
The	Graphics32	Library

Classes	(Alphabetical)

TAdaptiveSuperSampler
TAffineTransformation
TArrowBar
TBitmap32
TBitmap32Collection
TBitmap32Item
TBitmap32List
TBitmap32Resampler
TBitmapLayer
TBitmapPolygonFiller
TBlackmanKernel
TBloatTransformation
TBooleanMap
TBoxKernel
TByteMap
TClassList
TContourRasterizer
TContracter
TConvolver
TCosineKernel
TCubicKernel
TCustomGaugeBar
TCustomImage32
TCustomImgView32
TCustomKernel
TCustomLayer
TCustomMap
TCustomPaintBox32
TCustomPolygonFiller
TCustomRangeBar
TCustomResampler
TCustomSampler
TDilater
TDisturbanceTransformation
TDraftResampler
TEroder
TExpander
TFishEyeTransformation
TGaugeBar
TGaussianKernel

THammingKernel
THannKernel
THermiteKernel
TImage32
TImgView32
TIntegerMap
TIVScrollProperties
TKernelResampler
TKernelSampler
TLanczosKernel
TLayerCollection
TLinearKernel
TLinearResampler
TMitchellKernel
TMorphologicalSampler
TNearestResampler
TNearestTransformer
TNestedSampler
TNotifiablePersistent
TPaintBox32
TPaintStages
TPatternSampler
TPointerMap
TPointerMapIterator
TPolygon32
TPositionedLayer
TProgressiveRasterizer
TProjectiveTransformation
TRangeBar
TRasterizer
TRectList
TRegularRasterizer
TRemapTransformation
TRenderThread
TRubberbandLayer
TSelectiveConvolver
TSinshKernel
TSplineKernel
TSuperSampler
TSwizzlingRasterizer
TSyntheticImage32
TTesseralRasterizer

TThreadPersistent
TTransformation
TTransformer
TTwirlTransformation
TVectorMap
TWindowedSincKernel
TWordMap

Classes	(Hierarchy)

	TArrowBar
	TCustomGaugeBar
	TGaugeBar

	TCustomRangeBar
	TRangeBar

	TBitmap32Collection
	TBitmap32Item
	TBitmap32List
	TClassList
	TCustomKernel
	TBoxKernel
	TCosineKernel
	TCubicKernel
	THammingKernel
	THannKernel
	THermiteKernel
	TLinearKernel
	TMitchellKernel
	TSinshKernel
	TSplineKernel
	TWindowedSincKernel
	TBlackmanKernel
	TGaussianKernel
	TLanczosKernel

	TCustomPaintBox32
	TCustomImage32
	TCustomImgView32
	TImgView32

	TImage32
	TPaintBox32
	TSyntheticImage32

	TCustomPolygonFiller
	TBitmapPolygonFiller

	TIVScrollProperties
	TLayerCollection
	TNotifiablePersistent
	TCustomLayer
	TPositionedLayer
	TBitmapLayer
	TRubberbandLayer

	TCustomSampler
	TCustomResampler
	TBitmap32Resampler
	TKernelResampler
	TLinearResampler
	TDraftResampler

	TNearestResampler
	TNestedSampler
	TAdaptiveSuperSampler
	TKernelSampler
	TContracter
	TConvolver
	TSelectiveConvolver

	TExpander
	TMorphologicalSampler
	TDilater
	TEroder

	TPatternSampler
	TSuperSampler
	TTransformer
	TNearestTransformer

	TThreadPersistent
	TContourRasterizer
	TCustomMap
	TBitmap32
	TBooleanMap
	TByteMap
	TIntegerMap
	TVectorMap
	TWordMap

	TPolygon32
	TPaintStages
	TPointerMap
	TPointerMapIterator
	TRasterizer
	TProgressiveRasterizer
	TRegularRasterizer
	TSwizzlingRasterizer
	TTesseralRasterizer

	TRectList
	TRenderThread
	TTransformation

	TAffineTransformation
	TBloatTransformation
	TDisturbanceTransformation
	TFishEyeTransformation
	TProjectiveTransformation
	TRemapTransformation
	TTwirlTransformation

Routines
AlphaComponent ColorDiv Expand Invert RasterizeTransformation
AlphaToGrayscale ColorMax FillLongword InvertRGB RedComponent
ApplyBitmask ColorMin FillWord IsRectEmpty RGBtoHSL
ApplyLUT ColorModulate Fixed	Ceil Lighten SetAlpha
Blend ColorSub Fixed	Division Merge SetBorderTransparent
BlendEx Colorswap Fixed	Floor MergeEx SetGamma
BlendLine ColorToGrayScale Fixed	Multiply Mirror Shift	Arithmetic	Right
BlendLineEx Combine Fixed	Point	Math MoveLongword SinCos
BlendTransfer Constrain Fixed	Round MoveWord StretchTransfer
BlockTransfer Contract Fixed	Square OffsetRect Swap

BlockTransferX CopyComponents Fixed	Square
Root Polygon SwapConstrain

BlueComponent CreateBitmask Gray32 Polyline TestClip
ChromaKey Creating	Points GreenComponent PolyPolygon TestSwap

Clamp Creating
Rectangles HSLtoRGB PolyPolygonBounds Transform

Color32 Dilate InflateRect PolyPolyline TransformPoints
Color32Components EMMS Intensity PtInPolygon WinColor
Color32ToRGB EqualRect IntensityToAlpha PtInRect WinPalette
ColorAdd Erode IntersectRect Rasterize Wrap

Types
Arrays TBlendMemEx TFillLineEvent TPixelCombineEvent TScrollBarVisibility
Color	Types TBlendReg TFixed TPolyFillMode TSize
Point	Types TBlendRegEx TFloatMatrix TRBBackgnd TSizeGripStyle
Rectangle	Types TCombineInfo TKernelMode TRBHandles TStretchFilter
TAntialiasMode TCombineMem TLogicalOperator TRBStyle TVectorCombineEvent
TAreaChangedEvent TCombineMode TLUT8 TRectRounding TVectorCombineMode
TBlendLine TCombineReg TPaintBoxOptions TRenderMode TWrapMode
TBlendLineEx TConversionType TPaintStage TRepaintMode Vector	Types

TBlendMem TDrawMode TPixelAccessMode TScaleMode Wrap	Procedure
Types

Variables

MMX_ACTIVE

Constants
Area	Information	Flags DefaultAAMode IdentityMatrix Paint	Stage	Constants
Color	Constants G32Version Layer	Options	Bits

Units
GR32 GR32_Filters GR32_Math GR32_Rasterizers
GR32_Blend GR32_Image GR32_OrdinalMaps GR32_Resamplers
GR32_Containers GR32_Layers GR32_Polygons GR32_Transforms
GR32_ExtImage GR32_Lowlevel GR32_RangeBars GR32_VectorMaps

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home Overview

Features

Many	features	in	Graphics32	are	similar	to	those	in	standard	TImage,	TBitmap
and	TCanvas	classes,	however	they	were	rewritten	to	accelerate	and	optimize
drawing	on	32-bit	device-independent	bitmaps	(DIBs).	It	also	includes	a	few
new	options.
Some	of	its	features	include:

Fast	per-pixel	access	up	to	100	times	faster	compared	to	standard
TCanvas/TBitmap;
High-performance	Bitmap	alpha	blending	(including	per-pixel	alpha
blending);
Pixel,	line	and	polygon	antialiasing	with	sub-pixel	accuracy	(combined
with	alpha	blending);
Arbitrary	polygon	transformations	and	custom	fillings;
Bitmap	resampling	with	high	quality	reconstruction	filters	(e.g.	Lanczos,
Cubic,	Mitchell);
A	unique	state-of-the-art	rasterization	system;
Affine	transformations	of	bitmaps:	rotations,	scaling,	etc	with	sub-pixel
accuracy;
Arbitrary	projective	transformations	of	bitmaps;
Arbitrary	remapping	transformations	of	bitmaps	(e.g.	for	Warping,
Morphing);
Flexible	supersampling	implementation	for	maximum	sampling	quality;
Flicker-free	image	displaying	components	with	optimized	double
buffering	via	advanced	MicroTiles	based	repaint	optimizer;
Multiple	customizible	easy-to-use	overlay	layers;
Locking	of	bitmaps	for	safe	multithreading;
A	property	editor	for	RGB	and	alpha	channel	loading;
Design-time	loading	of	image	formats	supported	by	standard	TPicture;

Except	for	extended	features,	Graphics32	has	some	important	differences	from
the	standard	components.	It	does	not	heavily	rely	on	Windows	GDI,	most	of
the	functions	are	reimplemented	and	optimized	specifically	for	32-bit	pixel
format.

See	Also
Changes,	Contacts,	Donate,	License,	Naming	Conventions,	Repaint
Optimization,	Sampling	and	Rasterization

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home Overview

License

As	of	Version	1.5.1b	Graphics32	is	licensed	under	the	terms	of	the	Mozilla
Public	License.	You	may	not	use	the	Graphics32	library	except	in	compliance
with	the	License.	You	may	obtain	a	copy	of	the	License	at
http://www.mozilla.org/MPL

http://www.mozilla.org/MPL

See	Also
Changes,	Contacts,	Donate,	Features,	Naming	Conventions

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home Overview

Donate

Donation

Graphics32	is	free	under	the	terms	of	the	Mozilla	Public	License.	However,	if
you	wish	to	express	your	appreciation	for	the	time	and	energy	spend	on
developing,	documenting,	supporting	and	maintaining	Graphics32,	the	team
accepts	with	gratitude	any	donation	made.	

Donating	should	just	be	thought	of	as	a	way	of	showing	appreciation	-	it	will
not	grant	any	extra	support	or	focus	on	specific	feature	requests.	In	general	the
team	strives	to	accommodate	and	respond	as	much	as	possible	to	user
responses	and	requests.

Two	types	of	donations	can	be	made.	Donations	for	the	team	in	general,	which
mainly	is	used	to	cover	general	expense	related	to	Graphics32.	And	donations
to	individuals	involved	in	the	development	of	Graphics32	(see	the	list	of
features,	the	list	of	contributors,	the	list	of	changes,	source	codes	or	examples
to	aid	your	evaluation	of	the	involvement	of	the	individuals).	
If	you	are	unsure	what	to	choose,	the	developer	team	donation	is
recommended.

Not	Found
The	requested	URL	/donation/table.htm	was
not	found	on	this	server.

	Michael,	Andre	and	Mattias

Thank	you	for	your	support.

See	Also
Changes,	Contacts,	Contributors,	Examples,	Features,	Naming	Conventions

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home Overview

Contacts

Graphics32	SourceForge	home:	http://sourceforge.net/projects/graphics32
Graphics32	new	home:	http://graphics32.org
Graphics32	support	forum:	http://graphics32.org/forum
Graphics32	support	newsgroup:
news://news.g32.org/g32org.public.graphics32
E-mail:	team@graphics32.org
Please,	use	the	newsgroup	or	forum	for	general	support	questions.
	
Graphics32	old	home:	http://g32.org
old	E-mail:	alex@g32.org

http://sourceforge.net/projects/graphics32
http://graphics32.org
http://graphics32.org/forum
news://news.g32.org/g32org.public.graphics32
mailto:team@graphics32.org
http://g32.org
mailto:alex@g32.org

See	Also
alex@g32,	Changes,	Donate,	Features,	License,	Naming	Conventions,
team@graphics32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

mailto:/alex@g32.org
mailto:/team@graphics32.org

Home Overview

Naming	Conventions

Graphics32	introduces	several	routines	(as	well	as	some	class	properties	and
methods)	which	have	similar	action	but	may	have	different	arguments	or	other
realization	details.
They	follow	a	simple	naming	convention:

Postfix Details Example

none Property	or	method	does	not	perform	any	range	checking	of	its
arguments.	All	the	coordinates	should	be	valid. Line

S 'Safe'	version.	Validates	coordinates.	If	necessary,	clipping	is
performed. LineS

T
'Transparent'	version	of	the	method.	Uses	the	alpha	channel	of
the	provided	color	to	blend	the	drawn	primitive	with	the
background	pixels.

LineT

A Methods	with	'A'	postfix	provide	antialiasing	of	the	drawn
primitive. LineA

X These	functions	operate	with	coordinates	in	TFixed	format.
They	automatically	provide	antialiasing. LineX

F Methods	with	'F'	postfix	take	coordinates	as	floating	point
arguments	and	perform	antialiasing	of	the	drawn	primitive. LineF

TS,	AS,
XS,	FS Valid	combinations	of	postfixes	described	above. LineFS

P
'Pattern'	version.	Usually	combined	with	TS	or	FS	postfixes,	it
allows	for	implementation	of	various	effects,	like	gradient	or
dashed	lines	(See	Line	Patterns).

LineFSP

W
Wrapmode	version.	Checks	if	coordinates	are	outside
boundaries	or	provided	ranges,	and	performs	wrapping
according	to	a	wrapmode

See	Also
Changes,	Contacts,	Donate,	Features,	License,	Line	Patterns,	TWrapMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home Overview

Changes

v1.8.3	(5	March	2007)

General	changes

Additions:
Added	new	ASM/(E)MMX	optimized	ApplyBitmask	routine
for	logical	(bitwise)	Xor/Or/And	operations	using	a	bitmask.
Added	new	TColor32Component	basetypes	for	specifying	a
component	or	component	sets	(related	updates	to
TColor32Entry).
Added	new	CopyComponents	routine	for	copying	selected
ARGB	components	btwn	bitmaps.

Optimizations:
Optimized	TBitmap32.ResetAlpha,	Invert	and	InvertRGB.
Optimizations	in	pamTransparentEdge	related	routines.
TPatternSampler	now	supports	nonrectangular	sampling
patterns.

Bugfixes:
Bugfix	in	MMX	version	of	BlockAverage	that	caused	access
violations	on	resampling.
Fixes	for	the	following	bugs	reported	on	the	SourceForge
tracker:	1560912,	1556318
Fixed	misbehvior	when	setting
TCustomImage32.BufferOversize	property.	Changes	now
directly	force	resizing	of	the	buffer.
Fixed	Kylix	compilation	issue	introduced	with	new
multithreading	support.
Several	minor	cleanups	and	fixes.

v1.8.2	(5	February	2007)

General	changes

Additions:
Added	new	TMultiThreadedRasterizer	class	for	performing
regular	rasterization	using	multiple	threads.	By	defining	the
symbol	USE_MULTITHREADING	this	rasterizer	becomes
default	on	multi-core	systems.
Added	TPolarTransformation	and	TPathTransformation
classes.
Added	TPixelAccessMode	pamTransparentEdge,	useful	for
getting	smooth	edges	with	transformations.
Added	new	optimized	low-level	routines	to	GR32_Math.pas.

Bugfixes:
Fixes	for	various	bugs	reported	on	the	SourceForge	tracker:
1445701,	1448030,	1486180,	1456950,	1460821,	1493697,
1610287,	1610292,	1611173
Fixed	a	problem	in	TRenderThread	that	cause	an	AV	when
OnAreaChanged	of	the	destination	bitmap	was	unassigned.
Fixed	overflow	on	calculation	in	LineS	/	LineTS	with	big	line
coordinates.
Fixed	buffer	overrun	error	in	polygon	rasterization.
Fix:	M_ColorMax,	M_ColorMin,	M_ColorAverage	raised
critical	exception	on	old	Celeron	CPU.
Fixed	problem	in	TKernelResampler	that	caused	artifacts	at
edges	for	pamSafe	pixel	access	mode.
Fixed	installation	problems	in	D2005.
Minor	tweaks	and	optimizations.

v1.8.1	(1	March	2006)

General	changes

Additions:
Reintroduced	property	editor	features	for	all	Delphi	versions
after	D5.
BDS2k6	C++	personality	supported.

Bugfixes:
Fixes	for	various	bugs	reported	on	the	SourceForge	tracker:
1369894,	1398880,	1403949,	1404989,	1409711,	1412953
Fixed	problem	in	method	TBitmap32.DrawTo(HDC,	DstRect,
SrcRect).
Fixed	a	compilation	problem	when	CHANGED_IN_PIXELS
define	was	enabled.
Removed	mbLeft	MouseDown	filter	in	TCustomLayer.
TCustomLayer.Changed	obeys	UpdateCount.
Fixed	a	bug	in	the	MicroTiles	repaint	optimizer	where	the
buffer	wasn't	completely	invalidated.
CLX	and	D5	compilation	issues	fixed	(GetPropList).

Detailed	changes

v1.8	(1	January	2006)

General	changes

Additions:
Global	usage	of	new	TFloat	type	alias	instead	of	Single.
Area	update	support	for	TBitmapLayer	added.
TTransformation	changed	from	TPersistent	to
TNotifiablePersistent	so	as	to	implement	a	Changed	method
that	sets	TransformValid	to	False	automatically.
Incorporated	the	Interlocked*	functions	in	TBitmap32.Lock
and	TBitmap32.Unlock	according	to	Jouni	Airaksinen's
suggestions.
Redundant	code	clean	up	+	better	maintainability	using	central
protected	CopyMapTo	and	CopyPropertiesTo	methods.
Added	BlockTransferX	routine	for	bitmap	transfers	with	fixed-
point	coordinates	(using	linear	interpolation).
CLX	versions	of	all	example	projects	added	(no	guarantee	that
all	projects	are	100%	CLX-compatible).
Delphi	4	support	officially	dropped	as	of	this	release.

Bugfixes:
Bug	in	TLayerCollection.ViewportToLocal	method	fixed.
Misbehaviour	of	TCustomLayer.Visible	property	fixed.
TCustomLayer.Changed	and	TCustomLayer.Update	methods
fixed	(NO_UPDATE	problem)
TAffineTransformation.TransformFloat	fixed	(SF	bug
1372023).
TBitmap32Item.AssignTo	implemented	to	fix	problem	"Cannot
assign	a	TBitmap32Item	to	a	TBitmap32Item"	(SF	bug
1329566).
Prevent	AV	if	user	sets	resampler	directly	(e.g.
Bitmap.Resampler	:=	TLinearResampler.Create(Bitmap);).
Fixed	a	problem	in	TCustomImage32	that	caused	performance
overhead	for	rmDirect	repaint	mode.
TSyntheticImage	was	not	automatically	rasterized	upon
creation.
Update	regions	in	TTesseralRaserizer	were	not	pixel-perfect.
Fix	for	memory	leaks	in	AssignFromBitmap	sub-method	due	to
thread	<->	GDI	interaction.
Fixed	a	problem	in	integer	version	of	HSLtoRGB.
Fixed	TBitmap32.GetStippleColor	(the	ordinary	interpolation
routine	must	be	used).
Fixed	TBitmap32.SET_T256	and	TBitmap32.SET_TS256	for
color	merging.	cmMerge	is	now	handled	as	a	separate	case.
Fixed	TBitmap32.FillRectT	for	cmMerge.
Fixed	bug	in	_CombineMem	routine.	The	alpha	channel	was
not	interpolated,	which	is	contradictory	to	documentation.
Revised	Merge	routines.	Merge	is	now	based	on	precise	lookup
tables.	Moreover	the	new	version	is	faster	than	the	old	buggy
MMX	version.
D5	compilation	fixes.

Detailed	changes

v1.8	beta	(9	August	2005)

General	changes

Major	additions:
Resampler	Framework	/	Nested	Sampling
Rasterizer	Framework
Buffered	transformations	/	Warping	/	Remap	Transformation
Repaint	optimizations	(MicroTiles	Repaint	optimizer)

Other	additions:

new	examples:	TextureBlend_Ex,	NestedSampling_Ex,
Resamplers_Ex,	ImgWarping_Ex,	Visualization_Ex
changed	examples:
GradLines_Ex,	Polygons_Ex,	ImgView_Layers_Ex,
Image32_Ex,	Sprites_Ex

New	transformations	(Twirl,	Bloat,	Disturbance,	FishEye)
Fast	transformations	using	TRemapTransformation
Kernel	classes	(implementing	reconstruction	filters)	for
TKernelResampler
Antialiasing	by	using	regular	and	irregular	super	sampling
methods
Spatial	convolution	and	morphological	operations
Vector	maps,	supporting	.msh	fileformat	(useful	for
rasterizing/buffering	transformations)
New	ordinal	map	classes	for	Boolean-,	Word-	and	Integer-sized
data	elements
New	WrapMode	property	and	wrapping	Pixel	properties
Scrollbar	visibility	control	and	new	scale	modes
Independent	scales	in	TCustomImgView32	/	TImgView32
TRubberbandLayer	enhancements
New	BlendTransfer	routine	for	blending	two	bitmaps	using	an
arbitrary	blend	callback	routine
New	polygonal	antialiasing	modes	for	2x	and	32x	antialiasing
Improved	performance	in	TPolygon32	rasterization	routines
New	draw	mode,	dmTransparent,	for	color	key	tranparency
FastMove	support
New	class	registration	mechanism	using	TClassList
Help	documents	updated	with	new	additional	topics
Restructured	examples:

Bugfixes:
Fixed	AV	with	Graphics32	usage	in	DLLs	on	WinXP
Fixed	jagged	lines	problem	in	LineS,	LineTS	and	LineAS

Detailed	changes

v1.7.1	(25	February	2005)

Bugfixes
fixes	for	AVs	in	new	line	drawing	methods	(LineS,	LineTS,	LineAS)
replaced	incorrect	call	of	VertLineS	and	HorzLineS	in	LineTS	and
LineAS	with	VertLineTS	and	HorzLineTS
fix	for	buffer	reallocation	inefficiency	in	TCustomPaintBox32	(non-
critical,	long	standing)
This	should	improve	performance	on	resizing	for	all
TCustomPaintBox32	derived	controls.
added	missing	call	to	inherited	constructor	in	TPolygon32
constructor	(caused	big	trouble	on	Win9x/WinME	systems)
RenderText	now	ignores	Windows-based	font	smoothing	in	VCL
(VCL-only	change	because	the	QT	version	that's	used	in	CLX	doesn't
support	disabling	font	antialiasing,	neither	in	Windows	nor	in
Linux/X11)
CLX	compilation	fixes
C++	Builder	compilation	fixes
ColorMul	removed	(duplicate	of	ColorModulate)
minor	cleanups

v1.7	(16	January	2005)

New	Features
clipping	rect	support	(all	safe	drawing	operations	are	clipped	to	a
rect)
support	for	custom	polygon	fillings	(via	callback	or	polygon	filler
objects)
support	for	polygon	transformation	(permanent	or	while	drawing)
update	to	transformation	classes	to	make	them	more	suited	for
general	usage
polygon	performance	enhancements
new	CombineMode	property	in	TBitmap32
TRubberbandLayer	enhancements
additional	color	algebra	functions
more	versatile	TBitmap32.ResetAlpha	method	(overloaded)
Delphi	2005	(Win32)	support	(optional	inlining	where	applicable)
small	speed	enhancements

Bugfixes
fix	for	RenderText	problems	with	letters	that	spread	below	baseline
fix	for	bug	in	TBitmap32.Rotate180
fix	for	problem	in	TBitmap32.Assign	that	caused	transparent	regions
in	metafiles	and	icons	to	appear	in	blue	when	they	really	should	be
white.
fix	for	problem	where	the	buffer	content	on	repaint	in	TPaintBox32
wasn't	validated
fix	for	problem	where	C++	Builder	threw	linker	errors	(HDC
methods	and	"hoisted	overload"	or	E2113)	in	GR32.pas	and
GR32_Image.pas
fix	for	linear/draft	bug	with	bitmaps	of	size	100x1	et	al.
fix	for	bug	in	Transform	that	caused	the	outline	of	the	source	bitmap
to	appear	in	OuterColor
fix	for	the	3DNow	detection	(caused	"external	exception"	on	some
machines	when	sfDraft	was	used)
fix	for	dysfunctional	OnMouseEnter	and	OnMouseLeave	in
TCustomImage32
fix	for	CheckParams	problem	in	ApplyLUT
fix	to	preserve	alpha	channel	in	ApplyLUT	and	ColorToGrayscale

v1.6	(21	July	2004)

Changes
Graphics32	now	fully	supports	CLX	cross-platform	development;
Example	projects	have	been	successfully	converted	and	tested	in
Linux;
Fixed	issues	in	GR32_Transforms	that	could	potentially	cause	access
violation;
Added	sfDraft	resampling	filter	with	MMX	optimization;
Added	sfCosine	resampling	filter;
Added	PixelF/X	properties	that	read	and	write	pixels	with
antialiasing;
SetPixelF/X	methods	have	been	deprecated;
Added	new	MMX	optimized	color	algebra	routines	to	GR32_Blend
(Add,	Subtract,	Multiply	etc.);
Added	AntiAliasMode	property	to	TPolygon32	for	dynamically
changing	antialias	level	at	runtime;
Added	support	for	4x	supersampling	antialias	of	polygons
(significantly	faster	but	with	less	quality);
Unicode	support	for	TBitmap32.Text*	and	TBitmap32.Rendertext
methods;
Fixed	blending	bug	(the	"not	fully	opaque"	issue);
Performance	optimizations	(MMX)	in	blending	routines	and
Transforms;
Several	minor	additions	and	optimizations.

Earlier	releases	(v0.9	-	v1.5.1b)

Summary

https://order.kagi.com/?GRH

See	Also
Contacts,	Donate,	Features,	License,	Naming	Conventions

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

Installation

Graphics32	supports	Delphi	versions	5,	6,	7,	2005	(Win32),	2006	(Delphi
Win32	and	C++),	and	C++	Builder	5	and	6.
As	of	version	1.6	there	is	also	CLX	support	in	Graphics32.	That	means	you
can	use	it	either	with	CLX	on	Windows	using	Delphi	or	on	x86	Linux	using
the	Kylix	Delphi	environment.
	
Note:	If	you	want	to	use	the	Windows	CLX	version	in	Delphi,	you'll	have	to
uncomment	the	{$DEFINE	CLX}	line	in	GR32.inc.
Note:	For	Delphi	2005	and	up	function	inlining	is	automatically	used	to
improve	performance	in	certain	situations.	If	you	want	to	avoid	this,	please
comment	out	the	{$DEFINE	USEINLINING}	line	in	GR32.inc.
Note:	Because	some	properties	of	range	bars	and	gage	bars	have	been
changed,	you	can	obtain	some	error	messages	while	opening	your	previous
Graphics32	projects.	Just	ignore	these	messages	and	Delphi	will	fix	DFM	files
automatically.
	

Unzip	the	files;
Add	location	of	main	installation	directory	to	Tools	|	Environment
Options	|	Library	|	Library	Path.
Select	File	|	Open...	on	the	menu	bar.	Set	Files	of	type	to	Delphi
package	source,	locate	and	open	GR32_DSGN_D6.dpk
(GR32_DSGN_K	for	Kylix,	GR32_DSGN_BDS2006	for	Borland
Developer	Studio	2006,	GR32_DSGN_D2005	for	Delphi	2005,
GR32_DSGN_D7	for	Delphi7,	GR32_DSGN_D6	for	Delphi6,
GR32_DSGN_D5	for	Delphi5	or	GR32_DSGN_B5	for	C++	Builder);
A	package	editor	window	will	appear.	Click	Compile,	then	click	Install;
If	compiler	asks	whether	you	want	to	save	changes,	usually	it	is	a	good
idea	to	choose	No.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

Examples

There	are	a	few	examples	included	with	the	library,	which	you	should	be	able
to	find	in	the	respective	subdirectories	VCL	or	CLX	in	the	Examples
subdirectory.
Here	is	the	list	of	examples	with	short	descriptions:

ByteMaps	Example
Directory:	General\ByteMaps_Ex	(VCL	only	due	to	the	3rd	party	components
used)
A	basic	demonstration	of	mapping	a	2D	array	of	values	to	TByteMap	and
displaying	it	using	TPalette32.

GradLines	Example
Directory:	Drawing\GradLines_Ex
An	example	on	using	line	patterns	to	draw	gradient	lines.

Image	Warping	Example
Directory:	Transformation\ImgWarping_Ex
This	comprehensive	example	demonstrates	extensive	use	of
TRemapTransformation	and	TVectorMap.	It	also	implements	a	useful	generic
brush	weight	system,	which	can	be	applied	to	other	aspects	of	image	related
editing	(painting,	uniform	feathering	etc.).

Image32	Example
Directory:	General\Image32_Ex
This	example	demonstrates	the	properties	of	TImage32	that	control	the	scale
and	alignment	of	the	bitmap	image.

ImgView	and	Layers	Example
Directory:	Layers\ImgView_Layers_Ex
A	demonstration	of	using	TImgView32,	TPositionedLayer,	TBitmapLayer	and
TRubberbandLayer.	It	also	shows	how	it	is	possible	to	load	RGB	and	Alpha
channels	from	different	image	files	into	the	TBitmap32	object	at	run-time	and
demonstrates	an	application	of	affine	transformations.	It	also	shows	how	is	it
possible	to	'flatten'	layers.

LineStippling	Example
Directory:	Drawing\LineStippling_Ex
An	example	on	using	line	patterns	to	draw	dashed	lines.	

Nested	Sampling	Example
Directory:	Resampling\NestedSampling_Ex	(VCL	only	due	to	the	use	of	VCL
exclusive	TSyntheticImage)
An	extensive	example	that	features	a	visual	editor	for	editing	and	ordering
nested	samplers.	It	demonstrates	how	different	samplers	can	be	combined	in
order	to	create	dynamically	linked	sampling	chains.
Additionally	it	shows	how	various	rasterizers	affects	rendering	process.

PixelF	Example
Directory:	Resampling\PixelF_Ex
A	demonstration	of	interpolated	PixelF	property.	It	lets	you	compare	the	result
with	normal	pixel	access.

PixelCombine	Example
Directory:	Blending\PixelCombine_Ex
A	short	demonstration	of	using	the	OnPixelCombine	method	in	TBitmap32.

ProgressBar	Example
Directory:	General\ProgressBar_Ex
A	simple	visual	component,	that	demonstrates	how	is	it	possible	to	create
custom	components	based	on	TCustomPaintBox32.	Note,	that	this	component
is	mostly	designed	for	demonstration	purposes,	do	not	expect	too	much	from
it.

Polygons	Example
Directory:	Drawing\Polygons_Ex
This	example	shows	the	application	of	TPolygon32	to	draw	thick	lines	and
other	polygons	with	thick	outlines.

RenderText	Example
Directory:	Drawing\RenderText_Ex
A	basic	demonstration	of	using	the	TBitmap32.RenderText	method.

Resamplers	Example
Directory:	Resampling\Resamplers_Ex
An	informative	demonstration	of	the	different	resamplers	and	kernels
available	in	Graphics32.

Rotate	Example
Directory:	General\Rotate_Ex
A	simple	example	on	using	TAffineTransformation.	It	shows	how	to	rotate	and
scale	the	bitmap	at	the	same	time	so	that	it	stays	within	the	specified	rectange.

RotLayer	Example
Directory:	Layers\RotLayer_Ex
Features	custom	layer	class	creation	and	demonsrtates	TAffineTransformation.

Sprites	Example
Directory:	Layers\Sprites_Ex
A	demonstration	on	adding,	removing	and	animating	multiple	TBitmapLayer
objects	to	TImage32.

Texture	Blend	Example
Directory:	Blending\TextureBlend_Ex
A	short	demonstration	of	using	the	BlendTransfer	routine	and	how	to	use
custom	color	algebra	routines.

Transform	Example
Directory:	Transformation\Transform_Ex
An	example,	which	demonstrates	using	the	Transformation	routine	together
with	TAffineTransformation	and	TProjectiveTransformation.

Visualization	Example
Directory:	Transformation\Visualization_Ex
Implements	a	simple	set	of	movement	(displacement	transformations)
renderings	in	line	with	visualizations	found	in	various	audioplayers.	The
formula	style	roughly	follows	conventions	of	Winamp	Visualization	Studio,
and	is	buffered	using	TVectorMap.	Different	types	of	pixelrenderings	(spots,
particles	and	more)	is	used	to	visualize	the	movements.

See	Also
Bitmap	Image,	BlendTransfer,	Line	Patterns,	TBitmap32.OnPixelCombine,
TBitmap32.Pixel,	TBitmap32.RenderText,	TAffineTransformation,
TBitmap32,	TBitmapLayer,	TByteMap,	TImage32,	TImgView32,	TPalette32,
TPolygon32,	TPositionedLayer,	TProjectiveTransformation,	Transform,
TRemapTransformation,	TRubberbandLayer,	TVectorMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

Line	Patterns

Graphics32	defines	several	functions	to	support	non-uniform	lines.	This
includes	gradient	lines,	dashed	lines	etc.
The	idea	is	pretty	simple:	TBitmap32	object	holds	dynamic	array	of	colors,
and	a	counter,	which	'crawls'	along	the	array	and	reads	colors	from	its
position.	The	line	drawing	algorithm	queries	color	value	from	the	current
counter	position	at	each	point,	then	the	counter	is	automatically	incremented
to	get	ready	to	supply	the	next	value	to	line	rasterisation	routine.
The	counter,	accessed	through	StippleCounter	property,	wraps	itself
automatically	at	the	edges	of	color	array.	It	can	move	in	both	directions
depending	on	stipple	step,	which	in	turn	can	be	positive	or	negative.	Its	malue
may	even	be	fractional	in	this	case	resulting	color	is	interpolated.	The	step	is
accessed	with	StippleStep	property.
GetStippleColor	returns	color	from	the	current	counter	position	and
automatically	increments	counter	position	by	the	counter	step,	so	that	next
GetStippleColor	call	will	return	color	value	from	the	next	position.
Drawing	functions	that	support	line	patterns	have	'P'	in	their	postfix	(as	in
LineFSP).
Warning:	the	counter	is	not	thread-aware,	it	is	shared	by	all	threads	accessing
the	bitmap.	Additional	care	should	be	taken	when	multiple	threads	draw
stippled	lines	in	the	same	bitmap.

See	Also
TBitmap32.GetStippleColor,	GradLines	Example,	LineStippling	Example,
Naming	Conventions,	TBitmap32.StippleCounter,	TBitmap32.StippleStep,
TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

Repaint	Optimization

1	Introduction
Two	basic	classes	for	on	screen	display	exist	in	Graphics32:
TCustomPaintBox32	and	TCustomImage32.	These	classes	provide	the
functionality	all	other	graphical	components	in	GR32	base	on.
TCustomPaintBox32	implements	a	component	similar	to	the	TPaintBox
component	known	from	Borlands	Visual	Component	Library	(VCL).	It	differs
from	the	latter	in	the	way	it	handles	the	content:	While	TPaintBox	directly
draws	to	the	displays	context,	TCustomPaintBox32	uses	an	in-memory
backbuffer.	This	technique	generally	called	doublebuffering	has	its	up	and
downsides:	While	it	provides	a	convenient	and	simple	way	to	avoid	flickering
by	reducing	many	on-screen	paint	operations	to	just	one	synchronized	buffer
transfer	(blit)	from	memory	to	screen,	it	does	also	require	a	significant	amount
of	memory	and	bus	bandwidth	which	in	turn	effectively	limits	the	number	of
possible	updates	per	second	depending	on	the	hardware	used.	The	main
problem	with	the	implementation	prior	to	version	1.8	of	Graphics32	is	that	the
whole	buffer	is	transferred	to	screen	even	if	just	a	small	fraction	of	its	area	has
changed,	thus	there	is	a	lot	of	potential	to	improve	on.	One	implementation
that	reduced	this	bandwidth	was	developed	by	Mattias	Andersson	as	a	patch
called	Clipping	extension	for	Graphics32.	The	implementation	in	version	1.8
partly	relies	and	extends	on	the	techniques	used	in	this	patchset.
TCustomImage32	extends	TCustomPaintBox32	by	replacing	the	direct
painting	to	the	buffer	with	so	called	stacked	Paintstages.	Upon	repaint	these
paintstages	are	executed	in	a	succesive	fashion	from	bottom	to	top	-	each	stage
drawing	to	the	buffer.

	Figure	1:	Paintstages

at	runtime
Once	a	change	happens	in	this	stack	at	any	given	stage	a	deferred	invalidation
of	the	whole	buffer	content	is	triggered,	which	leads	to	a	complete	repaint	of
all	stages	once	this	invalidation	request	is	handled	by	the	application	message
queue	in	Windows.	This	is	where	the	main	problem	resides:	Even	with	the
smallest	change	(e.g.	an	updating	layer)	the	whole	buffer	area	needs	to	be
repainted.	This	approach	-	though	simple	-	is	naive	and	results	in	unnecessary
CPU	and	bus	and	memory	bandwidth	utilitzation.
To	sum	up,	we	have	two	main	problems	to	overcome,	i.e.	to	optimize:

forced	full	scene	repaint	of	paintstages	to	memory	buffer	in
TCustomImage32.
forced	full	scene	repaint	from	memory	buffer	to	screen	in
TCustomPaintBox32.

2	New	Structure	and	Repaint	Optimizer
In	order	to	achieve	this,	we	need	to	restructure	the	repaint	process	in	both,
TCustomPaintBox32	and	TCustomImage32.	An	external	repaint	optimizer
should	take	care	of	the	aspect	of	managing	and	optmizing	changed	areas.	This
abstraction	allows	better	flexibility	over	an	in-place	implementation,	because
the	repaint	optimizer	can	be	exchanged	freely.

TCustomPaintBox32	implements	a	new	property	RepaintMode	that
allows	selection	of	the	repaint	mode	to	be	used.	rmFull	is	equal	to	the	old
full	scene	repaint	whereas	rmOptimizer	uses	the	repaint	manager	to
handle	only	updated	areas.

Figure	2:	Example	comparison	of	full	scene	and	optimized	repaint

Figure	2	shows	an	example	comparison	of	the	old	full	scene	repaint
(rmFull)	and	the	new	optimized	repaint	(rmOptimizer)	for	simple	layer
operations	like	moving	or	resizing.	One	can	see	that	the	new	method
breaks	the	full	scene	repaint	down	to	just	a	fractional	repaint	namely
those	parts	that	were	changed.	Both	modes	are	used	in
TCustomPaintBox32	for	repaint	to	screen	and	in	TCustomImage32	for

repaint	to	buffer.	Additionally	there	is	one	mode	called	rmDirect	which	is
only	available	for	TCustomPaintBox32	derived	controls	and	does	provide
a	direct	repainting	to	screen.	In	this	mode	the	deferred	repaint	technique
is	replaced	by	an	immediate	repaint.	This	technique	is	especially	useful
for	the	new	TSyntheticImage	class,	which	provides	incremental	painting
of	the	result	while	still	rendering.

3	Measuring	Mode
Layers	in	Graphics32	are	a	special	case	that	needs	to	be	taken	care	of
separately:	Since	layers	are	not	forced	to	stay	within	their	determined	bounds
(for	TPositionedLayer	for	example),	they	can	basically	paint	everywhere	on
the	buffer.	Thus	we	need	to	find	some	other	way	of	determining	which	areas
the	layer	is	drawing	to.	For	this	to	work	we	have	extended	all	safe	drawing
operations	in	Graphics32	to	support	a	method	called	measuring.	This	method
can	basically	be	thought	of	as	a	simulation	mode	or	dry-run	where	nothing	is
actually	drawn	to	the	buffer.	However,	the	Changed	event	is	still	triggered.	So,
this	way	the	repaint	optimizer	can	get	information	of	which	areas	the
operation	is	drawing	to.	As	a	matter	of	fact	the	repaint	optimizer	just	needs	to
iterate	through	all	marked	layers	(compare	Figure	2),	calling	the	Paint	method
of	each	layer	with	the	measuring	mode	enabled.	The	information	gathered	in
this	process	are	used	for	the	repaint	manager's	internal	optimization	work,	ie.
unifying	overlapping	areas	and	minimizing	the	number	of	rectangles	to	be
updated.
Profiling	has	shown,	that	the	measuring	process	adds	only	neglectable
overhead	to	the	repaint	process.	However,	the	developer	needs	to	take	care	of
certain	facts	in	his	custom	code	to	actually	take	advantage	of	the	performance
benefits	the	repaint	optimizer	offers.

Code	1 Code	2

begin
		MyDrawingOperation(Buffer);
		Buffer.Changed;
end;

begin
		if	not	Buffer.Measuringmode	then
				MyDrawingOperation(Buffer);
		Buffer.Changed(RectOfAreaThatWasChanged);
end;

Code	1	compared	to	Code	2	illustrates	the	required	changes	in	pseudo-Pascal-
code.	As	seen	in	the	Code	2,	a	simple	check	for	active	measuring	mode	is
introduced.	In	this	case	the	actual	drawing	operation	is	omitted.
If	the	developer's	code	includes	calls	to	the	Changed	method,	those	calls	need
to	be	changed	to	only	represent	the	changed	area	instead	of	the	whole	buffer
area.	Keeping	the	Changed	method	unmodified	will	force	a	complete	buffer
invalidation,	thus	the	effect	of	the	repaint	optimizer	and	the	partial	repaint
therefore	is	reversed.	Also,	the	custom	code	needs	to	be	fully	safe,	meaning	it
has	to	offer	full	clipping	support.
If	the	developer's	custom	code	solely	relies	on	the	safe	drawing	operations
provided	by	Graphics32,	there	is	no	need	to	change	this	code.	However,	doing

so	will	likely	result	in	better	performance	especially	if	the	custom	code	is
calling	many	safe	drawing	operations.	In	this	case	introducing	the	changes	of
Code	2	could	simplify	the	measuring	process	a	lot	by	overriding	all
subordinated	checks	by	one	superordinated	check	for	measuring	mode.
So,	to	sum	up,	there	are	two	possible	pitfalls	in	custom	code	that	can	occur
with	the	new	optimized	repaint	approach:

Changed	calls	need	to	be	taken	care	of	(or	else	the	whole	buffer	area	is
repainted).
Custom	code	has	to	be	clippable,	ie.	needs	to	obey	the	buffer's	ClipRect
property	(or	else	visual	artifacts	and	failures	appear).

4	Internals
As	already	mentioned	above,	the	repaint	optimizer	is	responsible	for
managing	and	optimizing	changed	areas,	which	are	described	by	rectangles.
Because	there	can	be	quite	a	lot	changes	happening	between	repaints,	the	area
information	has	to	be	saved	in	a	space-saving	and	performance-optimal
structure.
The	naive	approach	of	saving	all	rectangles	into	a	list	and	combining	them
once	the	repaint	optimizer's	method	PerformOptimization	is	called	is	not
suitable.	With	each	TRect	instance	being	16	byte	in	size,	the	memory	usage	is
unacceptable	for	large	sets.	The	overhead	of	reallocating	such	structures	is
also	noticeable.	Moreover	one	has	to	make	sure	not	to	add	several	overlapping
rectangles	to	the	list.	Using	an	algorithm	for	this	matter	adds	complexity	to	the
process.	Thus,	we	need	to	find	a	better	and	more	flexible	way	of	managing
possibly	overlapping	reactangles.

Figure	3:	Granularity	comparison	of	MicroTiles	and	Tiles
A	totally	different	approach	is	to	subdivide	the	buffer's	dimension	into	a
matrix.	Each	tile	of	this	matrix	would	be	responsible	for	a	32	x	32	pixel	area
in	the	buffer.	New	rectangles	would	simply	be	rendered	to	this	matrix.	The
memory	usage	stays	constant	because	the	matrix	size	is	in	fixed	relation	to	the
size	of	the	buffer	size.	Also,	the	problem	of	handling	overlapping	reactangles
is	also	easily	solved	by	rendering	to	the	matrix.	Additionally	unifying	tiles	to
bigger	rectangles	is	obviously	less	complex	than	the	approach	needed	for
determining	and	unifying	reactangles	from	a	list	structure.	However,	because
each	tile	of	our	matrix	only	holds	a	binary	value	(filled	or	emtpy),	the
granularity	(compare	Figure	3)	of	this	approach	is	quite	high	and	thus	too
much	information	is	lost.

The	method	used	in	Graphics32	1.8	is	based	on	the	tile	method	but	improves
the	granularity	problem	by	expanding	each	tile	in	the	matrix	from	a	binary
representation	to	an	integer	representation.

	
Figure	4:	Rectangle	rendered	to	32	x	32	Pixel	MicroTiles

So,	instead	of	only	having	to	restrict	to	full	or	empty	as	possible	values,	the
tile	contains	exactly	one	rectangle	that	can	further	define	the	content.	The	two
16-bit	values	in	the	32-bit	integer	of	each	tile	represent	the	upper	left	and
lower	right	corner	of	the	inscribed	rectangle	relative	to	the	upper	left	position
of	the	tile	(Figure	4).	This	allows	a	finer	granularity	and	in	the	worst	case	(tile
completely	filled	with	one	inscribed	rectangle)	the	solution	equals	the	tile
based	approach.	However,	most	times	the	result	is	better,	thus	more
information	about	the	original	shape	is	kept.
Because	each	coordinate	is	8-bit	wide,	the	tile	size	can	scale	up	to	256	x	256
in	size.
This	method	was	first	implemented	by	the	developer	of	libart	by	the	name
MicroTile	Arrays.	Graphics32	implements	an	optimized	version	of	its	own
and	mixes	that	with	some	specialities:	The	MicroTiles	Repaint	Optimizer
implements	a	simple	adaptive	algorithm	that	chooses	between	full	scene,	tile
and	MicroTile	based	operation	mode	depending	on	the	current	update
situation.
For	instance	with	many	small	rectangles	(500+)	the	MicroTiles	based
optimization	becomes	less	effective	and	can	pose	a	performance	overhead.	In
this	case	the	adaptive	algorithm	will	automatically	downgrade	to	the	next
lower	mode,	which	in	that	situation	is	the	tiles	based	mode.	Because	the
granularity	is	bigger	in	this	mode,	the	optimization	process	is	also	less
complex.	Once	the	situation	normalizes,	it	switches	back	to	MicroTiles	based
operation	mode.	Thus,	a	good	performance	should	be	guaranteed	in	almost	all
cases.

http://www.levien.com/libart/
http://www.levien.com/libart/uta.html

5	Benchmarks
The	Sprites_Ex	project	was	the	most	important	test	case	of	all	because	it	is
exceptional	in	the	way	that	it	shows	both,	the	strength	and	weaknesses	of	the
MicroTiles	based	approach.	For	our	tests	we've	extended	the	project	slightly	to
be	able	to	measure	the	effective	frames	(or	updates	therefore)	per	second.

(a)
	

(b)
Figure	5:	Benchmark	results	with	Sprites_Ex	on	PIII	1.13	GHz,

WinXP,	Geforce	2	mx
Figure	5	shows	two	results	of	benchmarking	with	different	canvas	resolutions.
Each	bitmap	layer	has	a	size	of	either	32	x	32	or	64	x	64	pixel	picked
randomly.	The	random	seed	used	in	the	benchmark	is	reproducible	for	each
test	machine,	thus	a	valid	comparision	is	possible.	As	seen	in	the	first	graph
(a)	the	MicroTiles	based	optimization	works	considerable	better	than	the	Tiles
based	approach.	However,	on	our	test	machine	it	becomes	less	effective
starting	with	70	changed	layers	and	finally	the	Tiles	based	approach	outpaces
it	starting	from	130	changed	layers,	because	the	higher	granularity	helps	while
combining	the	tiles	to	uniform	rectangles.	Using	the	MicroTiles	based
approach	results	in	too	many	rectangles,	which	in	this	situation	are	less
effective	than	fewer	combined	rectangles.	This	trend	continues	up	to	600
rectangles.	The	Tiles	based	approach	finally	converges	against	the	full	scene
repaint	with	MicroTiles	being	slightly	worse	due	to	the	overhead	involved.
With	so	many	layers	the	canvas	area	is	almost	completely	covered	with
updates.	For	Graph	(b)	the	results	are	slightly	shifted	due	to	the	bigger	canvas
size.	Both	graphs	show	that	the	adaptive	approach	works	well	enough	to	be	a
feasible	solution,	however,	the	overhead	of	the	balancing	and	scheduling	used
is	noticeable	in	the	switching	regions	of	the	graphs.
	

See	Also
Examples,	Paint	Stages,	TCustomPaintBox32.RepaintMode,	Sprites	Example,
TCustomImage32,	TCustomPaintBox32,	TRepaintMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

Sampling	and	Rasterization

Sampling
Sampling	is	a	very	important	concept	within	digital	image	processing	and
image	analysis.	Sampling	is	a	process	where	color	samples	are	acquired	given
their	logical	coordinates	in	the	(x,	y)	coordinate	space.	Graphics32	provides	a
special	class	called	TCustomSampler,	that	provides	the	necessary	mechanism
for	implementing	different	sampling	techniques.	A	sampler	can	be	conceived
as	a	scalar	function	f(x,	y)	that	returns	a	color	sample	given	a	logical
coordinate	(x,	y).	A	sample	may	be	created	synthetically	(this	is	a	common
technique	within	ray-tracing,	fractal	rendering	and	pattern	generation).	It	may
also	be	acquired	from	some	input	hardware	device.	Another	very	common
method	for	acquiring	samples	is	resampling.

Resampling
Resampling	is	the	process	of	reconstructing	samples	from	a	discrete	input
signal.	The	idea	can	also	be	extended	from	the	1D	case	to	2D.	In	the	2D	case
we	can	think	of	the	bitmap	as	our	signal.	We	have	a	number	of	pixels,	aligned
on	a	rectangular	square	grid.	Hence	we	only	know	the	actual	color	values	at	a
number	of	discrete	coordinates.	In	order	to	determine	the	color	value	of	a
sample	at	an	arbitrary	coordinate	in	a	continuous	image	space,	we	need	to
perform	interpolation	for	reconstructing	this	sample.
Descendants	of	TCustomResampler	implement	various	algorithms	for
performing	resampling	and	sample	acquisition.	A	general	algorithm
reconstructing	samples	is	to	perform	convolution	in	a	local	neighborhood	of
the	actual	sample	coordinate.	This	method	is	used	in	TKernelResampler,
where	a	convolution	filter	is	specified	by	the	TKernelSampler.Kernel	property.
Graphics32	includes	a	class	called	TCustomKernel	which	is	used	as	an
ancestor	class	for	various	convolution	kernels.	For	high	quality	resampling,
one	should	consider	using	a	kernel	that	approximates	the	ideal	low-pass	filter.
The	ideal	low-pass	filter	is	often	referred	to	as	a	sinc	filter.	It	can	be	described
by	the	formula

Since	this	function	has	infinite	extent,	it	is	not	practical	for	using	as	a
convolution	kernel	(because	of	the	computational	overhead).
TWindowedSincKernel	is	a	base	class	for	kernels	that	use	the	sinc	function
together	with	a	window	function	(also	known	as	tapering	function	or
apodization	function).	This	way	the	kernel	can	be	constrained	to	a	certain
width	and	reduce	the	amount	of	computations.
For	further	details	about	resampling,	see	Resamplers_Ex	example	project.

Rasterization
By	rasterizing	an	image,	we	collect	samples	for	each	pixel	of	an	output
bitmap.	The	rasterizer	is	responsible	for	the	order	in	which	output	pixels	are
sampled	and	how	the	destination	bitmap	is	updated.	A	rasterizer	class	is
derived	from	TRasterizer,	by	overriding	the	protected	DoRasterize	method.
Instances	of	TRasterizer	needs	to	be	associated	with	a	sampler	and	an	output
destination	bitmap.	Some	rasterization	schemes,	such	as	swizzling,	may
improve	cache-performance	for	certain	applications,	since	samples	are
collected	in	a	local	neighborhood	rather	than	row	by	row.	Rasterizers	can	also
provide	various	transition	effects	for	creating	transitions	between	bitmaps.
Graphics32	includes	the	following	rasterizers:

TRegularRasterizer	—	rasterizes	the	bitmap	row	by	row;
TProgressiveRasterizer	—	rasterizes	in	a	progressive	manner	by
successively	increasing	the	resolution	of	the	image;
TTesseralRasterizer	—	rasterization	by	sub-division;
TContourRasterizer	—	the	rasterization	path	is	determined	from	the
intensity	of	the	collected	samples.

Nested	sampling
If	the	input	of	one	sampler	is	the	output	from	another,	then	we	have	a	nested
sampler.	Nested	samplers	are	derived	from	the	class	TNestedSampler.
By	nesting	samplers,	it	is	possible	to	create	a	chain	of	nested	samplers
between	the	sampler	that	generates	the	actual	sample	and	the	rasterizer.	This
mechanism	is	illustrated	in	the	below	image.

There	are	many	different	useful	applications	for	nested	samplers.	A	sampler
may	be	associated	with	a	transformation.	This	will	transform	the	input
coordinate	that	is	passed	to	the	sampler	at	the	next	level.
It	is	possible	to	collect	more	than	one	sample	in	a	local	neighborhood	of	the
pixel	coordinate	of	the	output	pixel.	This	permits	the	use	of	techniques	such	as
super	sampling,	where	several	samples	are	collected	in	order	to	estimate	the
color	of	the	area	covered	by	a	pixel	in	the	destination	bitmap.	If	super
sampling	is	not	performed,	it	may	cause	jagginess	and	aliasing	artifacts	in	the
output	image.	However,	this	also	depends	on	what	kind	of	reconstruction
method	is	used	if	samples	are	resampled.
Another	important	class	of	nested	samplers	is	kernel	samplers.	Kernel
samplers	compute	an	output	sample	from	several	subsamples	in	a	local	region
of	the	input	coordinate.	Each	subsample	is	combined	with	a	kernel	value
(contained	within	a	TIntegerMap	object).	A	class-specific	kernel	operation	is
used	to	update	a	buffer	for	each	collected	sample.	This	permits	a	very
simplistic	implementation	of	convolution	and	morphological	operations.
The	following	is	a	list	of	the	different	nested	samplers	that	are	included	in
Graphics32.

Transformers

TTransformer	—	transforms	coordinates	using	an	associated
TTransformation	object;
TNearestTransformer	—	the	same	as	above,	but	for	nearest
neighbor	resampling.

Super	samplers

TSuperSampler	—	performs	regular	super	sampling;
TAdaptiveSuperSampler	—	performs	adaptive	super	sampling;
TPatternSampler	—	performs	sampling	according	to	a	predefined
pattern.

Kernel	samplers

TConvolver	—	performs	convolution;
TSelectiveConvolver	—	performs	selective	convolution;
TDilater	—	performs	morphological	dilation;
TEroder	—	performs	morphological	erosion;
TExpander	—	special	expansion	operation;
TContracter	—	special	contraction	operation.

For	further	details	about	nested	sampling,	see	the	NestedSampling_Ex
example	project.

See	Also
TKernelSampler.Kernel,	Nested	Sampling	Example,	Resamplers	Example,
TAdaptiveSuperSampler,	TContourRasterizer,	TContracter,	TConvolver,
TCustomKernel,	TCustomResampler,	TCustomSampler,	TDilater,	TEroder,
TExpander,	TIntegerMap,	TKernelResampler,	TNearestTransformer,
TNestedSampler,	TPatternSampler,	TProgressiveRasterizer,	TRasterizer,
TRegularRasterizer,	TSelectiveConvolver,	TSuperSampler,
TTesseralRasterizer,	TTransformation,	TTransformer,	TWindowedSincKernel

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home Using	TImage32

Bitmap	Image

A	bitmap	image	is	represented	with	a	TBitmap32	object	and	is	stored	in	the
Bitmap	property.	Its	scale	and	location	within	the	control	is	determined	by	the
following	properties:
BitmapAlign	—	specifies	if	the	bitmap	image	is	positioned	at	the	top-left
corner	of	the	control	(baTopLeft),	centered	(baCenter),	tiled	(baTile)	or	it	its
exact	location	is	determined	by	OffsetHorz	and	OffsetVert	properties;
ScaleMode	—	indicates	if	the	bitmap	image	is	displayed	with	its	original	size
(smNormal),	stretched	to	fit	the	control's	boundaries	(smStretch),
proportionally	resized	to	fit	the	control's	boundaries(smResize)	or
proportionally	scaled	using	its	Scale	property	(smScale).

The	bitmap	image	is	combined	with	the	back-buffer	according	to	its
DrawMode	property.	And	the	quality	of	its	resampling	is	determined	by	the
StretchFilter	property.	If	its	DrawMode	is	dmCustom,	the	bitmap	will	fire	a
series	of	OnPixelCombine	events.

See	Also
TCustomImage32.Bitmap,	TCustomImage32.BitmapAlign,
TBitmap32.DrawMode,	Image32	Example,	TCustomImage32.OffsetHorz,
TCustomImage32.OffsetVert,	TCustomImage32.OnPixelCombine,
TCustomImage32.Scale,	TCustomImage32.ScaleMode,
TBitmap32.StretchFilter,	TBitmap32,	TDrawMode,	TStretchFilter

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home Using	TImage32

Paint	Stages

An	order	in	which	TImage32	blends	layers	and	bitmap	image	to	its	back-
buffer	is	specified	by	paint	stages.
For	example,	the	default	sequence	of	operations	includes:

Clearing	the	visible	area	of	the	background,	that	is	the	parts	of	the
buffered	area	which	are	not	covered	by	the	bitmap	image,	or	the	whole
buffer,	if	the	bitmap	image	is	not	in	dmOpaque	draw	mode;
Drawing	the	dotted	frame	around	the	control	boundaries	(design-time
only);
Drawing	the	scaled	bitmap	image;
Framing	the	area	of	the	scaled	bitmap	image	with	the	dotted	frame
(design-time	only);
Drawing	layers;

It	is	possible	to	change	the	order	in	which	stages	execute	at	run-time,	add	new
stages,	delete	old	ones,	etc.,	using	the	PaintStages	property	of	TImage32,
which	is	basically	a	dynamic	indexed	list	of	stages.

TPaintStage	Record
Each	paint	stage	is	defined	with	a	TPaintStage	record:

type	TPaintStage	=	record	
		DsgnTime:	Boolean;	
		RunTime:	Boolean;	
		Stage:	Cardinal;	//	a	PST_*	constant	
		Parameter:	Cardinal;	//	an	optional	parameter	
end;

where	the	Stage	member	holds	one	of	the	Paint	Stage	Constants	and	defines
the	action	associated	with	the	stage.
All	stages	include	additional	parameter,	which	may	be	ignored	or	may	be	used
to	store	additional	stage	options.	For	example,	PST_DRAW_LAYERS	stage
uses	its	parameter	as	a	32-bit	mask	to	filter	out	invisible	layers.
By	default,	TImage32	contains	the	following	stages:

DsgnTime RunTime Stage Parameter
0 True True PST_CLEAR_BACKGND not	used
1 False True PST_CONTROL_FRAME not	used
2 True True PST_DRAW_BITMAP not	used
3 False True PST_BITMAP_FRAME not	used
4 True True PST_DRAW_LAYERS $80000000

See	'Using	Layers'	for	explanation	on	parameter	value	in
PST_DRAW_LAYERS	stage.

Customizing	TImage32	at	Run-Time
A	PST_CUSTOM	stage	deserves	a	little	bit	deeper	explaination.	It	causes	the
control	to	issue	an	OnPaintStage	event,	thus	allowing	to	change	TImage32
behavior	at	run-time.
The	OnPaintStage	event	is	of	a	TPaintStageEvent	type:

type	TPaintStageEvent	=	procedure(Sender:	TObject;	Dest:
TBitmap32;	StageNum:	Cardinal)	of	object;

In	the	event	handler,	application	can	perform	some	custom	operations	over	the
back-buffer	of	the	control.
Note,	that	by	default,	TImage32	does	not	generate	OnPaintStage.	In	order	to
make	it	to	do	so,	you	have	to	insert	a	new	stage	in	the	PaintStages	list,	and	set
its	Stage	to	PST_CUSTOM,	or	change	one	of	the	existent	stages,	for	example:

type
		TForm1	=	class(TForm)
				Image32:	TImage32;
				procedure	Image32InitStages(Sender:	TObject);	//	OnInitStages
				procedure	Image32PaintStage(Sender:	TObject;	Dest:
TBitmap32;	StageNum:	Cardinal);	//	OnPaintStage

		private
				{	Private	declarations	}
		public
				{	Public	declarations	}
		end;
	
var
		Form1:	TForm1;
	
implementation
	
{$R	*.DFM}

procedure	TForm1.Image32InitStages(Sender:	TObject);
begin
		//	change	default	PST_CLEAR_BACKGND	(0-th	stage)	to	a
custom	handler

		with	Image32.PaintStages[0]	do

		begin
				Stage	:=	PST_CUSTOM;
				Parameter	:=	1;	//	use	parameter	to	tag	the	stage
		end;
	
		//	insert	another	custom	stage	after	the	bitmap	image
		//	was	drawn,	but	before	the	control	starts	painting	layers
		with	Image32.PaintStages.Insert(4)	do
		begin
				//	Note	that	for	new	stages	RunTime	=	True	by	default
				Stage	:=	PST_CUSTOM;
				Paramteter	:=	2;	//	use	parameter	to	tag	the	stage
		end;
end	;
	
procedure	TForm1.Image32PaintStage(Sender:	TObject;	Dest:
TBitmap32;	StageNum:	Cardinal);

begin
		//	OnPaintStage	Handler
		case	Image32.PaintStages[StageNum].Parameter	of
				1:	//	do	something	with	the	background
				2:	//	call	another	handler
		end;
end;

GDI	Overlays
[Note:	Most	likely	GDI	Overlays	will	not	be	used	in	future	versions.	Do	not
use	it]
A	final	step	in	TImage32	repainting	is	the	drawing	of	GDI	overlays.	This
operation	is	performed	after	the	bitmap	image	and	layers	have	been	combined
in	a	back	buffer	and	copied	to	the	screen	canvas.
At	this	stage,	TImage32	fires	the	OnGDIOverlay	event,	where	you	can
perform	drawing	using	the	standard	Canvas	of	the	TImage32.
The	main	reason	for	introducing	this	stage	is	that	painting	of	GDI	overlays
does	not	affect	the	contents	of	the	buffer,	that	is	changes	in	overlay	image	will
not	cause	the	buffer	invalidation,	however	GDI	overlays	have	to	be	repainted
each	time	the	control	repaints	itself,	and	they	are	not	flicker-free.

See	Also
TCustomImage32.OnGDIOverlay,	TCustomImage32.OnPaintStage,	Paint
Stage	Constants,	TCustomImage32.PaintStages,	TPaintStage,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home Using	TImage32

Using	Layers

TImage32	holds	an	indexed	collection	of	layers,	referenced	by	the	Layers
property.	The	number	of	layers	is	limited	only	by	the	amount	of	free	memory.
Each	layer	is	an	entity,	which	basically	'knows'	how	to	paint	itself	to	the	back-
buffer	of	the	control	and	how	to	interact	with	the	mouse.	Layers	are	indexed
and	their	indexes	are	similar	to	the	Z-order	of	standard	controls.	Layers	with
smaller	indexes	are	considered	to	lie	deeper.	This	common	behavior	is
implemented	in	the	TCustomLayer	class.

Common	Properties	and	Methods
The	basic	layer's	behavior	is	controlled	by	its	LayerOptions	property,	which	is
a	32-bit	unsigned	integer	value	composed	of	Layer	Options	Bits.	This	property
allows	for	fast	and	relatively	simple	referencing	of	layers	and	groups	of	layers.
Consider,	for	example,	the	LOB_VISIBLE	bit	(31-st	bit	in	layer	options).
When	TImage32	repaints	its	layers	at	PST_DRAW_LAYERS	stage,	it	uses	the
stage	parameter	from	corresponding	TPaintStage	record	as	a	bit-mask	(default
value	is	LOB_VISIBLE=$80000000).	Being	compared	(logical	AND
operation)	with	LayerOptions	of	each	layer,	this	mask	determines	whether	the
layer	should	be	painted	or	not.
Similar	situation	is	with	reaction	to	mouse	messages	(see	below).
Using	LayerOptions	you	can	easily	customize	the	appearance	and	modify	the
order	of	in	thich	TImage32	repaints	layers.	For	example,	you	may	assign
several	categories	to	layers,	using	lower	24-bits	of	LayerOptions	and	then	just
change	the	mask	in	corresponding	TPaintStage	record	to	specify	exactly
which	category	you	want	do	be	displayed.
More	of	that,	remember,	that	you	can	insert	several	PST_DRAW_LAYERS
paint	stages	(even	before	the	PST_DRAW_BITMAP	stage),	each	with	its	own
mask,	or,	alternatively,	call	ExecDrawLayers	while	handling	PST_CUSTOM
stages.	Basically	it	means,	that	you	can	realize	almost	any	complex	repainting
scheme,	like	overlay	layers,	underlay	layers,	layers,	which	are	always	on	top...
or	always	in	the	background,	etc.

Tracking	the	Mouse
Each	layer	is	capable	of	responding	to	mouse	down/move/up	messages,	which
are	routed	to	OnMouseDown,	OnMouseMove	and	OnMouseUp	events	of	the
container	(TImage32	control).	Only	one	layer	can	receive	a	mouse	message	at
the	time.
Searching	for	the	layer	that	receives	a	mouse	message	starts	from	the	top-most
layer	and	ends	when	the	first	layer	satisfying	both	of	the	following	conditions
is	found:

Layer	has	LOB_MOUSE_EVENTS	bit	activated	in	its	LayerOptions;
Layer	passes	a	hit	test	(see	below);

There	is	also	a	possibility	to	disable	passing	of	all	mouse	messages	to	layers.
Just	set	the	MouseEvents	property	of	the	layer	collection	to	False,	and
TImage32	will	generate	mouse	events	right	away,	without	checking	for
possible	receiving	layer.
As	stated	earlier,	layer	should	pass	a	hit	test	in	order	to	receive	mouse
message.	The	hit	test	is,	basically	a	boolean	responce	to	a	couple	of
coordinates,	accomplished	by	the	HitTest	method:

function	HitTest(X,	Y:	Integer):	Boolean;	virtual;
X	and	Y	parameters	here	are	the	coordinates	of	the	point	specified	relative	to
the	top-left	corner	of	TImage32	(in	pixels).	The	function	returns	a	value	that
indicates	that	the	layer	is	'there'.	This	function	is	overriden	in	descendants,	for
example,	in	TBitmapLayer,	this	hit	test	may	take	into	consideration	values
stored	in	the	alpha	channel	of	the	contained	bitmap.	You	can	also	write	a
handler	for	OnHitTest	event	to	customize	hit	tests	at	run-time.
Similar	to	standard	controls,	layers	may	also	capture	mouse	messages.	By
default,	all	mouse	messages	are	captured	automatically	once	the	mouse	is
pressed	on	top	of	the	layer	and	until	the	mouse	is	released.	The	layer	that	has
captured	the	mouse	is	pointed	by	the	MouseListener	property	of	the	layer
collection.	(There	is	a	few	things	to	work	on	here...	will	do	it	later).

Painting	Layers
Layers	are	painted	in	bottom-to-top	order,	starting	from	lower	indexes.	By
default,	only	visible	layers	are	painted,	that	is	the	ones	with	LOB_VISIBLE
bit	set,	but	as	it	was	shown	above,	this	order	may	be	changed.

Positioned	Layers
Positioned	layers	are	the	layers,	you	will	probably	use	most	of	the	time.	The
base	class	for	positioned	layers	is	TPositionedLayer.	In	addition	to	basic	layer
behavior,	it	introduces	Location	property	(of	the	TFloatRect	type),	which
specifies	layer's	position	and	size.	Having	location	specified	as	a	floating	point
rectangle	helps	to	avoid	rounding	errors	when	layers	are	resized.
The	location	can	be	specified	in	pixels,	relative	to	TImage32	top-left	corner,	or
in	scaled	pixels,	relative	to	the	top-left	corner	of	the	bitmap	image.	In	the
second	case,	the	scale	of	the	layer	coincides	with	the	scale	of	the	bitmap
image	and	the	actual	location	of	the	layer	relative	to	the	top-left	corner	of
TImage32	may	be	obtained	with	its	GetAdjustedLocation	method.

See	Also
Bitmap	Image,	TCustomImage32.ExecDrawLayers,
TPositionedLayer.GetAdjustedLocation,	TCustomLayer.HitTest,	ImgView	and
Layers	Example,	Layer	Options	Bits,	TCustomLayer.LayerOptions,
TCustomImage32.Layers,	TPositionedLayer.Location,
TLayerCollection.MouseEvents,	TLayerCollection.MouseListener,
TCustomLayer.OnHitTest,	TCustomImage32.OnMouseDown,
TCustomImage32.OnMouseMove,	TCustomImage32.OnMouseUp,
TBitmapLayer,	TCustomLayer,	TFloatRect,	TPaintStage	Record,
TPositionedLayer,	TRubberbandLayer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

Contributors

(in	alphabetical	order):
v1.8.x

Mattias	Andersson	<mattias@centaurix.com>:
GR32.pas:
-	Added	fast	integer	versions	of	HSLtoRGB	and	RGBtoHSL
-	Added	TCustomSampler	and	TCustomResampler
-	Added	dmTransparent	draw	mode
-	Added	TBitmap32.WrapMode	property
-	Added	TBitmap32.PixelW	property
GR32_LowLevel.pas:
-	Added	clamp,	wrap	and	mirror	routines
GR32_OrdinalMaps.pas:
-	Initial	developer
-	Added	TBooleanMap,	TWordMap	and	TIntegerMap
GR32_Resamplers.pas:
-	Initial	developer
-	Added	TCustomKernel	and	descendant	classes
-	Added	TBitmap32Resampler	and	descendant	classes
-	Added	TNestedSampler
-	Added	TTransformer
-	Added	TSuperSampler,	TAdaptiveSuperSampler	and	TPatternSampler
-	Added	TKernelSampler	and	descendant	classes
-	Added	auxiliary	routines	for	convolution	and	morphological	operations
-	Optimized	TKernelResampler.GetSample	(with	Michael)
-	Added	BlendTransfer	routine
-	Added	CreateJitteredPattern	routine
GR32_Rasterizers.pas:
-	Initial	developer
-	Added	TRasterizer	and	descendant	classes
GR32_Transforms.pas:
-	Updated	Transform	procedure
GR32_ExtImage.pas:

-	Initial	developer
-	Added	TSyntheticImage	and	TRenderThread
-	Added	Rasterize	auxiliary	routine
GR32_Containers.pas:
-	Added	TClassList
Examples:
-	Mandelbrot	Example
-	Nested	Sampling	Example
-	Resampler	Example
	
Andre	Beckedorf	<andre@metaexception.de>:
GR32.pas:
-	Added	MeasuringMode	and	changed	area	notification	required	for	repaint
optimizer	(BeginMeasuringMode,	EndMeasuringMode,	OnAreaChanged)
GR32_Containers.pas:
-	Added	TPointerMap	and	TPointerMapIterator
-	Added	TRectList
GR32_Image.pas:
-	Added	support	for	repaint	optimization	to	display	components
(TCustomPaintBox32,	TCustomImage32,	TCustomImgView32)
-	Added	property	to	control	scrollbar	visibility
(TCustomImgView32.Scrollbars.Visibility)
-	Added	independent	X	and	Y	scale	properties	in	TCustomImage32	along
with	new	OnScaleChange	event
-	Added	additional	scale	modes	smOptimal	and	smOptimalScaled
-	Added	RepaintMode	property	to	control	whether	to	use	repaint	optimizer,
direct	or	full	scene	repaint
GR32_Layers.pas:
-	Replaced	CoordXForm	property	with	more	flexible	GetViewportShift	and
GetViewportScale	methods	in	TLayerCollection	(e.g.	for	nested	layers)
-	Added	support	for	repaint	optimization	to	TCustomLayer	descendants
-	Added	new	Update	methods	to	TCustomLayer
GR32_LowLevel.pas:
-	Initial	support	for	FastCode	routines
GR32_MicroTiles.pas:
-	MicroTiles	and	Tiles	auxiliary	routines

-	MicroTiles	Repaint	optimizer
-	Adaptive	balancing
-	MMX	optimization	for	MicroTileUnion
GR32_Polygon.pas:
-	Added	additional	2x	and	32x	supersampling	mode
-	Performance	optimization
GR32_RepaintOpt.pas:
-	Abstract	Repaint	optimizer	class
GR32_System.pas:
-	Added	support	for	EMMX	detection	(used	in	repaint	optimizer)
-	Added	TPerfTimer	class	along	with	global	performance	timer
-	Added	GetTickCount	derivative	for	Linux
-	Fixed	AV	when	using	Graphics32	in	DLLs	on	WinXP
Examples:
-	Modified	Sprites_Ex,	ImgView32_Ex,	GradLines_Ex,	Polygons_Ex	and
Image32_Ex	Example
	
Michael	Hansen	<dyster_tid@hotmail.com>:
GR32.pas:
-	Fixed	Math	related	additions
-	Auxiliary	rectangle	routines
-	Misc.	array	types
-	Added	TColor32Component,	TColor32Components	and	related	routines
(TColorEntry	updated)
-	Optimized	TBitmap32.ResetAlpha
GR32_Layers.pas:
-	Enhancements	to	TRubberbandLayer
GR32_Lowlevel.pas:
-	MMX	optimized	FillLongword
GR32_Filters.pas:
-	ASM/MMX/EMMX	optimized	Invert
-	Added	fast	CopyComponents	routine	for	copying	selected	ARGB
components	btwn.	bitmaps
-	Added	ASM/MMX/EMMX	ApplyBitmask	routine	for	bitwise
Xor/Or/And	operations	using	a	bitmask

GR32_OrdinalMaps.pas	(new	unit):
-	Minor	tweaks	for	TByteMap
GR32_Resamplers.pas	(new	unit):
-	Added	kmTableLinear	and	kmTableNearest	kernel	modes
-	Optimized	TLinearResampler
-	Fixed	TDraftResampler
-	GetSampleFloat	optimizations
-	New	overloaded	BlendTransfer	routine,	supporting	TBlendRegEx	and
MasterAlpha
-	New	PixelAccessMode	pamTransparentEdge	as	a	dynamic	and	fast
alternative	to	SetBorderTransparent
-	Minor	tweaks	in	TPatternSampler
-	Minor	optimizations	in	pamTransparentEdge	related	routines
GR32_Transforms.pas:
-	Added	following	transformation	types:
-	TTwirlTransformation
-	TBloatTransformation
-	TDisturbanceTransformation
-	TFishEyeTransformation
-	TRemapTransformation

-	Additional	performance	tuning
GR32_VectorMaps.pas	(new	unit):
-	Initial	developer
-	Added	TVectorMap,	supporting	loading	and	saving	in	Photoshop	.msh
format
Examples:
-	Image	Warping	Example
-	Visualization	Example
-	Resample	Example
-	Texture	blend	Example
-	Additional	updates	to	various	examples	(see	sources)

v1.7	and	v1.6

Mattias	Andersson	<mattias@centaurix.com>:
GR32.pas:

-	Tweaks
-	PixelF/X	property
-	Some	minor	CLX/Kylix	tweaks
-	Added	CombineMode
GR32_Image.pas:
-	Ported	to	CLX/Kylix
GR32_Polygons.pas:
-	Added	TPolygon32.ContainsPoint	method
GR32_Transforms.pas:
-	Added	sfCosine	resampling	filter
GR32_Blend.pas
-	Pascal	and	MMX	version	of	Merge	algorithm
-	Added	MMX	versions	of	almost	all	PixelCombine	functions
Andre	Beckedorf	<andre@metaexception.de>:
GR32.pas:
-	Added	Unicode	text	methods
-	Ported	to	CLX/Kylix
-	Added	CombineMode
-	Added	clipping	rect	support
-	pixel-perfect	line	drawing	methods	(LineS,	LineTS,	LineAS)
GR32_Image.pas:
-	Some	part	of	the	CLX/Kylix	related	changes	in	this	unit
-	Added	new	overrideable	Mouse*	methods	with	Layer	information
-	Added	OverSize	property	in	TCustomImgView32
GR32_Layers.pas:
-	enhancements	to	TRubberbandLayer
GR32_Polygon.pas:
-	Added	option	for	dynamic	antialias	level	adjustment	at	runtime	along	with
4x	supersampling	mode
-	Added	support	for	custom	polygon	fillings	(TCustomPolygonFiller,
TBitmapPolygonFiller)	and	transformations
-	Added	support	for	clipping	to	rect
-	Added	PolylineXSP	and	PolyPolylineXSP
-	Additional	performance	tuning
GR32_RangeBars.pas:
-	Ported	to	CLX/Kylix

GR32_System.pas:
-	Added	support	for	SSE,	SSE2,	3DNow	and	3DNow	Ext	detection
GR32_Transforms.pas:
-	Update	to	transformation	classes	to	make	them	suited	for	general	usage
Michael	Hansen	<dyster_tid@hotmail.com>:
GR32.pas:
-	PixelF/X	property
-	MMX	optimized	GetPixelF/X	FS/XS	functions
GR32_Blend.pas:
-	Added	Difference	and	Exclusion	PixelCombine	functions	(Pascal)
-	Added	PixelCombine	function	setup,	to	support	non	MMX	cpus
-	Worked	out	bugfix	for	"not	fully	opaque"	problem	in	some	blendroutines
GR32_Transforms.pas:
-	Added	sfDraft	resampling	routines
-	MMX	optimized	sfLinear	and	sfDraft
-	Updated	Transform	to	use	PixelX	and	PixelXS

Contributors:
Arioch	/BDV/:
GR32.pas
-	Added	WinPalette	function.	(merged	by	Mattias	with	some	modifications)
Thomas	Bauer:
GR32.pas:
-	Some	bugfixes	(merged	by	Andre)
GR32_Transforms.pas:
-	FullEdge	related	bugfixes	(merged	by	Andre)
Soumitra	Bhattacharjee:
GR32_Polygons.pas:
-	Added	PtInPolygon	function.	(merged	by	Mattias	with	some
modifications)
Greg	Chapman:
GR32_Filters.pas:
-	Report	and	bugfix	for	the	CheckParams	problem	in	ApplyLUT.	(merged

by	Andre)
Cleber:
GR32.pas:
-	Added	Color32ToRGB(A).	(merged	by	Andre)

Dieter	Köhler:
GR32_Layers.pas:
-	TLayerCollection.LocalToViewport
-	TLayerCollection.ViewportToLocal
-	TPositionedLayer.GetAdjustedRect	(all	merged	by	Andre)
Marc	Lafon:
GR32_Image.pas:
-	Custom	color	properties	for	the	bars	(merged	by	Andre)
Peter	Larson:
GR32_Polygons.pas:
-	Initial	work	on	polygon	transformation	and	bitmap	pattern	filling.
-	Some	optimizations	in	polygon	setup.
GR32_Transforms.pas:
-	TransformPoints	routine.
Gerd	Platl	:
Documentation:
-	Illustration	for	TPolyFillMode
Andrew	P.	Rybin:
GR32_Image.pas:
-	MouseEnter/MouseLeave	(merged	by	Andre	with	some	changes	to	match
structure)
J.	Tulach:
GR32.pas:
-	Additional	handling	of	chroma	transperancy	in	TBitmap32.Assign
(merged	by	Andre	with	some	modifications	and	comments).
GR32_Transforms.pas:
-	C++	Builder	workaround	(merged	by	Andre)
Bob	Voigt:
GR32_Blend.pas:

-	ColorMul	and	ColorDiv	(merged	by	Andre)
Jens	Weiermann:
GR32_Filters.pas:
-	enhancements	to	ApplyLUT	and	ColorToGrayscale	that	preserve	alpha
channel	(merged	by	Andre)
Norbert	Witternigg:
-	updated	the	example	project	files	to	Borland	C++	Builder	6.

See	Also
Repaint	Optimization

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.BitmapHandle

property	BitmapHandle:	HBITMAP;	//	read-only;

Description
Returns	current	bitmap	handle.	See	HBITMAP	in	Windows	SDK
documentation	for	more	information.
Note,	this	property	is	not	the	same	as	Handle,	which	returns	device	handle
(HDC).

This	property	is	only	available	in	the	VCL	version.	For	CLX	use	the
property	Pixmap	instead.

See	Also
Handle,	PixelPtr,	Pixmap,	ScanLine

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.BitmapInfo

property	BitmapInfo:	TBitmapInfo;	//	read-only;

Description
Returns	a	BITMAPINFO	record	corresponding	to	a	current	DIB	data.	See
BITMAPINFO	in	Windows	SDK	documentation	for	more	information.
	
This	property	is	only	available	in	the	VCL	version.

See	Also
PixelPtr,	ScanLine

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Bits

property	Bits:	PColor32Array;	//	Read-only
type	TColor32Array	=	array	[0..0]	of	TColor32;
type	PColor32Array	=	^TColor32Array;

Description
The	bits	property	contains	the	address	of	the	first	(top-left)	pixel	in	a	bitmap.
If	the	bitmap	is	not	allocated	(width	or	height	is	zero),	the	returned	address	is
nil.
Note,	that	numbering	of	rows	in	Graphics32	starts	from	the	top-most	one.
Data	is	continuously	allocated	in	memory,	row	by	row.	You	may	safely	access
Width	*	Height	elements,	each	of	them	is	a	4-byte	TColor32	value.	For
example:

var
		P:	PColor32Array;
begin
		P	:=	Bitmap32.Bits;
		for	I	:=	0	to	Bitmap32.Width	*	Bitmap32.Height	-	1	do
				P[I]	:=	Gray32(Random(255));	//	fill	with	a	random	grayscale	noise
end;

Note,	that	in	this	code	no	size	verification	is	required,	if	width	or	height	is
zero,	their	product	is	zero	and	the	loop	will	never	be	executed.

See	Also
TCustomMap.Height,	PixelPtr,	ScanLine,	TColor32,	TColor32Array,
TCustomMap.Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Canvas

property	Canvas:	TCanvas;	//	read-only;

Description
Returns	current	Canvas	instance.	You	can	use	that	to	draw	onto	the	bitmap.
However	the	methods	provided	by	TCanvas	are	mostly	slower	than	using	their
native	Bitmap32	counterparts.	So	try	to	avoid	the	usage	of	Canvas	where
possible.
Special	note	for	CLX	users:	Due	to	the	way	QT	is	handling	image	and
bitmap	data,	please	try	to	avoid	using	only	single	Canvas	operations.	Every
time	you	access	the	Canvas,	the	internal	QImage	is	unavoidably	copied	to	a
QPixmap	representative	and	copied	back	once	the	Bits	property	or	any	other
internal	method	is	accessed.	So,	if	you	access	the	Bits	and	Canvas	properties
in	short	interval	after	each	other,	that	poses	a	heavy	performance	hit	due	to
copying	the	QImage	to	QPixmap	back	and	forth.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Clipping

property	Clipping:	Boolean;

Description
Determines	if	a	clipping	rect	was	set.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.ClipRect

property	ClipRect:	TRect;

Description
Determines	the	clipping	rectangle	that	all	safe	drawing	operations	are	clipped
to.
If	no	clipping	rectangle	is	set,	ClipRect	is	equal	to	the	current	dimension	of
the	bitmap.
Note:	Validation	is	performed	upon	setting	of	a	clipping	rect,	so	the	clip	rect	is
always	sane.
	

See	Also
Naming	Conventions

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.CombineMode

property	CombineMode:	TCombineMode;
type	TCombineMode	=	(cmBlend,	cmMerge);

Description
TCombineMode	defines	how	drawing	operations	on	the	bitmap	combine	the
foreground	color	with	the	background.
It	also	determines	how	the	bitmap	is	combined	with	the	background	of	another
bitmap	when	DrawMode	is	set	to	dmBlend.

cmBlend	-	Fast	blending	of	foreground	color	with	the	background	color
using	the	supplied	alpha.	This	method	is	not	suited	for	working	and
preserving	alpha-channels.	Use	this	if	you	want	to	blend	directly	to	the
display	buffer.	Internally	uses	Blend	and	BlendEx	routines.
cmMerge	-	Uses	a	completely	different	formula	that	also	merges	the
alpha-channels.	This	mode	is	slower	than	blending	but	is	suited	for
working	with	alpha-channels	(eg.	when	composing	in	temporary	buffers).
Internally	uses	Merge	and	MergeEx	routines.

	

See	Also
Blend,	BlendEx,	Draw,	DrawMode,	DrawTo,	Merge,	MergeEx,
TCombineMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.DrawMode

property	DrawMode:	TDrawMode;
type	TDrawMode	=	(dmOpaque,	dmBlend,	dmCustom);

Description
Specifies	how	the	bitmap	should	be	combined	with	a	background	during	pixel
transfer	and	similar	operations.
In	dmOpaque	mode,	new	pixels	simply	replace	the	background	pixels.	In
dmBlend	mode,	they	are	combined	using	the	alpha	blending	operation
defined	by	CombineMode.	This	property	is	used	while	copying	one	bitmap
into	another,	scaling,	performing	linear	transformations	etc.	The	dmCustom
mode	allows	implementation	of	custom	blending	functions	using	the
OnPixelCombine	call-back	event.	

See	Also
CombineMode,	Draw,	DrawTo,	OnPixelCombine,	TDrawMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Font

property	Font:	TFont;

Description
Specifies	a	current	font	used	by	text	output	functions.

See	Also
RenderText,	TextOut,	UpdateFont

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Handle

This	following	only	applies	to	the	VCL	version	of	Graphics32:

property	Handle:	HDC;	//	read-only

Description
Provides	device	handle	of	the	contained	DIB.
This	handle	may	be	used	in	low-level	Windows	API	calls	or,	for	example,	to
attach	a	TCanvas	object	to	TBitmap32:

var
		Canvas:	TCanvas;
begin
		Canvas	:=	TCanvas.Create;	//	create	a	new	independent	TCanvas
object

		try
				Canvas.Handle	:=	Bitmap32.Handle;	//	attach	it	to	the	Bitmap32
object

				Canvas.Pen.Color	:=	clRed;	//	use	standard	TCanvas	methods	for
drawing

				Canvas.Brush.Color	:=	clGreen;
				Canvas.Ellipse(10,	10,	60,	40);
		finally
				Canvas.Free;
		end;
end;

Handle	contains	zero,	if	the	bitmap	is	empty	(width	or	height	is	zero),	and	its
value	can	change	after	resizing.
This	example	is	just	a	simple	illustration	of	using	the	Handle	property.	For
more	information	on	using	the	TCanvas	object	with	TBitmap32,	see	the
Canvas	property.
	

This	following	only	applies	to	the	CLX	version	of	Graphics32:

property	Handle:	QPainterH;	//	read-only

Description
This	provides	a	pointer	to	the	current	instance	of	the	QPainterH	in
TBitmap32.
You	can	use	this	QPainter	instance	in	external	functions.	However	please
notice,	that	the	QPainter	is	not	associated	with	the	QPixmap	of	TBitmap32.
You'll	have	to	call	QPainter_begin	and	QPainter_end	manually	to	do	so.	See
the	QT	docs	for	more	information	on	this	topic.

http://doc.qt-developer.org/class.php?class=QPainter

See	Also
Canvas,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.MasterAlpha

property	MasterAlpha:	TColor32;

Description
When	blending	a	bitmap	to	the	screen	or	to	another	bitmap,	MasterAlpha
normally	controls	the	blending	factor.	The	per-pixel	opacity,	stored	in	the
blended	bitmap,	is	premultiplied	with	MasterAlpha.	If	the	MasterAlpha
property	is	$00,	the	bitmap	will	be	fully	transparent,	if	it	is	equal	to	$FF,	only
per-pixel	opacity,	stored	in	bitmap’s	alpha	channel	is	used.	This	property	is
used	only	for	bitmap	blending,	it	does	not	affect	pixel/line	drawing	and	other
similar	routines.
When	blending	bitmaps	in	dmCustom	draw	mode,	this	property	may	be	used
for	other	purposes.	Custom	combining	routine	may	use	all	32	bits	of
MasterAlpha.
If	the	bitmap	is	in	dmBlend	draw	mode	and	MasterAlpha	is	not	in	the	[0…
255]	range,	the	blending	result	is	not	specified,	it	is	your	responsibility	to	keep
MasterAlpha	consistent	with	current	draw	mode.

See	Also
DrawMode,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.MeasuringMode

property	MeasuringMode:	Boolean;	//	readonly

Description
Determines	if	the	bitmap	is	in	measuring	mode.	In	this	mode	drawing	to	the
bitmap	is	only	simulated.	That	is,	drawing	is	actually	omitted,	but	the
OnAreaChanged	event	is	still	triggered.
For	detailed	description	please	refer	to	the	additional	topic	dealing	with
repaint	optimization.

See	Also
MeasuringMode,	OnAreaChanged,	Repaint	Optimization

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.OuterColor

property	OuterColor:	TColor32;

Description
This	property	specifies	the	color	returned	by	PixelS	property	when	reading	the
pixel	with	coordinates	that	lie	outside	the	bitmap.	The	default	value	is
$00000000,	which	corresponds	to	a	fully	transparent	black.	It	is	also	used
when	performing	linear	transformations	of	a	bitmap.

See	Also
Pixel,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.PenColor

property	PenColor:	TColor32;

Description
Simulates	TCanvas.Pen.Color	property.	PenColor	is	used	exclusively	in
MoveTo/LineTo	functions.

See	Also
LineTo,	MoveTo,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Pixel

property	Pixel[X,	Y:	Integer]:	TColor32;	default;
property	PixelS[X,	Y:	Integer]:	TColor32;
property	PixelW[X,	Y:	Integer]:	TColor32;

property	PixelX[X,	Y:	TFixed]:	TColor32;
property	PixelXS[X,	Y:	TFixed]:	TColor32;
property	PixelXW[X,	Y:	TFixed]:	TColor32;

property	PixelF[X,	Y:	Single]:	TColor32;
property	PixelFS[X,	Y:	Single]:	TColor32;
property	PixelFW[X,	Y:	Single]:	TColor32;

Description
Pixel	property	sets	the	value	of	the	pixel	in	the	bitmap.	Reading	it,	will	return
the	color	value	of	the	pixel	located	at	specified	coordinates.	This	property
does	not	validate	the	specified	coordinates,	so	use	it	only	then	you	are
completely	sure	that	you	are	not	trying	to	read	from	or	write	to	the	outside	of
the	bitmap	boundary.	Pixel	is	declared	as	default	property,	you	may	use	it	as
shown	below:

Bitmap32[10,	20]	:=	Bitmap32[20,	10];	//	copy	a	pixel	from	(20,10)	to
(10,20)	position

PixelS	is	a	'safe'	version	of	the	Pixel	property.	When	reading	pixels	from	the
outside	the	bitmap	boundary,	the	value	specified	by	OuterColor	is	returned.
Writing	with	invalid	coordinates	will	have	no	effect.
PixelW	is	the	wrapping	version	of	the	Pixel	property.	When	reading	pixels
from	outside	the	bitmap	boundary,	the	value	returned	is	determined	by	the
currently	selected	WrapMode.	Thus	always	safe.
PixelX	provides	a	method	for	accessing	the	pixels	in	fixed-point	coordinates.
The	returned	color	is	computed	by	performing	linear	interpolation	on	four
adjacent	pixels.	Similarly,	when	pixels	are	set,	they	are	antialiased.

PixelXS	is	a	'safe'	version	of	the	above	property.
PixelXW	is	a	wrapping	version	of	the	property	PixelX.
PixelF	is	similar	to	PixelX	but	works	with	floating	point	coordinates	instead
of	fixed	point.
PixelFS	is	a	'safe'	version	of	the	above	property.
PixelFW	is	a	wrapping	version	of	the	above	property.

See	Also
Naming	Conventions,	OuterColor,	SetPixel,	TColor32,	TFixed,	WrapMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.PixelPtr

property	PixelPtr[X,	Y:	Integer]:	PColor32;	//	read-only

Description
Converts	coordinates	of	a	pixel	to	its	address	in	memory.	Since	TBitmap32
uses	32-bit	DIBs,	its	memory	is	allocated	as	continuous	string	of	4-byte
TColor32	values,	starting	at	the	top	left	corner.
Pixel	with	(0,	0)	coordinates	has	the	same	address	as	specified	in	Bits
property.

See	Also
Bits,	Pixel,	ScanLine,	TBitmap32,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Pixmap

property	Pixmap:	QPixmapH;	//	read-only;

Description
Returns	a	pointer	to	the	current	Pixmap	instance.	You	can	use	that	if	you're
working	directly	with	QT	related	methods.
Important	Note:	Due	to	the	nature	of	QT	handling	images	and	bitmap
information,	there	is	a	need	to	notify	TBitmap32	about	changes	you	made	to
the	QPixmap.	You	can	use	the	PixmapChanged	property	to	do	so.
This	will	copy	the	Pixmap	content	as	soon	as	the	Bits	property	is	accessed	or
some	internal	function	is	accessing	the	image	data	directly.	This	will	make
sure	that	the	content	is	copied	from	the	QPixmap	to	the	internal	QImage	in
TBitmap32.

This	property	is	only	available	in	the	CLX	version.	For	VCL	use	the
property	BitmapHandle	instead.

See	Also
BitmapHandle

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.PixmapChanged

property	PixmapChanged:	Boolean;

Description
Returns	whether	the	current	QPixmap	instance	has	changed	or	not.	You	can
use	that	if	you're	working	directly	with	QT	related	methods.
Important	Note:	Due	to	the	nature	of	QT	handling	images	and	bitmap
information,	there	is	a	need	to	notify	TBitmap32	about	changes	you	made	to
the	QPixmap.	You	can	use	this	property	to	do	so.
This	will	copy	the	QPixmap	content	as	soon	as	the	Bits	property	is	accessed	or
some	internal	function	is	accessing	the	image	data	directly.	This	will	make
sure	that	the	content	is	copied	from	the	QPixmap	to	the	internal	QImage	in
TBitmap32.

This	property	is	only	available	in	the	CLX	version.

See	Also
Pixmap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Resampler

property	Resampler:	TCustomResampler;

Description
Resampler	specifies	the	resampling	method	used	for	image	stretching.

See	Also
Draw,	Sampling	and	Rasterization,	TCustomResampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.ResamplerClassName

property	ResamplerClassName:	string;

Description
ResamplerClassName	determines	which	class	to	instantiate	for	Resampler.

See	Also
Draw,	Resampler,	TCustomResampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.ScanLine

property	ScanLine[Y:	Integer]:	PColor32Array;	//	read-only

Description
Provides	indexed	access	to	each	line	of	pixels.	Returns	the	same	address	as
PixelPtr[0,	Y].	This	property	acts	similar	to	TBitmap.ScanLine.

See	Also
Bits,	PixelPtr,	TColor32Array

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.StippleCounter

property	StippleCounter:	Single;

Description
Use	StippleCounter	property	to	access	current	value	of	the	stipple	counter.

See	Also
GetStippleColor,	Line	Patterns,	SetStipple,	StippleStep

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.StippleStep

property	StippleStep:	Single;

Description
Provides	access	to	stipple	step.	Default	value	is	1.0.
It	is	possible	to	set	step	to	fractional	or	negative	value.

See	Also
GetStippleColor,	Line	Patterns,	SetStipple,	StippleCounter

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.StretchFilter

property	StretchFilter:	TStretchFilter;
type	TStretchFilter	=	(sfNearest,	sfDraft,	sfLinear,	sfCosine,
sfSpline,	sfLanczos,	sfMitchell);

Description
This	property	is	deprecated	as	of	version	1.8	of	Graphics32.	Please	use
Resampler	and	ResamplerClassName	instead.
StretchFilter	specifies	color	interpolation	method	for	image	stretching	as	well
as	for	some	other	operations,	like	linear	transformations.	Some	functions
(transformations,	for	example)	can	interpolate	only	using	the	sfNearest	and
sfLinear	filters,	other	values	will	be	implicitly	processed	as	sfLinear.

See	Also
Draw,	TStretchFilter

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.WrapMode

property	WrapMode:	TWrapMode;
type	TWrapMode	=	(wmClamp,	wmRepeat,	wmMirror);

Description
Specifies	how	the	wrapping	Pixel	property	should	behave.

See	Also
Pixel,	TWrapMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.BeginMeasuring

procedure	BeginMeasuring(const	Callback:
TAreaChangedEvent);

Description
Attaches	a	callback	method	to	the	OnAreaChanged	event	and	switches	the
bitmap	into	measuring	mode.	The	event	handler	previously	attached	to	the
OnAreaChanged	event	is	preserved	and	will	be	reset	once	measuring	is
stopped	by	calling	EndMeasuring.
	

See	Also
EndMeasuring,	MeasruingMode,	OnAreaChanged,	TAreaChangedEvent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.CanvasAllocated

function	CanvasAllocated:	Boolean;

Description
Indicates	whether	the	internal	Canvas	has	been	allocated.
	

See	Also
Canvas,	RenderText,	UpdateFont

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Clear

procedure	Clear;	overload;
procedure	Clear(FillColor:	TColor32);	overload;

Description
Fills	the	entire	bitmap	with	FillColor.	If	there	is	no	argument	specified,
method	uses	clBlack32	($FF000000).

See	Also
TCustomMap.Delete,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Create

constructor	Create;	override;

Description
Creates	and	initializes	an	instance	of	TBitmap32.
After	calling	the	inherited	constructor,	Create	initializes	the	following
properties:

BitmapInfo	is	filled	with	data	corresponding	to	32-bit	DIBs;
DrawMode	to	dmOpaque;
MasterAlpha	to	255	($FF);
OuterColor	to	transparent	black:	$00000000;
PenColor	to	clWhite32;
StippleCounter	to	0;
StippleStep	to	1.0;
StretchFilter	to	sfNearest;

See	Also
BitmapInfo,	DrawMode,	MasterAlpha,	OuterColor,	PenColor,	StippleCounter,
StippleStep,	TBitmap32,	TStretchFilter

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.DeleteCanvas

procedure	DeleteCanvas;

Description
Destroys	the	internal	Canvas	object.

See	Also
Canvas,	CanvasAllocated,	RenderText

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Destroy

destructor	Destroy;	override;

Description
Destroys	the	bitmap	object	and	frees	all	associated	memory.
Do	not	call	Destroy	directly,	use	Free	method	instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Draw

procedure	Draw(DstX,	DstY:	Integer;	Src:	TBitmap32);
overload;

procedure	Draw(DstX,	DstY:	Integer;	const	SrcRect:	TRect;	Src:
TBitmap32);	overload;

procedure	Draw(const	DstRect,	SrcRect:	TRect;	Src:
TBitmap32);	overload;

procedure	Draw(const	DstRect,	SrcRect:	TRect;	hSrc:	HDC);
overload;	//	VCL	version

procedure	Draw(const	DstRect,	SrcRect:	TRect;	SrcPixmap:
QPixmapH);	overload;	//	CLX	version

Description
Renders	the	image	specified	by	Src/hSrc	parameter	(or	part	of	it	specified	by
SrcRect	parameter)	at	the	location	given	by	the	coordinates	(DstX,	DstY)	or
the	DstRect	rectangle.
The	method	provides	both:	block	transfer	(versions	with	DstX,	DstY
parameters)	and	stretching	(versions	with	DstRect	parameter).
When	the	source	is	another	TBitmap32	object	(Src	parameter),	the	method
uses	Src.DrawMode	do	determine	how	it	should	be	blended	with	the
background,	and	if	stretching,	Src.StretchFilter	specifies	how	the	image
should	be	stretched.
The	version	with	hSrc	parameter,	is	introduced	mainly	for	compatibility
reasons.	You	may	use	it	to	transfer	data	from	bitmaps	with	other	formats,	or
any	other	windows	objects	that	have	device	handle	(DC).	It	is	based	on
StretchDIBits	GDI	call,	it	does	not	support	transparency	and	always	uses
nearest	neighbor	interpolation	when	stretching.
The	version	that	uses	the	SrcPixmap	is	only	available	in	the	CLX	version	of
Graphics32.	You	may	use	it	to	transfer	data	directly	from	QPixmap	instances
such	as	TBitmap.
The	Dst	parameter	must	not	be	necessarily	some	other	bitmap.	In	fact,	it	is
possible	to	copy/stretch	areas	inside	the	same	bitmap	that	calls	the	Draw
method.	However,	in	this	case,	if	source	and	destination	areas	intersect,	the
result	is	not	specified	(this	is	a	limitation	of	the	current	version).

See	Also
BlockTransfer,	DrawMode,	DrawTo,	StretchFilter,	StretchTransfer,
TBitmap32,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.DrawTo

procedure	DrawTo(Dst:	TBitmap32);	overload;
procedure	DrawTo(Dst:	TBitmap32;	DstX,	DstY:	Integer);
overload;

procedure	DrawTo(Dst:	TBitmap32;	DstX,	DstY:	Integer;	const
SrcRect:	TRect);	overload;

procedure	DrawTo(Dst:	TBitmap32;	const	DstRect:	TRect);
overload;

procedure	DrawTo(Dst:	TBitmap32;	const	DstRect,	SrcRect:
TRect);	overload;

procedure	DrawTo(hDst:	HDC;	DstX,	DstY:	Integer);	overload;
procedure	DrawTo(hDst:	HDC;	const	DstRect,	SrcRect:	TRect);
overload;

Description
The	DrawTo	method	renders	the	bitmap	(or	part	of	it	specified	by	SrcRect
parameter)	onto	another	bitmap	specified	by	Dst/hDst	parameter.	It	works
similar	to	Draw	method	but	instead	of	copying	data	from	some	other	source,
the	bitmap	renders	itselt	to	destination	object.	See	the	Draw	description	for
details.

See	Also
Draw,	TBitmap32,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Empty

function	Empty:	Boolean;	override;

Description
Returns	True	if	the	bitmap	is	empty,	that	is	Width	or	Height	is	zero.	If	the
bitmap	is	empty,	it	has	no	device	context	(Handle	property)	allocated.

See	Also
Handle,	TCustomMap.Height,	TCustomMap.Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.EndMeasuring

procedure	EndMeasuring;

Description
Stops	the	measuring	mode	and	switches	the	bitmap	back	into	normal	operation
mode.	If	there	was	an	event	handler	previously	attached	to	the
OnAreaChanged	event	it	is	restored.
	

See	Also
BeginMeasuring,	MeasruingMode,	OnAreaChanged

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.FillRect

procedure	FillRect(X1,	Y1,	X2,	Y2:	Integer;	Value:	TColor32);
procedure	FillRectS(X1,	Y1,	X2,	Y2:	Integer;	Value:	TColor32);
overload;

procedure	FillRectT(X1,	Y1,	X2,	Y2:	Integer;	Value:	TColor32);
procedure	FillRectTS(X1,	Y1,	X2,	Y2:	Integer;	Value:	TColor32);
overload;

procedure	FillRectS(const	ARect:	TRect;	Value:	TColor32);
overload;

procedure	FillRectS(const	ARect:	TRect;	Value:	TColor32);
overload;

Description
Fills	the	rectangle	with	a	specified	color.	Methods	with	'S'	postfix	provide
necessary	clipping	to	bitmap	boundaries,	versions	without	'S'	must	be	supplied
with	valid	parameters	and	X2	>	X1;	Y2	>	Y1.
The	function	fills	the	rectangle	up	to,	but	not	including	the	right	column	and
bottom	row.	When	X2	<=	X1	or	Y2	<=	Y1,	nothing	is	drawn.

See	Also
FrameRect,	Naming	Conventions,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.FlipHorz

procedure	FlipHorz(Dst:	TBitmap32);

Description
FlipHorz	flips	the	image	horizontally.	When	Dst	parameter	is	specified,	the
transformed	version	of	the	image	is	copied	into	Dst,	otherwise	the	procedure
performs	the	in-place	flipping.

See	Also
FlipVert,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.FlipVert

procedure	FlipVert(Dst:	TBitmap32);

Description
FlipVert	flips	the	image	vertically.	When	Dst	parameter	is	specified,	the
transformed	version	of	the	image	is	copied	into	Dst,	otherwise	the	procedure
performs	the	in-place	flipping.

See	Also
FlipHorz,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.FrameRect

procedure	FrameRectS(X1,	Y1,	X2,	Y2:	Integer;	Value:
TColor32);	overload;

procedure	FrameRectTS(X1,	Y1,	X2,	Y2:	Integer;	Value:
TColor32);	overload;

procedure	FrameRectS(const	ARect:	TRect;	Value:	TColor32);
overload;

procedure	FrameRectTS(const	ARect:	TRect;	Value:	TColor32);
overload;
procedure	FrameRectTSP(X1,	Y1,	X2,	Y2:	Integer);

Description
Draws	a	rectangle	frame.	Row	with	X2	coordinate	and	column	with	Y2
coordinate	are	excluded.
If	X2	<=	X1	or	Y2	<=	Y1,	the	function	does	not	draw	the	rectangle.
FrameRectTSP	version	supports	line	patterns.

See	Also
FillRect,	LineTo,	Naming	Conventions,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.GetStippleColor

function	GetStippleColor:	TColor32;

Description
Returns	color	corresponding	to	the	current	counter	position	in	stipple	pattern.
If	the	counter	step	is	fractional,	returned	color	will	be	interpolated.	Calling
GetStippleColor	automatically	changes	the	StippleCounter	value	by
StippleStep.

See	Also
Line	Patterns,	SetStipple,	StippleCounter,	StippleStep,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.HandleChanged

procedure	TBitmap32.HandleChanged;	virtual;	//	protected

Description
This	method	is	called	every	time	the	device	handle	of	the	bitmap	is	changed.	It
calls	the	OnHandleChanged	event.

See	Also
Handle,	Naming	Conventions,	OnHandleChanged

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.HorzLine

procedure	HorzLine(X1,	Y,	X2:	Integer;	Value:	TColor32);
procedure	HorzLineS(X1,	Y,	X2:	Integer;	Value:	TColor32);
procedure	HorzLineT(X1,	Y,	X2:	Integer;	Value:	TColor32);
procedure	HorzLineTS(X1,	Y,	X2:	Integer;	Value:	TColor32);
procedure	HorzLineTSP(X1,	Y,	X2:	Integer);

Description
Draws	a	horizontal	line	from	(X1,Y)	to	(X2,	Y).	The	last	point	is	always
included.
These	functions	works	faster	compared	to	Line	(I	think	HorzLine	is	the
fastest	line	drawing	function	in	the	world	:)	.	In	versions	with	'S'	postfix
necessary	clipping	to	a	bitmap	coordinate	range	is	provided.	In	versions
without	'S'	postfix,	the	X1	value	should	be	less	than	or	equal	to	X2.
HorzLineTSP	uses	a	stipple	pattern	to	vary	the	color	along	the	line.

See	Also
Line,	Line	Patterns,	Naming	Conventions,	TColor32,	VertLine

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Line

procedure	Line(X1,	Y1,	X2,	Y2:	Integer;	Value:	TColor32;	L:
Boolean	=	False);

procedure	LineS(X1,	Y1,	X2,	Y2:	Integer;	Value:	TColor32;	L:
Boolean	=	False);

procedure	LineT(X1,	Y1,	X2,	Y2:	Integer;	Value:	TColor32;	L:
Boolean	=	False);

procedure	LineTS(X1,	Y1,	X2,	Y2:	Integer;	Value:	TColor32;	L:
Boolean	=	False);

procedure	LineA(X1,	Y1,	X2,	Y2:	Integer;	Value:	TColor32;	L:
Boolean	=	False);

procedure	LineAS(X1,	Y1,	X2,	Y2:	Integer;	Value:	TColor32;	L:
Boolean	=	False);

procedure	LineX(X1,	Y1,	X2,	Y2:	TFixed;	Value:	TColor32;	L:
Boolean	=	False);

procedure	LineXS(X1,	Y1,	X2,	Y2:	TFixed;	Value:	TColor32;	L:
Boolean	=	False);

procedure	LineF(X1,	Y1,	X2,	Y2:	Single;	Value:	TColor32;	L:
Boolean	=	False);

procedure	LineFS(X1,	Y1,	X2,	Y2:	Single;	Value:	TColor32;	L:
Boolean	=	False);

procedure	LineXP(X1,	Y1,	X2,	Y2:	Single;	L:	Boolean	=	False);
procedure	LineXSP(X1,	Y1,	X2,	Y2:	Single;	L:	Boolean	=	False);
procedure	LineFP(X1,	Y1,	X2,	Y2:	Single;	L:	Boolean	=	False);
procedure	LineFSP(X1,	Y1,	X2,	Y2:	Single;	L:	Boolean	=	False);

Description
Draws	a	line	from	(X1,Y1)	to	(X2,Y2).	Methods	with	'S'	postfix	perform
necessary	pixel-perfect	clipping	to	a	bitmap	boundary	or	clipping	rectangle.
LineA	and	LineAS	use	modified	versions	of	Bresenham’s	algorithm	(also
known	as	Wu’s	antialiasing),	modified	to	support	line	transparency	and	pixel
shape/gamma	correction.
LineX/F/XS/FS	functions	use	my	own	algorithm	for	antialiasing.	Line	ends
have	fixed-	or	floating-point	coordinates.	These	methods	work	approximately
2–2.5	times	slower	than	LineA	and	LineAS.
The	last	optional	parameter	(L)	determines	if	the	last	point	(X2,Y2)	has	to	be
drawn.	It	is	useful	in	some	cases	to	leave	that	point	empty,	especially	when
drawing	sequences	of	transparent	and/or	antialiased	lines.	By	default,	Line
methods	don’t	render	the	last	point.
LineXP/FP/XSP/FXP	draw	antialiased	lines	with	support	for	color	patterns.

See	Also
HorzLine,	LineTo,	MoveTo,	Naming	Conventions,	TColor32,	VertLine

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.LineTo

procedure	LineToS(X,	Y:	Integer);
procedure	LineToTS(X,	Y:	Integer);
procedure	LineToAS(X,	Y:	Integer);
procedure	LineToXS(X,	Y:	TFixed);
procedure	LineToFS(X,	Y:	Single);
procedure	LineToXSP(X,	Y:	TFixed);
procedure	LineToFSP(X,	Y:	Single);

Description
LineTo*	methods	are	similar	to	TCanvas.LineTo.	The	line	is	drawn	from	the
current	raster	position,	to	the	position	specified	by	X	and	Y	parameters
excluding	the	last	point.	Then	raster	position	is	shifted	to	(X,	Y)	point.
The	line	is	drawn	with	the	color	specified	in	PenColor	property.	'S',	'TS',	and
'AS'	versions	use	and	update	integer	integer	raster	position,	while	'FS'	and	'XS'
versions	use	and	update	independent	fixed-point	raster	position.
LineToXSP	and	LineToFSP	do	not	use	PenColor,	instead,	they	draw	a	line
using	currend	stipple	pattern.
To	start	a	new	line	or	sequence	of	lines,	use	MoveTo	methods.

See	Also
Line,	Line	Patterns,	MoveTo,	Naming	Conventions,	PenColor,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.LoadFromFile

procedure	LoadFromFile(const	FileName:	string);

Description
Loads	an	image	from	a	file.	This	method	uses	a	temporal	TPicture	object	to
load	data	and	will	succeed	with	any	format	supported	by	TPicture.

See	Also
ImgView	and	Layers	Example,	LoadFromStream,	SaveToFile

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.LoadFromResourceID

procedure	LoadFromResourceID(Instance:	THandle;	ResID:
Integer);

Description
Loads	an	image	from	a	resource.	Instance	is	the	handle	of	the	module	that
contains	the	resource.	ResID	is	the	resource	ID	for	the	bitmap

See	Also
LoadFromFile,	LoadFromResourceName,	LoadFromStream

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.LoadFromResourceName

procedure	LoadFromResourceName(Instance:	THandle;	const
ResName:	string);

Description
Loads	an	image	from	a	resource.	Instance	is	the	handle	of	the	module	that
contains	the	resource.	ResName	is	the	name	of	the	resource	to	load.

See	Also
LoadFromFile,	LoadFromResourceID,	LoadFromStream

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.LoadFromStream

procedure	LoadFromStream(Stream:	TStream);

Description
Loads	an	image	from	a	stream.	This	method	uses	a	temporal	TPicture	object	to
load	data	and	will	succeed	with	any	format	supported	by	TPicture.

See	Also
LoadFromFile,	SaveToStream

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.MoveTo

procedure	MoveTo(X,	Y:	Integer);
procedure	MoveToX(X,	Y:	TFixed);
procedure	MoveToF(X,	Y:	Single);

Description
Shifts	current	raster	to	specified	position,	analogous	to	MoveTo	method	of
standard	TCanvas.
Each	bitmap	maintains	separate	raster	positions	for	integer	and	fixed	point
coordinates.	MoveTo	affects	the	integer	raster	position,	while	MoveToX	and
MoveToF	affect	the	fixed-point	raster	position.
Raster	position	is	applicable	only	to	MoveTo,	LineTo	methods	and	some
polygon	drawing	routines,	which	use	it	internally,	it	is	not	changed	neither	by
Line	methods	nor	by	any	other	method.

See	Also
Line,	LineTo,	Naming	Conventions,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.RaiseRectTS

procedure	RaiseRectTS(X1,	Y1,	X2,	Y2:	Integer;	Contrast:
Integer);

Description
This	function	draws	a	raised	or	recessed	frame.	The	contrast	property	is	an
integer	value	ranging	from	–100	to	+100.

See	Also
FrameRect,	Naming	Conventions

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.RenderText

procedure	RenderText(X,	Y:	Integer;	const	Text:
String;	AALevel:	Integer;	Color:	TColor32);

procedure	RenderTextW(X,	Y:	Integer;	const	Text:
Widestring;	AALevel:	Integer;	Color:	TColor32);

Description
The	RenderText	or	RenderTextW	(the	Unicode-Version)	method	draws	a
string	of	characters.	This	method	is	much	slower	compared	to	TextOut
functions,	however	it	supports	antialiasing	and	transparency.	AALevel
specifies	how	the	text	is	antialiased.	If	it	is	zero,	no	antialiasing	is	performed,
the	value	of	4	corresponds	to	a	maximum	quality.
Note,	that	quality	of	the	text	is	also	influenced	by	the	system	font	antialiasing.
This	method	draws	a	string	using	current	Font,	but	it	ignores	the	Font.Color
property,	substituting	it	with	the	Color	parameter.
	
Please	note	that	the	CLX	versions	of	the	non-Unicode	methods	do	also	default
to	Widestring	because	that	is	the	native	QT	string	format.
	

See	Also
Font,	RenderText	Example,	TColor32,	TextExtent,	TextOut

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.ResetAlpha

procedure	ResetAlpha;	overload;
procedure	ResetAlpha(const	AlphaValue:	Byte);	overload;

Description
Resets	the	alpha	channel	of	the	entire	bitmap	either	to	$FF	or	the	value
defined	by	AlphaValue.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.ResetClipRect

procedure	ResetClipRect;

Description
Resets	the	clipping	rect	to	the	current	dimensions	of	the	bitmap.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Roll

procedure	Roll(Dx,	Dy:	Integer;	FillBack:	Boolean;	FillColor:
TColor32);

Description
Use	Roll	to	scroll	the	whole	bitmap	Dx	pixels	right	and	Dy	pixels	down.
Dx	an	Dy	may	be	negative.
The	content	of	the	new	area	may	optionally	be	cleared	with	FillColor,	if
FillBack	is	true.

See	Also
TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.Rotate

procedure	Rotate90(Dst:	TBitmap32);
procedure	Rotate180(Dst:	TBitmap32);
procedure	Rotate270(Dst:	TBitmap32);

Description
A	set	of	optimized	routines	for	rotating	the	image	90,	180,	and	270	degrees.
Angles	correspond	to	the	clockwise	rotation.

See	Also
TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.SaveToFile

procedure	SaveToFile(const	FileName:	string);

Description
Writes	a	bitmap	image	to	disk.	The	image	is	saved	as	32-bit	BMP	file.
If	you	need	another	pixel	format	or	storage	format,	create	intermediate
TBitmap	object	or	other	TGraphic	descendant,	assign	it	from	TBitmap32	and
save	it	to	a	file.
See	source	of	TBitmap.SaveToFile	for	more	details.

See	Also
LoadFromFile,	SaveToStream

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.SaveToStream

procedure	SaveToStream(Stream:	TStream);

Description
Stores	a	bitmap	image	to	a	stream.	The	data	in	the	stream	is	stored	in	a	form
compatible	with	TBitmap,	where	each	pixel	allocates	32	bits.
[See	also]:	LoadFromStream,	SaveToFile

See	Also
LoadFromStream,	SaveToFile

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.SetPixel

procedure	SetPixelT(X,	Y:	Integer;	Value:	TColor32);	overload;
procedure	SetPixelT(var	Ptr:	PColor32;	Value:	TColor32);
overload;

procedure	SetPixelTS(X,	Y:	Integer;	Value:	TColor32);	
procedure	SetPixelX(X,	Y:	TFixed;	Value:	TColor32);
deprecated;

procedure	SetPixelXS(X,	Y:	TFixed;	Value:	TColor32);
deprecated;

procedure	SetPixelF(X,	Y:	Single;	Value:	TColor32);
deprecated;

procedure	SetPixelFS(X,	Y:	Single;	Value:	TColor32);
deprecated;

Description
SetPixelT	blends	the	pixel	with	a	bitmap	at	specified	coordinates	using	the
specified	color.	The	pixel’s	alpha	channel	is	used,	but	the	coordinates	are	not
validated.
The	overloaded	version	of	SetPixelT	with	a	pixel	pointer	argument	allows
setting	pixels	addressed	with	the	pointer	rather	than	with	coordinates.	The
pointer	is	automatically	incremented	to	a	next	pixel	position	with	each	call	to
SetPixelT,	for	example:

var	
		P:	PColor32;	
		I:	Integer;	
begin	{	Draw	a	fading	white	line	from	(10,	20)	to	(265,	20)	}	
		P	:=	PixelPtr[10,	20];	
		for	I	:=	0	to	255	do	SetPixelT(P,	Color32(255,	255,	255,	255	-	I));
end;

SetPixelTS	is	the	SetPixelT	method	with	added	coordinate	verification.	If
pixel	coordinates	lie	outside	the	bitmap	area,	SetPixelTS	does	nothing.
	
SetPixelX/F/XS/FS	methods	are	deprecated.	Please	use	the	PixelX/F/XS/FS
property	instead.

	

See	Also
Naming	Conventions,	Pixel,	TColor32,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.SetSize

function	SetSize(NewWidth,	NewHeight:	Integer):	Boolean;
override;

procedure	SetSize(Source:	TPersistent);	//	implemented	in
TCustomMap

Description
Call	SetSize	to	set	a	new	width	and	height	of	the	bitmap.	If	one	of	the
arguments	is	zero,	the	bitmap	is	considered	empty	and	its	Handle	property	is
set	to	zero.
Calling	SetSize	works	faster	than	consecutive	changing	of	Width	and	Height
properties.	If	you	use	another	bitmap	or	control	as	an	argument,	the	bitmap
will	be	sized	to	source	dimensions.
If	you	have	an	external	TCanvas	attached,	refresh	it	Handle	property	after
resizing:

Bitmap32.SetSize(100,	200);
Canvas.Handle	:=	Bitmap32.Handle;

After	the	SetSize	call	the	image	the	bitmap	should	be	completely	redrawn.

See	Also
Handle,	TCustomMap.Height,	TCustomMap,	TCustomMap.Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.SetStipple

procedure	SetStipple(NewStipple:	TArrayOfColor32);	overload;
procedure	SetStipple(NewStipple:	array	of	TColor32);
overload;

Description
Sets	a	new	stipple	pattern.

See	Also
GetStippleColor,	Line	Patterns,	TArrayOfColor32,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.TextExtent

function	TextExtent(const	Text:	String):	TSize;
function	TextExtentW(const	Text:	Widestring):	TSize;

Description
Returns	the	width	and	height,	in	pixels,	of	a	string	rendered	in	the	current
Font.
Note,	that	the	size	returned	by	this	function	may	differ	from	the	actual	width
of	the	text	produced	by	RenderText	function,	especially	when	using	raster
fonts.
	
Please	note	that	the	CLX	versions	of	the	non-Unicode	methods	do	also	default
to	Widestring	because	that	is	the	native	QT	string	format.
	

See	Also
Font,	RenderText,	TextHeight,	TextOut,	TextWidth,	TSize

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.TextHeight

function	TextHeight(const	Text:	String):	Integer;
function	TextHeightW(const	Text:	Widestring):	Integer;

Description
Returns	the	height,	in	pixels,	of	a	string	rendered	in	the	current	Font.
	
Please	note	that	the	CLX	versions	of	the	non-Unicode	methods	do	also	default
to	Widestring	because	that	is	the	native	QT	string	format.
	

See	Also
Font,	RenderText,	TextExtent,	TextOut,	TextWidth

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.TextOut

procedure	TextOut(X,	Y:	Integer;	const	Text:	String);	overload;
procedure	TextOutW(X,	Y:	Integer;	const	Text:	Widestring);
overload;

	
procedure	TextOut(X,	Y:	Integer;	const	ClipRect:	TRect;	const
Text:	String);	overload;

procedure	TextOutW(X,	Y:	Integer;	const	ClipRect:	TRect;
const	Text:	Widestring);	overload;

	
procedure	TextOut(DstRect:	TRect;	const	Flags:	Cardinal;
const	Text:	String);	overload;

procedure	TextOutW(DstRect:	TRect;	const	Flags:	Cardinal;
const	Text:	Widestring);	overload;

Description
Use	TextOut	or	TextOutW	(the	Unicode	version)	to	write	a	string	onto	the
bitmap.	The	string	will	be	written	using	current	Font.
Use	the	TextExtent	method	to	determine	the	space	occupied	by	the	text	in	the
image.	TextOut	does	not	support	transparent	text	colors.
The	second	version	performs	clipping	of	a	text	to	the	ClipRect	rectangle.
The	last	version	provides	the	most	flexible	text	formatting.	See	description	of
DrawText	function	in	'Win32	Developer	Reference'	help	file	for	information
on	Flags	and	their	function.
Special	Note	for	CLX	users:
Since	CLX	is	based	on	the	QT	library	rather	than	the	native	Win	API	the	flags
used	in	the	last	two	functions	are	somewhat	different	from	the	Win32	flags.
You	can	get	more	information	on	the	QT	specific	flags	here	and	here.
However,	to	make	it	easier	for	you,	we	have	provided	some	basic	mappings
that	will	work	in	QT	just	as	their	Win	API	counterparts:

DT_LEFT,	DT_RIGHT,	DT_TOP,	DT_BOTTOM,	DT_CENTER,
DT_VCENTER,	DT_EXPANDTABS,	DT_NOCLIP,
DT_WORDBREAK,	DT_SINGLELINE

However,	the	following	flags	are	missing	because	there	is	no	equivalent
value	in	QT	at	this	time:

DT_CALCRECT,	DT_EDITCONTOL,	DT_END_ELLIPSIS	and
DT_PATH_ELLIPSIS,	DT_EXTERNALLEADING,
DT_MODIFYSTRING,	DT_NOPREFIX,	DT_RTLREADING,
DT_TABSTOP

Please	note	that	the	CLX	versions	of	the	non-Unicode	methods	do	also
default	to	Widestring	because	that	is	the	native	QT	string	format.

http://doc.qt-developer.org/class.php?class=qt#AlignmentFlags-enum
http://doc.qt-developer.org/class.php?class=qt#TextFlags-enum

See	Also
Font,	RenderText,	TextExtent,	TextHeight,	TextWidth,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.TextWidth

function	TextWidth(const	Text:	String):	Integer;
function	TextWidthW(const	Text:	Widestring):	Integer;

Description
Returns	the	width,	in	pixels,	of	a	string	rendered	in	the	current	Font.
	
Please	note	that	the	CLX	versions	of	the	non-Unicode	methods	do	also	default
to	Widestring	because	that	is	the	native	QT	string	format.
	

See	Also
Font,	RenderText,	TextExtent,	TextHeight,	TextOut

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.UpdateFont

procedure	UpdateFont;

Description
Use	this	method	before	calling	the	Windows	API	functions	that	handle	text
output.	It	will	synchronize	the	device	font	object	with	the	Font	property.	You
do	not	have	to	call	UpdateFont	when	using	text	output	methods	of
TBitmap32	since	they	call	UpdateFont	automatically.

See	Also
Font,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.VertLine

procedure	VertLine(X,	Y1,	Y2:	Integer;	Value:	TColor32);
procedure	VertLineS(X,	Y1,	Y2:	Integer;	Value:	TColor32);
procedure	VertLineT(X,	Y1,	Y2:	Integer;	Value:	TColor32);
procedure	VertLineTS(X,	Y1,	Y2:	Integer;	Value:	TColor32);
procedure	VertLineTSP(X,	Y1,	Y2:	Integer);

Description
Draws	a	vertical	line	from	(X,Y1)	to	(X,	Y2).	The	last	point	is	included.
These	functions	works	faster	compared	to	Line.	In	versions	with	'S'	postfix
necessary	clipping	to	a	bitmap	coordinate	range	is	provided.	In	versions
without	'S',	the	Y2	value	should	be	greater	or	equal	to	Y1.
VertLineTSP	supports	line	patterns.

See	Also
HorzLine,	Line,	Line	Patterns,	Naming	Conventions,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.OnAreaChanged

property	OnAreaChanged:	TAreaChangedEvent;

Description
This	event	is	triggered	when	a	drawing	operation	changes	an	area	on	the
bitmap.	If	the	bitmap	is	in	measuring	mode,	the	actual	drawing	operation	is
omitted,	but	this	event	is	still	triggered.

See	Also
MeasuringMode,	TAreaChangedEvent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.OnHandleChanged

property	OnHandleChanged:	TNotifyEvent;

Description
This	event	is	called	when	the	HDC/QPainterH	of	property	Handle	changed.
Use	this	event	to	customize	handling	of	such	events.

See	Also
Handle

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TBitmap32

TBitmap32.OnPixelCombine

property	OnPixelCombine:	TPixelCombineEvent;
type	TPixelCombineEvent	=	procedure(F:	TColor32;	var	B:
TColor32;	M:	TColor32)	of	object;

Description
This	event	is	called	when	the	bitmap	is	drawn	in	dmCustom	draw	mode.	Use
this	event	to	customize	handling	of	colors.	Note,	however,	that	this	event	is
called	for	every	pixel,	so	keeping	the	event	handler	small	and	fast	is	in	your
own	interest.

See	Also
DrawMode,	PixelCombine	Example,	TColor32,	TPixelCombineEvent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomMap

TCustomMap.Height

property	Height:	Integer;

Description
Specifies	the	height	of	the	contained	data	array.
Use	SetSize	method	to	change	both	width	and	height	simultaneously.

See	Also
SetSize,	Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomMap

TCustomMap.Width

property	Width:	Integer;

Description
Defines	the	width	of	the	contained	data	array.
Writing	into	the	Width	property	will	resize	the	data	array.

See	Also
Height,	SetSize

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomMap

TCustomMap.Delete

procedure	Delete;	virtual;

Description
By	default,	Delete	calls	SetSize(0,	0).	In	descendants	this	is	accompanied	with
deletion	of	stored	data	and	freeing	of	the	occupied	memory.

See	Also
SetSize

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomMap

TCustomMap.Empty

function	Empty:	Boolean;	virtual;

Description
Returns	True	if	the	data	set	is	empty.	Normally,	it	means	that	either	its	Width
or	Height	is	0.

See	Also
Height,	Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomMap

TCustomMap.Resized

procedure	Resized;	virtual;
Calls	the	OnResize	event.
Descendants	of	TCustomMap	call	Resized	internally	after	changing	the	size
of	the	contained	data	array.

See	Also
OnResize,	TCustomMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomMap

TCustomMap.SetSize

procedure	SetSize(NewWidth,	NewHeight:	Integer);	virtual;
procedure	SetSizeFrom(Source:	TPersistent);

Description
Simultaneously	changes	both	Width	and	Height	of	contained	data.
The	SetSizeFrom	method	'knows'	how	to	get	the	size	from	the	following
objects	or	their	descendants:	TCustomMap,	TGraphic,	TControl	and	nil.
When	other	parameter	is	specified,	TCusomMap	will	generate	an	exception.
The	SetSize	method	is	overriden	in	descendants	(TBitmap32,	TByteMap)	so
that	bitmap	bits	are	reallocated	and	byte	map	data	array	is	resized.

See	Also
Height,	TBitmap32,	TByteMap,	TCustomMap,	Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomMap

TCustomMap.OnResize

property	OnResize:	TNotifyEvent;

Description
OnResize	is	called	each	time	dimensions	of	the	associated	data	array	change.
This	event	is	normally	preceeded	with	the	OnChange	call.
Similar	to	OnChange,	generation	of	OnResize	may	be	temporarily	suppressed
with	BeginUpdate/EndUpdate.

See	Also
BeginUpdate,	EndUpdate,	OnChange

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomResampler

TCustomResampler.Width

property	Width:	Single;

Description
Returns	the	width	of	the	associated	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomResampler

TCustomResampler.Resample

procedure	Resample(Dst:	TBitmap32;	DstRect:	TRect;	DstClip:
TRect;	Src:	TBitmap32;	SrcRect:	TRect;	CombineOp:
TDrawMode;	CombineCallBack:	TPixelCombineEvent);
virtual;	abstract;

Description
Descendants	must	override	this	method	in	order	to	perform	resampling	of
bitmaps.
	

See	Also
Rectangle	Types,	TBitmap32,	TBitmap32Resampler,	TDrawMode,
TPixelCombineEvent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomSampler

TCustomSampler.FinalizeSampling

procedure	FinalizeSampling;	virtual;

Description
Descendants	should	override	this	method	in	order	to	perform	special
processing	when	sampling	ends.
Note:	FinalizeSampling	is	automatically	called	by	TRasterizer	when
rasterization	ends.

See	Also
PrepareSampling,	TRasterizer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomSampler

TCustomSampler.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).
Prior	to	calling	any	GetSample	method,	PrepareSampling	should	be	called,
and	finally	FinalizeSampling	should	be	called.	Note	that	any	number	of	calls
to	the	GetSample	methods	can	be	made	inside	this	Prepare/FinalizeSampling
block.

See	Also
Color	Types,	FinalizeSampling,	PrepareSampling,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomSampler

TCustomSampler.GetSampleBounds

procedure	GetSampleBounds:	TRect;	virtual;	abstract;

Description
Descendants	must	override	this	method	to	define	the	area	changed	by	the
sampler,	which	is	used	for	clipping	purposes.	If	the	sampler	do	not	support
returning	a	bounds	rectangle,	HasBounds	should	be	set	to	false.

See	Also
HasBounds,	Rectangle	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomSampler

TCustomSampler.HasBounds

function	HasBounds:	Boolean;	virtual;

Description
Descendants	must	set	this	to	true,	if	sample	bounds	will	be	returned	by
GetSampleBounds.

See	Also
GetSampleBounds

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TCustomSampler

TCustomSampler.PrepareSampling

procedure	PrepareSampling;	virtual;

Description
Descendants	should	override	this	method	in	order	to	perform	special
preparations	before	the	GetSample	method	is	called.
Note:	PrepareSampling	is	automatically	called	by	TRasterizer	before
rasterization	begins.

See	Also
FinalizeSampling,	GetSample,	TRasterizer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TNotifiablePersistent

TNotifiablePersistent.UpdateCount

property	UpdateCount:	Integer;	//	Read-only;	protected;

Description
The	current	nesting	level	of	the	update	lock.
UpdateCount	is	increased	each	time	you	call	the	BeginUpdate	method	and	is
decreased	with	EndUpdate	calls.	The	object	does	not	generate	OnChange	as
long	as	its	UpdateCount	is	greater	than	0.

See	Also
BeginUpdate,	EndUpdate,	OnChange

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TNotifiablePersistent

TNotifiablePersistent.BeginUpdate

procedure	BeginUpdate;

Description
Call	this	method	in	order	to	temporarily	disable	the	update	notification.
BeginUpdate	increases	the	UpdateCount	property,	which	disables	generation
of	OnChange	events.	Calls	to	BeginUpdate	must	be	paired	with	EndUpdate
and	they	may	be	safely	nested.

See	Also
EndUpdate,	OnChange,	UpdateCount

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TNotifiablePersistent

TNotifiablePersistent.Changed

procedure	Changed;

Description
Calls	the	OnChange	event,	provided	the	change	notification	is	not	masked
with	BeginUpdate.
Descendants	of	TNotifiablePersistent	call	Changed	after	making	changes	to
their	data	or	properties.
You	will	need	to	call	Changed	explicitly	in	your	application	after	leaving	the
BeginUpdate...	EndUpdate	block	since	EndUpdate	itself	does	not	internally
call	Changed.

See	Also
BeginUpdate,	Copy	of	TThreadPersistent,	EndUpdate,	OnChange

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TNotifiablePersistent

TNotifiablePersistent.Create

constructor	Create;	virtual;

Description
Creates	and	initializes	an	instance	of	TNotifiablePersistent.

See	Also
TNotifiablePersistent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TNotifiablePersistent

TNotifiablePersistent.Destroy

destructor	Destroy;	override;

Description
Destroys	the	TNotifiablePersistent	object.
Do	not	call	Destroy	directly,	use	Free	method	instead.

See	Also
TNotifiablePersistent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TNotifiablePersistent

TNotifiablePersistent.EndUpdate

procedure	EndUpdate;

Description
Re-enables	change	notification	previously	disabled	with	BeginUpdate.
EndUpdate	decreases	the	UpdateCount	property	and	re-enables	generation	of
OnChange	events.
EndUpdate	itself	does	not	generate	the	OnChange	event.	You	will	need	to
call	Changed	explicitly,	after	calling	EndUpdate	in	case	the	change
notification	is	required.

See	Also
BeginUpdate,	Changed,	OnChange,	UpdateCount

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TNotifiablePersistent

TNotifiablePersistent.OnChange

property	OnChange:	TNotifyEvent;

Description
OnChange	is	called	immediately	after	the	object	changes.	For	example,
TNotifiablePersistent's	descendant	TBitmap32,	uses	the	OnChange	event	to
notify	its	parent	that	something	was	changed	in	a	bitmap,	and	the	screen	image
must	be	updated.
Generation	of	OnChange	events	can	be	prevented	by	calling	BeginUpdate.

See	Also
BeginUpdate,	Changed,	TBitmap32,	TNotifiablePersistent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TThreadPersistent

TThreadPersistent.LockCount

property	LockCount:	Integer;	//	Read-only;	protected;

Description
LockCount	represents	the	current	nesting	level	of	the	threading	lock.	This	is	a
counter	shared	by	all	running	threads	in	the	curent	process.
The	object	is	unlocked	only	when	LockCount	is	0	and	only	one	thread	can
lock	the	object	at	the	time.	Call	Lock	to	increase	LockCount	value	and
Unlock	to	decrease	it.

See	Also
Lock,	Unlock

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TThreadPersistent

TThreadPersistent.Lock

procedure	Lock;

Description
Blocks	other	execution	threads	from	locking	the	object	until	the	Unlock
method	is	called.	If	another	thread	tryes	to	call	the	Lock	method	of	an	object
which	is	already	locked,	its	execution	will	be	stalled	until	the	lock	is	released
with	Unlock	method.
Once	a	thread	has	locked	the	object,	it	can	make	additional	calls	to	Lock
method	without	blocking	its	own	execution.	This	prevents	the	thread	from
deadlocking	itself	while	waiting	for	releasing	of	a	lock	that	it	already	owns.
LockCount	is	increased	each	time	Lock	is	called.

See	Also
LockCount,	Unlock

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32 TThreadPersistent

TThreadPersistent.Unlock

procedure	Unlock;

Description
Removes	the	multithreading	lock	from	the	object.
Each	call	to	Unlock	decreases	the	LockCount	property,	allowing	other	threads
to	access	the	object	when	LockCount	reaches	0.	Each	thread	must	call	Unlock
once	for	each	time	that	it	locked	the	object.

See	Also
Lock,	LockCount

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

AlphaComponent

function	AlphaComponent(Color32:	TColor32):	Integer;

Description
Extracts	the	alpha	component	from	the	parameter.
This	function	is	provided	for	convenience	and	backward	compatibility	only.	In
performance-critical	parts	of	your	code	use	TColor32Entry	typecasting	or
direct	conversion:

Alpha	:=	Color32	shr	24;

See	Also
BlueComponent,	GreenComponent,	RedComponent,	TColor32,
TColor32Entry

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

BlueComponent

function	BlueComponent(Color32:	TColor32):	Integer;

Description
Extracts	the	blue	component	from	the	parameter.
This	function	is	provided	for	convenience	and	backward	compatibility	only.	In
performance-critical	parts	of	your	code	use	TColor32Entry	typecasting	or
direct	conversion:

Blue	:=	Color32	and	$0000FF;

See	Also
AlphaComponent,	GreenComponent,	RedComponent,	TColor32,
TColor32Entry

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Color32

function	Color32(R,	G,	B:	Byte;	A:	Byte	=	$FF):	TColor32;
overload;

This	function	combines	its	parameters	into	a	4-byte	TColor32.

function	Color32(WinColor:	TColor):	TColor32;	overload;
This	function	provides	conversion	of	TColor	into	TColor32.
The	pixel	format	of	32-bit	DIBs	(ARGB)	is	different	from	that	used	in	the
standard	TColor	type	(ABGR).	Some	standard	windows	colors	are	coded
using	special	constants	which	are	encoded	into	RGB	form.
The	alpha	of	the	resulting	color	is	set	to	$FF;

function	Color32(Index:	Byte;	Palette:	PPalette32):	TColor32;
overload;

This	function	simply	picks	the	color	value	from	the	palette,	same	as
Result	:=	Palette[Index];

	

See	Also
Gray32,	TColor32,	TPalette32,	WinColor

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Color32Components

function	Color32Components(R,	G,	B,	A:	Boolean):
TColor32Components;

Returns	a	set	(TColor32Components)	of	TColor32Component	from	the
provided	parameters.
If	all	parameters	are	false,	an	empty	set	will	be	returned.

See	Also
TColor32Component,	TColor32Components

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Color32ToRGB

procedure	Color32ToRGB(Color32:	TColor32;	var	R,	G,	B:
Byte);

procedure	Color32ToRGBA(Color32:	TColor32;	var	R,	G,	B,	A:
Byte);

Both	procedures	split	the	Color32	parameter	up	into	their	respective
components.
These	procedures	are	provided	for	convenience	only.	Use	direct	conversion	in
performance-critical	parts	of	your	code:

Alpha	:=	Color32	shr	24;
Red	:=	(Color32	and	$00FF0000)	shr	16;
Green	:=	(Color32	and	$0000FF00)	shr	8;
Blue	:=	Color32	and	$000000FF;

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Creating	Points

Point
function	Point(X,	Y:	Integer):	TPoint;	overload;
function	Point(const	FP:	TFloatPoint):	TPoint;	overload;
function	Point(const	FXP:	TFixedPoint):	TPoint;	overload;

Constructs	a	point	with	integer	coordinates,	or	converts	it	from	the	one	with
fixed/floating	point	coordinates	by	rounding	them	to	nearest	integers.

FloatPoint
function	FloatPoint(X,	Y:	Single):	TFloatPoint;	overload;
function	FloatPoint(const	P:	TPoint):	TFloatPoint;	overload;
function	FloatPoint(const	FXP:	TFixedPoint):	TFloatPoint;
overload;

Provides	construction	and	converstion	of	points	with	floating-point
coordinates.

FixedPoint
function	FixedPoint(X,	Y:	Integer):	TFixedPoint;	overload;
function	FixedPoint(X,	Y:	Single):	TFixedPoint;	overload;
function	FixedPoint(const	P:	TPoint):	TFixedPoint;	overload;
function	FixedPoint(const	FP:	TFloatPoint):	TFixedPoint;
overload;

Provides	construction	and	converstion	of	points	with	fixed-point	coordinates

See	Also
TFixedPoint,	TFloatPoint,	TPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Creating	Rectangles

Rect
function	MakeRect(L,	T,	R,	B:	Integer):	TRect;	overload;
function	MakeRect(const	FR:	TFloatRect;	Rounding:
TRectRounding	=	rrClosest):	TRect;	overload;

function	MakeRect(const	FXR:	TFixedRect;	Rounding:
TRectRounding	=	rrClosest):	TRect;	overload;

Provides	construction	and	convertion	of	rectangles	with	integer	coordinates.

FloatRect
function	FloatRect(L,	T,	R,	B:	Single):	TFloatRect;	overload;
function	FloatRect(const	Rect:	TRect):	TFloatRect;	overload;
function	FloatRect(const	FXR:	TFixedRect):	TFloatRect;
overload;

Provides	construction	and	convertion	of	rectangles	with	floating-point
coordinates.

FixedRect
function	FixedRect(L,	T,	R,	B:	TFixed):	TFixedRect;	overload;
function	FixedRect(const	Rect:	TRect):	TFixedRect;	overload;
function	FixedRect(const	FR:	TFloatRect):	TFixedRect;
overload;

Provides	construction	and	convertion	of	rectangles	with	fixed-point
coordinates.
	

See	Also
TFixedRect,	TFloatRect,	TRect,	TRectRounding

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

EqualRect

function	EqualRect(const	R1,	R2:	TRect):	Boolean;

Description
Returns	True	if	the	rectangles	are	identical.

See	Also
TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Fixed	Point	Math

Fixed
function	Fixed(S:	Single):	TFixed;	overload;
function	Fixed(I:	Integer):	TFixed;	overload;

A	couple	of	TFixed	constructors.
In	case	you	don't	want	your	program	to	loose	time	on	extra	function	call,	you
can	use	another	method	of	converting	Integer	to	TFixed:

var
		FX:	TFixed;
begin
		FX	:=	IntVal	shl	16;
		...
end;

See	Also
GR32_Math,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Gray32

function	Gray32(Intensity:	Byte;	Alpha:	Byte):	TColor32;

Description
The	action	of	Gray32(I,	A)	is	the	same	as	Color32(I,	I,	I,	A).	It	just	works
faster.

See	Also
AlphaComponent,	BlueComponent,	Color32,	GreenComponent,
RedComponent,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

GreenComponent

function	GreenComponent(Color32:	TColor32):	Integer;

Description
Extracts	the	green	component	from	the	parameter.
This	function	is	provided	for	convenience	and	backward	compatibility	only.	In
performance-critical	parts	of	your	code	use	TColor32Entry	typecasting	or
direct	conversion:

Green	:=	(Color32	and	$0000FF00)	shr	8;

See	Also
AlphaComponent,	BlueComponent,	RedComponent,	TColor32,
TColor32Entry

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

HSLtoRGB

function	HSLtoRGB(H,	S,	L:	Single):	TColor32;	overload;
function	HSLtoRGB(H,	S,	L:	Integer):	TColor32;	overload;

Description
Conversion	from	HSL	to	RGB	color	space.	Each	argument	should	normally	be
in	[0…1]	range	for	the	float	version	and	in	the	[0...255]	range	for	the	integer
version,	although	the	H	value	is	automatically	wrapped.

See	Also
Gray32,	RGBtoHSL,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

InflateRect

procedure	InflateRect(var	R:	TRect;	Dx,	Dy:	Integer);	overload;
procedure	InflateRect(var	FR:	TFloatRect;	Dx,	Dy:	Single);
overload;

Description
Increases	(or	decreases	if	Dx,	Dy	negative)	the	width	and	height	of	the
specified	rectangle:

R.Left	:=	R.Left	-	Dx;
R.Right	:=	R.Right	+	Dx;
R.Top	:=	R.Top	-	Dy;
R.Bottom	:=	R.Bottom	+	Dy;

See	Also
OffsetRect,	TFloatRect,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Intensity

function	Intensity(Color32:	TColor32):	Integer;

Description
Returns	weighted	intensity	of	the	color,	which	is	calculated	as

I	=	R	*	0.21	+	G	*	0.71	+	B	*	0.08;

See	Also
Color32,	Gray32,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

IntersectRect

function	IntersectRect(out	Dst:	TRect;	const	R1,	R2:	TRect):
Boolean;	overload;

function	IntersectRect(out	Dst:	TFloatRect;	const	FR1,	FR2:
TFloatRect):	Boolean;	overload;

Description
Calculates	intersection	of	the	rectangles	and	writes	result	into	Dst.	Functions
return	True	if	rectangles	intersect,	otherwise	it	returns	False	and	writes	an
empty	rectangle	into	Dst,	that	is	rectangle	with	all	coortinates	equal	to	0.

See	Also
Creating	Rectangles,	TFloatRect,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

IsRectEmpty

function	IsRectEmpty(const	R:	TRect):	Boolean;	overload;
function	IsRectEmpty(const	FR:	TRect):	Boolean;	overload;

Description
Returns	True	if	the	rectangle	is	empty,	that	is	its	width	or	height	is	not
positive.

See	Also
TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

OffsetRect

procedure	OffsetRect(var	R:	TRect;	Dx,	Dy:	Integer);	overload;
procedure	OffsetRec(var	FR:	TFloatRect;	Dx,	Dy:	Single);
overload;

Description
Use	thise	functions	to	shift	rectangles.	Dx	and	Dy	parameters	specify	the
distance.

See	Also
InflateRect,	TFloatRect,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

PtInRect

function	PtInRect(const	R:	TRect;	const	P:	TPoint):	Boolean;

Description
Returns	True	if	the	point	lies	inside	the	specified	rectangle.

See	Also
TPoint,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

RedComponent

function	RedComponent(Color32:	TColor32):	Integer;

Description
Extracts	the	red	component	from	the	parameter.
This	function	is	provided	for	convenience	and	backward	compatibility	only.	In
performance-critical	parts	of	your	code	use	TColor32Entry	typecasting	or
direct	conversion:

Red	:=	(Color32	and	$00FF0000)	shr	16;

See	Also
AlphaComponent,	BlueComponent,	GreenComponent,	TColor32,
TColor32Entry

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

RGBtoHSL

procedure	RGBtoHSL(RGB:	TColor32;	var	H,	S,	L	:	Single);
overload;

procedure	RGBtoHSL(RGB:	TColor32;	var	H,	S,	L	:	Byte);
overload;

Description
Conversion	from	RGB	to	HSL	color	space.	The	H,	S	and	L	components	are
returned	in	corresponding	var	parameters	ranging	from	0	to	1	for	the	float
version	and	0	to	255	for	the	byte	version.

See	Also
Gray32,	HSLtoRGB,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

SetAlpha

function	SetAlpha(Color32:	TColor32;	NewAlpha:	Integer):
TColor32;

Description
Returns	a	color	with	the	new	alpha	channel.	This	function	automatically
performs	clipping	of	the	NewAlpha	parameter	to	[0…255]	range.

See	Also
TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

SetGamma

procedure	SetGamma(Gamma:	Single	=	0.7);

Description
Updates	gamma/shape	correction	table.
Pixel	and	line	antialiasing	produces	much	better	results	with	correction	of
opacities	for	partially	covered	pixels.	This	accounts	both	for	monitor	gamma
and	for	pixel	shape	correction.
Use	this	function	to	update	the	internal	gamma-correction	table	which	is	used
in	pixel	and	line	rasterization.
The	default	value	of	0.7	works	fine	in	most	cases.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

WinColor

function	WinColor(Color32:	TColor32):	TColor;

Description
Provides	conversion	of	the	TColor32	value	back	into	TColor.	The	highest-
order	byte	(Alpha	channel)	of	resulting	color	is	assigned	the	$FF	value.

See	Also
Color32,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

WinPalette

function	WinPalette(P:	TPalette32):	HPALETTE;

Description
The	provided	TPalette32	fixed-size	buffer	of	color	values	is	converted	into	the
Win32	API	equivalent	HPALETTE	handle	definition	of	a	palette	with	256	32-
bit	color	entries.

See	Also
Color32,	TPalette32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Arrays

Dynamic	Array	Types

TArrayOfByte
type	TArrayOfByte	=	array	of	Byte;
type	PArrayOfByte	=	^TArrayOfByte;

A	dynamic	array	of	bytes.

TArrayOfWord
type	TArrayOfInteger	=	array	of	Word;

A	dynamic	array	of	words.

TArrayOfInteger
type	TArrayOfInteger	=	array	of	Integer;

A	dynamic	array	of	integers.

TArrayOfSingle
type	TArrayOfSingle	=	array	of	Single;

A	dynamic	array	of	single-precision	floating-point	values.

TArrayOfArrayOfInteger
type	TArrayOfArrayOfInteger	=	array	of	TArrayOfInteger;

A	dynamic	array	of	dynamic	arrays	of	integers.
	

Array	Reference	Types
Most	likely	you	will	never	use	the	reference	types	directly,	however	the	pointer
is	the	one	of	some	importance.	It	provides	indexed	access	to	values	stored	in
memory,	and	is	used	as	the	result	type	of	the	ordinal	maps	bits	properties.

TByteArray
type	TByteArray	=	array	[0..0]	of	Byte;
type	PByteArray	=	^TByteArray;

A	reference	to	array	of	byte-typed	values.

TWordArray
type	TWordArray	=	array	[0..0]	of	Word;
type	PWordArray	=	^TWordArray;

A	reference	to	array	of	word-typed	values.

TIntegerArray
type	TIntegerArray	=	array	[0..0]	of	Integer;
type	PIntegerArray	=	^TIntegerArray;

A	reference	to	array	of	integer-typed	values.

See	Also
TByteMap,	TIntegerMap,	TWordMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Color	Types

TColor32
type	TColor32	=	type	Longword;
type	PColor32	=	^TColor32;

A	simple	ARGB	color	quad,	compatible	with	32-bit	DIBs.
TColor32	holds	color	information	in	ARGB	format:

Bits	32...24 Bits	23...16 Bits	15...8 Bits	7...0
Alpha Red Green Blue

This	order	is	different	from	ABGR	pixel	format	used	by	most	Windows	API
functions	and	implemented	in	Delphi	as	TColor	type.	A	couple	of	functions
are	provided	to	convert	colors	between	different	standards:	Color32,
WinColor.
The	alpha	component	is	responsible	for	pixel’s	opacity:	zero	value
corresponds	to	complete	transparency,	and	the	value	of	255	corresponds	to
completely	opaque	pixels.
Graphics32	specifies	several	pre-defined	Color	Constants,	which	are	similar	to
standard	ones	except	that	they	have	properly	filled	alpha	value	and	swapped
red	and	blue	components.

TColor32Entry
TColor32Entry	=	packed	record
case	Integer	of
		0:	(A:	Byte;
							B:	Byte;
							G:	Byte;
							R:	Byte);
		1:	(ARGB:	TColor32;);
		2:	(Planes:	array	[0..3]	of	Byte);
		3:	(Components:	array	[TColor32Component]	of	Byte);
end;

type	PColor32Entry	=	^TColor32Entry;
A	useful	type	for	gaining	fast	direct	read/write	access	to	the	components	of
TColor32	by	typecasting.	The	following	code	segment	shows	how	this
typecasting	can	be	used	in	different	manners	-	we	recommend	using	these
approaches	instead	of	auxiliary	functions	like	RedComponent	etc.:

var
				AColor32:	TColor32;
				I:	Integer;
begin
				//	Sets	values	to	individual	components
				TColor32Entry(AColor32).A	:=	255;
				TColor32Entry(AColor32).R	:=	127;
				TColor32Entry(AColor32).G	:=	63;
				TColor32Entry(AColor32).B	:=	31;
				//Sets	all	planes	or	components	("channels")	to	a	different	random	value
				with	TColor32Entry(AColor32)	do
								for	I	:=	Low(Planes)	to	High(Planes)	do
												Planes[I]	:=	Random(255);
				//Write	value	of	Alpha	component	to	Red,	Green	and	Blue	components
				with	TColor32Entry(AColor32)	do

				begin
								Components[ccRed]	:=	Components[ccAlpha];
								Components[ccGreen]	:=	Components[ccAlpha];
								Components[ccBlue]	:=	Components[ccAlpha];
				end;
end;

TColor32Component
type	TColor32Component	=	(ccBlue,	ccGreen,	ccRed,	ccAlpha);

An	enumerated	type	that	specifies	a	given	TColor32	component	or	plane.

TColor32Components
type	TColor32Components	=	set	of	TColor32Component;

A	set	of	TColor32Component	which	can	be	used	to	specify	zero	or	more
components.	The	order	of	defined	components	has	no	importance.	To
construct	a	set	of	components	from	booleans	indicating	component	presence,
use	function	Color32Components.	If	an	empty	set	is	passed	to	a	routine	that
uses	this	type,	this	will	(and	should)	in	most	cases	lead	to	no	processing.

TColor32Array
type	TColor32Array	=	array	[0..0]	of	TColor32;
type	PColor32Array	=	^TColor32Array;

A	reference	to	array	of	TColor32-typed	values.
Most	likely	you	will	never	use	the	TColor32Array	type	itself,	however
PColor32Array	is	the	one	of	some	importance.	It	provides	indexed	access	to
color	values	stored	in	memory.	For	example,	in	TBitmap32,	it	is	used	to
access	pixel	data.

TArrayOfColor32
type	TArrayOfColor32	=	array	of	TColor32;

A	dynamic	array	of	TColor32-typed	values.
You	may	use	the	standard	SetLength	function	for	array	allocation	and	dynamic
size	changes.
Do	not	confuse	PColor32Array	and	TArrayOfColor32	types.	While	the	first
one	holds	the	pointer	to	a	memory	location,	the	second	one	is	a	fully
functional	dynamic	array.

TPalette32
type	TPalette32	=	array	[Byte]	of	TColor32;
type	PPalette32	=	^TPalette32;

A	fixed-size	array	of	256	TColor32-typed	values.
TPalette32	type	is	mostly	used	to	simulate	palette-based	operations.

See	Also
Color	Constants,	Color32,	Color32Components,	RedComponent,	TBitmap32,
WinColor

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Point	Types

Graphics32	uses	coordinate	system	with	an	origin	at	the	top-left	corner.	Due	to
performance	considerations,	other	coordinate	systems	are	not	supported	and
not	planned	in	future	versions.
Point	coordinates	are	defined	with	following	structures:

TPoint
type	TPoint	=	Windows.TPoint;
type	PPoint	=	^TPoint;

A	point	with	integer	coordinates.	TPoint	type,	is	redeclared	from
Windows.pas	unit.	It	is	compatible	with	all	Delphi/Windows	API	calls.

TFloatPoint
type	TFloatPoint	=	record
		X,	Y:	Single;
end;

type	PFloatPoint	=	^TFloatPoint;
Defines	a	point	with	single-precision	floating-point	coordinates.

TFixedPoint
type	TFixedPoint	=	record
		X,	Y:	TFixed;
end;

type	PFixedPoint	=	^TFixedPoint;
TFixedPoint	is	bitwise-compatible	with	TPointFx	type	from	Windows.pas,
which	is	used	by	some	API	calls.	TFixedPoint	is	not	assignment-compatible
with	TPointFX,	however,	appropriate	data	in	memory	may	be	safely
referenced	by	both	types	and	it	is	still	possible	to	assign	between	these	types
using,	for	example,	Move	procedure	from	System.pas.

TArrayOfPoint
type	TArrayOfPoint	=	array	of	TPoint;

A	dynamic	array	of	TPoint.

TArrayOfFloatPoint
type	TArrayOfFloatPoint	=	array	of	TFloatPoint;

A	dynamic	array	of	TFloatPoint.

TArrayOfFixedPoint
type	TArrayOfFixedPoint	=	array	of	TFixedPoint;

A	dynamic	array	of	TFixedPoint.

TArrayOfArrayOfPoint
type	TArrayOfArrayOfPoint	=	array	of	TArrayOfPoint;

TArrayOfArrayOfFloatPoint
type	TArrayOfArrayOfFloatPoint	=	array	of	TArrayOfFloatPoint;

TArrayOfArrayOfFixedPoint
type	TArrayOfArrayOfFixedPoint	=	array	of	TArrayOfFixedPoint;

Maybe	last	three	types	look	a	little	cumbersome,	but	they	are	what	it	says:
dynamic	arrays	of	dynamic	arrays	of	points.	These	are	the	types	used	in
PolyPolyline	and	PolyPolygon	functions	to	define	shapes	constructed	of
several	outlines.

See	Also
Creating	Points,	PolyPolygon,	PolyPolyline,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Rectangle	Types

Several	data	types	are	designated	to	handle	rectangles:

TRect
type	TRect	=	Windows.TRect;

TRect	is	redeclared	from	Windows.h	and	is	compatible	with	Delphi/Windows
API	calls.

TFloatRect
type	TFloatRect	=	record
		case	Integer	of
				0:	(Left,	Top,	Right,	Bottom:	Single);
				1:	(TopLeft,	BottomRight:	TFloatPoint);
end;

A	rectangle	with	floating-point	coordinates.

TFixedRect
type	TFixedRect	=	record
		case	Integer	of
				0:	(Left,	Top,	Right,	Bottom:	TFixed);
				1:	(TopLeft,	BottomRight:	TFixedPoint);
end;

A	rectangle	with	fixed-point	coordinates.
	

See	Also
Creating	Rectangles,	TFixed,	TFixedPoint,	TFloatPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TAreaChangedEvent

type	TAreaChangedEvent	=	procedure(Sender:	TObject;	const
Area:	TRect;	const	Info:	Cardinal)	of	object;

Desctiption
TAreaChangedEvent	is	the	type	of	the	OnAreaChanged	event	in	TBitmap32.
It	indicates	which	area	has	changed	(Area).	A	simple	information	(Info)	about
the	area	can	be	set.
Info	is	normally	AREAINFO_RECT,	but	other	flags	can	be	set	to	indicate
what	shape	the	area	actually	has.	This	is	especially	useful	for	the	repaint
optimizer.	Lines	for	example	are	specially	treated	with	the	AREAINFO_LINE
+	LineWidth	encoded	into	the	Info	parameter.

See	Also
Area	Information	Flags,	TBitmap32.DrawMode,	TBitmap32.OnAreaChanged,
TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TCombineMode

type	TCombineMode	=	(cmBlend,	cmMerge);

Description
TCombineMode	defines	how	drawing	operations	combine	the	foreground
color	with	the	background.
It	also	determines	how	a	bitmap	is	combined	with	the	background	when
DrawMode	is	set	to	dmBlend.

cmBlend	-	Fast	blending	of	foreground	color	with	the	background	color
using	the	supplied	alpha.	This	method	is	not	suited	for	working	and
preserving	alpha-channels.	Use	this	more	if	you	want	to	blend	directly	to
the	display	buffer.
cmMerge	-	Uses	a	completely	different	formula	that	also	merges	the
alpha-channels.	This	mode	is	slower	than	blending	but	is	suited	for
working	with	alpha-channels	(eg.	when	composing	in	temporary	buffers).

See	Also
TBitmap32.DrawMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TDrawMode

type	TDrawMode	=	(dmOpaque,	dmBlend,	dmCustom,
dmTransparent);

Description
TDrawMode	defines	how	the	bitmap	is	combined	with	the	background.	This
is	the	type	for	DrawMode	property	of	TBitmap32	class,	and	it	is	also	passed
as	parameter	in	BlockTransfer	and	StretchTransfer	functions.

dmOpaque	–	a	color	information	from	the	foreground	image	completely
replaces	the	background	data;
dmBlend	–	foreground	and	background	colors	are	blended	together	using
per-pixel	opacity	of	the	foreground	bitmap	(stored	in	its	alpha	channel),
multiplied	by	its	MasterAlpha;
dmCustom	–	colors	are	mixed	using	OnPixelCombine	event,	that	is
essentially	a	call-back	function	allowing	for	any	custom	blending	routine.
dmTransparent	–	color	key	transparency:	any	pixel	that	matches
TBitmap32.OuterColor	is	treated	as	transparent.

See	Also
BlockTransfer,	TBitmap32.DrawMode,	TBitmap32.MasterAlpha,
TBitmap32.OnPixelCombine,	TBitmap32.OuterColor,	StretchTransfer,
TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TFixed

type	TFixed	=	type	Integer;
type	PFixed	=	^TFixed;

Description
In	order	to	accelerate	some	calculations,	Graphics32	extensively	uses	fixed
point	arithmetics,	which	is	mostly	based	on	TFixed	type:
TFixed	is	a	32-bit	fixed	point	value	in	16.16	format,	that	is	16	bits	represent
signed	integer	part	and	16	bits	represent	unsigned	fractional	part.	This	format
is	bitwise-compatible	with	TFixed	type	from	the	Windows.pas	unit,	except	it
does	not	use	a	record	to	store	the	value,	which	allows	for	faster	function
parameter	passing	and	faster	value	copying	and	assignment.
Conversion	from	floating	to	fixed	point	is	very	simple:

Fixed	:=	Round(Single	*	65536);

See	Also
Fixed	Point	Math

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TPixelCombineEvent

type	TPixelCombineEvent	=	procedure(F:	TColor32;	var	B:
TColor32;	M:	TColor32)	of	object;

Desctiption
TPixelCombineEvent	is	a	type	for	OnPixelCombine	callback	function.	It
specifies	a	function	which	takes	foreground	color	(F)	and	blends	it	with	the
background	(B).	This	function	may	optionally	use	master	alpha	value	(M).
Moreover,	in	dmCustom	mode	master	alpha	value	does	not	necesserely	have
to	be	in	[0…255]	range	anymore,	you	are	free	to	use	all	its	32-bits.

See	Also
TBitmap32.DrawMode,	TBitmap32.OnPixelCombine,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TRectRounding

type	TRectRounding	=	(rrClosest,	rrOutside,	rrInside);

Desctiption
TRectRounding	type	is	involved	in	conversion	from	TFloatRect/TFixedRect
to	TRect.	It	specifies	how	the	coordinates	are	rounded:

rrClosest	–	a	simple	Round()	function	is	used	for	each	coordinate;
rrOutside	–	Floor()	is	used	for	Left	and	Top;	Ceil()	–	for	Right	and
Bottom;
rrInside	–	Ceil()	is	used	for	Left	and	Top;	Floor()	–	for	Right	and
Bottom;

See	Also
Creating	Rectangles,	TFixedRect,	TFloatRect,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TSize

type	TSize	=	record
		Cx,	Cy:	Integer;
end;

Description
A	generic	type	which	holds	dimensions	of	a	rectangle,	if	not	stated	otherwise,
dimensions	are	specified	in	pixels.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TStretchFilter

type	TStretchFilter	=	(sfNearest,	sfDraft,	sfLinear,	sfCosine,
sfSpline,	sfLanczos,	sfMitchell);

Description
When	the	bitmap	is	scaled,	these	filters	control	how	the	colors	are
interpolated:

sfNearest	is	the	fastest	filter,	although	the	quality	of	the	stretched	image	is
fair.
sfDraft	is	a	complex	resampler,	meaning	that	it	uses	several	different
methods.	For	downsampling	it	uses	row-column	zoneshifting	to	preserve
more	details	than	sfNearest,	however	the	quality	is	not	as	good	as
sfLinear.	For	upsampling	it	uses	a	linear	interpolation	method	that	may
compromise	details	-	this	happens	if	both	downsampling	and	upsampling
is	needed.	sfDraft	is	ideal	for	preview	fields	and	thumbnails.	Please	note,
that	the	algorithm	is	not	pixel-perfect,	that	why	using	a	custom	cliprect
might	result	in	a	so	called	jitter-effect.
sfLinear	is	several	times	slower,	but	it	produces	more	decent	results	in
most	cases.
sfCosine	is	almost	equally	fast	as	sfLinear,	but	it	uses	cosine
interpolation,	which	produces	a	sharper	image.
sfSpline	is	an	approximation	of	spline	interpolation,	for	some	applications
its	result	may	be	too	smooth	and	blurry,	but	when	using	with	large
magnification	factors,	it	usually	yields	better	image	compared	to	sfLinear.
sfLanczos	generally	produces	the	sharpest	image	(especially	when
downsampling),	however	sometimes	can	produce	excessive	"ringing"
effect	-	this	is	the	slowest	filter.
sfMitchell	is	often	considered	as	one	of	the	best	filters	for	enlarging
images;	generally	not	as	sharp	as	Lanczos.

In	some	functions	filters	above	sfLinear	may	not	be	applicable	(for	example
in	Transform),	in	this	case	the	filter	value	will	be	substituted	with	sfLinear.
	

See	Also
TBitmap32.StretchFilter,	StretchTransfer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TWrapMode

type	TWrapMode	=	(wmClamp,	wmRepeat,	wmMirror);

Description
TWrapMode	is	the	type	for	the	WrapMode	property	in	TBitmap32,	which
specifies	how	to	wrapping	pixel	getters	and	setters	should	behave.
wmClamp	will	repeat	the	edge	pixel	if	a	pixel	is	read	or	written	outside	the
bitmap's	boundary.
wmRepeat	will	repeat	the	relative	bitmap	colors	if	it's	outside	of	the	bitmap's
boundary	(also	referred	to	as	'seamless'	and	'texture'	mode).
wmMirror	will	mirror	the	pixel	relative	to	the	bitmap	if	it's	outside	the
bitmap's	boundary.	This	mode	is	useful	for	better	perceptual	results	with
spatial	processing	(like	blurring).

See	Also
TBitmap32,	TBitmap32.WrapMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Area	Information	Flags

The	Area	Information	Flags	are	used	in	the	TAreaChangedEvent	to	further
describe	the	shape	of	the	changed	area.
Currently	Graphics32	defines	these	types:

const
		//	common	cases
		AREAINFO_RECT	=	$80000000;
		AREAINFO_LINE	=	$40000000;	//	24	bits	for	line	width	in	pixels...
		AREAINFO_ELLIPSE	=	$20000000;
		AREAINFO_ABSOLUTE	=	$10000000;
	
		AREAINFO_MASK	=	$FF000000;

	

See	Also
TAreaChangedEvent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

Color	Constants

Color	constants	specify	some	predefined	values	of	TColor32	type.
Their	names	are	similar	to	standard	ones,	they	just	have	a	'32'	postfix:

Constant Value
clBlack32 $FF000000
clDimGray32 $FF3F3F3F
clGray32 $FF7F7F7F
clLightGray32 $FFBFBFBF
clWhite32 $FFFFFFFF
clMaroon32 $FF7F0000
clGreen32 $FF007F00
clOlive32 $FF7F7F00
clNavy32 $FF00007F
clPurple32 $FF7F007F
clTeal32 $FF007F7F
clRed32 $FFFF0000
clLime32 $FF00FF00
clYellow32 $FFFFFF00
clBlue32 $FF0000FF
clFuchsia32 $FFFF00FF
clAqua32 $FF00FFFF

In	addition,	Graphics32	defines	a	few	colors	with	50%	transparency:
Constant Value

clTrWhite32 $7FFFFFFF
clTrBlack32 $7F000000
clTrRed32 $7FFF0000
clTrGreen32 $7F00FF00
clTrBlue32 $7F0000FF

	

See	Also
TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

G32Version

The	Graphics32Version	constant	is	a	string	that	holds	version	number	of	the
library.
The	version	number	is	a	simple	string	which	may	optionally	include	sub-
version	literal,	e.g.	'0.98a',	'0.99',	'1.0'	etc.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

Blend

function	BlendReg(F,	B:	TColor32):	TColor32;
procedure	BlendMem(F:	TColor32;	var	B:	TColor32);

Description
Mixes	a	foregrownd	(F)	color	with	the	background	color	(B)	using	the	alpha
component	of	the	foreground	color.

SRGB	=	FA	*	FRGB	+	(1	–	FA)	*	BRGB;

BlendReg	takes	parameters	and	produces	the	result	operating	on	CPU
registers.
BlendMem	operates	with	the	background	color	referenced	by	a	memory
address.
Using	BlendMem	is	more	efficient	when	blending/combining	data	to	a
bitmap,	since	it	excludes	writing	operation	for	transparent	pixels	and	reading
operation	for	opaque	ones.
Note,	that	after	using	the	Blend	function,	you	have	to	call	EMMS.	Otherwise
CPU	will	be	unable	to	handle	floating	point	instructions.

See	Also
BlendEx,	Combine,	EMMS,	Merge,	MergeEx,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

BlendEx

function	BlendRegEx(F,	B,	M:	TColor32):	TColor32;
procedure	BlendMemEx(F:	TColor32;	var	B:	TColor32;	M:
TColor32);

Description
Mixes	a	foreground	color	with	the	background	color	using	alpha	of	the
foreground	color	scaled	by	the	master	alpha	value	M.

SRGB	=	(M	*	FA)	*	FRGB	+	(1	–	(M	*	FA))	*	BRGB;

M	is	defined	as	TColor32	to	avoid	unnecessary	type	conversions,	it	must	store
only	values	in	[0..255]	range,	the	function	does	not	perform	range	checking
and	the	result	in	case	M	>	255	is	not	specified.
BlendRegEx	takes	parameters	and	produces	the	result	operating	on	CPU
registers.
BlendMemEx	operates	with	the	background	color	referenced	by	a	memory
address.
Using	BlendMemEx	is	more	efficient	when	blending/combining	data	to	a
bitmap	since	it	excludes	writing	operation	for	transparent	pixels	and	reading
operation	for	opaque	ones.
Note,	that	after	using	BlendEx	functions,	you	have	to	call	EMMS.	Otherwise
CPU	will	be	unable	to	handle	floating	point	instructions.

See	Also
Blend,	Combine,	EMMS,	Merge,	MergeEx,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

BlendLine

procedure	BlendLine(Src,	Dst:	PColor32;	Count:	Integer);

Description
An	optimized	row	processing	version	of	Blend.

See	Also
Blend,	BlendLineEx,	Color	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

BlendLineEx

procedure	(Src,	Dst:	PColor32;	Count:	Integer;	M:	TColor32);

Description
An	optimized	row	processing	version	of	BlendEx.

See	Also
BlendEx,	BlendLine,	Color	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

ColorAdd

function	ColorAdd(C1,	C2:	TColor32):	TColor32;

Description
Returns	the	sum	of	two	colors.	Each	color	component:	red,	green,	blue	and
alpha	is	added	separately	and	summation	results	are	clamped	to	fit	into	[0…
255]	range.

See	Also
ColorSub,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

ColorDiv

function	ColorDiv(C1,	C2:	TColor32):	TColor32;

Description
The	resulting	color	components	are	the	result	of	the	division	of	corresponding
components	from	C2	and	C1.

See	Also
TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

ColorMax

function	ColorMax(C1,	C2:	TColor32):	TColor32;

Description
Resultin	color	components	are	maximums	of	corresponding	components	in	C1
and	C2.

See	Also
ColorMin,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

ColorMin

function	ColorMin(C1,	C2:	TColor32):	TColor32;

Description
Resultin	color	components	are	minimums	of	corresponding	components	in	C1
and	C2.

See	Also
ColorMax,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

ColorModulate

function	ColorModulate(C1,	C2:	TColor32):	TColor32;

Description
The	resulting	color	components	are	calculated	as	products	of	corresponding
components	in	C1	and	C2	divided	by	$FF:

See	Also
TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

ColorSub

function	ColorSub(C1,	C2:	TColor32):	TColor32;

Description
Subtracts	C2	from	C1.	The	resulting	color	components	are	clamped	to	[0…
255]	range.	The	alpha	channel	is	subtracted	as	well.

See	Also
ColorAdd,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

Combine

function	CombineReg(X,	Y,	W:	TColor32):	TColor32;
procedure	CombineMem(F:	TColor32;	var	B:	TColor32;	W:
TColor32);

Description
Returns	the	color	with	components	calculated	as	linear	interpolation	between
X	and	Y	colors.	The	W	parameter,	which	sholuld	be	in	[0..255]	range,
specifies	the	weight	of	the	first	color	(X).	The	alpha	channel	is	interpolated	as
well.
SRGBA	=	W	*	XRGBA	+	(1	–	W)	*	YRGBA;

CombineReg	takes	parameters	and	produces	the	result	operating	on	CPU
registers.
CombineMem	operates	with	the	background	color	referenced	by	a	memory
address.
Using	CombineMem	is	more	efficient	when	blending/combining	data	to	a
bitmap	since	it	excludes	writing	operation	for	transparent	pixels	and	reading
operation	for	opaque	ones.
Note,	that	after	using	Combine	functions,	you	have	to	call	EMMS.	Otherwise
CPU	will	be	unable	to	handle	floating	point	instructions.

See	Also
Blend,	BlendEx,	EMMS,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

EMMS

procedure	EMMS;

Description
Calls	to	blending	functions	must	be	followed	by	EMMS	procedure.	This
restores	the	state	of	FPU	flags,	altered	by	MMX	instructions.	When	CPU	does
not	support	MMX,	the	EMMS	function	does	nothing.
This	function	must	be	called	after	Blend,	BlendEx	or	Combine	calls,	otherwise
CPU	will	not	be	able	to	execute	floating	point	instructions.
If	you	are	using	color	algebra	(such	as	ColorAdd,	ColorMax	etc.)	that	use
MMX	internally	you	also	have	to	make	sure	that	EMMS	is	called.
A	typical	example	of	using	blending	functions:
try			for	i	:=	X1	to	X2	do	
		begin	
				BlendMem(Clr32,	P^);	//	This	function	uses	MMX
				Inc(P);	
		end;	
finally	
			EMMS;	//	EMMS	is	called	only	once,	since	there	is	no	FPU	code	inside	the
loop	
end;

See	Also
Blend,	BlendEx,	ColorAdd,	ColorMax,	Combine

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

Lighten

function	Lighten(C:	TColor32;	Amount:	Integer):	TColor32;

Description
The	resulting	color	is	formed	from	the	color	components	of	the	parameter	C
by	adding	Amount	to	each	of	them	and	clipping	the	sum	to	[0…255]	range.
Amount	may	be	negative.

See	Also
TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

Merge

function	MergeReg(F,	B:	TColor32):	TColor32;
procedure	MergeMem(F:	TColor32;	var	B:	TColor32);

Description
Merges	a	foregrownd	(F)	color	with	the	background	color	(B)	using	the	alpha
component	of	the	foreground	color.	It	does	merge	the	alpha-channels.

SA	=	1	-	(1	-	FA)	(1	-	BA)
SRGB	=	(FA	*	FRGB	+	BA	*	(1	-	FA)	*	BRGB)	/	SA

MergeReg	takes	parameters	and	produces	the	result	operating	on	CPU
registers.
MergeMem	operates	with	the	background	color	referenced	by	a	memory
address.
Note,	that	after	using	the	Merge	function,	you	have	to	call	EMMS.	Otherwise
CPU	will	be	unable	to	handle	floating	point	instructions.

See	Also
Blend,	BlendEx,	Combine,	EMMS,	MergeEx,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

MergeEx

function	MergeRegEx(F,	B,	M:	TColor32):	TColor32;
procedure	MergeMemEx(F:	TColor32;	var	B:	TColor32;	M:
TColor32);

Description
Merges	the	foreground	color	with	the	background	color	using	alpha	of	the
foreground	color	scaled	by	the	master	alpha	value	M.	Alpha-Channels	are	also
merged.

SA	=	1	-	(1	-	(M	*	FA))	(1	-	BA)
SRGB	=	((M	*	FA)	*	FRGB	+	BA	*	(1	-	FA)	*	BRGB)	/	SA

M	is	defined	as	TColor32	to	avoid	unnecessary	type	conversions,	it	must	store
only	values	in	[0..255]	range,	the	function	does	not	perform	range	checking
and	the	result	in	case	M	>	255	is	not	specified.
MergeRegEx	takes	parameters	and	produces	the	result	operating	on	CPU
registers.
MergeMemEx	operates	with	the	background	color	referenced	by	a	memory
address.
Note,	that	after	using	MergeEx	functions,	you	have	to	call	EMMS.	Otherwise
CPU	will	be	unable	to	handle	floating	point	instructions.

See	Also
Blend,	BlendEx,	Combine,	EMMS,	Merge,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

TBlendLine

type	TBlendLine	=	procedure	(Src,	Dst:	PColor32;	Count:
Integer);

Desctiption
TBlendline	is	a	type	for	line	blending	procedures.	It	is	mainly	used	internally
for	handling	specific	CPU	feature	optimized	versions	(MMX	etc.).	See	source
code	for	details.

See	Also
BlendLine,	Color	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

TBlendLineEx

type	TBlendLineEx	=	procedure	(Src,	Dst:	PColor32;	Count:
Integer;	M:	TColor32);

Desctiption
TBlendline	is	a	type	for	line	blending	procedures	with	additional	master	alpha
parameter.	It	is	mainly	used	internally	for	handling	specific	CPU	feature
optimized	versions	(MMX	etc.).	See	source	code	for	details.

See	Also
BlendLineEx

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

TBlendMem

type	TBlendMem	=	procedure	(F:	TColor32;	var	B:	TColor32);

Desctiption
TBlendMem	is	a	type	for	blending	procedures.	It	is	mainly	used	internally	for
handling	specific	CPU	feature	optimized	versions	(MMX	etc.).	See	source
code	for	details.

See	Also
Blend,	Color	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

TBlendMemEx

type	TBlendMemEx	=	procedure	(F:	TColor32;	var	B:	TColor32;
M:	TColor32);

Desctiption
TBlendMemEx	is	a	type	for	blending	procedures.	It	is	mainly	used	internally
for	handling	specific	CPU	feature	optimized	versions	(MMX	etc.).	See	source
code	for	details.

See	Also
BlendEx,	Color	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

TBlendReg

type	TBlendReg	=	function	(F,	B:	TColor32):	TColor32;

Desctiption
TBlendReg	is	a	type	for	blending	procedures.	It	is	mainly	used	internally	for
handling	specific	CPU	feature	optimized	versions	(MMX	etc.).	See	source
code	for	details.

See	Also
Blend,	Color	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

TBlendRegEx

type	TBlendRegEx	=	function	(F,	B,	M:	TColor32):	TColor32;

Desctiption
TBlendRegEx	is	a	type	for	blending	procedures.	It	is	mainly	used	internally
for	handling	specific	CPU	feature	optimized	versions	(MMX	etc.).	See	source
code	for	details.

See	Also
BlendEx,	Color	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

TCombineMem

type	TCombineMem	=	procedure	(F:	TColor32;	var	B:
TColor32;	W:	TColor32);

Desctiption
TCombineMem	is	a	type	for	combining	procedures.	It	is	mainly	used
internally	for	handling	specific	CPU	feature	optimized	versions	(MMX	etc.).
See	source	code	for	details.

See	Also
Combine

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

TCombineReg

type	TCombineReg	=	function	(X,	Y,	W:	TColor32):	TColor32;

Desctiption
TCombineReg	is	a	type	for	color	combining	procedures.	It	is	mainly	used
internally	for	handling	specific	CPU	feature	optimized	versions	(MMX	etc.).
See	source	code	for	details.

See	Also
Color	Types,	Combine

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Blend

MMX_ACTIVE

var	MMX_ACTIVE:	Boolean;

Description
This	variable	indicates	if	the	CPU	supports	MMX	instructions.
MMX_ACTIVE	is	initialized	automatically	upon	the	library	initialization.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TClassList

TClassList.Find

function	Find(AClassName:	string):	TClass;

Description
Searches	the	list	for	a	specific	class	name.	If	no	match	is	found,	this	function
method	will	return	nil.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TClassList

TClassList.GetClassNames

procedure	GetClassNames(Strings:	TStrings);

Description
Adds	names	of	all	classes	currently	in	the	list	to	the	string	list	provided	by	the
parameter	Strings.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TPointerMap

TPointerMap.Count

property	Count:	Integer;

Description
Returns	the	amount	of	entries	in	the	pointer	map.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TPointerMap

TPointerMap.Data

property	Data[Item:	PItem]:	PData;	default;

Description
Returns	or	sets	the	associated	data	for	an	entry	Item.	If	the	entry	does	not	exist
in	the	map,	an	exception	of	type	EListError	will	be	raised.
The	data	lookup	is	fast	because	it	uses	a	hash-like	structure	internally.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TPointerMap

TPointerMap.Add

function	Add(NewItem:	PItem):	PPData;	overload;
function	Add(NewItem:	PItem;	out	IsNew:	Boolean):	PPData;
overload;

function	Add(NewItem:	PItem;	NewData:	PData):	PPData;
overload;

function	Add(NewItem:	PItem;	NewData:	PData;	out	IsNew:
Boolean):	PPData;	overload;

Description
Adds	a	new	item	to	the	pointer	map.	The	function	method	will	return	a	pointer
to	the	data	PPData.
NewItem	specifies	the	pointer	of	the	new	item;
NewData	specified	the	pointer	of	the	data	associated	with	the	new	item;
IsNew	returns	whether	the	item	was	added	to	the	list	or	if	an	existing	copy
was	modified.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TPointerMap

TPointerMap.Clear

procedure	Clear;

Description
Clears	all	entries	from	the	pointer	map.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TPointerMap

TPointerMap.Contains

function	Contains(Item:	PItem):	Boolean;

Description
Returns	whether	an	entry	exists	in	the	pointer	map.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TPointerMap

TPointerMap.Find

function	Find(Item:	PItem;	out	Data:	PPData):	Boolean;

Description
Returns	whether	an	entry	Item	exists	in	the	pointer	map.	If	it	exists,	the	Data
pointer	is	returned	by	Data.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TPointerMap

TPointerMap.Remove

function	Remove(Item:	PItem):	PData;

Description
Remove	the	entry	specified	by	Item	from	the	pointer	map	and	returns	its
Data.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TPointerMapIterator

TPointerMapIterator.Data

property	Data:	PData;

Description
Returns	the	associated	Data	entry	of	current	entry	Item	of	the	iterator.

See	Also
Item

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TPointerMapIterator

TPointerMapIterator.Item

property	Item:	PItem;

Description
Returns	the	current	entry	Item	of	the	iterator.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers TPointerMapIterator

TPointerMapIterator.Next

function	Next:	Boolean;

Description
Retrieves	the	next	entry	in	the	pointer	map	and	saves	a	copy	to	the	Data	and
Item	property.	Returns	True	if	the	operation	succeeded,	False	if	there	is	no
more	entry	to	fetch.

See	Also
Data,	Item

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage TRenderThread

TRenderThread.Create

constructor	Create(Rasterizer:	TRasterizer;	Bitmap:	TBitmap32;
DstRect:	TRect;	Suspended:	Boolean);

Description
Creates	an	instance	of	TRenderThread.	If	Suspended	then	the	rasterization
process	will	not	be	started,	otherwise	the	threaded	rasterization	will	start
immediatly.

See	Also
Rectangle	Types,	TBitmap32,	TRasterizer,	TRenderThread

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage TSyntheticImage32

TSyntheticImage32.AutoRasterize

property	AutoRasterize:	Boolean;

Description
If	AutoRasterize	then	the	synthetic	image	will	rasterize	when	the	associated
rasterizer	has	changed,	otherwise	Rasterize	has	to	be	called	in	order	to	start
rasterization.	AutoRasterize	is	set	true	upon	creation.

See	Also
Rasterize,	Rasterizer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage TSyntheticImage32

TSyntheticImage32.BitmapAlign

property	BitmapAlign:	TBitmapAlign;
type	TBitmapAlign	=	(baTopLeft,	baCenter,	baTile,	baCustom);

Description
Specifies	how	the	buffer	bitmap	is	located	withing	the	control's	boundaries.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage TSyntheticImage32

TSyntheticImage32.Buffer

property	Buffer:	TBitmap32;	//	Read	only;

Description
Provides	direct	access	to	the	back	buffer.

See	Also
TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage TSyntheticImage32

TSyntheticImage32.DstRect

property	DstRect:	TRect;

Description
DstRect	specifies	the	rasterization	boundaries	when	render	mode	is
rnmConstrained.

See	Also
Rectangle	Types,	RenderMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage TSyntheticImage32

TSyntheticImage32.Rasterizer

property	Rasterizer:	TRasterizer;

Description
This	property	specifies	which	rasterizer	is	used	to	render	to	the	synthetic
image	control.

See	Also
TRasterizer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage TSyntheticImage32

TSyntheticImage32.RenderMode

property	RenderMode:	TRenderMode;

Description
Specifies	whether	the	complete	control	is	updated	or	only	the	area	specified	by
the	DstRect	property.

See	Also
DstRect,	TRenderMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage TSyntheticImage32

TSyntheticImage32.Rasterize

procedure	Rasterize;

Description
Rasterize	starts	the	rasterization	process.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage

Rasterize

procedure	Rasterize(Rasterizer:	TRasterizer;	Bitmap:
TBitmap32;	DstRect:	TRect);

Description
Rasterize	is	a	simple	TRenderThread	based	rasterize	auxiliary	routine.
Calling	Rasterize	will	start	up	a	seperate	rasterization	thread	and	rasterize
through	that	with	the	provided	Rasterizer.

See	Also
Rectangle	Types,	TBitmap32,	TRasterizer,	TRenderThread

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage

TRenderMode

type	TRenderMode	=	(rnmFull,	rnmConstrained);

Description
TRenderMode	defines	how	the	synthetic	image	will	render	or	rasterize.

rnmFull	–	a	color	information	from	the	foreground	image	completely
replaces	the	background	data;
rnmConstrained	–	foreground	and	background	colors	are	blended
together	using	per-pixel	opacity	of	the	foreground	bitmap	(stored	in	its
alpha	channel),	multiplied	by	its	MasterAlpha;

See	Also
TBitmap32.MasterAlpha

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

AlphaToGrayscale

procedure	AlphaToGrayscale(Dst,	Src:	TBitmap32);

Description
This	function	transforms	an	alpha	channel	from	Src	bitmap	into	grayscale
(R=A,	G=A,	B=A)	color	in	Dst	bitmap.	If	necessary,	Dst	bitmap	is	resized	to
fit	Src	dimesions.
It	writes	only	RGB	components	into	Dst.	The	alpha	channel	(A)	remains
intact,	provided	that	dimensions	of	Dst	and	Src	match	before
AlphaToGrayScale	call.
This	function	is	useful	when	it	is	necessary	to	visualize	the	alpha	channel,	or
when	you	want	to	store	it	as	standard	bitmap	into	a	file.

See	Also
IntensityToAlpha,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

ApplyBitmask

procedure	ApplyBitmask(
		Dst:	TBitmap32;
		DstX:	Integer;	
		DstY:	Integer;
		Src:	TBitmap32;
		SrcRect:	TRect;
		Bitmask:	TColor32;
		LogicalOperator:	TLogicalOperator;
);

procedure	ApplyBitmask(
		ABitmap:	TBitmap32;
		ARect:	TRect;
		Bitmask:	TColor32;
		LogicalOperator:	TLogicalOperator;
);

Description
ApplyBitmask	performs	a	logical	(bitwise)	operation	on	a	bitmap	fragment
specified	by	SrcRect	into	location	(DstX,	DstY)	or	directly	in-place	on
ABitmap.	The	operation	is	carried	out	in	the	following	manner:	"Source	Pixel
[Logical	Operation]	Bitmask"	regardless	of	present	destination	or	in-place
operation.	The	logical	operation	is	defined	by	the	provided	Logical	Operator.	

Each	byte	in	the	bitmask	will	be	used	as	component	corresponding	operand.
The	following	combinations	illustrates	different	applications:

Description Parameter	Values Source

Zero	out	Red	and	Blue
components,	leave	the	rest
untouched

LogicalOperator	=	loAND
Bitmask	=	$FF00FF00

Invertion	of	Blue	component,
leave	the	rest	untouched

LogicalOperator	=	loXOR
Bitmask	=	$000000FF

Full	power	to	Red	component,
leave	the	rest	untouched

LogicalOperator	=	loOR
Bitmask	=	$00FF0000

Weird	filter LogicalOperator	=	loOR
Bitmask	=	$BABEC0DE

As	seen	above,	the	bitmask	does	not	necessarily	have	to	contain	0	or	$FF	in
each	component	segment	-	intermediate	values	can	also	be	used	however	with
limited	realistic	applications	(read:	weird	filters).
You	may	use	auxiliary	function	CreateBitmask	to	create	bitmasks.

See	Also
Color	Types,	CopyComponents,	CreateBitmask,	Invert,	TBitmap32,
TLogicalOperator,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

ApplyLUT

procedure	ApplyLUT(Dst,	Src:	TBitmap32;	const	LUT:	TLUT8;
PreserveAlpha:	Boolean	=	False);

Description
Converts	color	from	Src	to	Dst	using	a	look-up	table	(LUT	parameter)	to	map
the	color	components.	The	alpha	channel	of	the	result	is	set	to	$FF	by	default.
However,	you	can	override	this	behaviour	by	setting	PreserveAlpha	to	True.

RDST	=	LUT[RSRC];
GDST	=	LUT[GSRC];
BDST	=	LUT[BSRC];
If	PreserveAlpha	then	ADST	=	ASRC	else	ADST	=	$FF;

This	function	supports	in-place	operation,	that	is	Dst	may	be	the	same	as	Src.

See	Also
TBitmap32,	TLUT8

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

ChromaKey

procedure	ChromaKey(ABitmap:	TBitmap32;	TrColor:
TColor32);

Description
Preprocesses	a	Bitmap	for	standard	color	key	transparency,	ie.	areas	that	are	of
color	TrColor	are	made	transparent.
It	is	possible	to	use	this	function	several	times	for	different	colors.

See	Also
Color	Types,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

ColorToGrayScale

procedure	ColorToGrayscale(Dst,	Src:	TBitmap32;
PreserveAlpha:	Boolean	=	False);

Description
Calculates	color	intensity	from	Src	and	writes	it	as	a	grayscale	image	into	Dst.
The	alpha	channel	in	Dst	will	be	set	to	$FF	by	default.	However,	you	can
override	this	behaviour	by	setting	PreserveAlpha	to	True.
This	function	supports	in-place	operation,	that	is	Dst	may	be	the	same	as	Src.

See	Also
AlphaToGrayscale,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

CopyComponents

procedure	CopyComponents(
		Dst:	TBitmap32;	
		Src:	TBitmap32;	
		Components:	TColor32Components);	overload;

procedure	CopyComponents(
		Dst:	TBitmap32;	
		DstX:	Integer;	
		DstY:	Integer;
		Src:	TBitmap32;	
		SrcRect:	TRect;
		Components:	TColor32Components);overload;

Description
CopyComponents	copies	the	provided	TColor32Components	from	Source	to
Destination	(read:	no	blending	etc.	is	involved).	The	first	version	doesn't	take
specific	source	and	destination	settings	and	will	therefore	resize	(and
implicitly	clear)	destination	so	it	is	same	size	as	the	source.	The	second
version	will	not	modify	size	of	the	destination	and	therefore	leaves	the
components	not	overwritten	by	the	operation	untouched.

See	Also
ApplyBitmask,	TBitmap32,	TColor32Components,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

CreateBitmask

function	CreateBitmask(Components:	TColor32Components):
TColor32;	overload;

This	function	takes	a	set	of	TColor32Component	and	creates	a	TColor32.	If	a
given	component	is	present	in	the	set,	the	result	component	will	get	the	value
255;	if	not	present	the	result	component	will	be	zero.	The	context	of
application	is	to	prepare	a	Bitmask	parameter	for	the	routine	ApplyBitmask.
To	construct	bitmasks	containing	any	number	in	range	[0..255]	per
component,	use	Color32.

	

See	Also
ApplyBitmask,	Color32,	TColor32,	TColor32Component,
TColor32Components

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

IntensityToAlpha

procedure	IntensityToAlpha(Dst,	Src:	TBitmap32);

Description
This	function	transforms	the	color	intensity,	stored	in	RGB	channels	of	Src
bitmap	into	the	alpha	channel	in	Dst.	If	necessary,	the	Dst	bitmap	is	resized	to
fit	Src	dimesions.
The	intensity	is	calculated	using	the	Intensity	function.
The	function	writes	only	the	alpha	component	into	Dst.	Other	channels	remain
intact	(provided	dimensions	of	Dst	and	Src	match	before	IntensityToAlpha
call).
IntensityToAlpha	is	useful	when	it	is	necessary	to	load	an	alpha	channel
stored	in	as	an	image.
The	in-place	operation	is	fully	supported,	that	is	Dst	may	be	the	same	as	Src.

See	Also
AlphaToGrayscale,	Intensity,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

Invert

procedure	Invert(Dst,	Src:	TBitmap32;	Components	:
TColor32Components	=	[ccAlpha,	ccRed,	ccGreen,	ccBlue]);

Description
Inverts	the	given	set	of	components.	If	no	component	set	is	provided	all	color
components,	including	the	alpha	component	will	be	inverted.
This	function	supports	in-place	operation,	that	is	Dst	may	be	the	same	as	Src.

See	Also
InvertRGB,	TBitmap32,	TColor32Components

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

InvertRGB

procedure	InvertRGB(Dst,	Src:	TBitmap32);

Description
Inverts	RGB	color	channels,	and	copies	the	alpha	channel	without	inversion.
If	necessary,	the	Dst	bitmap	is	resized	to	fit	Src	dimensions.	This	function	is
equal	to	calling	Invert	with	Components	=	[ccRed,	ccGreen,	ccBlue].
This	function	supports	in-place	operation,	that	is	Dst	may	be	the	same	as	Src.

See	Also
Invert,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

TLogicalOperator

type	TLogicalOperator	=	(loXOR,	loAND,	loOR);

Description
An	enumerated	type	that	specifies	logical	(bitwise)	operators	for	use	in
ApplyBitmask.

See	Also
ApplyBitmask

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Filters

TLUT8

type	TLUT8	=	array	[Byte]	of	Byte;

Description
A	look-up	table	of	256	values,	each	ranging	from	0	to	255.
TLUT8	is	used	to	transform	color	data	with	ApplyLUT	procedure.

See	Also
ApplyLUT

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TBitmap32Collection

TBitmap32Collection.Items

property	Items[Index:	Integer]:	TBitmap32Item;

Description
Provides	indexed	access	to	stored	bitmap	items.
Bitmap	items	are	instances	of	TBitmap32Item	object.	Each	bitmap	item,	in
turn,	contains	a	TBitmap32	object,	accessible	through	its	Bitmap	property.
The	number	of	items	may	be	obtained	by	reading	inherited	Count	property.

See	Also
TBitmap32Item.Bitmap,	TBitmap32,	TBitmap32Item

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TBitmap32Collection

TBitmap32Collection.Add

function	Add:	TBitmap32Item;

Description
Creates	a	new	instance	of	the	bitmap	item	with	the	empty	bitmap,	adds	it	to
the	collection	and	returns	reference	to	the	new	bitmap	item.
Alternatively,	you	may	use	TBitmap32Item.Create	method	to	add	new	items
to	the	collection.

See	Also
TBitmap32Item.Create,	TBitmap32Item

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TBitmap32Collection

TBitmap32Collection.Create

constructor	Create(AOwner:	TPersistent;	ItemClass:
TBitmap32ItemClass);

type	TBitmap32ItemClass	=	class	of	TBitmap32Item;

Description
Creates	an	instance	of	TBitmap32Collection.
ItemClass	specifies	must	specify	TBitmap32Item	or	its	descendant.	When
calling	collection's	Add	method	it	will	create	instances	of	the	class	specified	in
ItemClass	parameter.

See	Also
Add,	TBitmap32Collection,	TBitmap32Item

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TBitmap32Item

TBitmap32Item.Bitmap

property	Bitmap:	TBitmap32;

Description
Provides	access	to	the	contained	bitmap.

See	Also
TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TBitmap32Item

TBitmap32Item.Create

constructor	Create(Collection:	TCollection);	override;

Description
Creates	an	instance	of	TBitmap32Item.
When	creating	bitmap	items	at	run	time,	pass	the	corresponding
TBitmap32Collection	object	as	the	parameter.
Alternatively,	you	may	use	TBitmap32Collection.Add	method	to	create	new
bitmap	items:

var			BitmapCollection:	TBitmap32Collection;
		B1,	B2:	TBitmap32Item;
begin
		BitmapCollection	:=	TBitmap32Collection.Create;
		try
					B1	:=	TBitmap32Item.Create(BitmapCollection);
					B2	:=	BitmapCollection.Add;
					//	some	operations	with	B1,	B2...
		finally	
				BitmapCollection.Free;
		end;
end;

Note,	that	it	is	not	necessary	to	call	the	Free	method	for	bitmap	items,	since
they	are	owned	by	the	collection.

See	Also
TBitmap32Collection.Add,	TBitmap32Collection,	TBitmap32Item

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TBitmap32Item

TBitmap32Item.Destroy

destructor	Destroy;	override;

Description
Removes	a	bitmap	item	from	the	collection,	destroys	it	and	frees	allocated
memory.
Do	not	call	Destroy	in	your	application,	use	standard	Free	method	instead.
Since	bitmap	items	are	owned	by	the	collection,	they	all	are	destroyed
automaticaly	when	the	collection	is	destroyed.	There	is	no	need	to	call	Free
method	for	bitmap	items	unless	you	want	them	to	be	explicitly	destroyed
before	the	collection	is	destroyed.

See	Also
TBitmap32Collection.Items

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TBitmap32List

TBitmap32List.Bitmap

property	Bitmap[Index:	Integer]:	TBitmap32;	default;

Description
Provides	an	indexed	access	to	stored	bitmaps.
Using	Bitmap[Index]	is	the	same	as	using	Bitmaps[Index].Bitmap.

See	Also
Bitmaps,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TBitmap32List

TBitmap32List.Bitmaps

property	Bitmaps:	TBitmap32Collection;

Description
Provides	indexed	access	to	contained	TBitmap32Collection	object.	The	total
number	of	items	may	be	obtained	through	collection's	Count	property.

See	Also
TBitmap32Collection

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TBitmap32List

TBitmap32List.Create

constructor	Create(AOwner:	TComponent);	override;

Description
Creates	an	instance	of	TBitmap32List.

See	Also
TBitmap32List

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TBitmap32List

TBitmap32List.Destroy

destructor	Destroy;	override;

Description
Destroys	the	contained	bitmap	collection,	including	all	the	bitmaps	in	it,	then
calls	the	inherited	destructor.
Do	not	call	Destroy	in	your	application,	use	standard	Free	method	instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.Bitmap

property	Bitmap:	TBitmap32;

Description
Provides	access	to	the	bitmap	image.

See	Also
Bitmap	Image,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.BitmapAlign

property	BitmapAlign:	TBitmapAlign;
type	TBitmapAlign	=	(baTopLeft,	baCenter,	baTile,	baCustom);

Description
Specifies	how	the	bitmap	image	is	located	withing	the	control's	boundaries.
Note,	that	in	TCustomImgView32	this	property	should	always	remain
baCustom.

See	Also
Bitmap	Image,	TCustomImgView32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.Layers

property	Layers:	TLayerCollection;

Description
Provides	access	to	the	layer	collection.

See	Also
TLayerCollection,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OffsetHorz

property	OffsetHorz:	Single;

Description
Specifies	the	horizontal	offset	of	the	bitmap	image	in	baCustom	BitmapAlign
mode

See	Also
Bitmap	Image,	BitmapAlign

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OffsetVert

property	OffsetVert:	Single;

Description
Specifies	the	vertical	offset	of	the	bitmap	image	in	baCustom	BitmapAlign
mode

See	Also
Bitmap	Image,	BitmapAlign

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.PaintStages

property	PaintStages:	TPaintStages;

Description
Provides	access	to	paint	stages	of	the	control,	allowing	to	customize	the	order
in	which	it	repaints	itself.

See	Also
Paint	Stages,	TPaintStages

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.Scale

property	Scale:	Single;

Description
Specifies	the	X	and	Y	scale	of	the	bitmap	image	when	ScaleMode	is	smScale
or	smOptimalScaled.
Warning:	do	not	set	too	small	scales	in	baTile	BitmapAlign	mode,	as	this	can
have	severe	impact	on	performance.

See	Also
Bitmap	Image,	BitmapAlign,	Scale,	ScaleMode,	ScaleX

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ScaleMode

property	ScaleMode:	TScaleMode;
type	TScaleMode	=	(smNormal,	smStretch,	smScale,	smResize,
smOptimal,	smOptimalScaled);

Description
Specifies	the	current	scale	mode	for	the	bitmap	image.
smNormal	will	display	the	bitmap	image	with	its	original	size;
smStretch	will	stretch	the	bitmap	image	to	fit	the	control's	boundaries;
smResize	will	proportionally	resize	the	bitmap	image	to	fit	the	control's
boundaries;
smScale	will	proportionally	scale	the	bitmap	image	using	the	factor	provided
by	the	Scale	property;
smOptimal	will	proportionally	fit	the	bitmap	image	into	the	control's
boundaries	if	the	viewport	is	smaller	than	the	image	size.	Otherwise	it	will	be
displayed	with	its	original	size;
smOptimalScaled	will	proportionally	fit	the	bitmap	image	into	the	control's
boundaries	if	the	viewport	is	smaller	than	the	image	size	multiplied	by	the
Scale	property.	Otherwise	it	will	be	displayed	with	its	original	size.
	
Note,	that	TCustomImgView32	descendants	only	support	smScale,	smOptimal
and	smOptimalScaled	mode.
	

See	Also
Bitmap	Image,	Scale,	TCustomImgView32,	TScaleMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ScaleX

property	ScaleX:	Single;

Description
Specifies	the	X	scale	of	the	bitmap	image	when	ScaleMode	is	smScale	or
smOptimalScaled.
Warning:	do	not	set	too	small	scales	in	baTile	BitmapAlign	mode,	as	this	can
have	severe	impact	on	performance.

See	Also
Bitmap	Image,	BitmapAlign,	Scale,	ScaleMode,	ScaleY

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ScaleY

property	ScaleY:	Single;

Description
Specifies	the	Y	scale	of	the	bitmap	image	when	ScaleMode	is	smScale	or
smOptimalScaled.
Warning:	do	not	set	too	small	scales	in	baTile	BitmapAlign	mode,	as	this	can
have	severe	impact	on	performance.

See	Also
Bitmap	Image,	BitmapAlign,	Scale,	ScaleMode,	ScaleX

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.BeginUpdate

procedure	BeginUpdate;	virtual;

Description
Disables	change	notifications	until	the	paired	EndUpdate	method	is	called.
BeginUpdate...EndUpdate	blocks	may	be	nested.

See	Also
EndUpdate,	OnChange

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.BitmapToControl

function	BitmapToControl(const	APoint:	TPoint):	TPoint;

Description
Transforms	point	coordinates	from	the	reference	frame	of	bitmap	image	to
control's	reference	frame.

See	Also
Bitmap	Image,	ControlToBitmap,	TPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.Changed

procedure	Changed;	virtual;

Description
In	case	the	update	notification	is	not	masked	with	BeginUpdate,	Changed
invalidates	the	control	and	then	calls	the	OnChange	event.

See	Also
BeginUpdate,	EndUpdate,	TCustomPaintBox32.Invalidate,	OnChange

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ControlToBitmap

function	ControlToBitmap(const	APoint:	TPoint):	TPoint;

Description
Transforms	point	coordinates	from	control's	reference	frame	to	the	reference
frame	of	bitmap	image.

See	Also
Bitmap	Image,	BitmapToControl,	TPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.Create

constructor	Create(AOwner:	TComponent);	override;

Description
Creates	an	instance	of	TCustomImage32.
After	calling	the	inherited	constructor,	Create	initializes	the	following
properties:

BitmapAlign	to	baTopLeft;
OffsetHorz	to	0;
OffsetVert	to	0;
Scale	to	1.0;
ScaleMode	to	smNormal;

See	Also
BitmapAlign,	OffsetHorz,	OffsetVert,	Scale,	ScaleMode,	TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.Destroy

destructor	Destroy;	override;

Description
Destroys	an	instance	of	TCustomImage32,	freeing	the	memory	allocated	to
bitmap	image	and	layers.
Do	not	call	the	Destroy	directly	in	your	application.	Call	the	standard	Free
method	instead.

See	Also
TCustomImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.EndUpdate

property	EndUpdate:	TNotifyEvent;

Description
Re-enables	generation	of	the	OnChange	event,	masked	with	BeginUpdate
method.
BeginUpdate...EndUpdate	pairs	may	be	safely	nested.

See	Also
BeginUpdate,	OnChange

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ExecBitmapFrame

procedure	ExecBitmapFrame(Dest:	TBitmap32;	Stage:	Integer);
virtual;

Description
Draw	a	dotted	frame	around	the	scaled	bitmap	image	in	design	time.
This	method	is	called	by	the	control	when	it	executes	PST_BITMAP_FRAME
paint	stage.

See	Also
Paint	Stages,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ExecClearBackgnd

procedure	ExecClearBuffer(Dest:	TBitmap32;	Stage:	Integer);
virtual;

Description
Clears	the	visible	area	of	the	buffer	with	the	color	specified	in	the	Color
property	of	the	control.
This	method	is	called	by	the	control	when	it	executes
PST_CLEAR_BACKGND	paint	stage.

See	Also
Paint	Stages,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ExecClearBuffer

procedure	ExecClearBuffer(Dest:	TBitmap32;	Stage:	Integer);
virtual;

Description
Clears	the	whole	buffer	with	the	color	specified	in	the	Color	property	of	the
control.
This	method	is	called	by	the	control	when	it	executes	PST_CLEAR_BUFFER
paint	stage.	Note,	however,	that	by	default,	TCustomImage32	does	not	execute
PST_CLEAR_BUFFER	stage,	instead	of	it	it	uses	PST_CLEAR_BACKGND,
which	works	faster	in	some	cases.

See	Also
Paint	Stages,	TBitmap32,	TCustomImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ExecControlFrame

procedure	ExecControlFrame(Dest:	TBitmap32;	Stage:	Integer);
virtual;

Description
Draw	a	dotted	frame	around	control	boundaries	in	design-ime.
This	method	is	called	by	the	control	when	it	executes
PST_CONTROL_FRAME	paint	stage.

See	Also
Paint	Stages,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ExecCustom

procedure	ExecCustom(Dest:	TBitmap32;	Stage:	Integer);
virtual;

Description
Calls	the	OnPaintStage	event.
This	method	is	called	by	the	control	when	it	executes	PST_CUSTOM	stage.

See	Also
OnPaintStage,	Paint	Stages,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ExecDrawBitmap

procedure	ExecDrawBitmap(Dest:	TBitmap32;	Stage:	Integer);
virtual;

Description
Paints	the	bitmap	image.
This	method	is	called	by	the	control	when	it	executes	PST_DRAW_BITMAP
stage.

See	Also
Paint	Stages,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.ExecDrawLayers

procedure	ExecDrawLayers(Dest:	TBitmap32;	Stage:	Integer);
virtual;

Description
Paints	layers	using	the	layer	mask	of	the	corresponding	stage.
This	method	is	called	by	the	control	when	it	executes	PST_DRAW_LAYERS
stage.

See	Also
Paint	Stages,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.GetPictureRect

function	GetPictureRect:	TRect;

Description
Returns	the	location	of	the	bitmap	image	after	an	appropriate	ScaleMode	and
BitmapAlign	is	applied.	In	bmTile	ScaleMode	it	returns	the	location	of	a	top-
left	tile.

See	Also
Bitmap	Image,	BitmapAlign,	GetPictureSize,	ScaleMode,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.GetPictureSize

function	GetPictureSize:	TSize;

Description
Returns	the	size	of	the	bitmap	image	after	an	appropriate	ScaleMode	is
applied.	In	bmTile	ScaleMode	it	returns	the	size	of	a	tile.

See	Also
Bitmap	Image,	GetPictureRect,	ScaleMode,	TSize

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.Resize

procedure	Resize;	override;

Description
	

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.SetupBitmap

procedure	SetupBitmap(
		DoClear:	Boolean	=	False;	
		ClearColor:	TColor32	=	$FF000000);

Description
Sets	the	size	of	the	bitmap	image	to	the	size	of	the	buffered	area.	This	method
does	not	account	for	current	ScaleMode.
If	DoClear	=	True,	the	resized	image	will	be	filled	with	a	color	specified	in
the	ClearColor	parameter.

See	Also
Bitmap	Image,	TCustomPaintBox32.GetViewportRect,	ScaleMode,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OnBitmapResize

property	OnBitmapResize:	TNotifyEvent;

Description
This	event	is	generated	after	the	bitmap	image	is	resized,	that	is	its	Width	or
Height	property	changes.	OnBitmapResize	is	not	generated	when	Scale	or
ScaleMode	is	changed.

See	Also
TCustomMap.Height,	Scale,	ScaleMode,	TCustomMap.Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OnChange

property	OnChange:	TNotifyEvent;

Description
OnChange	is	an	abstract	change	notification	event,	which	is	called	by	some
of	the	descendants	of	TCustomPaintBox32	immediately	after	changes	have
been	made	to	their	contents.
In	TCustomImage32,	for	example,	this	includes	redirection	of	change
notification	events	from	the	contained	bitmap	and	from	layers.
This	event,	however,	is	not	called	by	TCustomPaintBox32	control	itself,
unless	you	call	the	Changed	method	explicitly.
Change	notification	may	be	disabled	with	BeginUpdate	call	and	re-enabled
with	EndUpdate	call.

See	Also
BeginUpdate,	Changed,	EndUpdate,	TCustomImage32,	TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OnGDIOverlay

property	OnGDIOverlay:	TNotifyEvent;

Description
[Note:	Most	likely	this	event	will	be	removed	in	future	versions.	Do	not	use	it
]
This	event	is	called	after	the	image	has	been	combined	with	layers	in	the	back-
buffer	and	copied	to	the	screen.	In	the	event	handler	you	can	provide
additional	drawing	using	the	standard	Canvas	of	the	control.
Drawing	at	this	stage	will	not	affect	the	contents	of	the	back-buffer.

See	Also
OnPaintStage,	Paint	Stages

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OnInitStages

property	OnInitStages:	TNotifyEvent;

Description
OnInitStages	is	called	by	TCustomImage32	in	the	process	of	initialization
right	after	it	finishes	building	default	list	of	paint	stages.	You	may	also	alter
the	stages	in	the	OnCreate	event	handler	of	the	owner	form	or	anywhere	else
in	you	program.

See	Also
Paint	Stages,	TCustomImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OnMouseDown

property	OnMouseDown:	TImgMouseEvent;
type	TImgMouseEvent	=	procedure(Sender:	TObject;	Button:
TMouseButton;	Shift:	TShiftState;	X,	Y:	Integer;	Layer:
TCustomLayer)	of	object;

Description
This	event	occurs	when	user	pushes	the	mouse	button	in	the	image	area.	The
Layer	parameter	indicates	the	layer	under	the	mouse,	or	nil	in	case	the	mouse
is	over	the	background	area.
Whether	the	layer	is	under	the	mouse	or	not,	is	determined	by	the	HitTest
function	and	by	the	LOB_MOUSE_EVENTS	bit	in	LayerOptions.	The	top-
most	layer	which	passes	the	test	is	passed	into	the	Layer	parameter	of	the
event.
Note,	that	once	mouse	was	pressed,	the	layer	(or	the	background)	captures	the
mouse	messages	until	the	mouse	button	is	released.

See	Also
TCustomLayer.HitTest,	TCustomLayer.LayerOptions,	OnMouseMove,
OnMouseUp,	TCustomLayer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OnMouseMove

property	OnMouseMove:	TImgMouseMoveEvent;
type	TImgMouseMoveEvent	=	procedure(Sender:	TObject;
Shift:	TShiftState;	X,	Y:	Integer;	Layer:	TCustomLayer)	of
object;

Description
This	event	is	fired	while	the	mouse	is	dragged	over	the	image.	Layer	indicates
the	layer	under	the	mouse,	nil	–	when	there	is	no	layer	under	the	mouse,	or	the
layer	which	has	captured	mouse	events.

See	Also
OnMouseDown,	OnMouseUp,	TCustomLayer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OnMouseUp

property	OnMouseUp:	TImgMouseEvent;
type	TImgMouseEvent	=	procedure(Sender:	TObject;	Button:
TMouseButton;	Shift:	TShiftState;	X,	Y:	Integer;	Layer:
TCustomLayer)	of	object;

Description
This	event	occurs	when	the	mouse	button	is	released.	Layer	indicates	the
layer	under	the	mouse,	nil	–	when	there	is	no	layer	under	the	mouse,	or	the
layer	which	has	captured	mouse	events.
	

See	Also
Changed,	TCustomLayer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OnPaintStage

property	OnPaintStage:	TPaintStageEvent;
type	TPaintStageEvent	=	procedure(Sender:	TObject;	Dest:
TBitmap32;	StageNum:	Cardinal)	of	object;

Description
An	event,	called	by	the	control	while	it	repaints	itself.	By	default,
TCustomImage32	does	not	generate	OnPaintStage	events,	but	this	can	be
changed	by	adding	PST_CUSTOM	paint	stages.
In	the	event	handler,	do	not	paint	to	Buffer	directly,	use	the	passed	Dest
parameter	instead.

See	Also
TCustomPaintBox32.Buffer,	Paint	Stages,	TBitmap32,	TCustomImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OnPixelCombine

property	OnPixelCombine:	TPixelCombineEvent;
type	TPixelCombineEvent	=	procedure(F:	TColor32;	var	B:
TColor32;	M:	TColor32)	of	object;

Description
This	event	is	redirected	from	the	bitmap	image,	in	order	to	make	it	accessible
in	the	Delphi's	Object	Manager.	There	is	no	difference	between	using
TCustomImage32.OnPixelCombine	and	TBitmap32.OnPixelCombine.

See	Also
TBitmap32.OnPixelCombine,	TColor32,	TCustomImage32,
TPixelCombineEvent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImage32

TCustomImage32.OnScaleChange

property	OnScaleChange:	TNotifyEvent;

Description
OnScaleChange	is	change	notification	event,	which	is	called	whenever	the
Scale	property	changes.

See	Also
Changed,	Scale,	ScaleX,	TCustomImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.Centered

property	Centered:	Boolean;

Description
Indicates	the	alignmet	of	the	container	bitmap	image.	When	Centered	is	True
(default)	the	image	is	automatically	positioned	at	the	center	of	the	control,
otherwise	it	is	located	at	the	top-left	corner.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.OverSize

property	OverSize:	Integer;

Description
This	property	introduces	a	frame	of	OverSize	pixels	in	each	direction	around
the	bitmap.	
This	will	keep	the	bitmap	scrollable	even	if	it	is	scaled	to	fit	the	viewport.
OverSize	is	set	to	0	by	default.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.ScrollBars

property	ScrollBars:	TIVScrollProperties;

Description
Controls	appearance	of	scroll	bars.
The	scroll	bars	in	TCustomImgView32	are	of	the	TCustomRangeBar	type.
Use	ScrollBars	to	control	properties	of	the	vertical	and	horizontal	scroll	bar
simultaneously.

See	Also
TCustomImgView32,	TCustomRangeBar,	TIVScrollProperties

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.SizeGrip

property	SizeGrip:	TSizeGripStyle;
type	TSizeGripStyle	=	(sgAuto,	sgNone,	sgAlways);

Description
Modify	the	SizeGrip	property	to	control	the	appearance	of	the	resizing	grip	at
the	lower-right	corner	of	the	control:

In	shAuto	mode,	visibuility	of	the	grip	is	determined	similar	to	tat	in	other
standard	controls	(e.g.	TScrollBox),	it	becomes	visible	when	control	is	client-
aligned	(if	it	has	parents,	they	should	be	client-aligned	as	well).
Use	snNone	and	sgAlways	styles	to	specify	its	appearance	explicitly.

See	Also
TSizeGripStyle

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.Create

constructor	Create(AOwner:	TComponent);	override;

Description
Creates	an	instance	of	TCustomImgView32.
After	calling	the	inherited	constructor,	Create	initializes	the	Centered	property
to	True.

See	Also
Centered,	TCustomImgView32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.Destroy

destructor	Destroy;	override;

Description
Destroys	the	instance	of	TCustomImgView32	class	and	frees	all	associated
memory.
Do	not	call	Destroy	directly,	use	Free	method	instead.

See	Also
TCustomImgView32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.GetViewportRect

function	GetViewportRect:	TRect;	override;

Description
This	property	is	overriden	to	return	the	rectangle,	corresponding	to	the	control
dimensions	minus	the	area	covered	by	the	scroll	bars.

See	Also
TIVScrollProperties.Size,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.Loaded

procedure	Loaded;	override;

Description
Loaded	is	overriden	to	adjust	positions	of	scroll	bars	after	the	control	loads	it
properties	from	the	DFM	file.
Normally,	you	sould	not	use	it	in	your	application.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.Resize

procedure	Resize;	override;

Description
Resize	is	overriden	to	adjust	positions	of	scroll	bars	after	the	control	resizes.
Normally,	you	sould	not	use	it	in	your	application.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.Scroll

procedure	Scroll(Dx.	Dy:	Integer);

Description
Scrolls	the	viewport	by	the	offsets	given	by	the	Dx	and	Dy	parameters.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.ScrollToCenter

procedure	ScrollToCenter(X,	Y:	Integer);

Description
Relatively	scrolls	the	center	of	the	viewport	to	the	X	and	Y	coordinates.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomImgView32

TCustomImgView32.OnScroll

property	OnScroll:	TNotifyEvent;

Description
This	event	is	generated	when	user	scrolls	the	image	using	scroll	bars.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.Buffer

property	Buffer:	TBitmap32;	//	Read	only;

Description
Provides	direct	access	to	the	back	buffer.
Note	that	the	actual	size	of	the	buffered	may	be	up	to	BufferOversize	pixels
larger	then	the	buffered	area.

See	Also
BufferOversize,	BufferValid,	TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.BufferOversize

property	BufferOversize:	Integer;	//	protected

Description
BufferOversize	specifies	how	the	back	buffer	is	reallocated	when	the	control
is	resized.
When	BufferOversize	equals	0,	the	back	buffer	is	reallocated	each	time	the
control	is	resized	to	suite	the	new	control	dimensions.
When	set	to	some	positive	value	(40	by	default),	the	back	buffer	is	allowed	to
be	up	to	BufferOversize	pixels	larger	then	the	control	is	in	each	direction.
The	buffer	resizing	algorithm	tracks	size	changes	and	reallocates	the	buffer
only	when	its	size	becomes	smaller	than	size	of	the	buffered	area	or	when	the
difference	between	the	sizes	exceeds	the	specified	amount	of	pixels.

See	Also
Buffer,	GetViewportRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.BufferValid

property	BufferValid:	Boolean;	//	protected

Description
BufferValid	specifies	if	the	current	content	of	the	Buffer	bitmap	is	up-to-date
and	whether	the	buffer	needs	to	be	repainted.
When	TCustomPaintBox32	repaints	itself,	it	checks	whether	the	buffer	is
valid.	If	BufferValid	is	True,	the	control	simply	flushes	its	contents	to	the
screen,	otherwise,	it	executes	DoPaintBuffer	method,	which	updates	the	buffer
and	sets	BufferValid	to	True,	then	it	copies	content	of	the	buffer	to	the	screen.
Normally,	this	property	should	not	be	accessed	in	your	application,	since
TCustomPaintBox32	tracks	the	buffer	state	and	updates	it	automatically.

See	Also
Buffer,	DoPaintBuffer,	TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.Options

property	Options:	TPaintBoxOptions;
type	TPaintBoxOptions	=	set	of	(pboWantArrowKeys,
pboAutoFocus);

Description
This	property	controls	additional	options	of	the	paint	box	and	its	descendants:
pboWantArrowKeys	-	indicates	whether	the	keyboard	arrow	keys	appear	in
OnKeyDown	event;
pboAutoFocus	-	indicates	that	the	paint	box	automatically	captures	keyboard
focus	when	clicked	with	the	mouse.	The	focus	is	acquired	before	the
OnMouseDown	event	is	fired.

See	Also
TPaintBoxOptions

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.RepaintMode

property	RepaintMode:	TRepaintMode;
type	TRepaintMode	=	(rmFull,	rmDirect,	rmOptimizer);

Description
This	property	controls	the	way	repaints	of	the	contents	are	handled	by
TCustomPaintBox32	and	its	descendants:
rmFull	-	indicates	whether	always	to	repaint	everything;
rmDirect	-	indicates	to	use	a	direct	repaint	rather	than	a	deferred	invalidation.
Please	note,	that	this	mode	is	not	supported	for	layer	supporting	control	like
TCustomImage32	and	its	descendants;
rmOptimizer	-	indicates	to	use	the	repaint	optimizer	to	just	repaint	changed
areas.	Especially	layer	operations	benefit	from	this	mode.

See	Also
Repaint	Optimization,	TCustomImage32,	TPaintBoxOptions

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.Destroy

destructor	Destroy;	override;

Description
Destroys	an	instance	of	TCustomPaintBox32	object	and	frees	all	associated
memory.
Do	not	call	Destroy	directly,	use	Free	method	instead.

See	Also
TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.DoPaintBuffer

procedure	DoPaintBuffer;	virtual;

Description
DoPaintBuffer	is	an	abstract	virtual	method,	called	by	the	controll	during	its
repainting.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.Flush

procedure	Flush;	overload;
procedure	Flush(const	SrcRect:	TRect);	overload;

Description
Immediately	copies	the	contents	of	the	buffer,	or	its	part	passed	in	SrcRect	to
the	screen.	Use	this	function	when	you	want	to	bypass	normal	Windows
invalidating/repainting	procedure,	for	example	when	the	buffer	is	painted	by
the	other	thread.
Both	functions	are	thread-safe.

See	Also
TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.ForceFullInvalidate

procedure	ForceFullInvalidate;

Description
ForceFullInvalidate	is	similar	to	Invalidate.	However,	it	will	override	the
repaint	optimizer	for	the	following	deferred	repaint.

See	Also
Invalidate,	Repaint	Optimization,	RepaintMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.GetViewportRect

function	GetViewportRect:	TRect;	virtual;	//	protected

Description
Returns	coordinates	of	the	buffered	area	relative	to	control's	client	area.	By
default,	it	coincides	with	the	control's	client	rectangle,	that	is,	the	function
returns	(0,	0,	ClientWidth,	ClientHeight)	rectangle.
Descendants	may	override	this	method	and	return	a	different	rectangle	if	they
have	unbuffered	areas,	like	scroll	bars.

See	Also
TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.Invalidate

procedure	Invalidate;	override;

Description
Invalidate	is	overriden	from	TWinControl.	In	addition	to	standard	behavior,	it
also	invalidates	the	buffer	content,	so	that	the	buffer	gets	actually	updated
during	the	following	paint	procedure.
You	do	not	have	to	call	this	method	explicitly	in	your	application.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.Loaded

procedure	Loaded;	override;

Description
Loaded	is	overriden	from	TWinControl	to	keep	the	buffer	dimensions
consistent	with	control's	dimensions.	You	do	not	have	to	call	this	method
explicitly	in	your	application.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.Resize

procedure	Resize;	override;

Description
Resize	is	overriden	from	TWinControl.	It	keeps	the	size	of	the	buffer
consistent	with	control's	dimensions	after	the	control	resizes.	Normally,	you
will	not	call	this	method	in	your	applications.
Whether	the	buffer	is	actually	resized	or	not	is	influenced	by	the
BufferOversize	property.
Resizing	of	the	control	will	also	invalidate	its	buffer.
Resize	generates	the	standard	OnResize	event	as	well.

See	Also
BufferOversize

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.SetBounds

procedure	SetBounds(ALeft,	ATop,	AWidth,	AHeight:	Integer);
override;

Description
SetBounds	is	overriden	from	TWinControl	to	keep	buffer	dimensions
consistent	with	the	control	size.
You	do	not	have	to	call	this	method	explicitly	in	your	application.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.OnMouseEnter

property	OnMouseEnter:	TNotifyEvent;

Description
OnMouseEnter	is	called	by	TPaintBox32	when	the	Mouse	cursor	has	entered
the	control.

See	Also
TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TCustomPaintBox32

TCustomPaintBox32.OnMouseLeave

property	OnMouseLeave:	TNotifyEvent;

Description
OnMouseLeave	is	called	by	TPaintBox32	when	the	Mouse	cursor	has	left	the
control.

See	Also
TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TIVScrollProperties

TIVScrollProperties.Backgnd

property	Backgnd:	TRBBackgnd;
type	TRBBackgnd	=	(bgPattern,	bgSolid);

Description
Provides	access	to	the	Backgnd	property	in	scroll	bars.

See	Also
TArrowBar.Backgnd,	TRBBackgnd

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TIVScrollProperties

TIVScrollProperties.BorderStyle

property	BorderStyle:	TBorderStyle;
type	TBorderStyle	=	(bsNone,	bsSingle);	//	is	declared	in
Forms.pas

Description
Provides	access	to	the	BorderStyle	property	in	scroll	bars.

See	Also
TArrowBar.BorderStyle

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TIVScrollProperties

TIVScrollProperties.ButtonSize

property	ButtonSize:	Integer;

Description
Provides	access	to	the	ButtonSize	property	in	scroll	bars.

See	Also
TArrowBar.ButtonSize

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TIVScrollProperties

TIVScrollProperties.HandleColor

property	HandleColor:	TColor;

Description
Provides	access	to	the	HandleColor	property	in	scroll	bars.

See	Also
TArrowBar.HandleColor

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TIVScrollProperties

TIVScrollProperties.Increment

property	Increment:	Integer;

Description
Provides	access	to	the	Increment	property	in	scroll	bars.

See	Also
TCustomRangeBar.Increment

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TIVScrollProperties

TIVScrollProperties.ShowArrows

property	ShowArrows:	Boolean;

Description
Provides	access	to	the	ShowArrows	property	in	scroll	bars.

See	Also
ShowArrows

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TIVScrollProperties

TIVScrollProperties.ShowHandleGrip

property	ShowHandleGrip:	Boolean;

Description
Provides	access	to	the	ShowHandleGrip	property	in	scroll	bars.

See	Also
TArrowBar.ShowHandleGrip

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TIVScrollProperties

TIVScrollProperties.Size

property	Size:	Integer;

Description
Simultaneously	controls	the	Height	of	horizontal	and	Width	of	veritical	scroll
bars.
If	Size	is	0	(default),	the	corresponding	size	is	set	to	the	default	one,	specified
in	current	desktop	settings.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TIVScrollProperties

TIVScrollProperties.Style

property	Style:	TRBStyle;

Description
Provides	access	to	the	Style	property	in	scroll	bars.

See	Also
TArrowBar.Style,	TRBStyle

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TIVScrollProperties

TIVScrollProperties.Visibility

property	Visibility:	TScrollbarVisibility;
type	TScrollBarVisibility	=	(svAlways,	svHidden,	svAuto);

Description
Controls	the	visibility	of	the	scrollbars.
svAlways	will	always	display	the	scrollbars;
svHidden	will	always	hide	the	scrollbars;
svAuto	will	only	show	the	scrollbars	if	the	(scaled)	workspace	does	not
completely	fit	into	the	current	viewport.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintBox32

TPaintBox32.Create

constructor	Create(AOwner:	TComponent);

Description
Creates	an	instance	of	TPaintBox32.

See	Also
TPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintBox32

TPaintBox32.DoPaintBuffer

procedure	DoPaintBuffer;	override;	//	protected

Description
This	method	is	overriden	from	TCustomPaintBox32,	it	calls	the
OnPaintBuffer	event.

See	Also
TCustomPaintBox32.DoPaintBuffer,	OnPaintBuffer,	TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintBox32

TPaintBox32.Flush

procedure	Flush;	overload;
procedure	Flush(const	SrcRect:	TRect);	overload;

Description
Immediately	copies	the	contents	of	the	buffer,	or	its	part	passed	in	SrcRect	to
the	screen.	Use	this	function	when	you	want	to	bypass	normal	Windows
invalidating/repainting	procedure,	for	example	when	the	buffer	is	painted	by
the	other	thread.
Both	functions	are	thread-safe.

See	Also
TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintBox32

TPaintBox32.OnPaintBuffer

property	OnPaintBuffer:	TNotifyEvent;

Description
OnChange	is	called	by	TPaintBox32	when	it	needs	to	repaint	its	back	buffer
itself.

See	Also
TCustomPaintBox32.Buffer,	DoPaintBuffer,	TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintStages

TPaintStages.Items

property	Items[Index:	Integer]:	PPaintStage;	default;	//	Read
only;

Description
The	Items	property	can	be	used	to	obtain	a	pointer	to	the	specified	stage.	The
index	of	the	first	paint	stage	is	0.

See	Also
TPaintStage

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintStages

TPaintStages.Add

function	Add:	PPaintStage;

Description
Adds	a	new	stage	to	the	list	and	returns	pointer	to	stage	record.
By	default,	new	stages	have	their	RunTime	member	set	to	True.

See	Also
Delete,	Insert,	TPaintStage

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintStages

TPaintStages.Clear

procedure	Clear;

Description
Removes	all	stages	from	the	list.

See	Also
Delete

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintStages

TPaintStages.Count

function	Count:	Integer;

Description
Returns	the	number	of	stored	stages.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintStages

TPaintStages.Delete

procedure	Delete(Index:	Integer);

Description
Removes	the	stage	at	the	position	specified	by	the	Index	parameter.	The	index
of	subsequent	stages	automatically	decreases.

See	Also
Add,	Insert

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintStages

TPaintStages.Destroy

destructor	Destroy;	override;

Description
Destroys	an	instance	of	TPaintStages	object	and	frees	the	memory	allocated	to
stare	the	list	of	stages.
Do	not	call	Destroy	directly,	call	the	standard	Free	method	instead.

See	Also
TPaintStages

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image TPaintStages

TPaintStages.Insert

function	Insert(Index:	Integer):	PPaintStage;

Description
Insert	a	new	stage	into	the	list	at	specified	position	and	returns	a	pointer	to	it.
Index	indicates	the	position,	where	the	new	stage	is	inserted.	The	item	that
occupied	that	position	before	insertion,	is	shifted	up	together	with	all
subsequent	items.
If	Index	is	greater	than	the	number	of	stages,	the	new	stage	will	be	added	at
the	end	of	the	list.	Similarly,	if	Index	is	less	or	equal	than	zero,	all	previous
elements	are	shifted	up	and	the	new	stage	is	inserted	in	the	beginning	of	the
list.
By	default,	new	stages	have	their	RunTime	member	set	to	True.

See	Also
Add,	Delete,	TPaintStage

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TPaintBoxOptions

type	TPaintBoxOptions	=	(pboWantArrowKeys,	pboAutoFocus);

Description
TPaintBoxOptions	is	the	type	for	the	Options	property	in	TCustomPaintBox32
and	its	descendants.

See	Also
TCustomPaintBox32.Options,	TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TPaintStage

type	TPaintStage	=	record	
		DsgnTime:	Boolean;
		RunTime:	Boolean;	
		Stage:	Cardinal;	//	a	PST_*	constant
		Parameter:	Cardinal;	//	an	optional	parameter
end;

type	PPaintStage	=	^TPaintStage;

Description
Defines	a	drawing	stage	in	TCustomImage32.
DsgnTime	—	indicates	that	the	stage	must	be	executed	at	design-time;
RunTime	—	indicates	that	the	stage	must	be	executed	at	run-time;
Stage	—	is	one	of	the	Paint	Stage	Constants,	which	specifies	the	stage	action;
Parameter	—	is	an	optional	parameter	used	in	some	paint	stages.

See	Also
Paint	Stage	Constants,	Paint	Stages,	TCustomImage32.PaintStages,	Repaint
Optimization,	TCustomImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TRepaintMode

type	TRepaintMode	=	(rmFull,	rmDirect,	rmOptimizer);

Description
TRepaintMode	is	the	type	for	the	RepaintMode	property	in
TCustomPaintBox32	and	its	descendants.

See	Also
TCustomPaintBox32.RepaintMode,	TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TScaleMode

type	TScaleMode	=	(smNormal,	smStretch,	smScale,	smResize,
smOptimal,	smOptimalScaled);

Description
TScaleMode	is	a	type	for	the	ScaleMode	property	in	TCustomImage32.

See	Also
TCustomImage32.ScaleMode,	TCustomImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TScrollBarVisibility

type	TScrollBarVisibility	=	(svAlways,	svHidden,	svAuto);

Description
TScrollBarVisibility	is	the	type	for	the	Visibility	property	in
TIVScrollProperties.

See	Also
TIVScrollProperties,	TIVScrollProperties.Visibility

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TSizeGripStyle

type	TSizeGripStyle	=	(sgAuto,	sgNone,	sgAlways);

Description
TSizeGripStyle	is	a	type	for	the	SizeGrip	property	in	TCustomImgView,
which	determines	appearance	of	a	sizing	grip	at	the	bottom-right	corner.

See	Also
GR32_Image,	TCustomImgView32.SizeGrip

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

Paint	Stage	Constants

Paint	stage	constants	specify	the	type	of	operation	associated	with	a	paint
stage	in	TCustomImage32	and	its	descendants.
There	is	seven	types	of	paint	stages,	which	can	be	used	by	TCustomImage32
to	paint	its	contents.	Each	paint	stage	has	'PST_'	prefix:

Stage	Name Value Description
PST_CUSTOM 1 Calls	the	OnPaintStage	event
PST_CLEAR_BUFFER 2 Clears	the	buffer
PST_CLEAR_BACKGND 3 Clears	visible	buffer	area
PST_DRAW_BITMAP 4 Draws	a	scaled	bitmap	image
PST_DRAW_LAYERS 5 Draws	layers
PST_CONTROL_FRAME 6 Draws	a	dotted	frame	around	the	control

PST_BITMAP_FRAME 7 Draws	a	dotted	frame	around	the	scaled	bitmap
image

See	Also
Paint	Stages,	TCustomImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TBitmapLayer

TBitmapLayer.AlphaHit

property	AlphaHit:	Boolean;

Description
AlphaHit	determines	how	the	layer	performs	its	HitTest.
If	AlphaHit=False,	layer	only	passes	points	inside	the	rectangle	returned	by
GetAdjustedLocation.
If	AlphaHit=True,	layer	checks	the	opacity	of	the	pixel	lying	under	the
specified	point	and	passes	the	hit	test	only	when	the	alpha	channel	of	the	pixel
is	greater	when	zero.

See	Also
TPositionedLayer.GetAdjustedLocation,	TCustomLayer.HitTest

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TBitmapLayer

TBitmapLayer.Bitmap

property	Bitmap:	TBitmap32;

Description
Specifies	the	contained	image.

See	Also
TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TBitmapLayer

TBitmapLayer.Cropped

property	Cropped:	Boolean;

Description
When	Cropped	is	True,	layer	will	paint	only	the	portion	of	its	bitmap,	that
intersects	with	the	bitmap	image	of	the	container:

See	Also
Bitmap	Image

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TBitmapLayer

TBitmapLayer.Create

constructor	Create(ALayerCollection:	TLayerCollection);
override;

Description
Creates	an	instance	of	TBitmapLayer.
After	calling	the	inherited	constructor,	Create	initializes	the	internal	bitmap
and	returns	an	object	with	both	AlphaHit	and	Cropped	properties	set	to	False.

See	Also
AlphaHit,	TCustomLayer.Create,	Cropped,	TBitmapLayer,	TLayerCollection

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TBitmapLayer

TBitmapLayer.Destroy

destructor	Destroy;	override;

Description
Removes	the	bitmap	layer	from	the	collection	and	destroys	it.	The	memory
allocated	for	the	bitmap	is	freed	as	well.
Do	not	call	Destroy	in	your	application	directly,	use	the	standard	Free	method
instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.Cursor

property	Cursor:	TCursor;

Description
Specifies	the	appearance	of	the	mouse	pointer,	when	it	passes	over	the	region
covered	by	the	layer.	Whether	this	property	used	or	not	is	influenced	by
LOB_MOUSE_EVENTS	bit	in	LayerOptions,	as	well	as	by	the	hit	test.

See	Also
LayerOptions,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.Index

property	Index:	Integer;

Description
Indicates	the	position	of	the	layer	in	the	LayerCollection	to	which	it	belongs.
The	background	layer	has	an	Index	value	of	0,	the	layer	directly	on	to	of	the
background	layer	has	an	Index	value	of	1,	and	so	forth.	Change	Index	to
reorder	the	layers	in	a	LayerCollection.

See	Also
LayerCollection,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.LayerCollection

property	LayerCollection:	TLayerCollection;

Description
Points	to	the	LayerCollection,	to	which	the	layer	belongs.

See	Also
TLayerCollection,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.LayerOptions

property	LayerOptions:	Cardinal;

Description
A	32-bit	unsigned	integer	value	composed	of	Layer	Options	Bits,	which
controls	the	layer's	behavior.
Note	that	the	lower	24-bits	of	LayerOptions	have	no	predefined	meaning;
they	are	available	for	customization	purposes,	like	layer	categories,	etc.

See	Also
Layer	Options	Bits,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.LayerStates

property	LayerStates:	TLayerStates;	//	Read	only
type	TLayerState	=	(lsMouseLeft,	lsMouseRight,
lsMouseMiddle);

type	TLayerStates	=	set	of	TLayerState;

Description
Indicates	the	current	state	of	the	layer.	At	the	moment,	this	property	contains
only	information	on	pressed	mouse	buttons,	but	it	will	be	expanded	in	future
versions.

See	Also
Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.MouseEvents

property	MouseEvents:	Boolean;

Description
Returns	True	if	the	LOB_MOUSE_EVENTS	bit	in	LayerOptions	is	set;
otherwise	False	is	returned.	Setting	MouseEvents	changes	the
LOB_MOUSE_EVENTS	bit	in	LayerOptions	accordingly.

See	Also
Layer	Options	Bits,	LayerOptions,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.Tag

property	Tag:	Integer;

Description
Tag	has	no	predefined	meaning,	it	can	be	used	to	store	any	32-bit	value	as	part
of	the	layer.

See	Also
Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.Visible

property	Visible:	Boolean;

Description
Returns	True	if	the	LOB_VISIBLE	bit	in	LayerOptions	is	set;	otherwise	False
is	returned.	Setting	Visible	changes	the	LOB_VISIBLE	bit	in	LayerOptions
accordingly.

See	Also
Layer	Options	Bits,	LayerOptions,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.BringToFront

procedure	BringToFront;

Description
Makes	the	layer	the	top-most	layer	of	the	layer	collection	it	belongs	to.	After
calling	BringToFront,	the	layer's	Index	value	is	the	highest	among	the	layers
in	the	same	layer	collection.

See	Also
Index,	LayerCollection,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.Changed

procedure	Changed;
procedure	Changed(const	Rect:	TRect);

Description
Will	mark	the	layer	for	update	and	calls	the	OnChange	event,	provided	the
change	notification	is	not	masked	with	BeginUpdate.	If	a	rectangle	of	the
changed	area	(Rect)	is	set,	only	this	area	will	be	updated	-	provided	the
RepaintMode	of	the	owning	TCustomImage32	instance	is	set	to	rmOptimizer.

See	Also
BeginUpdate,	OnChange,	TLayerCollection.Owner,
TCustomPaintBox32.RepaintMode,	TCustomImage32,	TRect,
TRepaintMode,	Update,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.Create

constructor	Create(ALayerCollection:	TLayerCollection);	virtual;

Description
Creates	a	new	instance	of	TCustomLayer	and	adds	it	to	the	specified	layer
collection.
By	default,	new	layers	are	created	with	only	the	LOB_VISIBLE	bit	set	in	their
LayerOptions.

See	Also
LayerOptions,	TCustomLayer,	TLayerCollection,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.Destroy

destructor	Destroy;	override;

Description
Removes	the	layer	from	its	layer	collection,	destroys	the	layer	instance,	and
frees	all	allocated	memory.
Do	not	call	Destroy	directly.	Instead,	use	the	Free	method	which	verifies	that
the	layer	reference	is	assigned	and	only	than	calls	Destroy.

See	Also
LayerCollection,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.HitTest

function	HitTest(X,	Y:	Integer):	Boolean;

Description
Performs	a	hit	test	of	the	layer	at	specified	point	and	returns	True	if	the	point
have	passed	the	test.
After	performing	default	hit	test,	specific	for	particular	type	of	a	layer,	this
method	also	calls	OnHitTest	event,	in	case	you	need	some	run-time
customization.
By	default:

TCustomLayer	always	passes	the	hit	test;
TPositionedLayer	passes	only	the	points	lying	inside	the	rectangle,
returned	by	GetAdjustedLocation;
Depending	on	the	AlphaHit	property,	TBitmapLayer	is	capable	of	passing
only	coordinates	corresponding	to	non-transparent	pixels.

See	Also
TBitmapLayer.AlphaHit,	TPositionedLayer.GetAdjustedLocation,	OnHitTest,
TBitmapLayer,	TCustomLayer,	TPositionedLayer,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.SendToBack

procedure	SendToBack;

Description
Makes	the	layer	the	background	layer	of	the	layer	collection	it	belongs	to.
Calling	SendToBack	has	the	same	effect	as	setting	the	layer's	Index	value	to
0.

See	Also
Index,	LayerCollection,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.Update

procedure	Update;
procedure	Update(const	Rect:	TRect);

Description
Update	will	mark	the	layer	for	a	repaint.	If	a	rectangle	of	the	changed	area
(Rect)	is	set,	only	this	area	will	be	repainted	-	provided	the	RepaintMode	of
the	owning	TCustomImage32	instance	is	set	to	rmOptimizer.

See	Also
Changed,	TLayerCollection.Owner,	TCustomPaintBox32.RepaintMode,
TCustomImage32,	TRect,	TRepaintMode,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.OnHitTest

property	OnHitTest:	THitTestEvent;
type	THitTestEvent	=	procedure(Sender:	TObject;	X,	Y:	Integer;
var	Passed:	Boolean)	of	object;

Description
Provide	a	handler	for	this	event	to	customize	the	mouse	hit	testing.	The	X	and
Y	parameters	indicate	the	mouse	position	relative	to	TCustomImage32	(or	its
descendant)	top-left	corner.

See	Also
TCustomImage32,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.OnMouseDown

property	OnMouseDown:	TMouseEvent;
type	TMouseEvent	=	procedure	(Sender:	TObject;	Button:
TMouseButton	;	Shift:	TShiftState;	X,	Y:	Integer)	of	object;

Description
This	event	is	obsolete	and	remains	here	only	for	backward	compatibility.	Use
the	OnMouseDown	event	of	TCustomImage32	instead.
[See	also]:	Using	Layers,	OnMouseMove,	OnMouseUp

See	Also
TCustomImage32.OnMouseDown,	OnMouseMove,	OnMouseUp,
TCustomImage32,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.OnMouseMove

property	OnMouseMove:	TMouseMoveEvent;
type	TMouseMoveEvent	=	procedure(Sender:	TObject;	Shift:
TShiftState;	X,	Y:	Integer)	of	object;

Description
This	event	is	obsolete	and	remains	here	only	for	backward	compatibility.	Use
the	OnMouseMove	event	of	TCustomImage32	instead.

See	Also
OnMouseDown,	TCustomImage32.OnMouseMove,	OnMouseUp,
TCustomImage32,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.OnMouseUp

property	OnMouseUp:	TMouseEvent;
type	TMouseEvent	=	procedure	(Sender:	TObject;	Button:
TMouseButton	;	Shift:	TShiftState;	X,	Y:	Integer)	of	object;

Description
This	event	is	obsolete	and	remains	here	only	for	backward	compatibility.	Use
the	OnMouseUp	event	of	TCustomImage32	instead.

See	Also
OnMouseMove,	TCustomImage32.OnMouseUp,	TCustomImage32,	Using
Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TCustomLayer

TCustomLayer.OnPaint

property	OnPaint:	TPaintLayerEvent;
type	TPaintLayerEvent	=	procedure(Sender:	TObject;	Buffer:
TBitmap32)	of	object;

Description
Provide	a	handler	for	this	event	to	paint	the	layer.	Use	the	TBitmap32	instance
indicated	by	the	Buffer	parameter	to	paint	the	layer.

See	Also
TBitmap32,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.CoordXForm

property	CoordXForm:	PCoordXForm;

Description
This	property	is	deprecated	as	of	version	1.8	of	Graphics32.	Please	use
GetViewportScale	and	GetViewportShift	instead.

See	Also
GetViewportScale,	GetViewportShift,	LocalToViewport,	Using	Layers,
ViewportToLocal

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.Count

property	Count:	Integer;	//	Read	only

Description
Indicates	the	amount	of	layers	stored	in	the	collection.

See	Also
Items,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.GetViewportScale

procedure	GetViewportScale(var	ScaleX,	ScaleY:	Single);

Description
Returns	the	X	and	Y	scale	of	the	viewport.	In	the	default	implementation	this
equals	the	ScaleX	and	ScaleY	property	of	the	connected	TCustomImage32
descendant.
Note:	If	you	previously	used	the	deprecated	CoordXForm	property,	use
GetViewportScale	instead	to	retrieve	the	viewport	scale.

See	Also
CoordXForm,	TCustomImage32.ScaleX,	TCustomImage32.ScaleY,
TCustomImage32,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.GetViewportShift

procedure	GetViewportShift(var	ShiftX,	ShiftY:	Single);

Description
Returns	the	X	and	Y	shift	of	the	viewport.
Note:	If	you	previously	used	the	deprecated	CoordXForm	property,	use
GetViewportShift	instead	to	retrieve	the	viewport	shift.

See	Also
CoordXForm,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.Items

property	Items[Index:	Integer]:	TCustomLayer;

Description
Provides	indexed	access	to	contained	layers.	Index	of	layers	is	zero-based.

See	Also
Count,	TCustomLayer,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.LocalToViewport

function	LocalToViewport(const	APoint:	TFloatPoint;	AScaled:
Boolean):	TFloatPoint;

Description
Transforms	a	given	point	(APoint)	from	the	local	coordinate	system	to	the
viewport's	coordinate	system	and	returns	the	result.	If	AScaled	is	False	the
output	is	equal	to	the	input	point.

See	Also
Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.MouseEvents

property	MouseEvents:	Boolean;

Description
Determines	if	mouse	messages	from	the	owner	(TCustomImage32)	do
propagate	to	layers.

See	Also
TCustomImage32,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.MouseListener

property	MouseListener:	TCustomLayer;

Description
Indicates	the	layer	which	has	captured	mouse	messages.	By	default,	the	layer
captures	mouse	if	the	left	mouse	button	is	pressed	and	releases	it	when	the
mouse	button	is	released.
Note,	that	since	layers	have	nothing	to	do	with	windowed	controls,	this
property	is	just	a	simulation	of	standard	mouse	capturing.	Windows	still
'thinks'	that	the	mouse	is	captured	to	the	owner	of	the	layer	collection
(TCustomImage32),	which	in	turn	redirects	mouse	messages	to	an	appropriate
layer.

See	Also
TCustomImage32,	TCustomLayer,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.Owner

property	Owner:	TPersistent;

Description
Indicates	the	owner	of	the	layer	collection.	Usually	the	owner	is	the	displaying
control	like	TCustomImage32	or	TCustomImgView32.

See	Also
TCustomImage32,	TCustomImgView32,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.ViewportToLocal

function	ViewportToLocal(const	APoint:	TFloatPoint;	AScaled:
Boolean):	TFloatPoint;

Description
Transforms	a	given	point	(APoint)	from	the	viewport's	coordinate	system	to
the	local	coordinate	system	and	returns	the	result.	If	AScaled	is	False	the
output	is	equal	to	the	input	point.

See	Also
Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.Add

function	Add(ItemClass:	TLayerClass):	TCustomLayer;
type	TLayerClass	=	class	of	TCustomLayer;

Description
Adds	a	new	layer	to	the	collection.	The	layer	is	added	to	the	end	of	the	list	and
it's	Index	property	will	become	equal	to	Count	-	1.
The	class	of	the	layer	is	specified	in	the	ItemClass	parameter	and	you	will
need	to	typecast	the	result	to	ItemClass	if	you	need	to	access	its	specific
properties,	for	example:

var
		BL:	TBitmapLayer;
begin
		BL	:=	TBitmapLayer(MyImage32.Layers.Add(TBitmapLayer));
		...
end;

Alternatively,	you	can	use	another	approach	to	add	layers	to	the	collection:
var
		BL:	TBitmapLayer;
begin
		BL	:=	TBitmapLayer.Create(MyImage32.Layers);
end;

See	Also
Count,	TCustomLayer.Index,	TCustomLayer,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.Clear

procedure	Clear;

Description
Removes	and	destroys	all	the	layers	from	the	collection.

See	Also
Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.Create

constructor	Create(AOwner:	TPersistent);

Description
Creates	a	new	instance	of	TLayerCollection.	This	constructor	is	used
internally	in	constructor	of	TCustomImage32	to	initialize	its	Layers	property.

See	Also
TCustomImage32.Layers,	TCustomImage32,	TLayerCollection,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.Delete

procedure	Delete(Index:	Integer);

Description
Removes	and	destroy	the	layer	with	specified	index	from	the	collection.

See	Also
Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.Destroy

destructor	Destroy;	override;

Description
Destroys	an	instance	of	TLayerCollection	together	with	all	contained	layers.
This	destructor	is	used	in	the	destructor	of	TCustomImage32	to	property
deallocate	its	Layers	property.

See	Also
TCustomImage32.Layers,	TCustomImage32,	TLayerCollection,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TLayerCollection

TLayerCollection.Insert

function	Insert(Index:	Integer;	ItemClass:	TLayerClass):
TCustomLayer;

type	TLayerClass	=	class	of	TCustomLayer;

Description
Inserts	a	new	layer	at	the	specified	position.	Insert	works	similar	to	the	Add
method.

See	Also
Add,	TCustomLayer,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TPositionedLayer

TPositionedLayer.Location

property	Location:	TFloatRect;

Description
Determines	layer's	position	and	size.
Note,	that	the	layer	is	not	constrained	to	lie	entirely	within	the	rectangle
specified	by	Location.	It	may	perform	drawing	outside	the	Location	and	may
catch	mouse	messages	from	other	areas.
When	the	layer	is	Scaled,	its	actual	location	its	position	after	scaling	may	be
obtained	through	GetAdjustedLocation	method.

See	Also
GetAdjustedLocation,	Scaled,	TFloatRect,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TPositionedLayer

TPositionedLayer.Scaled

property	Scaled:	Boolean;

Description
Specifies	if	the	layer	is	scaled	and	determines	the	result	returned	by
GetAdjustedLocation.	When	set	to	True,	scaling	is	influenced	by	the	layout	of
bitmap	image	in	the	container	(TCustomImage32	object	or	its	descendant).

See	Also
Bitmap	Image,	GetAdjustedLocation,	TCustomImage32,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TPositionedLayer

TPositionedLayer.Create

constructor	Create(ALayerCollection:	TLayerCollection);
override;

Description
Creates	the	instance	of	TPositionedLayer.
After	calling	the	inherited	constructor,	Create	initializes	the	following
properties:

LayerOptions	to	LOB_VISIBLE	or	LOB_MOUSE_EVENTS;
Scaled	to	False;
Location	to	FloatRect(0,	0,	64,	64);

See	Also
TCustomLayer.Create,	TCustomLayer.LayerOptions,	Location,	Scaled,
TLayerCollection,	TPositionedLayer,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TPositionedLayer

TPositionedLayer.GetAdjustedLocation

function	GetAdjustedLocation:	TFloatRect;

Description
When	the	Scaled	property	is	True,	GetAdjustedLocation	returns	scaled
Location,	otherwise	it	returns	Location	as	it	is,	without	scaling.
It	is	up	to	you	do	decide	if	you	want	to	use	the	result	as	a	floating-point
rectangle,	to	round	the	coordinates	before	painting:

procedure	TForm1.OnLayerPaintHandler(Sender:	TObject;	Buffer:
TBitmap32);

var
		R:	TRect;
begin
		if	Sender	is	TPositionedLayer	then
				with	TPositionedLayer(Sender)	do
				begin
						R	:=	MakeRect(GetAdjustedLocation);
						Buffer.FrameRectS(R.Left,	R.Top,	R.Right,	R.Bottom,	clRed32);
				end;
		end;
end;

See	Also
GetAdjustedRect,	Location,	Scaled,	TFloatRect,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TPositionedLayer

TPositionedLayer.GetAdjustedRect

function	GetAdjustedRect(const	R:	TFloatRect):	TFloatRect;

Description
When	the	Scaled	property	is	True,	GetAdjustedRect	returns	the	scaled
version	of	the	input	rect	(R),	otherwise	it	returns	R	as	it	is,	without	scaling.

See	Also
GetAdjustedLocation,	Scaled,	TFloatRect,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.ChildLayer

property	ChildLayer:	TPositionedLayer;

Description
Points	to	the	position	layer,	controlled	by	the	rubber	band.	TRubberbandLayer
will	keep	Location	of	its	child	layer	the	same	as	its	own	Location.

See	Also
TPositionedLayer.Location,	TPositionedLayer,	TRubberbandLayer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.FrameStippleCounter

property	FrameStippleCounter:	Single;

Description
Specifies	the	current	position	of	the	stipple	pattern	of	the	surrounding	frame.
Hint:	By	using	a	timer	and	modifying	the	FrameStippleCounter,	it	is	possible
to	animate	the	frame	of	the	rubberband.

See	Also
SetFrameStipple

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.FrameStippleStep

property	FrameStippleStep:	Single;

Description
Specifies	the	stepping	for	the	stipple	pattern	of	the	surrounding	frame.

See	Also
SetFrameStipple

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.HandleFill

property	HandleFill:	TColor32;

Description
Specifies	the	color	of	the	drag	handle.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.HandleFrame

property	HandleFrame:	TColor32;

Description
Specifies	the	frame	color	of	the	drag	handle.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.Handles

property	Handles:	TRBHandles;
type	TRBHandles	=	set	of	(rhCenter,	rhSides,	rhCorners,
rhFrame,
rhNotLeftSide,	rhNotRightSide,	rhNotTopSide,
rhNotBottomSide,	
rhNotTLCorner,	rhNotTRCorner,	rhNotBLCorner,
rhNotBRCorner);

Description
Determines	which	handles	are	visible	and	draggable	by	the	mouse.

rhCenter	–	corresponds	to	the	internal	area	of	the	control,	that	is	the	area
inside	the	rectangle	specified	by	Location;
rhSides	–	corresponds	to	the	handles	on	the	edges	of	the	layer;
rhCorners	–	corresponds	to	the	handles	at	the	corners	of	the	layer;
rhFrame	-	corresponds	to	the	frame	surrounding	the	layer;
rhNotLeftSide,	rhNotRightSide,	rhNotTopSide,	rhNotBottomSide	-	set	to
disable	one	or	more	sides	(needs	rhSides);
rhNotTLCorner,	rhNotTRCorner,	rhNotBLCorner,	rhNotBRCorner	-	set
to	disable	one	or	more	corners	(needs	rhCorners);

See	Also
TPositionedLayer.Location,	TRBHandles

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.HandleSize

property	HandleSize:	Integer;

Description
Determines	the	size	of	the	handles.	The	actual	size	in	pixels	may	be	calculated
as

HandleSize	*	2	+	1

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.MaxHeight

property	MaxHeight:	Single;

Description
Determines	the	maximum	height	of	the	rubber	band	while	it	resizes.	When
MaxHeight	is	less	than	or	equal	to	MinHeight,	this	property	is	disregarded
and	the	maximum	height	becomes	unlimited.

See	Also
MaxWidth,	MinHeight

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.MaxWidth

property	MaxWidth:	Single;

Description
Determines	the	maximum	width	of	the	rubber	band	while	it	resizes.	When
MaxWidth	is	less	than	or	equal	to	MinWidth,	this	property	is	disregarded	and
the	maximum	width	becomes	unlimited.

See	Also
MinWidth

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.MinHeight

property	MinHeight:	Single;

Description
Determines	the	minimum	height	of	the	rubber	band	while	it	resizes.

See	Also
MinWidth

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.MinWidth

property	MinWidth:	Single;

Description
Determines	the	minimum	width	of	the	rubber	band	while	it	resizes.

See	Also
MinHeight

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.Create

constructor	Create(ALayerCollection:	TLayerCollection);
override;

Description
Creates	an	instance	of	TRubberbandLayer	and	adds	it	into	the	specified
collection.

See	Also
TCustomLayer.Create,	TLayerCollection,	TRubberbandLayer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.Destroy

destructor	Destroy;	override;

Description
Removes	the	rubber	band	layer	from	the	collection	and	destroys	it	.
Do	not	call	Destroy	directly	in	your	application,	use	the	standard	Free	method
instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.SetFrameStipple

procedure	SetFrameStipple(const	Value:	Array	of	TColor32);

Description
Sets	the	stipple	pattern	for	the	frame	in	the	rubberband.

See	Also
Color	Types,	FrameStippleStep

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.OnResizing

property	OnResizing:	TRBResizingEvent;
type	TRBResizingEvent	=	procedure(
		Sender:	TObject;			const	OldLocation:	TFloatRect;
		var	NewLocation:	TFloatRect;	
		DragState:	TDragState;
		Shift:	TShiftState)	of	object;

type	TDragState	=	(dsNone,	dsMove,	dsSizeL,	dsSizeT,
dsSizeR,	dsSizeB,	dsSizeTL,	dsSizeTR,	dsSizeBL,	dsSizeBR);

Description
OnResizing	allowes	for	runtime	customization	of	the	rubber	band	which	is
being	moved	or	resized	using	the	mouse.	This	event	is	called	only	when	the
user	clicks	and	drags	the	layer	with	the	mouse,	it	is	not	generated	when	you
set	the	Location	property	explicitly.
OldLocation	specifies	location	of	the	layer	before	the	user	started	dragging	it.
NewLocation	determines	the	new	location	of	the	rubber	band.	You	may
change	the	coordinates	in	order	to	provide	required	responce	to	dragging	or
resizing	operation.
The	DragState	parameter	indicates	how	the	layer	is	being	dragged/resized.
Shift	indicates	the	state	of	the	Alt,	Ctrl,	and	Shift	keys.

See	Also
TPositionedLayer.Location

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers TRubberbandLayer

TRubberbandLayer.OnUserChange

property	OnUserChange:	TNotifyEvent;

Description
The	event	is	called	automatically	when	the	layer	is	moved	or	resized	with	the
mouse.	OnUserChange	is	not	colled	when	you	change	Location	explicitly.

See	Also
TPositionedLayer.Location

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers

TRBHandles

type	TRBHandles	=	set	of	(rhCenter,	rhSides,	rhCorners,
rhFrame,
rhNotLeftSide,	rhNotRightSide,	rhNotTopSide,
rhNotBottomSide,	
rhNotTLCorner,	rhNotTRCorner,	rhNotBLCorner,
rhNotBRCorner);

Description
A	type	for	Handles	property	in	TRubberbandLayer.

See	Also
TRubberbandLayer.Handles,	TRubberbandLayer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers

Layer	Options	Bits

The	basic	behavior	of	the	layer	is	controlled	by	its	LayerOptions	property,	an
unsigned	32-bit	integer	field	of	bits.	The	upper	8	bits	in	this	field	are	reserved
for	default	options:

Bit
# Constant	Name Description

31 LOB_VISIBLE Controls	the	layer	visibility

30 LOB_GDI_OVERLAY

Indicates	that	the	layer	performs	drawing	when	its
owner	(TCustomImage32	control	or	its	descendant)
draws	its	GDI	Overlays.
[Note:	Most	likely,	this	constant	will	not	be	used	in
future	versions.	Do	not	use	it]

29 LOB_MOUSE_EVENTS Specifies	whether	the	layer	responds	to	mouse
messages.

28 LOB_NO_UPDATE Disables	automatic	repainting	when	the	layer	changes
its	location	or	other	properties.

27 LOB_NO_CAPTURE

Allows	to	override	automatic	capturing	of	mouse
messages	when	the	left	mouse	is	pressed	on	top	of
the	layer.	This	bit	has	no	effect	if
LOB_MOUSE_EVENTS	is	not	set.

26 LOB_RESERVED_26 Reserved	for	future	use
25 LOB_RESERVED_25 Reserved	for	future	use
24 LOB_RESERVED_24 Reserved	for	future	use

Other	24	bits	can	be	used	for	any	other	purpose,	as	customized	layer
classification	etc.

See	Also
TCustomLayer.LayerOptions

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

Clamp

function	Clamp(const	Value:	Integer):	TColor32;	overload;
function	Clamp(Value:	Integer;	Max:	Integer):	Integer;	overload;
function	Clamp(Value:	Integer;	Min:	Integer;	Max:	Integer):
Integer;	overload;

Description
First	version	restricts	Value	to	[0..255]	range.
Second	version	restricts	Value	to	[0..Max]	range.
Third	version	restricts	Value	to	[Min..Max]	range.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

Colorswap

function	ColorSwap(WinColor:	TColor):	TColor32;

Description
ColorSwap	exchanges	ARGB	<->	ABGR	and	fills	A	with	$FF

See	Also
Color	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

Constrain

function	Constrain(const	Value:	Integer;	const	Lo:	Integer;
const	Hi:	Integer):	Integer;

Description
Returns	Value	constrained	to	[Lo..Hi]	range.

See	Also
Clamp

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

FillLongword

procedure	FillLongword(var	X;	Count:	Integer;	Value:
Longword);

Description
An	optimized	analogue	of	FillChar	for	32	bit	values.

See	Also
FillWord

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

FillWord

procedure	FillWord(var	X;	Count:	Integer;	Value:	Longword);

Description
An	optimized	analogue	of	FillChar	for	16	bit	values.	Note	that	only	the	lower
word	of	the	Value	parameter	is	used.

See	Also
FillLongword

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

Mirror

function	Mirror(Value:	Integer;	Max:	Integer):	Integer;	overload;
function	Mirror(Value:	Integer;	Min:	Integer;	Max:	Integer):
Integer;	overload;

Description
First	version	mirrors	integer	Value	in	[0..Max]	range.	E.g.	if	Value	is	10	and
Max	is	9,	result	will	be	8.
Second	version	mirrors	integer	Value	in	[Min..Max]	range.

See	Also
Clamp,	Wrap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

MoveLongword

procedure	MoveLongword(const	Source;	var	Dest;	Count:
Integer);

Description
An	analogue	of	Move	for	32	bit	values.

See	Also
MoveWord

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

MoveWord

procedure	MoveWord(const	Source;	var	Dest;	Count:	Integer);

Description
An	analogue	of	Move	for	16	bit	values.

See	Also
MoveLongword

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

Shift	Arithmetic	Right

function	SAR_4(Value:	Integer):	Integer;	//	Value	div	16
function	SAR_8(Value:	Integer):	Integer;	//	Value	div	256
function	SAR_9(Value:	Integer):	Integer;	//	Value	div	512
function	SAR_11(Value:	Integer):	Integer;
function	SAR_12(Value:	Integer):	Integer;
function	SAR_13(Value:	Integer):	Integer;
function	SAR_14(Value:	Integer):	Integer;
function	SAR_15(Value:	Integer):	Integer;
function	SAR_16(Value:	Integer):	Integer;

Description
Auxiliary	arithmetic	shift	right	routines	(SAR).	These	can	be	used	for	faster
division	of	signed	integers.	SAR	differs	from	the	shr	instruction	by	preserving
the	sign	of	the	Value.	For	example,	calling	SAR_4	equals	Value	div	16	(2^4)
and	calling	SAR_9	equels	Value	div	512	(2^9).

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

Swap

procedure	Swap(var	A:	Integer;	var	B:	Integer);

Description
Exchange	two	32-bit	values.

See	Also
FillWord

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

SwapConstrain

function	SwapConstrain(const	Value:	Integer;	Constrain1:
Integer;	Constrain2:	Integer):	Integer;

Description
Returns	Value	constrained	to	[Min(Constrain1,	Constrain2)..Max(Constrain1,
Constrain2]	range.

See	Also
Clamp,	Constrain,	Swap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

TestClip

function	TestClip(var	A:	Integer;	var	B:	Integer;	const	Size:
Integer):	Boolean;	overload;

function	TestClip(var	A:	Integer;	var	B:	Integer;	const	Start:
Integer;	const	Stop:	Integer):	Boolean;	overload;

Description
First	version:	Exchange	A	<->	B	only	if	B	<	A,	then	restrict	both	to	[0..Size-1]
range.	Returns	true	if	resulting	range	has	common	points	with	[0..Size-1]
range.
Second	version:	Exchange	A	<->	B	only	if	B	<	A,	then	restrict	both	to
[Start..Stop-1]	range.	Returns	true	if	resulting	range	has	common	points	with
[Start..Stop-1]	range.

See	Also
Clamp,	Constrain

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

TestSwap

procedure	TestSwap(var	A:	Integer;	var	B:	Integer);

Description
Exchange	A	<->	B	only	if	B	<	A.

See	Also
TestClip

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

Wrap

function	Wrap(Value:	Integer;	Max:	Integer):	Integer;	overload;
function	Wrap(Value:	Integer;	Min:	Integer;	Max:	Integer):
Integer;	overload;

Description
First	version	wraps	integer	Value	in	[0..Max]	range.	E.g.	if	Value	is	10	and
Max	is	9,	result	will	be	0.
Second	version	wraps	integer	Value	in	[Min..Max]	range.

See	Also
Clamp,	Wrap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Lowlevel

Wrap	Procedure	Types

type	TWrapProc	=	function	(Value,	Max:	Integer):	Integer;
TWrapProcEx	=	function	(Value,	Min,	Max:	Integer):	Integer;

Desctiption
These	function	types	are	used	in	relation	to	wrapmodes.	While	TWrapProc
implicitly	uses	zero	as	minimum	value,	TWrapProcEx	lets	the	caller	define
the	complete	minimum	to	maximum	range.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Math

Fixed	Ceil

FixedCeil
function	FixedCeil(A:	TFixed):	Integer;

An	implementation	of	the	Ceil	function	for	TFixed	type.

See	Also
Fixed	Floor,	Fixed	Point	Math,	Fixed	Round,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Math

Fixed	Division

FixedDiv
function	FixedDiv(A,	B,	TFixed):	TFixed;

This	is	the	same	as	using	MulDiv(A,	$10000,	B).

See	Also
Fixed	Multiply,	Fixed	Point	Math,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Math

Fixed	Floor

FixedFloor
function	FixedFloor(A:	TFixed):	Integer;

An	analogue	to	Floor	function.

See	Also
Fixed	Ceil,	Fixed	Point	Math,	Fixed	Round,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Math

Fixed	Multiply

FixedMul
function	FixedMul(A,	B,	TFixed):	TFixed;

This	is	the	same	as	using	MulDiv(A,	B,	$10000).

See	Also
Fixed	Division,	Fixed	Point	Math,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Math

Fixed	Round

FixedRound
function	FixedRound(A,	B,	TFixed):	TFixed;

Provides	correct	rounding	of	fixed-point	values.

See	Also
Fixed	Point	Math,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Math

Fixed	Square

FixedSqr
function	FixedSqr(Value:	TFixed):	TFixed;

This	is	the	same	as	using	FixedMul(Value,	Value).

See	Also
Fixed	Point	Math,	Fixed	Square	Root,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Math

Fixed	Square	Root

FixedSqrtLP
function	FixedSqrtLP(Value:	TFixed):	TFixed;

Low	precision	(8	bit)	fixed	math	squareroot.

FixedSqrtHP
function	FixedSqrtHP(Value:	TFixed):	TFixed;

High	precision	(16	bit)	fixed	math	square	root.	This	routine	is	slower	that	the
low	precision	version.

See	Also
Fixed	Point	Math,	Fixed	Square,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Math

SinCos

SinCos
procedure	SinCos(const	Theta:	Single;	var	Sin:	Single;	var
Cos:	Single);	overload;

procedure	SinCos(const	Theta:	Single;	const	Radius:	Single;
var	Sin:	Single;	var	Cos:	Single);	overload;

Single	precision	versions	of	SinCos.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TBooleanMap

TBooleanMap.Bits

property	Bits:	PByteArray;

Description
Returns	the	pointer	to	the	internal	array	of	byte	packed	bits.	Data	is	stored	in
row-major	order,	top-left	"pixel"	comes	first.	Note	that	since	the	boolean	map
stores	its	values	packed	in	bytes	(8	bits	or	booleans	per	byte),	the	last	element
of	the	array	may	contain	invalid	values.	It	is	recommened	only	to	process
width	*	height	-	1	elements,	and	use	the	value	property	to	change	the	last
packed	byte	element	of	the	array.

See	Also
TByteArray,	Value

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TBooleanMap

TBooleanMap.Value

property	Value[X,	Y:	Integer]:	Boolean;	default;

Description
Provides	coordinate-based	access	to	stored	booleans.	This	function	does	not
perform	any	range	checking	of	its	arguments.	Be	sure,	that	the	boolean	map	is
not	empty	and	that	both	X	and	Y	are	in	a	valid	range.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TByteMap

TByteMap.Bits

property	Bits:	PWordArray;

Description
Returns	the	pointer	to	the	internal	array	of	words.	Data	is	stored	in	row-major
order,	top-left	"pixel"	comes	first.

See	Also
TWordArray,	ValPtr,	Value

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TByteMap

TByteMap.ValPtr

property	ValPtr[X,	Y:	Integer]:	PByte;

Description
Returns	a	pointer	to	the	specific	byte	in	the	array.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TByteMap

TByteMap.Value

property	Value[X,	Y:	Integer]:	Byte;	default;

Description
Provides	coordinate-based	access	to	stored	bytes.	This	function	does	not
perform	any	range	checking	of	its	arguments.	Be	sure,	that	the	byte	map	is	not
empty	and	that	both	X	and	Y	are	in	a	valid	range.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TByteMap

TByteMap.Assign

procedure	Assign(Source:	TPersistent);	override;

Description
Copies	data	from	another	object,	specified	by	the	Source	parameter.
This	method	supports	following	classes:

nil	–	assigns	an	empty	data	array;
TByteMap	–	copies	data	bytes	from	another	byte	map;
TBitmap32	–	transforms	bitmap	data	using	the	ReadFrom	method	with
ctWeightedRGB	conversion	type.

TByteMap	also	overrides	the	protected	AssignTo	method,	making	it	possible
to	assign	bitmaps	from	byte	maps,	so	that	both	following	lines	are	correct:

ByteMap.Assign(Bitmap32);	//	an	analog	to	BM	:=	Intensity(B32);
Bitmap32.Assign(ByteMap);	//	an	analog	to	B32	:=	Gray32(BM);

See	Also
ReadFrom,	TByteMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TByteMap

TByteMap.Clear

procedure	Clear(FillValue:	Byte);

Description
Fills	the	entire	byte	map	with	the	specified	value.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TByteMap

TByteMap.Destroy

destructor	Destroy;	override;

Description
Destroys	the	bytemap	object	and	frees	all	the	associated	memory.
Do	not	call	Destroy	directly,	use	the	Free	method	instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TByteMap

TByteMap.Empty

function	Empty:	Boolean;	override;

Description
Returns	True	if	the	byte	map	contains	no	data,	that	is	Width	or	Height	is	equal
to	0.

See	Also
TCustomMap.Height,	TCustomMap.Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TByteMap

TByteMap.ReadFrom

procedure	ReadFrom(Source:	TBitmap32;	Conversion:
TConversionType);

Description
ReadFrom	allows	reading	and	converting	data	from	TBitmap32	objects	into
the	byte	map.
First,	the	byte	map	is	resized	to	fit	the	Source	bitmap	dimensions,	then	the	32-
bit	RGBA	color	is	transformed	to	8-bits	depending	on	the	conversion	type:

Conversion Action
ctRed Copies	red	channel
ctGreen Copies	green	channel
ctBlue Copies	blue	channel
ctAlpha Copies	alpha	channel
ctUniformRGB Copies	averaged	value:	(R	+	G	+	B)	/	3
ctWeightedRGB Copies	intensity:	R	*	0.21	+	G	*	0.71	+	B	*	0.08

See	Also
TBitmap32,	TConversionType

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TByteMap

TByteMap.SetSize

function	SetSize(NewWidth,	NewHeight:	Integer):	Boolean;
override;

procedure	SetSize(Source:	TPersistent);	//	implemented	in
TCustomMap

Description
Call	SetSize	to	set	new	dimensions	of	the	bytemap.	If	one	of	the	arguments	is
zero,	the	bytemap	is	considered	empty	and	its	Bytes	property	is	set	to	nil.
Calling	SetSize	works	faster	than	changing	both	Width	and	Height	properties.
If	you	use	another	bitmap,	byte	map	or	control	as	an	argument,	the	byte	map
will	be	sized	to	corresponding	dimensions.

See	Also
Bytes,	TCustomMap.Height,	TCustomMap,	TCustomMap.Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TByteMap

TByteMap.WriteTo

procedure	WriteTo(Dest:	TBitmap32;	Conversion:
TConversionType);	overload;	
procedure	WriteTo(Dest:	TBitmap32;	const	Palette:
TPalette32);	overload;

Description
WriteTo	fills	the	Dest	bitmap	using	the	values	stored	in	the	byte	map.
If	it	is	necessary,	the	destination	bitmap	is	resized	to	fit	the	byte	map
dimensions.
The	following	table	shows	how	8-bit	data	is	transformed	into	32-bit	RGBA
color	depending	on	Conversion	parameter.

Conversion Action
ctRed Copies	bytes	into	red	channel
ctGreen Copies	bytes	into	green	channel
ctBlue Copies	bytes	into	blue	channel
ctAlpha Copies	bytes	into	alpha	channel
ctUniformRGB

Copies	the	same	byte	value	into	red,	green	and	blue	channels.
ctWeightedRGB

WriteTo	method	does	not	distinguish	between	ctUniformRGB	and
ctWeightedRGB	conversion	types.
Note,	that	this	method	alters	only	the	specified	color	channels,	other	channels
remain	intact.
The	second	overloaded	version	with	Palette	parameter	uses	TPalette32	array
to	map	byte	values	into	RGBA	colors.

See	Also
TBitmap32,	TConversionType,	TPalette32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TIntegerMap

TIntegerMap.Bits

property	Bits:	PIntegerArray;

Description
Returns	the	pointer	to	the	internal	array	of	integers.	Data	is	stored	in	row-
major	order,	top-left	"pixel"	comes	first.

See	Also
TIntegerArray,	ValPtr,	Value

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TIntegerMap

TIntegerMap.ValPtr

property	ValPtr[X,	Y:	Integer]:	PInteger;

Description
Returns	a	pointer	to	the	specific	integer	in	the	array.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TIntegerMap

TIntegerMap.Value

property	Value[X,	Y:	Integer]:	Integer;	default;

Description
Provides	coordinate-based	access	to	stored	integers.	This	function	does	not
perform	any	range	checking	of	its	arguments.	Be	sure,	that	the	map	is	not
empty	and	that	both	X	and	Y	are	in	a	valid	range.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TWordMap

TWordMap.Bits

property	Bits:	PByteArray;

Description
Returns	the	pointer	to	the	internal	array	of	bytes.	Data	is	stored	in	row-major
order,	top-left	"pixel"	comes	first.

See	Also
TByteArray,	ValPtr,	Value

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TWordMap

TWordMap.ValPtr

property	ValPtr[X,	Y:	Integer]:	PWord;

Description
Returns	a	pointer	to	the	specific	word	in	the	array.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps TWordMap

TWordMap.Value

property	Value[X,	Y:	Integer]:	Word;	default;

Description
Provides	coordinate-based	access	to	stored	words.	This	function	does	not
perform	any	range	checking	of	its	arguments.	Be	sure,	that	the	map	is	not
empty	and	that	both	X	and	Y	are	in	a	valid	range.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps

TConversionType

type	TConversionType	=	(
		ctRed,	
		ctGreen,	
		ctBlue,
		ctAlpha,
		ctUniformRGB,	
		ctWeightedRGB);

Description
Specifies	how	data	is	converted	from	32-bit	ARGB	bitmap	to	8-bit	bytemap
and	back.

See	Also
TByteMap.ReadFrom,	TByteMap.WriteTo

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TBitmapPolygonFiller

TBitmapPolygonFiller.OffsetX

property	OffsetX:	Integer;

Description
Determines	how	much	in	pixels	the	tiling	should	be	shifted	in	horizontal
direction.
This	is	especially	usefull	if	your	polygon	is	moved	and	you	want	to	move	the
pattern	tiling	relatively	to	it.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TBitmapPolygonFiller

TBitmapPolygonFiller.OffsetY

property	OffsetY:	Integer;

Description
Determines	how	much	in	pixels	the	tiling	should	be	shifted	in	vertical
direction.
This	is	especially	usefull	if	your	polygon	is	moved	and	you	want	to	move	the
pattern	tiling	relatively	to	it.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TBitmapPolygonFiller

TBitmapPolygonFiller.Pattern

property	Pattern:	TBitmap32;

Description
This	property	determines	the	pattern	that	is	used	to	fill	a	polygon.	The	pattern
will	be	tiled	across	the	polygons.
Please	note	that	the	draw	transformation	won't	have	any	effect	on	the	polygon.
For	that	purpose	please	preprocess	your	pattern	accordingly.

See	Also
TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TCustomPolygonFiller

TCustomPolygonFiller.GetFillLine

function	GetFillLine:	TFillLineEvent;	abstract;

Description
Descendants	should	override	this	abstract	method.	If	overriden	it	should	return
a	TFillLineEvent	callback	that	is	used	to	fill	lines	in	a	polygon.

See	Also
TFillLineEvent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Antialiased

property	Antialiased:	Boolean;

Description
Determines	the	quality	of	the	shape	when	it	is	drawn	with	Draw,	DrawFill	or
DrawEdge	methods.
When	Antialiased	=	False,	the	object	uses	PolyPolylineTS	and
PolyPolygonTS	functions,	otherwise,	it	uses	PolyPolylineXS	and
PolyPolygonXS	functions.

See	Also
Draw,	DrawEdge,	DrawFill,	PolyPolyline

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.AntialiasMode

property	AntialiasMode:	TAntialiasMode;

Description
Determines	how	the	shape	is	antialiased.	See	TAntialiasMode	for	details.
	

See	Also
TAntialiasMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Closed

property	Closed:	Boolean;

Description
Specifies	whether	each	contour	defined	by	Points	is	a	closed	shape,	or	if	it	has
to	be	considered	as	polyline.
This	property	is	ignored	by	Draw	and	DrawFill	methods,	but	it	is	important
when	using	Outline	method.

See	Also
Draw,	DrawFill,	Outline,	Points

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.FillMode

property	FillMode:	TPolyFIllMode;

Description
Determines	the	shape's	fill	mode.
	

See	Also
TPolyFillMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Normals

property	Normals:	TArrayOfArrayOfFixedPoint;

Description
This	array	stores	unit	vectors	showing	the	direction	normal	to	each	line	in
each	contour.	Normals	are	used	in	Grow.

See	Also
Grow,	Points,	TArrayOfArrayOfFixedPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Points

property	Points:	TArrayOfArrayOfFixedPoint;

Description
This	property	defines	an	array	of	contours.	Each	contour	is,	in	turn,	an	array	of
vertexes.

See	Also
Normals,	TArrayOfArrayOfFixedPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Add

procedure	Add(const	P:	TFixedPoint);

Description
Adds	a	new	vertex	to	the	current	contour	in	the	polygon.	In	order	to	start	a
new	contour,	use	the	NewLine	method.

See	Also
NewLine,	TFixedPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.AddPoints

procedure	AddPoints(const	First:	TFixedPoint;	Count:	Integer);

Description
Copies	Count	number	of	points	beginning	at	point	First	to	the	current	outline.

See	Also
TFixedPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Assign

procedure	Assign(Source:	TPersistent);	virtual;

Description
If	Source	is	also	of	type	TPolygon32,	Assign	copies	all	properties,	points	and
normals	over	to	the	current	instance.	The	old	values	are	replaced	in	this
process.

See	Also
TPolygon32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Clear

procedure	Clear;

Description
Clears	the	information	on	all	contours,	associated	with	the	polygon.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.ContainsPoint

function	ContainsPoint(const	P:	TFixedPoint):	Boolean;

Description
This	method	returns	true	if	a	point	P	is	contained	within	any	of	the	contours	in
the	current	TPolygon32	instance	and	false	otherwise.

See	Also
Point	Types,	PtInPolygon,	TFixedPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Create

constructor	Create;	override;

Description
Creates	and	initializes	an	instance	of	TPolygon32.
After	calling	the	inherited	constructor,	Create	initializes	the	following
properties:

Closed	to	True;
Antialiazed	to	False;
FillMode	to	pfAlternate;

See	Also
Antialiased,	Closed,	FillMode,	TPolygon32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Destroy

destructor	Destroy;	override;

Description
Destroys	the	polygon	object	and	frees	all	associated	memory.
Do	not	call	Destroy	directly,	use	Free	method	instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Draw

procedure	Draw(Bitmap:	TBitmap32;	OutlineColor,	FillColor:
TColor32;	Transformation:	TTransformation	=	nil);	overload;

procedure	Draw(Bitmap:	TBitmap32;	OutlineColor:	TColor32;
FillLineCallback:	TFillLineEvent;	Transformation:
TTransformation	=	nil);	overload;

procedure	Draw(Bitmap:	TBitmap32;	OutlineColor:	TColor32;
Filler:	TCustomPolygonFiller;	Transformation:	TTransformation
=	nil);	overload;

Description
Fills	the	polygon	and	draws	the	outline	transformed	by	Transformation.	This
method	is	a	simple	combination	of	DrawFill	and	DrawEdge	methods.

See	Also
DrawEdge,	DrawFill,	TBitmap32,	TColor32,	TCustomPolygonFiller,
TFillLineEvent,	TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.DrawEdge

procedure	DrawEdge(Bitmap:	TBitmap32;	Color:	TColor32;
Transformation:	TTransformation	=	nil);

Description
Frames	the	edge	of	the	polygon	with	specified	color	and	uses	the
Transformation	while	drawing.
The	quality	of	the	line	is	determined	by	Antialiased	property.
When	Closed	property	is	True,	each	polygon	is	automatically	closed.

See	Also
Antialiased,	Closed,	Draw,	DrawFill,	TBitmap32,	TColor32,	TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.DrawFill

procedure	DrawFill(Bitmap:	TBitmap32;	Color:	TColor32;
Transformation:	TTransformation	=	nil);	overload;

procedure	DrawFill(Bitmap:	TBitmap32;	FillLineCallback:
TFillLineEvent;	Transformation:	TTransformation	=	nil);
overload;

procedure	DrawFill(Bitmap:	TBitmap32;	Filler:
TCustomPolygonFiller;	Transformation:	TTransformation	=	nil);
overload;

Description
Fills	the	polygon	shape	using	one	of	the	following	options	using	the	current
FillMode:

simple	color
custom	fillline	callback
custom	filler	object

Optionally	a	Transformation	is	applied	while	drawing.
The	Closed	property	is	ignored	and	all	contours	are	automatically	considered
closed.
The	edge	quality	of	the	filling	is	determined	by	the	Antialiased	property.

See	Also
Antialiased,	Closed,	Draw,	DrawEdge,	FillMode,	TBitmap32,	TColor32,
TCustomPolygonFiller,	TFillLineEvent,	TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.GetBoundingRect

function	GetBoundingRect:	TFixedRect;

Description
Returns	the	common	bounding	rectangle	for	all	outlines	in	the	current
polygon.

See	Also
Rectangle	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Grow

function	Grow(const	Delta:	TFixed;	EdgeSharpness:	Single	=	0):
TPolygon32;

Description
Creates	a	new	instance	of	TPolygon32	object	and	changes	its	shape	similar	to
dilation	(or	erosion	when	Delta	is	negative)	morphological	filters.
The	direction	of	grouth	is	determined	by	the	order	of	the	points	in	the	contour.
Positive	direction	is	to	the	left	of	each	line	(see	image	below).
Using	Grow	method	with	Delta	=	0	will	simply	create	a	new	instance	of	the
polygon	with	the	same	data	as	in	original	polygon.
The	EdgeSharpness	parameter	controls	generation	of	new	vertices.	Its	value
range	is	[0…0.99].

See	Also
TFixed,	TPolygon32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.NewLine

procedure	NewLine;

Description
Starts	a	new	contour.	New	points,	introduced	with	Add	function,	will	be
inserted	into	the	new	contour.

See	Also
Add

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Offset

procedure	Offset(const	Dx,	Dy:	TFixed);

Description
Shifts	all	the	points	in	all	contours	Dx	pixels	right	and	Dy	pixels	down.	Values
of	Dx	and	Dy	can	be	negative.

See	Also
TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Outline

function	Outline:	TPolygon32;

Description
This	functions	takes	each	contour	(polyline)	and	constructs	a	new	TPolygon32
object	by	outlining	each	contour.
The	operation	is	similar	to	using	morphological	edge	detection	filter	for
bitmaps,	but	it	operates	over	polygon	vertices.
When	outlining	a	closed	polygon,	this	function	actually	returns	two	contours
for	each	initial	closed	contour.	In	case	of	polylines	(Closed	property	is	False),
it	returns	a	single	contour	(see	image	below).
Note,	this	technique	produces	good	results	only	for	antialiased	polygons.
This	function	is	essential	for	thick	line	drawing,	all	you	have	to	do,	is	to	take
an	original	polygon,	build	its	outline	and	grow	it	to	get	the	desired	thickness:
var			P,	Outline:	TPolygon32;	
begin	
		Outline	:=	P.Outline;	//	create	an	outline	
		Outline.Grow(Fixed(1),	1);	//	make	it	2-pixel	wide	outline	(it	grows	in	both
directions)
		Outline.DrawFill(DstBitmap,	clBlack32);	
end;

See	Also
Closed,	TPolygon32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons TPolygon32

TPolygon32.Transform

procedure	Transform(Transformation:	TTransformation);

Description
Transforms	all	points	in	the	current	instance	using	the	supplied
Transformation	instance.	This	is	different	from	the	transformation	while
drawin	because	it	is	a	permanent	operation.

See	Also
TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

Polygon

procedure	PolygonTS(Bitmap:	TBitmap32;	const	Points:
TArrayOfFixedPoint;	Color:	TColor32;	Mode:	TPolyFillMode	=
pfAlternate;	Transformation:	TTransformation	=	nil);	overload;

procedure	PolygonTS(Bitmap:	TBitmap32;	const	Points:
TArrayOfFixedPoint;	FillLineCallback:	TFillLineEvent;	Mode:
TPolyFillMode	=	pfAlternate;	Transformation:	TTransformation
=	nil);	overload;

procedure	PolygonTS(Bitmap:	TBitmap32;	const	Points:
TArrayOfFixedPoint;	Filler:	TCustomPolygonFiller;	Mode:
TPolyFillMode	=	pfAlternate;	Transformation:	TTransformation
=	nil);	overload;

procedure	PolygonXS(Bitmap:	TBitmap32;	const	Points:
TArrayOfFixedPoint;	Color:	TColor32;	Mode:	TPolyFillMode	=
pfAlternate;	AAMode:	TAntialiasMode	=	DefaultAAMode;
Transformation:	TTransformation	=	nil);	overload;

procedure	PolygonXS(Bitmap:	TBitmap32;	const	Points:
TArrayOfFixedPoint;	FillLineCallback:	TFillLineEvent;	Mode:
TPolyFillMode	=	pfAlternate;	AAMode:	TAntialiasMode	=
DefaultAAMode;	Transformation:	TTransformation	=	nil);
overload;

procedure	PolygonXS(Bitmap:	TBitmap32;	const	Points:
TArrayOfFixedPoint;	Filler:	TCustomPolygonFiller;	Mode:
TPolyFillMode	=	pfAlternate;	AAMode:	TAntialiasMode	=
DefaultAAMode;	Transformation:	TTransformation	=	nil);
overload;

Description
Fills	the	shape	defined	by	the	Points	parameter	and	(optionally)	transformed
by	the	Transformation	parameter	using	one	of	the	following	options:

simple	color
custom	fillline	callback
custom	filler	object

Unlike	GDI	polygons,	this	function	allows	for	transparency	and	optional
antialiasing.
PolygonTS	draws	a	non-antialiased	polygon	with	optional	transparency.
When	drawing,	fixed-point	coordinates	of	vertices	are	rounded.
PolygonXS	provides	full	antialiasing	and	does	not	perform	rounding	of	vertex
coordinates.	You	can	also	specify	the	antialias	mode	AAMode	that	should	be
used.
All	functions	perform	clipping.

See	Also
DefaultAAMode,	Naming	Conventions,	TAntialiasMode,
TArrayOfFixedPoint,	TBitmap32,	TColor32,	TCustomPolygonFiller,
TFillLineEvent,	TPolyFillMode,	TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

Polyline

procedure	PolyLineTS(Bitmap:	TBitmap32;	const	Points:
TArrayOfFixedPoint;	Color:	TColor32;	Closed:	Boolean=True;
Transformation:	TTransformation	=	nil);

procedure	PolyLineAS(Bitmap:	TBitmap32;	const	Points:
TArrayOfFixedPoint;	Color:	TColor32;	Closed:	Boolean=True;
Transformation:	TTransformation	=	nil);

procedure	PolyLineXS(Bitmap:	TBitmap32;	const	Points:
TArrayOfFixedPoint;	Color:	TColor32;	Closed:	Boolean=True;
Transformation:	TTransformation	=	nil);

procedure	PolyLineXSP(Bitmap:	TBitmap32;	const	Points:
TArrayOfFixedPoint;	Closed:	Boolean=True;	Transformation:
TTransformation	=	nil);

Description
Draws	a	series	of	lines,	connecting	points	passed	in.	The	points	are
transformed	by	Transformation.	If	Closed	is	True,	the	polygon	is	closed
automatically	by	drawing	a	line	from	the	last	vertex	to	the	first.
PolyLineTS	draws	a	non-antialiased	line	with	optional	transparency.	When
drawing,	fixed-point	coordinates	of	vertixes	are	rounded.
PolyLineAS	draws	an	antialiased	line,	fixed-point	coordinates	of	vertexes	are
rounded.
PolyLineXS	provides	full	antialiasing	and	does	not	perform	rounding	of
vertexes'	coordinates.	PolyLineXSP	uses	the	stipple	pattern	defined	in	the
Bitmap	instead	of	a	color.
All	functions	perform	clipping.

See	Also
Naming	Conventions,	TArrayOfFixedPoint,	TBitmap32,	TColor32,
TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

PolyPolygon

procedure	PolyPolygonTS(Bitmap:	TBitmap32;	const	Points:
TArrayOfArrayOfFixedPoint;	Color:	TColor32;	Mode:
TPolyFillMode	=	pfAlternate);

procedure	PolyPolygonXS(Bitmap:	TBitmap32;	const	Points:
TArrayOfArrayOfFixedPoint;	Color:	TColor32;	Mode:
TPolyFillMode	=	pfAlternate;	AAMode:	TAntialiasMode	=
DefaultAAMode);

Description
Fills	the	shape	similar	to	that	done	by	Polygon	function.	The	shape	is
constructed	from	several	contours,	which	are	specified	in	Points	parameter.
The	filling	is	performed	according	to	Mode	parameter.
For	PolyPolygonXS	you	can	also	specify	the	antialias	mode	that	should	be
used.

See	Also
DefaultAAMode,	Naming	Conventions,	Polygon,	PolyPolyline,
TAntialiasMode,	TArrayOfArrayOfFixedPoint,	TBitmap32,	TColor32,
TPolyFillMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

PolyPolygonBounds

function	PolyPolygonBounds(const	Points:
TArrayOfArrayOfFixedPoint):	TFixedRect;

Description
Returns	the	boundaries	of	the	input	array.

See	Also
Point	Types,	Rectangle	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

PolyPolyline

procedure	PolyPolylineTS(Bitmap:	TBitmap32;	const	Points:
TArrayOfArrayOfFixedPoint;	Color:	TColor32;	Closed:
Boolean=True;	Transformation:	TTransformation=nil);

procedure	PolyPolylineAS(Bitmap:	TBitmap32;	const	Points:
TArrayOfArrayOfFixedPoint;	Color:	TColor32;	Closed:
Boolean=True;	Transformation:	TTransformation=nil);

procedure	PolyPolylineXS(Bitmap:	TBitmap32;	const	Points:
TArrayOfArrayOfFixedPoint;	Color:	TColor32;	Closed:
Boolean=True;	Transformation:	TTransformation=nil);

procedure	PolyPolylineXSP(Bitmap:	TBitmap32;	const	Points:
TArrayOfArrayOfFixedPoint;	Closed:	Boolean=True;
Transformation:	TTransformation=nil);

Description
PolyPolyline	is	the	same	as	Polyline,	but	takes	array	of	polylines	as	parameter.
The	Closed	parameter	influences	all	polylines	in	the	array.

See	Also
Naming	Conventions,	Polyline,	PolyPolygon,	TArrayOfArrayOfFixedPoint,
TBitmap32,	TColor32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

PtInPolygon

function	PtInPolygon(const	Pt:	TFixedPoint;	const	Points:
TArrayOfFixedPoint):	Boolean;

Description
Returns	true	if	Pt	is	a	coordinate	within	the	the	polygon	region	specified	by	an
array	of	fixed-point	coordinates.

See	Also
TPolygon32.ContainsPoint,	Point	Types,	TArrayOfFixedPoint,	TFixedPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

TAntialiasMode

type	TAntialiasMode	=	(am32times,	am16times,	am8times,
am4times,	am2times);

Description
Specifies	how	polygons	are	antialiased.
Here	is	a	small	illustration	that	demonstrates	the	different	modes	and	their
output	quality:

	
32x	supersampling	generally	generates	the	best	result.	However,	it	is	also	the
slowest	mode.
16x	supersampling	generates	a	very	smooth	result.	Generally,	there	is	no
noticeable	difference	in	quality	between	this	and	the	32x	mode.
8x	supersampling	is	a	good	compromise	between	speed	and	quality.	
4x	supersampling	offers	an	acceptable	tradeoff	between	speed	and	quality.	
2x	supersampling	offers	the	worst	quality,	but	still	has	a	higher	precision	than
rendering	without	any	antialiasing.
If	you	need	fast	but	still	antialiased	polygons	(for	example	in	an	editor)	we
recommend	using	the	4x	or	8x	antialias	mode.
	

See	Also
Polygon

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

TFillLineEvent

type	TFillLineEvent	=	procedure(Dst:	PColor32;	DstX,	DstY,
Length:	Integer;	AlphaValues:	PColor32)	of	object;

Description
Use	this	definition	to	create	custom	fill	line	callbacks.
Dst	specifies	the	first	position	in	the	destination	buffer	that	needs	to	be	drawn
to.	You	can	use	the	coordinates	DstX	and	DstY	for	calculations.
Length	determines	the	length	of	the	line	to	draw.
AlphaValues	is	a	pointer	to	the	first	alpha	value	of	the	edge	for	each	pixel	on
that	line.	This	is	used	by	the	PolygonXS	and	PolyPolygonXS	procedures	only.
For	PolygonTS	and	PolyPolygonTS	this	parameter	is	nil,	so	please	do
appropriate	checks.
Callbacks	based	on	this	specification	cann	be	used	with	the	DrawFill	and
Draw	methods	of	TPolygon32	or	with	the	Polygon	and	PolyPolygon	routines.

See	Also
TPolygon32.Draw,	TPolygon32.DrawFill,	Polygon,	PolyPolygon,
TPolygon32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

TPolyFillMode

type	TPolyFillMode	=	(pfAlternate,	pfWinding);

Description
Specifies	how	polygons	are	filled.

	

See	Also
Polygon

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

DefaultAAMode

The	DefaultAAMode	constant	of	type	TAntialiasMode	sets	the	default
antialias	mode	to	am8times.

See	Also
TAntialiasMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.Backgnd

property	Backgnd:	TRBBackgnd;
type	TRBBackgnd	=	(bgPattern,	bgSolid);

Description
Determines	appearance	of	the	background:

Note,	that	this	property	is	available	only	when	Style=rbsMac.

See	Also
Style,	TRBBackgnd

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.BorderStyle

property	BorderStyle:	TBorderStyle;
type	TBorderStyle	=	(bsNone,	bsSingle);	//	declared	in
Forms.pas

Description
When	BorderStyle	is	bsSingle,	control	is	painted	with	a	recessed	border.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.ButtonSize

property	ButtonSize:	Integer;

Description
Specifies	the	size	of	the	scroll	button	in	pixels.

When	ButtonSize	is	set	to	0	(default),	this	size	is	calculated	and	updated
automatically	to	keep	the	button	square.
If	you	want	to	hide	buttons	set	ShowArrows	property	to	False.

See	Also
ShowArrows

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.HandleColor

property	HandleColor:	TColor;

Description
Specifies	a	color	of	the	handle:

Although	TArrowBar	itself	does	not	have	any	handles,	this	property	is	used	in
descendants	TCustomRangeBar	and	TCustomGaugeBar.
Note,	that	this	property	is	available	only	when	Style=rbsMac.

See	Also
Style,	TArrowBar,	TCustomGaugeBar,	TCustomRangeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.Kind

property	Kind:	TScrollBarKind;
type	TScrollBarKind	=	(sbHorizontal,	sbVertical);	//	defined	in
Forms.pas

Description
Indicates	orientation	of	the	control.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.ShowArrows

property	ShowArrows:	Boolean;

Description
Determines	visibility	of	scrolling	buttons.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.ShowHandleGrip

property	ShowHandleGrip:	Boolean;

Description
Determines	visibility	of	a	handle	grip:

Although	TArrowBar	itself	does	not	have	any	handles,	this	property	is	used	in
descendants	TCustomRangeBar	and	TCustomGaugeBar.
Note,	that	this	property	is	available	only	when	Style=rbsMac.

See	Also
Style,	TArrowBar,	TCustomGaugeBar,	TCustomRangeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.Style

property	Style:	TRBStyle;
type	TRBStyle	=	(rbsDefault,	rbsMac);

Description
Determines	appearance	of	the	control.	Note	that	some	properties	are
accessible	only	when	Style	is	set	to	rbsMac.
The	default	value	is	rbsDefault;

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.Create

constructor	Create(AOwner:	TComponent);	override;

Description
Creates	and	initializes	an	instance	of	TArrowBar.
After	calling	the	inherited	constructor,	Create	initializes	the	following
properties:

Backgnd	to	bgPattern;
ButtonSize	to	0;
Color	to	clBtnShadow;
Style	to	rbsDefault;
HandleColor	to	clBtnShadow;
Kind	to	sbHorizontal;
ShowArrows	to	True;
ShowHandleGrip	to	True;

See	Also
Backgnd,	ButtonSize,	HandleColor,	Kind,	ShowArrows,	ShowHandleGrip,
Style,	TArrowBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.Destroy

destructor	Destroy;	override;

Description
Destroys	the	arrowbar	object	and	frees	all	associated	memory.
Do	not	call	Destroy	directly,	use	Free	method	instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.Paint

procedure	Paint;	override;

Description
Paint	is	overriden	from	TCustomControl.	It	draws	the	bar	and	scroll	buttons.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.OnChange

property	OnChange:	TNotifyEvent;

Description
OnChange	is	called	each	time	control	changes.
This	event	is	never	called	by	TArrowBar	itself,	but	it	is	shared	by	descendants
TCustomRangeBar	and	TCustomGaugeBar.

See	Also
OnUserChange,	TArrowBar,	TCustomGaugeBar,	TCustomRangeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TArrowBar

TArrowBar.OnUserChange

property	OnUserChange:	TNotifyEvent;

Description
OnUserChange	is	called	when	control	is	changed	by	user,	as	reaction	to
mouse	events.	It	is	not	called	then	the	control	is	changed	due	to	some	internal
program	activity.	This	event	is	called	after	OnChange.
This	event	is	never	called	by	TArrowBar	itself,	but	it	is	shared	by	descendants
TCustomRangeBar	and	TCustomGaugeBar.

See	Also
OnChange,	TArrowBar,	TCustomGaugeBar,	TCustomRangeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomGaugeBar

TCustomGaugeBar.HandleSize

property	HandleSize:	Integer;

Description
Specifies	the	size	of	the	handle:

If	HandleSize	is	0	(default),	the	size	is	calculated	and	updated	automatically
to	keep	the	handle	square.

See	Also
TArrowBar.ButtonSize

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomGaugeBar

TCustomGaugeBar.LargeChange

property	LargeChange:	Integer;

Description
Determines	how	much	Position	changes	when	the	user	clicks	the	scroll	bar	on
either	side	of	the	handle.

See	Also
Position,	SmallChange

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomGaugeBar

TCustomGaugeBar.Max

property	Max:	Integer;

Description
The	Max	and	Min	properties	define	the	available	range	for	Position.

See	Also
Min,	Position

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomGaugeBar

TCustomGaugeBar.Min

property	Min:	Integer;

Description
The	Max	and	Min	properties	define	the	available	range	for	Position.

See	Also
Max,	Position

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomGaugeBar

TCustomGaugeBar.Position

property	Position:	Integer;

Description
Specifies	the	current	position	of	the	scrollbar.
Read	Position	to	determine	the	current	position	of	the	thumb	tab.
Set	Position	to	programmatically	move	the	handle.	The	available	range	of
positions	is	determined	by	the	difference	between	the	Max	property	and	the
Min	property.
When	Position	is	changed	programmatically,	gauge	bar	will	generate
OnChange	event,	when	it	is	changed	by	user	(by	clicking	scrolling	buttons,
dragging	the	handle	or	clicking	on	the	background	area),	the	control	will
additionally	generate	OnUserChange	event.

See	Also
Max,	Min,	TArrowBar.OnChange,	TArrowBar.OnUserChange

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomGaugeBar

TCustomGaugeBar.SmallChange

property	SmallChange:	Integer;

Description
Determines	how	much	Position	changes	when	the	user	clicks	the	scrolling
buttons.

See	Also
LargeChange,	Position

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomGaugeBar

TCustomGaugeBar.Create

constructor	Create(AOwner:	TComponent);	override;

Description
Creates	and	initializes	an	instance	of	TCustomGaugeBar.
After	calling	the	inherited	constructor,	Create	initializes	the	following
properties:

HandleSize	to	0;
LargeChange	to	1;
Max	to	100;
Min	to	0;
Position	to	0;

See	Also
HandleSize,	LargeChange,	Max,	Min,	Position,	TCustomGaugeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomGaugeBar

TCustomGaugeBar.Paint

procedure	Paint;	override;

Description
Paint	is	overriden	from	TArrowBar.Paint.	In	addition	to	bar	and	scrolling
buttons,	it	paints	the	handle.

See	Also
TArrowBar.Paint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomRangeBar

TCustomRangeBar.Centered

property	Centered:	Boolean;

Description
Determines	how	the	handle	is	repositioned	when	Range	changes.
If	Centered	is	False	(default),	the	control	behaves	similar	to	standard
TControlScrollBar.	That	is	it	tries	to	preserve	the	Position	property.
If	Centered	is	True,	the	control	changes	Position,	trying	to	keep	the	centre	at
the	same	location.
This	property	also	influences	how	the	handle	is	adjusted	when	range	bar
changes	its	Window	size.

See	Also
Position,	Range,	Window

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomRangeBar

TCustomRangeBar.Increment

property	Increment:	Single;

Description
Determines	the	change	in	Position	when	user	clicks	scrolling	arrows.
Default	value	is	8.

See	Also
Position

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomRangeBar

TCustomRangeBar.Position

property	Position:	Single;

Description
Determines	the	current	position	of	the	handle.

Note,	that	Position	is	a	single	precision	floating-point	value.	Which	allows	for
more	predictable	behavior	then	Centered	property	is	set	to	True,	since	the
handle	won't	drift	due	to	rounding	errors.

See	Also
Centered,	Range,	Window

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomRangeBar

TCustomRangeBar.Range

property	Range:	Single;

Description
Determines	the	scrollable	range.

When	range	is	less	than	the	value	stored	in	Window	property(or	the	size	of	the
control,	in	case	Window	=	0),	the	control	draws	itself	disabled.

See	Also
Position,	Window

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomRangeBar

TCustomRangeBar.Window

property	Window:	Single;

Description
The	size	of	the	associated	visible	area:

In	case	the	value	of	the	property	is	set	to	zero,	range	bar	assumes	that	it	is
equal	to	its	own	size,	as	shown	in	the	picture	above.
Using	this	property	is	required	when	the	size	of	the	scrollable	window	is
different	from	the	size	of	the	range	bar.

See	Also
Position,	Range

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomRangeBar

TCustomRangeBar.Create

constructor	Create(AOwner:	TComponent);	override;

Description
Creates	and	initializes	an	instance	of	TCustomRangeBar.
After	calling	the	inherited	constructor,	Create	initializes	the	following
properties:

Centered	to	False;
Increment	to	8;
Position	to	0;
Range	to	0;

See	Also
Centered,	Increment,	Position,	Range,	TCustomRangeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars TCustomRangeBar

TCustomRangeBar.Paint

procedure	Paint;	override;

Description
Paint	is	overriden	from	TArrowBar.Paint.	In	addition	to	the	bar	itself	and
scrolling	buttons,	it	paints	the	handle.

See	Also
TArrowBar.Paint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars

TRBBackgnd

type	TRBBackgnd	=	(bgPattern,	bgSolid);

Description
Specifies	a	type	of	background	filling	of	the	arrow	bar	control	and	its
descendants.	See	TArrowBar.Backgnd	for	more	information.

See	Also
TArrowBar.Backgnd

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars

TRBStyle

type	TRBStyle	=	(bgDefault,	bgMac);

Description
Specifies	the	arrow	bar	style.	See	TArrowBar.Style	for	more	information.

See	Also
TArrowBar.Style

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers TProgressiveRasterizer

TProgressiveRasterizer.Steps

property	Steps:	Integer;

Description
This	property	controls	how	many	progressive	steps	the	progressive
rasterization	process	will	use,	i.e.	the	intermediate	resolution	progressions.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers TProgressiveRasterizer

TProgressiveRasterizer.UpdateRows

property	UpdateRows:	Boolean;

Description
This	property	defines	how	the	rasterizer	will	trigger	repaints.	If	true,	each	row
of	the	destination	bitmap	will	be	repainted	as	the	rasterizer	progress	to	next
row.	If	false,	only	step	progression	will	trigger	a	repaint.

See	Also
Steps

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers TRasterizer

TRasterizer.Sampler

property	Sampler:	TCustomSampler;

Description
Associates	a	sampler	class,	which	is	used	in	the	rasterization	process	to
retrieve	color	samples.
	

See	Also
Rasterize,	TCustomSampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers TRasterizer

TRasterizer.Rasterize

procedure	Rasterize(Dst:	TBitmap32);	overload;
procedure	Rasterize(Dst:	TBitmap32;	const	DstRect:	TRect);
overload;

procedure	Rasterize(Dst:	TBitmap32;	const	DstRect:	TRect;
const	CombineInfo:	TCombineInfo);	overload;

procedure	Rasterize(Dst:	TBitmap32;	const	DstRect:	TRect;
Src:	TBitmap32);	overload;

Description
Calling	rasterize	will	start	the	rasterization	process.
	

See	Also
Rectangle	Types,	TBitmap32,	TCombineInfo

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers TRegularRasterizer

TRegularRasterizer.UpdateRowCount

property	UpdateRowCount:	Integer;

Description
This	property	controls	how	many	rows	should	be	repainted	as	the	rasterization
is	performed.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers TSwizzlingRasterizer

TSwizzlingRasterizer.BlockSize

property	BlockSize:	Integer;

Description
This	property	controls	how	large	blocks	should	be	repainted	as	the
rasterization	is	performed.	The	size	of	the	block	is	2^BlockSize.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers

TCombineInfo

PCombineInfo	=	^TCombineInfo;
TCombineInfo	=	record
SrcAlpha:	Integer;
DrawMode:	TDrawMode;
CombineMode:	TCombineMode;
CombineCallBack:	TPixelCombineEvent;
TransparentColor:	TColor32;
end;

Description
TCombineInfo	contains	blending	and	combine	related	properties,	similar	to
what	is	contained	in	TBitmap32.	This	structure	is	used	in	routines	which	does
not	have	a	single	source	bitmap,	which	would	normally	provide	this
information	(for	example	a	special	overloaded	version	of	Rasterize).

See	Also
Color	Types,	TRasterizer.Rasterize,	TBitmap32,	TCombineMode,
TDrawMode,	TPixelCombineEvent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TAdaptiveSuperSampler

TAdaptiveSuperSampler.Level

property	Level:	Integer;

Description
This	property	will	set	the	maximum	possible	recursion	depth.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TAdaptiveSuperSampler

TAdaptiveSuperSampler.Tolerance

property	Tolerance:	Integer;

Description
Adaptive	supersampling	uses	a	tolerance	parameter	to	limit	the	recursion
depth.	If	the	difference	between	two	samples	is	less	than	the	tolerance,	then
the	recursion	will	stop.	By	default	the	difference	between	two	colors	is
computed	as	the	sum	of	the	componentwise	differences	between	the	R,	G	and
B	components.	It	is	possible	to	change	this	evaluation	by	overriding	the
protected	CompareColors	method.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TAdaptiveSuperSampler

TAdaptiveSuperSampler.Create

procedure	Create(Sampler:	TCustomSampler);	override;

Description
Call	Create	to	instantiate	an	adaptive	super	sampler	at	runtime.
Sampler	is	an	instance	of	TCustomSampler	used	to	retrieve	samples	by	the
adaptive	super	sampler.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TAdaptiveSuperSampler

TAdaptiveSuperSampler.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).

See	Also
Color	Types,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TBitmap32Resampler

TBitmap32Resampler.Bitmap

property	Bitmap:	TBitmap32;

Description
Any	instance	of	a	TBitmap32Resampler	descendant	is	associated	with	a
bitmap.	The	Resample	method	is	used	whenever	TBitmap32.Draw	or
TBitmap32.DrawTo	is	invoked.	The	GetSample	method	allows	the	resampler
to	reconstruct	a	single	color	sample	from	the	bitmap.

See	Also
_body,	TBitmap32.Draw,	TBitmap32.DrawTo,	GetSampleFloat,	TBitmap32,
TCustomResampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TBitmap32Resampler

TBitmap32Resampler.PixelAccessMode

property	PixelAccessMode:	TPixelAccessMode;

Description
Determines	how	pixels	are	accessed.	See	TPixelAccessMode	for	details.

See	Also
TPixelAccessMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TBitmap32Resampler

TBitmap32Resampler.TransformerClass

property	TransformerClass:	TTransformerClass;

Description
Each	resampler	is	associated	with	a	default	transformer	class.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TBitmap32Resampler

TBitmap32Resampler.Changed

procedure	Changed;

Description
Notifies	the	associated	TBitmap32	instance	that	a	property	has	changed	and
calls	the	inherited	Changed	method.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TBitmap32Resampler

TBitmap32Resampler.Create

constructor	Create(ABitmap:	TBitmap32);	reintroduce;	virtual;

Description
Creates	and	initializes	an	instance	of	TBitmap32Resampler.
After	calling	the	inherited	constructor,	Create	initializes	the	following
properties:

Bitmap	to	Bitmap;
PixelAccessMode	to	pamSafe;
TransformerClass	to	TTransformer;

See	Also
Bitmap,	PixelAccessMode,	TBitmap32Resampler,	TransformerClass,
TTransformer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TBitmap32Resampler

TBitmap32Resampler.GetSampleBounds

function	GetSampleBounds:	TRect;	override;

Description
The	GetSampleBounds	method	returns	the	ClipRect	property	of	the
associated	bitmap	instance.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TBitmap32Resampler

TBitmap32Resampler.HasBounds

function	HasBounds:	Boolean;	override;

Description
For	TBitmap32Resampler	descendants	HasBounds	always	returns	true,
indicating	that	the	sampling	is	constrained	to	the	ClipRect	property	of	the
associated	bitmap.

See	Also
TBitmap32Resampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TBitmap32Resampler

TBitmap32Resampler.PrepareSampling

procedure	PrepareSampling;	override;

Description
The	PrepareSampling	method	should	be	called	before	calling	GetSample.
See	TCustomSampler.PrepareSampling	for	further	details.

See	Also
TCustomSampler.PrepareSampling

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TBoxKernel

TBoxKernel.Filter

function	Filter(Value:	Single):	Single;	override;

Description
Returns	the	function	value	of	this	kernel	given	its	input	parameter.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TBoxKernel

TBoxKernel.GetWidth

function	GetWidth:	Single;	override;

Description
Returns	the	width	of	this	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TContracter

TContracter.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).

See	Also
Color	Types,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TContracter

TContracter.PrepareSampling

procedure	PrepareSampling;	override;

Description
The	PrepareSampling	method	should	be	called	before	calling	GetSample.
See	TCustomSampler.PrepareSampling	for	further	details.

See	Also
TCustomSampler.PrepareSampling

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCosineKernel

TCosineKernel.Filter

procedure	Filter:	Single;	override;

Description
Returns	the	function	value	of	this	kernel	given	its	input	parameter.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCosineKernel

TCosineKernel.GetWidth

function	GetWidth:	Single;	override;

Description
Returns	the	width	of	this	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCubicKernel

TCubicKernel.Coeff

property	Coeff:	Single;

Description
This	is	a	coefficient	of	the	cubic	polynomial	described	by	this	kernel.	See
TCubicKernel	description	for	details.

See	Also
TCubicKernel

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCubicKernel

TCubicKernel.Create

constructor	Create;	override;

Description
Creates	and	instantiates	a	TCubicKernel	object.	The	Coeff	property	is
initialized	to	-0.5.

See	Also
Coeff,	TCubicKernel

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCubicKernel

TCubicKernel.Filter

function	Filter(Value:	Single):	Single;	override;

Description
Returns	the	function	value	of	this	kernel	given	its	input	parameter.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCubicKernel

TCubicKernel.GetWidth

function	GetWidth:	Single;	override;

Description
Returns	the	width	of	this	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCubicKernel

TCubicKernel.RangeCheck

function	RangeCheck:	Boolean;	override;

Description
Indicates	whether	or	not	this	kernel	needs	range-checking.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCustomKernel

TCustomKernel.Observer

property	Observer:	TNotifiablePersistent;

Description
The	Observer	property	is	a	class	that	will	be	notified	of	any	changes	to	the
properties	of	the	kernel	(by	a	change	notification).

See	Also
TNotifiablePersistent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCustomKernel

TCustomKernel.Changed

procedure	Changed;

Description
Changed	is	called	when	a	property	is	changed;	this	will	also	cause	the
Observer	property	to	be	notified.

See	Also
Owner

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCustomKernel

TCustomKernel.Create

procedure	Create;	virtual;

Description
Create	will	instantiate	a	TCustomKernel	object.

See	Also
TCustomKernel

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCustomKernel

TCustomKernel.Filter

function	Filter:	Single;	virtual;	abstract;

Description
Returns	the	function	value	of	this	kernel	given	its	input	parameter.
Descendants	should	override	this	function.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCustomKernel

TCustomKernel.GetWidth

function	GetWidth:	Single;	override;

Description
Returns	the	width	of	this	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TCustomKernel

TCustomKernel.RangeCheck

function	RangeCheck:	Single;	override;

Description
Descendants	should	override	this	procedure	if	the	Kernels	require	range-
checking	of	the	final	convolved	result.	Typically	this	is	needed	for	kernels
with	negative	lobes.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TEroder

TEroder.Create

constructor	Create(ASampler:	TCustomSampler);	override;

Description
Creates	and	instantiates	a	TEroder	object.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TGaussianKernel

TGaussianKernel.Sigma

property	Sigma:	Single;

Description
Sigma	is	a	parameter	of	the	gaussian	window.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TGaussianKernel

TGaussianKernel.Create

constructor	Create;	override;

Description
A	brief	description	of	Create.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers THermiteKernel

THermiteKernel.Bias

property	Bias:	Single;

Description
The	Bias	property	will	affect	the	left-right	alignment	of	the	kernel	function.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers THermiteKernel

THermiteKernel.Tension

property	Tension:	Single;

Description
The	tension	parameter	will	influence	the	smoothness	of	the	curve.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers THermiteKernel

THermiteKernel.Create

constructor	Create;	override;

Description
Call	create	to	instantiate	a	THermiteKernel	object.
Upon	creation	the	properties	initialized	by	setting

Bias	to	0;
Tension	to	0.

See	Also
Bias,	Tension,	THermiteKernel

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers THermiteKernel

THermiteKernel.Filter

function	Filter(Value:	Single):	Single;	override;

Description
Returns	the	function	value	of	this	kernel	given	its	input	parameter.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers THermiteKernel

THermiteKernel.GetWidth

function	GetWidth:	Single;	override;

Description
Returns	the	width	of	this	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers THermiteKernel

THermiteKernel.RangeCheck

function	RangeCheck:	Boolean;	override;

Description
Indicates	whether	or	not	this	kernel	needs	range-checking.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelResampler

TKernelResampler.Kernel

property	Kernel:	TCustomKernel;

Description
This	property	specifies	which	kernel	is	used	for	performing	resampling.
Samples	are	reconstructed	through	convolution	with	this	kernel.

See	Also
TCustomKernel

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelResampler

TKernelResampler.KernelClassName

property	KernelClassName:	string;

Description
KernelClassName	specifies	the	class	name	of	the	current	associated	kernel.	It
should	never	be	changed	at	run-time.	It	is	only	used	by	the	object	inspector	at
desging-time.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelResampler

TKernelResampler.KernelMode

property	KernelMode:	TKernelMode;

Description
Describes	the	current	kernel	mode.	See	TKernelMode	for	details.

See	Also
TKernelMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelResampler

TKernelResampler.TableSize

property	TableSize:	Integer;

Description
TableSize	determines	the	size	of	the	table	used	in	GetSample	for
kmTableNearest	and	kmTableLinear	kernel	modes.
For	kmTableNearest	the	weightcurve	of	the	kernels	is	quantized	in
proportional	to	the	tablesize.	Perceptually	the	side	effect	of	the	table	nearest
approach,	becomes	visible	as	the	tablesize	decreases.	With	a	table	size	of	2,
the	actual	result	becomes	similar	to	using	the	box	kernel.
For	kmTableLinear	the	weightcurve	of	the	kernels	is	approximized	via	linear
interpolation	between	the	quantized	values	in	the	table.	Perceptually	the	side
effect	of	the	table	linear	approach,	becomes	visible	as	the	table	size	decreases.
With	a	table	size	of	2,	the	actual	result	becomes	similar	to	using	the	linear
kernel.

See	Also
GetSample,	TBoxKernel,	TKernelMode,	TLinearKernel

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelResampler

TKernelResampler.Create

constructor	Create(Bitmap:	TBitmap32);	override;

Description
Call	Create	to	construct	a	new	TKernelResampler	instance.
After	calling	the	inherited	constructor,	the	following	properties	are	set:

TableSize	is	set	to	32;
Kernel	is	set	to	TNearestKernel;

See	Also
_BODY,	TBoxKernel

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelResampler

TKernelResampler.Destroy

destructor	Destroy;	override;

Description
Destroys	the	resampler	object	and	frees	all	associated	memory.
Do	not	call	Destroy	directly,	use	Free	instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelResampler

TKernelResampler.FinalizeSampling

procedure	FinalizeSampling;	override;

Description
The	FinalizeSampling	method	should	be	paired	with	PrepareSampling.	It	is
called	when	the	sampling	is	finished.	See	TCustomSampler.FinalizeSampling
for	further	details.

See	Also
TCustomSampler.FinalizeSampling,	TCustomSampler.PrepareSampling

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelResampler

TKernelResampler.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).

See	Also
Color	Types,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelResampler

TKernelResampler.PrepareSampling

procedure	PrepareSampling;	override;

Description
The	PrepareSampling	method	should	be	called	before	calling	GetSample.
See	TCustomSampler.PrepareSampling	for	further	details.

See	Also
TCustomSampler.PrepareSampling

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelSampler

TKernelSampler.CenterX

property	CenterX:	Integer;

Description
CenterX	determines	the	vertical	position	of	the	kernel	relative	to	the	sample
as	the	UpdateBuffer	method	is	applied.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelSampler

TKernelSampler.CenterY

property	CenterY:	Integer;

Description
CenterY	determines	the	horizontal	position	of	the	kernel	relative	to	the
sample	as	the	UpdateBuffer	method	is	applied.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelSampler

TKernelSampler.Kernel

property	Kernel:	TIntegerMap;

Description
The	kernel	property	is	used	for	describing	the	convolution	kernel	(for
convolution)	and	the	structuring	element	(for	morphological	operations).

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelSampler

TKernelSampler.Create

constructor	Create(ASampler:	TCustomSampler);	override;

Description
Creates	and	instantiates	a	TKernelSampler	object.

See	Also
TCustomKernel,	TKernelSampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelSampler

TKernelSampler.Destroy

destructor	Destroy;	override;

Description
Destroys	the	kernel	sampler	object	and	frees	all	associated	memory.
Do	not	call	Destroy	directly,	use	Free	method	instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TKernelSampler

TKernelSampler.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;	override;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;	override;

Description
Collects	samples	from	the	area	defined	by	the	kernel	and	invokes	the
UpdateBuffer	for	each	new	sample.	When	all	samples	have	been	processed,
the	buffer	is	converted	into	the	TColor32	format	using	the	protected
ConvertBuffer	method.
See	TCustomSampler.GetSample	for	further	details.

See	Also
Color	Types,	TCustomSampler.GetSample,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TLinearKernel

TLinearKernel.Filter

function	Filter(Value:	Single):	Single;	override;

Description
A	brief	description	of	Window.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TLinearKernel

TLinearKernel.GetWidth

function	GetWidth:	Single;	override;

Description
Returns	the	width	of	this	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TLinearResampler

TLinearResampler.Create

constructor	Create(Bitmap:	TBitmap32);	override;

Description
A	brief	description	of	Window.

See	Also
TBitmap32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TLinearResampler

TLinearResampler.Destroy

destructor	Destroy;	override;

Description
Destroys	the	resampler	object	and	frees	all	associated	memory.
Do	not	call	Destroy	directly,	use	Free	method	instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TLinearResampler

TLinearResampler.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).

See	Also
Color	Types,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TLinearResampler

TLinearResampler.PrepareSampling

procedure	PrepareSampling;	override;

Description
The	PrepareSampling	method	should	be	called	before	calling	GetSample.
See	TCustomSampler.PrepareSampling	for	further	details.

See	Also
TCustomSampler.PrepareSampling

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TMitchellKernel

TMitchellKernel.Filter

function	Filter(Value:	Single):	Single;	override;

Description
A	brief	description	of	Window.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TMitchellKernel

TMitchellKernel.GetWidth

function	GetWidth:	Single;	override;

Description
Returns	the	width	of	this	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TMitchellKernel

TMitchellKernel.RangeCheck

function	RangeCheck:	Boolean;	override;

Description
Indicates	whether	or	not	this	kernel	needs	range-checking.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TNearestResampler

TNearestResampler.Create

constructor	Create(ABitmap:	TBitmap32);	override;

Description
Create	instantiates	a	TNearestResampler	object	by	first	calling	the	inherited
constructor	and	then	initializing	the	TransformerClass	property	to
TNearestTransformer.

See	Also
TBitmap32,	TNearestResampler,	TNearestTransformer,
TBitmap32Resampler.TransformerClass

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TNearestResampler

TNearestResampler.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).

See	Also
Color	Types,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TNearestResampler

TNearestResampler.PrepareSampling

procedure	PrepareSampling;	override;

Description
The	PrepareSampling	method	should	be	called	before	calling	GetSample.
See	TCustomSampler.PrepareSampling	for	further	details.

See	Also
TCustomSampler.PrepareSampling

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TNearestTransformer

TNearestTransformer.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).

See	Also
Color	Types,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TNestedSampler

TNestedSampler.Sampler

property	Sampler:	TCustomSampler;

Description
When	the	TNestedSampler	class	is	instantiated,	it	requires	a	separate	sampler
to	forward	samples	to	its	own	particular	GetSample	implementation.	Thus	it	is
essential	that	this	property	is	properly	set	up	to	point	to	another	sampler
(circular	references	must	also	be	avoided).

See	Also
_body,	TCustomSampler.GetSample,	TCustomSampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TNestedSampler

TNestedSampler.Create

procedure	Create(Sampler:	TCustomSampler);	override;

Description
Creates	and	initializes	an	instance	of	TNesetSampler.
Sampler	is	an	instance	of	TCustomSampler	used	by	descendants	to	retrieve
samples	in	a	nested	fashion.

See	Also
_BODY,	TNestedSampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TPatternSampler

TPatternSampler.Pattern

property	Pattern:	TFixedSamplePattern;
type	TFixedSamplePattern	=	array	of	array	of
TArrayOfFixedPoint;

Description
Pattern	is	a	two-dimensional	array	of	TArrayOfFixedPoint.	Pixels	are	super-
sampled	by	collecting	sub-samples	for	each	sample	coordinate	specified	in
one	of	the	elements	of	the	Pattern.	For	irregular	sampling	it	is	useful	to	use
tiles	of	irregularly	generated	samples,	since	this	will	reduce	aliasing.	Thus,	the
sample	pattern	can	be	varied	from	pixel	to	pixel	by	adjusting	the	size	of	the
Pattern	matrix.	This	will	cause	the	sample	pattern	to	be	repeated.

See	Also
Point	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TPatternSampler

TPatternSampler.Destroy

procedure	Destroy;	override;

Description
Destroys	the	kernel	object	and	frees	all	associated	memory.
Do	not	call	Destroy	directly,	use	Free	method	instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TPatternSampler

TPatternSampler.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).

See	Also
Color	Types,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSelectiveConvolver

TSelectiveConvolver.Delta

property	Delta:	Single;

Description
Selective	convolution	requires	a	Delta	parameter	for	determining	which	color
samples	should	be	included	in	the	convolution.	For	each	sample	location	one
reference	sample	C	is	chosen.	Color	samples	that	are	not	within	the	threshold
range	[C	-	Delta,	C	+	Delta],	will	be	excluded	from	the	convolution.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSelectiveConvolver

TSelectiveConvolver.Create

constuctor	Create(ASampler:	TCustomSampler);	override;

Description
Create	instantiates	an	TSelectiveConvolver	object	and	then	sets	Delta	to	30.

See	Also
Delta,	TSelectiveConvolver

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSelectiveConvolver

TSelectiveConvolver.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).

See	Also
Color	Types,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSinshKernel

TSinshKernel.Coeff

property	Coeff:	Single;

Description
The	Coeff	property	determines	the	shape	of	the	filter.	The	coefficient	should
be	strictly	positive;	when	it	approaches	zero,	the	curve	will	resemble	the	ideal
sinc	filter.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSinshKernel

TSinshKernel.Width

property	Width:	Single;

Description
Set	and	get	the	width	of	the	sinsh	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSinshKernel

TSinshKernel.Create

constructor	Create;	override;

Description
Creates	and	instantiates	a	TSinshKernel	object.
After	calling	the	inherited	constructor	the	following	properties	are	set:

Width	is	set	to	3;
Coeff	is	set	to	0.5.

See	Also
Coeff,	TSinshKernel,	Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSinshKernel

TSinshKernel.Filter

function	Filter:	Single;	override;

Description
Returns	the	function	value	of	this	kernel	given	its	input	parameter.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSinshKernel

TSinshKernel.GetWidth

function	GetWidth:	Single;	override;

Description
Returns	the	width	of	the	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSinshKernel

TSinshKernel.SetWidth

procedure	SetWidth(Value:	Single);

Description
TSinshKernel	supports	adjustment	of	the	width	of	the	kernel	using	SetWidth.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSplineKernel

TSplineKernel.Filter

function	Filter:	Single;	override;

Description
Returns	the	function	value	of	this	kernel	given	its	input	parameter.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSplineKernel

TSplineKernel.GetWidth

function	GetWidth:	Single;	override;

Description
Returns	the	width	of	the	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSuperSampler

TSuperSampler.SamplingX

property	SamplingX:	Integer;

Description
This	property	determines	the	number	of	vertical	gridlines.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSuperSampler

TSuperSampler.SamplingY

procedure	SamplingY;

Description
This	property	determines	the	number	of	horizontal	gridlines.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSuperSampler

TSuperSampler.Create

constructor	Create(ASampler:	TCustomSampler);	override;

Description
Call	Create	to	instantiate	a	new	super	sampler.
After	the	inherited	constructor	is	called	the	SamplingX	and	SamplingY
properties	are	set	to	4.

See	Also
SamplingX,	SamplingY,	TCustomSampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TSuperSampler

TSuperSampler.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).

See	Also
Color	Types,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TTransformer

TTransformer.Transformation

property	Transformation:	TTransformation;

Description
Transformation	specifies	which	transformation	should	be	used	for
transforming	sample	coordinates.

See	Also
TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TTransformer

TTransformer.GetSample

function	GetSampleInt(X,	Y:	Integer):	TColor32;
function	GetSampleFixed(X,	Y:	TFixed):	TColor32;
function	GetSampleFloat(X,	Y:	Single):	TColor32;

Description
GetSample	provides	a	method	for	acquiring	a	color	sample	from	the
coordinate	(X,	Y).	The	sample	may	be	generated	by	the	sampler	itself,	or	it
may	be	acquired	from	a	nested	sampler.	Descendants	of	TCustomSampler
must	always	override	at	least	one	of	GetSampleFixed	or	GetSampleFloat.
The	different	postfixes	determines	the	precision	of	the	input	parameters
(integer,	fixed-point	or	floating-point).

See	Also
Color	Types,	TCustomSampler,	TFixed

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TTransformer

TTransformer.GetSampleBounds

function	GetSampleBounds:	TRect;	override;

Description
Fetches	the	sample	bounds	of	the	next	nested	sampler	and	uses
TTransformation.GetTransformedBounds	to	update	it	to	the	correct
(transformed)	output	rectangle.

See	Also
TTransformation.GetTransformedBounds

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TTransformer

TTransformer.HasBounds

function	HasBounds:	Boolean;

Description
Returns	true	if	the	associated	transformation	supports	the
GetTransformedBounds	method.

See	Also
TTransformation.GetTransformedBounds

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TTransformer

TTransformer.PrepareSampling

procedure	PrepareSampling;

Description
The	PrepareSampling	method	should	be	called	before	calling	GetSample.
See	TCustomSampler.PrepareSampling	for	further	details.

See	Also
TCustomSampler.PrepareSampling

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TWindowedSincKernel

TWindowedSincKernel.Width

property	Width:	Single;

Description
This	property	allows	user-control	of	the	width	of	the	kernel.	This	will	adjust
the	width	of	the	windows	implemented	in	descendant	classes.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TWindowedSincKernel

TWindowedSincKernel.Create

constructor	Create;	override;

Description
Call	create	to	instantiate	a	TWindowedSincKernel	object.
The	Width	property	will	be	initialized	to	3.

See	Also
TWindowedSincKernel,	Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TWindowedSincKernel

TWindowedSincKernel.Filter

function	Filter(Value:	Single):	Single;

Description
Returns	the	function	value	of	this	kernel	given	its	input	parameter.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TWindowedSincKernel

TWindowedSincKernel.GetWidth

function	GetWidth;	override;

Description
Returns	the	width	of	this	kernel	.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers TWindowedSincKernel

TWindowedSincKernel.SetWidth

procedure	SetWidth(Value:	Single);

Description
Sets	the	width	of	this	kernel.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

BlendTransfer

procedure	BlendTransfer(
Dst:	TBitmap32;	
DstX:	Integer;	
DstY:	Integer;	
DstClip:	TRect;	
SrcF:	TBitmap32;	
SrcRectF:	TRect;	
SrcB:	TBitmap32;	
SrcRectB:	TRect;	
BlendCallback:	TBlendReg);	overload;

procedure	BlendTransfer(
Dst:	TBitmap32;	
DstX:	Integer;	
DstY:	Integer;	
DstClip:	TRect;	
SrcF:	TBitmap32;	
SrcRectF:	TRect;	
SrcB:	TBitmap32;	
SrcRectB:	TRect;	
BlendCallback:	TBlendRegEx;	
MasterAlpha:	Integer);	overload;

Description
BlendTransfer	is	a	three	parameter	version	of	BlockTransfer.	SrcF	is	blended
with	SrcB	via	the	provided	BlendCallback	callback	routine,	and	the	resulting
color	is	written	to	the	destination.	There	are	two	versions,	one	supporting
blend	callbacks	of	type	TBlendReg,	and	one	supporting	the	extended
TBlendRegEx.	For	the	latter,	the	parameter	MasterAlpha	is	passed	when
calling	the	extended	blendcallback.	Note	that	all	blend	and	combine	settings	in
the	provided	bitmap	parameters	are	ignored.

See	Also
BlockTransfer,	Rectangle	Types,	StretchTransfer,	TBitmap32,	TBlendReg,
TBlendRegEx,	Texture	Blend	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

BlockTransfer

procedure	BlockTransfer(
		Dst:	TBitmap32;	
		DstX:	Integer;	
		DstY:	Integer;
		DstClip:	TRect;
		Src:	TBitmap32;	
		SrcRect:	TRect;
		CombineOp:	TDrawMode;
		CombineCallBack:	TPixelCombineEvent	=	nil);

Description
BlockTransfer	is	similar	to	the	BitBlt	function	from	Windows	GDI.	It
performs	copying	of	a	bitmap	fragment	specified	by	SrcRect	into	location
(DstX,	DstY)	with	optional	alpha	blending	or	using	user-specified	combining
function.	This	operation	is	constrained	to	the	DstClip	rectangle	specified	in
the	destination	bitmap	coordinates.
If	CombineOp=dmOpaque,	the	fragment	simply	replaces	destination	pixels.
In	dmBlend	mode	it	is	blended	to	destination	using	its	alpha	channel	and
MasterAlpha	property.	In	dmCusom	mode,	the	function	calls
CombineCallBack	function	for	pixel	combining.
It	is	not	required	for	DstRect	and	SrcRect	to	lie	entirely	inside	the
corresponding	bitmap,	since	the	function	provides	necessary	clipping.
The	result	is	not	specified	when	transferring	data	inside	the	same	bitmap
(Src=Dst)	and	if	in	the	same	time	SrcRect	intersects	with	DstRect.	In	this
case	it	is	recommended	to	use	a	temporary	bitmap	buffer.
Neither	Src	nor	Dst	bitmaps	may	be	equal	to	nil.	In	this	case,	function	will
generate	an	exception.	They	may	be	empty	however,	in	this	case	no
transformation	will	be	performed.
This	routine	used	in	TBitmap32.Draw	and	TBitmap32.DrawTo	methods.

See	Also
TBitmap32.Draw,	TBitmap32.DrawTo,	TBitmap32.MasterAlpha,
StretchTransfer,	TBitmap32,	TDrawMode,	TPixelCombineEvent,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

BlockTransferX

procedure	BlockTransferX(
		Dst:	TBitmap32;	
		DstX:	TFixed;	
		DstY:	TFixed;
		Src:	TBitmap32;	
		SrcRect:	TRect;
		CombineOp:	TDrawMode;
		CombineCallBack:	TPixelCombineEvent	=	nil);

Description
BlockTransferX	is	an	extended	version	of	BlockTransfer	that	allows	a
destination	coordinate	(DstX,	DstY)	in	fixed-point	coordinates.	This	means
that	the	source	bitmap	is	not	copied	directly	but	rather	transposed	a	fractional
distance	before	it	is	copied.	In	order	to	still	retain	reasonable	performance,
linear	interpolation	is	used	for	the	fractional	displacement.
See	BlockTransfer	for	a	detailed	description.

See	Also
BlockTransfer,	StretchTransfer,	TBitmap32,	TDrawMode,
TPixelCombineEvent,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

Contract

procedure	Contract(Src,	Dst:	TBitmap32;	Kernel:	TIntegerMap;
CenterX,	CenterY:	Integer);

Description
Contract	performs	rasterization	using	the	TContracter	sampler.	The	Kernel
parameter	specifies	a	weight	matrix	which	is	centered	at	the	coordinated	(X	+
CenterX,	Y	+	CenterY)	for	each	pixel	coordinate	(X,	Y).
Output	pixels	are	computed	from	the	formula

where	f	corresponds	to	the	source	bitmap	and	b	corresponds	to	the	kernel
(formally	described	as	a	structuring	element).

See	Also
TBitmap32,	TContracter,	TIntegerMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

Dilate

procedure	Dilate(Src,	Dst:	TBitmap32;	Kernel:	TIntegerMap;
CenterX,	CenterY:	Integer);

Description
Dilate	performs	rasterization	using	the	TDilater	sampler.	The	Kernel
parameter	specifies	a	weight	matrix	which	is	centered	at	the	coordinated	(X	+
CenterX,	Y	+	CenterY)	for	each	pixel	coordinate	(X,	Y).
Output	pixels	are	computed	from	the	formula

where	f	corresponds	to	the	source	bitmap	and	b	corresponds	to	the	kernel
(formally	described	as	a	structuring	element).

See	Also
TBitmap32,	TDilater,	TIntegerMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

Erode

procedure	Erode(Src,	Dst:	TBitmap32;	Kernel:	TIntegerMap;
CenterX,	CenterY:	Integer);

Description
Erode	performs	rasterization	using	the	TEroder	sampler.	The	Kernel
parameter	specifies	a	weight	matrix	which	is	centered	at	the	coordinated	(X	+
CenterX,	Y	+	CenterY)	for	each	pixel	coordinate	(X,	Y).
Output	pixels	are	computed	from	the	formula

where	f	corresponds	to	the	source	bitmap	and	b	corresponds	to	the	kernel
(formally	described	as	a	structuring	element).

See	Also
TBitmap32,	TEroder,	TIntegerMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

Expand

procedure	Expand(Src,	Dst:	TBitmap32;	Kernel:	TIntegerMap;
CenterX,	CenterY:	Integer);

Description
Expand	performs	rasterization	using	the	TExpander	sampler.	The	Kernel
parameter	specifies	a	weight	matrix	which	is	centered	at	the	coordinated	(X	+
CenterX,	Y	+	CenterY)	for	each	pixel	coordinate	(X,	Y).
Output	pixels	are	computed	from	the	formula

where	f	corresponds	to	the	source	bitmap	and	b	corresponds	to	the	kernel
(formally	described	as	a	structuring	element).

See	Also
TBitmap32,	TExpander,	TIntegerMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

StretchTransfer

procedure	StretchTransfer(
		Dst:	TBitmap32;
		DstRect:	TRect;	
		DstClip:	TRect;
		Src:	TBitmap32;	
		SrcRect:	TRect;	
		StretchFilter:	TStretchFilter;
		CombineOp:	TDrawMode;	
		CombineCallBack:	TPixelCombineEvent	=	nil);

Description
StretchTransfer	is	similar	to	StretchBlt	or	StretchDIBits	functions	from
WindowsGDI.	This	procedure	performs	copying	and,	if	necessary,	stretching
of	the	bitmap	fragment	specified	by	SrcRect	into	location	in	Dst	specified	by
DstRect.	This	operation	is	constrained	to	the	DstClip	rectangle	specified	in
the	destination	bitmap	coordinates.
For	more	information	on	the	stretch	filters	take	a	look	here.
Unlike	in	BlockTransfer	function,	SrcRect	must	lie	inside	the	Src	bitmap
boundaries,	otherwise	function	will	generate	an	exception.	The	result	is	not
specified	when	transferring	data	inside	the	same	bitmap	(Src=Dst)	and	if	in
the	same	time	SrcRect	intersects	with	DstRect.	In	this	case	it	is	recommended
to	use	a	temporary	bitmap	buffer.
This	routine	used	in	TBitmap32.Draw	and	TBitmap32.DrawTo	methods.

See	Also
BlockTransfer,	TBitmap32.Draw,	TBitmap32.DrawTo,	TBitmap32,
TDrawMode,	TPixelCombineEvent,	TRect,	TStretchFilter

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TKernelMode

type	TKernelMode	=	(kmDynamic,	kmTableNearest,
kmTableLinear);

Description
TKernelMode	defines	how	a	kernel	will	be	used	in	TKernelResampler,	when
GetSample	methods	are	called.

kmDynamic	-	Uses	direct	calls	to	the	kernels	filter	method.	Being
precise,	this	mode	is	also	quite	expensive.	The	curve	display	in	the
resamplers	example	shows	how	the	different	weight	curves	are
configured.
kmTableNearest	-	Uses	precalculated	weight	tables.	Being	the	fastest,
this	mode	can	produce	fair	results.	An	option	is	to	increase	the	tablesize.
kmTableLinear	-	Uses	precalculated	weight	tables,	but	in	contrast	to
kmTableNearest	this	mode	will	perform	linear	interpolation	between
precalculated	weights.	Being	somewhat	slower	than	kmTableNearest,	but
faster	than	kmDynamic,	this	mode	produces	results	good	results.

See	Also
Examples,	TKernelResampler.GetSample,	TKernelResampler.TableSize,
TCustomKernel,	TKernelResampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TPixelAccessMode

type	TPixelAccessMode	=	(pamUnsafe,	pamSafe,	pamWrap);

Description
TPixelAccessMode	determines	how	TKernelResampler	handles	pixels
outside	the	bitmap	boundary	when	invoking	the	GetSample	method.

pamUnsafe	-	No	boundary	checks	are	performed.	This	means	that	we
will	read	from	memory	outside	the	bitmap,	if	coordinates	outside	the
bitmap	area	are	passed.
pamSafe	-	If	the	coordinate	is	outside	the	clipping	rectangle	of	the
bitmap,	then	the	bitmap's	outer	color	will	be	returned.
pamWrap	-	Coordinates	will	be	wrapped	using	the	current	WrapMode
and	will	be	restricted	to	the	clipping	rectangle.
pamTransparentEdge	-	If	the	coordinate	is	outside	the	clipping
rectangle	of	the	bitmap,	then	a	transparent	result	is	returned.	Moreover
edges	are	resampled	as	if	there	were	transparent	outer	edges.	This	can	be
used	to	achieve	antialiased	edges	when	transforming	bitmaps	with	opaque
edges;	The	functionality	is	similar	to	SetBorderTransparent.

See	Also
TKernelResampler.GetSample,	SetBorderTransparent,	TKernelResampler,
TBitmap32.WrapMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TAffineTransformation

TAffineTransformation.Matrix

Matrix:	TFloatMatrix;

Description
Stores	the	transformation	matrix.	The	matrix	is	accessed	as	a	field	instead	of	a
property	in	order	to	make	it	Borland	C++	Builder	compatible.

See	Also
TFloatMatrix

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TAffineTransformation

TAffineTransformation.Clear

procedure	Clear;

Description
Resets	the	transformation	(loads	IdentityMatrix	into	the	Matrix	field).

See	Also
IdentityMatrix,	Matrix

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TAffineTransformation

TAffineTransformation.Create

constructor	Create;	virtual;

Description
Creates	and	initializes	an	instance	of	TAffineTransformation.
Upon	creation,	the	Matrix	field	is	initialized	to	IdentityMatrix.

See	Also
IdentityMatrix,	Matrix,	TAffineTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TAffineTransformation

TAffineTransformation.GetTransformedBounds

function	GetTransformedBounds:	TRect;	override;

Description
Returns	the	bounding	rectangle	that	surrounds	the	destination	area	affected	by
the	transformation.	The	coordinates	of	the	rectangle	are	specified	relative	to
the	destination	bitmap	origin.

See	Also
TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TAffineTransformation

TAffineTransformation.Rotate

procedure	Rotate(Cx,	Cy,	Alpha:	Single);

Description
At	first,	the	origin	is	translated	to	(Cx,	Cy)	point,	then	the	image	is	rotated
around	the	origin	by	Alpha	degrees

and	finally,	the	origin	is	shifted	back.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TAffineTransformation

TAffineTransformation.Scale

procedure	Scale(Sx,	Sy:	Single);

Description
Adds	scale	to	the	transformation:

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TAffineTransformation

TAffineTransformation.Skew

procedure	Skew(Fx,	Fy:	Single);

Description
Adds	the	skew	to	the	transformation:

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TAffineTransformation

TAffineTransformation.Translate

procedure	Translate(Dx,	Dy:	Single);

Description
Translates	the	image:

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TBloatTransformation

TBloatTransformation.BloatPower

property	BloatPower:	Single;

Description
BloatPower	specifies	the	scaling	of	the	bloat	formula.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TDisturbanceTransformation

TDisturbanceTransformation.Disturbance

property	Disturbance:	Single;

Description
Disturbance	specifies	how	extreme	the	random	displacement	will	be	scaled.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TProjectiveTransformation

TProjectiveTransformation.X0

property	X0:	Single;

Description
Specifies	destination	coordinate	of	the	top-left	point	of	the	source	rectangle.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TProjectiveTransformation

TProjectiveTransformation.X1

property	X1:	Single;

Description
Specifies	destination	coordinate	of	the	top-right	point	of	the	source	rectangle.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TProjectiveTransformation

TProjectiveTransformation.X3

property	X3:	Single;

Description
Specifies	destination	coordinate	of	the	bottom-right	point	of	the	source
rectangle.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TProjectiveTransformation

TProjectiveTransformation.Y0

property	Y0:	Single;

Description
Specifies	destination	coordinate	of	the	top-left	point	of	the	source	rectangle.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TProjectiveTransformation

TProjectiveTransformation.Y1

property	Y0:	Single;

Description
Specifies	destination	coordinate	of	the	top-right	point	of	the	source	rectangle.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TProjectiveTransformation

TProjectiveTransformation.Y2

propertyY2:	Single;

Description
Specifies	destination	coordinate	of	the	bottom-left	point	of	the	source
rectangle.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TProjectiveTransformation

TProjectiveTransformation.Y3

property	Y3:	Single;

Description
Specifies	destination	coordinate	of	the	bottom-right	point	of	the	source
rectangle.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TProjectiveTransformation

TProjectiveTransformation.GetTransformedBounds

function	GetTransformedBounds:	TRect;	override;

Description
Returns	the	bounding	rectangle	that	surrounds	the	destination	area	affected	by
the	transformation.	The	coordinates	of	the	rectangle	are	specified	relative	to
the	destination	bitmap	origin.

See	Also
TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TRemapTransformation

TRemapTransformation.MappingRect

property	MappingRect:	TFloatRect;

Description
MappingRect	specifies	the	scaling	and	positioning	of	the	input	coordinate
space	in	conjunction	with	the	usage	of	the	subordinate	vector	map.	I.e.
changing	the	mapping	rectangle	will	change	the	mapping	onto	the	transformed
space.	Consider	the	following	two	images:

Here	a	fisheye	transformation	was	rasterized	centered	on	the	subordinate
vector	map	(using	RasterizeTransformation).	In	the	left	image,	the	mapping
rectangle	(the	red	rubberband	layer)	is	centered	and	shrinked	somewhat.	In	the
right	image,	the	rectangle	was	changed	to	another	position	and	scaled,	causing
a	different	mapping.	The	rasterized	transformation	has	not	been	changed.
As	seen	above,	the	the	mapping	rectangle	is	not	behaving	like	a	transformed
bounds	rectangle.	Thus	for	intuitive	user	interface,	one	may	prefer	another
type	of	representation.	The	above	representation	is	solely	chosen	for	the	sake
of	explanatory	value.

See	Also
GetTransformedBounds,	Offset,	RasterizeTransformation,	Scale,	TFloatRect,
TRubberbandLayer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TRemapTransformation

TRemapTransformation.Offset

property	Offset:	TFloatVector;

Description
Offset	specifies	an	offset	applied	to	the	transformation	vectors	during
transform.	Setting	offset	will	not	change	the	subordinate	vectormap,	it	is
applied	in	the	actual	transform	procedure.

See	Also
MappingRect,	Scale,	Vector	Types

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TRemapTransformation

TRemapTransformation.GetTransformedBounds

function	GetTransformedBounds:	TRect;	override;

Description
TRemapTransformation	does	not	support	transformed	bounds	retrieval.	This
can	be	determined	calling	HasTransformedBounds.	However	if	called	anyway,
it	returns	Rect(-MaxInt,	-MaxInt,	MaxInt,	MaxInt).	The	reason	is	that	the
transformed	bounds	cannot	be	predicted	without	transforming	each	vector	in
the	vector	map	(an	extreme	overhead	in	performance),	so	the	absolute	most
extreme	transformed	bounds	will	be	returned.

See	Also
HasTransformedBounds,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TRemapTransformation

TRemapTransformation.HasTransformedBounds

function	HasTransformedBounds:	Boolean;	override;

Description
Returns	false.	For	details	see	GetTransformedBounds

See	Also
GetTransformedBounds

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TRemapTransformation

TRemapTransformation.Scale

procedure	Scale(Sx:	Single;	Sy:	Single);

Description
Scale	stores	internal	scaling	values,	which	multiplies	the	vectors	when
performing	the	transformation.	If	Sx	=	0	and	Sy	=	0,	no	transformation	will
appear.	Setting	scaling	values	will	not	change	the	subordinate	vectormap,	it	is
applied	in	the	actual	transform	procedure.	The	image	warping	example	shows
what	effect	scaling	has.

See	Also
Image	Warping	Example,	MappingRect,	Offset

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TTransformation

TTransformation.SrcRect

property	SrcRect:	TFloatRect;

Description
SrcRect	specifies	the	boundary	of	the	incoming	image	fragment.
Since	it	is	a	TFloatRect,	the	boundary	has	floating	point	coordinates.

See	Also
TFloatRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TTransformation

TTransformation.GetTransformedBounds

function	GetTransformedBounds:	TRect;	virtual;	abstract;

Description
Returns	the	bounding	rectangle	that	surrounds	the	destination	area	affected	by
the	transformation.	The	coordinates	of	the	rectangle	are	specified	relative	to
the	destination	bitmap	origin.	Not	all	derived	transformation	types	may	be
able	to	specify	transformed	bounds.	In	that	case,	the	source	rectangle	is
returned.

See	Also
HasTransformedBounds,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TTransformation

TTransformation.HasTransformedBounds

function	HasTransformedBounds:	Boolean;

Description
Returns	true	if	a	given	derived	transformation	can	specify	its	transformed
bounds,	otherwise	the	result	is	false.	If	custom	decendants	cannot	specify
transformed	bounds,	this	method	must	be	overridden,	since	the	default	result
is	true.

See	Also
GetTransformedBounds

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TTransformation

TTransformation.ReverseTransform

function	ReverseTransform(const	P:	TPoint):	TPoint;	overload;
virtual;

function	ReverseTransform(const	P:	TFixedPoint):	TFixedPoint;
overload;	virtual;

function	ReverseTransform(const	P:	TFloatPoint):	TFloatPoint;
overload;	virtual;

Description
Reverse-transforms	the	supplied	point	P	and	returns	the	result.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TTransformation

TTransformation.Transform

function	Transform(const	P:	TPoint):	TPoint;	overload;	virtual;
function	Transform(const	P:	TFixedPoint):	TFixedPoint;
overload;	virtual;

function	Transform(const	P:	TFloatPoint):	TFloatPoint;
overload;	virtual;

Description
Forward	transforms	the	supplied	point	P	and	returns	the	result.	Note	that	not
all	derived	transformation	classes	supports	forward	transformation.	If	the
given	class	do	not	support	forward	transformation	an
ETransformNotImplemented	exception	will	be	raised.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms TTwirlTransformation

TTwirlTransformation.Twirl

property	Twirl:	Single;

Description
Twirl	controls	the	power	of	the	twirl	transformation.	The	parameter	is	rather
sensitive,	a	realistic	setting	could	e.g.	be	as	low	as	0.001.	It	is	recommended
that	one	experiments	finding	a	useful	range	within	a	given	enviroment,	as	no
common	range	for	the	parameter	can	be	specified.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

RasterizeTransformation

procedure	RasterizeTransformation(Vectormap:	TVectormap;
Transformation:	TTransformation;	DstRect:	TRect;
CombineMode:	TVectorCombineMode	=	vcmAdd;
CombineCallback:	TVectorCombineEvent	=	nil);

Description
RasterizeTransformation	provides	a	convenient	TTransformation
rendering/buffering	system,	meaning	that	other	transformationclasses	can	be
precalculated	into	the	vector	map.
The	Transformation	parameter	is	a	reference	to	a	descendant	of	an	abstract
TTransformation	class.	It	specifies	all	necessary	transformation	parameters.
CombineMode	is	vcmAdd	by	default,	and	the	transformation	will	be	added	to
the	existing	vectors	(note	that	the	routine	will	handle	the	conversion	to	relative
vector	space).	When	combine	mode	is	vcmReplace,	transformation	vectors
will	replace	the	existing	ones	in	the	vectormap.	When	combine	mode	is
vcmCustom,	the	last	parameter	CombineCallback	will	be	used.	Note	that
even	in	vcmCustom	mode,	vectors	will	be	made	relative	by
RasterizeTransformation.

See	Also
Rectangle	Types,	TRemapTransformation,	TTransformation,
TVectorCombineEvent,	TVectorCombineMode,	TVectorMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

SetBorderTransparent

procedure	SetBorderTransparent(ABitmap:	TBitmap32;	ARect:
TRect);

Description
This	is	an	auxiliary	function	that	sets	the	alpha	channel	along	the	edges	of
specified	rectangle	to	zero.	It	may	be	used	on	a	bitmap	before	passing	it	to
Transform	function	as	a	workarownd	to	the	edge	antialiasing	problem.	For	a
dynamic	option	see	TPixelAccessMode	pamTransparentEdge,	which	can	do
the	same	trick	without	any	destructive	editing.

See	Also
TBitmap32,	TPixelAccessMode,	Transform,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

Transform

procedure	Transform(Dst,	Src:	TBitmap32;	Transformation:
TTransformation);

Description
Transform	is	responsible	for	arbitrary	geometrical	transformations	of	bitmaps
or	their	fragments.	The	current	version	supports	only	affine	and	projective
transformations.
The	Transformation	parameter	is	a	reference	to	a	descendant	of	an	abstract
TTransformation	class.	It	specifies	all	necessary	transformation	parameters.
When	Src.StretchFilter	is	different	from	sfNearest,	Transform	uses	bilinear
interpolation	for	magnification	(along	any	axis)	as	for	minification,	it	is	not	as
accurate	as	StretchTransfer	function.	If	you	need	better	quality	when
minimizing	the	bitmaps,	transform	them	into	the	temporary	buffer	so	that
there	is	no	minification	invlolved,	then	StretchTransfer	to	a	final	bitmap.
The	function	does	not	support	spline	interpolation,	if	Src.StretchFilter	is
sfSpline,	Transform	operates	as	if	it	were	sfLinear.
There	is	an	issue	with	antialiasing	and	edges.	How	to	make	them	antialiased
and	still	keep	the	performance?	The	solution	implemented	in	Graphics32	is
similar	to	the	one	used	in	OpenGL.	You	just	have	to	provide	the	source	bitmap
(or	its	region)	with	transparent	edges.	In	the	original	image,	you’ll	have	to
force	the	alpha	channel	on	its	edges	to	zeroes,	for	example,	using	the
SetBorderTransparent	method.
Remember,	that	color	is	interpolated	as	well,	it	means	that	for	nice	fadeout	the
color	on	the	border	should	match	the	color	of	pixels	lying	next	to	the	border.
In	case	the	bitmap	is	transformed	in	dmOpaque	mode,	it	might	be	better	to
keep	the	color	on	the	edge	close	to	the	color	of	the	background.

See	Also
SetBorderTransparent,	TBitmap32.StretchFilter,	StretchTransfer,
TAffineTransformation,	TBitmap32,	TProjectiveTransformation,	Transform
Example,	TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

TransformPoints

function	TransformPoints(Points:	TArrayOfArrayOfFixedPoint;
Transformation:	TTransformation):	TArrayOfArrayOfFixedPoint;

Description
Transforms	all	Points	using	the	supplied	Transformation	instance	and	returns
the	new	set	of	transformed	points.

See	Also
TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

TFloatMatrix

type	TFloatMatrix	=	array	[0..2,	0..2]	of	Single;

Description
A	3x3	transformation	matrix	used	in	affine	transformations.

See	Also
TAffineTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

IdentityMatrix

const	IdentityMatrix:	TFloatMatrix	=(
		(1,	0,	0),	
		(0,	1,	0),
		(0,	0,	1));

Description
An	identity	matrix,	which	is	loaded	in	Matrix	field	of	TAffineTransformation
class	when	calling	its	Clear	method.

See	Also
TAffineTransformation.Clear,	TAffineTransformation.Matrix,
TAffineTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.Vector

property	FixedVector[X,	Y:	Integer]:	TFixedVector;	default;
property	FixedVectorS[X,	Y:	Integer]:	TFixedVector;
property	FixedVectorX[X,	Y:	TFixed]:	TFixedVector;
property	FixedVectorXS[X,	Y:	TFixed]:	TFixedVector;

property	FloatVector[X,	Y:	Integer]:	TFloatVector;
property	FloatVectorS[X,	Y:	Integer]:	TFloatVector;
property	FloatVectorF[X,	Y:	Single]:	TFloatVector;
property	FloatVectorFS[X,	Y:	Single]:	TFloatVector;

Description
FixedVector	property	sets	the	value	of	the	vector	in	the	vectormap.	Reading
it,	will	return	the	vector	value	of	the	vector	located	at	specified	coordinates.
This	property	does	not	validate	the	specified	coordinates,	so	use	it	only	when
completely	certain	that	the	ranges	provided	is	within	the	vectormap
boundaries.	FixedVector	is	declared	as	default	property,	you	may	use	it	as
shown	below:

Vectormap[10,	20]	:=	Vectormap[20,	10];	//	copy	a	vector	from
(20,10)	to	(10,20)	position

FixedVectorS	is	a	'safe'	version	of	the	FixedVector	property.	When	reading
vectors	from	the	outside	the	bitmap	boundary,	a	vector	of	(0,	0)	is	returned.
Writing	with	invalid	coordinates	will	have	no	effect.
FixedVectorX	provides	a	method	for	accessing	the	vectors	in	TFixed	based
coordinates.	The	returned	vector	is	computed	by	performing	linear
interpolation	on	four	adjacent	vectors.	Similarly,	when	vectors	are	set,	they	are
distributed	weighted	over	four	adjacent	vectors.
FixedVectorXS	is	a	'safe'	version	of	the	above	property.
FloatVector/S/F/FS	Provides	floating	point	compatible	versions	of	the	above
properties.	Note	that	the	floating	point	versions	are	provided	for	convenience
only;	coding	for	optimal	performance,	consider	using	fixedpoint	versions
(which	will	allow	execution	inside	MMX	enabled	code	segments).
TVectormap	stores	its	vectors	natively	in	TFixedVector	format,	hence	no	extra
precision	is	gained	by	using	floating	point	versions.

See	Also
Fixed	Point	Math,	Naming	Conventions,	TFixed,	TFixedVector,	TFloatVector

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.VectorCombineMode

property	VectorCombineMode:	TVectorCombineMode;

Description
TVectorCombineMode	determines	the	vector	combine	mode	used	in
TVectormap.Merge.
	

See	Also
TCombineMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.Vectors

property	Vectors:	PFixedPointArray;

Description
The	read-only	vectors	property	contains	the	address	of	the	first	(top-left)
vector	in	a	vectormap.	If	the	vectormap	is	not	allocated	(width	or	height	is
zero),	the	returned	address	is	nil.
Note,	that	numbering	of	rows	in	Graphics32	starts	from	the	top-most	one.
Data	is	continuously	allocated	in	memory,	row	by	row.	You	may	safely	access
Width	*	Height	elements,	each	of	them	is	a	8-byte	TFixedVector	value.

See	Also
TBitmap32.Bits,	Height,	Vector	Types,	Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.Clear

procedure	Clear;

Description
Fills	the	entire	vectormap	with	zero	vectors.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.Destroy

destructor	Destroy;	override;

Description
Destroys	the	vectormap	object	and	frees	all	the	associated	memory.
Do	not	call	Destroy	directly,	use	the	Free	method	instead.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.Empty

function	Empty:	Boolean;	override;

Description
Returns	True	if	the	vector	map	contains	no	data,	that	is	Width	or	Height	is
equal	to	0.

See	Also
TCustomMap.Height,	TCustomMap.Width

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.GetTrimmedBounds

function	GetTrimmedBounds:	TRect;

Description
Returns	the	smallest	rectangle	that	surrounds	non	zero	vectors	in	a	vectormap.
This	is	useful	for	optimizing	heavy	processing	like	supersampling	by	passing
this	rectangle	as	a	clipping	rectangle.	Note	that	the	procedure	of	analyzing	a
vectormap	is	rather	expensive,	thus	carefully	determine	if	the	call	is	worth	the
cost.

See	Also
Image	Warping	Example,	TRect

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.LoadFromFile

procedure	LoadFromFile(const	FileName:	string);

Description
Loads	a	vector	map	from	a	file.	Format	supported	is	Photoshop	.msh	format,
compatible	with	the	Liquify	plugin.	See	source	for	more	details.

See	Also
Image	Warping	Example,	SaveToFile

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.Merge

procedure	Merge(DstLeft:	Integer;	DstTop:	Integer;	Src:
TVectorMap;	SrcRect:	TRect);

Description
Merge	provides	a	method	for	merging	a	vector	map.	VectorCombineMode
specifies	how	the	source	vector	map	is	merged.	If	VectorCombineMode	is	set
to	vcmCustom,	OnVectorCombine	will	be	used.	The	source	parameter	must
not	necessarily	be	some	other	vector	map,	so	for	example	in-place	masking	or
scaling	is	possible.

See	Also
Rectangle	Types,	TVectorMap,	VectorCombineMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.SaveToFile

procedure	SaveToFile(const	FileName:	string);

Description
Writes	a	vector	map	to	disk.	Format	supported	is	Photoshop	.msh	format,
compatible	with	the	Liquify	plugin.	See	source	for	more	details.

See	Also
Image	Warping	Example,	LoadFromFile

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps TVectorMap

TVectorMap.OnVectorCombine

property	OnVectorCombine:	TVectorCombineEvent;
type	TVectorCombineEvent	=	procedure	(F,	P:	TFixedVector;
var	B:	TFixedVector)	of	object;

Description
This	event	is	called	when	vector	map	Merge	is	called	in	vcmCustom	vector
combine	mode.	Use	this	event	to	customize	handling	of	vector	combining.
Note,	however,	that	this	event	is	called	for	every	Vector	in	the	map,	so	keeping
the	event	handler	small	and	fast	is	in	your	own	interest.

See	Also
Merge,	TVectorCombineEvent,	Vector	Types,	VectorCombineMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps

TVectorCombineEvent

type	TVectorCombineEvent	=	procedure	(F,	P:	TFixedVector;
var	B:	TFixedVector)	of	object;

Desctiption
TVectorCombineEvent	is	a	type	for	OnVectorCombine	callback	function,
used	in	Merge,	when	VectorCombineMode	is	vcmCustom.	It	specifies	a
function	which	takes	foreground	vector	(F)	and	mixes	it	with	the	background
vector	(B).
This	function	may	optionally	use	progresson	vector	(P).	The	progression
vector	will	by	the	merge	routine	be	specified	in	the	range	X,Y:	[-
FIXEDONE..FIXEDONE],	regardless	of	the	specified	source	rect	in	Merge.
This	enables	in-place	masking	of	the	vector	map	to	be	merged.

See	Also
TVectorMap.Merge,	TVectorMap.OnVectorCombine,	Vector	Types,
TVectorMap.VectorCombineMode

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps

TVectorCombineMode

type	TVectorCombineMode	=	(vcmAdd,	vcmReplace,
vcmCustom);

Description
TVectorCombineMode	defines	how	vectors	will	be	combined	(e.g.	in
TVectormap.Merge).

vcmAdd	-	Adds	the	source	vectors.
vcmReplace	-	Replaces	with	source	vectors.
vcmCustom	-	Uses	a	specified	OnVectorCombine	event.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps

Vector	Types

Graphics32	currently	uses	a	relative	vector	system,	meaning	that	a	vector	have
to	be	applied	to	a	given	absolute	vector.	The	relative	system	propose	a	wider
flexibility,	but	also	a	small	overhead	(the	two	additions	needed).	Future
versions	may	introduce	a	relative/absolute	distinction	in	relevant	routines.	To
make	a	vector	absolute,	simply	apply	actual	absolute	vertices,	but	keep	in
mind	that	some	implementations	may	expect	relative	vectors	(e.g.
TRemapTransformation.Vectormap	uses	relative	vectors).
Vector	types	are	defined	with	following	structures:

TFloatVector
type	TFloatVector	=	TFloatPoint;
type	PFloatVector	=	^TFloatVector;

Provides	convenient	naming,	and	compatibility	with	TFloatPoint.

TFixedVector
type	TFloatVector	=	TFixedPoint;
type	PFloatVector	=	^TFloatVector;

Provides	convenient	naming,	and	compatibility	with	TFixedPoint.

TArrayOfFloatPoint
type	TArrayOfFloatVector	=	array	of	TFloatVector;
type	PArrayOfFloatVector	=	^TArrayOfFloatVector;

A	dynamic	array	of	TFloatVector.

TArrayOfFixedPoint
type	TArrayOfFixedVector	=	array	of	TFixedVector;
type	PArrayOfFixedVector	=	^TArrayOfFixedVector;

A	dynamic	array	of	TFixedVector.

See	Also
Creating	Points,	TVectorMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TAdaptiveSuperSampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler

Description
Adaptive	supersampling	is	different	from	ordinary	supersampling	in	the	sense
that	samples	are	choosen	adaptively.	It	is	a	recursive	method	that	collects	more
samples	at	areas	with	rapid	transitions.
The	advantage	with	this	method	that	makes	it	more	attractive	than	ordinary
supersampling	is	that	we	can	perform	supersampling	only	at	areas	where	it	is
needed.	However,	the	recursion	itself	may	cause	overhead,	so	there	is	a	trade-
off	between	the	cost	of	the	associated	nested	sampling	method	and	the	cost	of
the	adaptive	recursion.

Reference
Properties Methods Events

In	TAdaptiveSuperSampler:

Level Create
Tolerance GetSample
In	TNestedSampler:

Sampler
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Destroy
EndUpdate

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

TAffineTransformation

Hierarchy
TObject
			|
TTransformation

Description
The	transformation	is	defined	by	3x3	homogeneous	matrix	of	single-precision
floats,	TFloatMatrix:

Only	the	first	two	rows	are	used	for	coordinate	transformation	at	the	final
stage.

Reference
Fields Properties Methods
In	TAffineTransformation:

Matrix Clear
Create
GetTransformedBounds
Rotate
Scale
Skew
Translate

In	TTransformation:

SrcRect HasTransformedBounds
ReverseTransform
Transform

See	Also
ImgView	and	Layers	Example,	Rotate	Example,	RotLayer	Example,
TFloatMatrix,	Transform	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars

TArrowBar

Hierarchy
TCustomControl

Description
A	common	ancestor	for	range	bars	and	gauge	bars.	Both	its	descendants	are
similar	to	standard	windows	scroll	bars.	TArrowBar	declares	common
properties	which	define	visual	appearance	of	scroll	bars.

Reference
Properties Methods Events

In	TArrowBar:

Backgnd Create OnChange
BorderStyle Destroy OnUserChange
ButtonSize Paint
HandleColor
Kind
ShowArrows
ShowHandleGrip
Style

See	Also
TCustomGaugeBar,	TCustomRangeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TBitmap32

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TThreadPersistent
			|
TCustomMap

Description
TBitmap32	is	the	central	class	in	the	Graphics32	library.	It	manages	a	single
32-bit	device-independent	bitmap	(DIB)	and	provides	methods	for	drawing	on
it	and	combining	it	with	other	DIBs	or	other	objects	with	device	context	(DC).
TBitmap32	overrides	Assign	and	AssignTo	methods	(inherited	from
TPersistent)	to	provide	compatibility	with	standard	objects:	TBitmap,	TPicture
and	TClipboard	in	both	directions.	The	design-time	streaming	to	and	from
*.dfm	files,	inherited	from	TPersistent,	is	supported,	but	its	realization	is
different	from	streaming	with	other	stream	types	(See	the	source	code	for
details).
TBitmap32	does	not	implement	its	own	low-level	streaming	or	low-level	file
loading/saving.	Instead,	it	uses	streaming	methods	of	temporal	TBitmap	or
TPicture	objects.	This	is	an	obvious	performance	penalty,	however	such
approach	allows	using	third-party	libraries,	which	extend	TGraphic	class	for
various	image	formats	support	(JPEG,	TGA,	TIFF,	GIF,	PNG,	etc.).	When	you
install	them,	TBitmap32	will	automatically	obtain	support	for	new	image	file
formats	in	design	time	and	in	run	time.
Since	TBitmap32	is	a	descendant	of	TThreadPersistent,	it	inherits	its	locking
mechanism	and	it	may	be	used	in	multi-threaded	applications.

Change	Notification
Change	notification	events	(OnCange,	OnResize),	inherited	from
TThreadPersistent	and	TCustomMap	are	generated	by	most	drawing/resizing
etc.	functions	with	a	few	exceptions.	Due	to	performance	considerations	the
following	functions	are	not	accompanied	with	event	generation:

Pixel-based	operations	(SetPixelT,	SetPixelF...);
HorzLine*	and	VertLine*	functions;

If	necessary,	the	OnCange	event	may	be	generated	explicitly	by	calling	the
Changed	methods.
Normally,	if	the	bitmap	is	a	part	of	some	container	(TImage32,	TBitmapLayer,
etc.),	its	change	notification	events	are	linked	to	the	container,	causing	repaint
operations.	When	making	several	simultaneous	changes,	it	may	be	beneficial
to	enclose	them	in	BeginUpdate…EndUpdate	block	followed	by	the	Changed
call	to	reduce	the	amount	of	repaintings	of	the	container.

Reference
Properties Methods Events

In	TBitmap32:

BitmapHandle BeginMeasuring OnAreaChanged
BitmapInfo CanvasAllocated OnHandleChanged
Bits Clear OnPixelCombine
Canvas Create
Clipping DeleteCanvas
ClipRect Destroy
CombineMode Draw
DrawMode DrawTo
Font Empty
Handle EndMeasuring
MasterAlpha FillRect
MeasuringMode FlipHorz
OuterColor FlipVert
PenColor FrameRect
Pixel GetStippleColor
PixelPtr HandleChanged
Pixmap HorzLine
PixmapChanged Line
Resampler LineTo
ResamplerClassName LoadFromFile
ScanLine LoadFromResourceID

StippleCounter LoadFromResourceName
StippleStep LoadFromStream
StretchFilter MoveTo
WrapMode RaiseRectTS

RenderText
ResetAlpha
ResetClipRect
Roll
Rotate
SaveToFile
SaveToStream
SetPixel
SetSize
SetStipple
TextExtent
TextHeight
TextOut
TextWidth
UpdateFont
VertLine

In	TCustomMap:

Height Delete OnResize
Width Resized
In	TThreadPersistent:

LockCount Lock
Unlock

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

See	Also
BeginUpdate,	Changed,	EndUpdate,	OnChange,	TBitmapLayer,
TCustomMap,	TImage32,	TThreadPersistent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TBitmap32Collection

Hierarchy
TCollection

Description
TBitmap32Collection	is	a	collection	of	TBitmap32Item	objects.

Reference
Properties Methods
In	TBitmap32Collection:

Items Add
Create

See	Also
TBitmap32Item

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TBitmap32Item

Hierarchy
TCollectionItem

Description
TBitmap32Item	is	a	simple	descendant	of	standard	TCollectionItem,
specialized	for	storing	bitmaps.

Reference
Properties Methods
In	TBitmap32Item:

Bitmap Create
Destroy

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TBitmap32List

Hierarchy
TComponent

Description
A	VCL	wrapper	around	TBitmap32Collection	object.
TBitmap32List	provides	simple	means	for	storing	bitmaps	in	design	time.
The	TBitmap32List	object	is	quite	different	from	the	standard	TImageList.
While	TImageList,	in	fact,	stores	all	images	on	a	single	bitmap,	and	all	of	its
images	have	the	same	dimensions,	TBitmap32List	stores	its	items	as
independent	bitmaps,	which	means,	it	can	contain	bitmaps	of	different	sizes.

Reference
Properties Methods
In	TBitmap32List:

Bitmap Create
Bitmaps Destroy

See	Also
TBitmap32Collection

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TBitmap32Resampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TCustomResampler

Description
TBitmap32Resampler	is	an	abstract	ancestor	for	bitmap	resampling	classes.
A	resampler	is	used	for	resizing	bitmaps	and	for	reconstructing	color	samples
from	a	rasterized	image.
This	class	is	instantiated	with	one	associated	bitmap.	This	bitmap	is	always
used	when	reconstructing	a	sample	using	the	GetSample	method.
For	further	information	about	resampling,	see	the	Sampling	and	Rasterization
topic.

Reference
Properties Methods Events

In	TBitmap32Resampler:

Bitmap Changed
PixelAccessMode Create
TransformerClass GetSampleBounds

HasBounds
PrepareSampling

In	TCustomResampler:

Width Resample
In	TCustomSampler:

FinalizeSampling
GetSample

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Destroy
EndUpdate

See	Also
Resamplers	Example,	Sampling	and	Rasterization

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers

TBitmapLayer

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomLayer
			|
TPositionedLayer

Description
In	addition	to	behavior	inherited	from	TPositionedLayer,	TBitmapLayer,
stores	and	displays	a	TBitmap32	object.
The	contained	Bitmap	is	displayed	and	scaled	using	its	DrawMode,
MasterAlpha	and	StretchFilter	properties.

Reference
Properties Methods Events

In	TBitmapLayer:

AlphaHit Create
Bitmap Destroy
Cropped
In	TPositionedLayer:

Location GetAdjustedLocation
Scaled GetAdjustedRect
In	TCustomLayer:

Cursor BringToFront OnHitTest
Index Changed OnMouseDown
LayerCollection HitTest OnMouseMove
LayerOptions SendToBack OnMouseUp
LayerStates Update OnPaint
MouseEvents
Tag
Visible
In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
EndUpdate

See	Also
TBitmap32.DrawMode,	TBitmap32.MasterAlpha,	Sprites	Example,
TBitmap32.StretchFilter,	TBitmap32,	TPositionedLayer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

TBitmapPolygonFiller

Hierarchy
TObject
			|
TCustomPolygonFiller

Description
TBitmapPolygonFiller	provides	an	easy	way	to	have	a	polygon	filled	with	a
pattern	(TBitmap32).
It	fully	supports	the	pattern's	DrawMode	setting.	Custom	pixel	combiners	are
also	supported.
You	can	directly	use	it	in	the	DrawFill	and	Draw	methods	of	TPolygon32	or	in
the	Polygon	and	PolyPolygon	routines.

Reference
Properties Methods
In	TBitmapPolygonFiller:

OffsetX
OffsetY
Pattern
In	TCustomPolygonFiller:

GetFillLine

See	Also
TPolygon32.Draw,	TPolygon32.DrawFill,	TBitmap32.DrawMode,
TBitmap32.OnPixelCombine,	Polygon,	PolyPolygon,	TBitmap32,
TCustomPolygonFiller,	TPolygon32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TBlackmanKernel

Hierarchy
TPersistent
			|
TCustomKernel
			|
TWindowedSincKernel

Description
A	sinc	kernel	constrained	by	a	Blackman	window	function.

Reference
Properties Methods
In	TWindowedSincKernel:

Width Create
Filter
GetWidth
SetWidth

In	TCustomKernel:

Observer Changed
RangeCheck

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

TBloatTransformation

Hierarchy
TObject
			|
TTransformation

Description
The	bloat	transformation	class	provides	an	adjustable	type	of	lens	distortion.
Setting	bloat	power	to	a	positive	value	gives	a	fisheye-like	distortion,	but	with
less	spheric	effect	(as	seen	in	the	left	image	below).	Setting	the	bloat	power	to
a	negative	value	will	affect	the	transformation	in	the	opposite	way	(as	seen	in
the	right	image	below).

Reference
Properties Methods
In	TBloatTransformation:

BloatPower
In	TTransformation:

SrcRect GetTransformedBounds
HasTransformedBounds
ReverseTransform
Transform

See	Also
TFishEyeTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps

TBooleanMap

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TThreadPersistent
			|
TCustomMap

Description
The	TBooleanMap	class	implements	a	two	dimensional	matrix	of	booleans.	It
may	be	useful	for	storing	masks	or	information	about	areas	to	process,	and	in
general	data	that	requires	or	can	be	represented	as	boolean	types.	The	class
implements	efficient	storage	of	booleans:	a	boolean	value	only	takes	up	one
bit	of	memory,	and	is	stored	in	sets	of	eight	bits	(one	byte).

Reference
Properties Methods Events

In	TBooleanMap:

Bits
Value
In	TCustomMap:

Height Delete OnResize
Width Empty

Resized
SetSize

In	TThreadPersistent:

LockCount Lock
Unlock

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
Destroy
EndUpdate

See	Also
TByteMap,	TIntegerMap,	TWordMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TBoxKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
TBoxKernel	is	one	of	the	simplest	and	most	fundamental	kernels.	Convolving
with	this	kernel	corresponds	to	the	same	approach	used	within	nearest
neighbor	interpolation.	The	filter	is	defined	as

and	it	is	commonly	known	as	a	box	filter,	top-hat	function	or	a	Fourier
window.

Reference
Properties Methods
In	TBoxKernel:

Filter
GetWidth

In	TCustomKernel:

Observer Changed
Create
RangeCheck

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps

TByteMap

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TThreadPersistent
			|
TCustomMap

Description
The	TByteMap	class	may	be	used	to	simulate	palette-based	operations	or	to
access	separate	color	layers	in	TBitmap32.
TByteMap	is	an	ancestor	of	TCustomMap	and	is	assignment	compatible	with
TBitmap32	objects	in	both	directions.

Reference
Properties Methods Events

In	TByteMap:

Bits Assign
ValPtr Clear
Value Destroy

Empty
ReadFrom
SetSize
WriteTo

In	TCustomMap:

Height Delete OnResize
Width Resized
In	TThreadPersistent:

LockCount Lock
Unlock

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
EndUpdate

See	Also
ByteMaps	Example,	TBitmap32,	TBooleanMap,	TCustomMap,	TIntegerMap,
TWordMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers

TClassList

Hierarchy
TList

Description
TClassList	is	a	container	class	for	storing	class	types	in	list	form.	Handling	is
similar	to	TList,	but	instead	of	storing	pointers	it	stores	class	types.	Please
refer	to	the	TList	documentation	for	details.
We'll	cover	the	additional	methods	for	this	class.	

Reference
Methods

In	TClassList:

Find
GetClassNames

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers

TContourRasterizer

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TThreadPersistent

Description
This	rasterizer	determines	its	rasterization	path	from	the	intensity	difference
between	samples.	It	always	chooses	the	path	with	lowest	intensity	difference.
Due	to	a	higher	propability	of	near	execution	code	and	memory	loads,	this
may	optimize	the	CPU	cache	usage;	hence	increase	in	overall	performance.	To
see	how	this	rasterizer	works,	check	the	nested	sampling	example	and	choose
this	rasterizer.

Reference
Properties Methods Events

In	TThreadPersistent:

LockCount Lock
Unlock

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
Destroy
EndUpdate

See	Also
Nested	Sampling	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TContracter

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler
			|
TKernelSampler

Description
This	can	be	thought	of	as	the	inverse	to	the	expand	operation.	The	output	for	a
sample	coordinate	(s,	t)	is	given	by

where	f	is	a	sampler	and	b	is	a	structuring	element.	The	structuring
element	is	defined	by	the	Kernel	property	of	the	class.	See	topic	about
Sampling	and	Rasterization	for	more	info.

Reference
Properties Methods Events

In	TContracter:

GetSample
PrepareSampling

In	TKernelSampler:

CenterX Create
CenterY Destroy
Kernel
In	TNestedSampler:

Sampler
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

See	Also
Sampling	and	Rasterization,	TExpander

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TConvolver

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler
			|
TKernelSampler

Description
TConvolver	provides	functionality	for	performing	discrete	convolution	within
a	chain	of	nested	samplers.	It	will	collect	samples	from	its	associated	nested
sampler	within	the	region	defined	by	the	Kernel	property.
	

Reference
Properties Methods Events

In	TKernelSampler:

CenterX Create
CenterY Destroy
Kernel GetSample
In	TNestedSampler:

Sampler
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TCosineKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
The	TCosineKernel	class	implements	a	cosine	reconstruction	filter.

Reference
Properties Methods
In	TCosineKernel:

Filter
GetWidth

In	TCustomKernel:

Observer Changed
Create
RangeCheck

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TCubicKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
This	class	implements	a	reconstruction	filter	described	by	a	cubic	polynomial.
The	formula	for	the	filter	is

Cubic	filtering	is	used	commonly	for	high-quality	resampling.

Reference
Properties Methods
In	TCubicKernel:

Coeff Create
Filter
GetWidth
RangeCheck

In	TCustomKernel:

Observer Changed

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars

TCustomGaugeBar

Hierarchy
TCustomControl
			|
TArrowBar

Description
A	base	class	for	TGaugeBar	objects.
Behavior	and	appearance	of	TCustomGaugeBar	is	very	similar	to	standard
TScrollBar,	defined	in	StdCtrls.pas.

Reference
Properties Methods Events

In	TCustomGaugeBar:

HandleSize Create
LargeChange Paint
Max
Min
Position
SmallChange
In	TArrowBar:

Backgnd Destroy OnChange
BorderStyle OnUserChange
ButtonSize
HandleColor
Kind
ShowArrows
ShowHandleGrip
Style

See	Also
TGaugeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TCustomImage32

Hierarchy
TCustomControl
			|
TCustomPaintBox32

Description
A	visual	control	capable	of	displaying	bitmap	images.
TCustomImage32	is	a	base	class	for	TImage32.	In	addition	to
TCustomPaintBox32	behavior,	it	contains	an	easy-manageable	bitmap	and	a
collection	of	layers.
It	introduces	several	properties	to	determine	how	the	bitmap	image	is
displayed	within	the	boundaries	of	the	control.
For	more	information	on	how	to	use	TCustomImage32	and	its	descendants,
see	Using	TImage32.

Reference
Properties Methods Events

In	TCustomImage32:

Bitmap BeginUpdate OnBitmapResize
BitmapAlign BitmapToControl OnChange
Layers Changed OnGDIOverlay
OffsetHorz ControlToBitmap OnInitStages
OffsetVert Create OnMouseDown
PaintStages Destroy OnMouseMove
Scale EndUpdate OnMouseUp
ScaleMode ExecBitmapFrame OnPaintStage
ScaleX ExecClearBackgnd OnPixelCombine
ScaleY ExecClearBuffer OnScaleChange

ExecControlFrame
ExecCustom
ExecDrawBitmap
ExecDrawLayers
GetPictureRect
GetPictureSize
Resize
SetupBitmap

In	TCustomPaintBox32:

Buffer DoPaintBuffer OnMouseEnter
BufferOversize Flush OnMouseLeave
BufferValid ForceFullInvalidate
Options GetViewportRect
RepaintMode Invalidate

Loaded
SetBounds

See	Also
Image32	Example,	ImgView	and	Layers	Example,	Sprites	Example,
TCustomPaintBox32,	TImage32,	Using	TImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TCustomImgView32

Hierarchy
TCustomControl
			|
TCustomPaintBox32
			|
TCustomImage32

Description
TCustomImgView32	is	an	extention	of	TCustomImage32,	which	additionaly
provides	a	couple	of	scroll	bars	to	simplify	operations	with	images	larger	then
the	control	area.
Most	of	its	behavior	is	inherited	from	TCustomImage32,	however	some
properties	are	obsolete:

BitmapAlign	is	no	longer	used,	since	the	control	is	always	in	baCustom
mode;
ScaleMode	is	no	longer	used,	the	control	is	always	in	smScale	mode;

For	more	information	on	how	to	use	TCustomImgView32	and	its
descendants,	see	Using	TImage32.

Reference
Properties Methods Events

In	TCustomImgView32:

Centered Create OnScroll
OverSize Destroy
ScrollBars GetViewportRect
SizeGrip Loaded

Resize
Scroll
ScrollToCenter

In	TCustomImage32:

Bitmap BeginUpdate OnBitmapResize
BitmapAlign BitmapToControl OnChange
Layers Changed OnGDIOverlay
OffsetHorz ControlToBitmap OnInitStages
OffsetVert EndUpdate OnMouseDown
PaintStages ExecBitmapFrame OnMouseMove
Scale ExecClearBackgnd OnMouseUp
ScaleMode ExecClearBuffer OnPaintStage
ScaleX ExecControlFrame OnPixelCombine
ScaleY ExecCustom OnScaleChange

ExecDrawBitmap
ExecDrawLayers
GetPictureRect
GetPictureSize
SetupBitmap

In	TCustomPaintBox32:

Buffer DoPaintBuffer OnMouseEnter
BufferOversize Flush OnMouseLeave
BufferValid ForceFullInvalidate
Options Invalidate
RepaintMode SetBounds

See	Also
TCustomImage32,	Using	TImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TCustomKernel

Hierarchy
TPersistent

Description
The	TCustomKernel	class	is	an	ancestor	class	for	reconstruction	filters.
A	reconstruction	filter	is	used	when	resampling	discretized	data	(for	example,
when	resizing	an	image).

Reference
Properties Methods
In	TCustomKernel:

Observer Changed
Create
Filter
GetWidth
RangeCheck

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers

TCustomLayer

Hierarchy
TPersistent
			|
TNotifiablePersistent

Description
TCustomLayer	is	the	base	class	for	all	layers.	It	does	not	perform	any	drawing
itself.	Instead	it	calls	an	OnPaint	event.	Applications	must	provide	a	handler
for	this	event	in	order	to	paint	the	layer.

Reference
Properties Methods Events

In	TCustomLayer:

Cursor BringToFront OnHitTest
Index Changed OnMouseDown
LayerCollection Create OnMouseMove
LayerOptions Destroy OnMouseUp
LayerStates HitTest OnPaint
MouseEvents SendToBack
Tag Update
Visible
In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
EndUpdate

See	Also
TCustomLayer,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TCustomMap

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TThreadPersistent

Description
TCustomMap	is	a	common	ancestor	for	objects	that	hold	2D	arrays	of	data.

Reference
Properties Methods Events

In	TCustomMap:

Height Delete OnResize
Width Empty

Resized
SetSize

In	TThreadPersistent:

LockCount Lock
Unlock

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
Destroy
EndUpdate

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TCustomPaintBox32

Hierarchy
TCustomControl

Description
TCustomPaintBox32	is	a	common	ancestor	for	TPaintBox32	and
TCustomImage32	objects.
In	addition	to	properties,	inherited	from	TCustomControl,	it	provides
optimized	double	buffering.	The	back	buffer	is	a	TBitmap32	object,	which
stores	an	image	data	before	flushing	it	to	the	screen.
Since	TCustomPaintBox32	is	double	buffered,	there	is	no	need	to	redraw	its
contents	every	time	the	control	receives	WM_PAINT	message,	as	with
standard	TPaintBox.	The	repainting	is	still	required	when	the	control	is
resized.

Reference
Properties Methods Events

In	TCustomPaintBox32:

Buffer Destroy OnMouseEnter
BufferOversize DoPaintBuffer OnMouseLeave
BufferValid Flush
Options ForceFullInvalidate
RepaintMode GetViewportRect

Invalidate
Loaded
Resize
SetBounds

See	Also
TBitmap32,	TCustomImage32,	TPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

TCustomPolygonFiller

Hierarchy
TObject

Description
In	addition	to	the	standard	color	fillings	for	polygons,	Graphics32	provides	the
ability	to	create	new	custom	polygon	fillers	based	on	the
TCustomPolygonFiller	class	or	a	TFillLineEvent-based	callback.
If	you	want	to	create	your	own	polygon	filler,	subclass	from	this	class	and
override	the	GetFillLine	method.
All	classes	based	on	TCustomPolygonFiller	can	be	used	with	the	DrawFill	and
Draw	methods	of	TPolygon32	or	with	the	Polygon	and	PolyPolygon	routines.
Note:	Don't	use	this	class	directly	as	it	is	partly	abstract.

Reference
Methods

In	TCustomPolygonFiller:

GetFillLine

See	Also
TPolygon32.Draw,	TPolygon32.DrawFill,	Polygon,	PolyPolygon,
TBitmapPolygonFiller,	TFillLineEvent,	TPolygon32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars

TCustomRangeBar

Hierarchy
TCustomControl
			|
TArrowBar

Description
A	base	class	for	TRangeBar	objects.
Behavior	and	appearance	of	TCustomRangeBar	is	similar	to	standard
TControlScrollBar,	defined	in	Forms.pas,	however	it	does	not	use	the	common
control	library.
Although	range	bar	may	operate	as	a	stand-alone	control,	most	of	the	time	you
will	use	it	in	conjunction	with	another	control,	which	has	a	scrollable	region:

Range	bars	are	less	limited	compared	to	TControlScrollBar.	For	example,	the
size	of	the	range	bar	can	be	different	from	the	size	of	the	scrollable	control	and
it	may	be	positioned	anywhere	in	the	form.	Another	difference	is	that	range
bars	do	not	hide	themselves	when	scrolling	range	is	less	than	or	equal	to	the
size	of	the	scrollable	area,	they	just	become	disabled.
In	addition,	range	bars	have	nothing	to	do	with	scrollable	control's	client	arrea.
They	neigher	shift	client	origin,	nor	determine	their	range	automatically.

Reference
Properties Methods Events

In	TCustomRangeBar:

Centered Create
Increment Paint
Position
Range
Window
In	TArrowBar:

Backgnd Destroy OnChange
BorderStyle OnUserChange
ButtonSize
HandleColor
Kind
ShowArrows

ShowHandleGrip
Style

See	Also
TRangeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TCustomResampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler

Description
TCustomResampler	is	a	common	ancestor	for	objects	that	resamples	2D
arrays	of	data.

Reference
Properties Methods Events

In	TCustomResampler:

Width Resample
In	TCustomSampler:

FinalizeSampling
GetSample
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
Destroy
EndUpdate

See	Also
TBitmap32Resampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TCustomSampler

Hierarchy
TPersistent
			|
TNotifiablePersistent

Description
TCustomSampler	is	a	common	ancestor	for	objects	that	can	provide	color
samples.

Reference
Properties Methods Events

In	TCustomSampler:

FinalizeSampling
GetSample
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
Destroy
EndUpdate

See	Also
Sampling	and	Rasterization

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TDilater

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler
			|
TKernelSampler
			|
TMorphologicalSampler

Description
TDilater	is	a	nested	sampler	for	performing	morphological	dilation.	This
operation	is	defined	as

where	f	is	a	sampler	and	b	is	a	structuring	element.	By	performing
morphological	dilation,	high	intensity	image	features	will	become
expanded.	This	is	the	opposite	effect	to	morphological	dilation.	The
structuring	element	is	defined	by	the	Kernel	property	of	the	class.	See
topic	about	Sampling	and	Rasterization	for	more	info.

Reference
Properties Methods Events

In	TKernelSampler:

CenterX Create
CenterY Destroy
Kernel GetSample
In	TNestedSampler:

Sampler
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

See	Also
Sampling	and	Rasterization,	TDilater

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

TDisturbanceTransformation

Hierarchy
TObject
			|
TTransformation

Description
This	transformation	class	implements	a	randomizing	displacement.	The
scaling	of	the	randomization	can	be	controlled	from	the	Disturbance	property.
The	effect	of	the	transformation	is	visualized	in	the	following	image:

Reference
Properties Methods
In	TDisturbanceTransformation:

Disturbance
In	TTransformation:

SrcRect GetTransformedBounds
HasTransformedBounds
ReverseTransform
Transform

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TDraftResampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TCustomResampler
			|
TBitmap32Resampler
			|
TLinearResampler

Description
This	class	implements	an	algorithm	for	fast	downsampling.	The	result	is	better
than	nearest	neighbor	interpolation,	but	it	is	not	quite	as	good	as	linear
resampling.	Fast	downsampling	is	very	useful	for	generation	of	thumbnail
images.
For	upsampling	the	same	method	is	used	as	in	TLinearResampler.

Reference
Properties Methods Events

In	TLinearResampler:

Create
Destroy
GetSample
PrepareSampling

In	TBitmap32Resampler:

Bitmap Changed
PixelAccessMode GetSampleBounds
TransformerClass HasBounds
In	TCustomResampler:

Width Resample
In	TCustomSampler:

FinalizeSampling
In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
EndUpdate

See	Also
Resamplers	Example,	TLinearResampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TEroder

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler
			|
TKernelSampler
			|
TMorphologicalSampler

Description
TEroder	is	a	nested	sampler	for	performing	morphological	erosion.	This
operation	is	defined	as

where	f	is	a	sampler	and	b	is	a	structuring	element.	Unlike	dilation,	which
expands	the	image	features,	erosion	will	cause	the	high	intensity	image
features	to	become	thinner.	The	structuring	element	is	defined	by	the
Kernel	property	of	the	class.	See	topic	about	Sampling	and	Rasterization
for	more	info.

Reference
Properties Methods Events

In	TEroder:

Create
In	TKernelSampler:

CenterX Destroy
CenterY GetSample
Kernel
In	TNestedSampler:

Sampler
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

See	Also
Resamplers	Example,	Sampling	and	Rasterization,	TDilater

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TExpander

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler
			|
TKernelSampler

Description
TExpander	implements	a	neighborhood	operation	similar	to	morphological
dilation.	However,	unlike	ordinary	dilation,	where	the	structuring	element	is
added	to	the	color	samples,	the	expand	operation	will	multiply	the	weights.
We	define	this	operator	as

where	f	is	a	sampler	and	b	is	a	structuring	element.	The	structuring
element	is	defined	by	the	Kernel	property	of	the	class.	See	topic	about
Sampling	and	Rasterization	for	more	info.

Reference
Properties Methods Events

In	TKernelSampler:

CenterX Create
CenterY Destroy
Kernel GetSample
In	TNestedSampler:

Sampler
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

See	Also
Sampling	and	Rasterization,	TDilater

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

TFishEyeTransformation

Hierarchy
TObject
			|
TTransformation

Description
The	fisheye	transformation	implements	a	transformation	similar	to	wideangle
lens	distortion	("fisheyes").	The	effect	of	the	transformation	can	be	seen	in	the
image	below.	For	illustrative	purposes	the	distortion	were	amplified	by
rasterizing	the	transformation	to	the	vector	map	of	TRemapTransformation
and	adjusting	the	scale	factors	of	the	latter.

Reference
Properties Methods
In	TTransformation:

SrcRect GetTransformedBounds
HasTransformedBounds
ReverseTransform
Transform

See	Also
RasterizeTransformation,	TRemapTransformation.Scale,
TRemapTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars

TGaugeBar

Hierarchy
TCustomControl
			|
TArrowBar
			|
TCustomGaugeBar

Description
TGaugeBar	is	a	control	similar	to	standard	TScrollBar.
TGaugeBar	implements	the	generic	behavior	introduced	in
TCustomGaugeBar.	It	publishes	some	inherited	properties	from
TCustomGaugeBar,	but	does	not	introduce	any	new	behavior.

Reference
Properties Methods Events

In	TCustomGaugeBar:

HandleSize Create
LargeChange Paint
Max
Min
Position
SmallChange
In	TArrowBar:

Backgnd Destroy OnChange
BorderStyle OnUserChange
ButtonSize
HandleColor
Kind
ShowArrows
ShowHandleGrip
Style

See	Also
TCustomGaugeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TGaussianKernel

Hierarchy
TPersistent
			|
TCustomKernel
			|
TWindowedSincKernel

Description
This	class	implements	a	Sinc	filter	constrained	by	a	Gaussian	window
function.

Reference
Properties Methods
In	TGaussianKernel:

Sigma Create
In	TWindowedSincKernel:

Width Filter
GetWidth
SetWidth

In	TCustomKernel:

Observer Changed
RangeCheck

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

THammingKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
This	class	implements	a	Sinc	filter	constrained	by	the	Hamming	window
function.

Reference
Properties Methods
In	TCustomKernel:

Observer Changed
Create
Filter
GetWidth
RangeCheck

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

THannKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
This	class	implements	a	Sinc	filter	constrained	by	the	Hann	window	function.

Reference
Properties Methods
In	TCustomKernel:

Observer Changed
Create
Filter
GetWidth
RangeCheck

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

THermiteKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
An	implementation	of	the	hermite	kernel,	including	Bias	and	Tension
parameters.

Reference
Properties Methods
In	THermiteKernel:

Bias Create
Tension Filter

GetWidth
RangeCheck

In	TCustomKernel:

Observer Changed

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TImage32

Hierarchy
TCustomControl
			|
TCustomPaintBox32
			|
TCustomImage32

Description
An	image	displaying	control.
TImage32	implements	the	generic	behavior	introduced	in	TCustomImage32.
It	publishes	some	inherited	properties	from	TCustomImage32,	but	does	not
introduce	any	new	behavior.
TImage32	allows	loading	of	its	Bitmap	property	from	supported	image	files
in	design-time	using	a	property	editor,	associated	with	TBitmap32	objects.
The	same	property	editor	is	activated	when	you	double-click	the	control	in
design-time.
For	more	information	on	TImage32,	see	Using	TImage32.

Reference
Properties Methods Events

In	TCustomImage32:

Bitmap BeginUpdate OnBitmapResize
BitmapAlign BitmapToControl OnChange
Layers Changed OnGDIOverlay
OffsetHorz ControlToBitmap OnInitStages
OffsetVert Create OnMouseDown
PaintStages Destroy OnMouseMove
Scale EndUpdate OnMouseUp
ScaleMode ExecBitmapFrame OnPaintStage
ScaleX ExecClearBackgnd OnPixelCombine
ScaleY ExecClearBuffer OnScaleChange

ExecControlFrame
ExecCustom
ExecDrawBitmap
ExecDrawLayers
GetPictureRect
GetPictureSize
Resize
SetupBitmap

In	TCustomPaintBox32:

Buffer DoPaintBuffer OnMouseEnter
BufferOversize Flush OnMouseLeave
BufferValid ForceFullInvalidate
Options GetViewportRect
RepaintMode Invalidate

Loaded
SetBounds

See	Also
Image32	Example,	ImgView	and	Layers	Example,	Sprites	Example,
TBitmap32,	TCustomImage32,	Using	TImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TImgView32

Hierarchy
TCustomControl
			|
TCustomPaintBox32
			|
TCustomImage32
			|
TCustomImgView32

Description
An	image	displaying	control	with	scroll	bars.
TImgView32	implements	the	generic	behavior	introduced	in
TCustomImgView32.	It	publishes	some	inherited	properties	from
TCustomImgView32,	but	does	not	introduce	any	new	behavior.

Reference
Properties Methods Events

In	TCustomImgView32:

Centered Create OnScroll
OverSize Destroy
ScrollBars GetViewportRect
SizeGrip Loaded

Resize
Scroll
ScrollToCenter

In	TCustomImage32:

Bitmap BeginUpdate OnBitmapResize
BitmapAlign BitmapToControl OnChange
Layers Changed OnGDIOverlay
OffsetHorz ControlToBitmap OnInitStages
OffsetVert EndUpdate OnMouseDown
PaintStages ExecBitmapFrame OnMouseMove
Scale ExecClearBackgnd OnMouseUp
ScaleMode ExecClearBuffer OnPaintStage
ScaleX ExecControlFrame OnPixelCombine
ScaleY ExecCustom OnScaleChange

ExecDrawBitmap
ExecDrawLayers
GetPictureRect
GetPictureSize
SetupBitmap

In	TCustomPaintBox32:

Buffer DoPaintBuffer OnMouseEnter
BufferOversize Flush OnMouseLeave
BufferValid ForceFullInvalidate
Options Invalidate
RepaintMode SetBounds

See	Also
TCustomImgView32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps

TIntegerMap

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TThreadPersistent
			|
TCustomMap

Description
The	TIntegerMap	class	implements	a	two	dimensional	matrix	of	integers.	It
may	be	useful	for	storing	height	map	data,	and	in	general	data	that	requires	or
can	be	represented	as	32	bit	signed	integers.

Reference
Properties Methods Events

In	TIntegerMap:

Bits
ValPtr
Value
In	TCustomMap:

Height Delete OnResize
Width Empty

Resized
SetSize

In	TThreadPersistent:

LockCount Lock
Unlock

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
Destroy
EndUpdate

See	Also
GR32_ByteMaps,	TBooleanMap,	TWordMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TIVScrollProperties

Hierarchy
TPersistent

Description
TIVScrollProperties	is	an	auxiliary	class	for	accessing	properties	of	scroll
bars	(TCustomRangeBar	controls)	that	are	hosted	by	the	TCustomImgView32
control.	Basically,	it	just	redirects	writing	and	reading	of	properties	to/from
corresponding	range	bar	controls,	which	allows	changing	their	appearance	at
both	design-	and	run-time.

Reference
Properties

In	TIVScrollProperties:

Backgnd
BorderStyle
ButtonSize
HandleColor
Increment
ShowArrows
ShowHandleGrip
Size
Style
Visibility

See	Also
TCustomImgView32.ScrollBars,	TCustomImgView32,	TCustomRangeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TKernelResampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TCustomResampler
			|
TBitmap32Resampler

Description
TKernelResampler	is	a	general	class	for	image	resampling	using	arbitrary
convolution	filters.	It	implements	a	fast	method	for	resizing	images,	by
precomputing	kernel	weights	in	mapping	tables	or	coefficient	bins.
For	single-sample	look-ups,	the	GetSample	method	supports	three	different
kernel	modes:

kmDynamic	—	kernel	weights	are	computed	on-the-fly;
kmTableNearest	—	kernel	weights	are	stored	in	a	table,	nearest-neighbor
is	used	for	the	look-up;
kmTableLinear	—	same	as	above,	but	uses	linear	interpolation	for	the
look-up.

For	further	information,	see	topic	about	Sampling	and	Rasterization.

Reference
Properties Methods Events

In	TKernelResampler:

Kernel Create
KernelClassName Destroy
KernelMode FinalizeSampling
TableSize GetSample

PrepareSampling
In	TBitmap32Resampler:

Bitmap Changed
PixelAccessMode GetSampleBounds
TransformerClass HasBounds
In	TCustomResampler:

Width Resample
In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
EndUpdate

See	Also
Resamplers	Example,	Sampling	and	Rasterization

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TKernelSampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler

Description
TKernelSampler	is	a	base	class	for	samplers	that	compute	an	output	sample	by
collecting	a	number	of	samples	in	a	local	region	of	the	actual	sample
coordinate.	Subsamples	are	collected	from	a	regular	sampling	grid	by	storing
the	sample
The	size	of	the	grid	is	equal	to	the	size	of	the	associated	kernel.	Descendants
of	this	class	should	override	the	protected	UpdateBuffer	method.

Reference
Properties Methods Events

In	TKernelSampler:

CenterX Create
CenterY Destroy
Kernel GetSample
In	TNestedSampler:

Sampler
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TLanczosKernel

Hierarchy
TPersistent
			|
TCustomKernel
			|
TWindowedSincKernel

Description
This	class	implements	the	Lanczos	filter	function.	It	uses	the	a	single	lobe	of
the	sinc	filter	as	a	window.

Reference
Properties Methods
In	TWindowedSincKernel:

Width Create
Filter
GetWidth
SetWidth

In	TCustomKernel:

Observer Changed
RangeCheck

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers

TLayerCollection

Hierarchy
TPersistent

Description
TLayerCollection	is	a	container	for	TCustomLayer	objects	and	their
descendants.

Reference
Properties Methods

In	TLayerCollection:

CoordXForm Add
Count Clear
GetViewportScale Create
GetViewportShift Delete
Items Destroy
LocalToViewport Insert
MouseEvents
MouseListener
Owner
ViewportToLocal

See	Also
TCustomLayer,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TLinearKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
This	class	implements	a	linear	reconstruction	filter.	Linear	interpolation	is	a
first-degree	method	that	passes	a	straight	line	through	every	two	consecutive
points	of	the	input	signal.
The	filter	is	described	by	the	following	interpolation	kernel:

In	literature	h(x)	is	often	referred	to	as	a	triangle	filter,	tent	filter,	roof
function,	Chateau	function	or	a	Bartlett	window.

Reference
Properties Methods
In	TLinearKernel:

Filter
GetWidth

In	TCustomKernel:

Observer Changed
Create
RangeCheck

See	Also
Resamplers	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TLinearResampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TCustomResampler
			|
TBitmap32Resampler

Description
TLinearResampler	implements	a	linear	resampling	algorithm.	This	algorithm
is	used	only	if	the	bounds	of	the	destination	bitmap	is	larger	than	the	bounds
of	the	source	bitmap.	Otherwise	resampling	is	performed	using	the	same
method	as	in	TKernelResampler.

Reference
Properties Methods Events

In	TLinearResampler:

Create
Destroy
GetSample
PrepareSampling

In	TBitmap32Resampler:

Bitmap Changed
PixelAccessMode GetSampleBounds
TransformerClass HasBounds
In	TCustomResampler:

Width Resample
In	TCustomSampler:

FinalizeSampling
In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
EndUpdate

See	Also
Kernel	Example,	Resampler	Example,	TKernelResampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TMitchellKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
An	implementation	of	a	special	case	of	the	cubic	filter	described	by	Mitchell.

Reference
Properties Methods
In	TMitchellKernel:

Filter
GetWidth
RangeCheck

In	TCustomKernel:

Observer Changed
Create

See	Also
Kernel	Example,	Resampler	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TMorphologicalSampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler
			|
TKernelSampler

Description
Abstract	ancestor	class	for	TDilater	and	TEroder.	You	should	not	instantiate
this	class	itself.

Reference
Properties Methods Events

In	TKernelSampler:

CenterX Create
CenterY Destroy
Kernel GetSample
In	TNestedSampler:

Sampler
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

See	Also
TEroder.Create,	Kernel	Example,	Resampler	Example,	TDilater

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TNearestResampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TCustomResampler
			|
TBitmap32Resampler

Description
This	class	implements	a	fast	resampling	method	based	on	the	nearest	neighbor
interpolation	algorithm.

Reference
Properties Methods Events

In	TNearestResampler:

Create
GetSample
PrepareSampling

In	TBitmap32Resampler:

Bitmap Changed
PixelAccessMode GetSampleBounds
TransformerClass HasBounds
In	TCustomResampler:

Width Resample
In	TCustomSampler:

FinalizeSampling
In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Destroy
EndUpdate

See	Also
Kernel	Example,	Resampler	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TNearestTransformer

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler
			|
TTransformer

Description
Description

Reference
Properties Methods Events

In	TNearestTransformer:

GetSample
In	TTransformer:

Transformation GetSampleBounds
HasBounds
PrepareSampling

In	TNestedSampler:

Sampler Create
In	TCustomSampler:

FinalizeSampling
In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Destroy
EndUpdate

See	Also
Kernel	Example,	Resampler	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TNestedSampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler

Description
TNestedSampler	is	a	base	class	for	chained	or	nested	samplers.	Descendants
of	TNestedSampler	should	provide	sampling	methods	that	rely	on	the	use	of
another	sampler.	This	nested	sampling	mechanism	can	be	used	beneficially
when	implementing	super	samplers	or	samplers	that	transform	coordinates	or
perform	other	intermediate	sampling	operations.
See	the	topic	about	Sampling	and	Rasterization	for	additional	information.

Reference
Properties Methods Events

In	TNestedSampler:

Sampler Create
In	TCustomSampler:

FinalizeSampling
GetSample
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Destroy
EndUpdate

See	Also
_body,	Sampling	and	Rasterization

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TNotifiablePersistent

Hierarchy
TPersistent

Description
TNotifiablePersistent	extends	the	standard	TPersistent	class	with	change
notification	events.	That	is,	it	provides	methods	and	events	allowing	its
descendants	to	issue	notification	on	their	changes.	For	example,	TBitmap32
uses	OnChange	to	notify	its	container	(usually	TImage32	or	TBitmapLayer)
that	it	was	modified	and	its	data	has	to	be	repainted	to	the	screen.
TNotifiablePersistent,	however,	does	not	use	or	implement	automatic	change
notification	itself.	This	is	done	in	descendants.

Reference
Properties Methods Events

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
Destroy
EndUpdate

See	Also
TBitmap32,	TBitmapLayer,	TImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TPaintBox32

Hierarchy
TCustomControl
			|
TCustomPaintBox32

Description
TPaintBox32	implements	the	generic	behavior	introduced	in
TCustomPaintBox32.	It	publishes	some	inherited	properties	from	its	ancestors
and,	in	addition,	it	calls	the	OnPaintBuffer	event	when	the	buffer	needs	to	be
repainted.

Reference
Properties Methods Events

In	TPaintBox32:

Create OnPaintBuffer
DoPaintBuffer
Flush

In	TCustomPaintBox32:

Buffer Destroy OnMouseEnter
BufferOversize ForceFullInvalidate OnMouseLeave
BufferValid GetViewportRect
Options Invalidate
RepaintMode Loaded

Resize
SetBounds

See	Also
TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Image

TPaintStages

Hierarchy
TObject

Description
A	dynamic	list	of	paint	stages.
This	class	is	similar	to	standard	TList,	but	instead	of	pointers,	it	holds	an	array
of	TPaintStage	records.

Reference
Properties Methods
In	TPaintStages:

Items Add
Clear
Count
Delete
Destroy
Insert

See	Also
Paint	Stages,	TCustomImage32.PaintStages,	TPaintStage

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TPatternSampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler

Description
TPatternSampler	provides	a	mechanism	for	performing	sampling	according
to	a	preinitialize	sample	pattern.	This	pattern	is	implemented	as	a	matrix	of
TArrayOfFixedPoint.	Each	pixel	in	the	rasterized	output	bitmap	will	have	a
designated	set	of	sampling	points	specified	by	wrapping	this	sample	pattern
across	the	image.

Reference
Properties Methods Events

In	TPatternSampler:

Pattern Destroy
GetSample

In	TNestedSampler:

Sampler Create
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

See	Also
Kernel	Example,	Point	Types,	Resampler	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers

TPointerMap

Hierarchy
TObject

Description
TPointerMap	implements	a	simple	pointer	to	pointer	map.	It	uses	a	hash-like
structure	internally,	thus,	data	lookup	is	very	fast	compared	to	an	iterative
approach	-	especially	if	you	have	many	entries	in	the	map.	However,	it	is	also
more	limited	than	a	list	approach	since	it	does	not	support	index	based
operation.	If	you	need	to	iterate	through	a	pointer	map	please	refer	to
TPointerMapIterator.

Reference
Properties Methods
In	TPointerMap:

Count Add
Data Clear

Contains
Find
Remove

See	Also
TPointerMapIterator

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers

TPointerMapIterator

Hierarchy
TObject

Description
TPointerMapIterator	is	an	auxiliary	class	for	iterating	through	pointer	maps	-
an	operation	not	directly	supported	by	TPointerMap.
The	iterator	should	be	used	in	the	following	fashion:

with	TPointerMapIterator.Create(MyPointerMap)	do
try
		while	Next	do
		begin
				//	do	something	with	Item	and	Data	here...
		end;
finally
		Free;
end;

Reference
Properties Methods
In	TPointerMapIterator:

Data Next
Item

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Polygons

TPolygon32

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TThreadPersistent

Description
In	addition	to	common	polygon	drawing	functions,	Graphics32	provides	an
auxiliary	class	TPolygon32,	which	may	be	used	for	storing	and	drawing
polygons	and	polylines,	allowes	drawing	of	lines	and	polylines	more	than	1
pixel	wide	and	provides	some	morphological	modifications	of	polygons.
TPolygon32	is	capable	of	storing	more	than	a	single	polygon,	it	can	represent
a	shape,	outlines	by	several	polygons,	referred	here	as	contours	and	specified
in	Points	property.	This	allows	rendering	of	comples	shapes	(with	holes,	etc.).
In	future	versions	we	plan	to	implement	direct	TTF	or	Type1	font	rendering.
Contour	is	considered	as	a	closed	polygon	if	the	Closed	property	is	True,
otherwise	it	is	treated	as	polyline.	Each	contour	is,	in	turn,	a	dynamic	array	of
TFixedPoint.
Polygons	may	be	constructed	by	modifying	other	polygons	using	the	Grow
method	or	by	adding	sequentially	new	points	with	Add	or	starting	new
contours	with	NewLine.

Reference
Properties Methods Events

In	TPolygon32:

Antialiased Add
AntialiasMode AddPoints
Closed Assign
FillMode Clear
Normals ContainsPoint
Points Create

Destroy
Draw
DrawEdge
DrawFill
GetBoundingRect
Grow
NewLine
Offset
Outline
Transform

In	TThreadPersistent:

LockCount Lock
Unlock

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

See	Also
Polygons	Example,	TFixedPoint

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers

TPositionedLayer

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomLayer

Description
TPositionedLayer	is	the	base	class	for	layers	that	are	positioned	withing	the
boundaries	of	their	container	(TCustomImage32	or	its	descendant).	The
position	and	size	is	determined	by	the	Location	property.
When	TPositionedLayer	performs	its	HitTest,	those	points	inside	the
rectangle	returned	by	GetAdjustedLocation	pass	the	test.
The	class	does	not	perform	any	drawing	itself,	however	it	is	capable	of	calling
the	OnPaint	event,	where	you	can	perform	cutom	drawing.

Reference
Properties Methods Events

In	TPositionedLayer:

Location Create
Scaled GetAdjustedLocation

GetAdjustedRect
In	TCustomLayer:

Cursor BringToFront OnHitTest
Index Changed OnMouseDown
LayerCollection Destroy OnMouseMove
LayerOptions HitTest OnMouseUp
LayerStates SendToBack OnPaint
MouseEvents Update
Tag
Visible
In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
EndUpdate

See	Also
TCustomImage32,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers

TProgressiveRasterizer

Hierarchy
TCustomRasterizer
			|
TRasterizer

Description
This	rasterizer	class	provides	resolution	subdivided	rasterization.	This	is
useful	for	visualizing	while	rasterizing.	The	steps	property	determines	the
number	of	intermediate	steps	in	the	rasterization.	To	see	how	this	work,	take	a
look	at	the	nested	sampling	example	with	the	progressive	rasterizer	enabled.

Reference
Properties Methods
In	TProgressiveRasterizer:

Steps
UpdateRows
In	TRasterizer:

Sampler Rasterize

See	Also
Nested	Sampling	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

TProjectiveTransformation

Hierarchy
TObject
			|
TTransformation

Description
This	class	specifies	an	arbitrary	projective	transformation.	It	transforms	a
rectangle	from	the	source	image	into	quadrilateral,	defined	by	4	points:

Note,	that	the	destination	quadrilateral	has	to	be	convex,	otherwise	the	result	is
not	specified.

Reference
Properties Methods
In	TProjectiveTransformation:

X0 GetTransformedBounds
X1
X3
Y0
Y1
Y2
Y3
In	TTransformation:

SrcRect HasTransformedBounds
ReverseTransform
Transform

See	Also
Transform	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_RangeBars

TRangeBar

Hierarchy
TCustomControl
			|
TArrowBar
			|
TCustomRangeBar

Description
TRangeBar	is	a	control	similar	to	standard	TControlScrollBar.	Normally	it	is
associated	with	some	other	control	that	has	a	scrollable	region.
TRangeBar	implements	the	generic	behavior	introduced	in
TCustomRangeBar.	It	publishes	some	inherited	properties	from
TCustomRangeBar,	but	does	not	introduce	any	new	behavior.

Reference
Properties Methods Events

In	TCustomRangeBar:

Centered Create
Increment Paint
Position
Range
Window
In	TArrowBar:

Backgnd Destroy OnChange
BorderStyle OnUserChange
ButtonSize
HandleColor
Kind
ShowArrows
ShowHandleGrip
Style

See	Also
TCustomGaugeBar,	TCustomRangeBar

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers

TRasterizer

Hierarchy
TCustomRasterizer

Description
The	base	class	for	TBitmap32-specific	rasterizers.	A	rasterizer	is	the	final	step
in	a	sampler	setup,	the	step	responsible	for	calling	the	associated	samplers	and
writing	the	results	into	the	provided	destination	bitmap.	A	seperated
rasterization	process	allows	for	different	types	of	on-screen	realizations.	For
example	a	progressive	rasterizer	will	increase	the	resolution	of	the	result	in
progressive	steps,	which	can	keep	the	end	user	informed	about	the	progression
of	the	overall	process.	Moreover	it	provides	perceptual	information	about	the
rendering,	which	can	be	useful	for	validation	purposes.

Reference
Properties Methods
In	TRasterizer:

Sampler Rasterize

See	Also
Sampling	and	Rasterization,	TBitmap32,	TProgressiveRasterizer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Containers

TRectList

Hierarchy
TObject

Description
TRectList	is	a	container	class	for	storing	rectangles.	Handling	is	similar	to
TList,	but	instead	of	storing	pointers	it	stores	TRect.	Please	refer	to	the	TList
documentation	for	further	details.
Internally	the	rectangles	are	saved	in	an	array	structure	instead	of	a	pointer
based	approach,	so	as	to	have	a	more	memory	efficient	storage.

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers

TRegularRasterizer

Hierarchy
TCustomRasterizer
			|
TRasterizer

Description
The	regular	rasterizer	performs	a	simple	iterative	rasterization	comparable	to	a
straight	forward	set	of	scanline	loops.	It	is	also	the	default	rasterization	class
used	internally	in	Graphics32.

Reference
Properties Methods

In	TRegularRasterizer:

UpdateRowCount
In	TRasterizer:

Sampler Rasterize

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

TRemapTransformation

Hierarchy
TObject
			|
TTransformation

Description
This	TTransformation	wraps	TVectormap	and	implements	a	set	of	properties
to	control	how	the	transformation	uses	the	vectors	of	TVectormap	in	its
transformation	procedures.
The	class	itself	will	not	provide	any	significant	transformation	algorithm:	the
subordinate	vector	map	needs	to	be	precalculated.	The	auxiliary	routine
RasterizeTransformation	is	useful	for	this	purpose.

Reference
Properties Methods

In	TRemapTransformation:

MappingRect GetTransformedBounds
Offset HasTransformedBounds

Scale
In	TTransformation:

SrcRect ReverseTransform
Transform

See	Also
Image	Warping	Example,	RasterizeTransformation,	TVectorMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage

TRenderThread

Hierarchy
TPersistent

Description
TRenderThread	extends	the	standard	TPersistent	class	with	the	thread-safe
locking	and	declares	change	notification	events.
The	locking	provides	means	of	syncronization	of	simultaneous	access	to	the
same	resource	in	applications	with	multiple	threads	and	it	works	similar	to	that
in	TCanvas	class.	For	additional	information,	see	Delphi	documentation	on
TCanvas.
This	class	also	declares	change	notification	abilities.	That	is,	it	provides
methods	and	events	allowing	it	descendants	to	issue	notification	on	their
changes.	For	example,	TBitmap32	uses	OnChange	to	notify	its	container
(usually	TImage32	or	TBitmapLayer)	that	it	was	modified	and	its	data	has	to
be	repainted	to	the	screen.	TThreadPersistent,	however,	does	not	use	or
implement	automatic	change	notification	itself.	This	is	done	in	descendants.

Reference
Methods

In	TRenderThread:

Create

See	Also
OnChange,	TBitmap32,	TBitmapLayer,	TImage32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Layers

TRubberbandLayer

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomLayer
			|
TPositionedLayer

Description
This	class	implements	a	rubber	band,	allowing	to	move	and	resize	other
positioned	layers	at	run-time.	The	layer	paints	itself	at	GDI	Overlays	stage,
using	the	standard	GDI	methods.
It	is	a	good	idea	to	keep	TRubberbandLayer	on	top	of	other	layers	so	that
thay	don't	intercept	mouse	messages.
Note,	that	this	is	a	preliminary	implementation	of	rubber	banding,	there	is	a	lot
to	be	done	here	to	make	its	behavior	more	consistent,	which	will	be	done	in
future	versions	of	the	library.	However,	most	likely	I	will	keep	names	and
general	meaning	of	most	properties	and	methods.

Reference
Properties Methods Events

In	TRubberbandLayer:

ChildLayer Create OnResizing
FrameStippleCounter Destroy OnUserChange
FrameStippleStep SetFrameStipple
HandleFill
HandleFrame
Handles
HandleSize
MaxHeight
MaxWidth
MinHeight
MinWidth
In	TPositionedLayer:

Location GetAdjustedLocation
Scaled GetAdjustedRect
In	TCustomLayer:

Cursor BringToFront OnHitTest
Index Changed OnMouseDown
LayerCollection HitTest OnMouseMove
LayerOptions SendToBack OnMouseUp
LayerStates Update OnPaint
MouseEvents
Tag
Visible
In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
EndUpdate

See	Also
GDI	Overlays,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TSelectiveConvolver

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler
			|
TKernelSampler
			|
TConvolver

Description
TSelectiveConvolver	works	similarly	to	TConvolver,	but	it	will	exclude	color
samples	from	the	convolution	depending	on	a	the	difference	from	a	local
reference	sample	value.	This	way	we	may	for	instance	perform	smoothing	for
regions	with	small	color	variance,	while	still	maintaining	the	high	contrast
features	of	the	image.

Reference
Properties Methods Events

In	TSelectiveConvolver:

Delta Create
GetSample

In	TKernelSampler:

CenterX Destroy
CenterY
Kernel
In	TNestedSampler:

Sampler
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
EndUpdate

See	Also
Kernel	Example,	Resampler	Example,	TConvolver

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TSinshKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
The	sinsh	kernel	is	defined	as

where	alpha	is	a	custom	coefficient	specified	by	the	Coeff	property.

Reference
Properties Methods
In	TSinshKernel:

Coeff Create
Width Filter

GetWidth
SetWidth

In	TCustomKernel:

Observer Changed
RangeCheck

See	Also
Kernel	Example,	Resampler	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TSplineKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
This	class	implements	a	B-Spline	interpolation	filter.

Reference
Properties Methods
In	TSplineKernel:

Filter
GetWidth

In	TCustomKernel:

Observer Changed
Create
RangeCheck

See	Also
Kernel	Example,	Resampler	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TSuperSampler

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler

Description
TSuperSampler	is	a	nested	sampler	that	adds	a	mechanism	for	performing
super	sampling.	By	adding	a	super	sampler	to	a	chain	of	samplers,	it	is
possible	to	increase	the	sampling	density,	which	will	improve	the	quality	of
the	rasterized	output	image.
For	each	input	sample	(x,	y),	we	find	the	subsamples	by	using	a	rectangular
grid,	regularly	subdivided	(according	to	SamplingX	and	SamplingY)	within
the	region	(x	-	0.5,	y	-	0.5,	x	+	0.5,	y	+	0.5).

Reference
Properties Methods Events

In	TSuperSampler:

SamplingX Create
SamplingY GetSample
In	TNestedSampler:

Sampler
In	TCustomSampler:

FinalizeSampling
GetSampleBounds
HasBounds
PrepareSampling

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Destroy
EndUpdate

See	Also
Kernel	Example,	Resampler	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers

TSwizzlingRasterizer

Hierarchy
TCustomRasterizer
			|
TRasterizer

Description
A	rasterization	method	where	sample	locations	are	choosen	according	to	a
fractal	pattern	called	swizzling.	An	advantage	with	this	pattern	is	that	it	may
benefit	from	local	coherency	in	the	sampling	method	used,	and	moreover
optimize	the	CPU	cache	usage.	To	see	how	this	work,	take	a	look	at	the	nested
sampling	example	with	the	swizzling	rasterizer	enabled.

Reference
Properties Methods
In	TSwizzlingRasterizer:

BlockSize
In	TRasterizer:

Sampler Rasterize

See	Also
Nested	Sampling	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_ExtImage

TSyntheticImage32

Hierarchy
TCustomControl
			|
TCustomPaintBox32

Description
TPaintBox32	implements	the	generic	behavior	introduced	in
TCustomPaintBox32.	It	publishes	some	inherited	properties	from	its	ancestors
and,	in	addition,	it	calls	the	OnPaintBuffer	event	when	the	buffer	needs	to	be
repainted.

Reference
Properties Methods Events

In	TSyntheticImage32:

AutoRasterize Rasterize
BitmapAlign
Buffer
DstRect
Rasterizer
RenderMode
In	TCustomPaintBox32:

BufferOversize Destroy OnMouseEnter
BufferValid DoPaintBuffer OnMouseLeave
Options Flush
RepaintMode ForceFullInvalidate

GetViewportRect
Invalidate
Loaded
Resize
SetBounds

See	Also
OnPaintBuffer,	TCustomPaintBox32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Rasterizers

TTesseralRasterizer

Hierarchy
TCustomRasterizer
			|
TRasterizer

Description
This	recursive	rasterization	method	uses	a	divide-and-conquer	scheme	to
subdivide	blocks	vertically	and	horizontally.	To	see	how	this	work,	take	a	look
at	the	nested	sampling	example	with	the	tesseral	rasterizer	enabled.	

Reference
Properties Methods
In	TRasterizer:

Sampler Rasterize

See	Also
Nested	Sampling	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32

TThreadPersistent

Hierarchy
TPersistent
			|
TNotifiablePersistent

Description
TThreadPersistent	extends	the	TNotifiablePersistent	class	with	thread-safe
locking.
The	locking	mechanism	provides	synchronization	of	simultaneous	access	to
the	same	resource	in	applications	with	multiple	threads	and	it	works	similar	to
the	implementation	found	in	TCanvas	class.	For	additional	information,	see
Delphi	documentation	on	TCanvas.

Reference
Properties Methods Events

In	TThreadPersistent:

LockCount Lock
Unlock

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
Destroy
EndUpdate

See	Also
TNotifiablePersistent

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

TTransformation

Hierarchy
TObject

Description
TTransformation	is	an	abstract	ancestor	for	bitmap	transformation	classes.
TTransformation	objects	are	passed	as	parameter	in	the	Transform	function,
which	actually	performs	the	bitmap	transformation.	Custom	decendants	must
at	least	implement	ReverseTransformFloat	(and	TransformFloat,	if	forward
transformation	is	supported),	since	this	is	the	top	precision	level	in	the
transformation	system	of	Graphics32.	All	decendants	must	override	at	least
this	level,	but	for	optimal	performance,	it	is	recommended	that	the	integer	and
fixed	versions	are	implemented,	respectively.

Reference
Properties Methods
In	TTransformation:

SrcRect GetTransformedBounds
HasTransformedBounds
ReverseTransform
Transform

See	Also
TAffineTransformation,	Transform,	TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TTransformer

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TCustomSampler
			|
TNestedSampler

Description
A	transformer	is	a	special	kind	of	nested	sampler	that	will	transform	the
sampling	coordinates	using	a	transformation	defined	by	a	TTransformation
descendant.
The	transformer	is	normally	used	internally	by	the	Transform	routine,	but	it
also	possible	to	set	it	up	in	an	arbitrary	chain	of	samplers.

Reference
Properties Methods Events

In	TTransformer:

Transformation GetSample
GetSampleBounds
HasBounds
PrepareSampling

In	TNestedSampler:

Sampler Create
In	TCustomSampler:

FinalizeSampling
In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Destroy
EndUpdate

See	Also
Kernel	Example,	Resampler	Example,	TTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Transforms

TTwirlTransformation

Hierarchy
TObject
			|
TTransformation

Description
This	transformation	class	implements	a	twirl	transformation.	The	amount	of
twirl	can	be	controlled	with	the	twirl	property.	The	image	below	shows	how	a
checkerboard	pattern	were	transformed	with	this	transformation.	The	twirl
parameter	were	set	very	low	for	illustrative	purposes.	With	high	twirl
frequencies	(more	extreme	settings	of	the	twirl	property),	it	is	recommended
that	antialiasing	steps	are	taken	(e.g.	supersampling).

Reference
Properties Methods
In	TTwirlTransformation:

Twirl
In	TTransformation:

SrcRect GetTransformedBounds
HasTransformedBounds
ReverseTransform
Transform

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_VectorMaps

TVectorMap

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TThreadPersistent
			|
TCustomMap

Description
The	TVectorMap	class	may	be	used	to	store	two-dimensional	vectors,	and
provides	a	set	of	useful	indexing	and	interpolation	properties.	TVectorMap	is
an	ancestor	of	TCustomMap	and	supports	saving	and	loading	(Photoshop	.msh
format).	TRemapTransformation	wraps	TVectorMap,	so	for	a
TTransformation	compatible	implementation,	this	may	be	a	better	choice.

Reference
Properties Methods Events

In	TVectorMap:

Vector Clear OnVectorCombine
VectorCombineMode Destroy
Vectors Empty

GetTrimmedBounds
LoadFromFile
Merge
SaveToFile

In	TCustomMap:

Height Delete OnResize
Width Resized

SetSize
In	TThreadPersistent:

LockCount Lock
Unlock

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
EndUpdate

See	Also
Image	Warping	Example,	TCustomMap,	TRemapTransformation,
TTransformation,	Vector	Types,	Visualization	Example

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_Resamplers

TWindowedSincKernel

Hierarchy
TPersistent
			|
TCustomKernel

Description
Returns	the	value	of	the	Sinc	function	constrained	by	a	window	function.
Descendant	classes	override	the	Window	method	in	order	to	implement	a
custom	window	function.

h(x)	=	Sinc(x)	*	Window(x);
Windowed	Sinc	filters	are	known	for	producing	high	quality	resampled
images.	Ideal	resampling	corresponds	to	filtering	an	image	with	the	ideal	low-
pass	filter	(i.e.	a	Sinc	filter).	This	is	computionally	expensive,	since	the	Sinc
function	has	infinite	extent.	Hence	a	window	function	is	used	to	constrain	the
filter.
See	topic	about	Sampling	and	Rasterization	for	further	information.

Reference
Properties Methods
In	TWindowedSincKernel:

Width Create
Filter
GetWidth
SetWidth

In	TCustomKernel:

Observer Changed
RangeCheck

See	Also
Kernel	Example,	Resampler	Example,	Sampling	and	Rasterization,	Window

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home GR32_OrdinalMaps

TWordMap

Hierarchy
TPersistent
			|
TNotifiablePersistent
			|
TThreadPersistent
			|
TCustomMap

Description
The	TWordMap	class	implements	a	two	dimensional	matrix	of	words.	It	may
be	useful	for	storing	16	bit	grayscale	data,	and	in	general	data	that	requires	or
can	be	represented	in	16	bit	unsigned	integers	(words).

Reference
Properties Methods Events

In	TWordMap:

Bits
ValPtr
Value
In	TCustomMap:

Height Delete OnResize
Width Empty

Resized
SetSize

In	TThreadPersistent:

LockCount Lock
Unlock

In	TNotifiablePersistent:

UpdateCount BeginUpdate OnChange
Changed
Create
Destroy
EndUpdate

See	Also
GR32_ByteMaps,	TBooleanMap,	TIntegerMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32

GR32.pas	contains	common	functions	and	classes	for	working	with	32-bit
device	independent	bitmaps	(DIBs).	It	also	defines	some	other	basic	types	and
operations.

Contents
Classes Routines Types Constants

TBitmap32 AlphaComponent Arrays Area	Information
Flags

TCustomMap BlueComponent Color	Types Color	Constants
TCustomResampler Color32 Point	Types G32Version
TCustomSampler Color32Components Rectangle	Types
TNotifiablePersistent Color32ToRGB TAreaChangedEvent
TThreadPersistent Creating	Points TCombineMode

Creating	Rectangles TDrawMode
EqualRect TFixed
Fixed	Point	Math TPixelCombineEvent
Gray32 TRectRounding
GreenComponent TSize
HSLtoRGB TStretchFilter
InflateRect TWrapMode
Intensity
IntersectRect
IsRectEmpty
OffsetRect
PtInRect
RedComponent
RGBtoHSL
SetAlpha
SetGamma
WinColor
WinPalette

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Filters

GR32_Filters.pas	provides	some	basic	functions	for	operating	over	bitmap
data.

Contents
Routines Types

AlphaToGrayscale TLogicalOperator
ApplyBitmask TLUT8
ApplyLUT
ChromaKey
ColorToGrayScale
CopyComponents
CreateBitmask
IntensityToAlpha
Invert
InvertRGB

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Math

GR32_Math.pas	is	a	collection	of	math	related	functions	used	in	Graphics32.

Contents
Routines

Fixed	Ceil
Fixed	Division
Fixed	Floor
Fixed	Multiply
Fixed	Round
Fixed	Square
Fixed	Square	Root
SinCos

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Rasterizers

GR32_Rasterizers.pas	provides	classes	used	when	rasterizing	an	image.
Rasterization	is	the	process	of	acquiring	a	number	of	samples	for	the	pixels	of
a	destination	image.
Rasterizers	determine	the	order	in	which	pixels	are	updated	in	the	destination
bitmap	when	sampling	from	an	input	scene	(which	can	be	a	reconstructed
bitmap,	a	synthetic	sample	generator	or	an	image	acquisition	device).

Contents
Classes Types

TContourRasterizer TCombineInfo
TProgressiveRasterizer
TRasterizer
TRegularRasterizer
TSwizzlingRasterizer
TTesseralRasterizer

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Blend

GR32_Blend.pas	includes	low-level	functions,	mostly	blending	of	pixels.	The
library	automatically	determines	whether	the	CPU	supports	MMX
instructions,	and	uses	MMX	optimized	routines	when	it	is	possible.

Contents
Routines Types Variables

Blend TBlendLine MMX_ACTIVE
BlendEx TBlendLineEx
BlendLine TBlendMem
BlendLineEx TBlendMemEx
ColorAdd TBlendReg
ColorDiv TBlendRegEx
ColorMax TCombineMem
ColorMin TCombineReg
ColorModulate
ColorSub
Combine
EMMS
Lighten
Merge
MergeEx

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Image

GR32_Image.pas	contains	visual	components	for	image	storing	and
visualization.

Contents
Classes Types Constants

TBitmap32Collection TPaintBoxOptions Paint	Stage	Constants
TBitmap32Item TPaintStage
TBitmap32List TRepaintMode
TCustomImage32 TScaleMode
TCustomImgView32 TScrollBarVisibility
TCustomPaintBox32 TSizeGripStyle
TImage32
TImgView32
TIVScrollProperties
TPaintBox32
TPaintStages

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_OrdinalMaps

GR32_OrdinalMaps.pas	is	a	collection	of	ordinal	type	map	classes.

Contents
Classes Types

TBooleanMap TConversionType
TByteMap
TIntegerMap
TWordMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Resamplers

GR32_Resamplers.pas	provides	a	comprehensive	set	of	classes	that	are	used
within	image	resampling	and	rasterization.	These	classes	can	roughly	be
categorized	as	follows:

Resamplers	—	classes	that	implement	different	resampling	algorithms;
Kernels	—	convolution	kernels	used	by	TKernelResampler;
Nested	samplers	—	transformers,	super	samplers	and	kernel	samplers.

For	further	information,	see	topic	about	Sampling	and	Rasterization.

Contents
Classes Routines Types

TAdaptiveSuperSampler BlendTransfer TKernelMode
TBitmap32Resampler BlockTransfer TPixelAccessMode
TBlackmanKernel BlockTransferX
TBoxKernel Contract
TContracter Dilate
TConvolver Erode
TCosineKernel Expand
TCubicKernel StretchTransfer
TCustomKernel
TDilater
TDraftResampler
TEroder
TExpander
TGaussianKernel
THammingKernel
THannKernel
THermiteKernel
TKernelResampler
TKernelSampler
TLanczosKernel
TLinearKernel
TLinearResampler
TMitchellKernel
TMorphologicalSampler
TNearestResampler
TNearestTransformer
TNestedSampler
TPatternSampler
TSelectiveConvolver
TSinshKernel
TSplineKernel
TSuperSampler
TTransformer
TWindowedSincKernel

See	Also
Sampling	and	Rasterization,	TKernelResampler

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Containers

GR32_Containers.pas	includes	a	number	of	auxiliary	container	classes.

Contents
Classes

TClassList
TPointerMap
TPointerMapIterator
TRectList

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Layers

The	GR32_Layers.pas	unit	contains	layer	classes,	which	can	be	attached	to
TCustomImage32	class	and	its	descendants.
	

Contents
Classes Types Constants

TBitmapLayer TRBHandles Layer	Options	Bits
TCustomLayer
TLayerCollection
TPositionedLayer
TRubberbandLayer

See	Also
ImgView	and	Layers	Example,	TCustomImage32,	Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Polygons

GR32_Polygons.pas	provides	functions	and	classes	for	drawing	polygons	and
polylines.

Contents
Classes Routines Types Constants

TBitmapPolygonFiller Polygon TAntialiasMode DefaultAAMode
TCustomPolygonFiller Polyline TFillLineEvent
TPolygon32 PolyPolygon TPolyFillMode

PolyPolygonBounds
PolyPolyline
PtInPolygon

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Transforms

GR32_Transforms.pas	provides	functions	and	classes	for	combining	and
transforming	bitmap	images	and	their	fragments.
It	also	includes	affine	and	pojective	transformations	of	bitmaps.

Contents
Classes Routines Types Constants

TAffineTransformation RasterizeTransformation TFloatMatrix IdentityMatrix
TBloatTransformation SetBorderTransparent
TDisturbanceTransformation Transform
TFishEyeTransformation TransformPoints
TProjectiveTransformation
TRemapTransformation
TTransformation
TTwirlTransformation

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_ExtImage

GR32_ExtImage.pas	is	an	extension	to	the	GR32	image	unit.	It	provides	a	set
of	useful	classes	and	routines	for	threaded	rasterization	and	rendering.

Contents
Classes Routines Types

TRenderThread Rasterize TRenderMode
TSyntheticImage32

See	Also
GR32_Image

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_Lowlevel

GR32_Lowlevel.pas	is	a	collection	of	RTL	extensions	and	auxiliary	low	level
routines.	The	unit	is	primarily	used	internally	in	Graphics32.

Contents
Routines Types

Clamp Wrap	Procedure	Types
Colorswap
Constrain
FillLongword
FillWord
Mirror
MoveLongword
MoveWord
Shift	Arithmetic	Right
Swap
SwapConstrain
TestClip
TestSwap
Wrap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_RangeBars

GR32_RangeBars.pas	provides	controls	similar	to	standard	TScrollBar	and
TControlScrollBar.	This	unit	is	included	into	Graphics32	to	provide
customized	scroll	bars	for	TCustomImgView32	and	TImgView32	to	scroll
their	contents.

Contents
Classes Types

TArrowBar TRBBackgnd
TCustomGaugeBar TRBStyle
TCustomRangeBar
TGaugeBar
TRangeBar

See	Also
TCustomImgView32,	TImgView32

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

GR32_VectorMaps

The	GR32_VectorMaps.pas	unit	contains	the	TVectorMap	class.

Contents
Classes Types

TVectorMap TVectorCombineEvent
TVectorCombineMode
Vector	Types

See	Also
TVectorMap

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

Overview

Graphics32	is	a	set	of	functions,	classes,	components	and	controls	designed
for	high-performance	graphics	programming.
Being	highly	specialized	for	32-bit	pixel	format,	it	provides	fast	operations
with	pixels	and	graphic	primitives	and	in	most	cases	Graphics32	considerably
outperforms	standard	TBitmap/TCanvas	classes.
The	library	comes	with	a	full	source	code,	documentation	and	examples.
The	following	topics	are	covered	in	this	overview:

Features;
License;
Donate;
Contacts;
Naming	Convention;
Changes.

See	Also
Changes,	Contacts,	Donate,	Features,	License,	Naming	Conventions

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

Home

Using	TImage32

Starting	from	v0.99	of	the	Graphics32	library,	implementation	of	VCL
components	was	changed.
This	section	describes	behavior	and	properties	of	TCustomImage32	and
TImage32	controls,	as	well	as	new	realization	of	layers.
Since	TCustomImage32	and	TImage32	share	the	same	behavior,	I	will	denote
both	of	them	here	as	TImage32.	Most	of	the	discussion	concerns	TImgView32
as	well.

Overview
TImage32	is	an	image	displaying	visual	component,	which	also	holds	a
collection	of	layers.
The	image	is	defined	as	a	TBitmap32	object	and	there	exist	several	properties
which	specify	how	it	is	scaled	and	positioned	within	the	control's	boundaries.	I
will	denote	this	image	as	Bitmap	Image	here.
The	layer	is,	generally	speaking,	an	entity	which	'knows'	how	to	combine
itself	with	the	back	buffer	of	the	control.	TImage32	maintains	a	collection	of
layers,	see	'Using	Layers'	for	details.
When	the	image	paints	itself,	it	runs	through	several	Paint	Stages	which
determine	the	order	in	which	layers	and	the	bitmap	image	are	painted.	This
order	is	completely	customizeable.
To	avoid	flicker	and	to	speed-up	scaling	and	blending	operations,	each	layer
and	the	bitmap	image	is	painted	to	a	back-buffer	of	the	control.	See	the
reference	of	TImage32	ancestor	TCustomPaintBox32	for	details	of	the	back-
buffer	realization.
Finally,	TImage32	supports	change	notification	(OnChange	event),	which	is
done	similar	to	change	notification	in	TBitmap32.	Basically,	it	redirects
change	notification	from	its	layers	and	the	bitmap	image.

See	Also
Bitmap	Image,	ImgView	and	Layers	Example,	TCustomImage32.OnChange,
Paint	Stages,	TBitmap32,	TCustomImage32,	TCustomPaintBox32,	TImage32,
Using	Layers

Copyright	©2000-2007	Alex	Denisov	and	Contributors			-			Graphics32	v1.8.3			-			Build	on	4-
March-2007

	Graphics32 Help and Reference
	Overview
	Features
	License
	Donate
	Contacts
	Naming Conventions
	Changes
	Installation
	Examples
	Line Patterns
	Repaint Optimization
	Sampling and Rasterization
	Special Units
	GR32_Dsgn_Bitmap
	GR32_Dsgn_Color
	GR32_Dsgn_Misc
	GR32_MicroTiles
	GR32_Reg
	GR32_RepaintOpt
	GR32_System
	Using TImage32
	Bitmap Image
	Paint Stages
	Using Layers
	Contributors
	GR32
	TBitmap32
	BitmapHandle
	BitmapInfo
	Bits
	Canvas
	Clipping
	ClipRect
	CombineMode
	DrawMode
	Font
	Handle
	MasterAlpha
	MeasuringMode
	OuterColor
	PenColor
	Pixel
	PixelPtr
	Pixmap
	PixmapChanged
	Resampler
	ResamplerClassName
	ScanLine
	StippleCounter
	StippleStep
	StretchFilter
	WrapMode
	BeginMeasuring
	CanvasAllocated
	Clear
	Create
	DeleteCanvas
	Destroy
	Draw
	DrawTo
	Empty
	EndMeasuring
	FillRect
	FlipHorz
	FlipVert
	FrameRect
	GetStippleColor
	HandleChanged
	HorzLine
	Line
	LineTo
	LoadFromFile
	LoadFromResourceID
	LoadFromResourceName
	LoadFromStream
	MoveTo
	RaiseRectTS
	RenderText
	ResetAlpha
	ResetClipRect
	Roll
	Rotate
	SaveToFile
	SaveToStream
	SetPixel
	SetSize
	SetStipple
	TextExtent
	TextHeight
	TextOut
	TextWidth
	UpdateFont
	VertLine
	OnAreaChanged
	OnHandleChanged
	OnPixelCombine
	TCustomMap
	Height
	Width
	Delete
	Empty
	Resized
	SetSize
	OnResize
	TCustomResampler
	Width
	Resample
	TCustomSampler
	FinalizeSampling
	GetSample
	GetSampleBounds
	HasBounds
	PrepareSampling
	TNotifiablePersistent
	UpdateCount
	BeginUpdate
	Changed
	Create
	Destroy
	EndUpdate
	OnChange
	TThreadPersistent
	LockCount
	Lock
	Unlock
	AlphaComponent
	BlueComponent
	Color32
	Color32Components
	Color32ToRGB
	Creating Points
	Creating Rectangles
	EqualRect
	Fixed Point Math
	Gray32
	GreenComponent
	HSLtoRGB
	InflateRect
	Intensity
	IntersectRect
	IsRectEmpty
	OffsetRect
	PtInRect
	RedComponent
	RGBtoHSL
	SetAlpha
	SetGamma
	WinColor
	WinPalette
	Arrays
	Color Types
	Point Types
	Rectangle Types
	TAreaChangedEvent
	TCombineMode
	TDrawMode
	TFixed
	TPixelCombineEvent
	TRectRounding
	TSize
	TStretchFilter
	TWrapMode
	Area Information Flags
	Color Constants
	G32Version
	GR32_Blend
	Blend
	BlendEx
	BlendLine
	BlendLineEx
	ColorAdd
	ColorDiv
	ColorMax
	ColorMin
	ColorModulate
	ColorSub
	Combine
	EMMS
	Lighten
	Merge
	MergeEx
	TBlendLine
	TBlendLineEx
	TBlendMem
	TBlendMemEx
	TBlendReg
	TBlendRegEx
	TCombineMem
	TCombineReg
	MMX_ACTIVE
	GR32_Containers
	TClassList
	Find
	GetClassNames
	TPointerMap
	Count
	Data
	Add
	Clear
	Contains
	Find
	Remove
	TPointerMapIterator
	Data
	Item
	Next
	TRectList
	GR32_ExtImage
	TRenderThread
	Create
	TSyntheticImage32
	AutoRasterize
	BitmapAlign
	Buffer
	DstRect
	Rasterizer
	RenderMode
	Rasterize
	Rasterize
	TRenderMode
	GR32_Filters
	AlphaToGrayscale
	ApplyBitmask
	ApplyLUT
	ChromaKey
	ColorToGrayScale
	CopyComponents
	CreateBitmask
	IntensityToAlpha
	Invert
	InvertRGB
	TLogicalOperator
	TLUT8
	GR32_Image
	TBitmap32Collection
	Items
	Add
	Create
	TBitmap32Item
	Bitmap
	Create
	Destroy
	TBitmap32List
	Bitmap
	Bitmaps
	Create
	Destroy
	TCustomImage32
	Bitmap
	BitmapAlign
	Layers
	OffsetHorz
	OffsetVert
	PaintStages
	Scale
	ScaleMode
	ScaleX
	ScaleY
	BeginUpdate
	BitmapToControl
	Changed
	ControlToBitmap
	Create
	Destroy
	EndUpdate
	ExecBitmapFrame
	ExecClearBackgnd
	ExecClearBuffer
	ExecControlFrame
	ExecCustom
	ExecDrawBitmap
	ExecDrawLayers
	GetPictureRect
	GetPictureSize
	Resize
	SetupBitmap
	OnBitmapResize
	OnChange
	OnGDIOverlay
	OnInitStages
	OnMouseDown
	OnMouseMove
	OnMouseUp
	OnPaintStage
	OnPixelCombine
	OnScaleChange
	TCustomImgView32
	Centered
	OverSize
	ScrollBars
	SizeGrip
	Create
	Destroy
	GetViewportRect
	Loaded
	Resize
	Scroll
	ScrollToCenter
	OnScroll
	TCustomPaintBox32
	Buffer
	BufferOversize
	BufferValid
	Options
	RepaintMode
	Destroy
	DoPaintBuffer
	Flush
	ForceFullInvalidate
	GetViewportRect
	Invalidate
	Loaded
	Resize
	SetBounds
	OnMouseEnter
	OnMouseLeave
	TImage32
	TImgView32
	TIVScrollProperties
	Backgnd
	BorderStyle
	ButtonSize
	HandleColor
	Increment
	ShowArrows
	ShowHandleGrip
	Size
	Style
	Visibility
	TPaintBox32
	Create
	DoPaintBuffer
	Flush
	OnPaintBuffer
	TPaintStages
	Items
	Add
	Clear
	Count
	Delete
	Destroy
	Insert
	TPaintBoxOptions
	TPaintStage
	TRepaintMode
	TScaleMode
	TScrollBarVisibility
	TSizeGripStyle
	Paint Stage Constants
	GR32_Layers
	TBitmapLayer
	AlphaHit
	Bitmap
	Cropped
	Create
	Destroy
	TCustomLayer
	Cursor
	Index
	LayerCollection
	LayerOptions
	LayerStates
	MouseEvents
	Tag
	Visible
	BringToFront
	Changed
	Create
	Destroy
	HitTest
	SendToBack
	Update
	OnHitTest
	OnMouseDown
	OnMouseMove
	OnMouseUp
	OnPaint
	TLayerCollection
	CoordXForm
	Count
	GetViewportScale
	GetViewportShift
	Items
	LocalToViewport
	MouseEvents
	MouseListener
	Owner
	ViewportToLocal
	Add
	Clear
	Create
	Delete
	Destroy
	Insert
	TPositionedLayer
	Location
	Scaled
	Create
	GetAdjustedLocation
	GetAdjustedRect
	TRubberbandLayer
	ChildLayer
	FrameStippleCounter
	FrameStippleStep
	HandleFill
	HandleFrame
	Handles
	HandleSize
	MaxHeight
	MaxWidth
	MinHeight
	MinWidth
	Create
	Destroy
	SetFrameStipple
	OnResizing
	OnUserChange
	TRBHandles
	Layer Options Bits
	GR32_Lowlevel
	Clamp
	Colorswap
	Constrain
	FillLongword
	FillWord
	Mirror
	MoveLongword
	MoveWord
	Shift Arithmetic Right
	Swap
	SwapConstrain
	TestClip
	TestSwap
	Wrap
	Wrap Procedure Types
	GR32_Math
	Fixed Ceil
	Fixed Division
	Fixed Floor
	Fixed Multiply
	Fixed Round
	Fixed Square
	Fixed Square Root
	SinCos
	GR32_OrdinalMaps
	TBooleanMap
	Bits
	Value
	TByteMap
	Bits
	ValPtr
	Value
	Assign
	Clear
	Destroy
	Empty
	ReadFrom
	SetSize
	WriteTo
	TIntegerMap
	Bits
	ValPtr
	Value
	TWordMap
	Bits
	ValPtr
	Value
	TConversionType
	GR32_Polygons
	TBitmapPolygonFiller
	OffsetX
	OffsetY
	Pattern
	TCustomPolygonFiller
	GetFillLine
	TPolygon32
	Antialiased
	AntialiasMode
	Closed
	FillMode
	Normals
	Points
	Add
	AddPoints
	Assign
	Clear
	ContainsPoint
	Create
	Destroy
	Draw
	DrawEdge
	DrawFill
	GetBoundingRect
	Grow
	NewLine
	Offset
	Outline
	Transform
	Polygon
	Polyline
	PolyPolygon
	PolyPolygonBounds
	PolyPolyline
	PtInPolygon
	TAntialiasMode
	TFillLineEvent
	TPolyFillMode
	DefaultAAMode
	GR32_RangeBars
	TArrowBar
	Backgnd
	BorderStyle
	ButtonSize
	HandleColor
	Kind
	ShowArrows
	ShowHandleGrip
	Style
	Create
	Destroy
	Paint
	OnChange
	OnUserChange
	TCustomGaugeBar
	HandleSize
	LargeChange
	Max
	Min
	Position
	SmallChange
	Create
	Paint
	TCustomRangeBar
	Centered
	Increment
	Position
	Range
	Window
	Create
	Paint
	TGaugeBar
	TRangeBar
	TRBBackgnd
	TRBStyle
	GR32_Rasterizers
	TContourRasterizer
	TProgressiveRasterizer
	Steps
	UpdateRows
	TRasterizer
	Sampler
	Rasterize
	TRegularRasterizer
	UpdateRowCount
	TSwizzlingRasterizer
	BlockSize
	TTesseralRasterizer
	TCombineInfo
	GR32_Resamplers
	TAdaptiveSuperSampler
	Level
	Tolerance
	Create
	GetSample
	TBitmap32Resampler
	Bitmap
	PixelAccessMode
	TransformerClass
	Changed
	Create
	GetSampleBounds
	HasBounds
	PrepareSampling
	TBlackmanKernel
	TBoxKernel
	Filter
	GetWidth
	TContracter
	GetSample
	PrepareSampling
	TConvolver
	TCosineKernel
	Filter
	GetWidth
	TCubicKernel
	Coeff
	Create
	Filter
	GetWidth
	RangeCheck
	TCustomKernel
	Observer
	Changed
	Create
	Filter
	GetWidth
	RangeCheck
	TDilater
	TDraftResampler
	TEroder
	Create
	TExpander
	TGaussianKernel
	Sigma
	Create
	THammingKernel
	THannKernel
	THermiteKernel
	Bias
	Tension
	Create
	Filter
	GetWidth
	RangeCheck
	TKernelResampler
	Kernel
	KernelClassName
	KernelMode
	TableSize
	Create
	Destroy
	FinalizeSampling
	GetSample
	PrepareSampling
	TKernelSampler
	CenterX
	CenterY
	Kernel
	Create
	Destroy
	GetSample
	TLanczosKernel
	TLinearKernel
	Filter
	GetWidth
	TLinearResampler
	Create
	Destroy
	GetSample
	PrepareSampling
	TMitchellKernel
	Filter
	GetWidth
	RangeCheck
	TMorphologicalSampler
	TNearestResampler
	Create
	GetSample
	PrepareSampling
	TNearestTransformer
	GetSample
	TNestedSampler
	Sampler
	Create
	TPatternSampler
	Pattern
	Destroy
	GetSample
	TSelectiveConvolver
	Delta
	Create
	GetSample
	TSinshKernel
	Coeff
	Width
	Create
	Filter
	GetWidth
	SetWidth
	TSplineKernel
	Filter
	GetWidth
	TSuperSampler
	SamplingX
	SamplingY
	Create
	GetSample
	TTransformer
	Transformation
	GetSample
	GetSampleBounds
	HasBounds
	PrepareSampling
	TWindowedSincKernel
	Width
	Create
	Filter
	GetWidth
	SetWidth
	BlendTransfer
	BlockTransfer
	BlockTransferX
	Contract
	Dilate
	Erode
	Expand
	StretchTransfer
	TKernelMode
	TPixelAccessMode
	GR32_Transforms
	TAffineTransformation
	Matrix
	Clear
	Create
	GetTransformedBounds
	Rotate
	Scale
	Skew
	Translate
	TBloatTransformation
	BloatPower
	TDisturbanceTransformation
	Disturbance
	TFishEyeTransformation
	TProjectiveTransformation
	X0
	X1
	X3
	Y0
	Y1
	Y2
	Y3
	GetTransformedBounds
	TRemapTransformation
	MappingRect
	Offset
	GetTransformedBounds
	HasTransformedBounds
	Scale
	TTransformation
	SrcRect
	GetTransformedBounds
	HasTransformedBounds
	ReverseTransform
	Transform
	TTwirlTransformation
	Twirl
	RasterizeTransformation
	SetBorderTransparent
	Transform
	TransformPoints
	TFloatMatrix
	IdentityMatrix
	GR32_VectorMaps
	TVectorMap
	Vector
	VectorCombineMode
	Vectors
	Clear
	Destroy
	Empty
	GetTrimmedBounds
	LoadFromFile
	Merge
	SaveToFile
	OnVectorCombine
	TVectorCombineEvent
	TVectorCombineMode
	Vector Types

