engine	maintains	for	the
session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle

that	you	obtain	from
Ivi_SpecificDriverNew.
The	handle	identifies	a
particular	IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing
the	name	of	the	repeated
capability	on	which	to
operate.	For	instance,	if
you	are	working	with	the
table	of	channel	names,
pass	in	the	string
"Channel".

repeatedCapabilityIdentifier ViChar[] Pass	the	repeated
capability	name	that	you
want	to	verify	and	convert
to	a	specific	driver
repeated	capability	string.
Usually,	this	is	the	string
that	the	end-user	passes
into	a	specific	driver
function.
The	parameter	accepts
VI_NULL,	an	empty
string,	a	specific	driver-
defined	repeated
capability	identifier,	or	a
virtual	repeated	capability
identifier.

repeatedCapabilityString ViConstString* Returns	a	pointer	to	a
repeated	capability

identifier	string	in	the
repeated	capability	table
that	the	IVI	engine
maintains	for	the	session.
Do	not	modify	the
contents	of	the	repeated
capability	string.
If	you	pass	VI_NULL	in
the	Repeated	Capability
Identifier	parameter,	the
function	returns	VI_NULL
in	this	parameter.	If	you
pass	an	empty	string,	the
function	returns	the
address	of	the	empty
string.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_CompareWithPrecision
Usage
ViStatus	Ivi_CompareWithPrecision(ViInt32	digitsofPrecision,	ViReal64	a,
ViReal64	b,	ViInt32*	result);

Purpose

This	function	compares	two	ViReal64	values	using	the	number	of	decimal
digits	of	precision	you	specify.
If	the	two	values	are	not	exactly	equal,	the	function	uses	the	following
logic,	where	a	and	b	are	the	values	you	want	to	compare,	and	d	is	the
digits	of	precision	you	specify.
if	a	==	0
		-(d-1)
if	|b|	<	10		then	a	==	b.
else	/*	a	!=	0	*/
			|a-b|					-(d-1)
if	-----	<	10				then	a	==	b
				|a|

The	function	returns	the	following	values.
	0		if	a	==	b
-1		if	a	<	b
	1		if	a	>	b

Parameters
Name Type Description
digitsofPrecision ViInt32 Specify	the	number	of	decimal	digits	of

precision	you	want	to	use	to	compare	the
two	ViReal64	values.
Valid	Range:	0,	or	1	to	14
If	you	pass	0,	the	function	sets	the
precision	to	the	IVI	default	for	this	value,
which	is	14.

a ViReal64 Specify	the	first	value	you	want	to
compare.

b ViReal64 Specify	the	second	value	you	want	to
compare.

result ViInt32* Returns	the	results	of	the	comparison.
Return	values:
	0	(if	a	==	b)
	1	(if	a	>	b)
-1	(if	a	<	b)

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DefaultCheckCallbackViInt32
Usage
ViStatus	Ivi_DefaultCheckCallbackViInt32(ViSession	vi,	ViChar
repeatedCapability[],	ViAttr	attributeID,	ViInt32	attributeValue);

Purpose

This	function	performs	the	default	actions	for	checking	the	validity	of	a
ViInt32	attribute	value.	The	IVI	engine	automatically	installs	this	callback
when	you	call	Ivi_AddAttributeViInt32.
If	you	want	to	add	to	the	actions	of	this	callback,	install	your	own	callback
with	Ivi_SetAttrCheckCallbackViInt32,	and	call	this	function	from	your
callback.
This	function	does	the	following:

1.	 Calls	Ivi_GetAttrRangeTable	to	obtain	the	range	table	for	the
attribute.	If	the	range	table	is	invalid,	the	function	returns	an	error.
If	there	is	no	range	table,	the	function	returns	VI_SUCCESS.

2.	 Calls	Ivi_GetViInt32EntryFromValue	to	find	an	entry	that	matches
the	value.

3.	 Returns	VI_SUCCESS	if	it	can	find	an	entry.	Otherwise	it	returns
an	error.
Note		Do	not	call	this	function	directly	unless	you	are	calling	it	from
your	own	callback	or	you	have	already	called	Ivi_LockSession.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeValue ViInt32 Specify	the	value	you	want	to	validate.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DefaultCheckCallbackViInt64
Usage
ViStatus	Ivi_DefaultCheckCallbackViInt64(ViSession	vi,	ViChar
repeatedCapability[],	ViAttr	attributeID,	ViInt64	attributeValue);

Purpose

This	function	performs	the	default	actions	for	checking	the	validity	of	a
ViInt64	attribute	value.	The	IVI	engine	automatically	installs	this	callback
when	you	call	Ivi_AddAttributeViInt64.
If	you	want	to	add	to	the	actions	of	this	callback,	install	your	own	callback
with	Ivi_SetAttrCheckCallbackViInt64,	and	call	this	function	from	your
callback.
This	function	does	the	following:

1.	 Calls	Ivi_GetAttrRangeTable	to	obtain	the	range	table	for	the
attribute.	If	the	range	table	is	invalid,	the	function	returns	an	error.
If	there	is	no	range	table,	the	function	returns	VI_SUCCESS.

2.	 Calls	Ivi_GetViInt64EntryFromValue	to	find	an	entry	that	matches
the	value.

3.	 Returns	VI_SUCCESS	if	it	can	find	an	entry.	Otherwise	it	returns
an	error.
Note		Do	not	call	this	function	directly	unless	you	are	calling	it	from
your	own	callback	or	you	have	already	called	Ivi_LockSession.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	you	specify	is	based	on	a
repeated	capability,	pass	a	repeated
capability	identifier.	You	can	pass	one	of
the	identifiers	strings	that	the	specific
instrument	driver	defines,	or	a	virtual
name	the	end-user	defines	in	the
configuration	file.
If	the	attribute	you	specify	is	not	based
on	a	repeated	capability,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines

IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\

(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeValue ViInt64 Specify	the	value	you	want	to	validate.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DefaultCheckCallbackViReal64
Usage
ViStatus	Ivi_DefaultCheckCallbackViReal64(ViSession	vi,	ViChar
repeatedCapability[],	ViAttr	attributeID,	ViReal64	attributeValue);

Purpose

This	function	performs	the	default	actions	for	checking	the	validity	of	a
ViReal64	attribute	value.	The	IVI	engine	automatically	installs	this
callback	when	you	call	Ivi_AddAttributeViReal64.
If	you	want	to	add	to	the	actions	of	this	callback,	install	your	own	callback
with	Ivi_SetAttrCheckCallbackViReal64,	and	call	this	function	from	your
callback.
This	function	does	the	following:

1.	 Calls	Ivi_GetAttrRangeTable	to	obtain	the	range	table	for	the
attribute.	If	the	range	table	is	invalid,	the	function	returns	an	error.
If	there	is	no	range	table,	the	function	returns	VI_SUCCESS.

2.	 Calls	Ivi_GetViReal64EntryFromValue	to	find	an	entry	that	matches
the	value.

3.	 Returns	VI_SUCCESS	if	it	can	find	an	entry.	Otherwise	it	returns
an	error.
Note		Do	not	call	this	function	directly	unless	you	are	calling	it	from
your	own	callback	or	you	have	already	called	Ivi_LockSession.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeValue ViReal64 Specify	the	value	you	want	to	validate.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DefaultCoerceCallbackViBoolean
Usage
ViStatus	Ivi_DefaultCoerceCallbackViBoolean(ViSession	vi,	ViChar
repeatedCapability[],	ViAttr	attributeID,	ViBoolean	attributeValue,	ViBoolean*
coercedValue);

Purpose

This	function	performs	the	default	actions	for	coercing	a	value	for	a
ViBoolean	attribute.	The	IVI	engine	automatically	installs	this	callback
when	you	call	Ivi_AddAttributeViBoolean.
You	can	install	your	own	coerce	callback	by	calling
Ivi_SetAttrCoerceCallbackViBoolean.
This	function	sets	the	Coerced	Value	parameter	to	VI_TRUE	(1)	if	the
value	you	specify	as	the	Attribute	Value	parameter	is	non-zero.

Note		Do	not	call	this	function	directly	unless	you	are	calling	it	from
your	own	callback	or	you	have	already	called	Ivi_LockSession.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeValue ViBoolean Specify	the	value	you	want	to	coerce.

coercedValue ViBoolean* Returns	the	coerced	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DefaultCoerceCallbackViInt32
Usage
ViStatus	Ivi_DefaultCoerceCallbackViInt32(ViSession	vi,	ViChar
repeatedCapability[],	ViAttr	attributeID,	ViInt32	attributeValue,	ViInt32*
coercedValue);

Purpose

This	function	performs	the	default	actions	for	coercing	a	value	for	a
ViInt32	attribute.	The	IVI	engine	automatically	installs	this	callback	when
you	call	Ivi_AddAttributeViInt32.
You	can	install	your	own	coerce	callback	by	calling
Ivi_SetAttrCoerceCallbackViInt32.
This	function	does	the	following:

1.	 Calls	Ivi_GetAttrRangeTable	to	obtain	the	range	table	for	the
attribute.	If	the	range	table	is	invalid,	the	function	returns	an	error.

2.	 If	there	is	no	range	table	or	its	type	is	not	IVI_VAL_COERCED,	the
function	sets	the	Coerced	Value	parameter	to	the	value	you
passed	in	as	the	Attribute	Value	parameter.

3.	 Calls	Ivi_GetViInt32EntryFromValue	to	find	an	entry	that	matches
the	value.

4.	 If	it	can	find	an	entry,	it	sets	Coerced	Value	to	the	coercedValue
field	in	the	range	table	entry	and	returns	VI_SUCCESS.	Otherwise
it	returns	an	error.
Note		Do	not	call	this	function	directly	unless	you	are	calling	it	from
your	own	callback	or	you	have	already	called	Ivi_LockSession.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeValue ViInt32 Specify	the	value	you	want	to	coerce.

coercedValue ViInt32* Returns	the	value	to	which	the	function

coerces	the	input	value	based	on	the
range	table	for	the	attribute.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DefaultCoerceCallbackViInt64
Usage
ViStatus	Ivi_DefaultCoerceCallbackViInt64(ViSession	vi,	ViChar
repeatedCapability[],	ViAttr	attributeID,	ViInt64	attributeValue,	ViInt64*
coercedValue);

Purpose

This	function	performs	the	default	actions	for	coercing	a	value	for	a
ViInt64	attribute.	The	IVI	engine	automatically	installs	this	callback	when
you	call	Ivi_AddAttributeViInt64.
You	can	install	your	own	coerce	callback	by	calling
Ivi_SetAttrCoerceCallbackViInt64.
This	function	does	the	following:

1.	 Calls	Ivi_GetAttrRangeTable	to	obtain	the	range	table	for	the
attribute.	If	the	range	table	is	invalid,	the	function	returns	an	error.

2.	 If	there	is	no	range	table	or	its	type	is	not	IVI_VAL_COERCED,	the
function	sets	the	Coerced	Value	parameter	to	the	value	you
passed	in	as	the	Attribute	Value	parameter.

3.	 Calls	Ivi_GetViInt64EntryFromValue	to	find	an	entry	that	matches
the	value.

4.	 If	it	can	find	an	entry,	it	sets	Coerced	Value	to	the	coercedValue
field	in	the	range	table	entry	and	returns	VI_SUCCESS.	Otherwise
it	returns	an	error.
Note		Do	not	call	this	function	directly	unless	you	are	calling	it	from
your	own	callback	or	you	have	already	called	Ivi_LockSession.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	you	specify	is	based	on	a
repeated	capability,	pass	a	repeated
capability	identifier.	You	can	pass	one	of
the	identifiers	strings	that	the	specific
instrument	driver	defines,	or	a	virtual
name	the	end-user	defines	in	the
configuration	file.
If	the	attribute	you	specify	is	not	based
on	a	repeated	capability,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines

IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\

(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeValue ViInt64 Specify	the	value	you	want	to	coerce.

coercedValue ViInt64* If	the	search	succeeds,	this	parameter
returns	the	value	of	the	coercedValue
field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not	interested	in
this	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DefaultCoerceCallbackViReal64
Usage
ViStatus	Ivi_DefaultCoerceCallbackViReal64(ViSession	vi,	ViChar
repeatedCapability[],	ViAttr	attributeID,	ViReal64	attributeValue,	ViReal64*
coercedValue);

Purpose

This	function	performs	the	default	actions	for	coercing	a	value	for	a
ViReal64	attribute.	The	IVI	engine	automatically	installs	this	callback
when	you	call	Ivi_AddAttributeViReal64.
You	can	install	your	own	coerce	callback	by	calling
Ivi_SetAttrCoerceCallbackViReal64.
This	function	does	the	following:

1.	 Calls	Ivi_GetAttrRangeTable	to	obtain	the	range	table	for	the
attribute.	If	the	range	table	is	invalid,	the	function	returns	an	error.

2.	 If	there	is	no	range	table	or	its	type	is	not	IVI_VAL_COERCED,	the
function	sets	the	Coerced	Value	parameter	to	the	value	you
passed	in	as	the	Attribute	Value	parameter.

3.	 Calls	Ivi_GetViReal64EntryFromValue	to	find	an	entry	that	matches
the	value.

4.	 If	it	can	find	an	entry,	it	sets	Coerced	Value	to	the	coercedValue
field	in	the	range	table	entry	and	returns	VI_SUCCESS.	Otherwise
it	returns	an	error.
Note		Do	not	call	this	function	directly	unless	you	are	calling	it	from
your	own	callback	or	you	have	already	called	Ivi_LockSession.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

attributeValue ViReal64 Specify	the	value	you	want	to	coerce.

coercedValue ViReal64* Returns	the	value	to	which	the	function

coerces	the	input	value	based	on	the
range	table	for	the	attribute.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DefaultCompareCallbackViReal64
Usage
ViStatus	Ivi_DefaultCompareCallbackViReal64(ViSession	vi,	ViChar
repeatedCapability[],	ViAttr	attributeID,	ViReal64	a,	ViReal64	b,	ViInt32*
result);

Purpose

This	function	performs	the	default	compare	actions	for	a	ViReal64
attribute.	The	IVI	engine	invokes	the	compare	callback	to	compare	the
cache	values	it	obtains	from	the	instrument	against	new	values	you	set
the	attribute	to.	If	the	compare	callback	determines	that	the	two	values
are	equal,	the	IVI	engine	does	not	call	the	write	callback	for	the	attribute.
The	IVI	engine	automatically	installs	this	callback	when	you	call
Ivi_AddAttributeViReal64.	The	IVI	engine	installs	the	default	compare
callback	rather	than	comparing	based	on	strict	equality	because	of
differences	between	computer	and	instrument	floating	point
representations.
You	can	install	your	own	compare	callback	by	calling
Ivi_SetAttrCompareCallbackViReal64.
If	the	two	values	are	not	exactly	equal,	the	function	uses	the	following
logic,	where	a	and	b	are	the	values	you	want	to	compare,	and	d	is	the
digits	of	precision	you	specify	when	you	call	Ivi_AddAttributeViReal64	or
Ivi_SetAttrComparePrecision.

			if	a	==	0																			-(d-1)																		if		|b|	<	10												then	a	==	b.			else	/*	a	!=	0	*/														|a-b|					-(d-1)								if		-----	<	10										then	a	==	b												|a|													

Note		Do	not	call	this	function	directly	unless	you	are	calling	it	from
your	own	callback	or	you	have	already	called	Ivi_LockSession.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

a ViReal64 Specify	the	first	value	to	compare.
Normally,	this	is	the	new	value	to	which
you	are	trying	to	set	the	attribute.	If

there	is	a	coerce	callback	or	coerced
range	table	for	the	attribute,	the	IVI
engine	has	already	coerced	the	value.

b ViReal64 Specify	the	second	value	to	compare.
Normally,	this	is	the	current	cache	value
of	the	attribute.

result ViInt32* Returns	the	results	of	the	comparison.
Return	values:
	0	(if	a	==	b)
	1	(if	a	>	b)
-1	(if	a	<	b)

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DeleteAttribute
Usage
ViStatus	Ivi_DeleteAttribute(ViSession	vi,	ViAttr	attributeID);

Purpose

This	function	deletes	the	attribute	you	specify.	Typically,	it	is	not
necessary	for	you	to	call	this	function.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this	parameter.
The	include	file	for	a	specific	instrument	driver
defines	constant	names	for	all	of	the	user-
accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,
attributes	that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the	particular
instrument.	Each	defined	constant	name	begins
with	PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the	specific	driver
include	file	uses	the	same	constant	name	that
appears	in	ivi.h,	except	that	the	specific
instrument	prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines	IVI_ATTR_CACHE,	and
the	Fluke	45	include	file,	fl45.h,	defines	the
following	constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the	specific
driver	include	file	uses	the	same	constant	name
that	appears	in	the	instrument	class	include	file,
except	that	the	specific	instrument	prefix
replaces	the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h	defines	the
following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,	the
specific	driver	include	file	defines	a	constant
name	and	assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.	For
example,	fl45.h	defines	the	following	constant
name:
#define	FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+	3L)

For	each	attribute	that	is	private	to	an	instrument
driver,	the	instrument	driver	source	file	defines	a
constant	name	and	assigns	a	value	that	is	an
offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.	For
example,	hp34401a.c	defines	the	following
constant	name:
#define	HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE	+	1L)

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DeleteAttributeInvalidation
Usage
ViStatus	Ivi_DeleteAttributeInvalidation(ViSession	vi,	ViAttr	attributeID,	ViAttr
dependentAttributeID);

Purpose

This	function	removes	the	invalidation	dependency	relationship	between
two	attributes.	You	establish	invalidation	dependency	relationships	using
Ivi_AddAttributeInvalidation.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

dependentAttributeID ViAttr Pass	the	ID	of	the	attribute	which	is
invalidated	when	the	value	of	the	other
attribute	changes.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DequeueInstrSpecificError
Usage
ViStatus	Ivi_DequeueInstrSpecificError(ViSession	vi,	ViInt32*	instrumentError,
ViChar	errorMessage[]);

Purpose

This	function	retrieves	the	error	code	and	description	string	from	the
oldest	entry	in	the	instrument-specific	error	queue.	It	also	removes	the
entry	from	the	queue.
Use	the	instrument-specific	error	queue	if	querying	the	instrument	for	its
status	causes	the	instrument	to	lose	the	error	value.	In	your	check	status
callback,	call	Ivi_QueueInstrSpecificError	to	insert	the	instrument	error
code	in	the	queue,	and	then	return	the	IVI_ERROR_INSTR_SPECIFIC
error	code	from	the	callback.	In	your	PREFIX_error_query	function,	call
Ivi_InstrSpecificErrorQueueSize	to	determine	if	there	is	an	error	in	the
queue.	If	not,	invoke	the	check	status	callback	directly.	In	either	case,	if
there	is	an	error,	call	Ivi_DequeueInstrSpecificError	to	retrieve	it.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

instrumentError ViInt32* Returns	the	error	code	from	the	oldest
entry	in	the	instrument-specific	error
queue.
If	you	are	not	interested	in	this	value,	pass
VI_NULL.

errorMessage ViChar[] Returns	the	error	message	from	the	oldest
entry	in	the	instrument-specific	error
queue.
If	you	are	not	interested	in	this	value,	pass
VI_NULL.	Otherwise,	pass	a	ViChar	array
that	contains	at	least
IVI_MAX_MESSAGE_BUF_SIZE	(256)
bytes.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_Dispose
Usage
ViStatus	Ivi_Dispose(ViSession	vi);

Purpose

This	function	destroys	the	IVI	session,	all	of	its	attributes,	and	the
memory	resources	it	uses.
This	function	does	NOT	close	the	instrument	I/O	session.	You	must	do
that	yourself	before	calling	this	function.
You	must	unlock	the	session	before	calling	Ivi_Dispose.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_DisposeInvalidationList
Usage
void	=	Ivi_DisposeInvalidationList(IviInvalEntry*	invalidationList);

Purpose

This	function	deallocates	an	invalidation	list	you	obtain	from
Ivi_GetInvalidationList.

Parameters
Name Type Description
invalidationList IviInvalEntry* Specify	the	pointer	to	an	invalidation	list

you	obtain	from	Ivi_GetInvalidationList.

Ivi_DisposeLogicalNamesList
Usage
void	=	Ivi_DisposeLogicalNamesList(IviLogicalNameEntry*
logicalNamesList);

Purpose

This	function	deallocates	an	invalidation	list	you	obtain	from
Ivi_GetLogicalNamesList.

Parameters
Name Type Description
logicalNamesList IviLogicalNameEntry* Specify	the	pointer	to	the

logical	names	list	you	obtain
from	Ivi_GetLogicalNamesList.

Ivi_Free
Usage
ViStatus	Ivi_Free(ViSession	vi,	ViAddr	Memory_Block_Pointer);

Purpose

This	function	deallocates	a	memory	block	you	allocate	with	Ivi_Alloc.	If
you	specify	a	non-NULL	IVI	session	handle,	the	function	also	removes
the	memory	block	from	the	list	of	memory	blocks	that	the	IVI	engine
maintains	for	the	session.
For	the	vi	parameter,	you	must	specify	the	same	IVI	session	handle	that
you	pass	to	Ivi_Alloc	when	you	allocate	the	memory	block.

Parameters
Name Type Description
vi ViSession Specify	the	same	IVI	session	handle

that	you	pass	to	Ivi_Alloc	when	you
allocate	the	memory	block.
If	you	pass	VI_NULL	for	the	vi
parameter	to	Ivi_Alloc,	pass
VI_NULL	for	the	vi	parameter	to	this
function.

memoryBlockPointer ViAddr This	function	deallocates	a	memory
block	you	allocate	with	Ivi_Alloc.	If
you	specify	a	non-NULL	IVI	session
handle,	the	function	also	removes	the
memory	block	from	the	list	of	memory
blocks	that	the	IVI	engine	maintains
for	the	session.
For	the	vi	parameter,	you	must
specify	the	same	IVI	session	handle
that	you	pass	to	Ivi_Alloc	when	you
allocate	the	memory	block.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_FreeAll
Usage
ViStatus	Ivi_FreeAll(ViSession	vi);

Purpose

This	function	deallocates	all	memory	blocks	you	allocate	with	Ivi_Alloc	or
Ivi_RangeTableNew	for	the	session.
When	you	call	Ivi_Dispose	on	a	session,	it	calls	Ivi_FreeAll	for	you.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttrComparePrecision
Usage
ViStatus	Ivi_GetAttrComparePrecision(ViSession	vi,	ViAttr	attributeID,
ViInt32*	ComparePrecision);

Purpose

This	function	returns	the	degree	of	decimal	precision	the	default	IVI
compare	callback	currently	uses	for	this	attribute.	For	more	information
on	the	comparison	precision,	refer	to	Ivi_SetAttrComparePrecision.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the	same
constant	name	that	appears	in	ivi.h,
except	that	the	specific	instrument	prefix
replaces	the	IVI	prefix.	For	example,
ivi.h	defines	IVI_ATTR_CACHE,	and	the
Fluke	45	include	file,	fl45.h,	defines	the
following	constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the	same
constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM

class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

ComparePrecision ViInt32* The	degree	of	precision	the	default	IVI
compare	callback	currently	uses	for	this
attribute.
The	value	is	in	terms	of	decimal	digits	of
precision.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttributeFlags
Usage
ViStatus	Ivi_GetAttributeFlags(ViSession	vi,	ViAttr	attributeID,	IviAttrFlags*
flags);

Purpose

This	function	obtains	the	current	values	of	the	flags	for	the	attribute	you
specify.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a	particular	IVI
session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this	parameter.
The	include	file	for	a	specific	instrument	driver	defines
constant	names	for	all	of	the	user-accessible	attributes	that
apply	to	the	driver.	This	includes	attributes	that	the	IVI	engine
defines,	attributes	that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the	particular	instrument.	Each
defined	constant	name	begins	with	PREFIX_ATTR_
PREFIX	is	the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	the	specific	driver	include	file
uses	the	same	constant	name	that	appears	in	ivi.h
the	specific	instrument	prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines	IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following	constant	name:
#define	FL45_ATTR_CACHE		IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the	specific	driver	include
file	uses	the	same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that	the	specific
instrument	prefix	replaces	the	class	prefix.	For	example,	the
DMM	class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h	defines	the	following
constant	name:
#define	FL45_ATTR_RANGE		IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,	the	specific	driver
include	file	defines	a	constant	name	and	assigns	a	value	that
is	an	offset	from	IVI_SPECIFIC_PUBLIC_ATTR_BASE
example,	fl45.h	defines	the	following	constant	name:
#define	FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+	3L)

For	each	attribute	that	is	private	to	an	instrument	driver,	the
instrument	driver	source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.	For	example,
hp34401a.c	defines	the	following	constant	name:
#define	HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE	+	1L)

flags IviAttrFlags* Returns	the	current	values	of	the	flags	of	the	attribute.	You
express	the	flags	as	bits.
Valid	Values:

Bit Value Flag
0 0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE
3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE
6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

See	the	control	help	for	the	Flags	parameter	to	the
Ivi_AddAttribute	functions	for	detailed	information	on	each	flag.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttributeName
Usage
ViStatus	Ivi_GetAttributeName(ViSession	vi,	ViAttr	attributeID,	ViChar
nameBuffer[],	ViInt32	bufferSize);

Purpose

This	function	obtains	the	name	of	an	attribute.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this	parameter.
The	include	file	for	a	specific	instrument	driver
defines	constant	names	for	all	of	the	user-
accessible	attributes	that	apply	to	the	driver.
This	includes	attributes	that	the	IVI	engine
defines,	attributes	that	the	instrument	class
defines,	and	attributes	that	are	specific	to	the
particular	instrument.	Each	defined	constant
name	begins	with	PREFIX_ATTR_,	where
PREFIX	is	the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	the	specific	driver
include	file	uses	the	same	constant	name	that
appears	in	ivi.h,	except	that	the	specific
instrument	prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines	IVI_ATTR_CACHE,	and
the	Fluke	45	include	file,	fl45.h,	defines	the
following	constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the	specific
driver	include	file	uses	the	same	constant	name
that	appears	in	the	instrument	class	include	file,
except	that	the	specific	instrument	prefix
replaces	the	class	prefix.	For	example,	the
DMM	class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h	defines	the
following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,	the
specific	driver	include	file	defines	a	constant
name	and	assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.	For
example,	fl45.h	defines	the	following	constant
name:
#define	FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver	source
file	defines	a	constant	name	and	assigns	a
value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.	For
example,	hp34401a.c	defines	the	following
constant	name:
#define	HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE	+	1L)

nameBuffer ViChar[] A	buffer	into	which	the	function	copies	the
name	of	the	attribute.

bufferSize ViInt32 Specify	the	number	of	bytes	in	the	ViChar	array
you	pass	for	the	Name	Buffer	parameter.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttributeType
Usage
ViStatus	Ivi_GetAttributeType(ViSession	vi,	ViAttr	attributeID,	IviValueType*
dataType);

Purpose

This	function	obtains	the	data	type	of	an	attribute.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this	parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of	the
user-accessible	attributes	that	apply	to	the
driver.	This	includes	attributes	that	the	IVI
engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific
to	the	particular	instrument.	Each	defined
constant	name	begins	with	PREFIX_ATTR_,
where	PREFIX	is	the	specific	instrument
prefix.
For	each	IVI	engine	attribute,	the	specific
driver	include	file	uses	the	same	constant
name	that	appears	in	ivi.h,	except	that	the
specific	instrument	prefix	replaces	the	IVI
prefix.	For	example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45	include
file,	fl45.h,	defines	the	following	constant
name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the	same
constant	name	that	appears	in	the	instrument
class	include	file,	except	that	the	specific
instrument	prefix	replaces	the	class	prefix.
For	example,	the	DMM	class	include	file,
ividmm.h,	defines	IVIDMM_ATTR_RANGE,
and	fl45.h	defines	the	following	constant

name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,	the
specific	driver	include	file	defines	a	constant
name	and	assigns	a	value	that	is	an	offset
from	IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define	FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.	For
example,	hp34401a.c	defines	the	following
constant	name:
#define	HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE	+
1L)

dataType IviValueType* Returns	the	data	type	of	the	attribute	you
specify.
Values:

(1) IVI_VAL_INT32 -	ViInt32
(4) IVI_VAL_REAL64 -	ViReal64
(5) IVI_VAL_STRING -	ViString
(10) IVI_VAL_ADDR -	ViAddr
(11) IVI_VAL_SESSION -	ViSession
(13) IVI_VAL_BOOLEAN -	ViBoolean

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttributeViAddr
Usage
ViStatus	Ivi_GetAttributeViAddr(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViAddr*	attributeValue);

Purpose

This	function	obtains	the	current	value	of	the	ViInt32	attribute	you	specify.
Depending	on	the	configuration	of	the	attribute,	the	function	performs	the
following	actions:

1.	 Checks	whether	the	attribute	is	readable.	If	not,	the	function
returns	an	error.

2.	 If	the	attribute	cache	value	is	currently	valid,	the	read	callback	for
the	attribute	is	VI_NULL,	or	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION	flag	for	the
attribute	is	0,	the	function	returns	the	cache	value.

3.	 If	the	IVI_VAL_WAIT_FOR_OPC_BEFORE_READS	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

4.	 The	function	invokes	the	read	callback	for	the	attribute.	Typically,
the	callback	performs	instrument	I/O	to	obtain	a	new	value.	The
IVI	engine	stores	the	new	value	in	the	cache.

5.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.

Parameters
Name Type Description
vi ViSession Returns	a	ViSession	handle	that	you

use	to	identify	the	session	in
subsequent	function	calls.
This	function	creates	a	new	session
each	time	you	invoke	it.	This	is	useful	if
you	have	multiple	physical	instances	of
the	same	type	of	instrument.
Avoid	creating	multiple	concurrent
sessions	to	the	same	physical
instrument.	Although	you	can	create
more	than	one	IVI	session	for	the	same
resource,	it	is	best	not	to	do	so.	A	better
approach	is	to	use	same	session	in
multiple	execution	threads.	You	can	use
functions	Ivi_LockSession	and
Ivi_UnlockSession	to	protect	sections	of
code	that	require	exclusive	access	to
the	resource.

repeatedCapability ViChar[] If	the	attribute	you	specify	is	based	on	a
repeated	capability,	pass	a	repeated
capability	identifier.	You	can	pass	one	of
the	identifiers	strings	that	the	specific
instrument	driver	defines,	or	a	virtual
name	the	end-user	defines	in	the
configuration	file.
If	the	attribute	you	specify	is	not	based
on	a	repeated	capability,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle

this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.
A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you

can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViAddr* Returns
the	current
value	of
the
attribute.
Pass	the
address	of
a	ViAddr
variable.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring

up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttributeViBoolean
Usage
ViStatus	Ivi_GetAttributeViBoolean(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViBoolean*	attributeValue);

Purpose
This	function	obtains	the	current	value	of	the	ViBoolean	attribute	you
specify.	Depending	on	the	configuration	of	the	attribute,	the	function
performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	readable.	If	not,	the	function
returns	an	error.

2.	 If	the	attribute	cache	value	is	currently	valid,	the	read	callback	for
the	attribute	is	VI_NULL,	or	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION	flag	for	the
attribute	is	0,	the	function	returns	the	cache	value.

3.	 If	the	IVI_VAL_WAIT_FOR_OPC_BEFORE_READS	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

4.	 The	function	invokes	the	read	callback	for	the	attribute.	Typically,
the	callback	performs	instrument	I/O	to	obtain	a	new	value.	The
IVI	engine	stores	the	value	new	in	the	cache.

5.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViBoolean* Returns
the	current
value	of
the
attribute.
Pass	the
address	of
a
ViBoolean
variable.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you

can	bring
up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttributeViInt32
Usage
ViStatus	Ivi_GetAttributeViInt32(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViInt32*	attributeValue);

Purpose

This	function	obtains	the	current	value	of	the	ViReal64	attribute	you
specify.	Depending	on	the	configuration	of	the	attribute,	the	function
performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	readable.	If	not,	the	function
returns	an	error.

2.	 If	the	attribute	cache	value	is	currently	valid,	the	read	callback	for
the	attribute	is	VI_NULL,	or	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION	flag	for	the
attribute	is	0,	the	function	returns	the	cache	value.

3.	 If	the	IVI_VAL_WAIT_FOR_OPC_BEFORE_READS	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

4.	 The	function	invokes	the	read	callback	for	the	attribute.	Typically,
the	callback	performs	instrument	I/O	to	obtain	a	new	value.	The
IVI	engine	stores	the	new	value	in	the	cache.

5.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViInt32* Returns
the	current
value	of
the
attribute.
Pass	the
address	of
a	ViInt32
variable.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring

up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttributeViInt64
Usage
ViStatus	Ivi_GetAttributeViInt64(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViInt64*	attributeValue);

Purpose

This	function	obtains	the	current	value	of	the	ViReal64	attribute	you
specify.	Depending	on	the	configuration	of	the	attribute,	the	function
performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	readable.	If	not,	the	function
returns	an	error.

2.	 If	the	attribute	cache	value	is	currently	valid,	the	read	callback	for
the	attribute	is	VI_NULL,	or	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION	flag	for	the
attribute	is	0,	the	function	returns	the	cache	value.

3.	 If	the	IVI_VAL_WAIT_FOR_OPC_BEFORE_READS	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

4.	 The	function	invokes	the	read	callback	for	the	attribute.	Typically,
the	callback	performs	instrument	I/O	to	obtain	a	new	value.	The
IVI	engine	stores	the	new	value	in	the	cache.

5.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	you	specify	is	based	on	a
repeated	capability,	pass	a	repeated
capability	identifier.	You	can	pass	one	of
the	identifiers	strings	that	the	specific
instrument	driver	defines,	or	a	virtual
name	the	end-user	defines	in	the
configuration	file.
If	the	attribute	you	specify	is	not	based
on	a	repeated	capability,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines

IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\

(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViInt64* Returns
the	current
value	of
the
attribute.
Pass	the
address	of
a	ViInt64
variable.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring

up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttributeViReal64
Usage
ViStatus	Ivi_GetAttributeViReal64(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViReal64*	attributeValue);

Purpose

This	function	obtains	the	current	value	of	the	ViReal64	attribute	you
specify.	Depending	on	the	configuration	of	the	attribute,	the	function
performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	readable.	If	not,	the	function
returns	an	error.

2.	 If	the	attribute	cache	value	is	currently	valid,	the	read	callback	for
the	attribute	is	VI_NULL,	or	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION	flag	for	the
attribute	is	0,	the	function	returns	the	cache	value.

3.	 If	the	IVI_VAL_WAIT_FOR_OPC_BEFORE_READS	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

4.	 The	function	invokes	the	read	callback	for	the	attribute.	Typically,
the	callback	performs	instrument	I/O	to	obtain	a	new	value.	The
IVI	engine	stores	the	new	value	in	the	cache.

5.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViReal64* Returns
the	current
value	of
the
attribute.
Pass	the
address	of
a	ViReal64
variable.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring

up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttributeViSession
Usage
ViStatus	Ivi_GetAttributeViSession(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViSession*	attributeValue);

Purpose

This	function	obtains	the	current	value	of	the	ViSession	attribute	you
specify.	Depending	on	the	configuration	of	the	attribute,	the	function
performs	the	following	actions:

1.	 Checks	whether	the	attribute	is	readable.	If	not,	the	function
returns	an	error.

2.	 If	the	attribute	cache	value	is	currently	valid,	the	read	callback	for
the	attribute	is	VI_NULL,	or	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION	flag	for	the
attribute	is	0,	the	function	returns	the	cache	value.

3.	 If	the	IVI_VAL_WAIT_FOR_OPC_BEFORE_READS	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

4.	 The	function	invokes	the	read	callback	for	the	attribute.	Typically,
the	callback	performs	instrument	I/O	to	obtain	a	new	value.	The
IVI	engine	stores	the	new	value	in	the	cache.

5.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViSession* Returns
the	current
value	of
the
attribute.
Pass	the
address	of
a
ViSession
variable.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you

can	bring
up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttributeViString
Usage
ViStatus	Ivi_GetAttributeViString(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViInt32	bufferSize,	ViChar
attributeValue[]);

Purpose

This	function	obtains	the	current	value	of	the	ViString	attribute	you
specify.
You	must	provide	a	ViChar	array	to	serve	as	a	buffer	for	the	value.	You
pass	the	number	of	bytes	in	the	buffer	as	the	Buffer	Size	parameter.	If	the
current	value	of	the	attribute,	including	the	terminating	NUL	byte,	is	larger
than	the	size	you	indicate	in	the	Buffer	Size	parameter,	the	function
copies	Buffer	Size	-	1	bytes	into	the	buffer,	places	an	ASCII	NUL	byte	at
the	end	of	the	buffer,	and	returns	the	buffer	size	you	must	pass	to	get	the
entire	value.	For	example,	if	the	value	is	"123456"	and	the	Buffer	Size	is
4,	the	function	places	"123"	into	the	buffer	and	returns	7.
If	you	want	the	function	to	fill	in	the	buffer	regardless	of	the	number	of
bytes	in	the	value,	pass	a	negative	number	for	the	Buffer	Size	parameter.
If	you	want	to	call	this	function	just	to	get	the	required	buffer	size,	you	can
pass	0	for	the	Buffer	Size	and	VI_NULL	for	the	Attribute	Value	buffer.
Remember	that	the	checkErr	and	viCheckErr	macros	ignore	positive
return	values.	If	you	use	one	of	these	macros	around	a	call	to	this
function,	you	lose	the	required	buffer	size	when	the	function	returns	it.	To
retain	this	information,	declare	a	separate	local	variable	to	store	the
required	buffer	size,	and	use	the	macro	around	the	assignment	of	the
return	value	to	the	local	variable.	The	following	is	an	example:
ViStatus	error	=	VI_SUCCESS;ViInt32	requiredBufferSize;
checkErr(requiredBufferSize	=	
Ivi_GetAttributeViString(vi,	channel,	attr,	0,	0,	VI_NULL));

Depending	on	the	configuration	of	the	attribute,	the	function	performs	the
following	actions:

1.	 Checks	whether	the	attribute	is	readable.	If	not,	the	function
returns	an	error.

2.	 If	the	attribute	cache	value	is	currently	valid,	the	read	callback	for
the	attribute	is	VI_NULL,	or	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION	flag	for	the
attribute	is	0,	the	function	returns	the	cache	value.

3.	 If	the	IVI_VAL_WAIT_FOR_OPC_BEFORE_READS	flag	is	set	for

the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

4.	 The	function	invokes	the	read	callback	for	the	attribute.	Typically,
the	callback	performs	instrument	I/O	to	obtain	a	new	value.	The
IVI	engine	stores	the	new	value	in	the	cache.

5.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

bufferSize ViInt32 Pass	the
number	of
bytes	in
the	ViChar
array	you
specify	for
the
Attribute
Value
parameter.
If	the
current
value	of
the
attribute,
including
the
terminating
NUL	byte,
contains
more	bytes

that	you
indicate	in
this
parameter,
the
function
copies
Buffer	Size
-	1	bytes
into	the
buffer,
places	an
ASCII	NUL
byte	at	the
end	of	the
buffer,	and
returns	the
buffer	size
you	must
pass	to	get
the	entire
value.	For
example,	if
the	value	is
"123456"
and	the
Buffer	Size
is	4,	the
function
places
"123"	into
the	buffer
and	returns
7.
If	you	pass
a	negative
number,
the

function
copies	the
value	to
the	buffer
regardless
of	the
number	of
bytes	in
the	value.
If	you	pass
0,	you	can
pass
VI_NULL
for	the
Attribute
Value
buffer
parameter.

attributeValue ViChar[
]

The	buffer
in	which
the
function
returns	the
current
value	of
the
attribute.
The	buffer
must	be	of
type
ViChar	and
have	at
least	as
many
bytes	as
indicated	in
the	Buffer

Size
parameter.
If	the
current
value	of
the
attribute,
including
the
terminating
NUL	byte,
contains
more	bytes
that	you
indicate	in
this
parameter,
the
function
copies
Buffer	Size
-	1	bytes
into	the
buffer,
places	an
ASCII	NUL
byte	at	the
end	of	the
buffer,	and
returns	the
buffer	size
you	must
pass	to	get
the	entire
value.	For
example,	if
the	value	is
"123456"

and	the
Buffer	Size
is	4,	the
function
places
"123"	into
the	buffer
and	returns
7.
If	you
specify	0
for	the
Buffer	Size
parameter,
you	can
pass
VI_NULL
for	this
parameter.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control
by
pressing
<ENTER>.
Select	a

value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.

Return	Value
Contains	the	status	code	that	the	function	call	returns.
If	the	function	succeeds	and	the	buffer	you	pass	is	large	enough	to	hold
the	entire	value,	the	function	returns	0.
If	the	current	value	of	the	attribute,	including	the	terminating	NUL	byte,	is
larger	than	the	size	you	indicate	in	the	Buffer	Size	parameter,	the	function
copies	Buffer	Size	-	1	bytes	into	the	buffer,	places	an	ASCII	NUL	byte	at
the	end	of	the	buffer,	and	returns	the	buffer	size	you	must	pass	to	get	the
entire	value.	For	example,	if	the	value	is	"123456"	and	the	Buffer	Size	is
4,	the	function	places	"123"	into	the	buffer	and	returns	7.
If	the	function	fails	for	some	other	reason,	it	returns	a	negative	error
code.	For	more	information	on	error	codes,	refer	to	the	Status	return
value	control	in	one	of	the	other	function	panels.
Related	Topic
IVI	Status	Codes

Ivi_GetAttrMinMaxViInt32
Usage
ViStatus	Ivi_GetAttrMinMaxViInt32(ViSession	vi,	ViChar	repeatedCapability[
],	ViAttr	attributeID,	ViInt32*	minimum,	ViInt32*	maximum,	ViBoolean*
hasMinimum,	ViBoolean*	hasMaximum);

Purpose

If	the	range	table	for	the	attribute	contains	a	meaningful	minimum	value,
the	function	returns	the	minimum	value	in	this	parameter.
For	tables	of	type	IVI_VAL_DISCRETE	or	IVI_VAL_RANGED,	the
minimum	value	is	the	lowest	discreteOrMinValue	in	the	table.
For	tables	of	type	IVI_VAL_COERCED,	the	minimum	value	is	the	lowest
coercedValue	in	the	table.
If	you	are	not	interested	in	this	value,	you	can	pass	VI_NULL.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

minimum ViInt32* If	the	range	table	for	the	attribute
contains	a	meaningful	minimum	value,
the	function	returns	the	minimum	value

in	this	parameter.
For	tables	of	type	IVI_VAL_DISCRETE
or	IVI_VAL_RANGED,	the	minimum
value	is	the	lowest	discreteOrMinValue
in	the	table.
For	tables	of	type	IVI_VAL_COERCED,
the	minimum	value	is	the	lowest
coercedValue	in	the	table.
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.

maximum ViInt32* If	the	range	table	for	the	attribute
contains	a	meaningful	maximum	value,
the	function	returns	the	maximum	value
in	this	parameter.
For	tables	of	type	IVI_VAL_DISCRETE
or	IVI_VAL_RANGED,	the	maximum
value	is	the	highest	discreteOrMinValue
in	the	table.
For	tables	of	type	IVI_VAL_RANGED,
the	maximum	value	is	the	highest
maxValue	in	the	table.
For	tables	of	type	IVI_VAL_COERCED,
the	maximum	value	is	the	highest
coercedValue	in	the	table.
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.

hasMinimum ViBoolean* Returns	VI_TRUE	(1)	if	the	range	table
for	the	attribute	indicates	that	it	contains
a	meaningful	minimum	value.
Otherwise,	returns	VI_FALSE	(0).
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.
If	you	are	not	interested	in	this	value,

you	can	pass	VI_NULL.

hasMaximum ViBoolean* Returns	VI_TRUE	(1)	if	the	range	table
for	the	attribute	indicates	that	it	contains
a	meaningful	maximum	value.
Otherwise,	returns	VI_FALSE	(0).
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttrMinMaxViInt64
Usage
ViStatus	Ivi_GetAttrMinMaxViInt64(ViSession	vi,	ViChar	repeatedCapability[
],	ViAttr	attributeID,	ViInt64*	minimum,	ViInt64*	maximum,	ViBoolean*
hasMinimum,	ViBoolean*	hasMaximum);

Purpose

If	the	range	table	for	the	attribute	contains	a	meaningful	minimum	value,
the	function	returns	the	minimum	value	in	this	parameter.
For	tables	of	type	IVI_VAL_DISCRETE	or	IVI_VAL_RANGED,	the
minimum	value	is	the	lowest	discreteOrMinValue	in	the	table.
For	tables	of	type	IVI_VAL_COERCED,	the	minimum	value	is	the	lowest
coercedValue	in	the	table.
If	you	are	not	interested	in	this	value,	you	can	pass	VI_NULL.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	you	specify	is	based	on	a
repeated	capability,	pass	a	repeated
capability	identifier.	You	can	pass	one	of
the	identifiers	strings	that	the	specific
instrument	driver	defines,	or	a	virtual
name	the	end-user	defines	in	the
configuration	file.
If	the	attribute	you	specify	is	not	based
on	a	repeated	capability,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines

IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\

(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

minimum ViInt64* If	the	range	table	for	the	attribute
contains	a	meaningful	minimum	value,
the	function	returns	the	minimum	value
in	this	parameter.
For	tables	of	type	IVI_VAL_DISCRETE
or	IVI_VAL_RANGED,	the	minimum
value	is	the	lowest	discreteOrMinValue
in	the	table.
For	tables	of	type	IVI_VAL_COERCED,
the	minimum	value	is	the	lowest
coercedValue	in	the	table.
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.

maximum ViInt64* If	the	range	table	for	the	attribute
contains	a	meaningful	maximum	value,
the	function	returns	the	maximum	value
in	this	parameter.
For	tables	of	type	IVI_VAL_DISCRETE
or	IVI_VAL_RANGED,	the	maximum
value	is	the	highest	discreteOrMinValue
in	the	table.
For	tables	of	type	IVI_VAL_RANGED,
the	maximum	value	is	the	highest
maxValue	in	the	table.
For	tables	of	type	IVI_VAL_COERCED,
the	maximum	value	is	the	highest
coercedValue	in	the	table.
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.

hasMinimum ViBoolean* Returns	VI_TRUE	(1)	if	the	range	table
for	the	attribute	indicates	that	it	contains

a	meaningful	minimum	value.
Otherwise,	returns	VI_FALSE	(0).
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.

hasMaximum ViBoolean* Returns	VI_TRUE	(1)	if	the	range	table
for	the	attribute	indicates	that	it	contains
a	meaningful	maximum	value.
Otherwise,	returns	VI_FALSE	(0).
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttrMinMaxViReal64
Usage
ViStatus	Ivi_GetAttrMinMaxViReal64(ViSession	vi,	ViChar	repeatedCapability[
],	ViAttr	attributeID,	ViReal64*	minimum,	ViReal64*	maximum,	ViBoolean*
hasMinimum,	ViBoolean*	hasMaximum);

Purpose

This	function	returns	the	minimum	and	maximum	values	that	an
instrument	implements	for	a	ViReal64	attribute	on	a	specific	repeated
capability.	The	values	represent	the	minimum	and	maximum	values	the
driver	or	instrument	actually	uses	rather	than	the	possible	values	you	can
pass	to	Ivi_SetAttributeViReal64.	In	particular,	for	a	coerced	range	table,
the	function	uses	the	coercedValue	fields.
The	function	calls	Ivi_GetAttrRangeTable	to	obtain	the	range	table	for	the
attribute.	If	the	attribute	has	no	range	table	or	the	table	is	invalid,	the
function	returns	an	error.
The	hasMin	and	hasMax	fields	in	the	range	table	indicate	whether,	as	a
whole,	the	table	contains	a	meaningful	minimum	value	and	a	meaningful
maximum	value.	The	function	returns	these	indicators.
If	the	hasMin	field	in	the	table	is	non-zero,	the	function	searches	the	table
for	the	minimum	value.	For	discrete	and	ranged	tables,	the	function
examines	the	discreteOrMinValue	field	in	each	entry.	For	coerced	tables,
the	function	examines	the	coercedValue	field.
If	the	hasMax	field	in	the	table	is	non-zero,	the	function	searches	the
table	for	the	maximum	value.	For	discrete	tables,	the	function	examines
the	discreteOrMinValue	field	in	each	entry.	For	ranged	tables,	the	function
examines	the	maxValue	field.	For	coerced	tables,	the	function	examines
the	coercedValue	field.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

minimum ViReal64* If	the	range	table	for	the	attribute
contains	a	meaningful	minimum	value,
the	function	returns	the	minimum	value

in	this	parameter.
For	tables	of	type	IVI_VAL_DISCRETE
or	IVI_VAL_RANGED,	the	minimum
value	is	the	lowest	discreteOrMinValue
in	the	table.
For	tables	of	type	IVI_VAL_COERCED,
the	minimum	value	is	the	lowest
coercedValue	in	the	table.
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.

maximum ViReal64* If	the	range	table	for	the	attribute
contains	a	meaningful	maximum	value,
the	function	returns	the	maximum	value
in	this	parameter.
For	tables	of	type	IVI_VAL_DISCRETE
or	IVI_VAL_RANGED,	the	maximum
value	is	the	highest	discreteOrMinValue
in	the	table.
For	tables	of	type	IVI_VAL_RANGED,
the	maximum	value	is	the	highest
maxValue	in	the	table.
For	tables	of	type	IVI_VAL_COERCED,
the	maximum	value	is	the	highest
coercedValue	in	the	table.
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.

hasMinimum ViBoolean* Returns	VI_TRUE	(1)	if	the	range	table
for	the	attribute	indicates	that	it	contains
a	meaningful	minimum	value.
Otherwise,	returns	VI_FALSE	(0).
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.
If	you	are	not	interested	in	this	value,

you	can	pass	VI_NULL.

hasMaximum ViBoolean* Returns	VI_TRUE	(1)	if	the	range	table
for	the	attribute	indicates	that	it	contains
a	meaningful	maximum	value.
Otherwise,	returns	VI_FALSE	(0).
If	you	are	not	interested	in	this	value,
you	can	pass	VI_NULL.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetAttrRangeTable
Usage
ViInt32	=	Ivi_GetAttrRangeTable(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	IviRangeTablePtr*	rangeTable);

Purpose

This	function	returns	a	pointer	to	the	range	table	for	an	attribute.	If	you
call	Ivi_SetAttrRangeTableCallback	to	install	a	range	table	callback	function
for	the	attribute,	Ivi_GetAttrRangeTable	invokes	your	range	table	callback
with	the	vi,	AttributeID,	and	RepeatedCapability	parameters.	Otherwise,
Ivi_GetAttrRangeTable	returns	the	address	of	the	range	table	you	specify
for	the	attribute	when	you	call	Ivi_AddAttributeViInt32,
Ivi_AddAttributeViReal64,	or	Ivi_SetStoredRangeTablePtr.
To	bypass	the	range	table	callback	and	always	return	the	range	table	you
store	for	the	attribute,	call	Ivi_GetStoredRangeTablePtr.
If	you	install	your	own	check	callback	function	in	addition	to	either	a
range	table	or	a	range	table	callback,	call	this	function	from	the	check
callback	to	obtain	a	pointer	to	the	range	table.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

rangeTable IviRangeTablePtr* This	parameter	returns	the	address	of
the	range	table	for	the	attribute.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetChannelIndex
Usage
ViStatus	Ivi_GetChannelIndex(ViSession	vi,	ViChar	ChannelName[],	ViInt32*
Index);

Purpose

This	function	obtains	the	1-based	index	of	a	channel	name	in	the	internal
channel	table	for	an	IVI	session.
If	you	pass	VI_NULL	or	an	empty	string	for	the	Channel	Name
parameter,	this	function	sets	the	Index	output	parameter	to	1.
If	you	pass	a	specific	driver	channel	string	for	the	Channel	Name
parameter,	this	function	sets	the	Index	output	parameter	to	the	1-based
index	of	the	channel	string	in	the	internal	channel	table.
If	you	pass	a	virtual	channel	name	that	the	end-user	specifies	in	the
configuration	store,	this	function	finds	the	specific	driver	channel	string
that	the	end-user	assigns	to	the	virtual	channel	name.	The	function	then
sets	the	Index	output	parameter	to	the	1-based	index	of	the	specific
driver	channel	string	in	the	internal	channel	table.
If	you	pass	any	other	value	for	the	Channel	Name	parameter,	this
function	sets	the	Index	output	parameter	to	0	and	returns	an	error	code.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

ChannelName ViChar[] Pass	the	channel	name	for	which	you	want
to	obtain	the	index.
You	can	pass	one	of	the	following	types	of
values:

VI_NULL	or	an	empty	string.
A	specific	driver	channel	string,	which
is	one	that	the	specific	instrument
driver	specifies	as	valid	using
Ivi_BuildChannelTable	or
Ivi_AddToChannelTable.
A	virtual	channel	name	that	the	end-
user	specifies	in	the	configuration
store.

Index ViInt32* A	1-based	index	into	the	channel	table.
If	you	pass	an	invalid	value	for	the	Channel
Name	parameter,	the	function	sets	this
output	parameter	to	0	and	returns	an	error
code.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetConfigStoreHandle
Usage
ViStatus	Ivi_GetConfigStoreHandle(IviConfigStoreHandle*	handle);

Purpose
Returns	a	handle	to	the	IVI	Configuration	Server	instance	currently	in	use
by	the	IVI	engine.	You	can	use	this	handle	with	the	IVI	Foundation-
defined	Configuration	Server	C	API	to	add	or	delete	runtime	configuration
elements.

Note		Any	changes	you	make	to	the	Configuration	Server	through
this	handle	are	not	saved,	unless	you	explicitly	save	them	through
the	Configuration	Server	C	API.	

If	the	Configuration	Store	file	is	modified	by	another	process	or	IVI
Configuration	Server	instance,	the	handle	returned	by	this	function
becomes	invalid,	and	you	should	not	use	the	handle.	Exception:
This	does	not	apply	if	you	specified	the	handle	using	the
Ivi_AttachToConfigStoreHandle.

Parameters
Name Type Description
handle IviConfigStoreHandle* Returns	a	handle	to	the	configuration

server	instance	currently	in	use	by	the
IVI	engine.

You	can	use	this	handle	with	the	IVI
Foundation-defined	Configuration	Server
C	API	to	add	or	delete	runtime
configuration	elements.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetErrorInfo
Usage
ViStatus	Ivi_GetErrorInfo(ViSession	vi,	ViStatus*	primaryError,	ViStatus*
secondaryError,	ViChar	errorElaboration[]);

Purpose

This	function	retrieves	and	then	clears	the	error	information	for	an	IVI
session	or	for	the	current	execution	thread.	If	you	specify	a	valid	IVI
session	for	the	vi	parameter,	this	function	retrieves	and	then	clears	the
error	information	for	the	session.	If	you	pass	VI_NULL	for	the	vi
parameter,	this	function	retrieves	and	then	clears	the	error	information	for
the	current	execution	thread.
Instrument	drivers	export	this	function	to	the	end-user	through	the
PREFIX_GetErrorInfo	function.	Normally,	the	error	information	describes
the	first	error	that	occurred	since	the	end-user	last	called
PREFIX_GetErrorInfo	or	PREFIX_ClearErrorInfo.
The	error	information	includes	a	primary	error	code,	secondary	code
error,	and	an	error	elaboration	string.	For	a	particular	session,	this
information	is	the	same	as	the	values	held	in	the	following	attributes:

IVI_ATTR_PRIMARY_ERROR	or
PREFIX_ATTR_PRIMARY_ERROR
IVI_ATTR_SECONDARY_ERROR	or
PREFIX_ATTR_SECONDARY_ERROR
IVI_ATTR_ERROR_ELABORATION	or
PREFIX_ATTR_ERROR_ELABORATION

The	IVI	engine	also	maintains	this	error	information	separately	for	each
thread.	This	is	useful	if	you	do	not	have	a	session	handle	to	pass	to
Ivi_SetErrorInfo	or	Ivi_GetErrorInfo,	which	occurs	when	a	call	to
Ivi_SpecificDriverNew	fails.
Normally,	it	is	the	responsibility	of	the	end-user	to	decide	when	to	clear
the	error	information	by	calling	PREFIX_GetErrorInfo	or
PREFIX_ClearErrorInfo.	If	an	instrument	driver	calls	Ivi_GetErrorInfo,	it
must	restore	the	error	information	by	calling	Ivi_SetErrorInfo,	possibly
adding	a	secondary	error	code	or	elaboration	string.
You	can	call	Ivi_GetErrorMessage	to	obtain	a	text	description	of	the
primary	or	secondary	error	value.

Parameters
Name Type Description
vi ViSession To	obtain	the	error	information	for	a

particular	IVI	session,	pass	the	ViSession
handle	that	you	obtain	from
Ivi_SpecificDriverNew.
To	obtain	the	error	information	for	the
current	thread,	pass	VI_NULL.

primaryError ViStatus* The	primary	error	code	for	the	session	or
execution	thread.
A	value	of	VI_SUCCESS	(0)	indicates	that
no	error	occurred.	A	positive	value
indicates	a	warning.	A	negative	value
indicates	an	error.
You	can	call	Ivi_GetErrorMessage	or
PREFIX_error_message	to	get	a	text
description	of	the	value.
If	you	are	not	interested	in	this	value,	you
can	pass	VI_NULL.

secondaryError ViStatus* The	secondary	error	code	for	the	session
or	execution	thread.	If	the	primary	error
code	is	non-zero,	the	secondary	error
code	can	further	describe	the	error	or
warning	condition.
A	value	of	VI_SUCCESS	(0)	indicates	no
further	description.
You	can	call	Ivi_GetErrorMessage	or
PREFIX_error_message	to	get	a	text
description	of	the	value.
If	you	are	not	interested	in	this	value,	you
can	pass	VI_NULL.

errorElaboration ViChar[]

The	error	elaboration	string	for	the	session
or	execution	thread.	If	the	primary	error
code	is	non-zero,	the	elaboration	string
can	further	describe	the	error	or	warning
condition.
If	you	are	not	interested	in	this	value,	you
can	pass	VI_NULL.	Otherwise,	you	must
pass	a	ViChar	array	with	at	least
IVI_MAX_MESSAGE_BUF_SIZE	(256)
bytes.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetErrorMessage
Usage
ViStatus	Ivi_GetErrorMessage(ViStatus	statusCode,	ViChar	statusMessage[]);

Purpose

This	function	converts	an	IVI	or	VISA	status	code	into	a	meaningful
message	string.	For	all	other	values,	it	reports	the	"Unknown	status
value"	message	and	returns	the	VI_WARN_UNKNOWN_STATUS	warning
code.
If	you	have	a	table	of	error	codes	and	messages	that	are	specific	to	the
instrument	driver,	call	Ivi_GetSpecificDriverStatusDesc	instead.

Parameters
Name Type Description
statusCode ViStatus A	status	code	that	an	IVI	function,	a	VISA

function,	or	an	instrument	driver	function
returns.

statusMessage ViChar[
]

Returns	a	meaningful	message	string	for	an
IVI	or	VISA	status	code.	For	other	status
codes,	returns	"Unknown	status	value".
You	must	pass	a	ViChar	array	that	contains
at	least	IVI_MAX_MESSAGE_BUF_SIZE
(256)	bytes.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetInfoFromResourceName
Usage
ViStatus	Ivi_GetInfoFromResourceName(ViRsrc	resourceName,	ViString
optionString,	ViChar	newResourceName[],	ViChar	newOptionString[],
ViBoolean*	isLogicalName);

Purpose

This	function	returns	the	appropriate	resource	name	and	option	string
that	Ivi_SpecificDriverNew	function	uses	to	create	a	new	IVI	session.	The
Resource	Name	can	be	an	actual	resource	descriptor	or	a	logical	name
or	driver	session	name	that	the	user	configures	with	the	IVI	Configuration
utility.
If	the	string	that	the	user	passes	in	the	Resource	Name	parameter	is	an
actual	resource	descriptor,	this	function	returns	the	original	resource
descriptor	and	option	string	in	the	New	Resource	Name	and	New	Option
String	parameters	and	returns	VI_FALSE	in	the	Is	Logical	Name
parameter.
If	the	string	that	the	user	passes	in	the	Resource	Name	parameter	is	a
logical	name	or	driver	session	name,	this	function	returns	strings	in	the
New	Resource	Name	and	New	Option	String	parameters	based	on	the
settings	of	the	logical	name	or	virtual	instrument	in	the	IVI	Configuration
utility.	The	function	return	VI_TRUE	in	the	Is	Logical	Name	parameter.
Example:
Ivi_GetInfoFromResourceName	("GPIB0::2::INSTR",
"Simulate=1",newRsrcString,	newOptionString,
&isLogicalName);

newRsrcString	and	newOptionString	contain	the	same	values	you	pass
to	the	function,	and	isLogicalName	is	VI_FALSE.
Ivi_GetInfoFromResourceName	("SampleDMM",	"",
newRsrcString,	newOptionString,
&isLogicalName);

newRsrcString	and	newOptionString	now	contain	the	resource	descriptor
from	the	IVI	configuration	and	the	option	that	tells	the	engine	through	the
Ivi_SpecificDriverNew	function	that	the	initial	session	setup	comes	from
the	IVI	configuration.	isLogicalName	is	VI_TRUE.

Parameters
Name Type Description
resourceName ViRsrc This	parameter	specifies	the	resource

name	of	the	specific	instrument.
The	user	can	either	pass	an	actual
resource	descriptor,	such	as
"GPIB0::2::INSTR",	or	a	logical	name
or	driver	session	name	that	they
configure	with	the	IVI	Configuration
utility,	such	as	"SampleDMM"	or
"MyFluke45."

optionString ViString This	parameter	is	the	option	string
that	the	user	passes	to	the
InitWithOptions	function	of	the
instrument	driver.

newResourceName ViChar[] If	the	string	that	the	user	passes	for
the	Resource	Name	parameter	is	an
actual	resource	descriptor,	this
function	returns	the	original	value	of
the	Resource	Name	parameter	in	this
parameter.
If	the	string	that	the	user	passes	for
the	Resource	Name	parameter	is	a
logical	name	or	driver	session	name,
then	this	parameter	contains	a
resource	descriptor	that	identifies	the
physical	device	based	on	the
configuration	of	the	logical	name	or
virtual	instrument	in	the	IVI
Configuration	utility.

newOptionString ViChar[] If	the	string	that	the	user	passes	for
the	Resource	Name	parameter	is	an
actual	resource	descriptor,	this

function	returns	the	original	value	of
the	Option	String	parameter	in	this
parameter.
If	the	string	that	the	user	passes	for
the	Resource	Name	parameter	is	a
logical	name	or	driver	session	name,
then	this	parameter	returns	a	new
option	string.	The	new	option	string
identifies	the	logical	name	or	virtual
instrument	that	the
Ivi_SpecificDriverNew	function	uses	to
configure	the	initial	configuration	of
the	new	IVI	session.

isLogicalName ViBoolean* Returns	VI_FALSE	if	the	user	passes
an	actual	resource	name	for	the
Resource	Name	parameter.
Returns	VI_TRUE	if	the	user	passes	a
logical	name	or	driver	session	name
for	the	Resource	Name	parameter.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetInvalidationList
Usage
ViStatus	Ivi_GetInvalidationList(ViSession	vi,	ViAttr	attributeID,
IviInvalEntry**	invalidationList,	ViInt32*	numberOfEntries);

Purpose

This	function	returns	a	list	of	all	the	invalidation	dependency	relationships
for	the	session.	The	specific	driver	creates	the	dependency	relationships
using	Ivi_AddAttributeInvalidation.
The	function	dynamically	allocates	an	array	of	IviInvalEntry	structures
and	returns	a	pointer	to	it.	The	last	entry	in	the	array	is	a	termination
entry	that	has	IVI_ATTR_NONE	(-1)	in	the	attribute	field.	It	also	returns
the	number	of	items	in	the	array,	excluding	the	termination	entry.	When
you	are	done	with	the	list,	you	must	free	it	by	calling
Ivi_DisposeInvalidationList.
You	can	pass	VI_NULL	for	the	Invalidation	List	parameter,	in	which	case
the	function	just	returns	the	number	of	dependency	relationships.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

invalidationList IviInvalEntry** Returns	the	pointer	to	an	array	that
contains	all	the	invalidation	dependency
relationships	for	the	session.
The	function	dynamically	allocates	an
array	of	IviInvalEntry	structures	and
returns	a	pointer	to	it	in	this	parameter.
The	last	entry	in	the	array	is	a
termination	entry	that	has

IVI_ATTR_NONE	(-1)	in	the	attribute
field.	When	you	are	done	with	the	list,
you	must	free	it	by	calling
Ivi_DisposeInvalidationList.
You	can	pass	VI_NULL	for	this
parameter,	in	which	case	the	function
just	returns	the	number	of	dependency
relationships.

numberOfEntries ViInt32* Returns	the	number	of	entries	in	the
invalidation	list,	excluding	the
termination	entry.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetLogicalNamesList
Usage
ViStatus	Ivi_GetLogicalNamesList(IviLogicalNameEntry**	logicalNamesList,
ViInt32*	numberOfEntries);

Purpose

This	function	returns	a	list	of	the	logical	names	that	the	IVI	engine
currently	recognizes.	You	can	define	logical	names	in	the	IVI
configuration	file.
You	pass	logical	names	to	class	driver	initialization	functions	to	identify
the	physical	device	and	specific	driver	module	you	want	to	use	in	a
session.
The	ivi.h	include	file	defines	the	structure	of	an	entry	in	the	list	as	follows.
typedef	struct
{ViString		logicalName;
ViBoolean		fromFile;
}	IviLogicalNameEntry;

The	fromFile	field	is	always	set	to	VI_TRUE.
The	function	dynamically	allocates	an	array	of	IviLogicalNameEntry
structures	and	returns	a	pointer	to	it.	The	logical	names	you	define	at	run-
time	appear	before	the	logical	names	from	the	configuration	file.	The	last
entry	in	the	array	is	a	termination	entry	that	has	VI_NULL	in	the
logicalName	field.	The	function	also	returns	the	number	of	logical	names
in	the	list,	excluding	the	termination	entry.	When	you	are	done	with	the
list,	you	must	free	it	by	calling	Ivi_DisposeLogicalNamesList.
Call	Ivi_GetNthLogicalName	to	extract	the	data	from	an	entry	in	the	list.	Do
not	change	the	values	of	any	of	the	entries	in	the	list.
You	can	pass	VI_NULL	for	the	Logical	Names	List	parameter,	in	which
case	the	function	just	returns	the	number	of	logical	names.

Parameters
Name Type Description
logicalNamesList IviLogicalNameEntry** Returns	the	pointer	to	an

array	of	the	logical	names
that	the	IVI	engine	currently
recognizes.

numberOfEntries ViInt32* Returns	the	number	of
entries	in	the	logical	names
list,	excluding	the	termination
entry.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetNextCoercionInfo
Usage
ViStatus	Ivi_GetNextCoercionInfo(ViSession	vi,	ViAttr*	attributeID,
ViConstString*	attributeName,	ViConstString*	repeatedCapabilityname,
IviValueType*	attributeDataType,	ViReal64*	desiredValue,	ViReal64*
coercedValue);

Purpose

This	function	obtains	information	regarding	the	oldest	instance	in	which
the	IVI	engine	coerced	an	attribute	value	you	specified	to	another	value.
It	then	deletes	that	information.
If	you	enable	the	IVI_ATTR_RECORD_COERCIONS	attribute	for	the
session,	the	IVI	engine	keeps	a	list	of	all	coercions	it	makes	on	values
you	pass	to	an	Ivi_SetAttribute	function	for	a	ViInt32	or	ViReal64	attribute.
You	can	use	this	function	to	retrieve	information	from	that	list.	Each	time
you	call	this	function,	it	extracts	and	deletes	the	oldest	coercion	record	for
the	session.
When	no	coercion	records	remain	for	the	session,	the	function	returns
IVI_ATTR_NONE	(-1)	in	the	Attribute	ID	parameter	and	VI_NULL	in	the
Attribute	Name	parameter.
The	function	returns	all	numeric	values	as	ViReal64	values,	even	for
ViInt32	attributes.
You	can	pass	VI_NULL	for	any	of	the	output	parameters,	except	that	you
cannot	pass	VI_NULL	for	both	the	Attribute	ID	and	Attribute	Name
parameters	in	one	call.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you

obtain	from
Ivi_SpecificDriverNew.	The
handle	identifies	a	particular	IVI
session.

attributeID ViAttr* Returns	the	ID	of	the	attribute	for
which	the	value	coercion
occurred.	No	more	coercion
records	exist	for	session,	this
parameter	returns
IVI_ATTR_NONE	(-1).
If	you	are	not	interested	in	this
value,	you	can	pass	VI_NULL
as	long	as	you	do	not	also	pass
VI_NULL	for	the	Attribute	Name
parameter.

attributeName ViConstString* Returns	a	pointer	to	the	name	of
the	attribute	for	which	the	value
coercion	occurred.	If	no	more
coercion	records	exist	for
session,	this	parameter	returns
VI_NULL.
Do	not	modify	the	contents	of
the	name.
If	you	are	not	interested	in	this
value,	you	can	pass	VI_NULL
as	long	as	you	do	not	also	pass
VI_NULL	for	the	Attribute	ID
parameter.

repeatedCapabilityname ViConstString* If	the	attribute	is	repeated
capability-based,	this	parameter

returns	a	pointer	to	the	name	of
the	repeated	capability	on	which
the	value	coercion	occurred.	If
the	attribute	is	not	repeated
capability-based,	this	parameter
returns	a	pointer	to	an	empty
string.
Do	not	modify	the	contents	of
the	repeated	capability	string.
If	you	are	not	interested	in	this
value,	you	can	pass	VI_NULL.

attributeDataType IviValueType* Returns	the	data	type	of	the
attribute.
Values:

(1) IVI_VAL_INT32 ViInt32
(4) IVI_VAL_REAL64 ViReal64

If	you	are	not	interested	in	this
value,	you	can	pass	VI_NULL.

desiredValue ViReal64* Returns	the	value	to	which	you
attempted	to	set	the	attribute.
The	function	always	returns	the
value	as	a	ViReal64	value,	even
if	the	data	type	of	the	attribute	is
ViInt32.
If	you	are	not	interested	in	this
value,	you	can	pass	VI_NULL.

coercedValue ViReal64* Returns	the	value	to	which	the
IVI	engine	actually	set	the
attribute.	The	function	always
returns	the	value	as	a	ViReal64
value,	even	if	the	data	type	of
the	attribute	is	ViInt32.

If	you	are	not	interested	in	this
value,	you	can	pass	VI_NULL.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetNextCoercionString
Usage
ViStatus	Ivi_GetNextCoercionString(ViSession	vi,	ViInt32	bufferSize,	ViChar
coercionString[]);

Purpose

This	function	obtains	information	regarding	the	oldest	instance	in	which
the	IVI	engine	coerced	an	attribute	value	you	specified	to	another	value.
This	information	is	in	a	string	format.	It	then	deletes	that	information.
If	you	enable	the	IVI_ATTR_RECORD_COERCIONS	attribute	for	the
session,	the	IVI	engine	keeps	a	list	of	all	coercions	it	makes	on	values
you	pass	to	an	Ivi_SetAttribute	function	for	a	ViInt32	or	ViReal64	attribute.
You	can	use	this	function	to	retrieve	information	from	that	list.	Each	time
you	call	this	function,	it	extracts	and	deletes	the	oldest	coercion	record	for
the	session.
When	no	coercion	records	remain	for	the	session,	the	function	returns	an
empty	string	("")	in	the	Coercion	String	parameter.
The	function	returns	the	string	containing	the	coercion	information.	You
must	provide	a	ViChar	array	to	serve	as	a	buffer	for	the	string.	You	pass
the	number	of	bytes	in	the	buffer	as	the	Buffer	Size	parameter.	If	the
current	size	of	the	coercion	string,	including	the	terminating	NUL	byte,	is
larger	than	the	size	you	indicate	in	the	Buffer	Size	parameter,	the	function
copies	Buffer	Size	-	1	bytes	into	the	buffer,	places	an	ASCII	NUL	byte	at
the	end	of	the	buffer,	and	returns	the	buffer	size	you	must	pass	to	get	the
entire	string.	For	example,	if	the	value	is	"123456"	and	the	Buffer	Size	is
4,	the	function	places	"123"	into	the	buffer	and	returns	7.
If	you	want	the	function	to	fill	in	the	buffer	regardless	of	the	number	of
bytes	in	the	string,	pass	a	negative	number	for	the	Buffer	Size	parameter.
If	you	want	to	call	this	function	just	to	get	the	required	buffer	size,	you	can
pass	0	for	the	Buffer	Size	and	VI_NULL	for	the	Coercion	String	buffer.
Remember	that	the	checkErr	and	viCheckErr	macros	ignore	positive
return	values.	If	you	use	one	of	these	macros	around	a	call	to	this
function,	you	lose	the	required	buffer	size	when	the	function	returns	it.	To
retain	this	information,	declare	a	separate	local	variable	to	store	the
required	buffer	size,	and	use	the	macro	around	the	assignment	of	the
return	value	to	the	local	variable.	The	following	is	an	example:
ViStatus	error	=	VI_SUCCESS;ViInt32		requiredBufferSize;
checkErr(requiredBufferSize	=
Ivi_GetNextCoercionString(vi,	0,	VI_NULL));

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies
a	particular	IVI	session.

bufferSize ViInt32 Pass	the	number	of	bytes	in	the	ViChar
array	you	specify	for	the	Coercion	String
parameter.
If	the	current	coercion	string,	including	the
terminating	NUL	byte,	contains	more	bytes
than	you	indicate	in	this	parameter,	the
function	copies	Buffer	Size	-	1	bytes	into	the
buffer,	places	an	ASCII	NUL	byte	at	the	end
of	the	buffer,	and	returns	the	buffer	size	you
must	pass	to	get	the	entire	string.	For
example,	if	the	value	is	"123456"	and	the
Buffer	Size	is	4,	the	function	places	"123"
into	the	buffer	and	returns	7.
If	you	pass	a	negative	number,	the	function
copies	the	coercion	string	to	the	buffer
regardless	of	the	number	of	bytes	in	the
string.
If	you	pass	0,	you	can	pass	VI_NULL	for
the	Coercion	String	buffer	parameter.

coercionString ViChar[] The	buffer	in	which	the	function	returns	the
description	of	the	oldest	value	coercion	of
the	instrument	session.	The	buffer	must	be
of	type	ViChar	and	have	at	least	as	many
bytes	as	indicated	in	the	Buffer	Size
parameter.
If	the	current	coercion	string,	including	the
terminating	NUL	byte,	contains	more	bytes
than	you	indicate	in	this	parameter,	the

function	copies	Buffer	Size	-	1	bytes	into	the
buffer,	places	an	ASCII	NUL	byte	at	the	end
of	the	buffer,	and	returns	the	buffer	size	you
must	pass	to	get	the	entire	string.	For
example,	if	the	string	is	"123456"	and	the
Buffer	Size	is	4,	the	function	places	"123"
into	the	buffer	and	returns	7.
If	you	specify	0	for	the	Buffer	Size
parameter,	you	can	pass	VI_NULL	for	this
parameter.
When	no	coercion	records	remain	for	the
session,	the	function	returns	an	empty	string
("")	in	the	Coercion	String	parameter.

Return	Value
Contains	the	status	code	that	the	function	call	returns.
If	the	function	succeeds	and	the	buffer	you	pass	is	large	enough	to	hold
the	entire	value,	the	function	returns	0.
If	the	current	length	of	the	coercion	string,	including	the	terminating	NUL
byte,	is	larger	than	the	size	you	indicate	in	the	Buffer	Size	parameter,	the
function	copies	Buffer	Size	-	1	bytes	into	the	buffer,	places	an	ASCII	NUL
byte	at	the	end	of	the	buffer,	and	returns	the	buffer	size	you	must	pass	to
get	the	entire	string.	For	example,	if	the	value	is	"123456"	and	the	Buffer
Size	is	4,	the	function	places	"123"	into	the	buffer	and	returns	7.
If	the	function	fails	for	some	other	reason,	it	returns	a	negative	error
code.	For	more	information	on	error	codes,	refer	to	the	Status	return
value	control	in	one	of	the	other	function	panels.
Related	Topic
IVI	Status	Codes

Ivi_GetNextInterchangeCheckString
Usage
ViStatus	Ivi_GetNextInterchangeCheckString(ViSession	vi,	ViInt32	bufferSize,
ViChar	interchangeWarning[]);

Purpose

This	function	returns	the	interchangeability	warnings	associated	with	the
IVI	session.	Interchangeability	warnings	indicate	that	using	your
application	with	a	different	instrument	might	cause	different	behavior.
The	specific	driver	performs	interchangeability	checking	if	the
IVI_ATTR_INTERCHANGE_CHECK	attribute	is	set	to	VI_TRUE.	Each
time	you	call	this	function,	it	extracts	and	deletes	the	oldest
interchangeability	warning	information	for	the	session.
If	the	next	interchangeability	warning	string,	including	the	terminating
NUL	byte,	contains	more	bytes	than	you	indicate	in	bufSize	parameter,
the	function	copies	bufSize	-	1	bytes	into	the	interchangeWarning	buffer,
places	an	ASCII	NUL	byte	at	the	end	of	the	interchangeWarning	buffer,
and	returns	the	buffer	size	you	must	pass	to	get	the	entire	value.	For
example,	if	the	value	is	"123456"	and	the	buffer	size	is	4,	the	function
places	"123"	into	the	interchange	warning	buffer	and	returns	7.
If	you	want	the	function	to	fill	in	the	buffer	regardless	of	the	number	of
bytes	in	the	string,	pass	a	negative	number	for	the	bufSize	parameter.	If
you	want	to	call	this	function	just	to	get	the	required	buffer	size,	you	can
pass	0	for	the	bufSize	and	VI_NULL	for	the	interchangeWarning	buffer.
The	function	returns	an	empty	string	in	the	interchange	warning
parameter	if	no	interchangeability	warnings	remain	for	the	session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The
handle	identifies	a	particular	IVI
session.

bufferSize ViInt32 Pass	the	number	of	bytes	in	the
ViChar	array	you	specify	for	the
interchange	warning	parameter.
If	the	current	interchange	warning,
including	the	terminating	NUL	byte,
contains	more	bytes	that	you	indicate
in	this	parameter,	the	function	copies
Buffer	Size	-	1	bytes	into	the	buffer,
places	an	ASCII	NUL	byte	at	the	end
of	the	buffer,	and	returns	the	buffer
size	you	must	pass	to	get	the	entire
string.	For	example,	if	the	value	is
"123456"	and	the	Buffer	Size	is	4,	the
function	places	"123"	into	the	buffer
and	returns	7.
If	you	pass	a	negative	number,	the
function	copies	the	interchange
warning	to	the	buffer	regardless	of	the
number	of	bytes	in	the	string.
If	you	pass	0,	you	can	pass	VI_NULL
for	the	Interchange	Warning	buffer
parameter.

interchangeWarning ViChar[] The	buffer	in	which	the	function
returns	the	description	of	the	oldest
value	coercion	of	the	instrument
session.	The	buffer	must	be	of	type
ViChar	and	have	at	least	as	many
bytes	as	indicated	in	the	Buffer	Size

parameter.
If	the	current	coercion	string,	including
the	terminating	NUL	byte,	contains
more	bytes	that	you	indicate	in	this
parameter,	the	function	copies	Buffer
Size	-	1	bytes	into	the	buffer,	places
an	ASCII	NUL	byte	at	the	end	of	the
buffer,	and	returns	the	buffer	size	you
must	pass	to	get	the	entire	string.	For
example,	if	the	string	is	"123456"	and
the	Buffer	Size	is	4,	the	function
places	"123"	into	the	buffer	and
returns	7.
If	you	specify	0	for	the	Buffer	Size
parameter,	you	can	pass	VI_NULL	for
this	parameter.
When	no	interchange	warnings
remain	for	the	session,	the	function
returns	an	empty	string	("")	in	the
Coercion	String	parameter.

Return	Value
Contains	the	status	code	that	the	function	call	returns.
If	the	function	succeeds	and	the	buffer	you	pass	is	large	enough	to	hold
the	entire	value,	the	function	returns	0.
If	the	current	length	of	the	interchange	warning,	including	the	terminating
NUL	byte,	is	larger	than	the	size	you	indicate	in	the	Buffer	Size
parameter,	the	function	copies	Buffer	Size	-	1	bytes	into	the	buffer,	places
an	ASCII	NUL	byte	at	the	end	of	the	buffer,	and	returns	the	buffer	size
you	must	pass	to	get	the	entire	string.	For	example,	if	the	value	is
"123456"	and	the	Buffer	Size	is	4,	the	function	places	"123"	into	the
buffer	and	returns	7.
If	the	function	fails	for	some	other	reason,	it	returns	a	negative	error
code.	For	more	information	on	error	codes,	refer	to	the	Status	return
value	control	in	one	of	the	other	function	panels.
Related	Topic

IVI	Status	Codes

Ivi_GetNthAttribute
Usage
ViStatus	Ivi_GetNthAttribute(ViSession	vi,	ViInt32	index,	ViAttr*	attributeID);

Purpose

This	function	obtains	the	ID	of	the	attribute	that	is	at	the	index	you	specify
in	the	IVI	session's	internal	list	of	attributes.	The	index	is	1-based.
If	the	index	you	specify	is	greater	than	the	number	of	attributes,	the
function	sets	the	Attribute	ID	parameter	to	IVI_ATTR_NONE	(-1)	and
returns	VI_SUCCESS.
Call	Ivi_GetNumAttributes	to	determine	the	number	of	attributes	in	the
internal	list.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

index ViInt32 Specify	a	1-based	index	into	the	IVI	session's
internal	list	of	attributes.

attributeID ViAttr* Returns	the	ID	of	the	attribute	at	the	selected
index	of	the	attribute	list.
If	the	index	you	specify	is	greater	than	the
number	of	attributes,	the	function	sets	this
parameter	to	IVI_ATTR_NONE	(-1)	and	returns
VI_SUCCESS.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetNthChannelString
Usage
ViStatus	Ivi_GetNthChannelString(ViSession	vi,	ViInt32	index,	ViConstString*
channelString);

Purpose

The	function	returns	the	channel	string	that	is	in	the	channel	table	at	an
index	you	specify.	The	specific	instrument	driver	specifies	the	contents	of
the	channel	table	using	Ivi_BuildChannelTable	and	Ivi_AddToChannelTable,
and	the	IVI	engine	maintains	the	table	for	the	session.
If	the	index	you	specify	is	greater	than	the	number	of	channel	strings	in
the	table,	the	function	sets	the	Channel	String	parameter	to	VI_NULL
and	returns	VI_SUCCESS.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

index ViInt32 A	1-based	index	into	the	channel	table.
If	you	pass	an	index	that	is	greater	than
the	number	of	strings	in	the	table,	the
function	sets	the	Channel	String
parameter	to	VI_NULL	and	returns
VI_SUCCESS.

channelString ViConstString* Returns	the	channel	string	that	is	in	the
channel	table	at	the	index	you	specify.
Do	not	modify	the	contents	of	the
channel	string.
If	the	Index	parameter	is	greater	than
the	number	of	strings	in	the	table,	the
function	sets	this	parameter	to	VI_NULL
and	returns	VI_SUCCESS.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetNthLogicalName
Usage
ViStatus	Ivi_GetNthLogicalName(IviLogicalNameEntry*	logicalNamesList,
ViInt32	index,	ViChar	logicalNameBuffer[],	ViInt32	bufferSize,	ViBoolean*
fromFile);

Purpose

This	function	extracts	the	data	from	an	entry	in	a	logical	names	list	you
obtain	from	Ivi_GetLogicalNamesList.	You	specify	the	entry	with	a	1-based
index.
If	the	index	you	specify	is	greater	than	the	number	of	logical	names,	the
function	places	an	ASCII	NUL	byte	at	the	beginning	of	the	Logical	Name
Buffer	parameter	and	returns	VI_SUCCESS.

Parameters
Name Type Description
logicalNamesList IviLogicalNameEntry* Specify	the	pointer	to	the

logical	names	list	you	obtain
from
Ivi_GetLogicalNamesList.

index ViInt32 Specify	the	1-based	index	of
the	logical	name	list	entry
from	which	you	want	to
extract	data.

logicalNameBuffer ViChar[] The	buffer	in	which	the
function	returns	the	logical
name.	The	buffer	must	be	a
ViChar	array	that	contains	at
least	as	many	bytes	as	you
specify	in	the	Buffer	Size
parameter.
If	the	index	you	specify	is
greater	than	the	number	of
logical	names,	the	function
places	an	ASCII	NUL	byte	at
the	beginning	of	the	buffer
and	returns	VI_SUCCESS.

bufferSize ViInt32 Specify	the	number	of	bytes
in	the	Logical	Name	Buffer
parameter.

fromFile ViBoolean* This	parameter	always
returns	a	value	of	VI_TRUE
(1).	You	can	pass	VI_NULL
to	this	parameter.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetNthRepCapString
Usage
ViStatus	Ivi_GetNthRepCapString(ViSession	vi,	ViChar
repeatedCapabilityName[],	ViInt32	Index,	ViConstString*
repeatedCapabilityIdentifier);

Purpose

The	function	returns	the	repeated	capability	string	that	is	in	the	repeated
capability	table	at	an	index	you	specify.	The	specific	instrument	driver
specifies	the	contents	of	the	table	using	Ivi_BuildRepCapTable	and
Ivi_AddToRepCapTable.
If	the	index	you	specify	is	greater	than	the	number	of	strings	in	the	table,
the	function	sets	the	Repeated	Capability	Identifier	parameter	to
VI_NULL	and	returns	VI_SUCCESS.

Parameters
Name Type Description
vi ViSession The	ViSession	handle

that	you	obtain	from
Ivi_SpecificDriverNew.
The	handle	identifies	a
particular	IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing
the	name	of	the	repeated
capability	on	which	to
operate.	For	instance,	if
you	are	working	with	the
table	of	channel	names,
pass	in	the	string
"Channel".

Index ViInt32 A	1-based	index	into	the
channel	table.
If	you	pass	an	index	that
is	greater	than	the
number	of	strings	in	the
table,	the	function	sets
the	Channel	String
parameter	to	VI_NULL
and	returns	VI_SUCCESS.

repeatedCapabilityIdentifier ViConstString* Returns	the	repeated
capability	string	that	is	in
the	repeated	capability
table	at	the	index	you
specify.
Do	not	modify	the
contents	of	the	repeated
capability	string.
If	the	Index	parameter	is

greater	than	the	number
of	strings	in	the	table,	the
function	sets	this
parameter	to	VI_NULL
and	returns	VI_SUCCESS.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetNumAttributes
Usage
ViStatus	Ivi_GetNumAttributes(ViSession	vi,	ViInt32*	numberOfAttributes);

Purpose

This	function	obtains	the	total	number	of	attributes	in	the	IVI	session	you
specify.	This	includes	all	attributes	that	the	IVI	engine	and	the	driver
create,	regardless	of	whether	the	IVI_VAL_NOT_SUPPORTED	flag	for	the
attribute	is	set.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

numberOfAttributes ViInt32* Returns	the	total	number	of	attributes
in	the	IVI	session.	This	includes	all
attributes	that	the	IVI	engine	and	the
driver	create,	regardless	of	whether
the	IVI_VAL_NOT_SUPPORTED	flag
for	the	attribute	is	set.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetRangeTableNumEntries
Usage
ViStatus	Ivi_GetRangeTableNumEntries(IviRangeTablePtr	rangeTable,	ViInt32*
numberOfEntries);

Purpose

This	function	returns	the	number	of	entries	in	a	range	table,	excluding	the
termination	entry.	If	you	pass	VI_NULL	for	the	Range	Table	parameter,
the	function	returns	0	as	the	number	of	entries.

Parameters
Name Type Description
rangeTable IviRangeTablePtr Specify	the	address	of	the	range

table	you	want	to	examine.
You	can	pass	VI_NULL	for	this
parameter.

numberOfEntries ViInt32* Returns	the	total	number	of
entries	in	the	range	table,
excluding	the	termination	entry.	If
you	pass	VI_NULL	for	the	Range
Table	parameter,	this	parameter
returns	0.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetRepCapIndex
Usage
ViStatus	Ivi_GetRepCapIndex(ViSession	vi,	ViChar	repeatedCapabilityName[],
ViChar	repeatedCapabilityIdentifier[],	ViInt32*	index);

Purpose

This	function	obtains	the	1-based	index	of	a	repeated	capability	in	the
internal	repeated	capability	for	an	IVI	session.
If	you	pass	VI_NULL	or	an	empty	string	for	the	Repeated	Capability
Identifier	parameter,	this	function	sets	the	Index	output	parameter	to	1.
If	you	pass	a	specific	driver	identifier	for	the	Repeated	Capability
Identifier	parameter,	this	function	sets	the	Index	output	parameter	to	the
1-based	index	of	the	identifier	string	in	the	internal	repeated	capability
table.
If	you	pass	a	virtual	repeated	capability	identifier,	this	function	returns	the
one-based	index	of	the	specific	driver	string	to	which	the	virtual	identifier
coerces.
If	you	pass	any	other	value	for	the	Repeated	Capability	parameter,	this
function	sets	the	Index	output	parameter	to	0	and	returns	an	error	code.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you

obtain	from
Ivi_SpecificDriverNew.	The
handle	identifies	a	particular
IVI	session.

repeatedCapabilityName ViChar[] Pass	a	string	containing	the
name	of	the	repeated
capability	on	which	to	operate.
For	instance,	if	you	are
working	with	the	table	of
channel	names,	pass	in	the
string	"Channel".

repeatedCapabilityIdentifier ViChar[] Pass	the	repeated	capability
name	for	which	you	want	to
obtain	the	index.
The	parameter	accepts
VI_NULL,	and	empty	string,	a
specific	driver-defined
repeated	capability	identifier,
or	a	virtual	repeated	capability
identifier.

index ViInt32* A	1-based	index	into	the
repeated	capability	table.
If	you	pass	an	invalid	value	for
the	Repeated	Capability
Identifier	parameter,	the
function	sets	this	output
parameter	to	0	and	returns	an
error	code.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetSpecificDriverStatusDesc
Usage
ViStatus	Ivi_GetSpecificDriverStatusDesc(ViSession	vi,	ViStatus	statusCode,
IviStringValueTable	additionalTableToSearch,	ViChar	statusMessage[]);

Purpose

This	function	converts	a	status	code	that	an	instrument	driver	function
returns	into	a	meaningful	message	string.	It	interprets	IVI	and	VISA	status
codes	just	as	Ivi_GetErrorMessage	does,	but	it	also	allows	you	to	pass	a
table	of	error	codes	and	messages	that	are	specific	to	the	instrument
driver.
Use	this	function	to	implement	the	PREFIX_error_message	function	in	the
instrument	driver.
If	the	function	cannot	find	a	description	for	the	status	code,	it	reports	the
"Unknown	status	value"	message	and	returns	the
VI_WARN_UNKNOWN_STATUS	warning	code.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you

obtain	from
Ivi_SpecificDriverNew.
You	can	pass	VI_NULL	for	this
parameter.	This	is	useful	when
Ivi_SpecificDriverNew	fails.

statusCode ViStatus A	status	code	that	an	instrument
driver	function	returns.

additionalTableToSearch IviStringValueTable Specify	a	string/value	table	that
contains	status	codes	specific	to
the	instrument	driver.	Specify	a
message	string	for	each	status
code	in	the	table.	Terminate	the
table	with	an	entry	that	has
VI_NULL	in	the	string	field.
The	ivi.h	include	file	defines	the
structure	of	a	string/value	table
entry	as	follows:
typedef	struct
{
ViInt32		value;ViString		string;
}	IviStringValueEntry;

If	you	pass	VI_NULL	for	this
parameter,	the	function	behaves
the	same	as
Ivi_GetErrorMessage.

statusMessage ViChar[] Returns	a	meaningful	message
string	for	an	IVI,	VISA,	or
instrument	driver	status	code.	If
the	status	code	is	unknown,	it

returns	"Unknown	status	value".
You	must	pass	a	ViChar	array
that	contains	at	least
IVI_MAX_MESSAGE_BUF_SIZE
(256)	bytes.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetStoredRangeTablePtr
Usage
ViStatus	Ivi_GetStoredRangeTablePtr(ViSession	vi,	ViAttr	attributeID,
IviRangeTablePtr*	rangeTable);

Purpose

This	function	obtains	the	address	of	the	range	table	you	store	for	the
attribute	when	you	call	Ivi_AddAttributeViInt32,	Ivi_AddAttributeViReal64,
or	Ivi_SetStoredRangeTablePtr.
Unlike	Ivi_GetAttrRangeTable,	this	function	never	invokes	the	range	table
callback.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the	same
constant	name	that	appears	in	ivi.h,
except	that	the	specific	instrument	prefix
replaces	the	IVI	prefix.	For	example,
ivi.h	defines	IVI_ATTR_CACHE,	and	the
Fluke	45	include	file,	fl45.h,	defines	the
following	constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the	same
constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM

class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

rangeTable IviRangeTablePtr* Returns	the	address	of	the	range	table
that	you	store	for	this	attribute.	If	you	do
not	store	a	range	table,	this	parameter
returns	VI_NULL.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetStringFromTable
Usage
ViStatus	Ivi_GetStringFromTable(IviStringValueTable	stringTable,	ViInt32
value,	ViString*	string);

Purpose

This	function	searches	for	a	value	in	a	string/value	table	and	returns	the
string	that	corresponds	to	the	value.
If	the	function	cannot	find	the	value	in	the	table,	it	returns	the
IVI_ERROR_INVALID_VALUE	error	code.

Parameters
Name Type Description
stringTable IviStringValueTable Specify	the	string/value	table	in	which

you	want	to	find	the	string.
The	ivi.h	include	file	defines	the
structure	of	a	string/value	table	entry
as	follows:
typedef	struct
{
ViInt32		value;
ViString		string;
}	IviStringValueEntry;

value ViInt32 Specify	the	value	you	want	to	find	in
the	string/value	table.

string ViString* If	the	function	finds	a	string/value	table
entry	that	contains	the	value	you
specify,	this	parameter	returns	the
address	of	the	string	in	the	entry.
Do	not	modify	the	contents	of	the
string.
If	the	function	does	not	find	the	value
in	the	table,	this	parameter	returns
VI_NULL,	and	the	function	returns	the
IVI_ERROR_INVALID_VALUE	error
code.
You	can	pass	VI_NULL	for	this
parameter.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetUserChannelName
Usage
ViStatus	Ivi_GetUserChannelName(ViSession	vi,	ViChar	channelString[],
ViConstString*	userChannelName);

Purpose

This	function	finds	the	highest-level	channel	name	that	corresponds	to
the	specific	driver	channel	string	you	specify.	It	returns	a	pointer	to	the
name	in	the	User	Channel	Name	output	parameter.
If	you	specify	a	channel	string	that	the	end-user	assigns	to	a	virtual
channel	name	in	the	ivi.ini	configuration	file,	the	function	returns	a	pointer
to	the	virtual	channel	name.	If	the	end-user	assigns	the	channel	string	to
multiple	virtual	channel	names,	the	function	returns	a	pointer	to	the	first
virtual	channel	name	it	finds.
If	no	virtual	channel	names	correspond	to	the	channel	string	and	the
channel	string	is	in	the	channel	table	that	the	specific	instrument	driver
defines,	the	function	returns	a	pointer	to	the	channel	string.	If	the	channel
string	is	not	in	the	table,	the	function	sets	the	User	Channel	Name	output
parameter	to	VI_NULL	and	returns	an	error	code.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you

obtain	from	Ivi_SpecificDriverNew.
The	handle	identifies	a	particular
IVI	session.

channelString ViChar[] A	specific	driver	channel	string.	The
specific	instrument	driver	specifies
the	valid	channel	strings	using
Ivi_BuildChannelTable	and
Ivi_AddToChannelTable.

userChannelName ViConstString* The	highest-level	channel	name
that	corresponds	to	the	specific
driver	channel	string	you	pass	in
the	Channel	String	parameter.
Do	not	modify	the	contents	of	the
channel	name.
This	might	be	a	virtual	channel
name,	the	channel	string,	or
VI_NULL.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetValueFromTable
Usage
ViStatus	Ivi_GetValueFromTable(IviStringValueTable	stringTable,	ViChar
string[],	ViInt32*	value);

Purpose

This	function	searches	for	a	string	in	a	string/value	table	and	returns	the
value	that	corresponds	to	the	string.
If	the	string	you	specify	terminates	with	a	carriage	return	('\r')	or	newline
('\n')	character,	the	strings	in	the	table	do	not	have	to	contain	the
termination	character.	The	function	considers	the	strings	to	match	if	the
string	you	specify	begins	with	the	string	in	the	table	entry,	followed	by	a
carriage	return,	linefeed,	or	ASCII	NUL	byte.
If	the	function	cannot	find	the	string	in	the	table,	it	returns	the
IVI_ERROR_INVALID_VALUE	error.

Parameters
Name Type Description
stringTable IviStringValueTable Specify	the	string/value	table	in	which

you	want	to	find	the	string.
The	ivi.h	include	file	defines	the
structure	of	a	string/value	table	entry
as	follows:
typedef	struct
{
ViInt32		value;
ViString		string;
}	IviStringValueEntry;

string ViChar[] Specify	the	string	you	want	to	find	in
the	string/value	table.
If	the	string	you	specify	terminates	with
a	carriage	return	('\r')	or	newline	('\n')
character,	the	strings	in	the	table	do
not	have	to	contain	the	termination
character.	The	function	considers	the
strings	to	match	if	the	string	you
specify	begins	with	the	string	in	the
table	entry,	followed	by	a	carriage
return,	newline,	or	ASCII	NUL	byte.

value ViInt32* If	the	function	finds	a	string/value	table
entry	that	contains	the	string	you
specify,	this	parameter	returns	the
value	in	the	entry.
If	the	function	does	not	find	the	value
in	the	table,	the	function	returns	the
IVI_ERROR_INVALID_VALUE	error
code.
You	can	pass	VI_NULL	for	this
parameter.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViInt32EntryFromCmdValue
Usage
ViStatus	Ivi_GetViInt32EntryFromCmdValue(ViInt32	commandValue,
IviRangeTablePtr	rangeTable,	ViInt32*	discreteOrMinValue,	ViInt32*
maxValue,	ViInt32*	coercedValue,	ViInt32*	tableIndex,	ViString*
commandString);

Purpose

This	function	finds	the	first	range	table	entry	for	which	the	cmdValue	field
is	equal	to	the	command	value	you	specify.	If	the	function	finds	an	entry,
it	returns	the	contents	of	the	entry.	If	it	does	not	find	an	entry,	it	returns	an
IVI_ERROR_INVALID_VALUE	error.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViInt32	values.

Parameters
Name Type Description
commandValue ViInt32 Specify	the	command	value

that	you	want	to	find	in	the
range	table.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	command	value.

discreteOrMinValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

coercedValue ViInt32* Specify	the	coerced	value	that
you	want	to	find	in	the	range
table.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.
Do	not	change	the	contents	of
the	string.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViInt32EntryFromCoercedVal
Usage
ViStatus	Ivi_GetViInt32EntryFromCoercedVal(ViInt32	coercedValue,
IviRangeTablePtr	rangeTable,	ViInt32*	discreteOrMinValue,	ViInt32*
maxValue,	ViInt32*	tableIndex,	ViString*	commandString,	ViInt32*
commandValue);

Purpose

This	function	finds	the	first	range	table	entry	for	which	the	coercedValue
field	is	equal	to	the	coerced	value	you	specify.	If	the	function	finds	an
entry,	it	returns	the	contents	of	the	entry.	If	it	does	not	find	an	entry,	it
returns	an	IVI_ERROR_INVALID_VALUE	error.
The	function	returns	the	discreteOrMinValue	and	maxValue	fields	as
ViInt32	values.

Parameters
Name Type Description
coercedValue ViInt32 Specify	the	coerced	value	that

you	want	to	find	in	the	range
table.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	coerced	value.

discreteOrMinValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.

Do	not	change	the	contents	of
the	string.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* Specify	the	command	value
that	you	want	to	find	in	the
range	table.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViInt32EntryFromIndex
Usage
ViStatus	Ivi_GetViInt32EntryFromIndex(ViInt32	tableIndex,	IviRangeTablePtr
rangeTable,	ViInt32*	discreteOrMinValue,	ViInt32*	maxValue,	ViInt32*
coercedValue,	ViString*	commandString,	ViInt32*	commandValue);

Purpose

This	function	extracts	the	range	table	entry	that	is	at	the	0-based	index
you	specify.	The	function	returns	the	contents	of	the	entry.
If	you	specify	an	index	that	is	less	than	0	or	greater	than	or	equal	to	the
number	of	entries	in	the	table,	the	function	returns	an
IVI_ERROR_INVALID_VALUE	error.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViInt32	values.

Parameters
Name Type Description
tableIndex ViInt32 Specify	the	0-based	index	of

the	range	table	entry	you	want
to	extract.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	from	which	to
extract	the	entry	at	the	index
you	specify.

discreteOrMinValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

coercedValue ViInt32* Specify	the	coerced	value	that
you	want	to	find	in	the	range
table.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.
Do	not	change	the	contents	of
the	string.

You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* Specify	the	command	value
that	you	want	to	find	in	the
range	table.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViInt32EntryFromString
Usage
ViStatus	Ivi_GetViInt32EntryFromString(ViChar	commandString[],
IviRangeTablePtr	rangeTable,	ViInt32*	discreteOrMinValue,	ViInt32*
maxValue,	ViInt32*	coercedValue,	ViInt32*	tableIndex,	ViInt32*
commandValue);

Purpose

This	function	finds	the	first	range	table	entry	for	which	the	cmdString	field
matches	the	string	you	specify.	If	the	function	finds	an	entry,	it	returns	the
contents	of	the	entry.	If	it	does	not	find	an	entry,	it	returns	an
IVI_ERROR_INVALID_VALUE	error.
The	function	compares	strings	in	a	case-sensitive	manner.
If	the	string	you	specify	terminates	with	a	carriage	return	('\r')	or	newline
('\n')	character,	the	cmdString	fields	in	the	table	do	not	have	to	contain	the
termination	character.	The	function	considers	the	strings	to	match	if	the
string	you	specify	begins	with	the	string	in	the	cmdString	field,	followed
by	a	carriage	return,	newline,	or	ASCII	NUL	byte.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViInt32	values.

Parameters
Name Type Description
commandString ViChar[] Specify	the	command	string

that	you	want	to	find	in	the
range	table.
If	the	string	you	specify
terminates	with	a	carriage
return	('\r')	or	newline	('\n')
character,	the	cmdString	fields
in	the	table	do	not	have	to
contain	the	termination
character.	The	function
considers	the	strings	to	match	if
the	string	you	specify	begins
with	the	string	in	the	cmdString
field,	followed	by	a	carriage
return,	newline,	or	ASCII	NUL
byte.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	command	string.

discreteOrMinValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not

interested	in	this	value.

coercedValue ViInt32* Specify	the	coerced	value	that
you	want	to	find	in	the	range
table.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* Specify	the	command	value
that	you	want	to	find	in	the
range	table.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViInt32EntryFromValue
Usage
ViStatus	Ivi_GetViInt32EntryFromValue(ViInt32	value,	IviRangeTablePtr
rangeTable,	ViInt32*	discreteOrMinValue,	ViInt32*	maxValue,	ViInt32*
coercedValue,	ViInt32*	tableIndex,	ViString*	commandString,	ViInt32*
commandValue);

Purpose

This	function	finds	the	first	range	table	entry	that	applies	to	the	ViInt32
value	you	specify.	If	the	function	finds	an	entry,	it	returns	the	contents	of
the	entry.	If	it	does	not	find	an	entry,	it	returns	an
IVI_ERROR_INVALID_VALUE	error.
If	the	range	table	type	is	IVI_VAL_DISCRETE,	function	searches	for	a
match	on	the	discreteOrMinValue	field	of	each	entry.
If	the	range	table	type	is	IVI_VAL_RANGED	or	IVI_VAL_COERCED,	the
function	searches	until	the	value	you	specify	falls	within	the	range
between	the	discreteOrMinValue	and	maxValue	fields	of	an	entry.	The
value	falls	within	the	range	if	it	is	greater	than	or	equal	to	the
discreteOrMinValue	and	less	than	or	equal	to	the	maxValue.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViInt32	values.

Parameters
Name Type Description
value ViInt32 Specify	the	value	that	you	want

to	find	in	the	range	table.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	value.

discreteOrMinValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

coercedValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	coercedValue	field	of	the
entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.

You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.
Do	not	change	the	contents	of
the	string.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	cmdValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViInt64EntryFromCmdValue
Usage
ViStatus	Ivi_GetViInt64EntryFromCmdValue(ViInt32	commandValue,
IviRangeTablePtr	rangeTable,	ViInt64*	discreteOrMinValue,	ViInt64*
maxValue,	ViInt64*	coercedValue,	ViInt32*	tableIndex,	ViString*
commandString);

Purpose

This	function	finds	the	first	range	table	entry	for	which	the	cmdValue	field
is	equal	to	the	command	value	you	specify.	If	the	function	finds	an	entry,
it	returns	the	contents	of	the	entry.	If	it	does	not	find	an	entry,	it	returns	an
IVI_ERROR_INVALID_VALUE	error.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViInt64	values.

Parameters
Name Type Description
commandValue ViInt32 Specify	the	command	value

that	you	want	to	find	in	the
range	table.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	command	value.

discreteOrMinValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

coercedValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	coercedValue	field	of	the
entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.

You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.
Do	not	change	the	contents	of
the	string.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViInt64EntryFromCoercedVal
Usage
ViStatus	Ivi_GetViInt64EntryFromCoercedVal(ViInt64	coercedValue,
IviRangeTablePtr	rangeTable,	ViInt64*	discreteOrMinValue,	ViInt64*
maxValue,	ViInt32*	tableIndex,	ViString*	commandString,	ViInt32*
commandValue);

Purpose

This	function	finds	the	first	range	table	entry	for	which	the	coercedValue
field	is	equal	to	the	coerced	value	you	specify.	If	the	function	finds	an
entry,	it	returns	the	contents	of	the	entry.	If	it	does	not	find	an	entry,	it
returns	an	IVI_ERROR_INVALID_VALUE	error.
The	function	returns	the	discreteOrMinValue	and	maxValue	fields	as
ViInt64	values.

Parameters
Name Type Description
coercedValue ViInt64 Specify	the	coerced	value	that

you	want	to	find	in	the	range
table.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	coerced	value.

discreteOrMinValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.

Do	not	change	the	contents	of
the	string.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	cmdValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViInt64EntryFromIndex
Usage
ViStatus	Ivi_GetViInt64EntryFromIndex(ViInt32	tableIndex,	IviRangeTablePtr
rangeTable,	ViInt64*	discreteOrMinValue,	ViInt64*	maxValue,	ViInt64*
coercedValue,	ViString*	commandString,	ViInt32*	commandValue);

Purpose

This	function	extracts	the	range	table	entry	that	is	at	the	0-based	index
you	specify.	The	function	returns	the	contents	of	the	entry.
If	you	specify	an	index	that	is	less	than	0	or	greater	than	or	equal	to	the
number	of	entries	in	the	table,	the	function	returns	an
IVI_ERROR_INVALID_VALUE	error.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViInt64	values.

Parameters
Name Type Description
tableIndex ViInt32 Specify	the	0-based	index	of

the	range	table	entry	you	want
to	extract.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	from	which	to
extract	the	entry	at	the	index
you	specify.

discreteOrMinValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

coercedValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	coercedValue	field	of	the
entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in

the	cmdString	field	of	the	entry.
Do	not	change	the	contents	of
the	string.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	cmdValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViInt64EntryFromString
Usage
ViStatus	Ivi_GetViInt64EntryFromString(ViChar	commandString[],
IviRangeTablePtr	rangeTable,	ViInt64*	discreteOrMinValue,	ViInt64*
maxValue,	ViInt64*	coercedValue,	ViInt32*	tableIndex,	ViInt32*
commandValue);

Purpose

This	function	finds	the	first	range	table	entry	for	which	the	cmdString	field
matches	the	string	you	specify.	If	the	function	finds	an	entry,	it	returns	the
contents	of	the	entry.	If	it	does	not	find	an	entry,	it	returns	an
IVI_ERROR_INVALID_VALUE	error.
The	function	compares	strings	in	a	case-sensitive	manner.
If	the	string	you	specify	terminates	with	a	carriage	return	('\r')	or	newline
('\n')	character,	the	cmdString	fields	in	the	table	do	not	have	to	contain	the
termination	character.	The	function	considers	the	strings	to	match	if	the
string	you	specify	begins	with	the	string	in	the	cmdString	field,	followed
by	a	carriage	return,	newline,	or	ASCII	NUL	byte.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViInt64	values.

Parameters
Name Type Description
commandString ViChar[] Specify	the	command	string

that	you	want	to	find	in	the
range	table.
If	the	string	you	specify
terminates	with	a	carriage
return	('\r')	or	newline	('\n')
character,	the	cmdString	fields
in	the	table	do	not	have	to
contain	the	termination
character.	The	function
considers	the	strings	to	match	if
the	string	you	specify	begins
with	the	string	in	the	cmdString
field,	followed	by	a	carriage
return,	newline,	or	ASCII	NUL
byte.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	command	string.

discreteOrMinValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not

interested	in	this	value.

coercedValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	coercedValue	field	of	the
entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	cmdValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViInt64EntryFromValue
Usage
ViStatus	Ivi_GetViInt64EntryFromValue(ViInt64	value,	IviRangeTablePtr
rangeTable,	ViInt64*	discreteOrMinValue,	ViInt64*	maxValue,	ViInt64*
coercedValue,	ViInt32*	tableIndex,	ViString*	commandString,	ViInt32*
commandValue);

Purpose

This	function	finds	the	first	range	table	entry	that	applies	to	the	ViInt64
value	you	specify.	If	the	function	finds	an	entry,	it	returns	the	contents	of
the	entry.	If	it	does	not	find	an	entry,	it	returns	an
IVI_ERROR_INVALID_VALUE	error.
If	the	range	table	type	is	IVI_VAL_DISCRETE,	function	searches	for	a
match	on	the	discreteOrMinValue	field	of	each	entry.
If	the	range	table	type	is	IVI_VAL_RANGED	or	IVI_VAL_COERCED,	the
function	searches	until	the	value	you	specify	falls	within	the	range
between	the	discreteOrMinValue	and	maxValue	fields	of	an	entry.	The
value	falls	within	the	range	if	it	is	greater	than	or	equal	to	the
discreteOrMinValue	and	less	than	or	equal	to	the	maxValue.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViInt64	values.

Parameters
Name Type Description
value ViInt64 Specify	the	value	that	you	want

to	find	in	the	range	table.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	value.

discreteOrMinValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

coercedValue ViInt64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	coercedValue	field	of	the
entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.

You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.
Do	not	change	the	contents	of
the	string.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	cmdValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViReal64EntryFromCmdValue
Usage
ViStatus	Ivi_GetViReal64EntryFromCmdValue(ViInt32	commandValue,
IviRangeTablePtr	rangeTable,	ViReal64*	discreteOrMinValue,	ViReal64*
maxValue,	ViReal64*	coercedValue,	ViInt32*	tableIndex,	ViString*
commandString);

Purpose

This	function	finds	the	first	range	table	entry	for	which	the	cmdValue	field
is	equal	to	the	command	value	you	specify.	If	the	function	finds	an	entry,
it	returns	the	contents	of	the	entry.	If	it	does	not	find	an	entry,	it	returns	an
IVI_ERROR_INVALID_VALUE	error.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViIReal64	values.

Parameters
Name Type Description
commandValue ViInt32 Specify	the	command	value

that	you	want	to	find	in	the
range	table.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	command	value.

discreteOrMinValue ViReal64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViReal64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

coercedValue ViReal64* Specify	the	coerced	value	that
you	want	to	find	in	the	range
table.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.
Do	not	change	the	contents	of
the	string.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViReal64EntryFromCoercedVal
Usage
ViStatus	Ivi_GetViReal64EntryFromCoercedVal(ViReal64	coercedValue,
IviRangeTablePtr	rangeTable,	ViReal64*	discreteOrMinValue,	ViReal64*
maxValue,	ViInt32*	tableIndex,	ViString*	commandString,	ViInt32*
commandValue);

Purpose

This	function	finds	the	first	range	table	entry	for	which	the	coercedValue
field	is	equal	to	the	coerced	value	you	specify.	If	the	function	finds	an
entry,	it	returns	the	contents	of	the	entry.	If	it	does	not	find	an	entry,	it
returns	an	IVI_ERROR_INVALID_VALUE	error.
The	function	performs	all	ViReal64	comparisons	using	a	comparison
precision	of	14	decimal	digits.
The	function	returns	the	discreteOrMinValue	and	maxValue	fields	as
ViReal64	values.

Parameters
Name Type Description
coercedValue ViReal64 Specify	the	coerced	value	that

you	want	to	find	in	the	range
table.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	coerced	value.

discreteOrMinValue ViReal64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViReal64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.

Do	not	change	the	contents	of
the	string.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* Specify	the	command	value
that	you	want	to	find	in	the
range	table.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViReal64EntryFromIndex
Usage
ViStatus	Ivi_GetViReal64EntryFromIndex(ViInt32	tableIndex,
IviRangeTablePtr	rangeTable,	ViReal64*	discreteOrMinValue,	ViReal64*
maxValue,	ViReal64*	coercedValue,	ViString*	commandString,	ViInt32*
commandValue);

Purpose

This	function	extracts	the	range	table	entry	that	is	at	the	0-based	index
you	specify.	The	function	returns	the	contents	of	the	entry.
If	you	specify	an	index	that	is	less	than	0	or	greater	than	or	equal	to	the
number	of	entries	in	the	table,	the	function	returns	an
IVI_ERROR_INVALID_VALUE	error.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViReal64	values.

Parameters
Name Type Description
tableIndex ViInt32 Specify	the	0-based	index	of

the	range	table	entry	you	want
to	extract.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	from	which	to
extract	the	entry	at	the	index
you	specify.

discreteOrMinValue ViReal64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViReal64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

coercedValue ViReal64* Specify	the	coerced	value	that
you	want	to	find	in	the	range
table.

commandString ViString* If	the	search	succeeds,	this
parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.
Do	not	change	the	contents	of
the	string.

You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* Specify	the	command	value
that	you	want	to	find	in	the
range	table.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViReal64EntryFromString
Usage
ViStatus	Ivi_GetViReal64EntryFromString(ViChar	commandString[],
IviRangeTablePtr	rangeTable,	ViReal64*	discreteOrMinValue,	ViReal64*
maxValue,	ViReal64*	coercedValue,	ViInt32*	tableIndex,	ViInt32*
commandValue);

Purpose

This	function	finds	the	first	range	table	entry	for	which	the	cmdString	field
matches	the	string	you	specify.	If	the	function	finds	an	entry,	it	returns	the
contents	of	the	entry.	If	it	does	not	find	an	entry,	it	returns	an
IVI_ERROR_INVALID_VALUE	error.
The	function	compares	strings	in	a	case-sensitive	manner.
If	the	string	you	specify	terminates	with	a	carriage	return	('\r')	or	newline
('\n')	character,	the	cmdString	fields	in	the	table	do	not	have	to	contain	the
termination	character.	The	function	considers	the	strings	to	match	if	the
string	you	specify	begins	with	the	string	in	the	cmdString	field,	followed
by	a	carriage	return,	newline,	or	ASCII	NUL	byte.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViReal64	values.

Parameters
Name Type Description
commandString ViChar[] Specify	the	command	string

that	you	want	to	find	in	the
range	table.
If	the	string	you	specify
terminates	with	a	carriage
return	('\r')	or	newline	('\n')
character,	the	cmdString	fields
in	the	table	do	not	have	to
contain	the	termination
character.	The	function
considers	the	strings	to	match	if
the	string	you	specify	begins
with	the	string	in	the	cmdString
field,	followed	by	a	carriage
return,	newline,	or	ASCII	NUL
byte.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	command	string.

discreteOrMinValue ViReal64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViReal64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not

interested	in	this	value.

coercedValue ViReal64* Specify	the	coerced	value	that
you	want	to	find	in	the	range
table.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* Specify	the	command	value
that	you	want	to	find	in	the
range	table.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViReal64EntryFromValue
Usage
ViStatus	Ivi_GetViReal64EntryFromValue(ViReal64	value,	IviRangeTablePtr
rangeTable,	ViReal64*	discreteOrMinValue,	ViReal64*	maxValue,	ViReal64*
coercedValue,	ViInt32*	tableIndex,	ViString*	commandString,	ViInt32*
commandValue);

Purpose

This	function	finds	the	first	range	table	entry	that	applies	to	the	ViReal64
value	you	specify.	If	the	function	finds	an	entry,	it	returns	the	contents	of
the	entry.	If	it	does	not	find	an	entry,	it	returns	an
IVI_ERROR_INVALID_VALUE	error.
If	the	range	table	type	is	IVI_VAL_DISCRETE,	function	searches	for	a
match	on	the	discreteOrMinValue	field	of	each	entry.
If	the	range	table	type	is	IVI_VAL_RANGED	or	IVI_VAL_COERCED,	the
function	searches	until	the	value	you	specify	falls	within	the	range
between	the	discreteOrMinValue	and	maxValue	fields	of	an	entry.	The
value	falls	within	the	range	if	is	greater	than	or	equal	to	the
discreteOrMinValue	and	less	than	or	equal	to	the	maxValue.
The	function	performs	all	ViReal64	comparisons	using	a	comparison
precision	of	14	decimal	digits.
The	function	returns	the	discreteOrMinValue,	maxValue,	and
coercedValue	fields	as	ViReal64	values.

Parameters
Name Type Description
value ViReal64 Specify	the	value	that	you	want

to	find	in	the	range	table.

rangeTable IviRangeTablePtr Specify	the	address	of	the
range	table	in	which	to	search
for	the	value.

discreteOrMinValue ViReal64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	discreteOrMinValue	field	of
the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

maxValue ViReal64* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	maxValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

coercedValue ViReal64* Specify	the	coerced	value	that
you	want	to	find	in	the	range
table.

tableIndex ViInt32* If	the	search	succeeds,	this
parameter	returns	the	0-based
index	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandString ViString* If	the	search	succeeds,	this

parameter	returns	the	pointer	in
the	cmdString	field	of	the	entry.
Do	not	change	the	contents	of
the	string.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

commandValue ViInt32* If	the	search	succeeds,	this
parameter	returns	the	value	of
the	cmdValue	field	of	the	entry.
You	can	pass	VI_NULL	for	the
parameter	if	you	are	not
interested	in	this	value.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_GetViReal64Type
Usage
ViStatus	Ivi_GetViReal64Type(ViReal64	viReal64Value,	ViInt32*
viReal64Type);

Purpose

Obtains	the	type	of	a	ViReal64	value.

Parameters
Name Type Description
viReal64Value ViReal64 Specify	the	ViReal64	value	for	which	you

want	to	determine	the	type.

viReal64Type ViInt32* Returns	the	type	of	the	ViReal64	value	you
specify.

(0) IVI_VAL_TYPE_NORMAL -normal	value
(1) IVI_VAL_TYPE_NAN -Not	a

Number
(NaN)

(2) IVI_VAL_TYPE_PINF -positive
infinity

(3) IVI_VAL_TYPE_NINF -negative
infinity

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_InstrSpecificErrorQueueSize
Usage
ViStatus	Ivi_InstrSpecificErrorQueueSize(ViSession	vi,	ViInt32*
errorQueueSize);

Purpose

This	returns	the	number	of	entries	currently	in	the	instrument-specific
error	queue.
Use	the	instrument-specific	error	queue	if	querying	the	instrument	for	its
status	causes	the	instrument	to	lose	the	error	value.	In	your	check	status
callback,	call	Ivi_QueueInstrSpecificError	to	insert	the	instrument	error
code	in	the	queue,	and	then	return	the	IVI_ERROR_INSTR_SPECIFIC
error	code	from	the	callback.	In	your	PREFIX_error_query	function,	call
Ivi_InstrSpecificErrorQueueSize	to	determine	if	there	is	an	error	in	the
queue.	If	not,	invoke	the	check	status	callback	directly.	In	either	case,	if
there	is	an	error,	call	Ivi_DequeueInstrSpecificError	to	retrieve	the	it.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies
a	particular	IVI	session.

errorQueueSize ViInt32* Returns	the	number	of	errors	currently	in
the	error	queue.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_InterchangeCheck
Usage
ViBoolean	=	Ivi_InterchangeCheck(ViSession	vi);

Purpose

This	function	returns	the	current	value	of	the
IVI_ATTR_INTERCHANGE_CHECK	attribute	for	the	session	you	specify.
Use	Ivi_InterchangeCheck	in	the	high-level	functions	in	class	instrument
drivers.	Ivi_InterchangeCheck	provides	fast,	convenient	access	to	the
IVI_ATTR_INTERCHANGE_CHECK	attribute	because	it	does	no	error
checking	and	does	not	lock	the	session.

Note		Do	not	call	this	function	unless	you	have	already	locked	the
session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Returns	the	value	of	the	IVI_ATTR_INTERCHANGE_CHECK	attribute.
This	attribute	determines	whether	class	drivers	perform	interchangeability
checking.	The	specification	for	each	instrument	class	defines	the	rules	for
interchangeability	checking	for	that	class.
Values:

VI_TRUE	(1) Interchange	checking	on
VI_FALSE	(0) Interchange	checking	off

If	you	pass	an	invalid	session	handle	to	the	function,	this	parameter
returns	VI_FALSE.
Related	Topic

IVI	Status	Codes

Ivi_InvalidateAllAttributes
Usage
ViStatus	Ivi_InvalidateAllAttributes(ViSession	vi);

Purpose

This	function	invalidates	the	cache	values	of	all	instances	of	all	attributes
for	the	session.
Invalidating	a	cache	value	for	an	attribute	ensures	that	the	next	call	to	an
Ivi_GetAttribute	or	Ivi_SetAttribute	function	on	the	attribute	invokes	the
read	or	write	callback	for	the	attribute.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_InvalidateAttribute
Usage
ViStatus	Ivi_InvalidateAttribute(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID);

Purpose

This	function	marks	the	cache	value	of	an	attribute	as	invalid.	This
ensures	that	the	next	call	to	an	Ivi_GetAttribute	or	Ivi_SetAttribute	function
on	the	attribute	invokes	the	read	or	write	callback	for	the	attribute.
For	a	repeated	capability-based	attribute,	you	can	invalidate	the	attribute
on	a	specific	repeated	capability	or	on	all	repeated	capabilities.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_IOSession
Usage
ViSession	=	Ivi_IOSession(ViSession	vi);

Purpose

This	function	returns	the	current	value	of	the	IVI_ATTR_IO_SESSION
attribute	for	the	session	you	specify.
Use	Ivi_IOSession	in	the	high-level	functions	in	specific	instrument	drivers.
Ivi_IOSession	provides	fast,	convenient	access	to	the
IVI_ATTR_IO_SESSION	attribute	because	it	does	no	error	checking	and
does	not	lock	the	session.

Note		Do	not	call	this	function	unless	you	have	already	locked	the
session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Returns	the	value	of	the	IVI_ATTR_IO_SESSION	attribute	for	the	session.
You	use	the	I/O	session	handle	to	communicate	with	the	actual
instrument.
If	you	pass	an	invalid	session	handle	to	the	function,	this	parameter
returns	VI_NULL.
Related	Topic
IVI	Status	Codes

Ivi_LockSession
Usage
ViStatus	Ivi_LockSession(ViSession	vi,	ViBoolean*	callerHasLock);

Purpose

This	function	obtains	a	multithread	lock	on	the	instrument	session.	Before
it	does	so,	it	waits	until	all	other	execution	threads	have	released	their
locks	on	the	instrument	session.
You	can	use	this	function	to	protect	a	section	of	code	which	requires
exclusive	access	to	the	instrument.	This	occurs	when	you	take	multiple
actions	that	affect	the	instrument	and	you	want	to	ensure	that	other
execution	threads	do	not	disturb	the	instrument	state	until	all	of	your
actions	execute.	For	example,	if	you	set	various	instrument	attributes	and
then	trigger	a	measurement,	you	must	guarantee	that	no	other	execution
thread	modifies	the	attribute	values	until	you	finish	taking	the
measurement.
You	can	safely	make	nested	calls	to	Ivi_LockSession	within	the	same
thread.	To	completely	unlock	the	session,	you	must	balance	each	call	to
Ivi_LockSession	with	a	call	to	Ivi_UnlockSession.	If,	however,	you	use	the
Caller	Has	Lock	parameter	in	all	calls	to	Ivi_LockSession	and
Ivi_UnlockSession	within	a	function,	the	IVI	engine	locks	the	session	only
once	within	the	function	regardless	of	the	number	of	calls	you	make	to
Ivi_LockSession.	This	allows	you	to	call	Ivi_UnlockSession	just	once	at	the
end	of	the	function.
User	applications,	instrument	drivers,	and	the	IVI	engine	functions	all
have	the	ability	to	obtain	a	lock.	The	IVI	engine	functions	always	release
the	lock	before	they	return.	Instrument	driver	functions	should	do	the
same.
Instrument	drivers	export	this	function	to	the	end-user	through	the
PREFIX_LockSession	function.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies
a	particular	IVI	session.

callerHasLock ViBoolean* This	parameter	serves	as	a	convenience.	If
you	do	not	want	to	use	this	parameter,	pass
VI_NULL.
Use	this	parameter	in	complex	functions	to
keep	track	of	whether	you	obtain	a	lock	and
therefore	need	to	unlock	the	session.	Pass
the	address	of	a	local	ViBoolean	variable.
Initialize	the	local	variable	to	VI_FALSE
when	you	declare	it.	Pass	the	same
address	to	any	other	calls	you	make	to
Ivi_LockSession	or	Ivi_UnlockSession	in	the
same	function.
The	parameter	is	an	input/output
parameter.	Ivi_LockSession	and
Ivi_UnlockSession	each	inspect	the	current
value	and	take	the	following	actions:

If	the	value	is	VI_TRUE,
Ivi_LockSession	does	not	lock	the
session	again.	If	the	value	is
VI_FALSE,	Ivi_LockSession	obtains
the	lock	and	sets	the	value	of	the
parameter	to	VI_TRUE.
If	the	value	is	VI_FALSE,
Ivi_UnlockSession	does	not	attempt
to	unlock	the	session.	If	the	value	is
VI_TRUE,	Ivi_UnlockSession	unlocks
the	lock	and	sets	the	value	of	the
parameter	to	VI_FALSE.

Thus,	you	can,	call	Ivi_UnlockSession	at	the

end	of	your	function	without	worrying	about
whether	you	actually	have	the	lock.
Example:
ViStatus	PREFIX_Func	(ViSession	vi,	ViInt32
flags){
ViStatus	error	=	VI_SUCCESS;
ViBoolean	haveLock	=	VI_FALSE;

if	(flags	&	BIT_1)
{
viCheckErr(Ivi_LockSession(vi,
&haveLock));
viCheckErr(TakeAction1(vi));

if	(flags	&	BIT_2)
{
viCheckErr(Ivi_UnlockSession(vi,
&haveLock));
viCheckErr(TakeAction2(vi));
viCheckErr(Ivi_LockSession(vi,
&haveLock);
}

if	(flags	&	BIT_3)
viCheckErr(TakeAction3(vi));

}
Error:
/*
At	this	point,	you	cannot	really	be	sure
that	you	have	the	lock.	Fortunately,	the
haveLock	variable	takes	care	of	that	for
you.

*/
Ivi_UnlockSession(vi,	&haveLock);
return	error;

}

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_NeedToCheckStatus
Usage
ViBoolean	=	Ivi_NeedToCheckStatus(ViSession	vi);

Purpose

This	function	returns	an	indication	of	whether	the	instrument	driver	has
interacted	with	the	instrument	since	the	last	time	the	IVI	engine	or	the
driver	checked	the	status	of	the	instrument.
Typically,	the	PREFIX_CheckStatus	function	that	is	internal	to	an
instrument	driver	calls	Ivi_NeedToCheckStatus	to	help	determine	whether	it
is	necessary	to	invoke	the	check	status	callback	for	the	session.
The	IVI	engine	maintains	an	internal	needToCheckStatus	variable	for	each
session	indicating	whether	it	is	necessary	to	check	the	status	of	the
instrument.	When	you	create	a	new	session,	the	initial	value	of	the
variable	is	VI_TRUE.	The	IVI	engine	sets	the	needToCheckStatus	variable
to	VI_TRUE	when	it	invokes	the	read	callback	or	write	callback	for	an
attribute	for	which	the	IVI_VAL_DONT_CHECK_STATUS	flag	is	0.	The
Ivi_WriteInstrData	and	Ivi_WriteFromFile	functions	also	set	the	variable	to
VI_TRUE.	The	IVI	engine	sets	the	variable	to	VI_FALSE	after	it	invokes
the	check	status	callback	successfully.
The	Ivi_SetNeedToCheckStatus	function	allows	an	instrument	driver	to	set
the	state	of	the	internal	needToCheckStatus	variable.	A	driver	typically
sets	the	variable	to	VI_TRUE	before	it	attempts	direct	instrument	I/O.	It
sets	it	to	VI_FALSE	after	it	calls	the	check	status	callback	successfully.
Ivi_NeedToCheckStatus	returns	the	value	of	the	internal
needToCheckStatus	variable.	If	the	vi	parameter	is	invalid,
Ivi_NeedToCheckStatus	returns	VI_FALSE.

Note		Do	not	call	this	function	unless	you	have	already	locked	the
session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Returns	the	value	of	the	Ivi_NeedToCheckStatus	variable	for	the	session.
Values:

VI_TRUE	(1) Need	to	check	status
VI_FALSE(0) No	need	to	check	status

If	you	pass	an	invalid	session	handle	to	the	function,	this	parameter
returns	VI_FALSE.
Related	Topic
IVI	Status	Codes

Ivi_QueryInstrStatus
Usage
ViBoolean	=	Ivi_QueryInstrStatus(ViSession	vi);

Purpose

This	function	returns	the	current	value	of	the
IVI_ATTR_QUERY_INSTRUMENT_STATUS	attribute	for	the	session	you
specify.
Use	Ivi_QueryInstrStatus	in	the	high-level	functions	in	specific	instrument
drivers.	Ivi_QueryInstrStatus	provides	fast,	convenient	access	to	the
IVI_ATTR_QUERY_INSTRUMENT_STATUS	attribute	because	it	does	no
error	checking	and	does	not	lock	the	session.

Note		Do	not	call	this	function	unless	you	have	already	locked	the
session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Returns	the	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session.	This	attribute	determines	whether	or	not	to	query
the	instrument	error	status	after	each	operation.
Values:

VI_TRUE	(1) Query	instrument	status
VI_FALSE	(0) Do	not	query	instrument	status

If	you	pass	an	invalid	session	handle	to	the	function,	this	parameter
returns	VI_FALSE.
Related	Topic

IVI	Status	Codes

Ivi_QueueInstrSpecificError
Usage
ViStatus	Ivi_QueueInstrSpecificError(ViSession	vi,	ViInt32	instrumentError,
ViChar	errorMessage[]);

Purpose

This	function	inserts	a	new	entry	at	the	end	of	the	instrument-specific
error	queue.	The	instrument-specific	error	queue	is	a	software	record	of
the	error	values	you	retrieve	from	the	instrument.
Use	the	instrument-specific	error	queue	if	querying	the	instrument	for	its
status	causes	the	instrument	to	lose	the	error	value.	In	your	check	status
callback,	call	Ivi_QueueInstrSpecificError	to	insert	the	instrument	error
code	in	the	queue,	and	then	return	the	IVI_ERROR_INSTR_SPECIFIC
error	code	from	the	callback.	In	your	PREFIX_error_query	function,	call
Ivi_InstrSpecificErrorQueueSize	to	determine	if	there	is	an	error	in	the
queue.	If	not,	invoke	the	check	status	callback	directly.	In	either	case,	if
there	is	an	error,	call	Ivi_DequeueInstrSpecificError	to	retrieve	the	it.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

instrumentError ViInt32 Pass	the	numeric	error	code	to	insert	at
the	end	of	the	instrument-specific	error
queue.

errorMessage ViChar[] Pass	the	error	description	string	to	insert	at
the	end	of	the	instrument-specific	error
queue.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_RangeChecking
Usage
ViBoolean	=	Ivi_RangeChecking(ViSession	vi);

Purpose

This	function	returns	the	current	value	of	the	IVI_ATTR_RANGE_CHECK
attribute	for	the	session	you	specify.
Use	Ivi_RangeChecking	in	the	high-level	functions	in	specific	instrument
drivers.	Ivi_RangeChecking	provides	fast,	convenient	access	to	the
IVI_ATTR_RANGE_CHECK	attribute	because	it	does	no	error	checking
and	does	not	lock	the	session.

Note		Do	not	call	this	function	unless	you	have	already	locked	the
session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Returns	the	value	of	the	IVI_ATTR_RANGE_CHECK	attribute	for	the
session.	This	attribute	determines	whether	or	not	to	range	check
parameters	to	instrument	driver	functions
Values:

VI_TRUE	(1) Range	check
VI_FALSE	(0) Do	not	range	check

If	you	pass	an	invalid	session	handle	to	the	function,	this	parameter
returns	VI_FALSE.
Related	Topic
IVI	Status	Codes

Ivi_RangeTableFree
Usage
ViStatus	Ivi_RangeTableFree(ViSession	vi,	IviRangeTablePtr	rangeTable,
ViBoolean	freeCommandStrings);

Purpose

This	function	deallocates	a	range	table	you	create	dynamically	with
Ivi_RangeTableNew.	It	calls	Ivi_Free	to	free	the	IviRangeTable	structure
and	the	array	of	IviRangeTableEntry	structures.	It	optionally	frees	the
cmdString	field	in	each	entry.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that

you	obtain	from
Ivi_SpecificDriverNew.	The
handle	identifies	a	particular
IVI	session.

rangeTable IviRangeTablePtr Specify	the	table	pointer	you
obtain	from
Ivi_RangeTableNew.

freeCommandStrings ViBoolean Specify	whether	you	want	the
function	to	deallocate	the
command	strings	in	the	range
table.	If	you	pass	VI_TRUE
(1),	the	function	calls	Ivi_Free
on	the	cmdString	field	of	each
entry.	Do	not	pass	VI_TRUE
unless	you	allocated	the
command	strings	using
Ivi_Alloc.
Pass	VI_FALSE	(0)	if	you	do
not	want	the	function	to
deallocate	the	command
strings.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_RangeTableNew
Usage
ViStatus	Ivi_RangeTableNew(ViSession	vi,	ViInt32	numberOfEntries,	ViInt32
typeOfTable,	ViBoolean	hasMinimum,	ViBoolean	hasMaximum,
IviRangeTablePtr*	rangeTable);

Purpose

This	function	dynamically	allocates	a	range	table.	Range	tables	you
create	with	this	function	are	called	"dynamic	range	tables".	Range	tables
you	define	statically	in	your	source	code	are	called	"static	range	tables".
If	the	values	in	the	range	table	for	a	particular	attribute	can	change
depending	on	the	settings	of	other	attributes,	you	must	create	it	as	a
dynamic	range	table.	You	must	also	install	a	range	table	callback	using
Ivi_SetAttrRangeTableCallback.	In	the	range	table	callback,	you	modify	the
contents	of	the	range	table	and	then	return	its	address.
To	allow	for	multithreading	and	multiple	sessions	to	the	same	instrument
type,	you	must	create	a	separate	dynamic	range	table	for	each	IVI
session.	It	is	convenient	to	pass	the	address	of	the	dynamic	range	table
to	Ivi_AddAttributeViInt32	or	Ivi_AddAttributeViReal64	when	you	create
the	attribute.	Your	range	table	callback	can	then	use	the
Ivi_GetStoredRangeTablePtr	function	to	obtain	the	address	of	the	dynamic
range	table	for	the	session.
This	function	allocates	the	IviRangeTable	structure	and	an	array	of
IviRangeTableEntry	structures.	It	allocates	space	in	the	array	for	the
number	of	entries	you	specify,	which	must	include	the	termination	entry.	It
sets	the	last	entry	as	the	termination	entry.	Use	the
Ivi_SetRangeTableEntry	function	to	set	the	values	within	the	entries.
If	the	number	of	entries	in	the	table	varies,	specify	the	maximum	number
of	entries	that	it	can	contain.	Use	the	Ivi_SetRangeTableEnd	function	to
change	the	location	of	the	termination	entry.
The	IVI	engine	keeps	track	of	the	memory	you	allocate	with	this	function
in	each	session.	It	automatically	frees	the	memory	when	you	call
Ivi_Dispose	on	the	session.
If	you	want	to	deallocate	the	table	before	the	session	ends,	call	the
Ivi_RangeTableFree	function.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you

obtain	from	Ivi_SpecificDriverNew.
The	handle	identifies	a	particular
IVI	session.

numberOfEntries ViInt32 Specify	the	number	of	entries	you
want	in	the	range	table,	including
the	termination	entry.
For	example,	if	you	want	to	have
6	entries	in	the	range	table,
excluding	the	termination	entry,
pass	7	for	this	parameter.
The	function	automatically	sets
the	last	entry	as	the	termination
entry.	To	set	an	earlier	entry	as
the	termination	entry,	call
Ivi_SetRangeTableEnd.

typeOfTable ViInt32 Specify	the	type	of	range	table
you	want	to	create.	The	type
indicates	how	the	IVI	engine
interprets	the
discreteOrMinValue,	maxValue,
and	coercedValue	fields	in	each
entry.
Valid	Values:
(0)	IVI_VAL_DISCRETE
(1)	IVI_VAL_RANGED
(2)	IVI_VAL_COERCED
(1)	Discrete—Each	table	entry
defines	a	discrete	value.	The
discreteOrMinValue	field	contains

the	discrete	value.	The	maxValue
and	coercedValue	fields	are	not
used.
(2)	Ranged—Each	table	entry
defines	a	range	with	a	minimum
and	a	maximum	value.	The
discreteOrMinValue	field	holds
the	minimum	value,	and	the
maxValue	field	holds	the
maximum	value.	The
coercedValue	field	is	not	used.	If
the	attribute	has	only	one
continuous	valid	range	and	you
do	not	assign	different	command
strings	or	command	values	to
subsets	of	the	range,	create	the
range	table	with	only	one	entry
other	than	the	terminating	entry.
(3)	Coerced—Each	table	entry
defines	a	discrete	value	that
represents	a	range	of	values.
This	is	useful	when	an	instrument
supports	a	set	of	ranges,	each	of
which	you	must	specify	to	the
instrument	with	one	discrete
value.	The	discreteOrMinValue
holds	the	minimum	value	of	the
range,	maxValue	holds	the
maximum	value,	and
coercedValue	holds	the	discrete
value	that	represents	the	range.

hasMinimum ViBoolean Indicates	whether	the	table
contains	a	meaningful	minimum
value.	Pass	VI_TRUE	(1)	if	the
range	table	has	a	meaningful
minimum	valid	value.	Otherwise,
pass	VI_FALSE	(0).

Note		For	tables	with	type
IVI_VAL_COERCED,	the
minimum	value	represents
the	minimum	coerced
value.

hasMaximum ViBoolean Indicates	whether	the	table
contains	a	meaningful	maximum
value.	Pass	VI_TRUE	(1)	if	the
range	table	has	a	meaningful
maximum	valid	value.	Otherwise,
pass	VI_FALSE	(0).

Note		For	tables	with	type
IVI_VAL_COERCED,	the
maximum	value	represents
the	maximum	coerced
value.

rangeTable IviRangeTablePtr* Returns	a	pointer	to	the	range
table	the	function	dynamically
allocates.	Use
Ivi_SetRangeTableEntry	to
configure	each	entry	after	calling
this	function.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_ReadInstrData
Usage
ViStatus	Ivi_ReadInstrData(ViSession	vi,	ViInt32	numberBytesToRead,	ViChar
readBuffer[],	ViInt32*	numBytesRead);

Purpose

This	function	reads	data	directly	from	an	instrument	using	VISA	I/O.	The
function	bypasses	the	attribute	state	caching	mechanism.	Use	this
function	only	to	implement	the	PREFIX_ReadInstrData	function	that	your
instrument	driver	exports	to	the	end-user.
The	function	assumes	that	the	IVI_ATTR_IO_SESSION	attribute	for	the
IVI	session	you	specify	holds	a	valid	VISA	session	for	the	instrument.
If	data	is	not	available	at	the	instrument's	output	buffer	when	you	call	this
function,	the	instrument	might	hang	up.	In	that	case,	the	function	does
not	return	until	the	VISA	I/O	call	times	out.	If	you	have	disabled	the
timeout,	the	function	hangs	indefinitely.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The
handle	identifies	a	particular	IVI
session.

numberBytesToRead ViInt32 Specify	the	maximum	number	of
bytes	to	read	from	the	instrument.
The	Read	Buffer	parameter	must	be
a	ViChar	buffer	that	contains	at	least
the	number	of	bytes	you	specify.
If	the	number	of	bytes	you	specify	is
less	than	the	number	of	bytes	in	the
instrument's	output	buffer,	you	must
call	this	function	again	to	empty	the
output	buffer.	If	you	do	not	empty	the
instrument's	output	buffer,	the
instrument	might	return	invalid	data	in
response	to	subsequent	requests.
If	data	is	not	available	at	the
instrument's	output	buffer	when	you
call	this	function,	the	instrument	might
hang	up.	In	that	case,	the	function
does	not	return	until	the	VISA	I/O	call
times	out.	If	you	have	disabled	the
timeout,	the	function	hangs
indefinitely.

readBuffer ViChar[] A	buffer	in	which	the	function	places
the	data	it	receives	from	the
instrument.
The	buffer	must	be	a	ViChar	array
that	has	at	least	as	many	bytes	as
you	specify	in	the	Number	Bytes	To
Read	parameter.

This	function	does	not	write	an	ASCII
NUL	byte	to	terminate	the	data,	nor
does	it	clear	the	buffer	beyond	the
bytes	it	actually	receives	from	the
instrument.

numBytesRead ViInt32* This	control	returns	the	actual
number	of	bytes	the	function	received
from	the	instrument.	This	is	the	value
that	the	VISA	viRead	function	returns.
If	the	actual	number	of	bytes	received
is	less	than	the	number	of	bytes	you
specify	in	the	Number	Bytes	To	Read
parameter,	the	instrument's	output
buffer	has	probably	emptied.
If	the	number	of	bytes	received	is	0,
the	most	probable	cause	is	that	no
data	was	available	at	the	instrument's
output	buffer.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_ReadToFile
Usage
ViStatus	Ivi_ReadToFile(ViSession	vi,	ViChar	filename[],	ViInt32
readNumber_ofBytes,	ViInt32	fileAction,	ViInt32*	returnCount);

Purpose

This	function	reads	data	from	an	instrument	using	VISA	I/O	and	writes	it
to	a	file	you	specify.	Use	this	function	internally	in	your	instrument	driver.
The	function	assumes	that	the	IVI_ATTR_IO_SESSION	attribute	for	the
IVI	session	you	specify	holds	a	valid	VISA	session	for	the	instrument.
The	function	opens	the	file	in	binary	mode.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The
handle	identifies	a	particular	IVI
session.

filename ViChar[] Specify	the	pathname	of	the	file	from
which	to	write	the	data.	You	can
specify	an	absolute	pathname,	a
relative	pathname,	or	a	simple
filename.	The	function	treats	relative
pathnames	and	simple	filenames	as
relative	to	the	current	working
directory.
If	you	enter	a	literal	string	in	this
parameter	under	Windows,	be	sure
to	use	double	backslashes	to
represent	one	backslash	in	the
pathname.

readNumber_ofBytes ViInt32 Specify	the	maximum	number	of
bytes	to	read	from	the	instrument.

fileAction ViInt32 Specify	whether	you	want	the
function	to	append	the	data	it
receives	from	the	instrument	to	an
existing	file	or	to	create	a	new	file.
Values:
(1)	IVI_VAL_TRUNCATE
(2)	IVI_VAL_APPEND
(1)	Truncate—If	the	file	already
exists,	delete	its	contents	and	write
the	instrument	data	to	it.	If	the	file
does	not	exist,	create	it	and	write	the

instrument	data	to	it.
(2)	Append—If	the	file	already	exists,
append	the	instrument	data	to	it.	If
the	file	does	not	exist,	create	it	and
write	the	instrument	data	to	it.

returnCount ViInt32* Returns	the	number	of	bytes	the
function	successfully	writes	from	the
file.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_ResetInterchangeCheck
Usage
ViStatus	Ivi_ResetInterchangeCheck(ViSession	vi);

Purpose

When	developing	a	complex	test	system	that	consists	of	multiple	test
modules,	it	is	generally	a	good	idea	to	design	the	test	modules	so	that
they	can	run	in	any	order.	To	do	so	requires	ensuring	that	each	test
module	completely	configures	the	state	of	each	instrument	it	uses.	If	a
particular	test	module	does	not	completely	configure	the	state	of	an
instrument,	the	state	of	the	instrument	depends	on	the	configuration	from
a	previously	executed	test	module.	If	you	execute	the	test	modules	in	a
different	order,	the	behavior	of	the	instrument	and	therefore	the	entire	test
module	is	likely	to	change.	This	change	in	behavior	is	generally
instrument	specific	and	represents	an	interchangeability	problem.
You	can	use	this	function	to	test	for	such	cases.	After	you	call	this
function,	the	interchangeability	checking	algorithms	in	the	specific	driver
ignore	all	previous	configuration	operations.	By	calling	this	function	at	the
beginning	of	a	test	module,	you	can	determine	whether	the	test	module
has	dependencies	on	the	operation	of	previously	executed	test	modules.
This	function	does	not	clear	the	interchangeability	warnings	from	the	list
of	previously	recorded	interchangeability	warnings.	If	you	want	to
guarantee	that	the	Ivi_GetNextInterchangeCheckString	function	only	returns
those	interchangeability	warnings	that	are	generated	after	calling	this
function,	you	must	clear	the	list	of	interchangeability	warnings.	You	can
clear	the	interchangeability	warnings	list	by	repeatedly	calling	the
Ivi_GetNextInterchangeCheckString	function	until	no	more
interchangeability	warnings	are	returned.	If	you	are	not	interested	in	the
content	of	those	warnings,	you	can	call	the	Ivi_ClearInterchangeWarnings
function.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_RestrictAttrToChannels
Usage
ViStatus	Ivi_RestrictAttrToChannels(ViSession	vi,	ViAttr	attributeID,	ViChar
ChannelStringsList[]);

Purpose

This	function	restricts	an	attribute	to	specific	channels,	thereby	excluding
you	from	using	the	attribute	on	other	channels.	You	can	call	this	function
only	on	attributes	for	which	you	have	enabled	the
IVI_VAL_MULTI_CHANNEL	flag.
When	you	initially	add	an	attribute,	it	applies	to	all	channels.	If	you	want	it
to	apply	to	only	a	subset,	call	this	function.	This	function	can	only	be
called	once	after	an	attribute	has	been	created.
Example:
Ivi_BuildChannelTable	(vi,	"1,2,3,4",	VI_FALSE,	VI_NULL);
Ivi_RestrictAttrToChannels	(vi,	PREFIX_ATTR_RANGE,	"1,2");
As	a	result	of	these	function	calls,	PREFIX_ATTR_RANGE	is	valid	only	for
channels	"1"	and	"2".

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

ChannelStringsList ViChar[] Pass	a	list	of	the	channel	strings	to
which	you	want	to	restrict	the	attribute
you	specify.	You	must	separate	channel
strings	with	commas.	You	can	include
spaces	after	the	commas.
For	example,	if	you	call
Ivi_BuildChannelTable	with	the	channel
string	"1,2,3,4",	then	pass	"1,2"	for	this

parameter	to	restrict	the	attribute	you
specify	to	channels	"1"	and	"2".

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_RestrictAttrToInstances
Usage
ViStatus	Ivi_RestrictAttrToInstances(ViSession	vi,	ViAttr	attributeID,	ViChar
instances[]);

Purpose

This	function	restricts	an	attribute	to	specific	repeated	capability
instances,	thereby	excluding	you	from	using	the	attribute	on	other
repeated	capability	instances.
You	can	call	this	function	only	on	attributes	that	are	defined	for	a
repeated	capability.	When	you	initially	add	an	attribute,	it	applies	to	all
repeated	capability	instances.	If	you	want	it	to	apply	to	only	a	subset,	call
this	function.
This	function	can	only	be	called	once	after	an	attribute	has	been	created.
Example:
Ivi_BuildRepCapTable	(vi,	"Marker",	"1,2,3,4");
Ivi_RestrictAttrToInstances	(vi,	PREFIX_ATTR_RANGE,	"1,2");

As	a	result	of	these	function	calls,	PREFIX_ATTR_RANGE	is	valid	only	for
markers	"1"	and	"2".

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this	parameter.
The	include	file	for	a	specific	instrument	driver
defines	constant	names	for	all	of	the	user-
accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,
attributes	that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the	particular
instrument.	Each	defined	constant	name	begins
with	PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the	specific	driver
include	file	uses	the	same	constant	name	that
appears	in	ivi.h,	except	that	the	specific
instrument	prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines	IVI_ATTR_CACHE,	and
the	Fluke	45	include	file,	fl45.h,	defines	the
following	constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the	specific
driver	include	file	uses	the	same	constant	name
that	appears	in	the	instrument	class	include	file,
except	that	the	specific	instrument	prefix
replaces	the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h	defines	the
following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,	the
specific	driver	include	file	defines	a	constant
name	and	assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.	For
example,	fl45.h	defines	the	following	constant
name:
#define	FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+	3L)

For	each	attribute	that	is	private	to	an	instrument
driver,	the	instrument	driver	source	file	defines	a
constant	name	and	assigns	a	value	that	is	an
offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.	For
example,	hp34401a.c	defines	the	following
constant	name:
#define	HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE	+	1L)

instances ViChar[] Pass	a	list	of	the	repeated	capability	identifiers	to
which	you	want	to	restrict	the	attribute	you
specify.	You	must	separate	identifiers	with
commas.	You	can	include	spaces	after	the
commas.
For	example,	if	you	call	Ivi_BuildRepCapTable
with	the	string	"1,2,3,4",	passing	"1,2"	for	this
parameter	restricts	the	attribute	to	the	repeated
capability	instances	"1"	and	"2".

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCheckCallbackViAddr
Usage
ViStatus	Ivi_SetAttrCheckCallbackViAddr(ViSession	vi,	ViAttr	attributeID,
CheckAttrViAddr_CallbackPtr	checkCallback);

Purpose

This	function	sets	the	check	callback	function	for	a	ViAddr	attribute.	The
IVI	engine	calls	the	check	callback	function	to	validate	new	values	to
which	you	attempt	to	set	the	attribute.
If	you	do	not	want	the	IVI	engine	to	invoke	a	check	callback	for	the
attribute,	pass	VI_NULL	for	the	Check	Callback	parameter.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

checkCallback CheckAttrViAddr_CallbackPtr Specify	the	check	callback	function	you
want	the	IVI	engine	to	invoke	to	validate
attribute	values.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,

ViAttr	attributeId,
ViAddr	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	check
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCheckCallbackViBoolean
Usage
ViStatus	Ivi_SetAttrCheckCallbackViBoolean(ViSession	vi,	ViAttr	attributeID,
CheckAttrViBoolean_CallbackPtr	checkCallback);

Purpose

This	function	sets	the	check	callback	function	for	a	ViBoolean	attribute.
The	IVI	engine	calls	the	check	callback	function	to	validate	new	values	to
which	you	attempt	to	set	the	attribute.
If	you	do	not	want	the	IVI	engine	to	invoke	a	check	callback	for	the
attribute,	pass	VI_NULL	for	the	Check	Callback	parameter.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

checkCallback CheckAttrViBoolean_CallbackPtr Specify	the	check	callback	function	you
want	the	IVI	engine	to	invoke	to	validate
attribute	values.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,

ViAttr	attributeId,
ViBoolean	value);
If	you	want	to	use	the	Edit	IVI	Specific
Driver	Attributes	dialog	box	to	develop
your	instrument	driver	source	code,
retain	the	parameter	names	as	shown	in
the	prototype	for	the	callback.
If	you	do	not	want	to	use	a	check
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCheckCallbackViInt32
Usage
ViStatus	Ivi_SetAttrCheckCallbackViInt32(ViSession	vi,	ViAttr	attributeID,
CheckAttrViInt32_CallbackPtr	checkCallback);

Purpose

This	function	sets	the	check	callback	function	for	a	ViInt32	attribute.	The
IVI	engine	calls	the	check	callback	function	to	validate	new	values	to
which	you	attempt	to	set	the	attribute.
The	IVI	engine	automatically	installs	its	default	check	callback	when	you
create	the	attribute.
If	you	do	not	want	the	IVI	engine	to	invoke	a	check	callback	for	the
attribute,	pass	VI_NULL	for	the	Check	Callback	parameter.
If	you	want	to	specify	your	own	callback	function	but	you	want	to	use	the
default	check	callback	within	your	function,	you	can	call
Ivi_DefaultCheckCallbackViInt32.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

checkCallback CheckAttrViInt32_CallbackPtr Specify	the	check	callback	function	you
want	the	IVI	engine	to	invoke	to	validate
attribute	values.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,

ViAttr	attributeId,
ViInt32	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	check
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCheckCallbackViInt64
Usage
ViStatus	Ivi_SetAttrCheckCallbackViInt64(ViSession	vi,	ViAttr	attributeID,
CheckAttrViInt64_CallbackPtr	checkCallback);

Purpose

This	function	sets	the	check	callback	function	for	a	ViInt64	attribute.	The
IVI	engine	calls	the	check	callback	function	to	validate	new	values	to
which	you	attempt	to	set	the	attribute.
The	IVI	engine	automatically	installs	its	default	check	callback	when	you
create	the	attribute.
If	you	do	not	want	the	IVI	engine	to	invoke	a	check	callback	for	the
attribute,	pass	VI_NULL	for	the	Check	Callback	parameter.
If	you	want	to	specify	your	own	callback	function	but	you	want	to	use	the
default	check	callback	within	your	function,	you	can	call
Ivi_DefaultCheckCallbackViInt64.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

checkCallback CheckAttrViInt64_CallbackPtr Specify	the	check	callback	function	you
want	the	IVI	engine	to	invoke	to	validate
attribute	values.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,

ViAttr	attributeId,
ViInt64	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	check
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCheckCallbackViReal64
Usage
ViStatus	Ivi_SetAttrCheckCallbackViReal64(ViSession	vi,	ViAttr	attributeID,
CheckAttrViReal64_CallbackPtr	checkCallback);

Purpose

This	function	sets	the	check	callback	function	for	a	ViReal64	attribute.
The	IVI	engine	calls	the	check	callback	function	to	validate	new	values	to
which	you	attempt	to	set	the	attribute.
The	IVI	engine	automatically	installs	its	default	check	callback	when	you
create	the	attribute.
If	you	do	not	want	the	IVI	engine	to	invoke	a	check	callback	for	the
attribute,	pass	VI_NULL	for	the	Check	Callback	parameter.
If	you	want	to	specify	your	own	callback	function	but	you	want	to	use	the
default	check	callback	within	your	function,	you	can	call
Ivi_DefaultCheckCallbackViReal64.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

checkCallback CheckAttrViReal64_CallbackPtr Specify	the	check	callback	function	you
want	the	IVI	engine	to	invoke	to	validate
attribute	values.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,

ViAttr	attributeId,
ViReal64	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	check
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCheckCallbackViSession
Usage
ViStatus	Ivi_SetAttrCheckCallbackViSession(ViSession	vi,	ViAttr	attributeID,
CheckAttrViSession_CallbackPtr	checkCallback);

Purpose

This	function	sets	the	check	callback	function	for	a	ViSession	attribute.
The	IVI	engine	calls	the	check	callback	function	to	validate	new	values	to
which	you	attempt	to	set	the	attribute.
If	you	do	not	want	the	IVI	engine	to	invoke	a	check	callback	for	the
attribute,	pass	VI_NULL	for	the	Check	Callback	parameter.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

checkCallback CheckAttrViSession_CallbackPtr Specify	the	check	callback	function	you
want	the	IVI	engine	to	invoke	to	validate
attribute	values.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,

ViAttr	attributeId,
ViSession	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	check
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCheckCallbackViString
Usage
ViStatus	Ivi_SetAttrCheckCallbackViString(ViSession	vi,	ViAttr	attributeID,
CheckAttrViString_CallbackPtr	checkCallback);

Purpose

This	function	sets	the	check	callback	function	for	a	ViString	attribute.	The
IVI	engine	calls	the	check	callback	function	to	validate	new	values	to
which	you	attempt	to	set	the	attribute.
If	you	do	not	want	the	IVI	engine	to	invoke	a	check	callback	for	the
attribute,	pass	VI_NULL	for	the	Check	Callback	parameter.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

checkCallback CheckAttrViString_CallbackPtr Specify	the	check	callback	function	you
want	the	IVI	engine	to	invoke	to	validate
attribute	values.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,

ViAttr	attributeId,
ViConstString	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	check
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCoerceCallbackViAddr
Usage
ViStatus	Ivi_SetAttrCoerceCallbackViAddr(ViSession	vi,	ViAttr	attributeID,
CoerceAttrViAddr_CallbackPtr	coerceCallback);

Purpose

This	function	sets	the	coerce	callback	function	for	a	ViAddr	attribute.	The
IVI	engine	calls	the	coerce	callback	function	when	you	attempt	to	set	the
attribute	to	a	new	value.	The	job	of	the	coerce	callback	is	to	convert	the
value	you	specify	into	the	value	to	send	to	the	instrument.	The	IVI	engine
invokes	the	coerce	callback	after	it	invokes	the	check	callback.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

coerceCallback CoerceAttrViAddr_CallbackPtr Specify	the	coerce	callback	function	you
want	the	IVI	engine	to	invoke	when	you
attempt	to	set	the	attribute	to	a	new
value.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession

vi,ViConstString	repCapName,
ViAttr	attributeId,
ViAddr	value,
ViAddr	*coercedValue);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	coerce
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCoerceCallbackViBoolean
Usage
ViStatus	Ivi_SetAttrCoerceCallbackViBoolean(ViSession	vi,	ViAttr	attributeID,
CoerceAttrViBoolean_CallbackPtr	coerceCallback);

Purpose

This	function	sets	the	coerce	callback	function	for	a	ViBoolean	attribute.
The	IVI	engine	calls	the	coerce	callback	function	when	you	attempt	to	set
the	attribute	to	a	new	value.	The	job	of	the	coerce	callback	for	a
ViBoolean	attribute	is	to	convert	the	value	you	specify	into	either
VI_TRUE	(1)	or	VI_FALSE	(0).	The	IVI	engine	invokes	the	coerce
callback	after	it	invokes	the	check	callback.
The	IVI	engine	automatically	installs	its	default	coerce	callback	when	you
create	the	attribute.	The	default	callback	coerces	all	non-zero	values	to
VI_TRUE	(1).	If	you	do	want	the	IVI	engine	to	invoke	a	coerce	callback
for	the	attribute,	pass	VI_NULL	for	the	Coerce	Callback	parameter.
If	you	want	to	specify	your	own	callback	function	but	you	want	to	use	the
default	coerce	callback	within	your	function,	you	can	call
Ivi_DefaultCoerceCallbackViBoolean.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

coerceCallback CoerceAttrViBoolean_CallbackPtr Specify	the	coerce	callback	function	you
want	the	IVI	engine	to	invoke	when	you
attempt	to	set	the	attribute	to	a	new
value.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession	vi,

ViConstString	repCapName,
attributeId,	ViBoolean	value,
*coercedValue);
If	you	want	to	use	the	Edit	IVI	Specific
Driver	Attributes	dialog	box	to	develop
your	instrument	driver	source	code,
retain	the	parameter	names	as	shown	in
the	prototype	for	the	callback.
If	you	do	not	want	to	use	a	coerce
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCoerceCallbackViInt32
Usage
ViStatus	Ivi_SetAttrCoerceCallbackViInt32(ViSession	vi,	ViAttr	attributeID,
CoerceAttrViInt32_CallbackPtr	coerceCallback);

Purpose

This	function	sets	the	coerce	callback	function	for	a	ViInt32	attribute.	The
IVI	engine	calls	the	coerce	callback	function	when	you	attempt	to	set	the
attribute	to	a	new	value.	The	job	of	the	coerce	callback	is	to	convert	the
value	you	specify	into	the	value	to	send	to	the	instrument.	The	IVI	engine
invokes	the	coerce	callback	after	it	invokes	the	check	callback.
The	IVI	engine	automatically	installs	its	default	coerce	callback	when	you
create	the	attribute.
If	you	do	not	want	the	IVI	engine	to	invoke	a	coerce	callback	for	the
attribute,	pass	VI_NULL	for	the	Coerce	Callback	parameter.
If	you	want	to	specify	your	own	callback	function	but	you	want	to	use	the
default	coerce	callback	within	your	function,	you	can	call
Ivi_DefaultCoerceCallbackViInt32.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

coerceCallback CoerceAttrViInt32_CallbackPtr Specify	the	coerce	callback	function	you
want	the	IVI	engine	to	invoke	when	you
attempt	to	set	the	attribute	to	a	new
value.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession

vi,ViConstString	repCapName,
ViAttr	attributeId,
ViInt32	value,
ViInt32	*coercedValue);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	coerce
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCoerceCallbackViInt64
Usage
ViStatus	Ivi_SetAttrCoerceCallbackViInt64(ViSession	vi,	ViAttr	attributeID,
CoerceAttrViInt64_CallbackPtr	coerceCallback);

Purpose

This	function	sets	the	coerce	callback	function	for	a	ViInt64	attribute.	The
IVI	engine	calls	the	coerce	callback	function	when	you	attempt	to	set	the
attribute	to	a	new	value.	The	job	of	the	coerce	callback	is	to	convert	the
value	you	specify	into	the	value	to	send	to	the	instrument.	The	IVI	engine
invokes	the	coerce	callback	after	it	invokes	the	check	callback.
The	IVI	engine	automatically	installs	its	default	coerce	callback	when	you
create	the	attribute.
If	you	do	not	want	the	IVI	engine	to	invoke	a	coerce	callback	for	the
attribute,	pass	VI_NULL	for	the	Coerce	Callback	parameter.
If	you	want	to	specify	your	own	callback	function	but	you	want	to	use	the
default	coerce	callback	within	your	function,	you	can	call
Ivi_DefaultCoerceCallbackViInt64.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

coerceCallback CoerceAttrViInt64_CallbackPtr Specify	the	coerce	callback	function	you
want	the	IVI	engine	to	invoke	when	you
attempt	to	set	the	attribute	to	a	new
value.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession

vi,ViConstString	repCapName,
ViAttr	attributeId,
ViInt32	value,
ViInt32	*coercedValue);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	coerce
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCoerceCallbackViReal64
Usage
ViStatus	Ivi_SetAttrCoerceCallbackViReal64(ViSession	vi,	ViAttr	attributeID,
CoerceAttrViReal64_CallbackPtr	coerceCallback);

Purpose

This	function	sets	the	coerce	callback	function	for	a	ViReal64	attribute.
The	IVI	engine	calls	the	coerce	callback	function	when	the	you	attempt	to
set	the	attribute	to	a	new	value.	The	job	of	the	coerce	callback	is	to
convert	the	value	you	specify	into	the	value	to	send	to	the	instrument.
The	IVI	engine	invokes	the	coerce	callback	after	it	invokes	the	check
callback.
The	IVI	engine	automatically	installs	its	default	coerce	callback	when	you
create	the	attribute.
If	you	do	not	want	the	IVI	engine	to	invoke	a	coerce	callback	for	the
attribute,	pass	VI_NULL	for	the	Coerce	Callback	parameter.
If	you	want	to	specify	your	own	callback	function	but	you	want	to	use	the
default	coerce	callback	within	your	function,	you	can	call
Ivi_DefaultCoerceCallbackViReal64.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

coerceCallback CoerceAttrViReal64_CallbackPtr Specify	the	coerce	callback	function	you
want	the	IVI	engine	to	invoke	when	you
attempt	to	set	the	attribute	to	a	new
value.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession

vi,ViConstString	repCapName,
ViAttr	attributeId,
ViReal64	value,
ViReal64	*coercedValue);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	coerce
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCoerceCallbackViSession
Usage
ViStatus	Ivi_SetAttrCoerceCallbackViSession(ViSession	vi,	ViAttr	attributeID,
CoerceAttrViSession_CallbackPtr	coerceCallback);

Purpose

This	function	sets	the	coerce	callback	function	for	a	ViSession	attribute.
The	IVI	engine	calls	the	coerce	callback	function	when	you	attempt	to	set
the	attribute	to	a	new	value.	The	job	of	the	coerce	callback	is	to	convert
the	value	you	specify	into	the	value	to	send	to	the	instrument.	The	IVI
engine	invokes	the	coerce	callback	after	it	invokes	the	check	callback.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

coerceCallback CoerceAttrViSession_CallbackPtr Specify	the	coerce	callback	function	you
want	the	IVI	engine	to	invoke	when	you
attempt	to	set	the	attribute	to	a	new
value.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession

vi,ViConstString	repCapName,
ViAttr	attributeId,
ViSession	value,
ViSession	*coercedValue);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	coerce
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCoerceCallbackViString
Usage
ViStatus	Ivi_SetAttrCoerceCallbackViString(ViSession	vi,	ViAttr	attributeID,
CoerceAttrViString_CallbackPtr	coerceCallback);

Purpose

This	function	sets	the	coerce	callback	function	for	a	ViString	attribute.
The	IVI	engine	calls	the	coerce	callback	function	when	you	attempt	to	set
the	attribute	to	a	new	value.	The	job	of	the	coerce	callback	is	to	convert
the	value	you	specify	into	the	value	to	send	to	the	instrument.	The	IVI
engine	invokes	the	coerce	callback	after	it	invokes	the	check	callback.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

coerceCallback CoerceAttrViString_CallbackPtr Specify	the	coerce	callback	function	you
want	the	IVI	engine	to	invoke	when	you
attempt	to	set	the	attribute	to	a	new
value.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession

vi,ViConstString	repCapName,
ViAttr	attributeId,
const	ViConstString	value);
Unlike	the	coerce	callback	functions	for
the	other	data	types,	you	do	not	return
the	coerced	value	to	the	caller	through
the	last	parameter.	Instead,	you	return
the	coerced	value	by	passing	it	to
Ivi_SetValInStringCallback
function.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	coerce
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCompareCallbackViAddr
Usage
ViStatus	Ivi_SetAttrCompareCallbackViAddr(ViSession	vi,	ViAttr	attributeID,
CompareAttrViAddr_CallbackPtr	compareCallback);

Purpose

This	function	sets	the	compare	callback	function	for	a	ViAddr	attribute.
The	IVI	engine	invokes	the	compare	callback	when	comparing	cache
values	it	obtains	from	the	instrument	against	new	values	you	set	the
attribute	to.	If	the	compare	callback	determines	that	the	two	values	are
equal,	the	IVI	engine	does	not	call	the	write	callback	for	the	attribute.
A	compare	callback	is	useful	when	the	instrument	can	return	several
values	which	you	consider	to	have	the	same	meaning,	and	you	do	not
want	to	coerce	the	instrument	value	in	your	read	callback.
If	you	do	not	call	this	function	or	you	pass	VI_NULL	for	the	Compare
Callback	parameter,	the	IVI	engine	makes	the	comparison	based	on	strict
equality.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

compareCallback CompareAttrViAddr_CallbackPtr Specify	the	compare	callback	function
you	want	the	IVI	engine	to	invoke	to
compare	a	cache	value	you	obtained
from	the	instrument	against	a	new	value
you	want	to	set	the	attribute	to.
The	function	must	have	the	following
prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,
ViAttr	attributeId,
ViAddr	coercedNewValue,
ViAddr	cacheValue,
ViInt32	*result);
Set	*result	to	a	zero	if	coercedNewValue
and	cacheValue	are	equal.	Otherwise,
set	*result	to	a	non-zero	value.
If	you	want	to	use	the	Edit	IVI	Specific
Driver	Attributes	dialog	box	to	develop
your	instrument	driver	source	code,
retain	the	parameter	names	as	shown	in
the	prototype	for	the	callback.
If	you	do	not	want	to	use	a	compare
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCompareCallbackViBoolean
Usage
ViStatus	Ivi_SetAttrCompareCallbackViBoolean(ViSession	vi,	ViAttr
attributeID,	CompareAttrViBoolean_CallbackPtr	compareCallback);

Purpose

This	function	sets	the	compare	callback	function	for	a	ViBoolean
attribute.	The	IVI	engine	invokes	the	compare	callback	when	comparing
cache	values	it	obtains	from	the	instrument	against	new	values	you	set
the	attribute	to.	If	the	compare	callback	determines	that	the	two	values
are	equal,	the	IVI	engine	does	not	call	the	write	callback	for	the	attribute.
A	compare	callback	is	useful	when	the	instrument	can	return	several
values	which	you	consider	to	have	the	same	meaning,	and	you	do	not
want	to	coerce	the	instrument	value	in	your	read	callback.
If	you	do	not	call	this	function	or	you	pass	VI_NULL	for	the	Compare
Callback	parameter,	the	IVI	engine	makes	the	comparison	based	on	strict
equality.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE
include	file,	fl45.h
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

compareCallback CompareAttrViBoolean_CallbackPtr Specify	the	compare	callback	function
you	want	the	IVI	engine	to	invoke	to
compare	a	cache	value	you	obtained
from	the	instrument	against	a	new	value
you	want	to	set	the	attribute	to.
The	function	must	have	the	following
prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,
ViAttr	attributeId,
ViBoolean	coercedNewValue,
ViBoolean	cacheValue,
ViInt32	*result);
Set	*result	to	a	zero	if
coercedNewValue	and	cacheValue	are
equal.	Otherwise,	set	*result	to	a	non-
zero	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	compare
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCompareCallbackViInt32
Usage
ViStatus	Ivi_SetAttrCompareCallbackViInt32(ViSession	vi,	ViAttr	attributeID,
CompareAttrViInt32_CallbackPtr	compareCallback);

Purpose

This	function	sets	the	compare	callback	function	for	a	ViInt32	attribute.
The	IVI	engine	invokes	the	compare	callback	when	comparing	cache
values	it	obtains	from	the	instrument	against	new	values	you	set	the
attribute	to.	If	the	compare	callback	determines	that	the	two	values	are
equal,	the	IVI	engine	does	not	call	the	write	callback	for	the	attribute.
A	compare	callback	is	useful	when	the	instrument	can	return	several
values	which	you	consider	to	have	the	same	meaning,	and	you	do	not
want	to	coerce	the	instrument	value	in	your	read	callback.
If	you	do	not	call	this	function	or	you	pass	VI_NULL	for	the	Compare
Callback	parameter,	the	IVI	engine	makes	the	comparison	based	on	strict
equality.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

compareCallback CompareAttrViInt32_CallbackPtr Specify	the	compare	callback	function
you	want	the	IVI	engine	to	invoke	to
compare	a	cache	value	you	obtained
from	the	instrument	against	a	new	value
you	want	to	set	the	attribute	to.
The	function	must	have	the	following
prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,
ViAttr	attributeId,
ViInt32	coercedNewValue,
ViInt32	cacheValue,
ViInt32	*result);
Set	*result	to	a	zero	if
coercedNewValue	and	cacheValue	are
equal.	Otherwise,	set	*result	to	a	non-
zero	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	compare
callback	function,	pass	VI_NULL.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCompareCallbackViInt64
Usage
ViStatus	Ivi_SetAttrCompareCallbackViInt64(ViSession	vi,	ViAttr	attributeID,
CompareAttrViInt64_CallbackPtr	compareCallback);

Purpose

This	function	sets	the	compare	callback	function	for	a	ViInt64	attribute.
The	IVI	engine	invokes	the	compare	callback	when	comparing	cache
values	it	obtains	from	the	instrument	against	new	values	you	set	the
attribute	to.	If	the	compare	callback	determines	that	the	two	values	are
equal,	the	IVI	engine	does	not	call	the	write	callback	for	the	attribute.
A	compare	callback	is	useful	when	the	instrument	can	return	several
values	which	you	consider	to	have	the	same	meaning,	and	you	do	not
want	to	coerce	the	instrument	value	in	your	read	callback.
If	you	do	not	call	this	function	or	you	pass	VI_NULL	for	the	Compare
Callback	parameter,	the	IVI	engine	makes	the	comparison	based	on	strict
equality.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

compareCallback CompareAttrViInt64_CallbackPtr Specify	the	compare	callback	function
you	want	the	IVI	engine	to	invoke	to
compare	a	cache	value	you	obtained
from	the	instrument	against	a	new	value
you	want	to	set	the	attribute	to.
The	function	must	have	the	following
prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,
ViAttr	attributeId,
ViInt32	coercedNewValue,
ViInt32	cacheValue,
ViInt32	*result);
Set	*result	to	a	zero	if
coercedNewValue	and	cacheValue	are
equal.	Otherwise,	set	*result	to	a	non-
zero	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	compare
callback	function,	pass	VI_NULL.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCompareCallbackViReal64
Usage
ViStatus	Ivi_SetAttrCompareCallbackViReal64(ViSession	vi,	ViAttr	attributeID,
CompareAttrViReal64_CallbackPtr	compareCallback);

Purpose

This	function	sets	the	compare	callback	function	for	a	ViReal64	attribute.
The	IVI	engine	invokes	the	compare	callback	when	comparing	cache
values	it	obtains	from	the	instrument	against	new	values	you	set	the
attribute	to.	If	the	compare	callback	determines	that	the	two	values	are
equal,	the	IVI	engine	does	not	call	the	write	callback	for	the	attribute.
A	compare	callback	is	useful	when	the	instrument	can	return	several
values	which	you	consider	to	have	the	same	meaning,	and	you	do	not
want	to	coerce	the	instrument	value	in	your	read	callback.
When	you	create	an	attribute	with	Ivi_AddAttributeViReal64,	the	IVI
engine	automatically	installs	a	default	compare	callback.	The	default
callback	uses	the	degree	of	precision	you	specify	in	the	Compare
Precision	parameter	to	Ivi_AddAttributeViReal64.	The	IVI	engine	installs
the	default	compare	callback	rather	than	comparing	based	on	strict
equality	because	of	differences	between	computer	and	instrument
floating	point	representations.
If	you	want	to	compare	based	on	strict	equality,	pass	VI_NULL	for	the
Compare	Callback	parameter.	If	you	set	the	callback	to	VI_NULL	and
subsequently	call	Ivi_SetAttrComparePrecision	on	the	attribute,	the	IVI
engine	reinstalls	its	default	compare	callback.
If	you	want	to	specify	your	own	callback	function	but	you	want	to	use	the
default	compare	callback	within	your	function,	you	can	call
Ivi_DefaultCompareCallbackViReal64.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

compareCallback CompareAttrViReal64_CallbackPtr Specify	the	compare	callback	function
you	want	the	IVI	engine	to	invoke	to
compare	a	cache	value	you	obtained
from	the	instrument	against	a	new	value
you	want	to	set	the	attribute	to.
The	function	must	have	the	following
prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,
ViAttr	attributeId,
ViReal64	coercedNewValue,
ViReal64	cacheValue,
ViInt32	*result);
Set	*result	to	a	zero	if
coercedNewValue	and	cacheValue	are
equal.	Otherwise,	set	*result	to	a	non-
zero	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	compare
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCompareCallbackViSession
Usage
ViStatus	Ivi_SetAttrCompareCallbackViSession(ViSession	vi,	ViAttr
attributeID,	CompareAttrViSession_CallbackPtr	compareCallback);

Purpose

This	function	sets	the	compare	callback	function	for	a	ViSession	attribute.
The	IVI	engine	invokes	the	compare	callback	when	comparing	cache
values	it	obtains	from	the	instrument	against	new	values	you	set	the
attribute	to.	If	the	compare	callback	determines	that	the	two	values	are
equal,	the	IVI	engine	does	not	call	the	write	callback	for	the	attribute.
A	compare	callback	is	useful	when	the	instrument	can	return	several
values	which	you	consider	to	have	the	same	meaning,	and	you	do	not
want	to	coerce	the	instrument	value	in	your	read	callback.
If	you	do	not	call	this	function	or	you	pass	VI_NULL	for	the	Compare
Callback	parameter,	the	IVI	engine	makes	the	comparison	based	on	strict
equality.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE
include	file,	fl45.h
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

compareCallback CompareAttrViSession_CallbackPtr Specify	the	compare	callback	function
you	want	the	IVI	engine	to	invoke	to
compare	a	cache	value	you	obtained
from	the	instrument	against	a	new	value
you	want	to	set	the	attribute	to.
The	function	must	have	the	following
prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,
ViAttr	attributeId,
ViSession	coercedNewValue,
ViSession	cacheValue,
ViInt32	*result);
Set	*result	to	a	zero	if
coercedNewValue	and	cacheValue	are
equal.	Otherwise,	set	*result	to	a	non-
zero	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	compare
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrCompareCallbackViString
Usage
ViStatus	Ivi_SetAttrCompareCallbackViString(ViSession	vi,	ViAttr	attributeID,
CompareAttrViString_CallbackPtr	compareCallback);

Purpose

This	function	sets	the	compare	callback	function	for	a	ViString	attribute.
The	IVI	engine	invokes	the	compare	callback	when	comparing	cache
values	it	obtains	from	the	instrument	against	new	values	you	set	the
attribute	to.	If	the	compare	callback	determines	that	the	two	values	are
equal,	the	IVI	engine	does	not	call	the	write	callback	for	the	attribute.
A	compare	callback	is	useful	when	the	instrument	can	return	several
values	which	you	consider	to	have	the	same	meaning,	and	you	do	not
want	to	coerce	the	instrument	value	in	your	read	callback.
If	you	do	not	call	this	function	or	you	pass	VI_NULL	for	the	Compare
Callback	parameter,	the	IVI	engine	makes	the	comparison	based	on	strict
equality.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

compareCallback CompareAttrViString_CallbackPtr Specify	the	compare	callback	function
you	want	the	IVI	engine	to	invoke	to
compare	a	cache	value	you	obtained
from	the	instrument	against	a	new	value
you	want	to	set	the	attribute	to.
The	function	must	have	the	following
prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViConstString	repCapName,
ViAttr	attributeId,
ViConstString	coercedNewValue,
ViConstString	cacheValue,
ViInt32	*result);
Set	*result	to	a	zero	if
coercedNewValue	and	cacheValue	are
equal.	Otherwise,	set	*result	to	a	non-
zero	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	compare
callback	function,	pass	

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrComparePrecision
Usage
ViStatus	Ivi_SetAttrComparePrecision(ViSession	vi,	ViAttr	attributeID,	ViInt32
comparePrecision);

Purpose

This	function	changes	the	degree	of	decimal	precision	the	default	IVI
compare	callback	uses	for	a	specific	attribute.
This	function	is	useful	only	for	ViReal64	attributes.	You	set	the	initial
comparison	precision	level	for	an	attribute	as	a	parameter	to	the
Ivi_AddAttributeViReal64	function.
Unless	you	call	Ivi_SetAttrCompareCallbackViReal64	to	install	your	own
compare	callback	function,	the	IVI	engine	invokes	the	default	compare
callback	when	comparing	cache	values	it	obtains	from	the	instrument
against	new	values	you	set	the	attribute	to.	If	the	values	are	equal	within
the	degree	of	precision	you	specify,	the	IVI	engine	does	not	call	the	write
callback	for	the	attribute.
The	IVI	engine	uses	this	method	instead	of	strict	equality	because	of
differences	between	computer	and	instrument	floating	point
representations.
If	the	compare	callback	for	the	attribute	is	currently	VI_NULL,	this
function	installs	the	default	IVI	compare	callback.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes	that
the	IVI	engine	defines,	attributes	that	the
instrument	class	defines,	and	attributes
that	are	specific	to	the	particular
instrument.	Each	defined	constant	name
begins	with	PREFIX_ATTR_,	where
PREFIX	is	the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the	same
constant	name	that	appears	in	ivi.h,
except	that	the	specific	instrument	prefix
replaces	the	IVI	prefix.	For	example,
ivi.h	defines	IVI_ATTR_CACHE,	and	the
Fluke	45	include	file,	fl45.h,	defines	the
following	constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the	same
constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines

IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

comparePrecision ViInt32 The	degree	of	precision	you	want	the
default	IVI	compare	callback	to	use	for
this	attribute.
The	value	for	this	parameter	is	in	terms
of	decimal	digits	of	precision.	The	higher
the	value,	the	closer	the	two	values	must
be	for	the	default	compare	callback	to
consider	them	equal.
Valid	Range:	0,	or	1	to	14

If	you	pass	0,	the	function	sets	the
precision	to	the	default	IVI	for	this	value,
which	is	14.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttributeFlags
Usage
ViStatus	Ivi_SetAttributeFlags(ViSession	vi,	ViAttr	attributeID,	IviAttrFlags
flags);

Purpose

This	function	sets	the	flags	of	an	attribute	to	new	values.	It	always	sets	all
of	the	flags.	If	you	want	to	change	one	flag,	use	Ivi_GetAttributeFlags	to
obtain	the	current	values	of	all	the	flags,	modify	the	bit	for	the	flag	you
want	to	change,	and	then	call	Ivi_SetAttributeFlags.
You	cannot	modify	the	value	of	the	IVI_VAL_MULTI_CHANNEL	flag.

Parameters
Name Type Description
vi ViSession Returns	a	ViSession	handle	that	you	use	to

identify	the	session	in	subsequent	function	calls.
This	function	creates	a	new	session	each	time
you	invoke	it.	This	is	useful	if	you	have	multiple
physical	instances	of	the	same	type	of
instrument.
Avoid	creating	multiple	concurrent	sessions	to
the	same	physical	instrument.	Although	you	can
create	more	than	one	IVI	session	for	the	same
resource,	it	is	best	not	to	do	so.	A	better
approach	is	to	use	same	session	in	multiple
execution	threads.	You	can	use	functions
Ivi_LockSession	and	Ivi_UnlockSession	to	protect
sections	of	code	that	require	exclusive	access	to
the	resource.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this	parameter.
The	include	file	for	a	specific	instrument	driver
defines	constant	names	for	all	of	the	user-
accessible	attributes	that	apply	to	the	driver.	This
includes	attributes	that	the	IVI	engine	defines,
attributes	that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the	particular
instrument.	Each	defined	constant	name	begins
with	PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the	specific	driver
include	file	uses	the	same	constant	name	that
appears	in	ivi.h,	except	that	the	specific
instrument	prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines	IVI_ATTR_CACHE,	and
the	Fluke	45	include	file,	fl45.h,	defines	the
following	constant	name:

#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the	specific
driver	include	file	uses	the	same	constant	name
that	appears	in	the	instrument	class	include	file,
except	that	the	specific	instrument	prefix
replaces	the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h	defines	the
following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,	the
specific	driver	include	file	defines	a	constant
name	and	assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.	For
example,	fl45.h	defines	the	following	constant
name:
#define	FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+	3L)

For	each	attribute	that	is	private	to	an	instrument
driver,	the	instrument	driver	source	file	defines	a
constant	name	and	assigns	a	value	that	is	an
offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.	For
example,	hp34401a.c	defines	the	following
constant	name:
#define	HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE	+	1L)

flags IviAttrFlags Specify	the	new	values	of	the	flags	for	the
attribute.	You	express	the	flags	as	bits.	You
cannot	modify	the	value	of	the
IVI_VAL_MULTI_CHANNEL	flag.
This	function	always	sets	all	of	the	flags.	If	you
want	to	change	one	flag,	use

Ivi_GetAttributeFlags	to	obtain	the	current	values
of	all	of	the	flags,	modify	the	bit	of	the	flag	you
want	to	change,	and	then	call
Ivi_SetAttributeFlags.
The	code	in	the	following	example	changes	the
IVI_VAL_NEVER_CACHE	flag	from	1	to	0.
IviAttrFlags	oldFlags,	newFlags;
Ivi_GetAttributeFlags	(vi,	attributeID,
&oldFlags);newFlags	=	oldFlags	&
~IVI_VAL_NEVER_CACHE;
Ivi_SetAttributeFlags	(vi,	attributeID,	newFlags);
Valid	Values:

Bit Value Flag
0

1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL_NOT_WRITABLE
3 0x0008 IVI_VAL_NOT_USER_READABLE
4 0x0010 IVI_VAL_NOT_USER_WRITABLE
5 0x0020 IVI_VAL_NEVER_CACHE
6 0x0040 IVI_VAL_ALWAYS_CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_BY_INSTR
12 0x1000 IVI_VAL_WAIT_FOR_OPC_BEFORE_READS
13 0x2000 IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
15 0x8000 IVI_VAL_DONT_CHECK_STATUS

IVI_VAL_HIDDEN	is	0x0018,	the	combination	of
IVI_VAL_NOT_USER_READABLE	and
IVI_VAL_NOT_USER_WRITABLE.
See	the	control	help	for	the	Flags	parameter	to	the	Ivi_AddAttribute
functions	for	detailed	information	on	each	flag.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttributeViAddr
Usage
ViStatus	Ivi_SetAttributeViAddr(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViAddr	attributeValue[]);

Purpose

This	function	sets	the	ViAddr	attribute	you	specify	to	a	new	value.
Depending	on	the	configuration	of	the	attribute,	the	function	performs	the
following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	IVI_ATTR_RANGE_CHECK	is
enabled	for	the	session	and	you	provide	a	check	callback	for	the
attribute,	the	function	invokes	the	check	callback	to	validate	the
value.	If	the	value	is	invalid,	the	function	returns	an	error.

3.	 Coerces	the	value	you	specify	into	a	canonical	value	the
instrument	accepts.	If	you	provide	a	coerce	callback,	the	function
invokes	the	callback	to	coerce	the	value.

4.	 Compares	the	new	value	with	the	current	cache	value	for	the
attribute	to	see	if	they	are	equal.	When	the	cache	value	is	a	value
the	IVI	engine	obtained	by	querying	the	instrument	and	you
provide	a	compare	callback	for	the	attribute,	the	function	invokes
the	compare	callback.	Otherwise,	the	function	makes	the
comparison	based	on	strict	equality.

5.	 If	the	new	value	is	not	equal	to	the	cache	value	or	the	cache	value
is	invalid,	the	function	invokes	the	write	callback	for	the	attribute.
The	write	callback	might	perform	I/O	to	send	the	value	to	the
instrument.	The	IVI	engine	stores	the	new	value	in	the	cache.	If
the	function	coerces	the	value,	the	function	caches	the	coerced
value	rather	than	the	value	you	pass.

6.	 If	the	IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

7.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.
Note		If	you	set	the	IVI_VAL_SET_CACHE_ONLY	bit	in	the	Option
Flags	parameter,	or	if	the	IVI_ATTR_SIMULATE	attribute	is

enabled	and	the	IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
flag	for	the	attribute	is	0,	the	function	does	not	call	the	write
callback,	the	operation	complete	callback,	or	the	check	status
callback.	It	merely	updates	the	cache	value	of	the	attribute.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.

A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViAddr Pass	the
value	to
which	you
want	to	set
the
attribute.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control

by
pressing
ENTER.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
ENTER.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttributeViBoolean
Usage
ViStatus	Ivi_SetAttributeViBoolean(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViBoolean	attributeValue);

Purpose

This	function	sets	the	ViBoolean	attribute	you	specify	to	a	new	value.
Depending	on	the	configuration	of	the	attribute,	the	function	performs	the
following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	IVI_ATTR_RANGE_CHECK	is
enabled	for	the	session	and	you	provide	a	check	callback	for	the
attribute,	the	function	invokes	the	check	callback	to	validate	the
value.	If	the	value	is	invalid,	the	function	returns	an	error.

3.	 Coerces	the	value	you	specify	into	a	canonical	value	the
instrument	accepts.	Normally,	it	uses	the	default	IVI	coerce
callback	for	ViBoolean	attributes.

4.	 Compares	the	new	value	with	the	current	cache	value	for	the
attribute	to	see	if	they	are	equal.	When	the	cache	value	is	a	value
the	IVI	engine	obtained	by	querying	the	instrument	and	you
provide	a	compare	callback	for	the	attribute,	the	function	invokes
the	compare	callback.	Otherwise,	the	function	makes	the
comparison	based	on	strict	equality.

5.	 If	the	new	value	is	not	equal	to	the	cache	value	or	the	cache	value
is	invalid,	the	function	invokes	the	write	callback	for	the	attribute.
The	write	callback	might	perform	I/O	to	send	the	value	to	the
instrument.	The	IVI	engine	stores	the	new	value	in	the	cache.	If
the	function	coerces	the	value,	the	function	caches	the	coerced
value	rather	than	the	value	you	pass.

6.	 If	the	IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

7.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.
Note		If	you	set	the	IVI_VAL_SET_CACHE_ONLY	bit	in	the	Option
Flags	parameter,	or	if	the	IVI_ATTR_SIMULATE	attribute	is

enabled	and	the	IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
flag	for	the	attribute	is	0,	the	function	does	not	call	the	write
callback,	the	operation	complete	callback,	or	the	check	status
callback.	It	merely	updates	the	cache	value	of	the	attribute.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	you	specify	is	based	on	a
repeated	capability,	pass	a	repeated
capability	identifier.	You	can	pass	one	of
the	identifiers	strings	that	the	specific
instrument	driver	defines,	or	a	virtual
name	the	end-user	defines	in	the
configuration	file.
If	the	attribute	you	specify	is	not	based
on	a	repeated	capability,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.

If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.
A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViBoolean Pass	the	ID	of	an
attribute.
If	you	want	to
enter	the	ID	of	a
class	or	specific
driver	attribute,
press	<CTRL-T>
to	toggle	this	ring
control	to	the
manual	input	box
so	you	can	type
the	ID	constant.
If	you	want	to
enter	the	ID	of
an	IVI	attribute,
then	you	can	use
this	control	as	a
ring	control.
When	you	click
on	this	ring
control	or	press

<ENTER>,
<SPACEBAR>,
or	<CTRL-
DOWN>,	a
dialog	box
appears
containing	a
hierarchical	list
of	the	attributes
the	IVI	engine
defines.	The
dialog	shows
help	text	for	each
attribute.	When
you	select	an
attribute	by
double-clicking
on	it	or	by
highlighting	it
and	then
pressing
<ENTER>,	the
dialog
disappears	and
your	choice
appears	in	this
function	panel
control.
If	this	function	is
a	SetAttribute	or
CheckAttribute
function,	read-
only	attributes
appear	dim	in
the	list	box.	If
you	select	a
read-only	an
attribute,	an	error

message
appears.
A	ring	control	at
the	top	of	the
dialog	box	allows
you	to	see	all	IVI
attributes	or	only
the	attributes
that	have	data
types	consistent
with	this	function.
If	you	choose	to
see	all	IVI
attributes,	the
data	types
appear	to	the
right	of	the
attribute	names
in	the	list	box.
The	data	types
that	are	not
consistent	with
this	function	are
dim.	If	you	select
an	attribute	data
type	that	is	dim,
LabWindows/CVI
transfers	you	to
the	function
panel	for	the
corresponding
function	that	is
consistent	with
the	data	type.
If	the	attribute	in
this	ring	control
has	named
constants	as

valid	values,	you
can	bring	up	a
list	of	them	by
moving	to	the
Attribute	Value
control	and
pressing
<ENTER>.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttributeViInt32
Usage
ViStatus	Ivi_SetAttributeViInt32(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViInt32	attributeValue);

Purpose

This	function	sets	the	ViInt32	attribute	you	specify	to	a	new	value.
Depending	on	the	configuration	of	the	attribute,	the	function	performs	the
following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify	if	IVI_ATTR_RANGE_CHECK	is
enabled	for	the	session.	If	you	provide	a	check	callback,	the
function	invokes	the	callback	to	validate	the	value.	If	you	do	not
provide	a	check	callback	but	you	provide	a	range	table	or	a	range
table	callback,	the	function	invokes	the	default	IVI	check	callback
to	validate	the	value.	If	the	value	is	invalid,	the	function	returns	an
error.

3.	 Coerces	the	value	you	specify	into	a	canonical	value	the
instrument	accepts.	If	you	provide	a	coerce	callback,	the	function
invokes	the	callback	to	coerce	the	value.	If	you	do	not	provide	a
coerce	callback	but	you	provide	a	coerced	range	table	directly	or
through	a	range	table	callback,	the	function	invokes	the	default	IVI
coerce	callback	to	coerce	the	value.

4.	 Compares	the	new	value	with	the	current	cache	value	for	the
attribute	to	see	if	they	are	equal.	When	the	cache	value	is	a	value
the	IVI	engine	obtained	by	querying	the	instrument	and	you
provide	a	compare	callback	for	the	attribute,	the	function	invokes
the	compare	callback.	Otherwise,	the	function	makes	the
comparison	based	on	strict	equality.

5.	 If	the	new	value	is	not	equal	to	the	cache	value	or	the	cache	value
is	invalid,	the	function	invokes	the	write	callback	for	the	attribute.
The	write	callback	might	perform	I/O	to	send	the	value	to	the
instrument.	The	IVI	engine	stores	the	new	value	in	the	cache.	If
the	function	coerces	the	value,	the	function	caches	the	coerced
value	rather	than	the	value	you	pass.

6.	 If	the	IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

7.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS

attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.
Note		If	you	set	the	IVI_VAL_SET_CACHE_ONLY	bit	in	the	Option
Flags	parameter,	or	if	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the	IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
flag	for	the	attribute	is	0,	the	function	does	not	call	the	write
callback,	the	operation	complete	callback,	or	the	check	status
callback.	It	merely	updates	the	cache	value	of	the	attribute.

Parameters
Name Type Description
vi ViSession Returns	a	ViSession	handle	that	you

use	to	identify	the	session	in
subsequent	function	calls.
This	function	creates	a	new	session
each	time	you	invoke	it.	This	is	useful	if
you	have	multiple	physical	instances	of
the	same	type	of	instrument.
Avoid	creating	multiple	concurrent
sessions	to	the	same	physical
instrument.	Although	you	can	create
more	than	one	IVI	session	for	the	same
resource,	it	is	best	not	to	do	so.	A	better
approach	is	to	use	same	session	in
multiple	execution	threads.	You	can	use
functions	Ivi_LockSession	and
Ivi_UnlockSession	to	protect	sections	of
code	that	require	exclusive	access	to
the	resource.

repeatedCapability ViChar[] If	the	attribute	you	specify	is	based	on	a
repeated	capability,	pass	a	repeated
capability	identifier.	You	can	pass	one	of
the	identifiers	strings	that	the	specific
instrument	driver	defines,	or	a	virtual
name	the	end-user	defines	in	the
configuration	file.
If	the	attribute	you	specify	is	not	based
on	a	repeated	capability,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle

this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.
A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you

can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViInt32 Pass	the
value	to
which	you
want	to	set
the
attribute.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control

by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttributeViInt64
Usage
ViStatus	Ivi_SetAttributeViInt64(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViInt64	attributeValue);

Purpose

This	function	sets	the	ViInt64	attribute	you	specify	to	a	new	value.
Depending	on	the	configuration	of	the	attribute,	the	function	performs	the
following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify	if	IVI_ATTR_RANGE_CHECK	is
enabled	for	the	session.	If	you	provide	a	check	callback,	the
function	invokes	the	callback	to	validate	the	value.	If	you	do	not
provide	a	check	callback	but	you	provide	a	range	table	or	a	range
table	callback,	the	function	invokes	the	default	IVI	check	callback
to	validate	the	value.	If	the	value	is	invalid,	the	function	returns	an
error.

3.	 Coerces	the	value	you	specify	into	a	canonical	value	the
instrument	accepts.	If	you	provide	a	coerce	callback,	the	function
invokes	the	callback	to	coerce	the	value.	If	you	do	not	provide	a
coerce	callback	but	you	provide	a	coerced	range	table	directly	or
through	a	range	table	callback,	the	function	invokes	the	default	IVI
coerce	callback	to	coerce	the	value.

4.	 Compares	the	new	value	with	the	current	cache	value	for	the
attribute	to	see	if	they	are	equal.	When	the	cache	value	is	a	value
the	IVI	engine	obtained	by	querying	the	instrument	and	you
provide	a	compare	callback	for	the	attribute,	the	function	invokes
the	compare	callback.	Otherwise,	the	function	makes	the
comparison	based	on	strict	equality.

5.	 If	the	new	value	is	not	equal	to	the	cache	value	or	the	cache	value
is	invalid,	the	function	invokes	the	write	callback	for	the	attribute.
The	write	callback	might	perform	I/O	to	send	the	value	to	the
instrument.	The	IVI	engine	stores	the	new	value	in	the	cache.	If
the	function	coerces	the	value,	the	function	caches	the	coerced
value	rather	than	the	value	you	pass.

6.	 If	the	IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

7.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS

attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.
Note		If	you	set	the	IVI_VAL_SET_CACHE_ONLY	bit	in	the	Option
Flags	parameter,	or	if	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the	IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
flag	for	the	attribute	is	0,	the	function	does	not	call	the	write
callback,	the	operation	complete	callback,	or	the	check	status
callback.	It	merely	updates	the	cache	value	of	the	attribute.

Parameters
Name Type Description
vi ViSession Returns	a	ViSession	handle	that	you

use	to	identify	the	session	in
subsequent	function	calls.
This	function	creates	a	new	session
each	time	you	invoke	it.	This	is	useful	if
you	have	multiple	physical	instances	of
the	same	type	of	instrument.
Avoid	creating	multiple	concurrent
sessions	to	the	same	physical
instrument.	Although	you	can	create
more	than	one	IVI	session	for	the	same
resource,	it	is	best	not	to	do	so.	A	better
approach	is	to	use	same	session	in
multiple	execution	threads.	You	can	use
functions	Ivi_LockSession	and
Ivi_UnlockSession	to	protect	sections	of
code	that	require	exclusive	access	to
the	resource.

repeatedCapability ViChar[] If	the	attribute	you	specify	is	based	on	a
repeated	capability,	pass	a	repeated
capability	identifier.	You	can	pass	one	of
the	identifiers	strings	that	the	specific
instrument	driver	defines,	or	a	virtual
name	the	end-user	defines	in	the
configuration	file.
If	the	attribute	you	specify	is	not	based
on	a	repeated	capability,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument

driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX	is	the
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.

For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViInt64 Pass	the
value	to
which	you
want	to	set
the
attribute.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control

by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttributeViReal64
Usage
ViStatus	Ivi_SetAttributeViReal64(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViReal64	attributeValue[]);

Purpose

This	function	sets	the	ViReal64	attribute	you	specify	to	a	new	value.
Depending	on	the	configuration	of	the	attribute,	the	function	performs	the
following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify	if	IVI_ATTR_RANGE_CHECK	is
enabled	for	the	session.	If	you	provide	a	check	callback,	the
function	invokes	the	callback	to	validate	the	value.	If	you	do	not
provide	a	check	callback	but	you	provide	a	range	table	or	a	range
table	callback,	the	function	invokes	the	default	IVI	check	callback
to	validate	the	value.	If	the	value	is	invalid,	the	function	returns	an
error.

3.	 Coerces	the	value	you	specify	into	a	canonical	value	the
instrument	accepts.	If	you	provide	a	coerce	callback,	the	function
invokes	the	callback	to	coerce	the	value.	If	you	do	not	provide	a
coerce	callback	but	you	provide	a	coerced	range	table	directly	or
through	a	range	table	callback,	the	function	invokes	the	default	IVI
coerce	callback	to	coerce	the	value.

4.	 Compares	the	new	value	with	the	current	cache	value	for	the
attribute	to	see	if	they	are	equal.	The	method	it	uses	depends	on
the	source	of	the	cache	value.	If	the	cache	contains	a	value	you
previously	sent	to	the	instrument	using	this	function,	the	function
compares	the	two	values	using	strict	equality.	If	the	cache
contains	a	value	you	obtained	from	the	instrument	using
Ivi_GetAttributeViReal64,	the	function	invokes	the	compare
callback	you	provide	for	the	attribute	or	the	default	IVI	compare
callback,	which	uses	the	comparison	precision	you	specify	when
you	create	the	attribute.

5.	 If	the	new	value	is	not	equal	to	the	cache	value	or	the	cache	value
is	invalid,	the	function	invokes	the	write	callback	for	the	attribute.
The	write	callback	might	perform	I/O	to	send	the	value	to	the
instrument.	The	IVI	engine	stores	the	new	value	in	the	cache.	If
the	function	coerces	the	value,	the	function	caches	the	coerced
value	rather	than	the	value	you	pass.

6.	 If	the	IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES	flag	is	set	for

the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

7.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.
Note		If	you	set	the	IVI_VAL_SET_CACHE_ONLY	bit	in	the	Option
Flags	parameter,	or	if	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the	IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
flag	for	the	attribute	is	0,	the	function	does	not	call	the	write
callback,	the	operation	complete	callback,	or	the	check	status
callback.	It	merely	updates	the	cache	value	of	the	attribute.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

repeatedCapability ViChar[] If	the	attribute	you	specify	is	based	on	a
repeated	capability,	pass	a	repeated
capability	identifier.	You	can	pass	one	of
the	identifiers	strings	that	the	specific
instrument	driver	defines,	or	a	virtual
name	the	end-user	defines	in	the
configuration	file.
If	the	attribute	you	specify	is	not	based
on	a	repeated	capability,	pass	VI_NULL
or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this
ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.

If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.
A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.
You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViReal64 Pass	the
value	to
which	you
want	to	set
the
attribute.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control

by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
This	function	sets	the	ViReal64	attribute	you	specify	to	a	new	value.
Depending	on	the	configuration	of	the	attribute,	the	function	performs	the
following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify	if	IVI_ATTR_RANGE_CHECK	is
enabled	for	the	session.	If	you	provide	a	check	callback,	the
function	invokes	the	callback	to	validate	the	value.	If	you	do	not
provide	a	check	callback	but	you	provide	a	range	table	or	a	range
table	callback,	the	function	invokes	the	default	IVI	check	callback
to	validate	the	value.	If	the	value	is	invalid,	the	function	returns	an
error.

3.	 Coerces	the	value	you	specify	into	a	canonical	value	the
instrument	accepts.	If	you	provide	a	coerce	callback,	the	function
invokes	the	callback	to	coerce	the	value.	If	you	do	not	provide	a
coerce	callback	but	you	provide	a	coerced	range	table	directly	or
through	a	range	table	callback,	the	function	invokes	the	default	IVI
coerce	callback	to	coerce	the	value.

4.	 Compares	the	new	value	with	the	current	cache	value	for	the
attribute	to	see	if	they	are	equal.	The	method	it	uses	depends	on
the	source	of	the	cache	value.	If	the	cache	contains	a	value	you
previously	sent	to	the	instrument	using	this	function,	the	function
compares	the	two	values	using	strict	equality.	If	the	cache
contains	a	value	you	obtained	from	the	instrument	using
Ivi_GetAttributeViReal64,	the	function	invokes	the	compare
callback	you	provide	for	the	attribute	or	the	default	IVI	compare
callback,	which	uses	the	comparison	precision	you	specify	when
you	create	the	attribute.

5.	 If	the	new	value	is	not	equal	to	the	cache	value	or	the	cache	value
is	invalid,	the	function	invokes	the	write	callback	for	the	attribute.
The	write	callback	might	perform	I/O	to	send	the	value	to	the
instrument.	The	IVI	engine	stores	the	new	value	in	the	cache.	If
the	function	coerces	the	value,	the	function	caches	the	coerced
value	rather	than	the	value	you	pass.

6.	 If	the	IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES	flag	is	set	for

the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

7.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.
Note		If	you	set	the	IVI_VAL_SET_CACHE_ONLY	bit	in	the	Option
Flags	parameter,	or	if	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the	IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
flag	for	the	attribute	is	0,	the	function	does	not	call	the	write
callback,	the	operation	complete	callback,	or	the	check	status
callback.	It	merely	updates	the	cache	value	of	the	attribute.

Related	Topic
IVI	Status	Codes

Ivi_SetAttributeViSession
Usage
ViStatus	Ivi_SetAttributeViSession(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViSession	attributeValue);

Purpose

This	function	sets	the	ViSession	attribute	you	specify	to	a	new	value.
Depending	on	the	configuration	of	the	attribute,	the	function	performs	the
following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	IVI_ATTR_RANGE_CHECK	is
enabled	for	the	session	and	you	provide	a	check	callback	for	the
attribute,	the	function	invokes	the	check	callback	to	validate	the
value.	If	the	value	is	invalid,	the	function	returns	an	error.

3.	 Coerces	the	value	you	specify	into	a	canonical	value	the
instrument	accepts.	If	you	provide	a	coerce	callback,	the	function
invokes	the	callback	to	coerce	the	value.	Generally,	ViSession
attributes	do	not	have	coerce	callbacks.

4.	 Compares	the	new	value	with	the	current	cache	value	for	the
attribute	to	see	if	they	are	equal.	When	the	cache	value	is	a	value
the	IVI	engine	obtained	by	querying	the	instrument	and	you
provide	a	compare	callback	for	the	attribute,	the	function	invokes
the	compare	callback.	Otherwise,	the	function	makes	the
comparison	based	on	strict	equality.

5.	 If	the	new	value	is	not	equal	to	the	cache	value	or	the	cache	value
is	invalid,	the	function	invokes	the	write	callback	for	the	attribute.
The	write	callback	might	perform	I/O	to	send	the	value	to	the
instrument.	The	IVI	engine	stores	the	new	value	in	the	cache.	If
the	function	coerces	the	value,	the	function	caches	the	coerced
value	rather	than	the	value	you	pass.

6.	 If	the	IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

7.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.
Note		If	you	set	the	IVI_VAL_SET_CACHE_ONLY	bit	in	the	Option

Flags	parameter,	or	if	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the	IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
flag	for	the	attribute	is	0,	the	function	does	not	call	the	write
callback,	the	operation	complete	callback,	or	the	check	status
callback.	It	merely	updates	the	cache	value	of	the	attribute.

Parameters
Name Type Description
vi ViSession Returns	a	ViSession	handle	that	you

use	to	identify	the	session	in
subsequent	function	calls.
This	function	creates	a	new	session
each	time	you	invoke	it.	This	is	useful	if
you	have	multiple	physical	instances	of
the	same	type	of	instrument.
Avoid	creating	multiple	concurrent
sessions	to	the	same	physical
instrument.	Although	you	can	create
more	than	one	IVI	session	for	the	same
resource,	it	is	best	not	to	do	so.	A	better
approach	is	to	use	same	session	in
multiple	execution	threads.	You	can	use
functions	Ivi_LockSession	and
Ivi_UnlockSession	to	protect	sections	of
code	that	require	exclusive	access	to
the	resource.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this

ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.
A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.

You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViSession Pass	the
value	to
which	you
want	to	set
the
attribute.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control

by
pressing
<ENTER>.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
<ENTER>.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttributeViString
Usage
ViStatus	Ivi_SetAttributeViString(ViSession	vi,	ViChar	repeatedCapability[],
ViAttr	attributeID,	ViInt32	optionFlags,	ViChar	attributeValue[]);

Purpose

This	function	sets	the	ViString	attribute	you	specify	to	a	new	value.
Depending	on	the	configuration	of	the	attribute,	the	function	performs	the
following	actions:

1.	 Checks	whether	the	attribute	is	writable.	If	not,	the	function
returns	an	error.

2.	 Validates	the	value	you	specify.	If	IVI_ATTR_RANGE_CHECK	is
enabled	for	the	session	and	you	provide	a	check	callback	for	the
attribute,	the	function	invokes	the	check	callback	to	validate	the
value.	If	the	value	is	invalid,	the	function	returns	an	error.

3.	 Coerces	the	value	you	specify	into	a	canonical	value	the
instrument	accepts.	If	you	provide	a	coerce	callback,	the	function
invokes	the	callback	to	coerce	the	value.

4.	 Compares	the	new	value	with	the	current	cache	value	for	the
attribute	to	see	if	they	are	equal.	When	the	cache	value	is	a	value
the	IVI	engine	obtained	by	querying	the	instrument	and	you
provide	a	compare	callback	for	the	attribute,	the	function	invokes
the	compare	callback.	Otherwise,	the	function	makes	the
comparison	based	on	strict	equality.

5.	 If	the	new	value	is	not	equal	to	the	cache	value	or	the	cache	value
is	invalid,	the	function	invokes	the	write	callback	for	the	attribute.
The	write	callback	might	perform	I/O	to	send	the	value	to	the
instrument.	The	IVI	engine	stores	the	new	value	in	the	cache.	If
the	function	coerces	the	value,	the	function	caches	the	coerced
value	rather	than	the	value	you	pass.	The	function	allocates	a
copy	of	the	string	to	keep	in	the	cache.

6.	 If	the	IVI_VAL_WAIT_FOR_OPC_AFTER_WRITES	flag	is	set	for
the	attribute,	the	function	invokes	the	operation	complete	(OPC)
callback	you	provide	for	the	session.

7.	 If	you	set	the	IVI_VAL_DIRECT_USER_CALL	bit	in	the	Option
Flags	parameter,	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	is	enabled,	and	the	IVI_VAL_DONT_CHECK_STATUS
flag	for	the	attribute	is	0,	then	the	function	invokes	the	check
status	callback	you	provide	for	the	session.
Note		If	you	set	the	IVI_VAL_SET_CACHE_ONLY	bit	in	the	Option

Flags	parameter,	or	if	the	IVI_ATTR_SIMULATE	attribute	is
enabled	and	the	IVI_VAL_USE_CALLBACKS_FOR_SIMULATION
flag	for	the	attribute	is	0,	the	function	does	not	call	the	write
callback,	the	operation	complete	callback,	or	the	check	status
callback.	It	merely	updates	the	cache	value	of	the	attribute.

Parameters
Name Type Description
vi ViSession Returns	a	ViSession	handle	that	you

use	to	identify	the	session	in
subsequent	function	calls.
This	function	creates	a	new	session
each	time	you	invoke	it.	This	is	useful	if
you	have	multiple	physical	instances	of
the	same	type	of	instrument.
Avoid	creating	multiple	concurrent
sessions	to	the	same	physical
instrument.	Although	you	can	create
more	than	one	IVI	session	for	the	same
resource,	it	is	best	not	to	do	so.	A	better
approach	is	to	use	same	session	in
multiple	execution	threads.	You	can	use
functions	Ivi_LockSession	and
Ivi_UnlockSession	to	protect	sections	of
code	that	require	exclusive	access	to
the	resource.

repeatedCapability ViChar[] If	the	attribute	is	repeated	capability-
based,	specify	a	particular	repeated
capability.	If	the	attribute	you	specify	is
not	repeated	capability-based,	pass
VI_NULL	or	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
If	you	want	to	enter	the	ID	of	a	class	or
specific	driver	attribute,	press	to	toggle
this	ring	control	to	the	manual	input	box
so	you	can	type	the	ID	constant.
If	you	want	to	enter	the	ID	of	an	IVI
attribute,	then	you	can	use	this	control
as	a	ring	control.	When	you	click	on	this

ring	control	or	press	<ENTER>,
<SPACEBAR>,	or	<CTRL-DOWN>,	a
dialog	box	appears	containing	a
hierarchical	list	of	the	attributes	the	IVI
engine	defines.	The	dialog	shows	help
text	for	each	attribute.	When	you	select
an	attribute	by	double-clicking	on	it	or
by	highlighting	it	and	then	pressing
<ENTER>,	the	dialog	disappears	and
your	choice	appears	in	this	function
panel	control.
If	this	function	is	a	SetAttribute	or
CheckAttribute	function,	read-only
attributes	appear	dim	in	the	list	box.	If
you	select	a	read-only	an	attribute,	an
error	message	appears.
A	ring	control	at	the	top	of	the	dialog
box	allows	you	to	see	all	IVI	attributes
or	only	the	attributes	that	have	data
types	consistent	with	this	function.	If
you	choose	to	see	all	IVI	attributes,	the
data	types	appear	to	the	right	of	the
attribute	names	in	the	list	box.	The	data
types	that	are	not	consistent	with	this
function	are	dim.	If	you	select	an
attribute	data	type	that	is	dim,
LabWindows/CVI	transfers	you	to	the
function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.
If	the	attribute	in	this	ring	control	has
named	constants	as	valid	values,	you
can	bring	up	a	list	of	them	by	moving	to
the	Attribute	Value	control	and	pressing
<ENTER>.

optionFlags ViInt32 Use	this	parameter	to	request	special
behavior.	In	most	cases,	you	pass	0.

You	can	specify	individual	bits	to
request	specific	behavior.	Each	of	the
following	sections	describes	one	of	the
bit	values.

IVI_VAL_DIRECT_USER_CALL	(1<<0)
Use	the	IVI_VAL_DIRECT_USER_CALL	bit	when	calling	this	function
from	the	source	code	for	the	PREFIX_Set/Get/CheckAttribute	functions
that	your	instrument	driver	exports.	Do	not	use	the	bit	when	calling	this
function	from	any	other	context.
If	you	set	this	bit,	this	function	checks	the	IVI_VAL_USER_READABLE
or	IVI_VAL_USER_WRITABLE	flag.	If	the	end-user	does	not	have
permission	to	access	the	attribute,	the	function	returns	an	error.
If	you	set	this	bit,	the	function	also	checks	the	status	of	the	instrument
after	invoking	the	read	or	write	callback	for	the	attribute,	but	only	if	the
following	conditions	are	true.

This	is	a	SetAttribute	or	GetAttribute	function.
The	value	of	the	IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute	for	the	session	is	VI_TRUE.
The	value	of	the	IVI_VAL_DONT_CHECK_STATUS	flag	for	the
attribute	is	0.

IVI_VAL_SET_CACHE_ONLY	(1<<1)
This	bit	applies	only	to	calls	that	specific	instrument	drivers	make	to	the
Ivi_SetAttribute	functions.	Pass	1	for	this	bit	if	want	to	set	the	value	in	the
attribute	cache	but	you	do	not	want	to	invoke	the	write	callback	for	the
attribute.
This	is	useful	if	one	instrument	I/O	command	sets	multiple	attributes	in
the	instrument.	In	the	write	callback	function	that	performs	the
instrument	I/O,	after	the	instrument	I/O	succeeds,	call	an	Ivi_SetAttribute
function	for	each	of	the	other	attributes,	with	set	the
IVI_VAL_SET_CACHE_ONLY	bit	set	to	1	in	the	Option	Flags	parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)
This	bit	applies	only	to	calls	that	specific	instrument
drivers	make	to	the	Ivi_SetAttribute	functions.	Pass	1
for	this	bit	if	want	to	set	an	attribute	value	even
though	the	user	has	not	requested	you	to	do	so
directly	through	a	PREFIX_SetAttribute	function	call
or	indirectly	through	a	helper	function	that	sets
multiple	attributes.
This	case	occurs	very	rarely.	It	affects
interchangeability	checking	in	class	drivers.	To	pass
interchangeability	checking,	either	all	attributes	in	an
extension	group	must	be	marked	as	"set	by	user"	or
none	of	them	must	be	marked	as	"set	by	user".

attributeValue ViChar[
]

Pass	the
value	to
which	you
want	to	set
the
attribute.
If	the
attribute
currently
showing	in
the
Attribute	ID
ring	control
has	named
constants
as	valid
values,	you
can	bring
up	a	list	of
them	on
this	control

by
pressing
ENTER.
Select	a
value	by
double-
clicking	on
it	or	by
highlighting
it	and	then
pressing
ENTER.
Some	of
the	values
might	not
be	valid
depending
on	the
current
settings	of
the
instrument
session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrRangeTableCallback
Usage
ViStatus	Ivi_SetAttrRangeTableCallback(ViSession	vi,	ViAttr	attributeID,
RangeTable_CallbackPtr	rangeTableCallback);

Purpose

This	function	sets	the	callback	that	the	IVI	engine	invokes	to	obtain	a
pointer	to	the	range	table	for	an	attribute.	Although	any	attribute	can	have
a	range	table,	range	tables	normally	are	useful	only	for	ViInt32	or
ViReal64	attributes.
When	you	create	a	ViInt32	or	ViReal64	attribute,	you	can	specify	a	single
range	table	for	the	IVI	engine	to	use	to	validate	values	for	the	attribute.
Normally,	one	range	table	is	sufficient.	If	this	is	the	case,	you	do	not	need
a	range	table	callback	function.	By	default,	the	range	table	callback	for
each	attribute	is	VI_NULL.
Sometimes,	however,	you	want	to	use	different	range	tables	depending
on	the	current	settings	of	other	attributes.	In	that	case,	call
Ivi_SetAttrRangeTableCallback	to	install	a	callback	for	the	IVI	engine	to
invoke.	In	the	callback,	you	determine	which	range	table	you	want	to	use,
and	you	return	a	pointer	to	it.
When	you	specify	a	non-NULL	range	table	callback	for	a	ViInt32	or
ViReal64	attribute,	the	IVI	engine	automatically	installs	its	default	check
and	coerce	callbacks	if	these	callback	are	currently	VI_NULL.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

rangeTableCallback RangeTable_CallbackPtr Specify	the	range	table	callback
function	you	want	the	IVI	engine	to
invoke	to	obtain	a	range	table	for	the
attribute.
The	function	must	have	the	following
prototype:
ViStatus	_VI_FUNC	Callback(ViSession

vi,ViConstString	repCapName,
ViAttr	attributeId,
IviRangeTablePtr	*rangeTablePtr);
If	you	do	not	want	to	use	a	range	table
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrReadCallbackViAddr
Usage
ViStatus	Ivi_SetAttrReadCallbackViAddr(ViSession	vi,	ViAttr	attributeID,
ReadAttrViAddr_CallbackPtr	readCallback);

Purpose

This	function	sets	the	read	callback	function	for	a	ViAddr	attribute.	The
IVI	engine	calls	the	read	callback	function	when	you	request	the	current
value	of	the	attribute	and	the	cache	value	is	invalid.
If	you	do	not	want	the	IVI	engine	to	invoke	a	read	callback,	specify
VI_NULL	for	the	Read	Callback	parameter.
You	can	set	the	read	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViAddr.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

readCallback ReadAttrViAddr_CallbackPtr Specify	the	read	callback	function	you
want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the
attribute.
You	must	define	the	read	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViAddr	*value);
Upon	entry	to	the	callback,	*value
contains	the	cache	value.	Upon	exit
from	the	callback,	*value	must	contain
the	actual	current	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	read
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrReadCallbackViBoolean
Usage
ViStatus	Ivi_SetAttrReadCallbackViBoolean(ViSession	vi,	ViAttr	attributeID,
ReadAttrViBoolean_CallbackPtr	readCallback);

Purpose

This	function	sets	the	read	callback	function	for	a	ViBoolean	attribute.
The	IVI	engine	calls	the	read	callback	function	when	you	request	the
current	value	of	the	attribute	and	the	cache	value	is	invalid.
If	you	do	not	want	the	IVI	engine	to	invoke	a	read	callback,	specify
VI_NULL	for	the	Read	Callback	parameter.
You	can	set	the	read	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViBoolean.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

readCallback ReadAttrViBoolean_CallbackPtr Specify	the	read	callback	function	you
want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the
attribute.
You	must	define	the	read	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViBoolean	*value);
Upon	entry	to	the	callback,	*value
contains	the	cache	value.	Upon	exit
from	the	callback,	*value	must	contain
the	actual	current	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	read
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrReadCallbackViInt32
Usage
ViStatus	Ivi_SetAttrReadCallbackViInt32(ViSession	vi,	ViAttr	attributeID,
ReadAttrViInt32_CallbackPtr	readCallback);

Purpose

This	function	sets	the	read	callback	function	for	a	ViInt32	attribute.	The
IVI	engine	calls	the	read	callback	function	when	you	request	the	current
value	of	the	attribute	and	the	cache	value	is	invalid.
If	you	do	not	want	the	IVI	engine	to	invoke	a	read	callback,	specify
VI_NULL	for	the	Read	Callback	parameter.
You	can	set	the	read	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViInt32.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

readCallback ReadAttrViInt32_CallbackPtr Specify	the	read	callback	function	you
want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the
attribute.
You	must	define	the	read	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViInt32	*value);
Upon	entry	to	the	callback,	*value	contains
the	cache	value.	Upon	exit	from	the
callback,	*value	must	contain	the	actual
current	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	read
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrReadCallbackViInt64
Usage
ViStatus	Ivi_SetAttrReadCallbackViInt64(ViSession	vi,	ViAttr	attributeID,
ReadAttrViInt64_CallbackPtr	readCallback);

Purpose

This	function	sets	the	read	callback	function	for	a	ViInt64	attribute.	The
IVI	engine	calls	the	read	callback	function	when	you	request	the	current
value	of	the	attribute	and	the	cache	value	is	invalid.
If	you	do	not	want	the	IVI	engine	to	invoke	a	read	callback,	specify
VI_NULL	for	the	Read	Callback	parameter.
You	can	set	the	read	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViInt64.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

readCallback ReadAttrViInt64_CallbackPtr Specify	the	read	callback	function	you
want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the
attribute.
You	must	define	the	read	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViInt32	*value);
Upon	entry	to	the	callback,	*value
contains	the	cache	value.	Upon	exit
from	the	callback,	*value	must	contain
the	actual	current	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	read
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrReadCallbackViReal64
Usage
ViStatus	Ivi_SetAttrReadCallbackViReal64(ViSession	vi,	ViAttr	attributeID,
ReadAttrViReal64_CallbackPtr	readCallback);

Purpose

This	function	sets	the	read	callback	function	for	a	ViReal64	attribute.	The
IVI	engine	calls	the	read	callback	function	when	you	request	the	current
value	of	the	attribute	and	the	cache	value	is	invalid.
If	you	do	not	want	the	IVI	engine	to	invoke	a	read	callback,	specify
VI_NULL	for	the	Read	Callback	parameter.
You	can	set	the	read	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViReal64.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

readCallback ReadAttrViReal64_CallbackPtr Specify	the	read	callback	function	you
want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the
attribute.
You	must	define	the	read	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViReal64	*value);
Upon	entry	to	the	callback,	*value
contains	the	cache	value.	Upon	exit
from	the	callback,	*value	must	contain
the	actual	current	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	read
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrReadCallbackViSession
Usage
ViStatus	Ivi_SetAttrReadCallbackViSession(ViSession	vi,	ViAttr	attributeID,
ReadAttrViSession_CallbackPtr	readCallback);

Purpose

This	function	sets	the	read	callback	function	for	a	ViSession	attribute.
The	IVI	engine	calls	the	read	callback	function	when	you	request	the
current	value	of	the	attribute	and	the	cache	value	is	invalid.
If	you	do	not	want	the	IVI	engine	to	invoke	a	read	callback,	specify
VI_NULL	for	the	Read	Callback	parameter.
You	can	set	the	read	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViSession.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

readCallback ReadAttrViSession_CallbackPtr Specify	the	read	callback	function	you
want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the
attribute.
You	must	define	the	read	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViSession	*value);
Upon	entry	to	the	callback,	*value
contains	the	cache	value.	Upon	exit
from	the	callback,	*value	must	contain
the	actual	current	value.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	read
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrReadCallbackViString
Usage
ViStatus	Ivi_SetAttrReadCallbackViString(ViSession	vi,	ViAttr	attributeID,
ReadAttrViString_CallbackPtr	readCallback);

Purpose

This	function	sets	the	read	callback	function	for	a	ViString	attribute.	The
IVI	engine	calls	the	read	callback	function	when	you	request	the	current
value	of	the	attribute	and	the	cache	value	is	invalid.
If	you	do	not	want	the	IVI	engine	to	invoke	a	read	callback,	specify
VI_NULL	for	the	Read	Callback	parameter.
You	can	set	the	read	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViString.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

readCallback ReadAttrViString_CallbackPtr Specify	the	read	callback	function	you
want	the	IVI	engine	to	invoke	when	you
request	the	current	value	of	the
attribute.
You	must	define	the	read	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
const	ViConstString	cacheValue);
Unlike	the	read	callback	functions	for
the	other	data	types,	you	do	not	return
the	current	value	to	the	caller	through
the	last	parameter.	Instead,	you	return
the	current	value	by	passing	it	to
Ivi_SetValInStringCallback	in	the	callback
function.

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	read
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrWriteCallbackViAddr
Usage
ViStatus	Ivi_SetAttrWriteCallbackViAddr(ViSession	vi,	ViAttr	attributeID,
WriteAttrViAddr_CallbackPtr	writeCallback);

Purpose

This	function	sets	the	write	callback	function	for	a	ViAddr	attribute.	The
IVI	engine	calls	the	write	callback	function	when	you	specify	a	new	value
for	the	attribute	and	the	cache	value	is	invalid	or	is	not	equal	to	the	new
value.
If	you	do	not	want	the	IVI	engine	to	invoke	a	write	callback,	specify
VI_NULL	for	the	Write	Callback	parameter.
You	can	set	the	write	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViAddr.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

writeCallback WriteAttrViAddr_CallbackPtr Specify	the	write	callback	function	you
want	the	IVI	engine	to	invoke	when	you
set	the	attribute	to	a	new	value.
You	must	define	the	write	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViAddr	value);

Note			If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	write
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrWriteCallbackViBoolean
Usage
ViStatus	Ivi_SetAttrWriteCallbackViBoolean(ViSession	vi,	ViAttr	attributeID,
WriteAttrViBoolean_CallbackPtr	writeCallback);

Purpose

This	function	sets	the	write	callback	function	for	a	ViBoolean	attribute.
The	IVI	engine	calls	the	write	callback	function	when	you	specify	a	new
value	for	the	attribute	and	the	cache	value	is	invalid	or	is	not	equal	to	the
new	value.
If	you	do	not	want	the	IVI	engine	to	invoke	a	write	callback,	specify
VI_NULL	for	the	Write	Callback	parameter.
You	can	set	the	write	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViBoolean.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

writeCallback WriteAttrViBoolean_CallbackPtr Specify	the	write	callback	function	you
want	the	IVI	engine	to	invoke	when	you
set	the	attribute	to	a	new	value.
You	must	define	the	write	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViBoolean	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	write
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrWriteCallbackViInt32
Usage
ViStatus	Ivi_SetAttrWriteCallbackViInt32(ViSession	vi,	ViAttr	attributeID,
WriteAttrViInt32_CallbackPtr	writeCallback);

Purpose

This	function	sets	the	write	callback	function	for	a	ViInt32	attribute.	The
IVI	engine	calls	the	write	callback	function	when	you	specify	a	new	value
for	the	attribute	and	the	cache	value	is	invalid	or	is	not	equal	to	the	new
value.
If	you	do	not	want	the	IVI	engine	to	invoke	a	write	callback,	specify
VI_NULL	for	the	Write	Callback	parameter.
You	can	set	the	write	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViInt32.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

writeCallback WriteAttrViInt32_CallbackPtr Specify	the	write	callback	function	you
want	the	IVI	engine	to	invoke	when	you
set	the	attribute	to	a	new	value.
You	must	define	the	write	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViInt32	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	write
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrWriteCallbackViInt64
Usage
ViStatus	Ivi_SetAttrWriteCallbackViInt64(ViSession	vi,	ViAttr	attributeID,
WriteAttrViInt64_CallbackPtr	writeCallback);

Purpose

This	function	sets	the	write	callback	function	for	a	ViInt64	attribute.	The
IVI	engine	calls	the	write	callback	function	when	you	specify	a	new	value
for	the	attribute	and	the	cache	value	is	invalid	or	is	not	equal	to	the	new
value.
If	you	do	not	want	the	IVI	engine	to	invoke	a	write	callback,	specify
VI_NULL	for	the	Write	Callback	parameter.
You	can	set	the	write	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViInt64.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

writeCallback WriteAttrViInt64_CallbackPtr Specify	the	write	callback	function	you
want	the	IVI	engine	to	invoke	when	you
set	the	attribute	to	a	new	value.
You	must	define	the	write	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViInt32	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	write
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrWriteCallbackViReal64
Usage
ViStatus	Ivi_SetAttrWriteCallbackViReal64(ViSession	vi,	ViAttr	attributeID,
WriteAttrViReal64_CallbackPtr	writeCallback);

Purpose

This	function	sets	the	write	callback	function	for	a	ViReal64	attribute.	The
IVI	engine	calls	the	write	callback	function	when	you	specify	a	new	value
for	the	attribute	and	the	cache	value	is	invalid	or	is	not	equal	to	the	new
value.
If	you	do	not	want	the	IVI	engine	to	invoke	a	write	callback,	specify
VI_NULL	for	the	Write	Callback	parameter.
You	can	set	the	write	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViReal64.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

writeCallback WriteAttrViReal64_CallbackPtr Specify	the	write	callback	function	you
want	the	IVI	engine	to	invoke	when	you
set	the	attribute	to	a	new	value.
You	must	define	the	write	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViReal64	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	write
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrWriteCallbackViSession
Usage
ViStatus	Ivi_SetAttrWriteCallbackViSession(ViSession	vi,	ViAttr	attributeID,
WriteAttrViSession_CallbackPtr	writeCallback);

Purpose

This	function	sets	the	write	callback	function	for	a	ViSession	attribute.
The	IVI	engine	calls	the	write	callback	function	when	you	specify	a	new
value	for	the	attribute	and	the	cache	value	is	invalid	or	is	not	equal	to	the
new	value.
If	you	do	not	want	the	IVI	engine	to	invoke	a	write	callback,	specify
VI_NULL	for	the	Write	Callback	parameter.
You	can	set	the	write	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViSession.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

writeCallback WriteAttrViSession_CallbackPtr Specify	the	write	callback	function	you
want	the	IVI	engine	to	invoke	when	you
set	the	attribute	to	a	new	value.
You	must	define	the	write	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViSession	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	write
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetAttrWriteCallbackViString
Usage
ViStatus	Ivi_SetAttrWriteCallbackViString(ViSession	vi,	ViAttr	attributeID,
WriteAttrViString_CallbackPtr	writeCallback);

Purpose

This	function	sets	the	write	callback	function	for	a	ViString	attribute.	The
IVI	engine	calls	the	write	callback	function	when	you	specify	a	new	value
for	the	attribute	and	the	cache	value	is	invalid	or	is	not	equal	to	the	new
value.
If	you	do	not	want	the	IVI	engine	to	invoke	a	write	callback,	specify
VI_NULL	for	the	Write	Callback	parameter.
You	can	set	the	write	callback	function	when	you	create	the	attribute	with
Ivi_AddAttributeViString.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces

the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

writeCallback WriteAttrViString_CallbackPtr Specify	the	write	callback	function	you
want	the	IVI	engine	to	invoke	when	you
set	the	attribute	to	a	new	value.
You	must	define	the	write	callback
function	in	the	source	code	for	the
specific	instrument	driver.	The	function
must	have	the	following	prototype:

ViStatus	_VI_FUNC	Callback(ViSession
vi,ViSession	io,
ViConstString	repCapName,
ViAttr	attributeId,
ViConstString	value);

Note		If	you	want	to	use	the	Edit
IVI	Specific	Driver	Attributes
dialog	box	to	develop	your
instrument	driver	source	code,
retain	the	parameter	names	as
shown	in	the	prototype	for	the
callback.

If	you	do	not	want	to	use	a	write
callback	function,	pass	VI_NULL

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetErrorInfo
Usage
ViStatus	Ivi_SetErrorInfo(ViSession	vi,	ViBoolean	overwrite,	ViStatus
primaryError,	ViStatus	secondaryError,	ViChar	elaboration[]);

Purpose

This	function	sets	the	error	information	for	the	current	execution	thread
and	the	IVI	session	you	specify.	If	you	pass	VI_NULL	for	the	vi
parameter,	this	function	sets	the	error	information	only	for	the	current
execution	thread.
The	error	information	includes	a	primary	error	code,	secondary	error
code,	and	an	error	elaboration	string.	For	a	particular	session,	this
information	is	the	same	as	the	values	held	in	the	following	attributes:

IVI_ATTR_PRIMARY_ERROR	or
PREFIX_ATTR_PRIMARY_ERROR
IVI_ATTR_SECONDARY_ERROR	or
PREFIX_ATTR_SECONDARY_ERROR
IVI_ATTR_ERROR_ELABORATION	or
PREFIX_ATTR_ERROR_ELABORATION

The	IVI	engine	also	maintains	this	error	information	separately	for	each
thread.	This	is	useful	if	you	do	not	have	a	session	handle	to	pass	to
Ivi_SetErrorInfo	or	Ivi_GetErrorInfo,	which	occurs	when	a	call	to
Ivi_SpecificDriverNew	fails.
The	IVI	engine	retains	the	information	you	specify	with	Ivi_SetErrorInfo
until	the	end-user	retrieves	it	by	calling	PREFIX_GetError,	the	end-user
clears	it	by	calling	PREFIX_ClearError,	or	you	overwrite	it	with	another	call
to	Ivi_SetErrorInfo.	Ivi_GetErrorInfo,	which	the	end-user	calls	through
PREFIX_GetError,	always	clears	the	error	information.
Normally,	it	is	the	responsibility	of	the	end-user	to	decide	when	to	clear
the	error	information	by	calling	PREFIX_GetError	or	PREFIX_ClearError.	If
an	instrument	driver	calls	Ivi_GetErrorInfo,	it	should	restore	the	error
information	by	calling	Ivi_SetErrorInfo,	possibly	adding	a	secondary	error
code	or	elaboration	string.
Ivi_SetErrorInfo	does	not	overwrite	existing	significant	error	information
unless	you	pass	VI_TRUE	for	the	Overwrite	parameter.	Typically,	you
pass	VI_FALSE	for	this	parameter	so	you	can	make	multiple	calls	to	this
function	at	different	levels	in	your	instrument	driver	source	code	without
the	risk	of	losing	important	error	information.	Also,	end-users	can	make
multiple	calls	to	the	instrument	driver	and	be	assured	that
PREFIX_GetError	returns	significant	information	about	the	first	error	that

occurred	since	their	last	call	to	PREFIX_GetError	or	PREFIX_ClearError.
The	viCheckErr,	viCheckErrElab,	viCheckParm,	viCheckAlloc,	and
viCheckWarn	macros	use	Ivi_SetErrorInfo.	The	ivi.h	include	file	defines
these	macros.	The	viCheckWarn	macro	calls	Ivi_SetErrorInfo	on	both
warnings	and	errors,	whereas	the	other	macros	discard	warnings	and	call
Ivi_SetErrorInfo	only	on	errors.

Parameters
Name Type Description
vi ViSession To	set	the	error	information	for	a	particular

IVI	session,	pass	the	ViSession	handle	that
you	obtain	from	Ivi_SpecificDriverNew.
When	you	pass	a	ViSession	handle,	the
function	also	sets	the	error	information	for
the	current	thread.
To	set	only	the	error	information	for	the
current	thread,	pass	VI_NULL.

overwrite ViBoolean Pass	VI_TRUE	(1)	for	this	parameter	if	you
want	the	new	error	information	to	overwrite
the	existing	error	information	regardless	of
the	current	contents	of	the	error
information.
If	you	pass	VI_FALSE	(0),	the	function	uses
the	following	logic	to	determine	whether	to
overwrite	the	existing	error	information.

1.	 It	overwrites	the	primary	error	code
if	either:

the	existing	primary	code	is
VI_SUCCESS
the	existing	primary	code	is	a
positive	warning	code	and
the	primary	error	code	you
specify	is	a	negative	error
code.

2.	 It	overwrites	the	secondary	error
code	if	either:

it	overwrites	the	old	primary
error	code	with	a	different
value
the	existing	secondary	code
is	VI_SUCCESS	and	the

primary	code	you	specify	is
either	VI_SUCCESS	or	equal
to	the	old	primary	error	code.

3.	 It	overwrites	the	elaboration	string	if
either:

it	overwrites	the	old	primary
error	code	with	a	different
value
the	existing	elaboration	string
is	empty	and	the	primary
code	you	specify	is	either
VI_SUCCESS	or	equal	to	the
old	primary	error	code.

This	behavior	allows	you	to	make	multiple
calls	to	Ivi_SetErrorInfo	at	different	levels	in
your	instrument	driver	source	code	without
the	risk	of	losing	important	error
information.	For	instance,	if	you	have
already	set	the	primary	code	to	a	negative
error	value,	subsequent	calls	to
Ivi_SetErrorInfo	do	not	change	the	value.
Consequently,	Ivi_GetErrorInfo	always
returns	the	first	error	that	you	reported.
At	the	same	time,	you	can	make
subsequent	calls	to	Ivi_SetErrorInfo	to	add
further	information.	If	your	first	call	to
Ivi_SetErrorInfo	specifies	a	negative
primary	error	code,	a	zero	secondary	error
code,	and	no	elaboration	string,	you	can
later	add	a	secondary	error	code	and	an
elaboration	string	by	calling	Ivi_SetErrorInfo
with	the	same	primary	error	code.
Normally,	end-users	expect	the	error
information	to	describe	the	first	error	that
occurred	since	their	last	call	to
PREFIX_GetError	or	PREFIX_ClearError.	So
avoid	passing	VI_TRUE	for	this	parameter.

primaryError ViStatus Specify	a	status	code	describing	the
primary	error	condition.	Use	VI_SUCCESS
(0)	to	indicate	no	error	or	warning.	Use	a
positive	value	to	indicate	a	warning.	Use	a
negative	value	to	indicate	an	error.

secondaryError ViStatus Specify	a	status	code	that	further	describes
the	error	or	warning	condition.	If	you	have
no	further	description,	pass	VI_SUCCESS
(0)	for	this	parameter.

elaboration ViChar[] Specify	an	elaboration	string	that	further
describes	the	error	or	warning	condition.
The	IVI	engine	stores	the	entire	string	for
the	session	you	specify,	but	it	retains	only
IVI_MAX_MESSAGE_BUF_SIZE-1	(255)
characters	for	the	current	execution	thread.
If	you	have	no	further	description,	pass
VI_NULL	or	an	empty	string.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetNeedToCheckStatus
Usage
ViStatus	Ivi_SetNeedToCheckStatus(ViSession	vi,	ViBoolean
needToCheckStatus);

Purpose

This	function	allows	an	instrument	driver	to	indicate	whether	it	is
necessary	to	check	the	status	of	the	instrument.
The	IVI	engine	maintains	an	internal	needToCheckStatus	variable	for	each
session	indicating	whether	it	is	necessary	to	check	the	status	of	the
instrument.	When	you	create	a	new	session,	the	initial	value	of	the
variable	is	VI_TRUE.	The	IVI	engine	sets	the	needToCheckStatus	variable
to	VI_TRUE	when	it	invokes	the	read	callback	or	write	callback	for	an
attribute	for	which	the	IVI_VAL_DONT_CHECK_STATUS	flag	is	0.	The
Ivi_WriteInstrData	and	Ivi_WriteFromFile	functions	also	set	the	variable	to
VI_TRUE.	The	IVI	engine	sets	the	variable	to	VI_FALSE	after	it	invokes
the	check	status	callback	successfully.
The	Ivi_SetNeedToCheckStatus	function	allows	an	instrument	driver	to	set
the	state	of	the	internal	needToCheckStatus	variable.	A	driver	typically	sets
the	variable	to	VI_TRUE	before	it	attempts	direct	instrument	I/O.	It	sets	it
to	VI_FALSE	after	it	calls	the	check	status	callback	successfully.

Note		Do	not	call	this	function	unless	you	have	already	locked	the
session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The
handle	identifies	a	particular	IVI
session.

needToCheckStatus ViBoolean Pass	VI_TRUE	before	you	attempt	to
interact	with	the	instrument	directly
rather	than	through	Ivi_SetAttribute,
Ivi_GetAttribute,	Ivi_WriteInstrData	or
Ivi_WriteFromFile	functions.
Pass	VI_FALSE	after	you	invoke	the
check	status	callback	successfully.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetRangeTableEnd
Usage
ViStatus	Ivi_SetRangeTableEnd(IviRangeTablePtr	rangeTable,	ViInt32	index);

Purpose

This	function	sets	the	termination	entry	for	a	dynamic	range	table	you
create	with	Ivi_RangeTableNew.	Ivi_RangeTableNew	automatically	sets	the
last	entry	you	create	to	be	the	termination	entry.	For	example,	if	you
specify	10	entries,	Ivi_RangeTableNew	marks	the	entry	at	index	9	to	be
the	termination	entry.	Use	this	function	if	you	want	to	move	the
termination	entry	to	a	lower	index.

Parameters
Name Type Description
rangeTable IviRangeTablePtr Pass	the	range	table	pointer	you	obtain

from	Ivi_RangeTableNew.

index ViInt32 Specify	the	0-based	index	of	the	entry	to
be	the	termination	entry.
Ivi_RangeTableNew	automatically	sets	the
last	entry	you	create	to	be	the
termination	entry.	For	example,	if	you
specify	10	entries,	Ivi_RangeTableNew
marks	the	entry	at	index	9	to	be	the
termination	entry.	Use	this	function	if	you
want	to	move	the	termination	entry	to	a
lower	index.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetRangeTableEntry
Usage
ViStatus	Ivi_SetRangeTableEntry(IviRangeTablePtr	rangeTable,	ViInt32	index,
ViReal64	discreteOrMinValue,	ViReal64	maxValue,	ViReal64	coercedValue,
ViChar	cmdString[],	ViInt32	cmdValue);

Purpose

This	function	configures	the	values	in	a	range	table	entry.	To	set	the
terminating	entry,	call	Ivi_SetRangeTableEnd.

Parameters
Name Type Description
rangeTable IviRangeTablePtr Pass	the	range	table	pointer

you	obtain	from
Ivi_RangeTableNew.

index ViInt32 Pass	the	0-based	index	of	the
range	table	entry	you	want	to
configure.	For	example,	if	you
specify	10	entries	when	you	call
Ivi_RangeTableNew,	you	can	call
Ivi_SetRangeTableEntry	with
indexes	0	through	8.	The
termination	entry	is	at	index	9,
unless	you	place	it	at	a	lower
index	using
Ivi_SetRangeTableEnd.
If	you	call	Ivi_SetRangeTableEnd
to	change	the	location	of	the
termination	entry,	the	index
parameter	to
Ivi_SetRangeTableEntry	must	be
less	than	the	index	of	the
termination	entry.

discreteOrMinValue ViReal64 Pass	the	value	you	want	to
assign	to	the
discreteOrMinValue	field	of	the
entry.	Refer	to	the	help	for	the
Type	Of	Table	parameter	to
Ivi_RangeTableNew	for	a
discussion	of	how	this	field	is
used	under	the	different	range
table	types.

maxValue ViReal64 Pass	the	value	you	want	to

assign	to	the	maxValue	field	of
the	entry.	Refer	to	the	help	for
the	Type	Of	Table	parameter	to
Ivi_RangeTableNew	for	a
discussion	of	how	this	field	is
used	under	the	different	range
table	types.	Discrete	tables	do
not	use	this	field.

coercedValue ViReal64 Pass	the	value	you	want	to
assign	to	the	coercedValue	field
of	the	entry.	Refer	to	the	help
for	the	Type	Of	Table	parameter
to	Ivi_RangeTableNew	for	a
discussion	of	how	this	field	is
used	under	the	different	range
table	types.	Discrete	and
ranged	tables	do	not	use	this
field.

cmdString ViChar[] Specify	the	string	you	want	to
assign	to	the	cmdString	field	of
the	range	table	entry.	The
cmdString	field	is	optional.	You
can	use	it	to	hold	the	command
string	that	the	write	callback
sends	to	the	instrument	when
you	set	the	attribute	to	the
value	or	range	of	values	that
the	range	table	entry	defines.
If	you	do	not	want	to	associate
a	command	string	with	the
range	table	entry,	pass
VI_NULL.
If	you	want	to	dynamically
allocate	the	command	strings,
call	Ivi_Alloc.	Pass	the	pointer
you	obtain	from	Ivi_Alloc	for

this	parameter.	If	you	call
Ivi_RangeTableFree	to	deallocate
the	range	table,	you	can
request	that	it	call	Ivi_Free	on
each	non-NULL	command
string	in	the	table.

cmdValue ViInt32 Specify	the	integer	value	you
want	to	assign	to	the	cmdValue
field	of	the	range	table	entry.
The	cmdValue	field	is	optional.
For	a	register-based
instrument,	you	can	use	the
cmdValue	field	to	store	the
register	value	that	the	write
callback	sends	to	the
instrument	when	you	set	the
attribute	to	the	value	or	range	of
values	that	the	range	table
entry	defines.
For	a	message-based
instrument,	you	can	use	the
cmdValue	field	to	hold	a	value
that	the	attribute	write	callback
formats	into	an	instrument
command	string.	You	can	use
the	customInfo	field	of	the
IviRangeTable	structure	to	store
the	format	string	for	the
instrument	command.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetStoredRangeTablePtr
Usage
ViStatus	Ivi_SetStoredRangeTablePtr(ViSession	vi,	ViAttr	attributeID,
IviRangeTablePtr	rangeTable);

Purpose

Sets	the	range	table	for	an	attribute.	You	can	specify	a	range	table	when
you	call	Ivi_AddAttributeViInt32	or	Ivi_AddAttributeViReal64	to	create	the
attribute.	Use	this	function	to	replace	the	original	range	table	with	a
different	one.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes	that
the	IVI	engine	defines,	attributes	that	the
instrument	class	defines,	and	attributes
that	are	specific	to	the	particular
instrument.	Each	defined	constant	name
begins	with	PREFIX_ATTR_,	where
PREFIX	is	the	specific	instrument	prefix.
For	each	IVI	engine	attribute,	the	specific
driver	include	file	uses	the	same
constant	name	that	appears	in	ivi.h,
except	that	the	specific	instrument	prefix
replaces	the	IVI	prefix.	For	example,	ivi.h
defines	IVI_ATTR_CACHE,	and	the
Fluke	45	include	file,	fl45.h,	defines	the
following	constant	name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the	same
constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines

IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+
3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

rangeTable IviRangeTablePtr Sets	the	range	table	for	an	attribute.	You
can	specify	a	range	table	when	you	call
Ivi_AddAttributeViInt32	or
Ivi_AddAttributeViReal64	to	create	the
attribute.	Use	this	function	to	replace	the
original	range	table	with	a	different	one.
Specify	the	address	the	range	table	that
you	want	to	use	for	the	attribute.	If	you
do	not	want	a	range	table,	pass
VI_NULL.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_SetValInStringCallback
Usage
ViStatus	Ivi_SetValInStringCallback(ViSession	vi,	ViAttr	attributeID,	ViChar
value[]);

Purpose

This	function	sets	the	value	of	a	ViString	attribute	in	the	context	of	the
read	or	coerce	callback	function	for	it.
All	read	functions	for	ViString	attributes	must	use	this	function	to	report
the	new	value	of	the	attribute.	All	coerce	functions	for	ViString	attributes
must	use	this	function	to	report	the	coerced	value.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

attributeID ViAttr Pass	the	attribute	ID	that	the	ViString	attribute
read	or	coerce	callback	receives.

value ViChar[] The	value	that	you	want	to	report	from	the	read
or	coerce	callback.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_Simulating
Usage
ViBoolean	=	Ivi_Simulating(ViSession	vi);

Purpose

This	function	returns	the	current	value	of	the	IVI_ATTR_SIMULATE
attribute	for	the	session	you	specify.
Use	Ivi_Simulating	in	the	high-level	functions	in	specific	and	class
instrument	drivers.	Ivi_Simulating	provides	fast,	convenient	access	to	the
IVI_ATTR_SIMULATE	attribute	because	it	does	no	error	checking	and
does	not	lock	the	session.

Note		Do	not	call	this	function	unless	you	have	already	locked	the
session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Returns	the	value	of	the	IVI_ATTR_SIMULATE	attribute	for	the	session.
This	attribute	determines	whether	or	not	to	simulate	instrument	driver	I/O
operations.
Values:

VI_TRUE	(1) Simulate
VI_FALSE	(0) Do	not	simulate

If	you	pass	an	invalid	session	handle	to	the	function,	this	parameter
returns	VI_FALSE.
Related	Topic

IVI	Status	Codes

Ivi_SpecificDriverNew
Usage
ViStatus	Ivi_SpecificDriverNew(ViChar	specificDriverPrefix[],	ViChar
optionString[],	ViSession	vi);

Purpose

This	function	performs	the	following	initialization	actions:
Creates	a	new	IVI	session	to	a	specific	instrument	driver	and
optionally	sets	the	initial	state	of	the	following	session	attributes:
IVI_ATTR_RANGE_CHECKIVI_ATTR_QUERY_INSTRUMENT_STATUS
IVI_ATTR_CACHE
IVI_ATTR_SIMULATE
IVI_ATTR_RECORD_COERCIONS
IVI_ATTR_DRIVER_SETUP
IVI_ATTR_INTERCHANGE_CHECK
Returns	a	ViSession	handle	which	you	use	in	subsequent	function
calls	to	identify	the	session.
This	function	creates	a	new	session	each	time	you	invoke	it.
Although	you	can	open	more	than	one	IVI	session	for	the	same
resource,	it	is	best	not	to	do	so.	You	can	use	the	same	session	in
multiple	program	threads.	You	can	use	the	Ivi_LockSession	and
Ivi_UnlockSession	functions	to	protect	sections	of	code	that	require
exclusive	access	to	the	resource.
Note		This	function	does	not	create	a	VISA	session	to	any
instrument	resources.	If	you	use	VISA	to	communicate	to	the
instrument,	you	must	create	a	VISA	session	yourself	and	set	the
IVI_ATTR_IO_SESSION	attribute	to	that	value.	Otherwise,	you	can
use	the	IVI_ATTR_IO_SESSION	attribute	to	hold	a	handle	to
whatever	communications	resource	you	use.

Parameters
Name Type Description
specificDriverPrefix ViChar[] This	parameter	specifies	the	prefix	of	the	specific	instrument	driver.	Every

user-callable	function	in	the	driver	must	start	with	this	prefix	as	part	of	its
function	name.	For	example,	if	the	Fluke	45	driver	has	a	user-callable
function	named	"fl45_init",	then	"fl45"	is	the	prefix	for	that	driver.

optionString ViChar[] You	can	use	this	parameter	to	set	the	initial	value	of	certain	IVI	attributes
for	the	session.	The	following	table	lists	the	attributes,	their	default	initial
values,	and	the	name	you	use	in	this	parameter	to	identify	the	attribute.

Name Attribute	Defined	Constant
RangeCheck IVI_ATTR_RANGE_CHECK
QueryInstrStatus IVI_ATTR_QUERY_INSTRUMENT_STATUS
Cache IVI_ATTR_CACHE
Simulate IVI_ATTR_SIMULATE
RecordCoercions IVI_ATTR_RECORD_COERCIONS
DriverSetup IVI_ATTR_DRIVER_SETUP
Interchange
Check

IVI_ATTR_INTERCHANGE_CHECK

If	you	pass	NULL	or	an	empty	string	for	this	parameter,	the	session	uses
the	default	values.	You	can	override	the	default	values	by	assigning	a
value	explicitly	in	a	string	you	pass	for	this	parameter.
The	format	of	an	assignment	is,	"Name=Value"	where	Name	is	the	first
column	in	the	table	above,	and	Value	is	any	one	of	the	following.
To	set	the	attribute	to	VI_TRUE,	use	VI_TRUE
To	set	the	attribute	to	VI_FALSE,	use	VI_FALSE

The	function	interprets	the	Name	and	Value	in	a	case-insensitive	manner.
To	set	multiple	attributes,	separate	the	assignments	with	commas.
You	do	not	have	to	specify	all	of	the	attributes.	If	you	do	not	specify	one	of
the	attributes,	the	session	uses	its	default	value.

Note		Normally,	you	use	this	function	to	implement	the	

and	PREFIX_InitWithOptions	in	the	specific	instrument	driver.	In
PREFIX_init,	you	pass	in	an	empty	string.	In
PREFIX_InitWithOptions,	you	pass	the	Options	String	parameter
that	the	user	passed	to	PREFIX_InitWithOptions

vi ViSession Returns	a	ViSession	handle	that	you	use	to	identify	the	session	in
subsequent	function	calls.
This	function	creates	a	new	session	each	time	you	invoke	it.	This	is	useful
if	you	have	multiple	physical	instances	of	the	same	type	of	instrument.
Avoid	creating	multiple	concurrent	sessions	to	the	same	physical
instrument.	Although	you	can	create	more	than	one	IVI	session	for	the
same	resource,	it	is	best	not	to	do	so.	A	better	approach	is	to	use	same
session	in	multiple	execution	threads.	You	can	use	functions
Ivi_LockSession	and	Ivi_UnlockSession	to	protect	sections	of	code	that
require	exclusive	access	to	the	resource.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_Spying
Usage
ViBoolean	=	Ivi_Spying(ViSession	vi);

Purpose

This	function	returns	the	current	value	of	the	IVI_ATTR_SPY	attribute	for
the	session	you	specify.
Use	Ivi_Spying	in	the	high-level	functions	in	class	instrument	drivers.
Ivi_Spying	provides	fast,	convenient	access	to	the	IVI_ATTR_SPY
attribute	because	it	does	no	error	checking	and	does	not	lock	the
session.

Note		Do	not	call	this	function	unless	you	have	already	locked	the
session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Returns	the	value	of	the	IVI_ATTR_SPY	attribute	for	the	session.	This
attribute	determines	whether	class	instrument	drivers	use	the	NI-Spy
utility	to	record	calls	to	class	driver	functions.
Values:

VI_TRUE	(1) Spy	on
VI_FALSE	(0) Spy	off

If	you	pass	an	invalid	session	handle	to	the	function,	this	parameter
returns	VI_FALSE.
Related	Topic

IVI	Status	Codes

Ivi_UnlockSession
Usage
ViStatus	Ivi_UnlockSession(ViSession	vi,	ViBoolean*	callerHasLock);

Purpose

This	function	releases	a	lock	that	you	acquired	on	an	instrument	session
using	Ivi_LockSession.	Refer	to	Ivi_LockSession	for	additional	information
on	session	locks.
Instrument	drivers	export	this	function	to	the	end-user	through	the
PREFIX_UnlockSession	function.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies
a	particular	IVI	session.

callerHasLock ViBoolean* This	parameter	serves	as	a	convenience.	If
you	do	not	want	to	use	this	parameter,	pass
VI_NULL.
Use	this	parameter	in	complex	functions	to
keep	track	of	whether	you	obtain	a	lock	and
therefore	need	to	unlock	the	session.	Pass
the	address	of	a	local	ViBoolean	variable.
Initialize	the	local	variable	to	VI_FALSE
when	you	declare	it.	Pass	the	same
address	to	any	other	calls	you	make	to
Ivi_LockSession	or	Ivi_UnlockSession	in	the
same	function.
The	parameter	is	an	input/output
parameter.	Ivi_LockSession	and
Ivi_UnlockSession	each	inspect	the	current
value	and	take	the	following	actions:

If	the	value	is	VI_TRUE,
Ivi_LockSession	does	not	lock	the
session	again.	If	the	value	is
VI_FALSE,	Ivi_LockSession	obtains
the	lock	and	sets	the	value	of	the
parameter	to	VI_TRUE.
If	the	value	is	VI_FALSE,
Ivi_UnlockSession	does	not	attempt
to	unlock	the	session.	If	the	value	is
VI_TRUE,	Ivi_UnlockSession	unlocks
the	lock	and	sets	the	value	of	the
parameter	to	VI_FALSE.

Thus,	you	can,	call	Ivi_UnlockSession	at	the

end	of	your	function	without	worrying	about
whether	you	actually	have	the	lock.
Example:
ViStatus	PREFIX_Func	(ViSession	vi,	ViInt32
flags){
ViStatus	error	=	VI_SUCCESS;
ViBoolean	haveLock	=	VI_FALSE;

if	(flags	&	BIT_1)
{
viCheckErr(Ivi_LockSession(vi,
&haveLock));
viCheckErr(TakeAction1(vi));

if	(flags	&	BIT_2)
{
viCheckErr(Ivi_UnlockSession(vi,
&haveLock));
viCheckErr(TakeAction2(vi));
viCheckErr(Ivi_LockSession(vi,
&haveLock);
}

if	(flags	&	BIT_3)
viCheckErr(TakeAction3(vi));

}
Error:
/*
At	this	point,	you	cannot	really	be	sure
that	you	have	the	lock.	Fortunately,	the
haveLock	variable	takes	care	of	that	for
you.

*/
Ivi_UnlockSession(vi,	&haveLock);
return	error;

}

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_UseSpecificSimulation
Usage
ViBoolean	=	Ivi_UseSpecificSimulation(ViSession	vi);

Purpose

This	function	returns	the	current	value	of	the
IVI_ATTR_USE_SPECIFIC_SIMULATION	attribute	for	the	session	you
specify.
Use	Ivi_UseSpecificSimulation	in	the	high-level	functions	in	specific	and
class	instrument	drivers.	Ivi_UseSpecificSimulation	provides	fast,
convenient	access	to	the	IVI_ATTR_USE_SPECIFIC_SIMULATION
attribute	because	it	does	no	error	checking	and	does	not	lock	the
session.

Note		Do	not	call	this	function	unless	you	have	already	locked	the
session.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Returns	the	value	of	the	IVI_ATTR_SIMULATE_IN_SPECIFIC	attribute	for
the	session.	This	attribute	controls	whether	the	specific	driver	or	the	class
driver	simulates	I/O	operations	when	simulation	is	enabled.
Values:

VI_TRUE	(1) Simulate	in	specific	driver
VI_FALSE	(0) Simulate	in	class	driver

If	you	pass	an	invalid	session	handle	to	the	function,	this	parameter
returns	VI_FALSE.
Related	Topic

IVI	Status	Codes

Ivi_ValidateAttrForChannel
Usage
ViStatus	Ivi_ValidateAttrForChannel(ViSession	vi,	ViChar	channelName[],
ViAttr	attributeID);

Purpose

This	function	checks	whether	you	can	use	an	attribute	on	a	particular
channel.	If	either	the	AttributeID	or	Channel	Name	parameter	is	invalid
for	the	session,	Ivi_ValidateAttrForChannel	returns	an	error.	Otherwise,	it
checks	for	the	following	cases	in	which	the	combination	of	the	AttributeID
and	Channel	Name	is	invalid:
The	channel	name	is	VI_NULL	or	the	empty	string	and	the	attribute	is
channel-based.	An	attribute	is	channel-based	if	its
IVI_VAL_MULTI_CHANNEL	flag	is	set.	In	this	case,	the	function	returns
the	IVI_ERROR_REPEATED_CAPABILITY_NAME_REQUIRED	error
code.
The	channel	name	refers	to	a	specific	channel	and	the	attribute	is	not
channel-based.	In	this	case,	the	function	returns	the
IVI_ERROR_REPEATED_CAPABILITY_NAME_NOT_ALLOWED	error
code.
The	channel	name	refers	to	a	specific	channel,	the	attribute	is	channel-
based,	but	the	instrument	driver	calls	Ivi_RestrictAttrToChannels	to
exclude	the	channel	from	using	the	attribute.	In	this	case,	the	function
returns	the
IVI_ERROR_ATTR_NOT_VALID_FOR_REPEATED_CAPABILITY	error
code.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

channelName ViChar[] Pass	the	channel	name	that	you	want	to
verify	as	valid	for	a	particular	channel.
You	can	pass	one	of	the	following	types	of
values:

VI_NULL	or	an	emptry	string
A	specific	driver	channel	string,	which
is	one	that	the	specific	instrument
driver	specifies	as	valid	using
Ivi_BuildChannelTable	or
Ivi_AddToChannelTable.
A	virtual	channel	name	that	the	end-
user	specifies	in	the	IVI	configuration
file.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this	parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of	the
user-accessible	attributes	that	apply	to	the
driver.	This	includes	attributes	that	the	IVI
engine	defines,	attributes	that	the	instrument
class	defines,	and	attributes	that	are	specific
to	the	particular	instrument.	Each	defined
constant	name	begins	with	PREFIX_ATTR_,
where	PREFIX	is	the	specific	instrument
prefix.
For	each	IVI	engine	attribute,	the	specific
driver	include	file	uses	the	same	constant
name	that	appears	in	ivi.h,	except	that	the
specific	instrument	prefix	replaces	the	IVI

prefix.	For	example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45	include
file,	fl45.h,	defines	the	following	constant
name:
#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the	same
constant	name	that	appears	in	the	instrument
class	include	file,	except	that	the	specific
instrument	prefix	replaces	the	class	prefix.
For	example,	the	DMM	class	include	file,
ividmm.h,	defines	IVIDMM_ATTR_RANGE,
and	fl45.h	defines	the	following	constant
name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,	the
specific	driver	include	file	defines	a	constant
name	and	assigns	a	value	that	is	an	offset
from	IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For	example,	fl45.h	defines	the	following
constant	name:
#define	FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE	+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.	For
example,	hp34401a.c	defines	the	following
constant	name:
#define	HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE	+
1L)

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_ValidateAttrForRepCapName
Usage
ViStatus	Ivi_ValidateAttrForRepCapName(ViSession	vi,	ViChar
RepeatedCapabilityIdentifier[],	ViAttr	attributeID);

Purpose

This	function	checks	whether	you	can	use	an	attribute	on	a	particular
repeated	capability	instance.	If	either	the	AttributeID	or	Repeated
Capability	Name	parameter	is	invalid	for	the	session,	this	function	returns
an	error.	Otherwise,	it	checks	for	the	following	cases	in	which	the
combination	of	the	AttributeID	and	Repeated	Capability	Name	is	invalid:

The	repeated	capability	name	is	VI_NULL	or	the	empty	string	and
the	attribute	applies	to	a	repeated	capability.	In	this	case,	the
function	returns	the
IVI_ERROR_REPEATED_CAPABILITY_NAME_REQUIRED	error
code.
The	repeated	capability	name	refers	to	a	specific	repeated
capability	and	the	attribute	does	not	apply	to	a	repeated	capability.
In	this	case,	the	function	returns	the
IVI_ERROR_REPEATED_CAPABILITY_NAME_NOT_ALLOWED
error	code.
The	repeated	capability	name	refers	to	a	specific	repeated
capability	instance	from	which	the	attribute	is	restricted.	In	this
case,	the	function	returns	the
IVI_ERROR_ATTR_NOT_VALID_FOR_REPEATED_CAPABILITY
error	code.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The	handle
identifies	a	particular	IVI	session.

RepeatedCapabilityIdentifier ViChar[] Pass	the	repeated	capability	name	that
you	want	to	verify	as	valid	for	a
particular	attribute.
The	parameter	accepts	VI_NULL
empty	string,	a	specific	driver-defined
repeated	capability	identifier,	or	a	virtual
repeated	capability	identifier.

attributeID ViAttr Pass	the	ID	of	an	attribute	for	this
parameter.
The	include	file	for	a	specific	instrument
driver	defines	constant	names	for	all	of
the	user-accessible	attributes	that	apply
to	the	driver.	This	includes	attributes
that	the	IVI	engine	defines,	attributes
that	the	instrument	class	defines,	and
attributes	that	are	specific	to	the
particular	instrument.	Each	defined
constant	name	begins	with
PREFIX_ATTR_,	where	PREFIX
specific	instrument	prefix.
For	each	IVI	engine	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in
ivi.h,	except	that	the	specific	instrument
prefix	replaces	the	IVI	prefix.	For
example,	ivi.h	defines
IVI_ATTR_CACHE,	and	the	Fluke	45
include	file,	fl45.h,	defines	the	following
constant	name:

#define	FL45_ATTR_CACHE	
IVI_ATTR_CACHE

For	each	instrument	class	attribute,	the
specific	driver	include	file	uses	the
same	constant	name	that	appears	in	the
instrument	class	include	file,	except	that
the	specific	instrument	prefix	replaces
the	class	prefix.	For	example,	the	DMM
class	include	file,	ividmm.h,	defines
IVIDMM_ATTR_RANGE,	and	fl45.h
defines	the	following	constant	name:
#define	FL45_ATTR_RANGE	
IVIDMM_ATTR_RANGE

For	each	specific	instrument	attribute,
the	specific	driver	include	file	defines	a
constant	name	and	assigns	a	value	that
is	an	offset	from
IVI_SPECIFIC_PUBLIC_ATTR_BASE
For	example,	fl45.h	defines	the	following
constant	name:
#define
FL45_ATTR_HOLD_THRESHOLD	\
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+	3L)

For	each	attribute	that	is	private	to	an
instrument	driver,	the	instrument	driver
source	file	defines	a	constant	name	and
assigns	a	value	that	is	an	offset	from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For	example,	hp34401a.c	defines	the
following	constant	name:
#define
HP34401A_ATTR_TRIGGER_TYPE	\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+	1L)

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_ValidateRangeTable
Usage
ViStatus	Ivi_ValidateRangeTable(IviRangeTablePtr	Range	Table);

Purpose

This	function	validates	a	range	table.	If	you	pass	VI_NULL	for	the	Range
Table	parameter,	the	function	returns	VI_SUCCESS.	If	you	specify	a	non-
NULL	range	table,	the	function	returns	an	error	if	the	range	table	type	is
not	valid	or	the	number	of	entries	is	zero.
The	valid	range	table	types	are	the	following:
IVI_VAL_DISCRETE	0IVI_VAL_RANGED	1
IVI_VAL_COERCED	2

A	range	table	has	zero	entries	if	the	first	entry	has	the	following	value	in
the	cmdString	field:
IVI_RANGE_TABLE_END_STRING	((ViString)(-1))

Parameters
Name Type Description
Range
Table

IviRangeTablePtr Specify	the	address	of	the	range	table	you
want	to	validate.
You	can	pass	VI_NULL	for	this	parameter.

Return	Value
Returns	the	type	of	the	ViReal64	value	you	specify.

(0) IVI_VAL_TYPE_NORMAL -normal	value
(1) IVI_VAL_TYPE_NAN -Not	a	Number	(NaN)
(2) IVI_VAL_TYPE_PINF -positive	infinity
(3) IVI_VAL_TYPE_NINF -negative	infinity

Related	Topic
IVI	Status	Codes

Ivi_ValidateSession
Usage
ViStatus	Ivi_ValidateSession(ViSession	vi);

Purpose

This	function	checks	an	IVI	session	handle	for	validity.	If	the	session	is
invalid,	it	returns	an	error	code	but	does	not	set	the	primary	error	code,
secondary	error	code,	or	error	elaboration	string	for	the	current	thread.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_WriteFromFile
Usage
ViStatus	Ivi_WriteFromFile(ViSession	vi,	ViChar	filename[],	ViInt32
writeNumberOfBytes,	ViInt32	byteOffset,	ViInt32*	returnCount);

Purpose

This	function	reads	data	from	a	file	you	specify	and	writes	it	to	an
instrument	using	VISA	I/O.	Use	this	function	internally	in	your	instrument
driver.
The	function	assumes	that	the	IVI_ATTR_IO_SESSION	attribute	for	the
IVI	session	you	specify	holds	a	valid	VISA	session	for	the	instrument.
The	function	opens	the	file	in	binary	mode.
The	function	calls	Ivi_SetNeedToCheckStatus	with	VI_TRUE.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain

from	Ivi_SpecificDriverNew.	The
handle	identifies	a	particular	IVI
session.

filename ViChar[] Specify	the	pathname	of	the	file	from
which	to	write	the	data.	You	can
specify	an	absolute	pathname,	a
relative	pathname,	or	a	simple
filename.	The	function	treats	relative
pathnames	and	simple	filenames	as
relative	to	the	current	working
directory.
If	you	enter	a	literal	string	in	this
parameter	under	Windows,	be	sure	to
use	double	backslashes	to	represent
one	backslash	in	the	pathname.

writeNumberOfBytes ViInt32 Specify	the	maximum	number	of
bytes	to	read	from	the	file	and	write	to
the	instrument.

byteOffset ViInt32 Specify	the	byte	offset	in	the	file	at
which	to	start	reading.
If	the	file	contains	header	information
that	you	do	not	want	to	write	to	the
instrument,	you	can	skip	over	the
header	by	passing	the	number	of
bytes	in	the	header	for	this
parameter.

returnCount ViInt32* Returns	the	number	of	bytes	the
function	successfully	writes	from	the
file.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Ivi_WriteInstrData
Usage
ViStatus	Ivi_WriteInstrData(ViSession	vi,	ViChar	writeBuffer[]);

Purpose

This	function	writes	a	command	string	directly	to	an	instrument	using
VISA	I/O.	The	function	bypasses	the	attribute	state	caching	mechanism
and	therefore	always	invalidates	all	attribute	cache	values	for	the
session.	Use	this	function	only	to	implement	the	PREFIX_WriteInstrData
function	that	your	instrument	driver	exports	to	the	end-user.
The	function	assumes	that	the	IVI_ATTR_IO_SESSION	attribute	for	the
IVI	session	you	specify	holds	a	valid	VISA	session	for	the	instrument.
The	function	calls	Ivi_SetNeedToCheckStatus	with	VI_TRUE.

Parameters
Name Type Description
vi ViSession The	ViSession	handle	that	you	obtain	from

Ivi_SpecificDriverNew.	The	handle	identifies	a
particular	IVI	session.

writeBuffer ViChar[] Specify	the	string	you	want	to	send	to	the
instrument.

Return	Value
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Function	Tree,	IVI	Library
Class/Panel	Name Function	Name
Instrument	Driver	Session
		Create	New	Session Ivi_SpecificDriverNew
		Validate	Session Ivi_ValidateSession
		Dispose	Session Ivi_Dispose
		Locking
				Lock	Session Ivi_LockSession
				Unlock	Session Ivi_UnlockSession
Channels
		Build	Channel	Table Ivi_BuildChannelTable
		Add	To	Channel	Table Ivi_AddToChannelTable
		Restrict	Attr	To	Channels Ivi_RestrictAttrToChannels
		Apply	Default	Setup Ivi_ApplyDefaultSetup
		Validate	Attr	For	Channel Ivi_ValidateAttrForChannel
		Coerce	Channel	Name Ivi_CoerceChannelName
		Get	Channel	Index Ivi_GetChannelIndex
		Get	Nth	Channel	String Ivi_GetNthChannelString
		Get	User	Channel	Name Ivi_GetUserChannelName
Repeated	Capabilities
		Build	Rep	Cap	Table Ivi_BuildRepCapTable
		Add	To	RepCap	Table Ivi_AddToRepCapTable
		Restrict	Attr	To	Instances Ivi_RestrictAttrToInstances
		Validate	Attr	For	Rep	Cap
Name

Ivi_ValidateAttrForRepCapName

		Coerce	Rep	Cap	Name Ivi_CoerceRepCapName
		Get	RepCap	Index Ivi_GetRepCapIndex
		Get	Nth	Rep	Cap	String Ivi_GetNthRepCapString
Attribute	Creation

		Delete	Attribute Ivi_DeleteAttribute
		Add	Attribute
				Add	Attribute	ViInt32 Ivi_AddAttributeViInt32
				Add	Attribute	ViInt64 Ivi_AddAttributeViInt64
				Add	Attribute	ViReal64 Ivi_AddAttributeViReal64
				Add	Attribute	ViString Ivi_AddAttributeViString
				Add	Attribute	ViBoolean Ivi_AddAttributeViBoolean
				Add	Attribute	ViSession Ivi_AddAttributeViSession
				Add	Attribute	ViAddr Ivi_AddAttributeViAddr
		Add	Repeated	Attribute
				Add	Repeat	Attribute	ViAddr Ivi_AddRepeatedAttributeViAddr
				Add	Repeat	Attribute
ViBoolean

Ivi_AddRepeatedAttributeViBoolean

				Add	Repeat	Attribute	ViInt32 Ivi_AddRepeatedAttributeViInt32
				Add	Repeat	Attribute	ViInt64 Ivi_AddRepeatedAttributeViInt64
				Add	Repeat	Attribute
ViReal64

Ivi_AddRepeatedAttributeViReal64

				Add	Repeated	Attribute
ViSession

Ivi_AddRepeatedAttributeViSession

				Add	Repeat	Attribute	ViString Ivi_AddRepeatedAttributeViString
		Invalidation	Lists
				Add	Attribute	Invalidation Ivi_AddAttributeInvalidation
				Delete	Attribute	Invalidation Ivi_DeleteAttributeInvalidation
		Comparison	Precision
				Set	Comparison	Precision Ivi_SetAttrComparePrecision
				Get	Comparison	Precision Ivi_GetAttrComparePrecision
Callbacks
		Set	Range	Table	Callback Ivi_SetAttrRangeTableCallback
		Set	Read	Callback

				Set	Read	Callback	ViInt32 Ivi_SetAttrReadCallbackViInt32
				Set	Read	Callback	ViInt64 Ivi_SetAttrReadCallbackViInt64
				Set	Read	Callback	ViReal64 Ivi_SetAttrReadCallbackViReal64
				Set	Read	Callback	ViString Ivi_SetAttrReadCallbackViString
				Set	Read	Callback	ViBoolean Ivi_SetAttrReadCallbackViBoolean
				Set	Read	Callback	ViSession Ivi_SetAttrReadCallbackViSession
				Set	Read	Callback	ViAddr Ivi_SetAttrReadCallbackViAddr
		Set	Write	Callback
				Set	Write	Callback	ViInt32 Ivi_SetAttrWriteCallbackViInt32
				Set	Write	Callback	ViInt64 Ivi_SetAttrWriteCallbackViInt64
				Set	Write	Callback	ViReal64 Ivi_SetAttrWriteCallbackViReal64
				Set	Write	Callback	ViString Ivi_SetAttrWriteCallbackViString
				Set	Write	Callback	ViBoolean Ivi_SetAttrWriteCallbackViBoolean
				Set	Write	Callback	ViSession Ivi_SetAttrWriteCallbackViSession
				Set	Write	Callback	ViAddr Ivi_SetAttrWriteCallbackViAddr
		Set	Check	Callback
				Set	Check	Callback	ViInt32 Ivi_SetAttrCheckCallbackViInt32
				Set	Check	Callback	ViInt64 Ivi_SetAttrCheckCallbackViInt64
				Set	Check	Callback	ViReal64 Ivi_SetAttrCheckCallbackViReal64
				Set	Check	Callback	ViString Ivi_SetAttrCheckCallbackViString
				Set	Check	Callback
ViBoolean

Ivi_SetAttrCheckCallbackViBoolean

				Set	Check	Callback
ViSession

Ivi_SetAttrCheckCallbackViSession

				Set	Check	Callback	ViAddr Ivi_SetAttrCheckCallbackViAddr
		Set	Coerce	Callback

				Set	Coerce	Callback	ViInt32 Ivi_SetAttrCoerceCallbackViInt32
				Set	Coerce	Callback	ViInt64 Ivi_SetAttrCoerceCallbackViInt64
				Set	Coerce	Callback Ivi_SetAttrCoerceCallbackViReal64

ViReal64
				Set	Coerce	Callback	ViString Ivi_SetAttrCoerceCallbackViString
				Set	Coerce	Callback
ViBoolean

Ivi_SetAttrCoerceCallbackViBoolean

				Set	Coerce	Callback
ViSession

Ivi_SetAttrCoerceCallbackViSession

				Set	Coerce	Callback	ViAddr Ivi_SetAttrCoerceCallbackViAddr
		Set	Compare	Callback
				Set	Compare	Callback	ViInt32 Ivi_SetAttrCompareCallbackViInt32
				Set	Compare	Callback	ViInt64 Ivi_SetAttrCompareCallbackViInt64
				Set	Compare	Callback
ViReal64

Ivi_SetAttrCompareCallbackViReal64

				Set	Compare	Callback
ViString

Ivi_SetAttrCompareCallbackViString

				Set	Compare	Callback
ViBoolean

Ivi_SetAttrCompareCallbackViBoolean

				Set	Compare	Callback
ViSession

Ivi_SetAttrCompareCallbackViSession

				Set	Compare	Callback	ViAddr Ivi_SetAttrCompareCallbackViAddr
Set/Get/Check	Attribute
		Set	Attribute
				Set	Attribute	ViInt32 Ivi_SetAttributeViInt32
				Set	Attribute	ViInt64 Ivi_SetAttributeViInt64
				Set	Attribute	ViReal64 Ivi_SetAttributeViReal64
				Set	Attribute	ViString Ivi_SetAttributeViString

				Set	Attribute	ViBoolean Ivi_SetAttributeViBoolean
				Set	Attribute	ViSession Ivi_SetAttributeViSession
				Set	Attribute	ViAddr Ivi_SetAttributeViAddr
		Get	Attribute
				Get	Attribute	ViInt32 Ivi_GetAttributeViInt32

				Get	Attribute	ViInt64 Ivi_GetAttributeViInt64
				Get	Attribute	ViReal64 Ivi_GetAttributeViReal64
				Get	Attribute	ViString Ivi_GetAttributeViString
				Get	Attribute	ViBoolean Ivi_GetAttributeViBoolean
				Get	Attribute	ViSession Ivi_GetAttributeViSession
				Get	Attribute	ViAddr Ivi_GetAttributeViAddr
		Check	Attribute
				Check	Attribute	ViInt32 Ivi_CheckAttributeViInt32
				Check	Attribute	ViInt64 Ivi_CheckAttributeViInt64
				Check	Attribute	ViReal64 Ivi_CheckAttributeViReal64
				Check	Attribute	ViString Ivi_CheckAttributeViString
				Check	Attribute	ViBoolean Ivi_CheckAttributeViBoolean
				Check	Attribute	ViSession Ivi_CheckAttributeViSession
				Check	Attribute	ViAddr Ivi_CheckAttributeViAddr
Caching/Status-Checking
Control
		Invalidate	Attribute Ivi_InvalidateAttribute
		Invalidate	All	Attributes Ivi_InvalidateAllAttributes
		Need	To	Check	Status Ivi_NeedToCheckStatus
		Set	Need	To	Check	Status Ivi_SetNeedToCheckStatus
Range	Tables
				Get	Attribute	Range	Table Ivi_GetAttrRangeTable
				Validate	Range	Table Ivi_ValidateRangeTable
		Range	Table	Entries
				Get	Range	Table	Num	Entries Ivi_GetRangeTableNumEntries
				Get	ViInt32	Entry
						ViInt32	Entry	From	Value Ivi_GetViInt32EntryFromValue
						ViInt32	Entry	From	String Ivi_GetViInt32EntryFromString
						ViInt32	Entry	From	Index Ivi_GetViInt32EntryFromIndex

						ViInt32	Entry	From
CmdValue

Ivi_GetViInt32EntryFromCmdValue

						ViInt32	Entry	From
CoercedVal

Ivi_GetViInt32EntryFromCoercedVal

				Get	ViInt64	Entry
						ViInt64	Entry	From	Value Ivi_GetViInt64EntryFromValue
						ViInt64	Entry	From	String Ivi_GetViInt64EntryFromString
						ViInt64	Entry	From	Index Ivi_GetViInt64EntryFromIndex
						ViInt64	Entry	From
CmdValue

Ivi_GetViInt64EntryFromCmdValue

						ViInt64	Entry	From
CoercedVal

Ivi_GetViInt64EntryFromCoercedVal

				Get	ViReal64	Entry
						ViReal64	Entry	From	Value Ivi_GetViReal64EntryFromValue
						ViReal64	Entry	From	String Ivi_GetViReal64EntryFromString
						ViReal64	Entry	From	Index Ivi_GetViReal64EntryFromIndex
						ViReal64	Entry	From
CmdValue

Ivi_GetViReal64EntryFromCmdValue

						ViReal64	Entry	From
CoercedVal

Ivi_GetViReal64EntryFromCoercedVal

		Range	Table	Ptr
				Get	Stored	Range	Table	Ptr Ivi_GetStoredRangeTablePtr
				Set	Stored	Range	Table	Ptr Ivi_SetStoredRangeTablePtr
		Dynamic	Range	Tables
				Range	Table	New Ivi_RangeTableNew
				Set	Range	Table	Entry Ivi_SetRangeTableEntry
				Set	Range	Table	End Ivi_SetRangeTableEnd
				Range	Table	Free Ivi_RangeTableFree
Error	Information
		Get	Error	Info Ivi_GetErrorInfo

		Get	Error	Message Ivi_GetErrorMessage
		Get	Specific	Driver	Status
Desc

Ivi_GetSpecificDriverStatusDesc

		Set	Error	Info Ivi_SetErrorInfo
		Clear	Error	Info Ivi_ClearErrorInfo
		Instrument	Specific	Error
Queue
				Queue	Instr	Specific	Error Ivi_QueueInstrSpecificError
				Dequeue	Instr	Specific	Error Ivi_DequeueInstrSpecificError
				Clear	Instr	Specific	Err	Queue Ivi_ClearInstrSpecificErrorQueue
				Instr	Specific	Error	Queue
Size

Ivi_InstrSpecificErrorQueueSize

Memory	Allocation
		Allocate	Memory Ivi_Alloc
		Free	Allocated	Memory Ivi_Free
		Free	All	Allocated	Memory Ivi_FreeAll
Helper	Functions
		Get	Info	From	Resource	Name Ivi_GetInfoFromResourceName
		Inherent	Attribute	Accessors
				I/O	Session Ivi_IOSession
				Range	Checking Ivi_RangeChecking
				Query	Instr	Status Ivi_QueryInstrStatus
				Simulating Ivi_Simulating

				Use	Specific	Simulation Ivi_UseSpecificSimulation
				Spying Ivi_Spying
				Interchange	Checking Ivi_InterchangeCheck
		String	Callbacks
				Set	Value	in	String	Callback Ivi_SetValInStringCallback
		Direct	Instrument	I/O

				Write	Instr	Data Ivi_WriteInstrData
				Read	Instr	Data Ivi_ReadInstrData
				Read	To	File Ivi_ReadToFile
				Write	From	File Ivi_WriteFromFile
		String/Value	Tables
				Get	String	From	Table Ivi_GetStringFromTable
				Get	Value	From	Table Ivi_GetValueFromTable
		Value	Manipulation
				Check	Numeric	Range Ivi_CheckNumericRange
				Check	Boolean	Range Ivi_CheckBooleanRange
				Coerce	Boolean Ivi_CoerceBoolean
				Compare	With	Precision Ivi_CompareWithPrecision
				Get	ViReal64	Type Ivi_GetViReal64Type
		Default	Callbacks
				Dflt	Check	Callback	ViInt32 Ivi_DefaultCheckCallbackViInt32
				Dflt	Coerce	Callback	ViInt32 Ivi_DefaultCoerceCallbackViInt32
				Dflt	Check	Callback	ViInt64 Ivi_DefaultCheckCallbackViInt64
				Dflt	Coerce	Callback	ViInt64 Ivi_DefaultCoerceCallbackViInt64
				Dflt	Check	Callback	ViReal64 Ivi_DefaultCheckCallbackViReal64
				Dflt	Coerce	Callback
ViReal64

Ivi_DefaultCoerceCallbackViReal64

				Dflt	Compare	Callback
ViReal64

Ivi_DefaultCompareCallbackViReal64

				Dflt	Coerce	Callback
ViBoolean

Ivi_DefaultCoerceCallbackViBoolean

		Attribute	Information
				Get	Num	Attributes Ivi_GetNumAttributes
				Get	Nth	Attribute Ivi_GetNthAttribute
				Get	Attribute	Name Ivi_GetAttributeName

				Set	Attribute	Flags Ivi_SetAttributeFlags
				Get	Attribute	Type Ivi_GetAttributeType
				Get	Attribute	Flags Ivi_GetAttributeFlags
				Get	Invalidation	List Ivi_GetInvalidationList
				Dispose	Invalidation	List Ivi_DisposeInvalidationList
				Attribute	Is	Cached Ivi_AttributeIsCached
				Get	Next	Coercion	Info Ivi_GetNextCoercionInfo
				Get	Next	Coercion	String Ivi_GetNextCoercionString
				Get	Attr	Min	Max	ViInt32 Ivi_GetAttrMinMaxViInt32
				Get	Attr	Min	Max	ViInt64 Ivi_GetAttrMinMaxViInt64
				Get	Attr	Min	Max	ViReal64 Ivi_GetAttrMinMaxViReal64
		Interchangeability	Warnings
				Get	Next	Interchange	Chk
String

Ivi_GetNextInterchangeCheckString

				Clear	Interchange	Warnings Ivi_ClearInterchangeWarnings
				Reset	Interchange	Check Ivi_ResetInterchangeCheck
Logical	Names
		Get	Logical	Names	List Ivi_GetLogicalNamesList
		Get	Nth	Logical	Name Ivi_GetNthLogicalName
		Dispose	Logical	Names	List Ivi_DisposeLogicalNamesList
Configuration
		Get	Config	Store	Handle Ivi_GetConfigStoreHandle
		Attach	To	Config	Store	Handle AttachToConfigStoreHandle

IVI	Library	Overview
This	help	file	describes	the	functions	in	the	IVI	engine.	Also	included	are
IVI	Status	Codes	and	error	reporting	information.	Use	the	IVI	engine	to
create	VXIplug&play	instrument	drivers	with	advanced	features,	such	as
state	caching,	simulation,	and	compatibility	with	generic	instrument
classes.
The	IVI	Instrument	Driver	Wizard	supplements	the	library,	automatically
creating	the	skeleton	of	an	IVI	driver	that	includes	source	code	and
function	panels.	The	LabWindows/CVI	Instrument	Driver	Developers
Guide	contains	the	IVI	engine	function	reference	information	and
instructions	on	how	to	create	IVI	drivers.	Select	Tools»Create	IVI
Specific	Driver	to	start	the	IVI	Instrument	Driver	Wizard.
Refer	to	IVI	Library	Function	Tree	or	click	the	function	name	in	the
Alphabetical	List	of	IVI	Functions	section	of	the	Contents	tab	for	more
information.

Related	Documentation
LabWindows/CVI	Instrument	Driver	Developers	Guide—This	document
describes	guidelines	for	writing	an	IVI	instrument	driver.	To	download	and
use	this	document,	click	ni.com/manuals,	and	search	for	the
LabWindows/CVI	Instrument	Driver	Developers	Guide.

javascript:WWW(WWW_Manuals)

IVI	Status	Codes
IVI	engine	functions	can	return	error	and	warning	values	from	several
sets	of	status	codes.	Some	status	codes	are	unique	to	the	IVI	engine.
Other	status	codes	are	the	same	codes	that	VISA	Library	functions
return.	Still	others	are	error	or	warning	values	that	functions	in	specific
instrument	drivers	return.	Each	set	of	status	codes	has	its	own	numeric
range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.

Status	Code	Tables
Status	Code	Ranges
Default	Values	of	Defined	Constants
IVI	Errors	and	Warnings
Common	Instrument	Driver	Errors	and	Warnings
Most-Often-Encountered	VISA	Errors	and	Warnings

The	following	table	defines	the	different	ranges	of	status	codes.	The	table
lists	the	include	files	that	contain	the	defined	constants	for	the	particular
status	codes.

Status	Code	Ranges

Status	Code	Type Numeric	Range	(in
Hex)

Include
File

IVI	Errors BFFA0000	to	BFFA1FFF ivi.h
IVI	Warnings 3FFA0000	to	3FFA1FFF ivi.h
Class	Driver	Errors BFFA2000	to	BFFA3FFF IviClass.h
Class	Driver	Warnings 3FFA2000	to	3FFA3FFF IviClass.h
Specific	Driver	Errors BFFA4000	to	BFFA5FFF Prefix.h
Specific	Driver	Warnings 3FFA4000	to	3FFA5FFF Prefix.h
Common	Instrument	Driver	Errors BFFC0000	to	BFFCFFFF vpptype.h
Common	Instrument	Driver
Warnings

3FFC0000	to	3FFCFFFF vpptype.h

VISA	Errors BFFF0000	to	BFFFFFFF visa.h
VISA	Warnings 3FFF0000	to	3FFFFFFF visa.h

The	Common	Errors	and	Warnings	are	values	that	VXIplug&play	defines
and	that	specific	instrument	drivers	return.	They	provide	a	consistent	set
of	codes	for	error	and	warning	conditions	that	are	common	among	all
instrument	drivers.	Each	particular	instrument	driver	defines	its	own	set	of
Driver	Errors	and	Warnings.	The	status	codes	values	for	one	driver	can
overlap	the	status	code	values	for	other	drivers.
The	IVI	engine	and	instrument	driver	include	files	define	particular	status
codes	as	the	unsigned	sum	of	a	base	value	and	a	decimal	integer	value.
The	following	table	lists	the	base	values.

Default	Values	of	Defined	Constants
Status	Code	Type Defined	Constant	for	Base	Value Value
IVI	Errors IVI_ERROR_BASE BFFA0000
IVI	Warnings IVI_WARN_BASE 3FFA0000
Class	Driver	Errors IVI_CLASS_ERROR_BASE BFFA2000
Class	Driver	Warnings IVI_CLASS_WARN_BASE 3FFA2000
Specific	Driver	Errors IVI_SPECIFIC_ERROR_BASE BFFA4000
Specific	Driver	Warnings IVI_SPECIFIC_WARN_BASE 3FFA4000

For	example,	if	you	pass	an	invalid	attribute	ID	to	an	IVI	engine	function,
the	function	returns	IVI_ERROR_INVALID_ATTRIBUTE,	which	ivi.h
defines	as	IVI_ERROR_BASE	+	12,	or	0xBFFA000C.
The	following	tables	contain	the	IVI	Status	Codes,	the	Common	Status
Codes,	and	the	most	commonly	used	VISA	Status	Codes.

IVI	Errors	and	Warnings
Status Description
0 The	call	was	successful.
BFFA0000 Unrecoverable	failure.
BFFA0001 Instrument	error	detected.	Call	the	ClassPrefix_error_query

function	and	examine	the	error.
BFFA0002 File	could	not	be	opened.
BFFA0003 File	is	being	read.
BFFA0004 File	is	being	modified.
BFFA0005 Driver	module	file	not	found.
BFFA0006 Cannot	open	driver	module	file	for	reading.
BFFA0007 Driver	module	has	invalid	file	format	or	contains	invalid	data.
BFFA0008 Driver	module	contains	undefined	references.
BFFA0009 Cannot	find	function	in	driver	module.
BFFA000A Failure	loading	driver	module.
BFFA000B The	path	name	is	invalid.
BFFA000C Attribute	ID	not	recognized.
BFFA000D Attribute	is	read-only.
BFFA000E Attribute	is	write-only.
BFFA000F Invalid	parameter.
BFFA0010 Invalid	value	for	parameter	or	property.
BFFA0011 Function	or	method	not	supported.
BFFA0012 Attribute	or	property	not	supported.
BFFA0013 The	enumeration	value	for	the	parameter	is	not	supported.
BFFA0014 Invalid	Type.
BFFA0015 The	attribute	and	function	parameter	types	do	not	match.
BFFA0016 The	specified	attribute	already	has	a	value	waiting	to	be

updated.
BFFA0017 The	specified	item	already	exists.

BFFA0018 Not	a	valid	configuration.
BFFA0019 The	requested	item	or	value	does	not	exist	or	is	not

available.
BFFA001A The	requested	attribute	value	not	known	and	cannot	be

determined.
BFFA001B There	is	no	range	table	for	this	attribute.
BFFA001C The	range	table	is	invalid.
BFFA001D A	connection	to	the	instrument	has	not	been	initialized.
BFFA001E The	class	instrument	driver	has	encountered	underspecified

instrument	configurations	that	limit	interchangeability.
BFFA001F No	channel	table	has	been	built	for	the	session.	The

instrument	driver	must	call	Ivi_BuildChannelTable	in	its	IviInit
function.

BFFA0020 Channel	or	repeated	capability	name	specified	is	not	valid
for	the	instrument.

BFFA0021 Unable	to	allocate	system	resource.
BFFA0022 Permission	to	access	file	was	denied.
BFFA0023 Too	many	files	opened.
BFFA0024 Unable	to	create	temporary	file	in	target	directory.
BFFA0025 All	temporary	filenames	already	used	in	target	directory.
BFFA0026 Disk	is	full.
BFFA0027 Configuration	file	was	not	found	on	disk.
BFFA0028 Cannot	open	configuration	file.
BFFA0029 Error	reading	configuration	file.
BFFA002A Invalid	ViInt32	value	in	configuration	file.
BFFA002B Invalid	ViReal64	value	in	configuration	file.
BFFA002C Invalid	ViBoolean	value	in	configuration	file.
BFFA002D Entry	missing	from	configuration	file.
BFFA002E Initialization	failed	in	driver	DLL.
BFFA002F Driver	module	could	not	be	loaded	because	of	an	unresolved

external	reference.
BFFA0030 Cannot	find	CVI	Run-Time	Engine.
BFFA0031 Cannot	open	CVI	Run-Time	Engine.
BFFA0032 CVI	Run-Time	Engine	has	invalid	format.
BFFA0033 CVI	Run-Time	Engine	is	missing	one	or	more	required

functions.
BFFA0034 CVI	Run-Time	Engine	initialization	failed,	probably	because

of	insufficient	memory.
BFFA0035 CVI	Run-Time	Engine	could	not	be	loaded	because	of	an

unresolved	external	reference.
BFFA0036 Failure	loading	CVI	Run-Time	Engine.
BFFA0037 Cannot	open	DLL	to	read	exports.
BFFA0038 DLL	file	is	corrupt.
BFFA0039 No	export	table	in	DLL.
BFFA003A Unknown	attribute	name	for	initial	setting	in	configuration	file.
BFFA003B Invalid	attribute	value	for	initial	setting	in	configuration	file.
BFFA003C Memory	pointer	specified	is	not	known.
BFFA003D Unable	to	find	any	channel	or	repeated	capability	strings.
BFFA003E The	channel	or	repeated	capability	list	contains	two

instances	of	the	same	name.
BFFA003F The	VirtualChannelNames	item	in	the	configuration	file

contains	a	duplicate	virtual	channel	name.
BFFA0040 The	VirtualChannelNames	item	in	the	configuration	file

contains	an	entry	without	a	virtual	channel	name	(nothing
before	the	'=').

BFFA0041 The	VirtualChannelNames	item	in	the	configuration	file
contains	an	invalid	virtual	channel	name.	Channel	names
must	contain	only	alphanumerics,	underscores,	or	an
exclamation	point.

BFFA0042 The	VirtualChannelNames	item	in	the	configuration	file
contains	a	virtual	channel	name	without	an	assigned	channel
string	(i.e.,	nothing	after	'=').

BFFA0043 The	VirtualChannelNames	item	in	the	configuration	file
contains	a	virtual	channel	name	that	is	assigned	to	an
unknown	or	invalid	channel	string.

BFFA0044 Channel	or	repeated	capability	name	required.
BFFA0045 The	channel	or	repeated	capability	name	is	not	allowed.
BFFA0046 The	attribute	is	not	valid	for	the	specified	channel	or

repeated	capability.
BFFA0047 This	operation	requires	a	channel–	or	repeated	capability–

based	attribute.	The	specified	attribute	is	not	channel–	or
repeated	capability–based.

BFFA0048 The	channel	has	already	been	excluded	for	the	specified
attribute	and	cannot	be	re-included.

BFFA0049 The	option	string	parameter	contains	an	entry	without	a
name.

BFFA004A The	option	string	parameter	contains	an	entry	without	a
value.

BFFA004B The	option	string	parameter	contains	an	entry	with	an
unknown	option	name.

BFFA004C The	option	string	parameter	contains	an	entry	with	an
unknown	option	value.

BFFA004D This	operation	is	valid	only	on	a	sesssion	created	by	a	class
driver.

BFFA004E You	cannot	create	a	configuration	file	named	"ivi.ini".	That
filename	is	reserved.

BFFA004F There	already	is	an	entry	of	the	same	name	in	the	run-time
configuration.

BFFA0050 The	index	parameter	is	one-based.	You	must	pass	a	number
greater	than	or	equal	to	1.

BFFA0051 The	index	exceeds	the	number	of	items	available.
BFFA0052 You	cannot	set	the	cache	for	an	attribute	that	has	the

IVI_VAL_NEVER_CACHE	flag.
BFFA0053 An	instrument	driver	cannot	export	a	ViAddr	attribute	to	the

end-user.	Use	the	IVI_VAL_HIDDEN	flag	macro	to	make	it	a

private	attribute.

BFFA0054 Channel	or	repeated	capability	strings	must	contain	only
alphanumerics,	underscores,	or	an	exclamation	point.

BFFA0055 The	Prefix	item	in	the	configuration	file	does	not	match	the
specific	driver's	prefix

BFFA0056 The	necessary	memory	could	not	be	allocated.
BFFA0057 Operation	in	progress.
BFFA0058 NULL	pointer	passed	for	parameter	or	property.
BFFA0059 Unexpected	response	from	the	instrument.
BFFA005B File	not	found.
BFFA005C The	file	format	is	invalid.
BFFA005D The	instrument	status	is	not	available.
BFFA005E Instrument	ID	Query	failed.
BFFA005F Instrument	reset	failed.
BFFA0060 Insufficient	location	information	or	resource	not	present	in

the	system.
BFFA0061 The	driver	is	already	initialized.
BFFA0062 The	simulation	state	cannot	be	changed.
BFFA0063 Invalid	number	of	levels	in	selector.
BFFA0064 Invalid	range	in	selector.
BFFA0065 Unknown	name	in	selector.
BFFA0066 Badly-formed	selector.
BFFA0067 Unknown	physical	selector.
BFFA1190 The	session	handle	is	not	valid.
BFFA1198 The	session	handle	is	not	valid.
BFFA11A0 Could	not	create	thread	local.
BFFA1200 The	specified	configuration	store	file	could	not	be

deserialized.
BFFA1201 A	deserialize	was	attempted	after	a	previous	deserialize	had

already	succeeded.

BFFA1202 The	specified	configuration	store	file	could	not	be	serialized.
BFFA1203 The	session	name	or	logical	name	could	not	be	resolved	to	a

session	or	driver	session.
BFFA1204 The	item	does	not	exist	in	the	global	collection.
BFFA1205 An	entry	with	name	already	exists	in	the	collection.
BFFA1206 The	registry	entry	for	the	master	configuration	store	does	not

exist	or	the	file	could	not	be	found.
BFFA1207 The	item	does	not	exist	in	the	collection.
BFFA1208 The	data	component	is	not	a	valid	data	component.
BFFA1209 The	element	cannot	be	removed	from	the	global	collection

when	it	is	referenced	in	the	local	collections.
BFFA1232 The	specified	handle	is	invalid	or	of	an	incorrect	type.
BFFA1233 The	specified	property	ID	is	not	valid	for	this	function.
BFFA6000 Repeated	Capability	lists	cannot	be	modified	after	attributes

have	been	added	to	them.
BFFA6001 An	attribute	can	only	be	restricted	to	a	subset	of	a	repeated

capability	once.
BFFA6002 The	repeated	capability	table	cannot	be	built	because	it

already	exists.
BFFA6003 The	repeated	capability	has	not	been	defined	yet.
BFFA6004 The	repeated	capability	name	cannot	be	an	empty	or	NULL

string.
BFFA600D The	Config	Server	module	is	not	present	on	the	system.

3FFA0065 Identification	query	not	supported.
3FFA0066 Reset	operation	not	supported.
3FFA0067 Self	test	operation	not	supported.
3FFA0068 Error	query	operation	not	supported.
3FFA0069 Revision	query	not	supported.

Common	Instrument	Driver	Errors	and	Warnings
Status Description
BFFC0001 Parameter	1	out	of	range,	or	error	trying	to	set	it.
BFFC0002 Parameter	2	out	of	range,	or	error	trying	to	set	it.
BFFC0003 Parameter	3	out	of	range,	or	error	trying	to	set	it.
BFFC0004 Parameter	4	out	of	range,	or	error	trying	to	set	it.
BFFC0005 Parameter	5	out	of	range,	or	error	trying	to	set	it.
BFFC0006 Parameter	6	out	of	range,	or	error	trying	to	set	it.
BFFC0007 Parameter	7	out	of	range,	or	error	trying	to	set	it.
BFFC0008 Parameter	8	out	of	range,	or	error	trying	to	set	it.
BFFC0011 Instrument	failed	the	ID	Query.
BFFC0012 Invalid	response	from	instrument.
3FFC0101 Instrument	does	not	have	ID	Query	capability.
3FFC0102 Instrument	does	not	have	Reset	capability.
3FFC0103 Instrument	does	not	have	Self-Test	capability.
3FFC0104 Instrument	does	not	have	Error	Query	capability.
3FFC0105 Instrument	does	not	have	Revision	Query	capability.

Most-Often-Encountered	VISA	Errors	and	Warnings
Status Description
BFFF0000 Miscellaneous	or	system	error	occurred.
BFFF000E Invalid	session	handle.
BFFF0015 Timeout	occurred	before	operation	could	complete.
BFFF0034 Violation	of	raw	write	protocol	occurred.
BFFF0035 Violation	of	raw	read	protocol	occurred.
BFFF0036 Device	reported	an	output	protocol	error.
BFFF0037 Device	reported	an	input	protocol	error.
BFFF0038 Bus	error	occurred	during	transfer.
BFFF003A Invalid	setup	(attributes	are	not	consistent).
BFFF005F No	listeners	condition	was	detected.
BFFF0060 This	interface	is	not	the	controller	in	charge.
BFFF0067 Operation	is	not	supported	on	this	session.
3FFF0085 The	status	value	you	passed	is	unknown.

Required	Functions
Expand	this	book	to	view	an	alphabetized	list	of	required	IVI	functions.

Required	IVI	Functions	Overview
This	topic	contains	information	and	function	descriptions	for	instrument
driver	functions	that	each	IVI	instrument	driver	must	implement.	A	related
LabWindows/CVI	Instrument	Driver	Developers	Guide	exists	to	help	you
develop	and	use	instrument	drivers.	To	download	and	use	this	document,
click	ni.com/manuals,	and	search	for	the	LabWindows/CVI	Instrument
Driver	Developers	Guide.
The	required	functions	are	grouped	into	the	following	three	categories.	To
access	information	about	each	function,	you	can	use	the	following	list	of
required	functions	or	click	on	Alphabetical	List	of	Required	IVI	Functions
section	of	the	Contents	tab.
Initialize/Close	Functions

Prefix	_init
Prefix	_InitWithOptions
Prefix	_close
Prefix	_IviInit
Prefix	_IviClose

Utility	Functions
Prefix	_self_test
Prefix	_Disable
Prefix	_reset
Prefix	_ResetWithDefaults
Prefix	_revision_query
Prefix	_error_query
Prefix	_error_message

Wrappers	for	IVI	engine	Functions
Prefix	_GetError
Prefix	_ClearError
Prefix	_LockSession
Prefix	_UnlockSession
Prefix	_ReadInstrData
Prefix	_WriteInstrData
Prefix	_GetNextInterchangeWarning

javascript:WWW(WWW_Manuals)

Prefix	_ClearInterchangeWarnings
Prefix	_ResetInterchangeCheck
Prefix	_InvalidateAllAttributes
Prefix	_GetNextCoercionRecord

Except	for	Prefix	_IviInit	and	Prefix_IviClose,	all	the	required	functions	are
user-callable.	The	instrument	driver	must	have	function	panels	for	the
user-callable	functions	and	must	have	function	prototypes	for	them	in	the
include	file.	No	function	panels	or	prototypes	are	necessary	for	the
Prefix_IviInit	and	Prefix_IviClose	functions.
The	Prefix_init	function	and	the	Prefix_InitWithOptions	function	call
Prefix_IviInit.	The	Prefix_close	function	calls	Prefix_IviClose.	In	a	specific
instrument	driver,	the	Prefix_IviInit	and	Prefix_IviClose	functions	contain
the	bulk	of	the	code	that	performs	the	initialization	and	closing	operations
for	the	particular	instrument.
This	section	contains	descriptions	for	the	Initialize/Close	functions	and
the	Utility	functions,	including	the	implementation	requirements.	For	the
Wrapper	functions,	refer	to	the	corresponding	functions	in	the	IVI	engine
Overview.

Note				If	you	use	the	instrument	driver	developer	wizard	to	create
your	instrument	driver,	the	source	file	that	the	wizard	generates
contains	the	required	functions	with	as	much	of	the	implementation
source	code	as	possible	and	with	comments	explaining	how	to
complete	the	functions.

Prefix_Disable
ViStatus	Prefix_Disable	(ViSession	vi);
Purpose
Places	the	instrument	in	a	quiescent	state	where	it	has	minimal	or	no
impact	on	the	system	to	which	it	is	connected.
Parameter

Input
Name Type Description
vi ViSession Unique	identifier	for	an	IVI	session.

Return	Values

Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes
Implementation	Requirements
Call	Ivi_LockSession	to	lock	the	IVI	session.
If	simulation	is	disabled,	send	the	appropriate	commands	to	return	the
instrument	to	a	quiescent	state.	Remember	to	call
Ivi_SetNeedToCheckStatus	with	VI_TRUE	before	you	perform	the
instrument	I/O.
Finally,	call	Ivi_UnlockSession	to	unlock	the	IVI	session.
Be	sure	to	document	the	state	in	which	the	Prefix_Disable	function	places
the	instrument.	Include	the	information	in	the	function	panel	help	for	the
Prefix_Disable	function.

Prefix_init
ViStatus	Prefix_init	(ViRsrc	resourceName,	ViBoolean	IDQuery,	ViBoolean
resetDevice,	ViSession	*instrumentHandle);
Purpose
This	function	performs	the	following	initialization	actions:

Creates	a	new	IVI	instrument	driver	session.
Opens	a	session	to	the	specified	device	using	the	interface	and
address	you	specify	for	the	Resource	Name	parameter.
If	the	ID	Query	parameter	is	set	to	VI_TRUE,	this	function	queries
the	instrument	ID	and	checks	that	it	is	valid	for	this	instrument
driver.
If	the	Reset	parameter	is	set	to	VI_TRUE,	this	function	resets	the
instrument	to	a	known	state.
Sends	initialization	commands	to	set	the	instrument	to	the	state
necessary	for	the	operation	of	the	instrument	driver.
Returns	a	ViSession	handle	that	you	use	to	identify	the	instrument
in	all	subsequent	instrument	driver	function	calls.

Note			This	function	creates	a	new	session	each	time	you	invoke	it.
Although	you	can	open	more	than	one	IVI	session	for	the	same
resource,	it	is	best	not	to	do	so.	You	can	use	the	same	session	in
multiple	program	threads.	You	can	use	the	Prefix_LockSession	and
Prefix_UnlockSession	functions	to	protect	sections	of	code	that
require	exclusive	access	to	the	resource.

Parameters
Name Type Description
resourceName ViRsrc Pass	the	resource	name	of	the	device	to

initialize.
You	can	also	pass	the	name	of	a	driver
session	or	logical	name	that	you	configure
with	the	IVI	Configuration	utility.	The	driver
session	identifies	a	specific	device	and
specifies	the	initial	settings	for	the	session.
A	logical	Name	identifies	a	particular	driver
session.	Refer	to	the	Parameter	Discussion

section	for	more	information	on
resourceName.

IDQuery ViBoolean Specify	whether	you	want	the	instrument
driver	to	perform	an	ID	Query.
Valid	Range:
VI_TRUE	(1)—Perform	ID	Query	(Default
Value)
VI_FALSE	(0)—Skip	ID	Query
When	you	set	this	parameter	to	VI_TRUE,
the	driver	verifies	that	the	instrument	you
initialize	is	a	type	that	this	driver	supports.
Circumstances	can	arise	where	it	is
undesirable	to	send	an	ID	Query	command
string	to	the	instrument.	When	you	set	this
parameter	to	VI_FALSE,	the	function
initializes	the	instrument	without	performing
an	ID	Query.

resetDevice ViBoolean Specify	whether	you	want	the	to	reset	the
instrument	during	the	initialization
procedure.
Valid	Range:
VI_TRUE	(1)—Reset	Device	(Default	Value)
VI_FALSE	(0)—Don"t	Reset

instrument
Handle

ViSession
(passed
by
reference)

Returns	a	ViSession	handle	that	you	use	to
identify	the	instrument	in	all	subsequent
instrument	driver	function	calls.

Note				This	function	creates	a	new
session	each	time	you	invoke	it.	This	is
useful	if	you	have	multiple	physical
instances	of	the	same	type	of
instrument.

Note				Avoid	creating	multiple
concurrent	sessions	to	the	same
physical	instrument.	Although	you	can
create	more	than	one	IVI	session	for
the	same	resource,	it	is	best	not	to	do
so.	A	better	approach	is	to	use	the

same	IVI	session	in	multiple	execution
threads.	You	can	use	functions
Prefix_LockSession	and
Prefix_UnlockSession	to	protect	sections
of	code	that	require	exclusive	access
to	the	resource.

Parameter	Discussion
Refer	to	the	following	for	the	exact	grammar	to	use	for	the
resourceName	parameter.	Optional	fields	are	shown	in	square	brackets
([]).
Syntax
GPIB[board]::<primary	address>[::secondary	address]::INSTR
VXI	VXI[board]::VXI	logical	address[::INSTR]
GPIB-VXI	GPIB-VXI[board][::GPIB-VXI	primary	address]
::VXI	logical	address[::INSTR]
Serial	ASRL<port>::INSTR
<LogicalName>
Optional	Field	–	Value
If	you	do	not	specify	a	value	for	an	optional	field,	the	following	values	are
used:
board	-	0
secondary	address	-	none	(31)

Valid	Value Description
"GPIB::22::INSTR" GPIB	board	0,	primary	address	22,no	secondary

address
"GPIB::22::5::INSTR" GPIB	board	0,	primary	address	22,	secondary

address	5
"GPIB1::22::5::INSTR" GPIB	board	1,	primary	address	22,	secondary

address	5
"VXI::64::INSTR" VXI	board	0,	logical	address	64
"VXI1::64::INSTR" VXI	board	1,	logical	address	64
"GPIB- GPIB-VXI	board	0,	logical	address	64

VXI::64::INSTR"
"GPIB-
VXI1::64::INSTR"

GPIB-VXI	board	1,	logical	address	64

"ASRL2::INSTR" COM	port	2
"SampleInstr" Logical	name	"SampleInstr"
"Prefix" Logical	Name	or	Driver	Session	"Prefix"

Return	Values

Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Prefix_InitWithOptions
ViStatus	Prefix_InitWithOptions	(ViRsrc	resourceName,	ViBoolean	IDQuery,
ViBoolean	resetDevice,	ViString	optionsString,	ViSession	*instrumentHandle);
Purpose
This	function	performs	the	following	initialization	actions:

Creates	a	new	IVI	instrument	driver	and	optionally	sets	the	initial
state	of	the	following	session	attributes:
PREFIX_ATTR_INTERCHANGE_CHECK
PREFIX_ATTR_RANGE_CHECK
PREFIX_ATTR_QUERY_INSTRUMENT_STATUS
PREFIX_ATTR_CACHE
PREFIX_ATTR_SIMULATE
PREFIX_ATTR_RECORD_COERCIONS
PREFIX_ATTR_DRIVER_SETUP
Opens	a	session	to	the	specified	device	using	the	interface	and
address	you	specify	for	the	Resource	Name	parameter.
If	the	ID	Query	parameter	is	set	to	VI_TRUE,	this	function	queries
the	instrument	ID	and	checks	that	it	is	valid	for	this	instrument
driver.
If	the	Reset	parameter	is	set	to	VI_TRUE,	this	function	resets	the
instrument	to	a	known	state.
Sends	initialization	commands	to	set	the	instrument	to	the	state
necessary	for	the	operation	of	the	instrument	driver.
Returns	a	ViSession	handle	that	you	use	to	identify	the	instrument
in	all	subsequent	instrument	driver	function	calls.

Note			This	function	creates	a	new	session	each	time	you	invoke	it.
Although	you	can	open	more	than	one	IVI	session	for	the	same
resource,	it	is	best	not	to	do	so.	You	can	use	the	same	session	in
multiple	program	threads.	You	can	use	the	Prefix_LockSession	and
Prefix_UnlockSession	functions	to	protect	sections	of	code	that
require	exclusive	access	to	the	resource.

Parameters
Name Type Description

resourceName ViRsrc Pass	the	resource	name	of	the	device	to
initialize.
You	can	also	pass	the	name	of	a	driver
session	or	logical	name	that	you	configure
with	the	IVI	Configuration	utility.	The	driver
session	identifies	a	specific	device	and
specifies	the	initial	settings	for	the	session.
A	logical	Name	identifies	a	particular	driver
session.	Refer	to	the	Parameter	Discussion
section	for	more	information	on
resourceName.

IDQuery ViBoolean Specify	whether	you	want	the	instrument
driver	to	perform	an	ID	Query.
Valid	Range:
VI_TRUE	(1)—Perform	ID	Query	(Default
Value)
VI_FALSE	(0)—Skip	ID	Query
When	you	set	this	parameter	to	VI_TRUE,
the	driver	verifies	that	the	instrument	you
initialize	is	a	type	that	this	driver	supports.
Circumstances	can	arise	where	it	is
undesirable	to	send	an	ID	Query	command
string	to	the	instrument.	When	you	set	this
parameter	to	VI_FALSE,	the	function
initializes	the	instrument	without	performing
an	ID	Query.

resetDevice ViBoolean Specify	whether	you	want	the	to	reset	the
instrument	during	the	initialization
procedure.
Valid	Range:
VI_TRUE	(1)—Reset	Device	(Default	Value)
VI_FALSE	(0)—Don't	Reset

optionsString ViString You	can	use	this	control	to	set	the	initial
value	of	certain	attributes	for	the	session.
Refer	to	the	Parameter	Discussion	for	more
information	on	optionsString.

instrument ViSession Returns	a	ViSession	handle	that	you	use	to

Handle (passed
by
reference)

identify	the	instrument	in	all	subsequent
instrument	driver	function	calls.

Note				This	function	creates	a	new
session	each	time	you	invoke	it.	This	is
useful	if	you	have	multiple	physical
instances	of	the	same	type	of
instrument.

Note				Avoid	creating	multiple
concurrent	sessions	to	the	same
physical	instrument.	Although	you	can
create	more	than	one	IVI	session	for
the	same	resource,	it	is	best	not	to	do
so.	A	better	approach	is	to	use	the
same	IVI	session	in	multiple	execution
threads.	You	can	use	functions
Prefix_LockSession	and
Prefix_UnlockSession	to	protect	sections
of	code	that	require	exclusive	access
to	the	resource.

Parameter	Discussion
Using	the	resourceName	Parameter
Refer	to	the	following	table	below	for	the	exact	grammar	to	use	for	the
resourceName	parameter.	Optional	fields	are	shown	in	square	brackets
([]).
Syntax
GPIB[board]::<primary	address>[::secondary	address]::INSTR
VXI	VXI[board]::VXI	logical	address[::INSTR]
GPIB-VXI	GPIB-VXI[board][::GPIB-VXI	primary	address]
::VXI	logical	address[::INSTR]
Serial	ASRL<port>::INSTR
<LogicalName>
Optional	Field	and	Value
If	you	do	not	specify	a	value	for	an	optional	field,	the	following	values	are
used:

board	-	0
secondary	address	-	none	(31)

Valid	Value Description
"GPIB::22::INSTR" GPIB	board	0,	primary	address	22,	no	secondary

address
"GPIB::22::5::INSTR" GPIB	board	0,	primary	address	22,	secondary	address

5
"GPIB1::22::5::INSTR" GPIB	board	1,	primary	address	22,	secondary	address

5
"VXI::64::INSTR" VXI	board	0,	logical	address	64
"VXI1::64::INSTR" VXI	board	1,	logical	address	64
"GPIB-
VXI::64::INSTR"

GPIB-VXI	board	0,	logical	address	64

"GPIB-
VXI1::64::INSTR"

GPIB-VXI	board	1,	logical	address	64

"ASRL2::INSTR" COM	port	2
"SampleInstr" Logical	name	"SampleInstr"
"Prefix" Logical	Name	or	Driver	Session	"Prefix"

Using	the	optionsString	Parameter
The	following	table	lists	the	attributes	and	the	name	you	use	in	the
optionsString	parameter	to	identify	the	attribute.

Name	in
optionsString

Attribute	Defined	Constant

RangeCheck PREFIX_ATTR_RANGE_CHECK
QueryInstrStatus PREFIX_ATTR_QUERY_INSTRUMENT_STATUS
Cache PREFIX_ATTR_CACHE
Simulate PREFIX_ATTR_SIMULATE
RecordCoercions PREFIX_ATTR_RECORD_COERCIONS
InterchangeCheck PREFIX_ATTR_INTERCHANGE_CHECK
DriverSetup PREFIX_ATTR_DRIVER_SETUP

The	format	of	this	string	is,	"AttributeName=Value"	where	AttributeName	is
the	name	of	the	attribute	and	Value	is	the	value	to	which	the	attribute	will
be	set.	To	set	multiple	attributes,	separate	their	assignments	with	a
comma.
The	session	uses	the	values	you	specify	in	the	optionsString	parameter.
If	you	pass	a	NULL	or	an	empty	string	for	the	optionsString	parameter,
and	you	pass	either	a	DriverSession	or	logicalName	to	the	resourceName
parameter,	the	session	uses	the	values	specified	in	the	IVI	Configuration
file.	If	you	do	not	specify	an	attribute	value	in	either	the	optionsString
parameter	or	in	the	IVI	Configuration	file,	the	default	value	for	the
attribute	is	used.
The	default	values	for	the	attributes	are	shown	below:

Attribute	Name Default	Value
RangeCheck VI_TRUE
QueryInstrStatus VI_FALSE
Cache VI_TRUE
Simulate VI_FALSE
DriverSetup VI_FALSE
InterchangeCheck VI_FALSE
The	following	are	the	valid	values	for	ViBoolean	attributes:
True:	1,	True,	or	VI_TRUE
False:	0,	False,	or	VI_FALSE
Default	Value:	"Simulate=0,RangeCheck=1,QueryInstrStatus=0,Cache=1"
Return	Values
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.

Related	Topic
IVI	Status	Codes

Prefix_IviInit
ViStatus	Prefix_IviInit	(ViRsrc	resourceName,	ViBoolean	idQuery,	ViBoolean
reset,	ViSession	vi);
Purpose
Contains	the	bulk	of	the	code	to	initialize	an	instrument	driver	session.
Prefix_InitWithOptions	calls	Prefix_IviInit	after	it	calls	Ivi_SpecificDriverNew
to	create	the	IVI	session

Note				Refer	to	Prefix_init	for	a	description	of	the	initialization
actions	and	parameters.	This	function	description	documents	only
the	implementation	requirements	for	Prefix_IviInit.

Implementation	Requirements
Call	Ivi_BuildChannelTable	to	specify	the	set	of	valid	channel	strings	for
the	instrument.	If	the	instrument	does	not	have	multiple	channels,	specify
"1"	for	the	channel	strings.
Create	all	of	the	attributes	you	want	to	use,	excluding	the	inherent	IVI
attributes.	If	you	are	developing	your	driver	according	to	a	class
definition,	create	the	class	attributes	that	you	want	to	use.	Generally,	you
should	create	the	attributes	in	an	internal	Prefix_InitAttributes	function.	If
you	use	the	instrument	driver	developer	wizard,	the	wizard	creates	this
function	for	you.	You	must	have	this	function	in	your	source	file	to	be	able
to	use	the	attribute	editor.
If	simulation	is	disabled,	create	the	I/O	session,	and	set	the
IVI_ATTR_IO_SESSION	attribute.	Configure	the	I/O	interface.
If	the	reset	parameter	is	VI_TRUE,	call	Prefix_reset.	Otherwise,	if	not
simulating,	send	the	default	setup	commands	to	the	instrument.	It	is	best
to	have	an	internal	Prefix_DefaultInstrSetup	function	for	this	purpose
because	Prefix_reset	also	sends	the	default	setup	commands.
If	the	idQuery	parameter	is	VI_TRUE	and	simulation	is	disabled,	verify
the	identity	of	the	instrument	if	possible.	For	IEEE	488.2	compatible
instruments,	use	the	*IDN?	query.	For	VXI	register-based	instruments,
check	the	manufacturer	ID	and	model	number.	Return	an	error	if	the
instrument	is	not	one	that	the	driver	supports.
Finally,	check	the	status	of	the	instrument.	Typically,	you	do	this	by	calling
an	internal	Prefix_CheckStatus	function.	The	instrument	driver	developer

wizard	generates	the	internal	Prefix_CheckStatus	function	for	you.	The
internal	Prefix_CheckStatus	function	calls	the	check	status	callback	if
status	checking	is	enabled,	simulation	is	disabled,	and	the	driver	has
performed	instrument	I/O	since	the	last	time	it	queried	the	instrument
status.
If	a	failure	occurs	after	you	open	the	I/O	session,	close	the	I/O	session
and	set	the	IVI_ATTR_IO_SESSION	parameter	back	to	0.

Prefix_close
ViStatus	Prefix_close	(ViSession	vi);
Purpose
When	you	are	finished	using	an	instrument	driver	session,	you	must	call
the	Prefix_close	function.	Prefix_close	performs	the	following	actions.

Closes	the	instrument	I/O	session.
Destroys	the	IVI	session	and	all	of	its	attributes.
Deallocates	any	memory	resources	used	by	the	IVI	session.

You	might	also	want	to	put	the	instrument	into	an	idle	state	before	closing
the	I/O	session.	For	example,	a	switch	driver	might	disconnect	all
switches.
Parameter

Input
Name Type Description
vi ViSession Unique	identifier	for	an	IVI	session.

Implementation	Requirements

First	call	Ivi_LockSession	to	lock	the	IVI	session.
Call	Prefix_IviClose.
Call	Ivi_UnlockSession	to	unlock	the	IVI	session.
Finally,	call	Ivi_Dispose	on	the	IVI	session.	It	is	very	important	to	unlock
the	IVI	session	before	calling	Ivi_Dispose.
Ivi_Dispose	destroys	the	instrument	driver	session	and	all	of	its	attributes.
It	also	deallocates	any	memory	blocks	that	you	associated	with	the
session	when	you	called	Ivi_Alloc	or	Ivi_RangeTableNew.	Prefix_IviClose
performs	all	the	other	clean-up	operations.
Return	Values
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers

return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes

Prefix_IviClose
ViStatus	Prefix_IviClose	(ViSession	vi);
Purpose
Performs	all	the	clean-up	operations	for	closing	an	instrument	driver
session,	except	for	destroying	the	IVI	session.	The	Prefix_close	functions
in	the	specific	driver	calls	Prefix_IviClose.
Implementation	Requirements
Set	the	instrument	to	an	idle	state,	if	that	is	appropriate.
Close	the	I/O	session	and	set	IVI_ATTR_IO_SESSION	to	0.
If	you	have	any	hidden	ViAddr	attributes	that	point	to	memory	that	you
dynamically	allocated,	free	the	memory.

Prefix_reset
ViStatus	Prefix_reset	(ViSession	vi);
Purpose
Places	the	instrument	in	a	known	state.	In	an	IEEE	488.2	instrument,	the
_reset	function	sends	the	command	string	"*RST"	to	the	instrument.
Prefix_reset	also	sends	the	default	setup	commands	to	the	instrument	to
configure	settings	for	the	proper	operation	of	the	instrument	driver.	You
can	either	call	the	Prefix_reset	function	separately,	or	you	can	select	it	to
be	called	from	the	Prefix_init	function.
Parameter

Input
Name Type Description
vi ViSession Unique	identifier	for	an	IVI	session.

Return	Values
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes
Implementation	Requirements
Call	Ivi_LockSession	to	lock	the	IVI	session.
If	simulation	is	disabled,	send	the	reset	command	to	the	instrument.	On
IEEE	488.2	instruments,	you	do	this	by	sending	the	*RST	command.
Remember	to	call	Ivi_SetNeedToCheckStatus	with	VI_TRUE	before	you
perform	the	instrument	I/O.
Send	the	default	setup	commands	to	the	instrument.	It	is	best	to	have	an

internal	Prefix_DefaultInstrSetup	function	for	this	purpose.	Prefix_IviInit
must	call	Prefix_DefaultInstrSetup	when	it	does	not	call	Prefix_Reset.
Finally,	call	Ivi_UnlockSession	to	unlock	the	IVI	session.
Be	sure	to	document	the	state	in	which	the	Prefix_reset	function	places
the	instrument.	Include	the	information	in	the	function	panel	help	for	the
Prefix_reset	function.

Prefix_self_test
ViStatus	Prefix_self_test	(ViSession	vi,	ViInt16	*	testResult,	ViChar
testMessage[]);
Purpose
Causes	the	instrument	to	perform	a	self-test.	Prefix_self_test	waits	for	the
instrument	to	complete	the	test.	It	then	queries	the	instrument	for	the
results	of	the	self	test	and	returns	the	results	to	the	user.
Parameter

Input
Name Type Description
vi ViSession Unique	identifier	for	an	IVI	session.
Output
Name Type Description
testResult ViInt16 Numeric	result	from	self-test	operation

0	=	no	error	(test	passed)
testMessage ViChar	array Self-test	status	message

Return	Values
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes
Implementation	Requirements
Report	an	error	if	the	user	passes	VI_NULL	for	either	of	the	output
parameters.

Call	Ivi_LockSession	to	lock	the	IVI	session.
If	simulation	is	disabled,	send	the	self-test	command	to	the	instrument.
On	IEEE	488.2	instruments,	you	do	this	by	sending	the	*TST	command.
Then	read	the	results	from	the	instrument	into	the	testResult	and
testMessage	output	parameters.
If	simulation	is	enabled	but	Ivi_UseSpecificSimulation	returns	VI_TRUE,
set	the	testResult	output	parameter	to	0,	and	copy	"No	error."	into	the
testMessage	output	parameter.
Call	your	internal	Prefix_CheckStatus	function.
Finally,	call	Ivi_UnlockSession	to	unlock	the	IVI	session.
If	the	instrument	cannot	perform	a	self-test	operation,	you	should	still
include	the	function	in	the	driver	and	return	the	warning
VI_WARN_NSUP_SELF_TEST.

Prefix_error_query
ViStatus	Prefix_error_query	(ViSession	vi,	ViInt32	*	errCode,	ViChar
errMessage[]);
Purpose
Queries	the	instrument	and	returns	the	instrument	specific	error
information.
Generally,	you	call	this	function	after	another	function	in	the	instrument
driver	returns	the	IVI_ERROR_INSTRUMENT_STATUS	error	code.	The
driver	returns	IVI_ERROR_INSTRUMENT_STATUS	when	the	instrument's
status	register	indicates	that	the	instrument's	error	queue	is	not	empty.
Prefix_error_query	extracts	the	first	error	out	of	the	instrument's	error
queue.	For	instruments	that	have	status	registers	but	no	error	queue,	the
driver	simulates	an	error	queue	in	software.
Parameter

Input
Name Type Description
vi ViSession Unique	identifier	for	an	IVI	session.
Output
Name Type Description
errCode ViInt32 Instrument	error	code
errMessage ViChar	array Instrument	error	message

Return	Values
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic

IVI	Status	Codes
Implementation	Requirements
Report	an	error	if	the	user	passes	VI_NULL	for	either	of	the	output
parameters.
If	the	instrument	has	status	registers	and	an	error	queue,	do	the
following.

1.	 Call	Ivi_LockSession	to	lock	the	IVI	session.
2.	 If	simulation	is	disabled,	send	the	error	query	command	to	the

instrument.	On	IEEE	488.2	instruments,	you	do	this	by	sending
the	:SYST:ERR?	command.	Then	read	the	results	from	the
instrument	into	the	errCode	and	errMessage	output	parameters.

3.	 If	simulation	is	enabled,	set	the	errCode	output	parameter	to	0,
and	copy	"No	error."	into	the	errCode	output	parameter.

4.	 Call	Ivi_UnlockSession	to	unlock	the	IVI	session.
Some	instruments	have	status	registers	but	no	error	queue.	The	act	of
reading	the	status	registers	clears	the	error	information.	For	such
instruments,	the	check	status	callback	must	call
Ivi_QueueInstrSpecificError	to	add	the	error	information	to	a	software	error
queue	whenever	the	status	registers	indicate	an	error.	The
Prefix_error_query	function	must	do	the	following:

1.	 Call	Ivi_LockSession	to	lock	the	IVI	session.
2.	 Call	Ivi_InstrSpecificErrorQueueSize	to	determine	if	the	software

error	queue	is	empty.	If	it	is	empty,	call	the	check	status	callback
and	then	Ivi_InstrSpecificErrorQueueSize	again	to	determine	if	the
software	error	queue	is	still	empty.

3.	 If	the	software	queue	is	not	empty,	call
Ivi_DequeueInstrSpecificError	to	extract	the	error	information	into
the	errCode	and	errMessage	parameters.

4.	 Otherwise,	set	the	errCode	output	parameter	to	0,	and	copy	"No
error."	into	the	errMessage	output	parameter.

5.	 Call	Ivi_UnlockSession	to	unlock	the	IVI	session.
If	the	instrument	cannot	perform	an	error	query,	you	should	still	include
the	function	in	the	driver	and	return	the	warning
VI_WARN_NSUP_ERROR_QUERY.

Prefix_error_message
ViStatus	Prefix_error_message	(ViSession	vi,	ViStatus	errCode,	ViChar
errMessage[]);
Purpose
Translates	the	error	return	value	from	an	instrument	driver	function	to	a
user-readable	string.
Parameter

Input
Name Type Description
vi ViSession Unique	identifier	for	an	IVI	session.	Can	be

VI_NULL
errCode ViStatus Instrument	driver	error	code
Output
Name Type Description
errMessage ViChar

array
Instrument	driver	error	message

Return	Values
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes
Implementation	Requirements
Your	Prefix_error_message	function	must	accept	a	value	of	VI_NULL	for
the	vi	input	parameter.	This	allows	the	user	to	call	the	function	even

when	Prefix_init	or	Prefix_InitWithOptions	fails.	On	the	other	hand,	report
an	error	if	the	user	passes	VI_NULL	for	the	address	of	the	errMessage
output	buffer.
If	your	driver	defines	its	own	error	codes,	define	a	static	string/value	table
containing	the	error	codes	and	message	strings.	Use	the
IviStringValueTable	typedef	in	ivi.h.	Terminate	the	table	with	an	entry	that
has	VI_NULL	in	both	fields.
If	the	vi	parameter	is	not	VI_NULL,	call	Ivi_LockSession	to	lock	the	IVI
session.
Call	the	Ivi_GetSpecificDriverStatusDesc	function.	Pass	the	address	of	your
error	string/value	table	as	the	last	parameter.	If	your	driver	does	not	have
its	own	error	codes,	pass	VI_NULL	for	the	last	parameter.
If	the	vi	parameter	is	not	VI_NULL,	call	Ivi_UnlockSession	to	unlock	the
IVI	session.

Prefix_ResetWithDefaults
ViStatus	Prefix_ResetWithDefaults	(ViSession	vi);
Purpose
Resets	the	instrument	and	applies	initial	user-specified	settings	from	the
Logical	Name	which	was	used	to	initialize	the	session.	If	the	session	was
created	without	a	Logical	Name,	this	function	is	equivalent	to
Prefix_reset.
Parameter

Input
Name Type Description
vi ViSession Unique	identifier	for	an	IVI	session.

Implementation	Requirements

Call	Ivi_LockSession	to	lock	the	IVI	session.
Call	PREFIX_reset.
Call	Ivi_ApplyDefaultSetup.
Finally,	call	Ivi_UnlockSession	to	unlock	the	IVI	session.

Prefix_revision_query
ViStatus	Prefix_revision_query	(ViSession	vi,	ViChar	driverRev[],	ViChar
instrRev[]);
Purpose
Obtains	the	following	information:

The	revision	of	the	instrument	driver
The	firmware	revision	of	the	instrument	you	are	currently	using

Parameter

Input
Name Type Description
vi ViSession Unique	logical	identifier	to	a	session	with	an

instrument
Output
Name Type Description
driverRev ViChar

array
Instrument	driver	revision

instrRev ViChar
array

Instrument	firmware	revision

Return	Values
Contains	the	status	code	that	the	function	call	returns.	IVI	engine
functions	can	return	error	and	warning	values	from	several	sets	of	status
codes.	Some	status	codes	are	unique	to	the	IVI	engine.	Other	status
codes	are	the	same	codes	that	VISA	Library	functions	return.	Still	others
are	error	or	warning	values	that	functions	in	specific	instrument	drivers
return.	Each	set	of	status	codes	has	its	own	numeric	range.
Regardless	of	the	source	of	the	status	code,	0	always	indicates	success,
a	positive	value	indicates	a	warning,	and	a	negative	value	indicates	an
error.
Related	Topic
IVI	Status	Codes
Implementation	Requirements

Report	an	error	if	the	user	passes	VI_NULL	for	either	of	the	output
parameters.
Call	Ivi_LockSession	to	lock	the	IVI	session.
Call	Ivi_GetAttributeViString	on	the	IVI_ATTR_DRIVER_REVISION
attribute	to	get	the	driver	revision	string	into	the	driverRev	output
parameter.
If	simulation	is	disabled,	send	the	revision	query	command	to	the
instrument.	On	IEEE	488.2	instruments,	you	do	this	by	sending	the	*IDN
command.	Then	read	the	results	from	the	instrument	into	instrRev	output
parameter.	Remember	to	call	Ivi_SetNeedToCheckStatus	with	VI_TRUE
before	you	perform	the	instrument	I/O.
If	simulation	is	enabled,	copy	"No	revision	information	available	while
simulating."	into	the	instrRev	output	parameter.
Call	your	internal	Prefix_CheckStatus	function.
Call	Ivi_UnlockSession	to	unlock	the	IVI	session.

