Error Macros for VI

The ivi.h header file contains macros that you can use in your source
code to facilitate error handling. These macros require that you have the
following declaration at the top of the function in which the macro
appears:

ViStatus error = VI_SUCCESS;

The macros also require that you have the following label near the end of
the function:

Error:

Some of these macros require access to a ViSession variable named vi,
which they pass to Ivi_SetErrorInfo in certain cases. The names of these
macros all begin with viCheck.

Normally, you use the macros around function calls, but you can also use
them around variables or expressions.

The following describes the behavior of each macro.

checkAlloc(pointer)

If pointer is VI_NULL, assign VI_ERROR_ALLOC to the error variable
and jump to the Error label.

checkErr(status)

Assign status to the error variable. If status is positive, coerce the error
variable to zero. If status is negative, jump to the Error label.

checkWarn(status)

Assign status to the error variable. If negative, jump to the Error label.

viCheckAlloc(pointer)

If pointer is VI_NULL, assigh VI_ERROR_ALLOC to the error variable,
call Ivi_SetErrorInfo with VI_ERROR_ALLOC as the primary error code,
and jump to the Error label.

viCheckErr(status)

Assign status to the error variable. If status is positive, coerce the error
variable to zero. If status is negative, pass it to Ivi_SetErrorinfo and jump
to the Error label.

viCheckErrElab(status, elabString)

Assign status to the error variable. If status is positive, coerce the error
variable to zero. If status is negative, pass it and elabString to
Ivi_SetErrorInfo and jump to the Error label.

viCheckParm(status, parameterPosition, parameterName)

Assign status to the error variable. If status is positive, coerce the error
variable to zero. If status is negative, do the following:

e Convert parameterPosition into one of the VXIplug&play error
codes for invalid parameters, and pass it as the secondary error
code to Ivi_SetErrorinfo. Pass status as the primary error code,
and pass parameterName as the error elaboration.

e Jump to the Error label.
viCheckWarn(status)

Assign status to error. If status is nonzero, pass it to Ivi_SetErrorInfo. If
status is negative, jump to the Error label.

Notice that the checkWarn and viCheckWarn macros preserve warnings
whereas the other viCheck macros discard them. Also, viCheckWarn calls
Ivi_SetErrorInfo on both warnings and errors, whereas the other macros
call Ivi_SetErrorInfo only on errors.

When to Use the viCheck Macros

When returning an error or a warning, each user-callable instrument
driver function must set the error information for the session and thread.
You can do this by explicitly calling Ivi_SetErrorInfo at the end of the
function, or you can use the viCheck macros in the function or in the
lower-level routines that the function calls.

You can call the viCheck macros only when the following two conditions
are true:

e The function in which it appears has a ViSession parameter named
vi that is an IVI session handle or VI_NULL.

e The first argument you pass to the macro is either a pointer value,
in the case of viCheckAlloc, or a status code that is negative if and
only if an error occurs. IVl and VISA functions return such status
codes.

It is best to use the viCheck macros at the lowest level in your code where
these two conditions are true. You can then use the check versions of the
macros at higher levels. All IVI engine functions that take the IVI session
handle as a parameter call Ivi_SetErrorInfo when they return errors. Thus,
you do not have to use the viCheck macros around calls to VI functions.
Nevertheless, it is harmless to make redundant use of the viCheck
macros. The viCheck macros call Ivi_SetErrorInfo in such a way that it
does not overwrite existing significant error information.

Examples

The following example shows how to handle errors returned by calls to
IVI functions.

checkErr(Ivi_SetAttributeViSession (vi, VI_NULL, IVI_ATTR_IO_SESSION,
0, i0));

The following example shows how to handle errors that VISA functions
return. This method also works for other libraries that return errors as
negative values.

viCheckErr(viSetAttribute (io, VI_ATTR_TMO_VALUE, 5000));

The following example shows how to report an error with an elaboration
string.

if (triggerCount > 1 || sampleCount > 1)
viCheckErrElab(IVI_ERROR_INVALID_CONFIGURATION,
"Cannot use single point measurement "
" functions when DMM is configured for"
" multi-point.");

The following example shows how to report a parameter error in a user-
callable instrument driver function.

viCheckParm(Ivi_SetAttributeViReal64(vi, VI_NULL,
HP34401_ATTR_RESOLUTION, 0, resolution), 4, "Resolution");

Error Reporting for IVI

The IVI engine has an extensive mechanism for reporting errors. Almost
all functions in the IVI engine return a negative status code if an error
occurs and return VI_SUCCESS (0) if the function succeeds. A few
functions return positive values to indicate warnings. The
Ivi_GetAttributeViString function returns a positive value if the buffer you
pass is not large enough to hold the current attribute value. The positive
value indicates the size of the buffer you must pass to obtain the
complete value.

The VI engine functions return error and warning values from several
sets of status codes. Some status codes are unique to the IVI Library.
Other status codes are the same codes that VISA Library functions
return. Still others are error or warning values that functions in specific
instrument drivers return. Each set of status codes has its own numeric
range. The status codes topic lists the numeric ranges of the different
sets of status codes. It also contains a listing of all the IVI error codes
and the most commonly used VISA status codes.

Each IVI session has the following three attributes for reporting error
information:

IVI_ATTR_PRIMARY_ERROR
IVI_ATTR_SECONDARY_ERROR
IVI_ATTR_ERROR_ELABORATION

Each instrument driver defines its own constant name for these
attributes, with the instrument prefix replacing 1VI in the name.

You can call Ivi_SetErrorInfo to set all three attributes at once. You can
call Ivi_ClearErrorInfo to clear all three attributes at once. You can call
Ivi_GetErrorInfo to obtain and then clear the values of all three attributes
at once. Each instrument driver exports a Prefix_ version of each of the
Get and Clear functions.

You also can access the attribute values using the following functions:
e Ivi_SetAttributeVilnt32 to set primary or secondary error code
o [Ivi_SetAttributeViString to set error elaboration string
o Ivi_GetAttributeViInt32 to obtain primary or secondary error code
¢ Ivi_GetAttributeViString to obtain error elaboration string

The three attributes describe the first error or warning that occurred since
the last call to Ivi_GetErrorInfo or Ivi_ClearErrorInfo on the session. The
primary error code specifies the primary reason for the error or warning. If
no error or warning occurred, the primary error code is VI_SUCCESS (0).
The secondary error code is optional and provides additional information
about the error or warning condition. A value of 0 indicates no additional
information. The error elaboration parameter is a string that can contain
further descriptive information about the error or warning condition.

The IVI engine also maintains a primary error code, secondary error
code, and error elaboration string for each execution thread. When you
call Ivi_SetErrorInfo or Ivi_ClearErrorInfo on a session, the function sets or
clears the error information for both the session and the thread. When
you pass VI_NULL for the vi parameter to Ivi_SetErrorinfo or
Ivi_ClearErrorInfo, the function sets or clears only the error information for
the thread. This is useful when you do not have a session handle to pass,
which occurs when a call to Ivi_SpecificDriverNew fails. To obtain the
error information for the thread, you must call Ivi_GetErrorInfo with the vi
parameter set to VI_NULL.

Normally, it is the responsibility of the user to decide when to clear the
error information by calling Prefix_GetErrorInfo or Prefix_ClearErrorInfo. If
an instrument driver calls Ivi_GetErrorInfo, it must restore the error
information by calling Ivi_SetErrorInfo, possibly adding a secondary error
code or an elaboration string.

Ivi_SetErrorInfo does not overwrite existing significant error information
unless you request it to do so. This allows you to make multiple calls to
Ivi_SetErrorInfo at different levels in your instrument driver source code
without the risk of losing important error information. It also preserves the
information about the first error for the user. Refer to the Ivi_SetErrorInfo
function description for more information on this mechanism.

IVI Functions
Expand this book to view an alphabetized list of IVI functions.

lvi_AddAttributelnvalidation

Usage

ViStatus Ivi_AddAttributeInvalidation(ViSession vi, ViAttr attributeID, ViAttr
dependentAttributelD, ViBoolean alllnstances);

Purpose

This function creates an invalidation dependency relationship between
two attributes. When you set the first attribute to a new value, the VI
engine marks the cache value for the second attribute value as invalid.
When an attribute cache value is invalid, any attempt to obtain or change
the current value of the attribute causes the IVI engine to invoke the read
or write callback function for the attribute regardless of the cache value.

Create a dependency relationship if setting the value of one attribute can
cause the value of another attribute to change or become out-of-range in
the instrument. When this occurs, the cache value of the second attribute
no longer reflects the true state of the instrument.

Two-Way Invalidations

Although you can create a two-way invalidation dependency relationship
between attributes, it is rarely the correct thing to do. Cases can occur
where changing one instrument setting affects another instrument setting,
and changing the second instrument setting affects the first. The proper
way to handle this situation is to impose a one-way invalidation model in
the instrument driver. Identify one attribute as dominant and the other as
dependent. Call Ivi_AddAttributeInvalidation to notify the IVI engine that
changing the value of the dominant attribute invalidates the dependent
attribute. Range check values for the dependent attribute based on the
current setting of the dominant attribute. Do not allow the end-user to set
the dependent attribute to a value that would cause the instrument to
modify the setting of the dominant attribute.

Parameters

Name
vi

attributelD

Type
ViSession

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The hand|
identifies a particular 1VI session.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrume
driver defines constant names for all ¢
the user-accessible attributes that apy
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrume
prefix replaces the VI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the followin
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, th
specific driver include file uses the

same constant name that appears in t
instrument class include file, except tr
the specific instrument prefix replaces

dependentAttributelD ViAttr

allinstances

ViBoolean

the class prefix. For example, the DMI
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines :
constant name and assigns a value th
is an offset from

IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the followi
constant name:

#define

FL45 ATTR _HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BAS
+ 3L)

For each attribute that is private to an
instrument driver, the instrument drive
source file defines a constant name al
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BA
+1L)

Pass the ID of the attribute to invalida
when the value of the first attribute
changes.

Specify whether the invalidation occur
on all possible repeated capability
instances or only on the instance on
which the value of the first attribute

changes. This option is relevant only i
both attributes are based on the same
repeated capability.

Pass VI_TRUE (1) if you want the
invalidation to occur on all repeated
capability instances. Otherwise, pass
VI_FALSE (0).

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi AddAttributeViAddr

Usage

ViStatus Ivi_AddAttribute ViAddr(ViSession vi, ViAttr newAttributeID, ViChar
attributeName[], ViAddr defaultValue, IviAttrFlags flags,
ReadAttrViAddr_CallbackPtr readCallback, WriteAttrViAddr_CallbackPtr

writeCallback);

Purpose

This function creates and configures a new ViAddr attribute for the
instrument session you specify.

You can use ViAddr attributes only for attributes that are private to an
instrument driver. You must not make ViAddr attributes accessible to the
end-user.

@ Note Use ViAddr attributes only internally in your driver. End-
users cannot access ViAddr attributes.

Parameters
Name Type
Vi ViSession

newAttributelD ViAttr

Description

The ViSession handle that
identifies a particular IVI se

Pass the ID you want the r
distinct ID. You must define
for the instrument driver or
begin with PREFIX_ATTR_

The include file for your sp
names for all of the user-a
includes attributes that the
class defines, and attribute
Each defined constant nan
the specific instrument pre

For each IVI engine attribu
ivi.h, except replace the 1V
example, ivi.h defines IVI_
defines the following const

#define FL45 ATTR_CAC

For each instrument class
appears in the instrument «
with the specific instrumen
ividmm.h, defines IVIDMM
constant name:

#define FL45_ATTR_RAN

For each specific instrume
constant name in the instrt
an offset from IVI_SPECIF]
defines the following const

#define
FL45 ATTR _HOLD_ THR
3L)

For each attribute that is p!

attributeName ViChar|]

defaultValue

flags

ViAddr

lviAttrFlags

name in the driver source 1
IVI_SPECIFIC_PRIVATE_A
following constant name:

#define
HP34401A_ATTR_TRIGG
+1L)

The name of the attribute.
constant name for the attril

For example, if the defined
PREFIX ATTR _RANGE, th

Specify the default initial vi
The IVI engine uses the de

e IVI_ATTR_SIMULAI
before you set it, ani
IVI_VAL_USE_CALI

e The attribute does n
before you set it.

Specify the flags you want
OR them together. For exa
never cached, then pass I
IVI_VAL_NEVER_CACHE.

You can query and modify
and Ivi_SetAttributeFlags.

Valid Values:

Bit Value Flag

0x0001 IVI_VAL_NO-
0x0002 IVI_VAL_NO-
0x0004 IVI_VAL_NO-
0x0008 IVI_VAL_NO"
0x0010 IVI_VAL_NO-
0x0020 IVI_VAL_NE\

gaa b W N L O

6 0x0040 IVI_VAL_ALV
10 0x0400 IVI_VAL_MU
11 0x0800 IVI_VAL_COt
12 0x1000 IVI_VAL_WA]
13 0x2000 IVI_VAL_WA]
14 0x4000 IVI_VAL_USE
15 0x8000 IVI_VAL_DOQOI

IVI_VAL_HIDDEN is 0x00:
IVI_VAL_NOT_USER_REA
Use the IVI_VAL_HIDDEN
to access.

IVI_VAL_NOT_SUPPORTE
attribute but the specific dr

IVI_VAL_NOT_READABL.
drivers can query the value
value of the attribute.

IVI_VAL_NOT_WRITABLE
drivers can modify the valL
the value of the attribute.

IVI_ VAL _NOT USER_REA
the value of the attribute. C
guery the value of the attril

IVI_ VAL _NOT _USER_ WR]
the value of the attribute. C
modify the value of the attr

IVI_VAL_NEVER_CACHE-
value of the attribute, regai
attribute. The IVI engine al
attribute, if present.

IVI_ VAL _ALWAYS CACH
the attribute, if it is valid, re
attribute.

IVI_VAL_MULTI_CHANNI

value for each channel. Yo

IVI_VAL_COERCEABLE_(
coerces values in a way th
software. Do not use this fl
undocumented or too com
callback. When you query
the IVI engine ignores the
from the instrument. Thus,
engine invokes the read ce
function. When you set thi
allow it to retain most of th

1. The instrument alw.

2. If you send the instl
instrument, the inst
two assumptions, tt
the attribute when y
value that you prev
one or both of thest
IVI_VAL_NEVER_(

IVI_VAL_WAIT_FOR_OPC
the operation complete cal
callback for the attribute.

IVI_VAL_WAIT_FOR_OPC
the operation complete cal
for the attribute.

IVI_ VAL _USE CALLBACE
invoke the read and write ¢
mode.

IVI_VAL_DONT_CHECK_
the PREFIX_GetAttribute ot
driver and the IVI_ATTR_C
enabled, the IVI engine cal
calling the read or write ca
engine never to call the ch

readCallback ReadAttrViAddr_CallbackPtr Specify the read callback f

writeCallback

WriteAttrViAddr_CallbackPtr

request the current value c

You must define the read ¢
instrument driver. The func

ViStatus

You must define the write ¢
instrument driver. The func

ViStatus_ VI_FUNC Callbac
repCapName, ViAttr attribute

Upon entry to the callback,
the callback, *value must ¢

Note If you want to
box to develop your
parameter names as

If you do not want to use a

You can change the callba
Ivi_SetAttrReadCallbackViA

Specify the write callback f
you set the attribute to a n¢

You must define the write ¢
instrument driver. The func

ViStatus_ VI_FUNC Callbac
repCapName, ViAttr attribute

Note If you want to
box to develop your
parameter names as

If you do not want to use a

You can change the callba
Ivi_SetAttrWriteCallback ViA

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi AddAttributeViBoolean

Usage

ViStatus Ivi_AddAttributeViBoolean(ViSession vi, ViAttr newAttributelD,
ViChar attributeName[], ViBoolean defaultValue, IviAttrFlags flags,
ReadAttrViBoolean_CallbackPtr readCallback,
WriteAttrViBoolean_CallbackPtr writeCallback);

Purpose

This function creates and configures a new ViBoolean attribute for the
instrument session you specify.

Parameters

Name

vi ViSession

newAttributelD ViAttr

Type

Description

The ViSession handle 1
identifies a particular I\

Pass the ID you want tl
distinct ID. You must de
for the instrument drive
begin with PREFIX_AT"

The include file for youl
names for all of the use
includes attributes that
class defines, and attrit
Each defined constant
the specific instrument

For each IVI engine att
ivi.h, except replace the
example, ivi.h defines 1
defines the following cc

#define FL45 ATTR_C

For each instrument cle
appears in the instrume
with the specific instrur
ividmm.h, defines IVID]
constant name:

#define FL45_ATTR_F

For each specific instru
constant name in the ir
an offset from IVI_SPE(
defines the following cc

#define
FL45 ATTR _HOLD 1
3L)

For each attribute that |

attributeName ViChar|]

defaultValue

flags

ViBoolean

lviAttrFlags

name in the driver sour
IVI_SPECIFIC_PRIVAT
following constant nam

#define
HP34401A_ATTR_TR
+1L)

The name of the attribt
constant name for the ¢

For example, if the defi
PREFIX_ATTR_RANGE

Specify the default initi
The VI engine uses the

e IVI_ATTR_SIMU
before you set it,
IVI_VAL_USE_C

e The attribute doe
before you set it.

Defined Values:
VI_TRUE (1)VI_FALSE

Specify the flags you w
OR them together. For
never cached, then pas
IVI_VAL_NEVER_CAC

You can query and mot
and Ivi_SetAttributeFlag

Valid Values:

Bit Value Flag

0x0001 IVI_VAL_]
0x0002 IVI_VAL_]
0x0004 IVI_VAL_]
0x0008 IVI_VAL_]

w NN B+ O

4 0x0010 IVI_VAL_]
5 0x0020 IVI_VAL_]
6 0x0040 IVI_VAL._.
10 0x0400 IVI_VAL_]
11 0x0800 IVI_VAL_!
12 0x1000 IVI_VAL_ '
13 0x2000 IVI_VAL_ '
14 0x4000 IVI_VAL_]
15 0x8000 IVI_VAL_]

IVI_VAL_HIDDEN is 0
IVI_VAL_NOT_USER_I
Use the IVI_VAL_HIDI
to access.

IVI_VAL_NOT_SUPPOI
attribute but the specifi

IVI_VAL_NOT_READA
drivers can query the v
value of the attribute.

IVI_VAL_NOT_WRITA
drivers can modify the
the value of the attribut

IVI_VAL_NOT_USER_1I
the value of the attribut
guery the value of the ¢

IVI_ VAL _NOT _USER
the value of the attribut
modify the value of the

IVI_VAL_NEVER_CAC
value of the attribute, re
attribute. The IVI engin
attribute, if present.

IVI_ VAL _ALWAYS CA
the attribute, if it is valic

attribute.

IVI_ VAL _MULTI CHA]
value for each channel

IVI_VAL_COERCEABL
coerces values in a wa
software. Do not use th
undocumented or too ¢
callback. When you qu
the IVI engine ignores 1
from the instrument. Tt
engine invokes the rea
function. When you set
allow it to retain most o

1. The instrument

2. If you send the |
instrument, the
two assumption
the attribute wh
value that you p
one or both of tt
IVI_ VAL _NEVE

IVI_VAL_WAIT_FOR_C(
the operation complete
callback for the attribut

IVI_VAL_WAIT_FOR_C(
the operation complete
for the attribute.

IVI VAL _USE _CALLB.
invoke the read and wr
mode.

IVI_VAL_DONT_CHEC
the PREFIX_GetAttribut
driver and the IVI_ATT
enabled, the IVI engine
calling the read or write
engine never to call the

readCallback ReadAttrViBoolean_CallbackPtr Specify the read callba

writeCallback

WriteAttrViBoolean_CallbackPtr

request the current valt

You must define the re:
instrument driver. The f

ViStatus _VI_FUNC Call
repCapName, ViAttr attri

Upon entry to the callbi
the callback, *value mu

Note If you want
box to develop y¢
parameter name:

If you do not want to us

You can change the ca
Ivi_SetAttrReadCallback

Specify the write callba
you set the attribute to

You must define the wr
instrument driver. The f

ViStatus _VI_FUNC Call
repCapName, ViAttr attri

Note If you want
box to develop y¢
parameter name:

If you do not want to us

You can change the ca
Ivi_SetAttrWriteCallback

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi AddAttributeVilnt32

Usage

ViStatus Ivi_AddAttributeVilnt32(ViSession vi, ViAttr newAttributeID, ViChar
attributeName[], ViInt32 defaultValue, IviAttrFlags flags,
ReadAttrViInt32_CallbackPtr readCallback, WriteAttrVilnt32_CallbackPtr

writeCallback, IviRangeTablePtr rangeTable);

Purpose

This function creates and configures a new Vilnt32 attribute for the
instrument session you specify.

Parameters

Name Type Description

vi ViSession The ViSession handle that
Ivi_SpecificDriverNew. The
session.

newAttributelD ViAttr Pass the ID you want the 1

attribute must have a distir
name for the attribute in th
driver or in your source co
with PREFIX_ATTR_, wher
prefix.

The include file for your sp
constant names for all of tl
apply to the driver. This inc
defines, attributes that the
attributes that are specific
defined constant name be
PREFIX is the specific inst

For each IVI engine attribu
appears in ivi.h, except rej
instrument prefix. For exar
IVI_ATTR_CACHE, and th
defines the following conte

#define FL45 ATTR_CAC

For each instrument class
name that appears in the i
replace the class prefix wi
example, the DMM class il
IVIDMM_ATTR_RANGE, ¢
constant name:

#define FL45_ATTR_RAN

For each specific instrume
access, define a constant
include file, and assign a v

attributeName ViChar|]

defaultValue Vilnt32

flags lviAttrFlags

IVI_SPECIFIC_PUBLIC_A]
defines the following consit

#define FL45_ATTR_HOL
(IVI_SPECIFIC_PUBLIC_

For each attribute that is p
a constant name in the dri
that is an offset from IVI_S
For example, hp34401a.c d

#define HP34401A_ATTR
(IVI_SPECIFIC_PRIVATE

The name of the attribute.
as the defined constant na

For example, if the definec
PREFIX ATTR RANGE, tfr

Specify the default initial v
The IVI engine uses the de

e [VI ATTR_SIMULA
attribute value befor
IVI_VAL_USE_CAL.
attribute is not set.

e The attribute does n
query the attribute b

Specify the flags you want
multiple flags, bitwise OR 1
want the attribute to be hic
IVI_VAL_NOT_USER_WR

You can query and modify
Ivi_GetAttributeFlags and I

Valid Values:
Bit Value Flag

0 0x0001 IVI_VAL_NO
1 0x0002 IVI_VAL_NO

2 0x0004 IVI_VAL_NO
3 0x0008 IVI_VAL_NO
4 0x0010 IVI_VAL_NO
5 0x0020 IVI_VAL_NEY
6 0x0040 IVI_VAL_AL\
10 0x0400 IVI_VAL_MU
11 0x0800 IVI_VAL_COI
12 0x1000 IVI_VAL_WA
13 0x2000 IVI_VAL_WA
14 0x4000 IVI_VAL_USI
15 0x8000 IVI_VAL_DO]

IVI_VAL_HIDDEN is 0x00
IVI_VAL_NOT_USER_RE/
IVI_VAL_NOT_USER_WR
macro for attributes you dc

IVI_ VAL _NOT _SUPPORTE
creates the attribute but th
it.

IVI_ VAL _NOT _READABL

nor instrument drivers can
Only the IVI engine can gL

IVI_ VAL _NOT WRITABLI
nor instrument drivers can
Only the IVI engine can m

IVI VAL _NOT USER _RE/
cannot query the value of 1
and instrument drivers car

IVI VAL _NOT _USER_WR
cannot modify the value of
and instrument drivers car

IVI VAL _NEVER CACHE
use the cache value of the

the IVI_ ATTR_CACHE attr
the read and write callbacl

IVI_ VAL _ALWAYS CACH
cache value of the attributt
of the IVI_ ATTR_CACHE ¢

IVI_VAL_MULTI_CHANNI
a separate value for each
using Ivi_SetAttributeFlags.

IVI_VAL_COERCEABLE_(
the instrument coerces val
driver cannot anticipate in
unless the instrument's co
or too complicated to enca
callback. When you query
this flag is set, the IVI engi
obtained the cache value f
call an Ivi_SetAttribute func
read callback the next time
function. When you set thi:
assumptions that allow it t
caching:

1. The instrument alw
same way.

2. If you send the inst
from the instrumen
the value. Based ol
engine does not in\
attribute when you
the same value tha
from, the instrumer
assumption are not
IVI_VAL _NEVER (

IVI_VAL_WAIT_FOR_OPC
engine to call the operatiol
before calling the read call

IVI_VAL_WAIT_FOR_OPC

readCallback ReadAttrViint32_CallbackPtr

writeCallback

WriteAttrViint32_CallbackPtr

engine to call the operatiol
after calling the write callbi

IVI VAL _USE _CALLBACI
IVI engine to invoke the re
attribute even when in sim

IVI_VAL_DONT_CHECK_!
user calls one of the PREF
PREFIX_SetAttribute functis
IVI_ATTR_QUERY_INSTR
enabled, the IVI engine ca
session after calling the re
This flag directs the VI en
callback for the attribute.

Specify the read callback f
invoke when you request t

You must define the read ¢
for the specific instrument
following prototype:

ViStatus _VI_FUNC Callbac
ViConstString repCapName,

Upon entry to the callback
Upon exit from the callbac
current value.

5} Note If you want to
Attributes dialog box
source code, retain 1
the prototype for the

If you do not want to use a
VI_NULL.

You can change the callba
Ivi_SetAttrReadCallbackVilx

Specify the write callback
invoke when you set the a

rangeTable

lviRangeTablePtr

You must define the write «
for the specific instrument
following prototype:

ViStatus _VI_FUNC Callbac
ViConstString repCapName,

Note If you want to
Attributes dialog box
source code, retain 1
the prototype for the

If you do not want to use a
VI_NULL.

You can change the callba
Ivi_SetAttrWriteCallback Vil

Specify the range table the
and coerce values for this
lviRangeTable and IviRanc
want to use a range table,

If the valid range for this ai
settings of other attributes,
range tables. If so, pass V
specify a range table callb
Ivi_SetAttrRangeTableCallb:e

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi AddAttributeVilnt64

Usage

ViStatus Ivi_AddAttributeVilnt64(ViSession Vi, ViAttr newAttributeID, ViChar
attributeName[], Vilnt64 defaultValue, IviAttrFlags flags,
ReadAttrViInt64_CallbackPtr readCallback, WriteAttrVilnt64 CallbackPtr

writeCallback, IviRangeTablePtr rangeTable);

Purpose

This function creates and configures a new Vilnt64 attribute for the
instrument session you specify.

Parameters

Name Type Description

vi ViSession The ViSession handle that
Ivi_SpecificDriverNew. The
session.

newAttributelD ViAttr Pass the ID you want the 1

attribute must have a distir
name for the attribute in th
driver or in your source co
with PREFIX_ATTR_, wher
prefix.

The include file for your sp
constant names for all of tl
apply to the driver. This inc
defines, attributes that the
attributes that are specific
defined constant name be
PREFIX is the specific inst

For each IVI engine attribu
appears in ivi.h, except rej
instrument prefix. For exar
IVI_ATTR_CACHE, and th
defines the following conte

#define FL45 ATTR_CAC

For each instrument class
name that appears in the i
replace the class prefix wi
example, the DMM class il
IVIDMM_ATTR_RANGE, ¢
constant name:

#define FL45_ATTR_RAN

For each specific instrume
access, define a constant
include file, and assign a v

attributeName ViChar|]

defaultValue Vilnt64

flags lviAttrFlags

IVI_SPECIFIC_PUBLIC_A]
defines the following consit

#define FL45_ATTR_HOL
(IVI_SPECIFIC_PUBLIC_

For each attribute that is p
a constant name in the dri
that is an offset from IVI_S
For example, hp34401a.c d

#define HP34401A_ATTR
(IVI_SPECIFIC_PRIVATE

The name of the attribute.
as the defined constant na

For example, if the definec
PREFIX ATTR RANGE, tfr

Specify the default initial v
The IVI engine uses the de

e [VI ATTR_SIMULA
attribute value befor
IVI_VAL_USE_CAL.
attribute is not set.

e The attribute does n
query the attribute b

Specify the flags you want
multiple flags, bitwise OR 1
want the attribute to be hic
IVI_VAL_NOT_USER_WR

You can query and modify
Ivi_GetAttributeFlags and I

Valid Values:
Bit Value Flag

0 0x0001 IVI_VAL_NO
1 0x0002 IVI_VAL_NO

2 0x0004 IVI_VAL_NO
3 0x0008 IVI_VAL_NO
4 0x0010 IVI_VAL_NO
5 0x0020 IVI_VAL_NEY
6 0x0040 IVI_VAL_AL\
10 0x0400 IVI_VAL_MU
11 0x0800 IVI_VAL_COI
12 0x1000 IVI_VAL_WA
13 0x2000 IVI_VAL_WA
14 0x4000 IVI_VAL_USI
15 0x8000 IVI_VAL_DO]

IVI_VAL_HIDDEN is 0x00
IVI_VAL_NOT_USER_RE/
IVI_VAL_NOT_USER_WR
macro for attributes you dc

IVI_ VAL _NOT _SUPPORTE
creates the attribute but th
it.

IVI_ VAL _NOT _READABL

nor instrument drivers can
Only the IVI engine can gL

IVI_ VAL _NOT WRITABLI
nor instrument drivers can
Only the IVI engine can m

IVI VAL _NOT USER _RE/
cannot query the value of 1
and instrument drivers car

IVI VAL _NOT _USER_WR
cannot modify the value of
and instrument drivers car

IVI VAL _NEVER CACHE
use the cache value of the

the IVI_ ATTR_CACHE attr
the read and write callbacl

IVI_ VAL _ALWAYS CACH
cache value of the attributt
of the IVI_ ATTR_CACHE ¢

IVI_VAL_MULTI_CHANNI
a separate value for each
using Ivi_SetAttributeFlags.

IVI_VAL_COERCEABLE_(
the instrument coerces val
driver cannot anticipate in
unless the instrument's co
or too complicated to enca
callback. When you query
this flag is set, the IVI engi
obtained the cache value f
call an Ivi_SetAttribute func
read callback the next time
function. When you set thi:
assumptions that allow it t
caching:

1. The instrument alw
same way.

2. If you send the inst
from the instrumen
the value. Based ol
engine does not in\
attribute when you
the same value tha
from, the instrumer
assumption are not
IVI_VAL _NEVER (

IVI_VAL_WAIT_FOR_OPC
engine to call the operatiol
before calling the read call

IVI_VAL_WAIT_FOR_OPC

readCallback ReadAttrViint64 CallbackPtr

writeCallback

WriteAttrViint64 _CallbackPtr

engine to call the operatiol
after calling the write callbi

IVI VAL _USE _CALLBACI
IVI engine to invoke the re
attribute even when in sim

IVI_VAL_DONT_CHECK_!
user calls one of the PREF
PREFIX_SetAttribute functis
IVI_ATTR_QUERY_INSTR
enabled, the IVI engine ca
session after calling the re
This flag directs the VI en
callback for the attribute.

Specify the read callback f
invoke when you request t

You must define the read ¢
for the specific instrument
following prototype:

ViStatus _VI_FUNC Callbac
ViConstString repCapName,

Upon entry to the callback
Upon exit from the callbac
current value.

5} Note If you want to
Attributes dialog box
source code, retain 1
the prototype for the

If you do not want to use a
VI_NULL.

You can change the callba
Ivi_SetAttrReadCallbackVilx

Specify the write callback
invoke when you set the a

rangeTable

lviRangeTablePtr

You must define the write «
for the specific instrument
following prototype:

ViStatus _VI_FUNC Callbac
ViConstString repCapName,

Note If you want to
Attributes dialog box
source code, retain 1
the prototype for the

If you do not want to use a
VI_NULL.

You can change the callba
Ivi_SetAttrWriteCallback Vil

Specify the range table the
and coerce values for this
lviRangeTable and IviRanc
want to use a range table,

If the valid range for this ai
settings of other attributes,
range tables. If so, pass V
specify a range table callb
Ivi_SetAttrRangeTableCallb:e

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi AddAttributeViReal64

Usage

ViStatus Ivi_AddAttributeViReal64(ViSession vi, ViAttr newAttributelD,
ViChar attributeName[], ViReal64 defaultValue, IviAttrFlags flags,
ReadAttrViReal64 CallbackPtr readCallback, WriteAttrViReal64_CallbackPtr
writeCallback, IviRangeTablePtr rangeTable, Vilnt32 comparePrecision);

Purpose

This function creates and configures a new ViReal64 attribute for the
instrument session you specify.

Parameters

Name
vi

newAttributelD

Type
ViSession

ViAttr

Description

The ViSession handl
identifies a particular

Pass the ID you wan
distinct ID. You must
for the instrument dri
begin with PREFIX_/

The include file for y«
names for all of the L
includes attributes th
class defines, and at
Each defined consta
the specific instrume

For each IVI engine .
ivi.h, except replace
example, ivi.h define
defines the following

#define FL45 ATTR

For each instrument
appears in the instru
with the specific instr
ividmm.h, defines IV
constant name:

#define FL45 ATTR

For each specific ins
constant name in the
an offset from IVI_SI
defines the following

#define
FL45 ATTR _HOLL
3L)

For each attribute th:

attributeName

defaultValue

flags

ViChar|]

ViReal64

lviAttrFlags

name in the driver sc
IVI_SPECIFIC_PRIV/
following constant ne

#define
HP34401A_ATTR 1
+1L)

The name of the attri
constant name for th

For example, if the d
PREFIX_ATTR_RAN

Specify the default ir
The IVI engine uses

e IVI_ATTR_SIN
before you set
IVI_VAL_USE

e The attribute ¢
before you set

Specify the flags you
OR them together. F
never cached, then g
IVI_VAL_NEVER_C¢/

You can query and n
and Ivi_SetAttributeF’

Valid Values:

Bit Value Flag

0x0001 IVI_VAI
0x0002 IVI_VAI
0x0004 IVI_VAI
0x0008 IVI_VAI
0x0010 IVI_VAI
0x0020 IVI_VAI

gaa b W N L O

6 0x0040 IVI_VAl
10 0x0400 IVI_VAI
11 0x0800 IVI_VAI
12 0x1000 IVI_VAI
13 0x2000 IVI_VAI
14 0x4000 IVI_VAI
15 0x8000 IVI_VAI

IVI_VAL_HIDDEN is
IVI_VAL _NOT_USE}
Use the IVI_VAL_HI
to access.

IVI_VAL_NOT_SUPF
attribute but the spec

IVI_VAL_NOT_REAI
drivers can query the
value of the attribute

IVI_VAL_NOT_WRII
drivers can modify th
the value of the attrik

IVI_VAL_NOT_USE}
the value of the attrik
guery the value of th

IVI_VAL _NOT_USE}
the value of the attrik
modify the value of tl

IVI_VAL_NEVER_C¢
value of the attribute
attribute. The VI eng
attribute, if present.

IVI_VAL _ALWAYS (
the attribute, if it is vi
attribute.

IVI_VAL_MULTI_CH

readCallback

value for each chanr

IVI_VAL _COERCEA!]
coerces values in a\
software. Do not use
undocumented or toc
callback. When you ¢
the IVI engine ignore
from the instrument.
engine invokes the r
function. When you ¢
allow it to retain mos

1. The instrume

2. If you send th
instrument, tr
two assumpti
the attribute v
value that yot
one or both o
IVI_VAL_NE}

IVI_VAL_WAIT_FOR
the operation comple
callback for the attrib

IVI_VAL_WAIT_FOR
the operation comple
for the attribute.

IVI_VAL _USE CALL
invoke the read and"
mode.

IVI_VAL_DONT_CH]
the PREFIX_GetAttril
driver and the IVI_A
enabled, the IVI engi
calling the read or wi
engine never to call 1

ReadAttrViReal64 CallbackPtr Specify the read call

writeCallback

rangeTable

WriteAttrViReal64 CallbackPtr

lviRangeTablePtr

request the current v

You must define the
instrument driver. Th

ViStatus _VI_FUNC C
repCapName, ViAttr ai

Upon entry to the cal
the callback, *value 1

Note If you we
box to develop
parameter nan

If you do not want to

You can change the
Ivi_SetAttrReadCallba

Specify the write call
you set the attribute

You must define the
instrument driver. Th

ViStatus _VI_FUNC C
repCapName, ViAttr ai

Note If you we
box to develop
parameter nan

If you do not want to

You can change the
Ivi_SetAttrWriteCallbe

Specify the range tal
values for this attribu
lviRangeTableEntry i
VI_NULL.

If the valid range for
attributes, you might
for this parameter, ar

comparePrecision Vilnt32

Ivi_SetAttrRangeTable

Specify the degree o
function uses for this
Ivi_SetAttrCompareCe
function, the IVI engi
comparing cache val
you set the attribute
you specify, the IVl e

The IVI engine uses
differences between

The value for this pa
higher the value, the
callback to consider-

Valid Range: 0, or 1-

If you pass 0, the fur
which is 14.

You can modify this \
Ivi_SetAttrComparePr

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi AddAttributeViSession

Usage

ViStatus Ivi_AddAttributeViSession(ViSession vi, ViAttr newAttributelD,
ViChar attributeName[], ViSession defaultValue, IviAttrFlags flags,
ReadAttrViSession_CallbackPtr readCallback, WriteAttrViSession_CallbackPtr

writeCallback);

Purpose

This function creates and configures a new ViSession attribute for the
instrument session you specify.

Parameters
Name Type

vi ViSession

newAttributelD ViAttr

Description

The ViSession handle t
identifies a particular IV

Pass the ID you want tf
distinct ID. You must de
for the instrument drive
begin with PREFIX_AT]

The include file for your
names for all of the use
includes attributes that
class defines, and attrit
Each defined constant |
the specific instrument

For each IVI engine att
ivi.h, except replace the
example, ivi.h defines I
defines the following cc

#define FL45 ATTR_C

For each instrument cle
appears in the instrume
with the specific instrun
ividmm.h, defines IVIDI
constant name:

#define FL45_ATTR_R

For each specific instru
constant name in the in
an offset from IVI_SPE(
defines the following cc

#define
FL45 ATTR HOLD T
3L)

For each attribute that i

attributeName ViChar|]

defaultValue

flags

ViSession

lviAttrFlags

name in the driver sour
IVI_SPECIFIC_PRIVATI
following constant nam

#define
HP34401A_ATTR_TRI
+1L)

The name of the attribu
constant name for the ¢

For example, if the defii
PREFIX_ATTR_RANGE

Specify the default initie
The IVI engine uses the

e IVI_ATTR_SIMU
before you set it,
IVI_VAL_USE_C.

e The attribute doe
before you set it.

Specify the flags you w
OR them together. For
never cached, then pas
IVI_VAL_NEVER_CAC

You can query and moc
and Ivi_SetAttributeFlag

Valid Values:

Bit Value Flag

0x0001 IVI_VAL_I
0x0002 IVI_VAL_I
0x0004 IVI_VAL_I
0x0008 TVI_VAL_I
0x0010 IVI_VAL_I
0x0020 IVI_VAL_I

gaa b~ W N -, O

6 0x0040 IVI_VAL_.
10 0x0400 IVI_VAL_I
11 0x0800 IVI_VAL_(
12 0x1000 IVI_VAL_}\
13 0x2000 IVI_VAL_}
14 0x4000 IVI_VAL_I
15 0x8000 IVI_VAL_I

IVI_VAL_HIDDEN is 0»
IVI_VAL_NOT_USER_}
Use the IVI_VAL_HIDL
to access.

IVI_VAL_NOT_SUPPOL
attribute but the specific

IVI_VAL _NOT_READA
drivers can query the vi
value of the attribute.

IVI_VAL _NOT_ WRITAI
drivers can modify the \
the value of the attribut

IVI_VAL_NOT_USER_}I
the value of the attribut
guery the value of the ¢

IVI_VAL _NOT USER \
the value of the attribut
modify the value of the

IVI_VAL_NEVER_CAC
value of the attribute, re
attribute. The IVI engin
attribute, if present.

IVI_VAL ALWAYS CA
the attribute, if it is valic
attribute.

IVI_VAL_MULTI_CHAI

value for each channel.

IVI_VAL_COERCEABL
coerces values in a wa
software. Do not use th
undocumented or too ¢
callback. When you que
the IVI engine ignores t
from the instrument. Th
engine invokes the real
function. When you set
allow it to retain most o

1. The instrument

2. If you send the i
instrument, the i
two assumption:
the attribute whe
value that you p
one or both of tr
IVI_VAL_NEVE

IVI_VAL_WAIT _FOR_C
the operation complete
callback for the attribute

IVI_VAL_WAIT_FOR_C
the operation complete
for the attribute.

IVI_VAL _USE CALLB:/
invoke the read and wri
mode.

IVI_VAL_DONT_CHEC
the PREFIX_GetAttribut
driver and the IVI_ATT!
enabled, the IVI engine
calling the read or write
engine never to call the

readCallback ReadAttrViSession_CallbackPtr Specify the read callba

writeCallback

WriteAttrViSession_CallbackPtr

request the current valt

You must define the ree
instrument driver. The f

ViStatus _VI_FUNC Call
repCapName, ViAttr attri

Upon entry to the callbe
the callback, *value mu

Note If you want
box to develop yc
parameter names

If you do not want to us

You can change the cal
Ivi_SetAttrReadCallback’

Specify the write callba
you set the attribute to .

You must define the wri
instrument driver. The f

ViStatus _VI_FUNC Call
repCapName, ViAttr attri

Note If you want
box to develop yc
parameter names

If you do not want to us

You can change the cal
Ivi_SetAttrWriteCallback

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_AddAttributeViString

Usage

ViStatus Ivi_AddAttributeViString(ViSession vi, ViAttr newAttributeID, ViChar
attributeName[], ViChar defaultValue[], IviAttrFlags flags,
ReadAttrViString_CallbackPtr readCallback, WriteAttrViString_CallbackPtr

writeCallback);

Purpose

This function creates and configures a new ViString attribute for the
instrument session you specify.

Parameters
Name Type
Vi ViSession

newAttributelD ViAttr

Description

The ViSession handle the
identifies a particular IVI ¢

Pass the ID you want the
distinct ID. You must defir
for the instrument driver ¢
begin with PREFIX_ATTR

The include file for your s
names for all of the user-:
includes attributes that th:
class defines, and attribui
Each defined constant na
the specific instrument pr:

For each IVI engine attrib
ivi.h, except replace the I
example, ivi.h defines 1VI
defines the following cons

#define FL45 ATTR_CA!

For each instrument class
appears in the instrument
with the specific instrume
ividmm.h, defines IVIDM!
constant name:

#define FL45_ATTR_RA

For each specific instrumi
constant name in the inst
an offset from IVI_SPECII
defines the following cons

#define
FL45 ATTR _HOLD_TH]
3L)

For each attribute that is |

attributeName ViChar|]

defaultValue ViChar]]

flags lviAttrFlags

name in the driver source
IVI_SPECIFIC_PRIVATE_.
following constant name:

#define
HP34401A_ATTR_TRIG
+1L)

The name of the attribute
constant name for the att

For example, if the define
PREFIX_ATTR_RANGE, t

Specify the default initial ¥
The IVI engine uses the ¢

e IVI_ATTR_SIMUL/
before you set it, al
IVI_VAL_USE_CAI

e The attribute does
before you set it.

Specify the flags you wan
OR them together. For ex
never cached, then pass
IVI_VAL_NEVER_CACHI

You can query and modif
and Ivi_SetAttributeFlags.

Valid Values:

Bit Value Flag

0x0001 IVI_VAL_NC
0x0002 IVI_VAL_NC
0x0004 IVI_VAL_NC
0x0008 TVI_VAL_NC
0x0010 IVI_VAL_NC
0x0020 IVI_VAL_NE

g b W N -, O

6 0x0040 IVI_VAL_AL
10 0x0400 IVI_VAL_MI
11 0x0800 IVI_VAL_CC
12 0x1000 IVI_VAL_W!/
13 0x2000 IVI_VAL_W!/
14 0x4000 IVI_VAL_US
15 0x8000 IVI_VAL_DC

IVI_VAL_HIDDEN is 0xOl
IVI_VAL_NOT_USER_RE
Use the IVI_VAL_HIDDE
to access.

IVI_VAL_NOT_SUPPORT
attribute but the specific ¢

IVI_VAL_NOT_READABI
drivers can query the valt
value of the attribute.

IVI_VAL_NOT_WRITABL
drivers can modify the val
the value of the attribute.

IVI_ VAL _NOT _USER _RE
the value of the attribute.
guery the value of the attr

IVI_ VAL _NOT _USER_ Wt
the value of the attribute.
modify the value of the at

IVI_VAL_NEVER_CACHI
value of the attribute, reg:
attribute. The IVI engine ¢
attribute, if present.

IVI_ VAL _ALWAYS CAC}H
the attribute, if it is valid, 1
attribute.

IVI_VAL_MULTI_CHANDN

value for each channel. Y

IVI_VAL_COERCEABLE_
coerces values in a way t
software. Do not use this
undocumented or too con
callback. When you query
the IVI engine ignores the
from the instrument. Thus
engine invokes the read ¢
function. When you set th
allow it to retain most of tl

1. The instrument alv

2. If you send the ins
instrument, the ins
two assumptions,
the attribute when
value that you pre
one or both of the:
IVI_VAL_NEVER_

IVI_VAL_WAIT_FOR_OP!
the operation complete ce
callback for the attribute.

IVI_VAL_WAIT_FOR_OP!
the operation complete ce
for the attribute.

IVI VAL _USE CALLBAC
invoke the read and write
mode.

IVI_VAL_DONT_CHECK_
the PREFIX_GetAttribute ¢
driver and the IVI_ATTR _
enabled, the IVI engine ci
calling the read or write c:
engine never to call the cl

readCallback ReadAttrViString CallbackPtr Specify the read callback

writeCallback

WriteAttrViString_CallbackPtr

request the current value

You must define the read
instrument driver. The fun

ViStatus _VI_FUNC Callba
repCapName, ViAttr attribu

Unlike the read callback f
the current value to the c:
the current value by pass
function.

Note If you want tc
box to develop youl
parameter names a

If you do not want to use

You can change the callb.
Ivi_SetAttrReadCallbackVi!

Specify the write callback
you set the attribute to a 1

You must define the write
instrument driver. The fun

ViStatus _VI_FUNC Callba
repCapName, ViAttr attribu

Note If you want tc
box to develop youl
parameter names a

If you do not want to use

You can change the callb.
Ivi_ SetAttrWriteCallback Vi

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_AddRepeatedAttributeViAddr

Usage

ViStatus Ivi_AddRepeatedAttributeViAddr(ViSession vi, ViChar
repeatedCapabilityName[], ViAttr newAttributeID, ViChar attributeName[],
ViAddr defaultValue, IviAttrFlags flags, ReadAttrViAddr_CallbackPtr
readCallback, WriteAttrViAddr_CallbackPtr writeCallback);

Purpose

This function creates and configures a new ViAddr attribute for the
instrument session you specify. The value of the Repeated Capability
parameter determines the repeated capability to which the attribute
applies.

You can use ViAddr attributes only for attributes that are private to an
instrument driver. You must not make ViAddr attribute accessible to the
end-user.

@ Note Use ViAddr attributes only internally in your driver. End-
users cannot access ViAddr attributes.

Parameters
Name Type
Vi ViSession

repeatedCapabilityName ViChar[]

newAttributelD ViAttr

Description

The ViSession h
identifies a parti

Pass a string co
operate. For insi
pass in the string

Pass the ID you
distinct ID. You r
for the instrumer
begin with PREF

The include file
names for all of
includes attributt
class defines, ar
Each defined co
the specific instr

For each VI eng
ivi.h, except repl
example, ivi.h d¢
defines the follo

#define FL45 A

For each instrun
appears in the ir
with the specific
ividmm.h, define
constant name:

#define FL45 A

For each specifi
constant name |
an offset from I\
defines the follo

attributeName

defaultValue

flags

ViChar|]

ViAddr

lviAttrFlags

#define
FL45 ATTR_H
3L)

For each attribut
name in the driv
IVI_SPECIFIC_P
following consta

#define
HP34401A_AT
+1L)

The name of the
constant name f

For example, if t
PREFIX_ATTR_I

Specify the defa
The IVI engine L

e IVI_ATTR
before yol
IVI_VAL_

e The attrib
before yol

Specify the flags
OR them togeth:
never cached, tf
IVI_VAL_NEVEI]

You can query a
and Ivi_SetAttrib

Valid Values:

Bit Value Fla
0 0x0001 IVI
1 0x0002 1VI
2 0x0004 1VI

3 0x0008 IVI
4 0x0010 IVI
5 0x0020 IVI
6 0x0040 IVI
10 0x0400 IVI
11 0x0800 IVI
12 0x1000 IVI
13 0x2000 IVI
14 0x4000 IVI
15 0x8000 IVI

IVI_VAL_HIDDE
IVI_ VAL _NOT 1
Use the IVI_VAI
to access.

IVI_VAL_NOT ¢
attribute but the

IVI_VAL_NOT_I
drivers can quer
value of the attri

IVI_VAL_NOT \
drivers can mod
the value of the

IVI_VAL_NOT_I
the value of the
guery the value

IVI_VAL_NOT_I
the value of the
modify the value

IVI_VAL_NEVEI]
value of the attri
attribute. The IV
attribute, if prese

IVI_ VAL _ALWA
the attribute, if it
attribute.

IVI_ VAL _MULT:
value for each cl

IVI_VAL_COER!
coerces values i
software. Do noti
undocumented ¢
callback. When !
the IVI engine ig
from the instrum
engine invokes t
function. When \
allow it to retain

1. The instr

2. If you sel
instrumel
two assu
the attrib
value tha
one or bc
IVI VAL

IVI_VAL_WAIT_
the operation co
callback for the i

IVI_VAL_WAIT_
the operation co
for the attribute.

IVI_ VAL _USE C
invoke the read
mode.

IVI_ VAL _DONT
the PREFIX_ Get
driver and the I\
enabled, the VI

readCallback

writeCallback

ReadAttrViAddr_CallbackPtr

WriteAttrViAddr_CallbackPtr

calling the read «
engine never to

Specify the read
request the currt

You must define
instrument drive

ViStatus _VI FUI
repCapName, ViA

Upon entry to th
the callback, *va

Note If yc
box to dev
parameter

If you do not wal

You can change
Ivi_SetAttrReadC

Specify the write
you set the attrik

You must define
instrument drive

ViStatus _VI FUI
repCapName, ViA

Note If yc
box to dev
parameter

If you do not wal

You can change
Ivi_SetAttrWriteC

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_AddRepeatedAttributeViBoolean

Usage

ViStatus Ivi_AddRepeatedAttributeViBoolean(ViSession vi, ViChar
repeatedCapabilityName[], ViAttr newAttributeID, ViChar attributeName[],
ViBoolean defaultValue, IviAttrFlags flags, ReadAttrViBoolean_CallbackPtr
readcallback, WriteAttrViBoolean_CallbackPtr writeCallback);

Purpose

This function creates and configures a new ViBoolean attribute for the
instrument session you specify. The value of the Repeated Capability
parameter determines the repeated capability to which the attribute
applies.

Parameters
Name Type
Vi ViSession

repeatedCapabilityName ViChar[]

newAttributelD ViAttr

Description

The ViSessic
identifies a p

Pass a strinc
operate. For
pass in the s

Pass the ID
distinct ID. Y
for the instru
begin with PI

The include 1
names for all
includes attri
class defines
Each definec
the specific il

For each VI
ivi.h, except
example, ivi.
defines the f(

#define FL4

For each ins
appears in tr
with the spec
ividmm.h, de
constant nan

#define FL4

For each spe
constant nan
an offset fror
defines the fi

attributeName

defaultValue

flags

ViChar|]

ViBoolean

lviAttrFlags

#define
FL45 ATTE
3L)

For each attr
name in the |
IVI_SPECIFI
following cor

#define
HP34401A_
+1L)

The name of
constant nan

For example
PREFIX_ATT

Specify the ¢
The VI engir

o [VI Al
before
IVI V!

e The at
before

Defined Valu
VL_TRUE (1)

Specify the fi
OR them tog
never cachel
IVI_VAL_NE

You can que|
and Ivi_SetA

Valid Values:
Bit Value

0 0x0001
1 0x0002
2 0x0004
3 0x0008
4 0x0010
5 0x0020
6 0x0040
10 0x0400
11 0x0800
12 0x1000
13 0x2000
14 0x4000
15 0x8000

IVI_VAL_HII
IVI_VAL_NC
Use the IVI_
to access.

IVI_VAL_NC
attribute but-

IVI_VAL_NC
drivers can @
value of the :

IVI_VAL_NC
drivers can n
the value of 1

IVI_VAL_NC
the value of 1
guery the val

IVI_VAL_NC
the value of 1
modify the ve

IVI_VAL_NE

value of the :
attribute. The
attribute, if p

IVI VAL _AL
the attribute,
attribute.

IVI_VAL_MLU
value for eac

IVI_VAL_CO
coerces valu
software. Do
undocument
callback. Wh
the VI engin
from the insti
engine invok
function. Wh
allow it to ret

1. Thei

2. Ifyou
instru
two a
the at
value
one o
IVL V

IVI_VAL_WA
the operatior
callback for t

IVI_VAL_WA
the operatior
for the attribt

IVI_VAL_US
invoke the re
mode.

IVI_VAL_DC

the PREFIX_
driver and th
enabled, the
calling the re
engine nevel

readcallback ReadAttrViBoolean_CallbackPtr Specify the r

request the ¢

You must de
instrument di

ViStatus _VI_
repCapName,

Upon entry t
the callback,

Note |
box to
parami

If you do not
You can chal
Ivi_SetAttrRe
writeCallback WriteAttrViBoolean_CallbackPtr Specify the v
you set the a

You must de
instrument di

ViStatus _VI_
repCapName,

Note |
box to
parami

If you do not

You can chal
Ivi_SetAttrWi

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_AddRepeatedAttributeVilnt32

Usage

ViStatus Ivi_AddRepeatedAttributeVilnt32(ViSession vi, ViChar
repeatedCapabilityName[], ViAttr newAttributeID, ViChar attributeName[],
Vilnt32 defaultValue, IviAttrFlags flags, ReadAttrVilnt32_CallbackPtr
readCallback, WriteAttrVilnt32_CallbackPtr writeCallback, IviRangeTablePtr
rangeTable);

Purpose

This function creates and configures a new Vilnt32 attribute for the
instrument session you specify. The value of the Repeated Capability
parameter determines the repeated capability to which the attribute
applies.

Parameters
Name Type
Vi ViSession

repeatedCapabilityName ViChar[]

newAttributelD ViAttr

Description

The ViSession t
identifies a parti

Pass a string co
operate. For ins
pass in the strin

Pass the ID you
distinct ID. You |
for the instrume!
begin with PREF

The include file
names for all of
includes attribut
class defines, ai
Each defined co
the specific instr

For each IVI eng
ivi.h, except rep
example, ivi.h d
defines the follo

#define FL45_/

For each instrun
appears in the it
with the specific
ividmm.h, define
constant name:

#define FL45_/

For each specifi
constant name i
an offset from I\
defines the follo

attributeName

defaultValue

flags

ViChar|]

Vilnt32

lviAttrFlags

#define
FL45 ATTR_H
3L)

For each attribu
name in the driv
IVI_SPECIFIC_F
following consta

#define
HP34401A_AT
+1L)

The name of the
constant name f

For example, if 1
PREFIX_ATTR_.

Specify the defa
The IVI engine

e IVI_ATTR
before yol
IVI_VAL_

e The attrib
before yol

Specify the flags
OR them togeth
never cached, t
IVI_VAL_NEVE

You can query a
and Ivi_SetAttrit

Valid Values:

Bit Value Fla
0 0x0001 1VI
1 0x0002 1VI
2 0x0004 1VI

3 0x0008 IVI
4 0x0010 IVI
5 0x0020 IVI
6 0x0040 IVI
10 0x0400 IVI
11 0x0800 IVI
12 0x1000 IVI
13 0x2000 IVI
14 0x4000 IVI
15 0x8000 IVI

IVI_VAL_HIDDI
IVI_VAL_NOT 1
Use the IVI_VA]
to access.

IVI_VAL_NOT !
attribute but the
IVI_VAL_NOT]

drivers can quer
value of the attri

IVI_VAL_NOT !
drivers can mod
the value of the

IVI_VAL_NOT_I
the value of the
guery the value

IVI_VAL_NOT_I
the value of the
modify the value

IVI_VAL_NEVE
value of the attri
attribute. The IV
attribute, if prest

IVI_VAL_ALWA
the attribute, if it
attribute.

IVI_VAL_MULT
value for each c

IVI_VAL_COER!
coerces values |
software. Do no
undocumented
callback. When
the IVI engine ic
from the instrunr
engine invokes
function. When
allow it to retain

1. The instr

2. If you se
instrume
two assu
the attrib
value the
one or b
IVI_ VAL

IVI_VAL_WAIT.
the operation cc
callback for the

IVI_VAL_WAIT.
the operation cc
for the attribute.

IVI_VAL_USE (
invoke the read
mode.

IVI_VAL_DONT
the PREFIX Get
driver and the I\
enabled, the VI

readCallback

writeCallback

rangeTable

ReadAttrViint32_CallbackPtr

WriteAttrViint32_CallbackPtr

lviRangeTablePtr

calling the read
engine never to

Specify the reac
request the curr

You must define
instrument drive

ViStatus _VI_FU
repCapName, Vi/

Upon entry to th
the callback, *ve

Note If yc
box to de\
parametel

If you do not wa

You can change
Ivi_SetAttrReadC

Specify the write
you set the attril

You must define
instrument drive

ViStatus _VI FU
repCapName, Vi/

Note If yc
box to de\
parametel

If you do not wa

You can change
Ivi_SetAttrWrite(

Specify the rang
values for this a
lviRangeTableE

IVI engine autor
range table is T\
default coerce c

If you do not wa

If the valid range
attributes, you n
for this paramet
Ivi_SetAttrRange

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_AddRepeatedAttributeVilnt64

Usage

ViStatus Ivi_AddRepeatedAttributeVilnt64(ViSession vi, ViChar
repeatedCapabilityName[], ViAttr newAttributeID, ViChar attributeName[],
Vilnt64 defaultValue, IviAttrFlags flags, Read AttrVilnt64_CallbackPtr
readCallback, WriteAttrVilnt64_CallbackPtr writeCallback, IviRangeTablePtr
rangeTable);

Purpose

This function creates and configures a new Vilnt64 attribute for the
instrument session you specify. The value of the Repeated Capability
parameter determines the repeated capability to which the attribute
applies.

Parameters
Name Type
Vi ViSession

repeatedCapabilityName ViChar[]

newAttributelD ViAttr

Description

The ViSession t
identifies a parti

Pass a string co
operate. For ins
pass in the strin

Pass the ID you
distinct ID. You |
for the instrume!
begin with PREF

The include file
names for all of
includes attribut
class defines, ai
Each defined co
the specific instr

For each IVI eng
ivi.h, except rep
example, ivi.h d
defines the follo

#define FL45_/

For each instrun
appears in the it
with the specific
ividmm.h, define
constant name:

#define FL45_/

For each specifi
constant name i
an offset from I\
defines the follo

attributeName

defaultValue

flags

ViChar|]

Vilnt64

lviAttrFlags

#define
FL45 ATTR_H
3L)

For each attribu
name in the driv
IVI_SPECIFIC_F
following consta

#define
HP34401A_AT
+1L)

The name of the
constant name f

For example, if 1
PREFIX_ATTR_.

Specify the defa
The IVI engine

e IVI_ATTR
before yol
IVI_VAL_

e The attrib
before yol

Specify the flags
OR them togeth
never cached, t
IVI_VAL_NEVE

You can query a
and Ivi_SetAttrit

Valid Values:

Bit Value Fla
0 0x0001 1VI
1 0x0002 1VI
2 0x0004 1VI

3 0x0008 IVI
4 0x0010 IVI
5 0x0020 IVI
6 0x0040 IVI
10 0x0400 IVI
11 0x0800 IVI
12 0x1000 IVI
13 0x2000 IVI
14 0x4000 IVI
15 0x8000 IVI

IVI_VAL_HIDDI
IVI_VAL_NOT 1
Use the IVI_VA]
to access.

IVI_VAL_NOT !
attribute but the
IVI_VAL_NOT]

drivers can quer
value of the attri

IVI_VAL_NOT !
drivers can mod
the value of the

IVI_VAL_NOT_I
the value of the
guery the value

IVI_VAL_NOT_I
the value of the
modify the value

IVI_VAL_NEVE
value of the attri
attribute. The IV
attribute, if prest

IVI_VAL_ALWA
the attribute, if it
attribute.

IVI_VAL_MULT
value for each c

IVI_VAL_COER!
coerces values |
software. Do no
undocumented
callback. When
the IVI engine ic
from the instrunr
engine invokes
function. When
allow it to retain

1. The instr

2. If you se
instrume
two assu
the attrib
value the
one or b
IVI_ VAL

IVI_VAL_WAIT.
the operation cc
callback for the

IVI_VAL_WAIT.
the operation cc
for the attribute.

IVI_VAL_USE (
invoke the read
mode.

IVI_VAL_DONT
the PREFIX Get
driver and the I\
enabled, the VI

readCallback

writeCallback

rangeTable

ReadAttrViint64 _CallbackPtr

WriteAttrViint64 _CallbackPtr

lviRangeTablePtr

calling the read
engine never to

Specify the reac
request the curr

You must define
instrument drive

ViStatus _VI_FU
repCapName, Vi/

Upon entry to th
the callback, *ve

Note If yc
box to de\
parametel

If you do not wa

You can change
Ivi_SetAttrReadC

Specify the write
you set the attril

You must define
instrument drive

ViStatus _VI FU
repCapName, Vi/

Note If yc
box to de\
parametel

If you do not wa

You can change
Ivi_SetAttrWrite(

Specify the rang
values for this a
lviRangeTableE

IVI engine autor
range table is T\
default coerce c

If you do not wa

If the valid range
attributes, you n
for this paramet
Ivi_SetAttrRange

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_AddRepeatedAttributeViReal64

Usage

ViStatus Ivi_AddRepeatedAttributeViReal64(ViSession vi, ViChar
repeatedCapabilityName[], ViAttr newAttributeID, ViChar attributeName[],
ViReal64 defaultValue, IviAttrFlags flags, ReadAttrViReal64_CallbackPtr
readCallback, WriteAttrViReal64_CallbackPtr writeCallback, IviRangeTablePtr
rangeTable, Vilnt32 comparePrecision);

Purpose

This function creates and configures a new ViReal64 attribute for the
instrument session you specify. The value of the Repeated Capability
parameter determines the repeated capability to which the attribute
applies.

Parameters
Name Type
Vi ViSession

repeatedCapabilityName ViChar[]

newAttributelD ViAttr

Description

The ViSessior
identifies a pa

Pass a string
operate. For il
pass in the str

Pass the ID y«
distinct ID. Yo
for the instrun
begin with PR

The include fil
names for all
includes attrib
class defines,
Each defined
the specific in

For each IVI €
ivi.h, except re¢
example, ivi.h
defines the fol

#define FL45

For each instr
appears in the
with the speci
ividmm.h, defi
constant nam

#define FL45

For each spec
constant nam
an offset from
defines the fol

attributeName

defaultValue

flags

ViChar|]

ViReal64

lviAttrFlags

#define
FL45 ATTR
3L)

For each attrit
name in the d
IVI_SPECIFIC
following cons

#define
HP34401A_/
+1L)

The name of t
constant nam

For example,
PREFIX_ATTE

Specify the de
The VI engint

o IVI_AT"
before \
IVI_VA

e The att
before \

Specify the fle
OR them toge
never cached
IVI_VAL_NE\V

You can query
and Ivi_SetAtt

Valid Values:

Bit Value F
0O Ox0001T1
1 0x0002 1
2 0x0004 1

3 0x0008 I
4 0x0010 1
5 0x0020 I
6 0x0040 I
10 0x0400 I
11 0x0800 I
12 0x1000 I
13 0x2000 I
14 0x4000 I
15 0x8000 I

IVI_VAL_HID
IVI_VAL_NOI1]
Use the IVIL_V
to access.

IVI_VAL_NOI1]
attribute but tt

IVI_VAL_NO1
drivers can qL
value of the a

IVI_VAL_NOI1]
drivers can m
the value of tr

IVI_VAL_NOT
the value of tr
guery the valL

IVI_VAL_NOT
the value of tr
modify the val

IVI_VAL_NEV
value of the a
attribute. The
attribute, if pre

IVI VAL _ALV
the attribute, 1
attribute.

IVI_VAL_MUI
value for eacr

IVI_VAL_COE
coerces value
software. Dot
undocumente
callback. Whe
the IVI engine
from the instrt
engine invoke
function. Whe
allow it to reta

1. Thein

2. Ifyou
instrun
two as
the attl
value t
one or
IVI V£

IVI_VAL_WAI
the operation
callback for th

IVI_VAL_WAI
the operation
for the attribut

IVI_VAL_USE
invoke the ree
mode.

IVI_VAL_DOT
the PREFIX C
driver and the
enabled, the |

readCallback

writeCallback

rangeTable

ReadAttrViReal64 CallbackPtr

WriteAttrViReal64 CallbackPtr

lviRangeTablePtr

calling the rea
engine never:

Specify the re
request the ctL

You must defil
instrument dri

ViStatus VI _F
repCapName, \

Upon entry to
the callback, *

Note If
box to d
parame

If you do not v

You can chan
Ivi_SetAttrRea

Specify the wi
you set the ati

You must defil
instrument dri

ViStatus VI _F
repCapName, \

Note If
box to d
parame

If you do not v

You can chan
Ivi_SetAttrWris

Specify the ra
values for this
lviRangeTable

comparePrecision

Vilnt32

IVI engine aut
range table is
default coerce

If you do not v

If the valid rar
attributes, yoL
for this param
Ivi_SetAttrRan

Specify the de
function uses
Ivi_SetAttrCon
function, the I
comparing ca
you set the ati
you specify, tr

The VI engint
differences be

The value for
higher the val
callback to co

Valid Range: |

If you pass O,
which is 14.

You can modi
Ivi_SetAttrCon

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_AddRepeatedAttributeViSession

Usage

ViStatus Ivi_AddRepeatedAttributeViSession(ViSession vi, ViChar
repeatedCapabilityName[], ViAttr newAttributeID, ViChar attributeName[],
ViSession defaultValue, IviAttrFlags flags, ReadAttrViSession_CallbackPtr
readCallback, WriteAttrViSession_CallbackPtr writeCallback);

Purpose

This function creates and configures a new ViSession attribute for the
instrument session you specify. The value of the Repeated Capability
parameter determines the repeated capability to which the attribute
applies.

Parameters
Name Type
Vi ViSession

repeatedCapabilityName ViChar[]

newAttributelD ViAttr

Description

The ViSessic
identifies a pi

Pass a string
operate. For
pass in the s

Pass the ID
distinct ID. Y«
for the instrul
begin with PE

The include f
names for all
includes attril
class defines
Each defined
the specific ir

For each VI

ivi.h, except |
example, ivi.
defines the fc

#define FL4

For each inst
appears in th
with the spec
ividmm.h, def
constant nan

#define FL4

For each spe
constant nan
an offset fron
defines the fc

attributeName

defaultValue

flags

ViChar|]

ViSession

lviAttrFlags

#define
FL45 ATTE
3L)

For each attr
name in the (
IVI_SPECIFI(
following con

#define
HP34401A_
+1L)

The name of
constant nan

For example,
PREFIX_ATT

Specify the d
The IVI engir

o [VI Al
before
IVI V£

e The at
before

Specify the fl
OR them tog
never cachec
IVI_VAL_NE

You can quel
and Ivi_SetAt

Valid Values:

Bit Value

0 0x0001
1 0x0002
2 0x0004

3 0x0008
4 0x0010
5 0x0020
6 0x0040
10 0x0400
11 0x0800
12 0x1000
13 0x2000
14 0x4000
15 0x8000

IVI_VAL_HII
IVI_VAL_NO
Use the IVI
to access.

IVI_VAL_NO
attribute but

IVI_VAL_NO
drivers can q
value of the ¢

IVI_VAL_NO
drivers can n
the value of t

IVI_VAL_NO
the value of t
guery the val

IVI_VAL_NO
the value of t
modify the ve

IVI VAL _NE
value of the ¢
attribute. The
attribute, if pt

IVI VAL _AL
the attribute,
attribute.

IVI_ VAL ML
value for eac

IVI VAL _CO
coerces valu
software. Do
undocument
callback. Wh
the IVI engin
from the instr
engine invok
function. Wht
allow it to ret

1. Their

2. Ifyou
instru
two a
the at
value
one o
IVLV

IVI_VAL_WA
the operation
callback for ti

IVI_VAL_WA
the operation
for the attribt

IVI_VAL_US.
invoke the re
mode.

IVI_ VAL _DO
the PREFIX |
driver and the
enabled, the

readCallback

writeCallback

ReadAttrViSession_CallbackPtr

WriteAttrViSession_CallbackPtr

calling the re
engine never

Specify the r«
request the c

You must def
instrument dr

ViStatus VI
repCapName,
ViAttr attribut
ViSession *va

Upon entry tc
the callback,

Note |
box to
parame

If you do not

You can char
Ivi_SetAttrRe

Specify the w
you set the a

You must def
instrument dr

ViStatus VI
repCapName,

Note |
box to
parame

If you do not

You can char
Ivi_SetAttrWr

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_AddRepeatedAttributeViString

Usage

ViStatus Ivi_AddRepeatedAttributeViString(ViSession vi, ViChar
repeatedCapabilityName[], ViAttr newAttributeID, ViChar attributeName[],
ViChar defaultValue[], IviAttrFlags flags, ReadAttrViString_CallbackPtr
readCallback, WriteAttrViString_CallbackPtr writeCallback);

Purpose

This function creates and configures a new ViString attribute for the
instrument session you specify. The value of the Repeated Capability
parameter determines the repeated capability to which the attribute
applies.

Parameters
Name Type
Vi ViSession

repeatedCapabilityName ViChar[]

newAttributelD ViAttr

Description

The ViSession
identifies a part

Pass a string c
operate. For in:
pass in the strir

Pass the ID yol
distinct ID. You
for the instrume
begin with PRE

The include file
names for all o
includes attribu
class defines, ¢
Each defined ¢
the specific ins

For each IVl er
ivi.h, except rej
example, ivi.h
defines the follc

#define FL45_

For each instru
appears in the
with the specifi
ividmm.h, defin
constant name

#define FL45_

For each speci
constant name
an offset from I
defines the follc

attributeName

defaultValue

flags

ViChar|]

ViChar|]

lviAttrFlags

#define
FL45 ATTR]
3L)

For each attribt
name in the dri
IVI_SPECIFIC
following const:

#define
HP34401A_ A"
+1L)

The name of th
constant name

For example, if
PREFIX_ATTR_

Specify the def
The IVI engine

o VI _ATTE
before yc
IVI_VAL

e The attril
before yc

Specify the flac
OR them togetl
never cached,
IVI_VAL_NEVI

You can query
and Ivi_SetAttri

Valid Values:

Bit Value FI
0 0x0001 1V
1 0x0002 1V
2 0x0004 1V

3 0x0008 IV
4 0x0010 1V
5 0x0020 IV
6 0x0040 IV
10 0x0400 IV
11 0x0800 IV
12 0x1000 IV
13 0x2000 IV
14 0x4000 IV
15 0x8000 IV

IVI_VAL_HIDLC
IVI_ VAL _NOT_
Use the IVI_VA
to access.

IVI_ VAL _NOT_
attribute but the

IVI_VAL_NOT_
drivers can que
value of the att|

IVI_ VAL _NOT_
drivers can mou
the value of the

IVI_VAL_NOT_
the value of the
guery the value

IVI_VAL _NOT_
the value of the
modify the valu

IVI_VAL_NEVI
value of the att|
attribute. The I\
attribute, if pres

IVI_VAL_ ALW;:
the attribute, if
attribute.

IVI_VAL _MUL
value for each «

IVI_VAL_COE}
coerces values
software. Do n¢
undocumented
callback. When
the IVI engine i
from the instrur
engine invokes
function. When
allow it to retair

1. The inst

2. If you s¢
instrume
two ass
the attril
value th
one ort
IVI_VAI

IVI_VAL_WATIIT
the operation c
callback for the

IVI_VAL_WAII
the operation c
for the attribute

IVI_ VAL _USE
invoke the reac
mode.

IVI_VAL DON’
the PREFIX Ge
driver and the 1
enabled, the IV

readCallback

writeCallback

ReadAttrViString_CallbackPtr

WriteAttrViString_CallbackPtr

calling the read
engine never tc

Specify the rea
request the cur

You must defin
instrument driv

ViStatus _VI_FU
repCapName, Vi

Unlike the read
the current valt
the current valt
function.

Note Ify
box to de
paramete

If you do not wi

Specify the wri
you set the attr

You must defin
instrument driv

ViStatus _VI_FU
repCapName, Vi

Note Ify
box to de
paramete

If you do not wi

You can chang
Ivi_SetAttrWrite

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi AddToChannelTable

Usage

ViStatus Ivi_AddToChannelTable(ViSession vi, ViChar
ChannelStringsToBeAdded]]);

Purpose

This function adds additional channel strings to the channel table you
establish with Ivi_BuildChannelTable.

Parameters

Name Type
Vi ViSession

ChannelStringsToBeAdded ViChar[]

Description

The ViSession handle that you
obtain from
Ivi_SpecificDriverNew. The
handle identifies a particular
IVI session.

Pass a string containing a the
list of additional channel
strings you want to add to the
channel table. You must
separate channel strings with
commas. You can include
spaces after the commas.

For example, to add "3" and
"4" as valid channel strings for
the instrument session, pass
ll3’ 4Il.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_AddToRepCapTable

Usage

ViStatus Ivi_AddToRepCapTable(ViSession vi, ViChar
repeatedCapabilityName[], ViChar Identifiers[]);

Purpose

This function adds additional repeated capability identifiers to the
repeated capability table you establish with Ivi_BuildRepCapTable.

Parameters

Name
vi

Type
ViSession

repeatedCapabilityName ViChar[]

Identifiers

ViChar|]

Description

The ViSession handle that you
obtain from Ivi_SpecificDriverNew.
The handle identifies a particular
IVI session.

Pass a string containing the name
of the repeated capability on
which to operate. For instance, if
you are working with the table of
channel names, pass in the string
"Channel".

Pass a string containing a list of
additional repeated capability
identifiers you want to add to the
repeated capability table. You
must separate repeated capability
identifiers with commas. You can
include spaces after the commas.

For example, to add "3" and "4"
as valid identifiers for the
repeated capability, pass "3, 4".

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_Alloc

Usage
ViStatus Ivi_Alloc(ViSession vi, Vilnt32 Memory_Block_Size, ViAddr*
Memory_Block_Pointer);

Purpose

This function allocates memory for an object of the size you specify and

initializes all bytes to zero. If you specify a non-NULL IVI session handle,
the function associates the memory block with the session by inserting it
into the list of memory blocks the IVI engine maintains for the session.

You can call Ivi_Free to free the memory block. You can call Ivi_FreeAll to
free all of the memory blocks that you allocate for the session with
Ivi_Alloc or Ivi_RangeTableNew. When you call Ivi_Dispose on the session,
it calls Ivi_FreeAll for you.

If the function cannot allocate the space or you pass 0 for the Memory
Block Size parameter, the function sets the Memory Block Pointer
parameter to VI_NULL and returns an error.

Parameters

Name Type
Vi ViSession
Memory_Block_Size Vilnt32

Memory_Block_Pointer ViAddr*

Description

If you want to associate the
memory block with a particular 1VI
session, pass the IVI session
handle that you obtain from
Ivi_SpecificDriverNew. Otherwise,
pass VI_NULL.

Specify the number of bytes you
want to allocate. You must pass a
non-zero value.

Returns a pointer to the memory
block the function allocates.

If the function cannot allocate the
space or you pass 0 for the
Memory Block Size parameter, this
parameter returns VI_NULL and
the function returns an error.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_ApplyDefaultSetup

Usage
ViStatus Ivi_ApplyDefaultSetup(ViSession vi);

Purpose

This function applies the default attribute setup you specify in the Ivi
Configuration file.The specific driver should call this function after
completely initializing a new session.

This function has no effect on the instrument session unless the
application initializes the driver using an VI class driver, or unless the
application initializes the specific driver using an IVI logical name.

Parameters
Name Type Description

vi ViSession The visession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies a
particular VI session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_AttachToConfigStoreHandle

Usage
ViStatus Ivi_AttachToConfigStoreHandle (IviConfigStoreHandle handle,
ViBoolean discardExistingHandle);

Purpose

Normally, the VI engine creates and owns an internal instance of the VI
Configuration Server. Use this function to specify that the IVI engine
should use an IVI Configuration Server instance that you create and own.
To use this function, you must first acquire a handle from the VI
Configuration Server C API.

During the period of time in which the IVI engine uses the handle that you
specify in this function, changes to the 1VI Configuration Store file on disk
are not recognized by the IVI engine.

Use this function in the following situations:

e You want to dynamically create and/or destroy IVI configuration
items in memory and have them used by the IVI engine, without
first reading the contents of the VI Configuration Store file.

¢ You want ensure that the IVl engine does not automatically refresh
the configuration items in memory when the Master Configuration
Store file is modified on disk.

Parameters
Name Type
handle lviConfigStorehandle

discardExistingHandle ViBoolean

Description

The handle to the IVI
Configuration Server
instance that you want
the IVI engine to use.

Create this handle using
the IVI Configuration
Server C APL.

Specifies whether to
discard the VI
Configuration Server
instance that the VI
engine uses internally.

Pass VI_TRUE to
discard the handle.

Pass VI_FALSE to
prevent the VI engine
from discarding the
handle. This is useful if
you are using an VI
Configuration Server
instance that you
obtained from a previous
call to
Ivi_GetConfigStoreHandle.
If you pass VI_FALSE for
this parameter, you must
discard the handle
yourself.

Default Value: VI_TRUE

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ivi_AttributelsCached

Usage
ViStatus Ivi_AttributeIsCached(ViSession vi, ViChar repeatedCapability][],
ViAttr attributeID, ViBoolean* cached)

Purpose;

This function indicates whether the IVI engine believes that the cache
value of the attribute accurately reflects the state of the instrument.

The function returns VI_FALSE if the IVI_VAL_NEVER_CACHE flag for
the attribute is set, there is no value in the cache, or the cache value has
been invalidated.

Parameters
Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

cached

ViBoolean*

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the followinc
constant name:

#define

FL45 ATTR _HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

Indicates whether the IVI engine
believes that the cache value of the
attribute accurately reflects the state of

the instrument.

Values:

(1) Current cache value

VI_TRUE: reflects the instrument
state.

(0) Current cache value might

VI _FALSE: not reflect the instrument
state.

This value is VI_FALSE if the
IVI_VAL_NEVER_CACHE flag for the
attribute is set, there is no value in the
cache, or the cache value had been
invalidated.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi BuildChannelTable

Usage

ViStatus Ivi_BuildChannelTable (ViSession vi, ViChar
defaultChannelsStringsList[], ViBoolean allowUnknownChannelStrings,
Ivi_ValidateChannelStringFunc chanStringValidationFunction);

Purpose

This function creates the initial channel table for an IVI session. A
channel table consists of the channel strings that are valid for the
instrument session. When you create attributes with the Ivi_AddAttribute
functions, you set the IVI_VAL_MULTI_CHANNEL flag for attributes that
have different values for each channel. You use this function to specify
the set of channels.

You must call Ivi_BuildChannelTable in your PREFIX_Ivilnit function. If you
call it again at a later point, it discards the old channel table and builds a
new one. To add channel strings to an existing channel table, call
Ivi_AddToChannelTable. To restrict an attribute to a subset of channels,
call Ivi_RestrictAttrToChannels.

The IVI engine maintains the channel table for the session. If the user
defines any virtual channel names in the configuration store, the VI
engine associates the virtual names with the entries in the table.

Parameters

Name Type
Vi ViSession

DefaultChannelsStringsList ViChar|]

allowUnknownChannelStrings ViBoolean

Descrif

The VIS
obtain fi
Ivi_Spec
handle i
VI sess

Pass a .
a list of
represe
instruma
channel
You car
the corr

For exa
instruma
and yoL
"2" as tt

Set this
you wat
pass ch
not in tr
your ins
function
VI_TRU
you mu
value fo
Validatic
In drivel
instruma
for this |

chansStringValidationFunction Ivi_ValidateChannelStringFunc 1nq ivi |

the

lvi_Valic
typedef
the chai
valid ch
callback
VI_FAL.
parame
string re
channel
must re
*isValid
engine 1
string tc
after the
returns.
initialize
an |Vl c
engine i
the defe
channel
channel
table in:
function
this if yc
channel
attribute
lvi_Add
then cal
lvi_Res
every a
exclude
channel
lvi_App
function
lvi_App
engine |
pass VI
Unknow
parame

this pari

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_BuildRepCapTable

Usage

ViStatus Ivi_BuildRepCapTable(ViSession vi, ViChar repeatedCapabilityName[
], ViChar Identifiers[]);

Purpose

This function creates a repeated capability table for an I1VI session. A
repeated capability table consists of a name that identifies the repeated
capability and the identifier strings that are valid for the instrument
session. When you create attributes with the Ivi_AddRepeatedAttribute
functions, you set the Repeated Capability parameter to the name of the
repeated capability to which the attribute applies.

The repeated capability table must be created before attributes can be
added for the repeated capability. To add identifier strings to an existing
repeated capability table, call Ivi_AddToRepCapTable. To restrict an
attribute to a subset of repeated capability identifiers, call
Ivi_RestrictAttrToInstances. If you call this function more than once for the
same repeated capability, the function will return the
IVI_ERROR_REPEATED_CAPABILITY_ALREADY_EXISTS error.

The IVI engine maintains the repeated capability table for the session. If
the user defines any virtual repeated capability names in the
configuration store, the IVI engine associates the virtual names with the
entries in the table.

Parameters

Name
vi

Type
ViSession

repeatedCapabilityName ViChar[]

Identifiers

ViChar|]

Description

The ViSession handle that you
obtain from Ivi_SpecificDriverNew.
The handle identifies a particular
IVI session.

Pass a string containing the name
of the repeated capability on
which to operate. For instance, if
you are working with the table of
channel names, pass in the string
"Channel".

Pass a string containing a list of
additional repeated capability
identifiers you want to add to the
repeated capability table. You
must separate repeated capability
identifiers with commas. You can
include spaces after the commas.

For example, to add "3" and "4"
as valid identifiers for the
repeated capability, pass "3, 4".

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi CheckAttributeViAddr

Usage

ViStatus Ivi_CheckAttributeViAddr(ViSession vi, ViChar repeatedCapability][],
ViAttr attributelD, Vilnt32 optionFlags, ViAddr attributeValue);

Purpose

This function checks the validity of a value you specify for a Vilnt32
attribute. The function performs the following actions:

1.

2.

Checks whether the attribute is writable. If not, the function
returns an error.

Validates the value you specify. If you provide a check callback,
the function invokes the callback to validate the value. If you do
not provide a check callback but you provide a range table or a
range table callback, the function invokes the default IVI check
callback to validate the value. If the value is invalid, the function
returns an error. If the attribute has no range table or check
callback, the function assumes the value is valid.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue VIAAr paes the

value
which you
want to
verify as a
valid value
for the
attribute
given the
current
settings of
the
instrument
session.

If the
attribute
currently
showing in
the
Attribute 1D
ring control

has named
constants
as valid
values, you
can bring
up a list of
them on
this control
by
pressing
<ENTER>.
Select a
value by
double-
clicking on
it or by
highlighting
it and then
pressing
<ENTER>.
Some of
the values
might not
be valid
depending
on the
current
settings of
the
instrument
session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi CheckAttributeViBoolean

Usage

ViStatus Ivi_CheckAttributeViBoolean(ViSession vi, ViChar
repeatedCapability[], ViAttr attributeID, ViInt32 optionFlags, ViBoolean

attribute Value);

Purpose

This function checks the validity of a value you specify for a ViBoolean
attribute. The function performs the following actions:

1. Checks whether the attribute is writable. If not, the function
returns an error.

2. Validates the value you specify. If you provide a check callback for
the attribute, the function invokes the check callback to validate
the value. If the value is invalid, the function returns an error. If the
attribute has no check callback, the function assumes the value is
valid.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue ViBoolean Pass the

value
which yc
want to
verify as
valid val
for the
attribute
given thi
current
settings
the
instrume
session.

If the
attribute
currently
showing
the
Attribute
ring con

has nan
constan!
as valid
values, \
can brin
up a list
them on
this conti
by
pressing
<ENTEF
Select a
value by
double-
clicking
it or by
highlight
it and th
pressing
<ENTEF
Some ol
the valu
might nc
be valid
dependi
on the
current
settings
the
instrume
session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ivi CheckAttributeViint32

Usage

ViStatus Ivi_CheckAttributeViInt32(ViSession vi, ViChar repeatedCapability[],
ViAttr attributelD, Vilnt32 optionFlags, Vilnt32 attributeValue);

Purpose

This function checks the validity of a value you specify for a Vilnt32
attribute. The function performs the following actions:

1.

2.

Checks whether the attribute is writable. If not, the function
returns an error.

Validates the value you specify. If you provide a check callback,
the function invokes the callback to validate the value. If you do
not provide a check callback but you provide a range table or a
range table callback, the function invokes the default IVI check
callback to validate the value. If the value is invalid, the function
returns an error. If the attribute has no range table or check
callback, the function assumes the value is valid.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue Vilnt32 Pass the

value
which you
want to
verify as a
valid value
for the
attribute
given the
current
settings of
the
instrument
session.

If the
attribute
currently
showing in
the
Attribute 1D
ring control

has named
constants
as valid
values, you
can bring
up a list of
them on
this control
by
pressing
<ENTER>.
Select a
value by
double-
clicking on
it or by
highlighting
it and then
pressing
<ENTER>.
Some of
the values
might not
be valid
depending
on the
current
settings of
the
instrument
session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ivi CheckAttributeVilnt64

Usage

ViStatus Ivi_CheckAttributeVilnt64(ViSession vi, ViChar repeatedCapability[],
ViAttr attributelD, Vilnt32 optionFlags, Vilnt64 attributeValue);

Purpose

This function checks the validity of a value you specify for a Vilnt64
attribute. The function performs the following actions:

1.

2.

Checks whether the attribute is writable. If not, the function
returns an error.

Validates the value you specify. If you provide a check callback,
the function invokes the callback to validate the value. If you do
not provide a check callback but you provide a range table or a
range table callback, the function invokes the default IVI check
callback to validate the value. If the value is invalid, the function
returns an error. If the attribute has no range table or check
callback, the function assumes the value is valid.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute you specify is based on a
repeated capability, pass a repeated
capability identifier. You can pass one of
the identifiers strings that the specific
instrument driver defines, or a virtual
name the end-user defines in the
configuration file.

If the attribute you specify is not based
on a repeated capability, pass VI_NULL
or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the VI prefix. For
example, ivi.h defines

IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \

optionFlags

Vilnt32

(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue Vilnt64 Pass the

value
which you
want to
verify as a
valid value
for the
attribute
given the
current
settings of
the
instrument
session.

If the
attribute
currently
showing in
the
Attribute 1D
ring control

has named
constants
as valid
values, you
can bring
up a list of
them on
this control
by
pressing
<ENTER>.
Select a
value by
double-
clicking on
it or by
highlighting
it and then
pressing
<ENTER>.
Some of
the values
might not
be valid
depending
on the
current
settings of
the
instrument
session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi CheckAttributeViReal64

Usage

ViStatus Ivi_CheckAttributeViReal64(ViSession vi, ViChar repeatedCapability[
1, ViAttr attributeID, Vilnt32 optionFlags, ViReal64 attributeValue);

Purpose

This function checks the validity of a value you specify for a ViReal64
attribute. The function performs the following actions:

1.

2.

Checks whether the attribute is writable. If not, the function
returns an error.

Validates the value you specify. If you provide a check callback,
the function invokes the callback to validate the value. If you do
not provide a check callback but you provide a range table or a
range table callback, the function invokes the default IVI check
callback to validate the value. If the value is invalid, the function
returns an error. If the attribute has no range table or check
callback, the function assumes the value is valid.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue ViReal64 Pass the

value
which yot
want to
verify as
valid valu
for the
attribute
given the
current
settings ¢
the
instrumer
session.

If the
attribute
currently
showing i
the
Attribute |
ring contr

has name
constants
as valid
values, i
can bring
up a list c
them on
this contr
by
pressing
<ENTER:
Select a
value by
double-
clicking o
it or by
highlightii
it and the
pressing
<ENTER:
Some of
the value
might not
be valid
dependin
on the
current
settings ¢
the
instrumer
session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi CheckAttributeViSession

Usage

ViStatus Ivi_CheckAttributeViSession(ViSession vi, ViChar repeatedCapability[
1, ViAttr attributeID, Vilnt32 optionFlags, ViSession attribute Value);

Purpose

This function checks the validity of a value you specify for a ViSession
attribute. The function performs the following actions:

1. Checks whether the attribute is writable. If not, the function
returns an error.

2. Validates the value you specify. If you provide a check callback for
the attribute, the function invokes the check callback to validate
the value. If the value is invalid, the function returns an error. If the
attribute has no check callback, the function assumes the value is
valid.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue ViSession Pass the

value
which yc
want to
verify as
valid val
for the
attribute
given the
current
settings
the
instrume
session.

If the
attribute
currently
showing
the
Attribute
ring conti

has nam
constant
as valid
values, \
can brin
up a list
them on
this cont
by
pressing
<ENTEF
Select a
value by
double-
clicking «
it or by
highlight
it and the
pressing
<ENTEF
Some of
the value
might nc
be valid
dependil
on the
current
settings
the
instrume
session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ivi_CheckAttributeViString

Usage

ViStatus Ivi_CheckAttributeViString(ViSession vi, ViChar repeatedCapability][],
ViAttr attributelD, Vilnt32 optionFlags, ViChar attributeValue[]);

Purpose

This function checks the validity of a value you specify for a ViString
attribute. The function performs the following actions:

1. Checks whether the attribute is writable. If not, the function
returns an error.

2. Validates the value you specify. If you provide a check callback for
the attribute, the function invokes the check callback to validate
the value. If the value is invalid, the function returns an error. If the
attribute has no check callback, the function assumes the value is
valid.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue

]

ViChar[pyss the

value
which you
want to
verify as a
valid value
for the
attribute
given the
current
settings of
the
instrument
session.

If the
attribute
currently
showing in
the
Attribute IC
ring control

has named
constants
as valid
values, yol
can bring
up a list of
them on
this control
by
pressing
<ENTER>.
Select a
value by
double-
clicking on
it or by
highlighting
it and then
pressing
<ENTER>.
Some of
the values
might not
be valid
depending
on the
current
settings of
the
instrument
session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_CheckBooleanRange

Usage
ViStatus Ivi_CheckBooleanRange(ViBoolean value, ViStatus errorCode);

Purpose

This function verifies that the ViBoolean value you specify is either
VI_TRUE (1) or VI_FALSE (0).

If the value is not VI_TRUE or VI_FALSE, the function returns the error
code you specify.

Parameters
Name Type Description

value ViBoolean gpecify the value you want to check.

errorCode ViStalus gy the error code the function returns if the

value you specify is not VI_TRUE or VI_FALSE.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_CheckNumericRange

Usage

ViStatus Ivi_CheckNumericRange(ViReal64 value, ViReal64 minimum,
ViReal64 maximum, ViStatus errorCode);

Purpose

This function verifies that a ViInt32 or ViReal64 value falls within the a
range you specify.

If it the value does not fall with the range, the function returns the error
code you specify. The range is inclusive. In other words, the function
returns the error code if the value is less than the minimum value or
greater than the maximum value. When you use this function on a
parameter to a user-callable function in your instrument driver, use the
viCheckParm macro around this function.

The following example shows how to use the viCheckParm macro around
this function:

viCheckParm(Ivi_CheckNumericRange(parmVal,min,max,errorCode) ,
parmPosition, parmName);

In this example, parmPosition is the 1-based position of the parameter
in the parameter list of the user-callable function, and parmName is a
string that contains the name of the parameter. Ivi_CheckNumericRange
stores the errorCode you pass to it as the primary error code.
viCheckParm converts the parmPosition to one of the VXIplug&play error
codes for invalid parameters and stores it as the secondary error code.

It stores the parmName as the error elaboration string.

Parameters
Name Type Description

value ViRealé4 Specify the value you want to check.
minimum ViReal64 Specify the minimum value of the range.
maximum ViReal64 Specify the maximum value of the range.

errorCode ViStatus gpaify the error code the function returns if the
value you specify does not fall within the range

you specify.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_ClearErrorinfo

Usage

ViStatus Ivi_ClearErrorInfo(ViSession vi);

Purpose

This function clears the error information for the current execution thread
and the IVI session you specify. If you pass VI_NULL for the vi
parameter, this function clears the error information only for the current
execution thread.

Instrument drivers export this function to the end-user through the
PREFIX_ClearError function. Normally, the error information describes the
first error that occurred since the end-user last called
PREFIX_GetErrorInfo or PREFIX_ ClearError.

The error information includes a primary error code, secondary code
error, and an error elaboration string. For a particular session, this
information is the same as the values held in the following attributes:

IVI_ATTR_PRIMARY_ERROR or PREFIX_ATTR_PRIMARY_ERROR
IVI_ATTR_SECONDARY_ERROR or
PREFIX_ATTR_SECONDARY_ERROR
IVI_ATTR_ERROR_ELABORATION or
PREFIX_ATTR_ERROR_ELABORATION

The IVI engine also maintains this error information separately for each
thread. This is useful if you do not have a session handle to pass to
Ivi_SetErrorInfo or Ivi_GetErrorInfo, which occurs when a call to
Ivi_SpecificDriverNew fails.

This function sets the primary and secondary error codes to VI_SUCCESS
(0), and sets the error elaboration string to ".

Avoid calling this function except to implement the PREFIX_ClearError
function. Normally, it is the responsibility of the end-user to decide when
to clear the error information. Ivi_GetErrorinfo, which the end-user calls
through PREFIX_GetErrorInfo, always clears the error information.

Parameters
Name Type Description

vi VISessIoN 14 clear the error information for a particular IV
session, pass the ViSession handle that you obtain
from Ivi_SpecificDriverNew. When you pass a
ViSession handle, the function also clears the error
information for the current thread.

To clear only the error information for the current
thread, pass VI_NULL.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_ClearinstrSpecificErrorQueue

Usage

ViStatus Ivi_ClearInstrSpecificErrorQueue(ViSession vi);

Purpose

This function removes all entries from the instrument-specific error
queue.

Parameters
Name Type Description

vi ViSession The visession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies a
particular VI session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_ClearinterchangeWarnings

Usage

ViStatus Ivi_ClearInterchangeWarnings(ViSession vi);

Purpose

The specific driver performs interchangeability checking if the
IVI_ATTR_INTERCHANGE_CHECK attribute is set to VI_TRUE. This
function clears the list of current interchange warnings.

Parameters
Name Type Description

vi ViSession The visession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies a
particular VI session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi CoerceBoolean

Usage

ViStatus Ivi_CoerceBoolean(ViBoolean* value);

Purpose

This function coerces a value you specify to a valid ViBoolean value. If
the value is non-zero, the function changes it to VI_TRUE (1).

Parameters
Name Type Description

value ViBoolean® paqs the address of the value you want to coerce. If
the value is non-zero, the function changes it to
VI_TRUE (1).

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi CoerceChannelName

Usage
ViStatus Ivi_CoerceChannelName(ViSession vi, ViChar ChannelName[],
ViConstString* ChannelString);

Purpose

If your driver supports multiple channels, you must call
Ivi_CoerceChannelName in driver functions that use the channel string
directly. When you call an Ivi_SetAttribute, Ivi_GetAttribute, or
Ivi_CheckAttribute function. the IVI engine calls Ivi_CoerceChannelName
internally before invoking the read, write, check, coerce, compare, and
range table callback functions.

To be valid, Channel Name must be one of the following:

e VI_NULL, in which case the function sets the Channel String
parameter to VI_NULL.

e An empty string, in which case the function returns the address of
that empty string in the Channel String parameter.

e A specific driver channel string. The specific instrument driver
specifies the valid channel strings using Ivi_BuildChannelTable or
Ivi_AddToChannelTable. If you pass one of these strings, the
function returns the address of the channel string in the channel
table that the VI engine maintains for the session.

e Avirtual channel name that the end-user specifies in the
configuration store. Virtual channel names are valid only if the end-
user opens the session from a class driver and assigns a valid
specific driver channel string to the virtual name in the
configuration store. If you pass a valid virtual name to this function,
the function returns the address of the corresponding specific
driver channel string in the channel table that the IVI engine
maintains for the session.

Parameters
Name Type Description

vi ViSession The ViSession handle that you obtain

from Ivi_SpecificDriverNew. The handle

identifies a particular 1VI session.
ChannelName ViCharf] Pass the channel name that you want to
verify and convert to a specific driver
channel name string. Usually, this is the
string that the end-user passes into a
specific driver function.

The parameter accepts VI_NULL, an

empty string, a specific driver-defined

channel name identifier, or a virtual

channel name identifier.
ChannelString VIConstSting* Retyrns a pointer to a channel string in
the channel table that the IVI engine
maintains for the session.

Do not modify the contents of the
channel string.

If you pass VI_NULL in the Channel
Name Identifier parameter, the function
returns VI_NULL in this parameter. If
you pass an empty string, the function
returns the address of the empty string.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_CoerceRepCapName

Usage

ViStatus Ivi_CoerceRepCapName(ViSession vi, ViChar
repeatedCapabilityName[], ViChar repeatedCapabilityldentifier|],
ViConstString* repeatedCapabilityString);

Purpose

This function verifies that the Repeated Capability Name parameter you
pass is valid and returns a pointer to the corresponding specific driver
repeated capability string in the Repeated Capability String output
parameter.

If your driver supports multiple repeated capability instances, you must
call Ivi_CoerceRepCapName in driver functions that use the string directly.
When you call an Ivi_SetAttribute, Ivi_GetAttribute, or Ivi_CheckAttribute
function, the IVI engine coerces the name internally before invoking the
read, write, check, coerce, compare, and range table callback functions.

To be valid, Repeated Capability Name must be one of the following:

e VI_NULL, in which case the function sets the Repeated Capability
String parameter to VI_NULL.

e An empty string, in which case the function returns the address of
that empty string in the Repeated Capability String parameter.

e A specific driver repeated capability string. The specific instrument
driver specifies the valid repeated capability strings using
Ivi_BuildRepCapTable or Ivi_AddToRepCapTable. If you pass one of
these strings, the function returns the address of the repeated
capability string in the repeated capability table that the VI engine
maintains for the session.

e Avirtual repeated capability name that the end-user specifies in
the configuration file. Virtual repeated capability names are valid
only if the the end-user opens the session from a class driver and
assigns a valid specific driver repeated capability string to the
virtual name in the configuration file. If you pass a valid virtual
name to this function, the function returns the address of the
corresponding specific driver repeated capability string in the
repeated capability table that the IVI engine maintains for the
session.

Parameters

Name
vi

repeatedCapabilityName

Type
ViSession

ViChar|]

repeatedCapabilityldentifier ViChar|]

repeatedCapabilityString

ViConstString*

Description

The ViSession handle
that you obtain from
Ivi_SpecificDriverNew.
The handle identifies a
particular VI session.

Pass a string containing
the name of the repeated
capability on which to
operate. For instance, if
you are working with the
table of channel names,
pass in the string
"Channel".

Pass the repeated
capability name that you
want to verify and convert
to a specific driver
repeated capability string.
Usually, this is the string
that the end-user passes
into a specific driver
function.

The parameter accepts
VI_NULL, an empty
string, a specific driver-
defined repeated
capability identifier, or a
virtual repeated capability
identifier.

Returns a pointer to a
repeated capability

identifier string in the
repeated capability table
that the IVI engine
maintains for the session.

Do not modify the
contents of the repeated
capability string.

If you pass VI_NULL in
the Repeated Capability
|dentifier parameter, the
function returns VI_NULL
in this parameter. If you
pass an empty string, the
function returns the
address of the empty
string.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_ CompareWithPrecision

Usage
ViStatus Ivi_CompareWithPrecision(Vilnt32 digitsofPrecision, ViReal64 a,
ViReal64 b, Vilnt32* result);

Purpose

This function compares two ViReal64 values using the number of decimal
digits of precision you specify.
If the two values are not exactly equal, the function uses the following
logic, where a and b are the values you want to compare, and d is the
digits of precision you specify.

ifa ==

-(d-1)
if |b|] <10 thena==Dh.
else /*a!=0*

la-b] -(d-1)
if ----- <10 thena==

The function returns the following values.
0 ifa==
-1 ifa<b
1ifa>b

Parameters

Name Type Description
digitsofPrecision Vilnt32 gnecify the number of decimal digits of
precision you want to use to compare the
two ViReal64 values.

Valid Range: 0, or 1 to 14

If you pass 0, the function sets the
precision to the IVI default for this value,

which is 14.

a ViReal64 Specify the first value you want to
compare.

b ViReal64 Specify the second value you want to
compare.

result Vilnt32*

Returns the results of the comparison.

Return values:
0 (ifa==Db)

1 (ifa>Db)

-1 (if a < b)

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi DefaultCheckCallbackVilnt32

Usage

ViStatus Ivi_DefaultCheckCallbackVilnt32(ViSession vi, ViChar
repeatedCapability[], ViAttr attributeID, Vilnt32 attribute Value);

Purpose

This function performs the default actions for checking the validity of a
Vilnt32 attribute value. The IVI engine automatically installs this callback
when you call Ivi_AddAttributeVilnt32.

If you want to add to the actions of this callback, install your own callback

with Ivi_SetAttrCheckCallbackViInt32, and call this function from your
callback.

This function does the following:

1. Calls Ivi_GetAttrRangeTable to obtain the range table for the
attribute. If the range table is invalid, the function returns an error.
If there is no range table, the function returns VI_SUCCESS.

2. Calls Ivi_GetVilnt32EntryFromValue to find an entry that matches
the value.

3. Returns VI_SUCCESS if it can find an entry. Otherwise it returns
an error.

@ Note Do not call this function directly unless you are calling it from
your own callback or you have already called Ivi_LockSession.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

attributeValue

Vilnt32

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

Specify the value you want to validate.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi DefaultCheckCallbackVilnt64

Usage

ViStatus Ivi_DefaultCheckCallbackVilnt64(ViSession vi, ViChar
repeatedCapability[], ViAttr attributeID, Vilnt64 attribute Value);

Purpose

This function performs the default actions for checking the validity of a
Vilnt64 attribute value. The IVI engine automatically installs this callback
when you call Ivi_AddAttributeVilnt64.

If you want to add to the actions of this callback, install your own callback

with Ivi_SetAttrCheckCallbackVilnt64, and call this function from your
callback.

This function does the following:

1. Calls Ivi_GetAttrRangeTable to obtain the range table for the
attribute. If the range table is invalid, the function returns an error.
If there is no range table, the function returns VI_SUCCESS.

2. Calls Ivi_GetVilnt64EntryFromValue to find an entry that matches
the value.

3. Returns VI_SUCCESS if it can find an entry. Otherwise it returns
an error.

@ Note Do not call this function directly unless you are calling it from
your own callback or you have already called Ivi_LockSession.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute you specify is based on a
repeated capability, pass a repeated
capability identifier. You can pass one of
the identifiers strings that the specific
instrument driver defines, or a virtual
name the end-user defines in the
configuration file.

If the attribute you specify is not based
on a repeated capability, pass VI_NULL
or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the VI prefix. For
example, ivi.h defines

IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \

(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

attributeValue Vilnt64 gty the value you want to validate.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi DefaultCheckCallbackViReal64

Usage

ViStatus Ivi_DefaultCheckCallbackViReal64(ViSession vi, ViChar
repeatedCapability[], ViAttr attributeID, ViReal64 attributeValue);

Purpose

This function performs the default actions for checking the validity of a
ViReal64 attribute value. The IVI engine automatically installs this
callback when you call Ivi_AddAttributeViReal 64.

If you want to add to the actions of this callback, install your own callback
with Ivi_SetAttrCheckCallbackViReal64, and call this function from your
callback.

This function does the following:

1. Calls Ivi_GetAttrRangeTable to obtain the range table for the
attribute. If the range table is invalid, the function returns an error.
If there is no range table, the function returns VI_SUCCESS.

2. Calls Ivi_GetViReal64EntryFromValue to find an entry that matches
the value.

3. Returns VI_SUCCESS if it can find an entry. Otherwise it returns
an error.

@ Note Do not call this function directly unless you are calling it from
your own callback or you have already called Ivi_LockSession.

Parameters
Name Type Description

vi VISessIon e visession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

repeatedCapability ViIChar[] ¢ the attribute is repeated capability-

based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass

VI_NULL or an empty string.

attributelD VIAtr Pass the ID of an attribute for this

parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

attributeValue

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

ViRealé4 Specify the value you want to validate.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi DefaultCoerceCallbackViBoolean

Usage

ViStatus Ivi_DefaultCoerceCallbackViBoolean(ViSession vi, ViChar
repeatedCapability[], ViAttr attributeID, ViBoolean attributeValue, ViBoolean*

coercedValue);

Purpose

This function performs the default actions for coercing a value for a
ViBoolean attribute. The IVI engine automatically installs this callback
when you call Ivi_AddAttributeViBoolean.

You can install your own coerce callback by calling
Ivi_SetAttrCoerceCallbackViBoolean.

This function sets the Coerced Value parameter to VI_TRUE (1) if the
value you specify as the Attribute Value parameter is non-zero.

@ Note Do not call this function directly unless you are calling it from
your own callback or you have already called Ivi_LockSession.

Parameters
Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

attributeValue

coercedValue

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the followinc
constant name:

#define

FL45 ATTR _HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

ViBoolean Specify the value you want to coerce.

H *
ViBoolean™ petyrms the coerced value.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi DefaultCoerceCallbackVilnt32

Usage

ViStatus Ivi_DefaultCoerceCallbackVilnt32(ViSession vi, ViChar
repeatedCapability[], ViAttr attributeID, Vilnt32 attributeValue, Vilnt32*

coercedValue);

Purpose

This function performs the default actions for coercing a value for a
Vilnt32 attribute. The 1VI engine automatically installs this callback when
you call Ivi_AddAttributeViInt32.

You can install your own coerce callback by calling
Ivi_SetAttrCoerceCallbackVilnt32.

This function does the following:

1. Calls Ivi_GetAttrRangeTable to obtain the range table for the
attribute. If the range table is invalid, the function returns an error.

2. If there is no range table or its type is not IVI_VAL_COERCED, the
function sets the Coerced Value parameter to the value you
passed in as the Attribute Value parameter.

3. Calls Ivi_GetVilnt32EntryFromValue to find an entry that matches
the value.

4. If it can find an entry, it sets Coerced Value to the coercedValue
field in the range table entry and returns VI_SUCCESS. Otherwise
it returns an error.

@ Note Do not call this function directly unless you are calling it from
your own callback or you have already called Ivi_LockSession.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

attributeValue

coercedValue

Vilnt32

Vilnt32*

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

Specify the value you want to coerce.

Returns the value to which the function

coerces the input value based on the
range table for the attribute.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi DefaultCoerceCallbackVilnt64

Usage

ViStatus Ivi_DefaultCoerceCallbackVilnt64(ViSession vi, ViChar
repeatedCapability[], ViAttr attributeID, Vilnt64 attributeValue, Vilnt64*

coercedValue);

Purpose

This function performs the default actions for coercing a value for a
Vilnt64 attribute. The 1VI engine automatically installs this callback when
you call Ivi_AddAttributeVilnt64.

You can install your own coerce callback by calling
Ivi_SetAttrCoerceCallbackVilnt64.

This function does the following:

1. Calls Ivi_GetAttrRangeTable to obtain the range table for the
attribute. If the range table is invalid, the function returns an error.

2. If there is no range table or its type is not IVI_VAL_COERCED, the
function sets the Coerced Value parameter to the value you
passed in as the Attribute Value parameter.

3. Calls Ivi_GetVilnt64EntryFromValue to find an entry that matches
the value.

4. If it can find an entry, it sets Coerced Value to the coercedValue
field in the range table entry and returns VI_SUCCESS. Otherwise
it returns an error.

@ Note Do not call this function directly unless you are calling it from
your own callback or you have already called Ivi_LockSession.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute you specify is based on a
repeated capability, pass a repeated
capability identifier. You can pass one of
the identifiers strings that the specific
instrument driver defines, or a virtual
name the end-user defines in the
configuration file.

If the attribute you specify is not based
on a repeated capability, pass VI_NULL
or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the VI prefix. For
example, ivi.h defines

IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \

attributeValue

coercedValue

Vilnt64

Vilnt64*

(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

Specify the value you want to coerce.

If the search succeeds, this parameter
returns the value of the coercedValue
field of the entry.

You can pass VI_NULL for the
parameter if you are not interested in
this value.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi DefaultCoerceCallbackViReal64

Usage

ViStatus Ivi_DefaultCoerceCallbackViReal64(ViSession vi, ViChar
repeatedCapability[], ViAttr attributeID, ViReal64 attributeValue, ViReal64*

coercedValue);

Purpose

This function performs the default actions for coercing a value for a
ViReal64 attribute. The VI engine automatically installs this callback
when you call Ivi_AddAttributeViReal64.

You can install your own coerce callback by calling
Ivi_SetAttrCoerceCallbackViReal64.

This function does the following:

1. Calls Ivi_GetAttrRangeTable to obtain the range table for the
attribute. If the range table is invalid, the function returns an error.

2. If there is no range table or its type is not IVI_VAL_COERCED, the
function sets the Coerced Value parameter to the value you
passed in as the Attribute Value parameter.

3. Calls Ivi_GetViReal64EntryFromValue to find an entry that matches
the value.

4. If it can find an entry, it sets Coerced Value to the coercedValue
field in the range table entry and returns VI_SUCCESS. Otherwise
it returns an error.

@ Note Do not call this function directly unless you are calling it from
your own callback or you have already called Ivi_LockSession.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

attributeValue

coercedValue

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

ViReal64 Specify the value you want to coerce.

ViReal64* Returns the value to which the function

coerces the input value based on the
range table for the attribute.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_DefaultCompareCallbackViReal64

Usage

ViStatus Ivi_DefaultCompareCallbackViReal64(ViSession vi, ViChar
repeatedCapability[], ViAttr attributeID, ViReal64 a, ViReal64 b, Vilnt32*

result);

Purpose

This function performs the default compare actions for a ViReal64
attribute. The IVI engine invokes the compare callback to compare the
cache values it obtains from the instrument against new values you set
the attribute to. If the compare callback determines that the two values
are equal, the IVI engine does not call the write callback for the attribute.

The VI engine automatically installs this callback when you call
Ivi_AddAttributeViReal64. The IVI engine installs the default compare
callback rather than comparing based on strict equality because of
differences between computer and instrument floating point
representations.

You can install your own compare callback by calling
Ivi_SetAttrCompareCallbackViReal64.

If the two values are not exactly equal, the function uses the following
logic, where a and b are the values you want to compare, and d is the
digits of precision you specify when you call Ivi_AddAttributeViReal64 or
Ivi_SetAttrComparePrecision.

ifa== -(d-1) if |b| <10 thena==b. else/*a!-

@ Note Do not call this function directly unless you are calling it from
your own callback or you have already called Ivi_LockSession.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

ViReal64

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

Specify the first value to compare.
Normally, this is the new value to which
you are trying to set the attribute. If

result

ViReal64

Vilnt32*

there is a coerce callback or coerced
range table for the attribute, the IVI
engine has already coerced the value.

Specify the second value to compare.
Normally, this is the current cache value
of the attribute.

Returns the results of the comparison.

Return values:
0 (ifa==Db)

1 (ifa>Db)

-1 (if a < b)

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_DeleteAttribute

Usage
ViStatus Ivi_DeleteAttribute(ViSession vi, ViAttr attributeID);

Purpose

This function deletes the attribute you specify. Typically, it is not
necessary for you to call this function.

Parameters
Name Type
Vi ViSession

attributelD ViAttr

Description

The ViSession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies a
particular VI session.

Pass the ID of an attribute for this parameter.

The include file for a specific instrument driver
defines constant names for all of the user-
accessible attributes that apply to the driver. This
includes attributes that the IVI engine defines,
attributes that the instrument class defines, and
attributes that are specific to the particular
instrument. Each defined constant name begins
with PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the specific driver
include file uses the same constant name that
appears in ivi.h, except that the specific
instrument prefix replaces the VI prefix. For
example, ivi.h defines IVI_ATTR_CACHE, and
the Fluke 45 include file, fl45.h, defines the
following constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the specific
driver include file uses the same constant name
that appears in the instrument class include file,
except that the specific instrument prefix
replaces the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h defines the
following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute, the
specific driver include file defines a constant
name and assigns a value that is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE. For
example, fl45.h defines the following constant
name:

#define FL45_ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE + 3L)

For each attribute that is private to an instrument
driver, the instrument driver source file defines a
constant name and assigns a value that is an
offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE. For
example, hp34401a.c defines the following
constant name:

#define HP34401A_ATTR_TRIGGER_TYPE\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE + 1L)

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi DeleteAttributelnvalidation

Usage
ViStatus Ivi_DeleteAttributeInvalidation(ViSession vi, ViAttr attributeID, ViAttr
dependentAttributelD);

Purpose

This function removes the invalidation dependency relationship between
two attributes. You establish invalidation dependency relationships using

Ivi_AddAttributeInvalidation.

Parameters

Name
vi

attributelD

Type
ViSession

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handl
identifies a particular 1VI session.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrume
driver defines constant names for all c
the user-accessible attributes that apg
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrumeil
prefix replaces the VI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the followin
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, th
specific driver include file uses the

same constant name that appears in t
instrument class include file, except th
the specific instrument prefix replaces

dependentAttributelD ViAttr

the class prefix. For example, the DMI
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines ¢
constant name and assigns a value th
is an offset from

IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the followi
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BAS
+ 3L)

For each attribute that is private to an
instrument driver, the instrument drive
source file defines a constant name at
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BA
+1L)

Pass the ID of the attribute which is
invalidated when the value of the othe
attribute changes.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_DequeuelnstrSpecificError

Usage
ViStatus Ivi_DequeuelnstrSpecificError(ViSession vi, Vilnt32* instrumentError,
ViChar errorMessage|]);

Purpose

This function retrieves the error code and description string from the
oldest entry in the instrument-specific error queue. It also removes the
entry from the queue.

Use the instrument-specific error queue if querying the instrument for its
status causes the instrument to lose the error value. In your check status
callback, call Ivi_QueuelnstrSpecificError to insert the instrument error
code in the queue, and then return the IVI_ERROR_INSTR_SPECIFIC
error code from the callback. In your PREFIX_error_query function, call
Ivi_InstrSpecificErrorQueueSize to determine if there is an error in the
queue. If not, invoke the check status callback directly. In either case, if
there is an error, call Ivi_DequeuelnstrSpecificError to retrieve it.

Parameters

Name
vi

Type
ViSession

instrumentError Vilnt32*

errorMessage

ViChar|]

Description

The ViSession handle that you obtain from
Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

Returns the error code from the oldest
entry in the instrument-specific error
queue.

If you are not interested in this value, pass
VI_NULL.

Returns the error message from the oldest
entry in the instrument-specific error
queue.

If you are not interested in this value, pass
VI_NULL. Otherwise, pass a ViChar array
that contains at least
IVI_MAX_MESSAGE_BUF_SIZE (256)
bytes.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_Dispose

Usage

ViStatus Ivi_Dispose(ViSession vi);

Purpose

This function destroys the VI session, all of its attributes, and the
memory resources it uses.

This function does NOT close the instrument 1/O session. You must do
that yourself before calling this function.

You must unlock the session before calling Ivi_Dispose.

Parameters
Name Type Description

vi ViSession The visession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies a
particular VI session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_DisposelnvalidationList

Usage

void = Ivi_DisposelnvalidationList(IvilnvalEntry* invalidationList);

Purpose

This function deallocates an invalidation list you obtain from
Ivi_GetInvalidationList.

Parameters
Name Type Description

invalidationList IvilnvalEntry* gpecify the pointer to an invalidation list
you obtain from Ivi_GetInvalidationList.

Ilvi_DisposeLogicalNamesList

Usage
void = Ivi_Disposel.ogicalNamesList(IviLogicalNameEntry*
logicalNamesList);

Purpose

This function deallocates an invalidation list you obtain from
Ivi_GetLogicalNamesList.

Parameters
Name Type Description

logicalNamesList IviLogicalNameEntry* Specify the pointer to the

logical names list you obtain
from Ivi_GetLogicalNamesList.

lvi Free

Usage
ViStatus Ivi_Free(ViSession vi, ViAddr Memory_Block_Pointer);

Purpose

This function deallocates a memory block you allocate with Tvi_Alloc. If
you specify a non-NULL IVI session handle, the function also removes
the memory block from the list of memory blocks that the IVI engine
maintains for the session.

For the vi parameter, you must specify the same IVI session handle that
you pass to Ivi_Alloc when you allocate the memory block.

Parameters

Name Type
Vi ViSession

memoryBlockPointer ViAddr

Description

Specify the same VI session handle
that you pass to Ivi_Alloc when you
allocate the memory block.

If you pass VI_NULL for the vi
parameter to Ivi_Alloc, pass
VI_NULL for the vi parameter to this
function.

This function deallocates a memory
block you allocate with Ivi_Alloc. If
you specify a non-NULL IVI session
handle, the function also removes the
memory block from the list of memory
blocks that the 1Vl engine maintains
for the session.

For the vi parameter, you must
specify the same VI session handle
that you pass to Ivi_Alloc when you
allocate the memory block.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_ FreeAll

Usage
ViStatus Ivi_FreeAll(ViSession vi);

Purpose

This function deallocates all memory blocks you allocate with Ivi_Alloc or
Ivi_RangeTableNew for the session.

When you call Ivi_Dispose on a session, it calls Ivi_FreeAll for you.

Parameters
Name Type Description

vi ViSession The visession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies a
particular VI session.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetAttrComparePrecision

Usage
ViStatus Ivi_GetAttrComparePrecision(ViSession vi, ViAttr attributelD,
Vilnt32* ComparePrecision);

Purpose

This function returns the degree of decimal precision the default IVI
compare callback currently uses for this attribute. For more information
on the comparison precision, refer to Ivi_SetAttrComparePrecision.

Parameters

Name
vi

attributelD

Type
ViSession

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the same
constant name that appears in ivi.h,
except that the specific instrument prefix
replaces the VI prefix. For example,
ivi.h defines IVI_ATTR_CACHE, and the
Fluke 45 include file, fl45.h, defines the
following constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the
specific driver include file uses the same
constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM

ComparePrecision Vilnt32*

class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define

FL45 ATTR _HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

The degree of precision the default VI
compare callback currently uses for this
attribute.

The value is in terms of decimal digits of
precision.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetAttributeFlags

Usage
ViStatus Ivi_GetAttributeFlags(ViSession vi, ViAttr attributelD, IviAttrFlags*
flags);

Purpose

This function obtains the current values of the flags for the attribute you
specify.

Parameters
Name Type
Vi ViSession

attributelD ViAttr

Description

The ViSession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies a ps
session.

Pass the ID of an attribute for this parameter.

The include file for a specific instrument driver d
constant names for all of the user-accessible ati
apply to the driver. This includes attributes that i
defines, attributes that the instrument class defii
attributes that are specific to the particular instrt
defined constant name begins with PREFIX_AT"
PREFIX is the specific instrument prefix.

For each IVI engine attribute, the specific driver
uses the same constant name that appears in ix
the specific instrument prefix replaces the IVI pr
example, ivi.h defines IVI_ATTR_CACHE, and t|
include file, fl45.h, defines the following constan

#define FL45_ATTR_CACHE IVI_ATTR_CACE

For each instrument class attribute, the specific
file uses the same constant name that appears
instrument class include file, except that the spe
instrument prefix replaces the class prefix. For €
DMM class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h defines the
constant name:

#define FL45_ATTR_RANGE IVIDMM_ATTR_

For each specific instrument attribute, the specit
include file defines a constant name and assign
Is an offset from IVI_SPECIFIC_PUBLIC_ATTR_
example, fl45.h defines the following constant ni

#define FL45_ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE + 3L)

flags

lviAttrFlags*

For each attribute that is private to an instrumer
instrument driver source file defines a constant |
assigns a value that is an offset from

IVI_SPECIFIC_PRIVATE_ATTR_BASE. For exan
hp34401a.c defines the following constant name:

#define HP34401A_ATTR_TRIGGER_TYPE\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE + 1L)

Returns the current values of the flags of the att
express the flags as bits.

Valid Values:

Bit Value Flag

0x0001 IVI_VAL_NOT_SUPPORTED
1 0x0002 IVI_VAL_NOT_READABLE
2 0x0004 IVI_VAL NOT WRITABLE
3 0x0008 IVI_VAL NOT_USER_READABLE
4 0x0010 IVI_VAL _NOT _USER_WRITABLE
5 0x0020 IVI_VAL NEVER_CACHE
6 0x0040 IVl VAL ALWAYS CACHE
10 0x0400 IVI_VAL_MULTI_CHANNEL
11 0x0800 IVI_VAL_COERCEABLE_ONLY_B
12 0x1000 IVI_VAL_WAIT _FOR_OPC_BEFO
13 0x2000 IVI_VAL_WAIT _FOR_OPC_AFTEl
14 0x4000 IVI_VAL_USE_CALLBACKS_FOR
15 0x8000 IVI_VAL DONT_CHECK_STATUS

See the control help for the Flags parameter to f
Ivi_AddAttribute functions for detailed informatio

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_GetAttributeName

Usage
ViStatus Ivi_GetAttributeName(ViSession vi, ViAttr attributeID, ViChar
nameBuffer|], Vilnt32 bufferSize);

Purpose

This function obtains the name of an attribute.

Parameters
Name Type
Vi ViSession

attributelD ViAttr

Description

The ViSession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies a
particular VI session.

Pass the ID of an attribute for this parameter.

The include file for a specific instrument driver
defines constant names for all of the user-
accessible attributes that apply to the driver.
This includes attributes that the IVI engine
defines, attributes that the instrument class
defines, and attributes that are specific to the
particular instrument. Each defined constant
name begins with PREFIX_ATTR_, where
PREFIX is the specific instrument prefix.

For each IVI engine attribute, the specific driver
include file uses the same constant name that
appears in ivi.h, except that the specific
instrument prefix replaces the VI prefix. For
example, ivi.h defines IVI_ATTR_CACHE, and
the Fluke 45 include file, fl45.h, defines the
following constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the specific
driver include file uses the same constant name
that appears in the instrument class include file,
except that the specific instrument prefix
replaces the class prefix. For example, the
DMM class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h defines the
following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

nameBuffer ViChar|]

bufferSize ViInt32

For each specific instrument attribute, the
specific driver include file defines a constant
name and assigns a value that is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE. For
example, fl45.h defines the following constant
name:

#define FL45_ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE + 3L)

For each attribute that is private to an
instrument driver, the instrument driver source
file defines a constant name and assigns a
value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE. For
example, hp34401a.c defines the following
constant name:

#define HP34401A_ATTR_TRIGGER_TYPE\
(IVI_SPECIFIC_PRIVATE_ATTR_BASE + 1L)

A buffer into which the function copies the
name of the attribute.

Specify the number of bytes in the ViChar array
you pass for the Name Buffer parameter.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetAttributeType

Usage
ViStatus Ivi_GetAttributeType(ViSession vi, ViAttr attributeID, IviValueType*
dataType);

Purpose

This function obtains the data type of an attribute.

Parameters

Name Type
Vi ViSession

attributelD ViAttr

Description

The ViSession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies a
particular VI session.

Pass the ID of an attribute for this parameter.

The include file for a specific instrument
driver defines constant names for all of the
user-accessible attributes that apply to the
driver. This includes attributes that the VI
engine defines, attributes that the instrument
class defines, and attributes that are specific
to the particular instrument. Each defined
constant name begins with PREFIX_ATTR_,
where PREFIX is the specific instrument
prefix.

For each IVI engine attribute, the specific
driver include file uses the same constant
name that appears in ivi.h, except that the
specific instrument prefix replaces the VI
prefix. For example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45 include
file, f145.h, defines the following constant
name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the
specific driver include file uses the same
constant name that appears in the instrument
class include file, except that the specific
instrument prefix replaces the class prefix.
For example, the DMM class include file,
ividmm.h, defines IVIDMM_ATTR_RANGE,
and fl45.h defines the following constant

dataType

lviValueType*

name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute, the
specific driver include file defines a constant
name and assigns a value that is an offset
from IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define FL45_ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE + 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR BASE. For
example, hp34401a.c defines the following
constant name:

#define HP34401A_ATTR_TRIGGER_TYPE \
(IVL_SPECIFIC_PRIVATE_ATTR_BASE +
1L)

Returns the data type of the attribute you
specify.

Values:

(1) IVI_VAL_INT32 - Vilnt32

(4) IVI_VAL_REAL64 - ViReal64
(5) IVI_VAL_STRING - ViString
(10) IVL VAL_ADDR - ViAddr
(11) IVI_VAL_SESSION - ViSession
(13) IVI_VAL_BOOLEAN - ViBoolean

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_GetAttributeViAddr

Usage

ViStatus Ivi_GetAttributeViAddr(ViSession vi, ViChar repeatedCapability][],
ViAttr attributelD, Vilnt32 optionFlags, ViAddr* attributeValue);

Purpose

This function obtains the current value of the Vilnt32 attribute you specify.
Depending on the configuration of the attribute, the function performs the
following actions:

1.

2.

Checks whether the attribute is readable. If not, the function
returns an error.

If the attribute cache value is currently valid, the read callback for
the attribute is VI NULL, or the IVI_ATTR_SIMULATE attribute is
enabled and the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION flag for the
attribute is 0, the function returns the cache value.

If the IVI_VAL_WAIT_FOR_OPC_BEFORE_READS flag is set for
the attribute, the function invokes the operation complete (OPC)
callback you provide for the session.

The function invokes the read callback for the attribute. Typically,
the callback performs instrument 1/O to obtain a new value. The
IVI engine stores the new value in the cache.

If you set the IVI_VAL_DIRECT_USER_CALL bit in the Option
Flags parameter, the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute is enabled, and the IVI_VAL_DONT_CHECK_STATUS
flag for the attribute is 0, then the function invokes the check
status callback you provide for the session.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

Returns a ViSession handle that you
use to identify the session in
subsequent function calls.

This function creates a new session
each time you invoke it. This is useful if
you have multiple physical instances of
the same type of instrument.

Avoid creating multiple concurrent
sessions to the same physical
instrument. Although you can create
more than one IVI session for the same
resource, it is best not to do so. A better
approach is to use same session in
multiple execution threads. You can use
functions Ivi_LockSession and
Ivi_UnlockSession to protect sections of
code that require exclusive access to
the resource.

If the attribute you specify is based on a
repeated capability, pass a repeated
capability identifier. You can pass one of
the identifiers strings that the specific
instrument driver defines, or a virtual
name the end-user defines in the
configuration file.

If the attribute you specify is not based
on a repeated capability, pass VI_NULL
or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle

this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you

optionFlags

Vilnt32

can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects

interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or

none of them must be marked as "set by user".
attributeValue VIADAr* paturns
the current
value of
the
attribute.
Pass the
address of
a ViAddr
variable.

If the
attribute
currently
showing in
the
Attribute IC
ring contro
has namec
constants
as valid
values, yot
can bring

up a list of
them on
this control
by
pressing
<ENTER>.
Select a
value by
double-
clicking on
it or by
highlighting
it and then
pressing
<ENTER>.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_GetAttributeViBoolean

Usage

ViStatus Ivi_GetAttributeViBoolean(ViSession vi, ViChar repeatedCapability][],
ViAttr attributelD, Vilnt32 optionFlags, ViBoolean* attributeValue);

Purpose

This function obtains the current value of the ViBoolean attribute you
specify. Depending on the configuration of the attribute, the function
performs the following actions:

1.

2.

Checks whether the attribute is readable. If not, the function
returns an error.

If the attribute cache value is currently valid, the read callback for
the attribute is VI NULL, or the IVI_ATTR_SIMULATE attribute is
enabled and the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION flag for the
attribute is 0, the function returns the cache value.

If the IVI_VAL_WAIT_FOR_OPC_BEFORE_READS flag is set for
the attribute, the function invokes the operation complete (OPC)
callback you provide for the session.

The function invokes the read callback for the attribute. Typically,
the callback performs instrument 1/O to obtain a new value. The
IVI engine stores the value new in the cache.

If you set the IVI_VAL_DIRECT_USER_CALL bit in the Option
Flags parameter, the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute is enabled, and the IVI_VAL_DONT_CHECK_STATUS
flag for the attribute is 0, then the function invokes the check
status callback you provide for the session.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue ViBoolean* Returns

the curi
value o
the
attribut
Pass th
addres:
a
ViBoole
variable

If the
attribut
current|
showini
the
Attribut
ring cot
has nat
constar
as valic
values,

can brit
up a lis
them ol
this cor
by

pressin
<ENTE
Select
value b
double-
clicking
it or by
highligt
it and tt
pressin
<ENTE

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_GetAttributeViint32

Usage

ViStatus Ivi_GetAttributeVilnt32(ViSession vi, ViChar repeatedCapability[],
ViAttr attributelD, Vilnt32 optionFlags, Vilnt32* attributeValue);

Purpose

This function obtains the current value of the ViReal64 attribute you
specify. Depending on the configuration of the attribute, the function
performs the following actions:

1.

2.

Checks whether the attribute is readable. If not, the function
returns an error.

If the attribute cache value is currently valid, the read callback for
the attribute is VI_NULL, or the IVI_ATTR_SIMULATE attribute is
enabled and the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION flag for the
attribute is 0, the function returns the cache value.

If the IVI_VAL_WAIT_FOR_OPC_BEFORE_READS flag is set for
the attribute, the function invokes the operation complete (OPC)
callback you provide for the session.

The function invokes the read callback for the attribute. Typically,
the callback performs instrument 1/O to obtain a new value. The
IVI engine stores the new value in the cache.

If you set the IVI_VAL_DIRECT_USER_CALL bit in the Option
Flags parameter, the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute is enabled, and the IVI_VAL_DONT_CHECK_STATUS
flag for the attribute is 0, then the function invokes the check
status callback you provide for the session.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue Vilnt32* Returns

the current
value of
the
attribute.
Pass the
address of
a Vilnt32
variable.

If the
attribute
currently
showing in
the
Attribute IL
ring contro
has namec
constants
as valid
values, yoil
can bring

up a list of
them on
this contro
by
pressing
<ENTER>
Select a
value by
double-
clicking on
it or by
highlightin
it and then
pressing
<ENTER>

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_GetAttributeVilnt64

Usage

ViStatus Ivi_GetAttributeVilnt64(ViSession vi, ViChar repeatedCapability[],
ViAttr attributelD, Vilnt32 optionFlags, Vilnt64* attributeValue);

Purpose

This function obtains the current value of the ViReal64 attribute you
specify. Depending on the configuration of the attribute, the function
performs the following actions:

1.

2.

Checks whether the attribute is readable. If not, the function
returns an error.

If the attribute cache value is currently valid, the read callback for
the attribute is VI_NULL, or the IVI_ATTR_SIMULATE attribute is
enabled and the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION flag for the
attribute is 0, the function returns the cache value.

If the IVI_VAL_WAIT_FOR_OPC_BEFORE_READS flag is set for
the attribute, the function invokes the operation complete (OPC)
callback you provide for the session.

The function invokes the read callback for the attribute. Typically,
the callback performs instrument 1/O to obtain a new value. The
IVI engine stores the new value in the cache.

If you set the IVI_VAL_DIRECT_USER_CALL bit in the Option
Flags parameter, the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute is enabled, and the IVI_VAL_DONT_CHECK_STATUS
flag for the attribute is 0, then the function invokes the check
status callback you provide for the session.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute you specify is based on a
repeated capability, pass a repeated
capability identifier. You can pass one of
the identifiers strings that the specific
instrument driver defines, or a virtual
name the end-user defines in the
configuration file.

If the attribute you specify is not based
on a repeated capability, pass VI_NULL
or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the VI prefix. For
example, ivi.h defines

IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the following
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \

optionFlags

Vilnt32

(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue Vilnt64* Returns

the current
value of
the
attribute.
Pass the
address of
a Vilnte4
variable.

If the
attribute
currently
showing in
the
Attribute IL
ring contro
has namec
constants
as valid
values, yoil
can bring

up a list of
them on
this contro
by
pressing
<ENTER>
Select a
value by
double-
clicking on
it or by
highlightin
it and then
pressing
<ENTER>

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_GetAttributeViReal64

Usage

ViStatus Ivi_GetAttributeViReal64(ViSession vi, ViChar repeatedCapability][],
ViAttr attributeID, Vilnt32 optionFlags, ViReal64* attribute Value);

Purpose

This function obtains the current value of the ViReal64 attribute you
specify. Depending on the configuration of the attribute, the function
performs the following actions:

1.

2.

Checks whether the attribute is readable. If not, the function
returns an error.

If the attribute cache value is currently valid, the read callback for
the attribute is VI NULL, or the IVI_ATTR_SIMULATE attribute is
enabled and the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION flag for the
attribute is 0, the function returns the cache value.

If the IVI_VAL_WAIT_FOR_OPC_BEFORE_READS flag is set for
the attribute, the function invokes the operation complete (OPC)
callback you provide for the session.

The function invokes the read callback for the attribute. Typically,
the callback performs instrument 1/O to obtain a new value. The
IVI engine stores the new value in the cache.

If you set the IVI_VAL_DIRECT_USER_CALL bit in the Option
Flags parameter, the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute is enabled, and the IVI_VAL_DONT_CHECK_STATUS
flag for the attribute is 0, then the function invokes the check
status callback you provide for the session.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

attributeValue ViReal64* Returns

the curre
value of
the

attribute
Pass the
address
a ViReal
variable.

If the
attribute
currently
showing
the
Attribute
ring coni
has nam
constant
as valid
values, \
can brin

up a list
them on
this cont
by
pressing
<ENTEF
Select a
value by
double-
clicking «
it or by
highlight
it and the
pressing
<ENTEF

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_GetAttributeViSession

Usage

ViStatus Ivi_GetAttributeViSession(ViSession vi, ViChar repeatedCapability[],
ViAttr attributelD, Vilnt32 optionFlags, ViSession* attributeValue);

Purpose

This function obtains the current value of the ViSession attribute you
specify. Depending on the configuration of the attribute, the function
performs the following actions:

1.

2.

Checks whether the attribute is readable. If not, the function
returns an error.

If the attribute cache value is currently valid, the read callback for
the attribute is VI NULL, or the IVI_ATTR_SIMULATE attribute is
enabled and the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION flag for the
attribute is 0, the function returns the cache value.

If the IVI_VAL_WAIT_FOR_OPC_BEFORE_READS flag is set for
the attribute, the function invokes the operation complete (OPC)
callback you provide for the session.

The function invokes the read callback for the attribute. Typically,
the callback performs instrument 1/O to obtain a new value. The
IVI engine stores the new value in the cache.

If you set the IVI_VAL_DIRECT_USER_CALL bit in the Option
Flags parameter, the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute is enabled, and the IVI_VAL_DONT_CHECK_STATUS
flag for the attribute is 0, then the function invokes the check
status callback you provide for the session.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects

interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an

extension group must be marked as "set by user" or

none of them must be marked as "set by user".

attributeValue ViSession* peaturns
the curr
value o
the
attribute
Pass th
address
a
ViSessi
variable

If the
attribute
currentl
showin(
the
Attribut
ring cor
has nar
constar
as valid
values,

can brir
up a list
them or
this con
by

pressin
<ENTE
Select ¢
value b
double-
clicking
it or by
highligh
it and tt
pressin
<ENTE

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetAttributeViString

Usage

ViStatus Ivi_GetAttributeViString(ViSession vi, ViChar repeatedCapability]],
ViAttr attributelD, Vilnt32 optionFlags, Vilnt32 bufferSize, ViChar

attribute Value[]);

Purpose

This function obtains the current value of the ViString attribute you
specify.

You must provide a ViChar array to serve as a buffer for the value. You
pass the number of bytes in the buffer as the Buffer Size parameter. If the
current value of the attribute, including the terminating NUL byte, is larger
than the size you indicate in the Buffer Size parameter, the function
copies Buffer Size - 1 bytes into the buffer, places an ASCII NUL byte at
the end of the buffer, and returns the buffer size you must pass to get the
entire value. For example, if the value is "123456" and the Buffer Size is
4, the function places "123" into the buffer and returns 7.

If you want the function to fill in the buffer regardless of the number of
bytes in the value, pass a negative number for the Buffer Size parameter.
If you want to call this function just to get the required buffer size, you can
pass 0 for the Buffer Size and VI_NULL for the Attribute Value buffer.

Remember that the checkErr and viCheckErr macros ignore positive
return values. If you use one of these macros around a call to this
function, you lose the required buffer size when the function returns it. To
retain this information, declare a separate local variable to store the
required buffer size, and use the macro around the assignment of the
return value to the local variable. The following is an example:

ViStatus error = VI_SUCCESS;Vilnt32 requiredBufferSize;

checkErr(requiredBufferSize =
Ivi_GetAttributeViString(vi, channel, attr, 0, 0, VI_NULL));

Depending on the configuration of the attribute, the function performs the
following actions:

1. Checks whether the attribute is readable. If not, the function
returns an error.

2. If the attribute cache value is currently valid, the read callback for
the attribute is VI NULL, or the IVI_ATTR_SIMULATE attribute is
enabled and the
IVI_ATTR_USE_CALLBACKS_FOR_SIMULATION flag for the
attribute is 0, the function returns the cache value.

3. If the IVI_VAL_WAIT_FOR_OPC_BEFORE_READS flag is set for

the attribute, the function invokes the operation complete (OPC)
callback you provide for the session.

. The function invokes the read callback for the attribute. Typically,
the callback performs instrument 1/O to obtain a new value. The
IVI engine stores the new value in the cache.

. If you set the IVI_VAL_DIRECT_USER_CALL bit in the Option
Flags parameter, the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute is enabled, and the IVI_VAL_DONT_CHECK_STATUS
flag for the attribute is 0, then the function invokes the check
status callback you provide for the session.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute.

If you want to enter the ID of a class or
specific driver attribute, press to toggle
this ring control to the manual input box
SO you can type the ID constant.

If you want to enter the ID of an IVI
attribute, then you can use this control
as a ring control. When you click on this
ring control or press <ENTER>,
<SPACEBAR>, or <CTRL-DOWN>, a
dialog box appears containing a
hierarchical list of the attributes the VI
engine defines. The dialog shows help
text for each attribute. When you select
an attribute by double-clicking on it or
by highlighting it and then pressing
<ENTER>, the dialog disappears and
your choice appears in this function
panel control.

If this function is a SetAttribute or
CheckAttribute function, read-only
attributes appear dim in the list box. If
you select a read-only an attribute, an
error message appears.

optionFlags

Vilnt32

A ring control at the top of the dialog
box allows you to see all IVI attributes
or only the attributes that have data
types consistent with this function. If
you choose to see all IVI attributes, the
data types appear to the right of the
attribute names in the list box. The data
types that are not consistent with this
function are dim. If you select an
attribute data type that is dim,
LabWindows/CVI transfers you to the
function panel for the corresponding
function that is consistent with the data

type.

If the attribute in this ring control has
named constants as valid values, you
can bring up a list of them by moving to
the Attribute Value control and pressing
<ENTER>.

Use this parameter to request special
behavior. In most cases, you pass 0.

You can specify individual bits to
request specific behavior. Each of the
following sections describes one of the
bit values.

IVI_VAL_DIRECT_USER_CALL (1<<0)

Use the IVI_VAL_DIRECT_USER_CALL bit when calling this function
from the source code for the PREFIX_Set/Get/CheckAttribute functions
that your instrument driver exports. Do not use the bit when calling this
function from any other context.

If you set this bit, this function checks the IVI_VAL_USER_READABLE
or IVI_VAL_USER_WRITABLE flag. If the end-user does not have
permission to access the attribute, the function returns an error.

If you set this bit, the function also checks the status of the instrument
after invoking the read or write callback for the attribute, but only if the
following conditions are true.

e This is a SetAttribute or GetAttribute function.

e The value of the IVI_ATTR_QUERY_INSTRUMENT_STATUS
attribute for the session is VI_TRUE.

e The value of the IVI_VAL_DONT_CHECK_STATUS flag for the
attribute is 0.

IVI_VAL_SET_CACHE_ONLY (1<<1)

This bit applies only to calls that specific instrument drivers make to the
Ivi_SetAttribute functions. Pass 1 for this bit if want to set the value in the
attribute cache but you do not want to invoke the write callback for the
attribute.

This is useful if one instrument I/O command sets multiple attributes in
the instrument. In the write callback function that performs the
instrument I/O, after the instrument I/O succeeds, call an Ivi_SetAttribute
function for each of the other attributes, with set the
IVI_VAL_SET_CACHE_ONLY bit set to 1 in the Option Flags parameter.

IVI_VAL_DONT_MARK_AS_SET_BY_USER
(1<<2)

This bit applies only to calls that specific instrument
drivers make to the Ivi_SetAttribute functions. Pass 1
for this bit if want to set an attribute value even
though the user has not requested you to do so
directly through a PREFIX_SetAttribute function call
or indirectly through a helper function that sets
multiple attributes.

This case occurs very rarely. It affects
interchangeability checking in class drivers. To pass
interchangeability checking, either all attributes in an
extension group must be marked as "set by user" or
none of them must be marked as "set by user".

bufferSize

Vilnt32 pass the

number of
bytes in
the ViChar
array you
specify for
the
Attribute
Value
parameter.

If the
current
value of
the
attribute,
including
the
terminating
NUL byte,
contains
more bytes

that you
indicate in
this
parameter,
the
function
copies
Buffer Size
- 1 bytes
into the
buffer,
places an
ASCII NUL
byte at the
end of the
buffer, and
returns the
buffer size
you must
pass to get
the entire
value. For
example, if
the value i<
"123456"
and the
Buffer Size
is 4, the
function
places
"123" into
the buffer
and returns
7.

If you pass
a negative
number,
the

function
copies the
value to
the buffer
regardless
of the
number of
bytes in
the value.

If you pass
0, you can
pass
VI_NULL
for the
Attribute
Value
buffer
parameter.

attributeValue ViChar[The buffer
in which
the
function
returns the
current
value of
the
attribute.
The buffer
must be of
type
ViChar anc
have at
least as
many
bytes as
indicated ir
the Buffer

Size
parameter.
If the
current
value of
the
attribute,
including
the
terminating
NUL byte,
contains
more bytes
that you
indicate in
this
parameter,
the
function
copies
Buffer Size
- 1 bytes
into the
buffer,
places an
ASCII NUL
byte at the
end of the
buffer, and
returns the
buffer size
you must
pass to get
the entire
value. For
example, if
the value i<
"123456"

and the
Buffer Size
is 4, the
function
places
"123" into
the buffer
and returns
7.

If you
specify 0
for the
Buffer Size
parameter,
you can
pass
VI_NULL
for this
parameter.

If the
attribute
currently
showing in
the
Attribute IC
ring control
has namec
constants
as valid
values, yot
can bring
up a list of
them on
this control
by
pressing
<ENTER>.
Select a

value by
double-
clicking on
it or by
highlighting
it and then
pressing
<ENTER>.

Return Value
Contains the status code that the function call returns.

If the function succeeds and the buffer you pass is large enough to hold
the entire value, the function returns 0.

If the current value of the attribute, including the terminating NUL byte, is
larger than the size you indicate in the Buffer Size parameter, the function
copies Buffer Size - 1 bytes into the buffer, places an ASCII NUL byte at
the end of the buffer, and returns the buffer size you must pass to get the
entire value. For example, if the value is "123456" and the Buffer Size is
4, the function places "123" into the buffer and returns 7.

If the function fails for some other reason, it returns a negative error
code. For more information on error codes, refer to the Status return
value control in one of the other function panels.

Related Topic
VI Status Codes

lvi GetAttrMinMaxVilnt32

Usage

ViStatus Ivi_GetAttrMinMax Vilnt32(ViSession vi, ViChar repeatedCapability[
], ViAttr attributeID, ViInt32* minimum, Vilnt32* maximum, ViBoolean*
hasMinimum, ViBoolean* hasMaximum);

Purpose

If the range table for the attribute contains a meaningful minimum value,
the function returns the minimum value in this parameter.

For tables of type IVI_VAL_DISCRETE or IVI_VAL_RANGED, the
minimum value is the lowest discreteOrMinValue in the table.

For tables of type IVI_VAL_COERCED, the minimum value is the lowest
coercedValue in the table.

If you are not interested in this value, you can pass VI_NULL.

Parameters
Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

minimum

Vilnt32*

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the followinc
constant name:

#define

FL45 ATTR _HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

If the range table for the attribute
contains a meaningful minimum value,
the function returns the minimum value

maximum

hasMinimum

Vilnt32*

ViBoolean*

in this parameter.

For tables of type IVI_VAL_DISCRETE
or IVI VAL_RANGED, the minimum
value is the lowest discreteOrMinValue
in the table.

For tables of type IVI_VAL_COERCED,
the minimum value is the lowest
coercedValue in the table.

If you are not interested in this value,
you can pass VI_NULL.

If the range table for the attribute
contains a meaningful maximum value,
the function returns the maximum value
in this parameter.

For tables of type IVI_VAL_DISCRETE
or IVI_VAL_RANGED, the maximum
value is the highest discreteOrMinValue
in the table.

For tables of type IVI_VAL_RANGED,
the maximum value is the highest
maxValue in the table.

For tables of type IVI_VAL_COERCED,
the maximum value is the highest
coercedValue in the table.

If you are not interested in this value,
you can pass VI_NULL.

Returns VI_TRUE (1) if the range table
for the attribute indicates that it contains
a meaningful minimum value.
Otherwise, returns VI_FALSE (0).

If you are not interested in this value,
you can pass VI_NULL.

If you are not interested in this value,

you can pass VI_NULL.
hasMaximum ViBoolean* petyrns VI TRUE (1) if the range table
for the attribute indicates that it contains
a meaningful maximum value.
Otherwise, returns VI_FALSE (0).

If you are not interested in this value,
you can pass VI_NULL.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi GetAttrMinMaxViInt64

Usage

ViStatus Ivi_GetAttrMinMax Vilnt64(ViSession vi, ViChar repeatedCapability[
], ViAttr attributeID, Vilnt64* minimum, Vilnt64* maximum, ViBoolean*
hasMinimum, ViBoolean* hasMaximum);

Purpose

If the range table for the attribute contains a meaningful minimum value,
the function returns the minimum value in this parameter.

For tables of type IVI_VAL_DISCRETE or IVI_VAL_RANGED, the
minimum value is the lowest discreteOrMinValue in the table.

For tables of type IVI_VAL_COERCED, the minimum value is the lowest
coercedValue in the table.

If you are not interested in this value, you can pass VI_NULL.

Parameters

Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute you specify is based on a
repeated capability, pass a repeated
capability identifier. You can pass one o
the identifiers strings that the specific
instrument driver defines, or a virtual
name the end-user defines in the
configuration file.

If the attribute you specify is not based
on a repeated capability, pass VI_NULL
or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the VI prefix. For
example, ivi.h defines

IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the followinc
constant name:

#define

FL45 ATTR _HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \

minimum

maximum

hasMinimum

Vilnt64*

Vilnt64*

(IVI_SPECIFIC_PRIVATE_ATTR_BASI
+1L)

If the range table for the attribute
contains a meaningful minimum value,
the function returns the minimum value
in this parameter.

For tables of type IVI_VAL_DISCRETE
or IVI VAL_RANGED, the minimum
value is the lowest discreteOrMinValue
in the table.

For tables of type IVI_VAL_COERCED,
the minimum value is the lowest
coercedValue in the table.

If you are not interested in this value,
you can pass VI_NULL.

If the range table for the attribute
contains a meaningful maximum value,
the function returns the maximum value
in this parameter.

For tables of type IVI_VAL_DISCRETE
or IVI_VAL_RANGED, the maximum
value is the highest discreteOrMinValue
in the table.

For tables of type IVI_VAL_RANGED,
the maximum value is the highest
maxValue in the table.

For tables of type IVI_VAL_COERCED,
the maximum value is the highest
coercedValue in the table.

If you are not interested in this value,
you can pass VI_NULL.

ViBoolean® petyrns VI_TRUE (1) if the range table

for the attribute indicates that it contains

hasMaximum

ViBoolean*

a meaningful minimum value.
Otherwise, returns VI_FALSE (0).

If you are not interested in this value,
you can pass VI_NULL.

If you are not interested in this value,
you can pass VI_NULL.

Returns VI_TRUE (1) if the range table
for the attribute indicates that it contains
a meaningful maximum value.
Otherwise, returns VI_FALSE (0).

If you are not interested in this value,
you can pass VI_NULL.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi GetAttrMinMaxViReal64

Usage

ViStatus Ivi_GetAttrMinMax ViReal64(ViSession vi, ViChar repeatedCapability[
], ViAttr attributeID, ViReal64* minimum, ViReal64* maximum, ViBoolean*
hasMinimum, ViBoolean* hasMaximum);

Purpose

This function returns the minimum and maximum values that an
instrument implements for a ViReal64 attribute on a specific repeated
capability. The values represent the minimum and maximum values the
driver or instrument actually uses rather than the possible values you can
pass to Ivi_SetAttributeViReal64. In particular, for a coerced range table,
the function uses the coercedValue fields.

The function calls Ivi_GetAttrRangeTable to obtain the range table for the
attribute. If the attribute has no range table or the table is invalid, the
function returns an error.

The hasMin and hasMax fields in the range table indicate whether, as a
whole, the table contains a meaningful minimum value and a meaningful
maximum value. The function returns these indicators.

If the hasMin field in the table is non-zero, the function searches the table
for the minimum value. For discrete and ranged tables, the function
examines the discreteOrMinValue field in each entry. For coerced tables,
the function examines the coercedValue field.

If the hasMax field in the table is non-zero, the function searches the
table for the maximum value. For discrete tables, the function examines
the discreteOrMinValue field in each entry. For ranged tables, the function
examines the maxValue field. For coerced tables, the function examines
the coercedValue field.

Parameters
Name
vi

Type
ViSession

repeatedCapability ViChar[]

attributelD

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

If the attribute is repeated capability-
based, specify a particular repeated
capability. If the attribute you specify is
not repeated capability-based, pass
VI_NULL or an empty string.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrument
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, fl45.h, defines the following
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

minimum

ViReal64*

For each instrument class attribute, the
specific driver include file uses the
same constant name that appears in the
instrument class include file, except that
the specific instrument prefix replaces
the class prefix. For example, the DMM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value that
Is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the followinc
constant name:

#define

FL45 ATTR _HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASE
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name and
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BASE
+1L)

If the range table for the attribute
contains a meaningful minimum value,
the function returns the minimum value

maximum

hasMinimum

ViReal64*

ViBoolean*

in this parameter.

For tables of type IVI_VAL_DISCRETE
or IVI VAL_RANGED, the minimum
value is the lowest discreteOrMinValue
in the table.

For tables of type IVI_VAL_COERCED,
the minimum value is the lowest
coercedValue in the table.

If you are not interested in this value,
you can pass VI_NULL.

If the range table for the attribute
contains a meaningful maximum value,
the function returns the maximum value
in this parameter.

For tables of type IVI_VAL_DISCRETE
or IVI_VAL_RANGED, the maximum
value is the highest discreteOrMinValue
in the table.

For tables of type IVI_VAL_RANGED,
the maximum value is the highest
maxValue in the table.

For tables of type IVI_VAL_COERCED,
the maximum value is the highest
coercedValue in the table.

If you are not interested in this value,
you can pass VI_NULL.

Returns VI_TRUE (1) if the range table
for the attribute indicates that it contains
a meaningful minimum value.
Otherwise, returns VI_FALSE (0).

If you are not interested in this value,
you can pass VI_NULL.

If you are not interested in this value,

you can pass VI_NULL.
hasMaximum ViBoolean* petyrns VI TRUE (1) if the range table
for the attribute indicates that it contains
a meaningful maximum value.
Otherwise, returns VI_FALSE (0).

If you are not interested in this value,
you can pass VI_NULL.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetAttrRangeTable

Usage
Vilnt32 = Ivi_GetAttrRangeTable(ViSession vi, ViChar repeatedCapability][],
ViAttr attributelD, IviRangeTablePtr* rangeTable);

Purpose

This function returns a pointer to the range table for an attribute. If you
call Ivi_SetAttrRangeTableCallback to install a range table callback function
for the attribute, Ivi_GetAttrRangeTable invokes your range table callback
with the vi, AttributelD, and RepeatedCapability parameters. Otherwise,
Ivi_GetAttrRangeTable returns the address of the range table you specify
for the attribute when you call Ivi_AddAttributeViInt32,
Ivi_AddAttributeViReal64, or Ivi_SetStoredRangeTablePtr.

To bypass the range table callback and always return the range table you
store for the attribute, call Ivi_GetStoredRangeTablePtr.

If you install your own check callback function in addition to either a
range table or a range table callback, call this function from the check
callback to obtain a pointer to the range table.

Parameters

Name Type
Vi ViSession

repeatedCapability ViChar[]

attributelD ViAttr

Description

The ViSession handle that you ol
from Ivi_SpecificDriverNew. The |
identifies a particular IVI session.

If the attribute is repeated capabi
based, specify a particular repea
capability. If the attribute you spe
not repeated capability-based, pe
VI_NULL or an empty string.

Pass the ID of an attribute for thi
parameter.

The include file for a specific inst
driver defines constant names fo
the user-accessible attributes the
to the driver. This includes attribu
that the 1VI engine defines, attribi
that the instrument class defines,
attributes that are specific to the
particular instrument. Each define
constant name begins with
PREFIX_ATTR_, where PREFIX i
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses th
same constant name that appeat
ivi.h, except that the specific insti
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke
include file, f145.h, defines the foll
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

rangeTable

For each instrument class attribu
specific driver include file uses th
same constant name that appear
instrument class include file, exce
the specific instrument prefix repl
the class prefix. For example, the
class include file, ividmm.h, defin
IVIDMM_ATTR_RANGE, and fl4
defines the following constant na

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attri
the specific driver include file def
constant name and assigns a val
Is an offset from

IVI_SPECIFIC_PUBLIC_ATTR_B.
For example, fl45.h defines the fc
constant name:

#define

FL45 ATTR_HOLD THRESHOI
(IVI_SPECIFIC_PUBLIC_ATTR,
+ 3L)

For each attribute that is private 1
instrument driver, the instrument
source file defines a constant nal
assigns a value that is an offset f
IVI_SPECIFIC_PRIVATE_ATTR_E
For example, hp34401a.c defines
following constant name:

#define
HP34401A_ATTR_TRIGGER_ T
(IVI_SPECIFIC_PRIVATE_ATTE
+1L)

IviRangeTablePtr* 1ig parameter returns the addre

the range table for the attribute.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi GetChannellndex

Usage
ViStatus Ivi_GetChannellndex(ViSession vi, ViChar ChannelName[], Vilnt32*
Index);

Purpose

This function obtains the 1-based index of a channel name in the internal
channel table for an IVI session.

If you pass VI_NULL or an empty string for the Channel Name
parameter, this function sets the Index output parameter to 1.

If you pass a specific driver channel string for the Channel Name
parameter, this function sets the Index output parameter to the 1-based
index of the channel string in the internal channel table.

If you pass a virtual channel name that the end-user specifies in the
configuration store, this function finds the specific driver channel string
that the end-user assigns to the virtual channel name. The function then
sets the Index output parameter to the 1-based index of the specific
driver channel string in the internal channel table.

If you pass any other value for the Channel Name parameter, this
function sets the Index output parameter to O and returns an error code.

Parameters

Name
vi

Type
ViSession

ChannelName ViChar]]

Index

Vilnt32*

Description

The ViSession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies a
particular VI session.

Pass the channel name for which you want
to obtain the index.

You can pass one of the following types of
values:

e VI_NULL or an empty string.

e A specific driver channel string, which
IS one that the specific instrument
driver specifies as valid using
Ivi_BuildChannelTable or
Ivi_ AddToChannelTable.

e Avirtual channel name that the end-
user specifies in the configuration
store.

A 1-based index into the channel table.

If you pass an invalid value for the Channel
Name parameter, the function sets this
output parameter to 0 and returns an error
code.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetConfigStoreHandle

Usage
ViStatus Ivi_GetConfigStoreHandle(IviConfigStoreHandle* handle);

Purpose

Returns a handle to the IVI Configuration Server instance currently in use
by the IVI engine. You can use this handle with the VI Foundation-
defined Configuration Server C API to add or delete runtime configuration
elements.

@ Note Any changes you make to the Configuration Server through
this handle are not saved, unless you explicitly save them through
the Configuration Server C API.

If the Configuration Store file is modified by another process or VI
Configuration Server instance, the handle returned by this function
becomes invalid, and you should not use the handle. Exception:
This does not apply if you specified the handle using the
Ivi_AttachToConfigStoreHandle.

Parameters

Name Type Description

handle IviConfigStoreHandle* Returns a handle to the configuration
server instance currently in use by the
IVI engine.

You can use this handle with the VI
Foundation-defined Configuration Server
C API to add or delete runtime
configuration elements.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_GetErrorinfo

Usage

ViStatus Ivi_GetErrorInfo(ViSession vi, ViStatus* primaryError, ViStatus*
secondaryError, ViChar errorElaboration[]);

Purpose

This function retrieves and then clears the error information for an VI
session or for the current execution thread. If you specify a valid IVI
session for the vi parameter, this function retrieves and then clears the
error information for the session. If you pass VI_NULL for the vi
parameter, this function retrieves and then clears the error information for
the current execution thread.

Instrument drivers export this function to the end-user through the
PREFIX_GetErrorInfo function. Normally, the error information describes
the first error that occurred since the end-user last called
PREFIX_GetErrorInfo or PREFIX_ ClearErrorInfo.

The error information includes a primary error code, secondary code
error, and an error elaboration string. For a particular session, this
information is the same as the values held in the following attributes:

e IVI_ATTR_PRIMARY_ERROR or
PREFIX_ATTR_PRIMARY_ERROR

e IVI_ATTR_SECONDARY_ERROR or
PREFIX_ATTR_SECONDARY_ERROR

e IVI_ATTR_ERROR_ELABORATION or
PREFIX_ATTR_ERROR_ELABORATION

The IVI engine also maintains this error information separately for each
thread. This is useful if you do not have a session handle to pass to
Ivi_SetErrorInfo or Ivi_GetErrorInfo, which occurs when a call to
Ivi_SpecificDriverNew fails.

Normally, it is the responsibility of the end-user to decide when to clear
the error information by calling PREFIX_GetErrorInfo or
PREFIX_ClearErrorInfo. If an instrument driver calls Ivi_GetErrorInfo, it
must restore the error information by calling Ivi_SetErrorinfo, possibly
adding a secondary error code or elaboration string.

You can call Ivi_GetErrorMessage to obtain a text description of the
primary or secondary error value.

Parameters

Name Type
Vi ViSession

primaryError ViStatus*

secondaryError ViStatus*

errorElaboration ViChar|]

Description

To obtain the error information for a
particular IVI session, pass the ViSession
handle that you obtain from
Ivi_SpecificDriverNew.

To obtain the error information for the
current thread, pass VI_NULL.

The primary error code for the session or
execution thread.

A value of VI_SUCCESS (0) indicates that
no error occurred. A positive value
indicates a warning. A negative value
indicates an error.

You can call Ivi_GetErrorMessage or
PREFIX_error_message {0 get a text
description of the value.

If you are not interested in this value, you
can pass VI_NULL.

The secondary error code for the session
or execution thread. If the primary error
code is non-zero, the secondary error
code can further describe the error or
warning condition.

A value of VI_SUCCESS (0) indicates no
further description.

You can call Ivi_GetErrorMessage or
PREFIX_error_message {0 get a text
description of the value.

If you are not interested in this value, you
can pass VI_NULL.

The error elaboration string for the session
or execution thread. If the primary error
code is non-zero, the elaboration string
can further describe the error or warning
condition.

If you are not interested in this value, you
can pass VI_NULL. Otherwise, you must
pass a ViChar array with at least
IVI_MAX_MESSAGE_BUF_SIZE (256)
bytes.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetErrorMessage

Usage
ViStatus Ivi_GetErrorMessage(ViStatus statusCode, ViChar statusMessage]]);

Purpose

This function converts an IVI or VISA status code into a meaningful
message string. For all other values, it reports the "Unknown status
value" message and returns the VI_ WARN_UNKNOWN_STATUS warning

code.

If you have a table of error codes and messages that are specific to the
instrument driver, call Ivi_GetSpecificDriverStatusDesc instead.

Parameters
Name Type Description

statusCode ViStatus a status code that an VI function, a VISA
function, or an instrument driver function
returns.

statusMessage ViICharl Retyms a meaningful message string for an
] IVI or VISA status code. For other status
codes, returns "Unknown status value".

You must pass a ViChar array that contains
at least IVI_MAX_MESSAGE_BUF_SIZE
(256) bytes.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_GetinfoFromResourceName

Usage

ViStatus Ivi_GetInfoFromResourceName(ViRsrc resourceName, ViString
optionString, ViChar newResourceName][], ViChar newOptionString[],
ViBoolean* isLogicalName);

Purpose

This function returns the appropriate resource name and option string
that Ivi_SpecificDriverNew function uses to create a new IVI session. The
Resource Name can be an actual resource descriptor or a logical name
or driver session name that the user configures with the IVl Configuration
utility.

If the string that the user passes in the Resource Name parameter is an
actual resource descriptor, this function returns the original resource
descriptor and option string in the New Resource Name and New Option
String parameters and returns VI_FALSE in the Is Logical Name
parameter.

If the string that the user passes in the Resource Name parameter is a
logical name or driver session name, this function returns strings in the
New Resource Name and New Option String parameters based on the
settings of the logical name or virtual instrument in the IVI Configuration
utility. The function return VI_TRUE in the Is Logical Name parameter.

Example:
Ivi_GetInfoFromResourceName ("GPIB0::2::INSTR",

"Simulate=1",newRsrcString, newOptionString,
&isLogicalName);

newRsrcString and newOptionString contain the same values you pass
to the function, and isLogicalName is VI_FALSE.

Ivi_GetInfoFromResourceName ("SampleDMM", "",

newRsrcString, newOptionString,
&isLogicalName);

newRsrcString and newOptionString now contain the resource descriptor
from the IVI configuration and the option that tells the engine through the
Ivi_SpecificDriverNew function that the initial session setup comes from
the IVI configuration. isLogicalName is VI_TRUE.

Parameters

Name
resourceName

optionString

Type
ViRsrc

ViString

newResourceName ViChar[]

newOptionString

ViChar|]

Description

This parameter specifies the resource
name of the specific instrument.

The user can either pass an actual
resource descriptor, such as
"GPIBO::2::INSTR", or a logical name
or driver session name that they
configure with the IVI Configuration
utility, such as "SampleDMM" or
"MyFluke45."

This parameter is the option string
that the user passes to the
InitWithOptions function of the
instrument driver.

If the string that the user passes for
the Resource Name parameter is an
actual resource descriptor, this
function returns the original value of
the Resource Name parameter in this
parameter.

If the string that the user passes for
the Resource Name parameter is a
logical name or driver session name,
then this parameter contains a
resource descriptor that identifies the
physical device based on the
configuration of the logical name or
virtual instrument in the VI
Configuration utility.

If the string that the user passes for
the Resource Name parameter is an
actual resource descriptor, this

isLogicalName

ViBoolean*

function returns the original value of
the Option String parameter in this
parameter.

If the string that the user passes for
the Resource Name parameter is a
logical name or driver session name,
then this parameter returns a new
option string. The new option string
identifies the logical name or virtual
instrument that the
Ivi_SpecificDriverNew function uses to
configure the initial configuration of
the new IVI session.

Returns VI_FALSE if the user passes
an actual resource name for the
Resource Name parameter.

Returns VI_TRUE if the user passes a
logical name or driver session name
for the Resource Name parameter.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi_GetinvalidationList

Usage

ViStatus Ivi_GetlInvalidationList(ViSession vi, ViAttr attributelD,
IvilnvalEntry** invalidationList, Vilnt32* numberOfEntries);

Purpose

This function returns a list of all the invalidation dependency relationships
for the session. The specific driver creates the dependency relationships
using Ivi_AddAttributeInvalidation.

The function dynamically allocates an array of IvilnvalEntry structures
and returns a pointer to it. The last entry in the array is a termination
entry that has IVI_ATTR_NONE (-1) in the attribute field. It also returns
the number of items in the array, excluding the termination entry. When
you are done with the list, you must free it by calling
Ivi_DisposelnvalidationList.

You can pass VI_NULL for the Invalidation List parameter, in which case
the function just returns the number of dependency relationships.

Parameters

Name
vi

attributelD

Type
ViSession

ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrumer
driver defines constant names for all of
the user-accessible attributes that app!
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the
same constant name that appears in
ivi.h, except that the specific instrumer
prefix replaces the IVI prefix. For
example, ivi.h defines
IVI_ATTR_CACHE, and the Fluke 45
include file, f145.h, defines the followinc
constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the
specific driver include file uses the

same constant name that appears in tt
instrument class include file, except th:
the specific instrument prefix replaces

invalidationList

lvilnvalEntry**

the class prefix. For example, the DMNM
class include file, ividmm.h, defines
IVIDMM_ATTR_RANGE, and fl45.h
defines the following constant name:

#define FL45_ATTR_RANGE
IVIDMM_ATTR_RANGE

For each specific instrument attribute,
the specific driver include file defines a
constant name and assigns a value the
is an offset from
IVI_SPECIFIC_PUBLIC_ATTR_BASE.
For example, fl45.h defines the followir
constant name:

#define

FL45 ATTR_HOLD_THRESHOLD \
(IVI_SPECIFIC_PUBLIC_ATTR_BASI
+ 3L)

For each attribute that is private to an
instrument driver, the instrument driver
source file defines a constant name an
assigns a value that is an offset from
IVI_SPECIFIC_PRIVATE_ATTR_BASE.
For example, hp34401a.c defines the
following constant name:

#define
HP34401A_ATTR_TRIGGER _TYPE \
(IVI_SPECIFIC_PRIVATE_ATTR_BAS
+1L)

Returns the pointer to an array that
contains all the invalidation dependenc
relationships for the session.

The function dynamically allocates an
array of IvilnvalEntry structures and
returns a pointer to it in this parameter.
The last entry in the array is a
termination entry that has

numberOfEntries Vilnt32*

IVI_ATTR_NONE (-1) in the attribute
field. When you are done with the list,
you must free it by calling
Ivi_DisposelnvalidationList.

You can pass VI_NULL for this
parameter, in which case the function
just returns the number of dependency
relationships.

Returns the number of entries in the
invalidation list, excluding the
termination entry.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetLogicalNamesList

Usage
ViStatus Ivi_GetLogicalNamesList(IviLogicalNameEntry** logicalNamesList,
Vilnt32* numberOfEntries);

Purpose

This function returns a list of the logical names that the IVI engine
currently recognizes. You can define logical names in the IVI
configuration file.

You pass logical names to class driver initialization functions to identify
the physical device and specific driver module you want to use in a
session.

The ivi.h include file defines the structure of an entry in the list as follows.
typedef struct

{ViString logicalName;
ViBoolean fromFile;
} IviLogicalNameEntry;

The fromFile field is always set to VI_TRUE.

The function dynamically allocates an array of IviLogicalNameEntry
structures and returns a pointer to it. The logical names you define at run-
time appear before the logical names from the configuration file. The last
entry in the array is a termination entry that has VI_NULL in the
logicalName field. The function also returns the number of logical names
in the list, excluding the termination entry. When you are done with the
list, you must free it by calling Ivi_Disposel.ogicalNamesList.

Call Ivi_GetNthLogicalName to extract the data from an entry in the list. Do
not change the values of any of the entries in the list.

You can pass VI_NULL for the Logical Names List parameter, in which
case the function just returns the number of logical names.

Parameters
Name Type Description

logicalNamesList IviLogicalNameENtry** patiims the pointer to an

array of the logical names

that the VI engine currently

recognizes.
numberOfEntries Vilnt32* Returns the number of
entries in the logical names
list, excluding the termination
entry.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi GetNextCoercioninfo

Usage

ViStatus Ivi_GetNextCoercionInfo(ViSession vi, ViAttr* attributelD,
ViConstString* attributeName, ViConstString* repeatedCapabilityname,
IviValueType* attributeDataType, ViReal64* desiredValue, ViReal64*

coercedValue);

Purpose

This function obtains information regarding the oldest instance in which
the IVI engine coerced an attribute value you specified to another value.
It then deletes that information.

If you enable the IVI_ATTR_RECORD_COERCIONS attribute for the
session, the 1VI engine keeps a list of all coercions it makes on values
you pass to an Ivi_SetAttribute function for a Vilnt32 or ViReal64 attribute.
You can use this function to retrieve information from that list. Each time
you call this function, it extracts and deletes the oldest coercion record for
the session.

When no coercion records remain for the session, the function returns
IVI_ATTR_NONE (-1) in the Attribute ID parameter and VI_NULL in the
Attribute Name parameter.

The function returns all numeric values as ViReal64 values, even for
Vilnt32 attributes.

You can pass VI_NULL for any of the output parameters, except that you
cannot pass VI_NULL for both the Attribute ID and Attribute Name
parameters in one call.

Parameters

Name Type

Vi ViSession
attributelD ViAttr*
attributeName ViConstString*

repeatedCapabilityname ViConstString*

Description

The ViSession handle that you
obtain from
Ivi_SpecificDriverNew. The
handle identifies a particular I\
session.

Returns the ID of the attribute
which the value coercion
occurred. No more coercion
records exist for session, this
parameter returns
IVIL_ATTR_NONE (-1).

If you are not interested in this
value, you can pass VI_NULL
as long as you do not also pas
VI_NULL for the Attribute Nan
parameter.

Returns a pointer to the name
the attribute for which the valu
coercion occurred. If no more
coercion records exist for
session, this parameter return:
VI_NULL.

Do not modify the contents of
the name.

If you are not interested in this
value, you can pass VI_NULL
as long as you do not also pas
VI_NULL for the Attribute ID
parameter.

If the attribute is repeated
capability-based, this paramet

attributeDataType

desiredValue

coercedValue

lviValueType*

ViReal64*

ViReal64*

returns a pointer to the name ¢
the repeated capability on whic
the value coercion occurred. If
the attribute is not repeated
capability-based, this paramet
returns a pointer to an empty
string.

Do not modify the contents of
the repeated capability string.

If you are not interested in this
value, you can pass VI_NULL

Returns the data type of the
attribute.

Values:

(1) TVI_VAL_INT32 Vilnt32
(4) IVI_VAL_REALG64 ViRealt

If you are not interested in this
value, you can pass VI_NULL

Returns the value to which yot
attempted to set the attribute.
The function always returns th
value as a ViReal64 value, eve
if the data type of the attribute
Vilnt32.

If you are not interested in this
value, you can pass VI_NULL

Returns the value to which the
IVI engine actually set the
attribute. The function always
returns the value as a ViReal6
value, even if the data type of
the attribute is Vilnt32.

If you are not interested in this
value, you can pass VI_NULL

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetNextCoercionString

Usage
ViStatus Ivi_GetNextCoercionString(ViSession vi, Vilnt32 bufferSize, ViChar
coercionString|]);

Purpose

This function obtains information regarding the oldest instance in which
the IVI engine coerced an attribute value you specified to another value.
This information is in a string format. It then deletes that information.

If you enable the IVI_ATTR_RECORD_COERCIONS attribute for the
session, the 1VI engine keeps a list of all coercions it makes on values
you pass to an Ivi_SetAttribute function for a Vilnt32 or ViReal64 attribute.
You can use this function to retrieve information from that list. Each time
you call this function, it extracts and deletes the oldest coercion record for
the session.

When no coercion records remain for the session, the function returns an
empty string (") in the Coercion String parameter.

The function returns the string containing the coercion information. You
must provide a ViChar array to serve as a buffer for the string. You pass
the number of bytes in the buffer as the Buffer Size parameter. If the
current size of the coercion string, including the terminating NUL byte, is
larger than the size you indicate in the Buffer Size parameter, the function
copies Buffer Size - 1 bytes into the buffer, places an ASCII NUL byte at
the end of the buffer, and returns the buffer size you must pass to get the
entire string. For example, if the value is "123456" and the Buffer Size is
4, the function places "123" into the buffer and returns 7.

If you want the function to fill in the buffer regardless of the number of
bytes in the string, pass a negative number for the Buffer Size parameter.
If you want to call this function just to get the required buffer size, you can
pass 0 for the Buffer Size and VI_NULL for the Coercion String buffer.

Remember that the checkErr and viCheckErr macros ignore positive
return values. If you use one of these macros around a call to this
function, you lose the required buffer size when the function returns it. To
retain this information, declare a separate local variable to store the
required buffer size, and use the macro around the assignment of the
return value to the local variable. The following is an example:

ViStatus error = VI_SUCCESS;ViInt32 requiredBufferSize;

checkErr(requiredBufferSize =
Ivi_GetNextCoercionString(vi, 0, VI_NULL));

Parameters
Name Type
Vi ViSession

bufferSize Vilnt32

coercionString ViChar|]

Description

The ViSession handle that you obtain from
Ivi_SpecificDriverNew. The handle identifies
a particular IVI session.

Pass the number of bytes in the ViChar
array you specify for the Coercion String
parameter.

If the current coercion string, including the
terminating NUL byte, contains more bytes
than you indicate in this parameter, the
function copies Buffer Size - 1 bytes into the
buffer, places an ASCII NUL byte at the end
of the buffer, and returns the buffer size you
must pass to get the entire string. For
example, if the value is "123456" and the
Buffer Size is 4, the function places "123"
into the buffer and returns 7.

If you pass a negative number, the function
copies the coercion string to the buffer
regardless of the number of bytes in the
string.

If you pass 0, you can pass VI_NULL for
the Coercion String buffer parameter.

The buffer in which the function returns the
description of the oldest value coercion of
the instrument session. The buffer must be
of type ViChar and have at least as many
bytes as indicated in the Buffer Size
parameter.

If the current coercion string, including the
terminating NUL byte, contains more bytes
than you indicate in this parameter, the

function copies Buffer Size - 1 bytes into the
buffer, places an ASCII NUL byte at the end
of the buffer, and returns the buffer size you
must pass to get the entire string. For
example, if the string is "123456" and the
Buffer Size is 4, the function places "123"
into the buffer and returns 7.

If you specify O for the Buffer Size
parameter, you can pass VI_NULL for this
parameter.

When no coercion records remain for the
session, the function returns an empty string
(") in the Coercion String parameter.

Return Value
Contains the status code that the function call returns.

If the function succeeds and the buffer you pass is large enough to hold
the entire value, the function returns 0.

If the current length of the coercion string, including the terminating NUL

byte, is larger than the size you indicate in the Buffer Size parameter, the
function copies Buffer Size - 1 bytes into the buffer, places an ASCII NUL
byte at the end of the buffer, and returns the buffer size you must pass to
get the entire string. For example, if the value is "123456" and the Buffer

Size is 4, the function places "123" into the buffer and returns 7.

If the function fails for some other reason, it returns a negative error
code. For more information on error codes, refer to the Status return
value control in one of the other function panels.

Related Topic
VI Status Codes

Ilvi_GetNextinterchangeCheckString

Usage
ViStatus Ivi_GetNextInterchangeCheckString(ViSession vi, Vilnt32 bufferSize,
ViChar interchangeWarning|]);

Purpose

This function returns the interchangeability warnings associated with the
IVI session. Interchangeability warnings indicate that using your
application with a different instrument might cause different behavior.

The specific driver performs interchangeability checking if the
IVI_ATTR_INTERCHANGE_CHECK attribute is set to VI_TRUE. Each
time you call this function, it extracts and deletes the oldest
interchangeability warning information for the session.

If the next interchangeability warning string, including the terminating
NUL byte, contains more bytes than you indicate in bufSize parameter,
the function copies bufSize - 1 bytes into the interchangeWarning buffer,
places an ASCII NUL byte at the end of the interchangeWarning buffer,
and returns the buffer size you must pass to get the entire value. For
example, if the value is "123456" and the buffer size is 4, the function
places "123" into the interchange warning buffer and returns 7.

If you want the function to fill in the buffer regardless of the number of

bytes in the string, pass a negative number for the bufSize parameter. If
you want to call this function just to get the required buffer size, you can
pass O for the bufSize and VI_NULL for the interchangeWarning buffer.

The function returns an empty string in the interchange warning
parameter if no interchangeability warnings remain for the session.

Parameters

Name Type
Vi ViSession
bufferSize Vilnt32

interchangeWarning ViChar|]

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The
handle identifies a particular VI
session.

Pass the number of bytes in the
ViChar array you specify for the
interchange warning parameter.

If the current interchange warning,
including the terminating NUL byte,
contains more bytes that you indicate
in this parameter, the function copies
Buffer Size - 1 bytes into the buffer,
places an ASCII NUL byte at the end
of the buffer, and returns the buffer
size you must pass to get the entire
string. For example, if the value is
"123456" and the Buffer Size is 4, the
function places "123" into the buffer
and returns 7.

If you pass a negative number, the
function copies the interchange
warning to the buffer regardless of the
number of bytes in the string.

If you pass 0, you can pass VI_NULL
for the Interchange Warning buffer
parameter.

The buffer in which the function
returns the description of the oldest
value coercion of the instrument
session. The buffer must be of type
ViChar and have at least as many
bytes as indicated in the Buffer Size

parameter.

If the current coercion string, including
the terminating NUL byte, contains
more bytes that you indicate in this
parameter, the function copies Buffer
Size - 1 bytes into the buffer, places
an ASCII NUL byte at the end of the
buffer, and returns the buffer size you
must pass to get the entire string. For
example, if the string is "123456" and
the Buffer Size is 4, the function
places "123" into the buffer and
returns 7.

If you specify O for the Buffer Size
parameter, you can pass VI_NULL for
this parameter.

When no interchange warnings
remain for the session, the function
returns an empty string (") in the
Coercion String parameter.

Return Value
Contains the status code that the function call returns.

If the function succeeds and the buffer you pass is large enough to hold
the entire value, the function returns 0.

If the current length of the interchange warning, including the terminating
NUL byte, is larger than the size you indicate in the Buffer Size
parameter, the function copies Buffer Size - 1 bytes into the buffer, places
an ASCII NUL byte at the end of the buffer, and returns the buffer size
you must pass to get the entire string. For example, if the value is
"123456" and the Buffer Size is 4, the function places "123" into the
buffer and returns 7.

If the function fails for some other reason, it returns a negative error
code. For more information on error codes, refer to the Status return
value control in one of the other function panels.

Related Topic

VI Status Codes

lvi_GetNthAttribute

Usage
ViStatus Ivi_GetNthAttribute(ViSession vi, Vilnt32 index, ViAttr* attributelD);

Purpose

This function obtains the ID of the attribute that is at the index you specify
in the IVI session's internal list of attributes. The index is 1-based.

If the index you specify is greater than the number of attributes, the
function sets the Attribute ID parameter to IVI_ATTR_NONE (-1) and
returns VI_SUCCESS.

Call Ivi_GetNumAttributes to determine the number of attributes in the
internal list.

Parameters
Name Type Description

vi ViSession 1 visession handle that you obtain from

Ivi_SpecificDriverNew. The handle identifies a
particular VI session.
index Vilnt32 gpecify a 1-based index into the IVI session's
internal list of attributes.
attributelD VIAW™ patyms the ID of the attribute at the selected
index of the attribute list.

If the index you specify is greater than the
number of attributes, the function sets this
parameter to IVI_ATTR_NONE (-1) and returns
VI_SUCCESS.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetNthChannelString

Usage
ViStatus Ivi_GetNthChannelString(ViSession vi, Vilnt32 index, ViConstString*
channelString);

Purpose

The function returns the channel string that is in the channel table at an
index you specify. The specific instrument driver specifies the contents of
the channel table using Ivi_BuildChannelTable and Ivi_AddToChannelTable,
and the IVI engine maintains the table for the session.

If the index you specify is greater than the number of channel strings in
the table, the function sets the Channel String parameter to VI_NULL
and returns VI_SUCCESS.

Parameters

Name Type
Vi ViSession
index Vilnt32

channelString ViConstString*

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

A 1-based index into the channel table.

If you pass an index that is greater than
the number of strings in the table, the
function sets the Channel String
parameter to VI_NULL and returns
VI_SUCCESS.

Returns the channel string that is in the
channel table at the index you specify.

Do not modify the contents of the
channel string.

If the Index parameter is greater than
the number of strings in the table, the
function sets this parameter to VI_NULL
and returns VI_SUCCESS.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetNthLogicalName

Usage

ViStatus Ivi_GetNthLogicalName(IviLogicalNameEntry* logicalNamesList,
Vilnt32 index, ViChar logicalNameBuffer[], Vilnt32 bufferSize, ViBoolean*

fromFile);

Purpose

This function extracts the data from an entry in a logical names list you
obtain from Ivi_GetLogicalNamesList. You specify the entry with a 1-based
index.

If the index you specify is greater than the number of logical names, the
function places an ASCII NUL byte at the beginning of the Logical Name
Buffer parameter and returns VI_SUCCESS.

Parameters
Name Type

logicalNamesList IviLogicalNameEntry*

index Vilnt32

logicalNameBuffer ViChar|]

bufferSize Vilnt32

fromFile ViBoolean*

Description

Specify the pointer to the
logical names list you obtain
from
Ivi_GetLogicalNamesList.

Specify the 1-based index of
the logical name list entry
from which you want to
extract data.

The buffer in which the
function returns the logical
name. The buffer must be a
ViChar array that contains at
least as many bytes as you
specify in the Buffer Size
parameter.

If the index you specify is
greater than the number of
logical names, the function
places an ASCII NUL byte at
the beginning of the buffer
and returns VI_SUCCESS.

Specify the number of bytes
in the Logical Name Buffer
parameter.

This parameter always
returns a value of VI_TRUE
(1). You can pass VI_NULL
to this parameter.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetNthRepCapString

Usage

ViStatus Ivi_GetNthRepCapString(ViSession vi, ViChar
repeatedCapabilityName[], Vilnt32 Index, ViConstString*
repeatedCapabilityldentifier);

Purpose

The function returns the repeated capability string that is in the repeated
capability table at an index you specify. The specific instrument driver
specifies the contents of the table using Ivi_BuildRepCapTable and
Ivi_AddToRepCapTable.

If the index you specify is greater than the number of strings in the table,

the function sets the Repeated Capability Identifier parameter to
VI_NULL and returns VI_SUCCESS.

Parameters

Name Type Description

Vi ViSession The ViSession handle

that you obtain from

Ivi_SpecificDriverNew.

The handle identifies a

particular VI session.
repeatedCapabilityName ViChar[] Pass a string containing
the name of the repeated
capability on which to
operate. For instance, if
you are working with the
table of channel names,
pass in the string
"Channel".

Index Vilnt32 A 1-based index into the
channel table.

If you pass an index that
Is greater than the
number of strings in the
table, the function sets
the Channel String
parameter to VI_NULL
and returns VI_SUCCESS.
repeatedCapabilityldentifier ViConstString* ratirs the repeated
capability string that is in
the repeated capability
table at the index you

specify.
Do not modify the

contents of the repeated
capability string.

If the Index parameter is

greater than the number
of strings in the table, the
function sets this
parameter to VI_NULL
and returns VI_SUCCESS.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

lvi GetNumAttributes

Usage
ViStatus Ivi_GetNumAttributes(ViSession vi, Vilnt32* numberOfAttributes);

Purpose

This function obtains the total number of attributes in the 1VI session you
specify. This includes all attributes that the VI engine and the driver
create, regardless of whether the IVI_VAL_NOT_SUPPORTED flag for the
attribute is set.

Parameters

Name Type
Vi ViSession

numberOfAttributes Vilnt32*

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

Returns the total number of attributes
in the VI session. This includes all
attributes that the IVI engine and the
driver create, regardless of whether
the IVI_VAL_NOT_SUPPORTED flag
for the attribute is set.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetRangeTableNumEntries

Usage
ViStatus Ivi_GetRangeTableNumEntries(IviRangeTablePtr rangeTable, Vilnt32*
numberOfEntries);

Purpose

This function returns the number of entries in a range table, excluding the
termination entry. If you pass VI_NULL for the Range Table parameter,
the function returns 0 as the number of entries.

Parameters

Name Type
rangeTable lviRangeTablePtr

numberOfEntries Vilnt32*

Description

Specify the address of the range
table you want to examine.

You can pass VI_NULL for this
parameter.

Returns the total number of
entries in the range table,
excluding the termination entry. If
you pass VI_NULL for the Range
Table parameter, this parameter
returns O.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetRepCaplindex

Usage
ViStatus Ivi_GetRepCapIndex(ViSession vi, ViChar repeatedCapabilityName[],
ViChar repeatedCapabilityldentifier[], Vilnt32* index);

Purpose

This function obtains the 1-based index of a repeated capability in the
internal repeated capability for an IVI session.

If you pass VI_NULL or an empty string for the Repeated Capability
|dentifier parameter, this function sets the Index output parameter to 1.

If you pass a specific driver identifier for the Repeated Capability
|dentifier parameter, this function sets the Index output parameter to the
1-based index of the identifier string in the internal repeated capability
table.

If you pass a virtual repeated capability identifier, this function returns the
one-based index of the specific driver string to which the virtual identifier
coerces.

If you pass any other value for the Repeated Capability parameter, this
function sets the Index output parameter to O and returns an error code.

Parameters

Name
vi

repeatedCapabilityName

Type
ViSession

ViChar|]

repeatedCapabilityldentifier ViChar|]

index

Vilnt32*

Description

The ViSession handle that you
obtain from
Ivi_SpecificDriverNew. The
handle identifies a particular
IVI session.

Pass a string containing the
name of the repeated
capability on which to operate.
For instance, if you are
working with the table of
channel names, pass in the
string "Channel".

Pass the repeated capability
name for which you want to
obtain the index.

The parameter accepts
VI_NULL, and empty string, a
specific driver-defined
repeated capability identifier,
or a virtual repeated capability
identifier.

A 1-based index into the
repeated capability table.

If you pass an invalid value for
the Repeated Capability
|dentifier parameter, the
function sets this output
parameter to 0 and returns an
error code.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetSpecificDriverStatusDesc

Usage

ViStatus Ivi_GetSpecificDriverStatusDesc(ViSession vi, ViStatus statusCode,
IviStringValueTable additionalTableToSearch, ViChar statusMessage[]);

Purpose

This function converts a status code that an instrument driver function
returns into a meaningful message string. It interprets VI and VISA status
codes just as Ivi_GetErrorMessage does, but it also allows you to pass a
table of error codes and messages that are specific to the instrument
driver.

Use this function to implement the PREFIX_error_message function in the
instrument driver.

If the function cannot find a description for the status code, it reports the
"Unknown status value" message and returns the
VI_WARN_UNKNOWN_STATUS warning code.

Parameters

Name
vi

statusCode

additionalTableToSearch IviStringValueTable

statusMessage

Type
ViSession

ViStatus

ViChar|]

Description

The ViSession handle the
obtain from
Ivi_SpecificDriverNew.

You can pass VI_NULL fc
parameter. This is useful
Ivi_SpecificDriverNew fails

A status code that an inst
driver function returns.

Specify a string/value tab
contains status codes spe
the instrument driver. Spe
message string for each ¢
code in the table. Termine
table with an entry that he
VI_NULL in the string fiel

The ivi.h include file define
structure of a string/value
entry as follows:

typedef struct

{

Vilnt32 value;ViString
} IviStringValueEntry;

If you pass VI_NULL for 1
parameter, the function b
the same as
Ivi_GetErrorMessage.

Returns a meaningful me
string for an VI, VISA, or
instrument driver status ¢
the status code is unknov

returns "Unknown status:

You must pass a ViChar ¢
that contains at least
IVI_ MAX_MESSAGE_BU
(256) bytes.

Return Value

Contains the status code that the function call returns. IVl engine
functions can return error and warning values from several sets of status
codes. Some status codes are unique to the IVI engine. Other status
codes are the same codes that VISA Library functions return. Still others
are error or warning values that functions in specific instrument drivers
return. Each set of status codes has its own numeric range.

Regardless of the source of the status code, 0 always indicates success,
a positive value indicates a warning, and a negative value indicates an
error.

Related Topic
VI Status Codes

Ilvi_GetStoredRangeTablePtr

Usage
ViStatus Ivi_GetStoredRangeTablePtr(ViSession vi, ViAttr attributelD,
IviRangeTablePtr* rangeTable);

Purpose

This function obtains the address of the range table you store for the
attribute when you call Ivi_AddAttributeViInt32, Ivi_AddAttributeViReal64,
or Ivi_SetStoredRangeTablePtr.

Unlike Ivi_GetAttrRangeTable, this function never invokes the range table
callback.

Parameters

Name Type
Vi ViSession

attributelD ViAttr

Description

The ViSession handle that you obtain
from Ivi_SpecificDriverNew. The handle
identifies a particular 1VI session.

Pass the ID of an attribute for this
parameter.

The include file for a specific instrument
driver defines constant names for all of
the user-accessible attributes that apply
to the driver. This includes attributes
that the 1VI engine defines, attributes
that the instrument class defines, and
attributes that are specific to the
particular instrument. Each defined
constant name begins with
PREFIX_ATTR_, where PREFIX is the
specific instrument prefix.

For each IVI engine attribute, the
specific driver include file uses the same
constant name that appears in ivi.h,
except that the specific instrument prefix
replaces the VI prefix. For example,
ivi.h defines IVI_ATTR_CACHE, and the
Fluke 45 include file, fl45.h, defines the
following constant name:

#define FL45_ATTR_CACHE
IVI_ATTR_CACHE

For each instrument class attribute, the
specific driver include file uses the same
constant name that appears in the
instrument class include file, except that
the specific instrument pre